WO2020054159A1 - X-ray phase imaging system - Google Patents

X-ray phase imaging system Download PDF

Info

Publication number
WO2020054159A1
WO2020054159A1 PCT/JP2019/023129 JP2019023129W WO2020054159A1 WO 2020054159 A1 WO2020054159 A1 WO 2020054159A1 JP 2019023129 W JP2019023129 W JP 2019023129W WO 2020054159 A1 WO2020054159 A1 WO 2020054159A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
phase
grating
artifact
ray
Prior art date
Application number
PCT/JP2019/023129
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 森本
木村 健士
太郎 白井
貴弘 土岐
哲 佐野
日明 堀場
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2020054159A1 publication Critical patent/WO2020054159A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers

Definitions

  • the present invention relates to an X-ray phase imaging system, and more particularly to an X-ray phase imaging system including a plurality of gratings.
  • an X-ray phase imaging system including a plurality of gratings is known.
  • Such an X-ray phase imaging system is disclosed in, for example, Japanese Patent No. 5833114.
  • the X-ray phase imaging system disclosed in Japanese Patent No. 5831614 includes an X-ray source, a detector, a G0 grating for increasing the coherence of X-rays, a G1 grating for diffracting X-rays, and a G1 grating. A G2 grating for causing interference with the grating image.
  • the X-ray phase imaging system disclosed in Japanese Patent No. 5831614 is configured to acquire a phase contrast image by a fringe scanning method in which one of a plurality of gratings is imaged while being moved in the direction of the pitch of the grating. .
  • the fringe scanning method is a method of imaging the inside of a subject based on the phase difference of X-rays passing through the subject and small-angle scattering of X-rays.
  • Japanese Patent No. 5831614 discloses a configuration for correcting an artifact generated in a phase contrast image.
  • the X-ray phase imaging system disclosed in Japanese Patent No. 5833114 is configured to approximate an artifact generated in a phase contrast image by a linear function or a quadratic function.
  • the X-ray phase imaging system disclosed in Japanese Patent No. 5831614 is configured to correct a phase contrast image by subtracting an approximate artifact from the phase contrast image.
  • the configuration disclosed in Japanese Patent No. 5831614 is a configuration in which an artifact is approximated by a linear function or a quadratic function. For this reason, when an artifact such as a relatively complicated gradation (shading continuously changes) that cannot be approximated by a linear function or a quadratic function occurs in a phase contrast image, it is necessary to accurately approximate the artifact. And it is difficult to suppress the deterioration of the image quality of the phase contrast image.
  • the present invention has been made in order to solve the above-described problems, and suppresses the deterioration of the image quality of the obtained phase contrast image even when relatively complicated artifacts have occurred in the phase contrast image.
  • an X-ray phase imaging system includes an X-ray source that irradiates a subject with X-rays, a detector that detects X-rays emitted from the X-ray source, X-rays from the X-ray source are arranged between the X-ray source and the detector, and moire fringes are generated by interference between the first grating for forming a grating image and the grating image of the first grating.
  • a plurality of gratings including a second grating for causing a phase contrast image to be generated based on a signal detected by the detector, and a position coordinate of a pixel in the generated phase contrast image.
  • an artifact refers to a light and shade pattern (gradation) caused by non-uniform pixel values of pixels in a background portion of a phase contrast image.
  • a third-order or higher-order function expressed using the position coordinates of the pixel in the generated phase contrast image causes the phase contrast image to be generated in the phase contrast image.
  • a control unit that approximates the artifact and corrects the phase contrast image based on the approximated artifact even if an artifact generated in the phase contrast image has a complicated shape (distribution) that cannot be approximated by a linear function or a quadratic function, it may be approximated by a cubic or higher-order function. As a result, even when relatively complicated artifacts occur in the phase contrast image, it is possible to suppress the image quality of the obtained phase contrast image from deteriorating.
  • the control unit acquires the intensity distribution of the artifact as a three-dimensional approximated surface based on a third-order or higher-order function, and acquires the acquired three-dimensional approximation.
  • the phase contrast image is configured to be corrected based on the curved surface.
  • control unit is configured to correct an artifact caused by a three-dimensional displacement of a relative position between the plurality of grids caused by heat fluctuation by using a three-dimensional approximated surface.
  • the artifact can be corrected based on the three-dimensional approximated surface. As a result, it is possible to suppress the image quality of the phase contrast image from deteriorating due to an artifact due to the thermal fluctuation.
  • the control unit preferably occurs when a relative position between the plurality of gratings is shifted from a predetermined positional relationship. It is configured to correct artifacts caused by moire fringes by using a three-dimensional approximated surface.
  • the moiré stripe is a stripe pattern in which a bright portion and a dark portion are repeated at a predetermined cycle.
  • the artifact caused by the moiré fringe has a dark part and a light part corresponding to the bright part and the dark part of the moiré fringe, respectively. Therefore, the dark part and the light part of the artifact caused by the moire fringes are also repeated at a predetermined cycle.
  • the control unit acquires a plurality of pixels from the phase contrast image, plots the acquired pixels, and plots the acquired pixels. It is configured to obtain a three-dimensional approximated surface by fitting a third-order or higher-order multi-dimensional function to the plurality of pixels. With this configuration, it is possible to obtain a three-dimensional approximated surface that approximates the intensity distribution of the artifact by plotting the pixels obtained from the phase contrast image. As a result, it is possible to suppress an increase in calculation cost (calculation load) when approximating the artifact as compared with a case where the intensity distribution of the artifact is obtained from all pixels of the phase contrast image.
  • the control unit obtains the three-dimensional approximated surface by performing multidimensional function fitting by least squares fitting. It is configured as follows. With this configuration, a three-dimensional approximated surface can be easily obtained by the least squares fitting. As a result, artifacts generated in the phase contrast image can be easily corrected.
  • the control unit obtains the three-dimensional approximated surface based on a pixel in which the subject is not reflected in the phase contrast image. Then, the phase contrast image is corrected by subtracting a three-dimensional approximate curved surface from the phase contrast image.
  • the artifact can be corrected by a three-dimensional approximation surface that accurately approximates the artifact, so that the image quality of the phase contrast image can be further suppressed from deteriorating.
  • control unit is configured to correct an artifact in the phase differential image as a phase contrast image.
  • the control unit is configured to correct artifacts in a phase differential image formed by using the lattice image of the first lattice, and therefore, when suppressing deterioration in image quality of the phase differential image, Especially effective.
  • the plurality of gratings are arranged between the X-ray source and the first grating, and the X-ray coherence of X-rays irradiated with X-rays from the X-ray source is provided.
  • the first grating is an absorption grating that forms a stripe pattern generated by shielding a part of the X-rays as a grating image.
  • the first grating is an absorption grating that forms a stripe pattern generated by shielding a part of the X-rays as a grating image.
  • the striped pattern of the first lattice is generated by blocking a part of the X-rays. Therefore, unlike the Talbot interferometer that generates a self-image of the first grating, the first grating does not have to be arranged at a predetermined distance (Talbot distance) from the X-ray source. As a result, the degree of freedom of the arrangement position of the first grating can be improved.
  • FIG. 2 is a schematic diagram of the X-ray phase imaging system according to the first embodiment as viewed from a Y direction.
  • FIG. 2 is a perspective view of a grating moving mechanism included in the X-ray phase imaging system according to the first embodiment.
  • FIG. 3 is a schematic diagram for explaining a lattice image of a first lattice and a second lattice in the X-ray phase imaging system according to the first embodiment.
  • It is a schematic diagram (A) of an absorption image generated by the X-ray phase imaging system according to the first embodiment, a schematic diagram of a phase differential image (B), and a schematic diagram of a dark field image (C).
  • FIGS. 7A to 7D are schematic diagrams (A) to (D) for explaining a change in a phase differential image when a positional shift occurs between a lattice image of a first grating and a second grating.
  • FIG. 3 is a schematic diagram for explaining an artifact that occurs in a phase contrast image.
  • FIGS. 7A and 7B are schematic diagrams for explaining correction of an artifact according to a first comparative example.
  • FIGS. FIG. 4 is a schematic diagram for explaining a three-dimensional approximate curved surface acquired by a control unit according to the first embodiment.
  • FIGS. 3A and 3B are schematic diagrams for explaining correction of an artifact according to the first embodiment.
  • FIG. 5 is a flowchart illustrating an artifact correction process according to the first embodiment.
  • FIG. 3 is a schematic diagram for explaining moire fringes generated in an X-ray image.
  • 3A is a schematic diagram of an absorption image in which an artifact caused by moiré fringes has occurred
  • FIG. 3B is a schematic diagram of a phase differential image
  • FIG. FIGS. 7A and 7B are schematic diagrams for explaining correction of an artifact according to a second comparative example.
  • FIGS. FIGS. 11A and 11B are schematic diagrams for explaining correction of an artifact according to a third comparative example.
  • FIGS. FIGS. 7A and 7B are schematic diagrams for explaining correction of an artifact according to the second embodiment.
  • FIGS. 9 is a flowchart illustrating an artifact correction process according to the second embodiment. It is the schematic diagram which looked at the X-ray phase imaging system by the modification from Y direction.
  • the X-ray phase imaging system 100 is an apparatus for imaging the inside of the subject Q using the Talbot effect.
  • the X-ray phase imaging system 100 is configured to image the subject Q while translating any one of the plurality of gratings in the periodic direction of the grating (X direction).
  • the X-ray phase imaging system 100 includes an X-ray source 1, a detector 2, a plurality of gratings including a first grating 3 and a second grating 4, an image processing unit 5,
  • the storage unit includes a unit 6, a storage unit 7, and a grid moving mechanism 8.
  • a direction from the X-ray source 1 toward the first grating 3 is defined as a Z2 direction
  • a direction opposite thereto is defined as a Z1 direction.
  • the left and right directions in a plane orthogonal to the Z direction are defined as X directions
  • the upper direction of the paper of FIG. 1 is defined as X1 direction
  • the lower direction of the paper of FIG. 1 is defined as X2 direction.
  • the vertical direction in the plane of the paper perpendicular to the Z direction is defined as the Y direction
  • the direction toward the near side of the paper of FIG. 1 is defined as the Y1 direction
  • the direction toward the back of the paper of FIG. 1 is defined as the Y2 direction.
  • the X-ray source 1 is configured to generate X-rays when a high voltage is applied, and to irradiate the generated X-rays to the subject Q.
  • the detector 2 is configured to detect X-rays, convert the detected X-rays into an electric signal, and read the converted electric signal as an image signal.
  • the detector 2 is, for example, an FPD (Flat @ Panel @ Detector).
  • the detector 2 includes a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements.
  • the plurality of conversion elements and pixel electrodes are arranged in an array in the X direction and the Y direction at a predetermined cycle.
  • the detector 2 is configured to output the acquired image signal to the image processing unit 5.
  • the first grating 3 is disposed between the X-ray source 1 and the second grating 4, and is irradiated with X-rays from the X-ray source 1.
  • the first grating 3 is provided to form a grating image (self-image 30 (see FIG. 3)) of the first grating 3 by the Talbot effect.
  • a grid image self image 30
  • Talbot distance This is called the Talbot effect.
  • the first grating 3 a plurality of X-ray transmitting portion 3a arranged at a predetermined period (pitch) p 1 in the X direction and has an X-ray phase change portion 3b.
  • Each of the X-ray transmitting portions 3a and the X-ray phase changing portions 3b is formed so as to extend linearly along the Y direction.
  • the X-ray transmitting portions 3a and the X-ray phase changing portions 3b are formed so as to extend in parallel with each other.
  • the first grating 3 is a so-called phase grating.
  • the second grating 4 has a plurality of slits 4a and X-ray absorbing portion 4b which is arranged at a predetermined period (pitch) p 2 in the X direction.
  • Each of the slits 4a and the X-ray absorbing portions 4b are formed so as to extend linearly along the Y direction.
  • the slit 4a and the X-ray absorbing portion 4b are formed so as to extend in parallel with each other.
  • the second grating 4 is a so-called absorption grating.
  • the first grating 3 and the second grating 4 are gratings having different roles, respectively, but the X-ray transmitting portion 3a and the slit 4a respectively transmit X-rays.
  • the X-ray phase changing section 3b has a role of changing the phase of X-rays by a difference in refractive index from the X-ray transmitting section 3a, and the X-ray absorbing section 4b has a role of shielding X-rays. ing.
  • the second grating 4 is disposed between the first grating 3 and the detector 2 and is irradiated with X-rays passing through the first grating 3.
  • the second grating 4 is arranged at a position away from the first grating 3 by the Talbot distance.
  • the second grating 4 interferes with the grating image (self-image 30) of the first grating 3 to form Moire fringes M (see FIG. 11) on the detection surface of the detector 2.
  • the image processing unit 5 is configured to generate the phase contrast image 10 (see FIG. 4) based on the image signal output from the detector 2.
  • the image processing unit 5 includes, for example, a processor such as a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) configured for image processing.
  • a processor such as a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) configured for image processing.
  • the control unit 6 is configured to control the lattice moving mechanism 8 to translate the first lattice 3 in translation.
  • Control unit 6 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the storage unit 7 is configured to store the phase contrast image 10 generated by the image processing unit 5 and the like.
  • the storage unit 7 includes, for example, an HDD (Hard Disk Drive), a nonvolatile memory, and the like.
  • the lattice moving mechanism 8 is configured to translate one of the plurality of lattices in the periodic direction of the lattice (X direction) under the control of the control unit 6.
  • the grid moving mechanism 8 holds the first grid 3 and is configured to translate the first grid 3.
  • the grid moving mechanism 8 includes an X direction, a Y direction, a Z direction, a rotation direction Rz around an axis in the Z direction, a rotation direction Rx around an axis in the X direction, and a rotation direction Rx around the axis in the Y direction.
  • the first grating 3 is configured to be movable in the rotation direction Ry.
  • the lattice moving mechanism 8 includes an X-direction linear movement mechanism 80, a Y-direction linear movement mechanism 81, a Z-direction linear movement mechanism 82, a linear movement mechanism connection unit 83, a stage support unit driving unit 84, , A stage support unit 85, a stage driving unit 86, and a stage 87.
  • the X direction translation mechanism 80 is configured to be movable in the X direction.
  • X-direction linear motion mechanism 80 includes, for example, a motor.
  • the Y direction translation mechanism 81 is configured to be movable in the Y direction.
  • the Y-direction linear motion mechanism 81 includes, for example, a motor.
  • the Z-direction translation mechanism 82 is configured to be movable in the Z direction.
  • the Z-direction linear motion mechanism 82 includes, for example, a motor.
  • the lattice moving mechanism 8 is configured to move the first lattice 3 in the X direction by the operation of the X-direction linear moving mechanism 80.
  • the grating moving mechanism 8 is configured to move the first grating 3 in the Y direction by the operation of the Y-direction linear moving mechanism 81.
  • the lattice moving mechanism 8 is configured to move the first lattice 3 in the Z direction by the operation of the Z-direction linear moving mechanism 82.
  • the stage support 85 supports the stage 87 from below (Y1 direction).
  • the stage drive unit 86 is configured to reciprocate the stage 87 in the X direction.
  • the stage 87 has a bottom formed in a convex curved shape toward the stage support portion 85, and is configured to rotate around the optical axis of the X-ray (Rz direction) by being reciprocated in the X direction.
  • the stage support drive unit 84 is configured to reciprocate the stage support 85 in the Z direction.
  • the bottom of the stage support portion 85 is formed in a convex curved shape toward the direct-acting mechanism connection portion 83, and reciprocates in the Z direction to rotate around the axis in the X direction (Rx direction). It is configured as follows.
  • the linear motion mechanism connecting portion 83 is provided in the X direction linear motion mechanism 80 so as to be rotatable around an axis in the Y direction (Ry direction). Therefore, the grid moving mechanism 8 can rotate the grid about the central axis in the Y direction.
  • the second grating 4 is arranged at a position away from the first grating 3 by the Talbot distance.
  • a self-image 30 of the first grating 3 is formed at a position away from the first grating 3 by the Talbot distance.
  • the self-image 30 has a bright part 30a and a dark part 30b.
  • a bright portion 30a is formed at a position where X-rays diffracted by the first grating 3 reinforce each other.
  • a dark portion 30b is formed at a position where X-rays diffracted by the first grating 3 weaken.
  • the bright part 30a and a dark 30b of self-image 30, respectively, are formed at predetermined intervals p 3.
  • the second grating 4, the period p 2 is designed to substantially coincident with the period p 3 of the self-image 30. Therefore, the bright portion 30a of the self-image 30 is located at a position substantially equal to the arrangement of the slits 4a of the second grating 4. Further, the dark part 30b of the self-image 30 is located at a position substantially equal to the X-ray absorbing part 4b of the second grating 4.
  • the X-ray phase imaging system 100 generates the phase contrast image 10 by a fringe scanning method in which the first grating 3 is imaged while being translated in the X direction.
  • the image processing unit 5 generates a first intermediate image (not shown) generated based on a plurality of images captured while translating the first lattice 3 in a state where the subject Q is not arranged.
  • the image processing unit 5 generates a second intermediate image (not shown) generated based on a plurality of images captured while translating the first lattice 3 in a state where the subject Q is arranged.
  • the image processing unit 5 generates a phase contrast image 10 based on the first intermediate image and the second intermediate image.
  • the image processing unit 5 generates an absorption image 11, a phase differential image 12, and a dark field image 13 shown in FIGS. 4A to 4C as the phase contrast image 10.
  • the imaging of a plurality of images for acquiring the first intermediate image is described as “imaging without a subject”.
  • imaging of a plurality of images for acquiring the second intermediate image is referred to as “imaging with subject”.
  • the absorption image 11 is an image formed based on attenuation of X-rays generated when X-rays pass through the subject Q.
  • the phase differential image 12 is an image formed based on a phase shift of the X-ray generated when the X-ray passes through the subject Q.
  • the dark field image 13 is a Visibility image obtained by a change in Visibility based on small-angle scattering of X-rays.
  • the dark-field image 13 is also called a small-angle scattering image. “Visibility” refers to sharpness.
  • FIG. 5A shows an example in which the relative position between the first grating 3 and the second grating 4 does not deviate between the imaging without the subject and the imaging with the subject.
  • the example shown in FIG. 5A is an example in which the relative position between the first grating 3 and the second grating 4 has no positional shift. For this reason, no displacement occurs even in the relative position between the self-image 30 and the second grating 4.
  • the state in which the relative position between the self-image 30 and the second grating 4 is not displaced means that the bright portion 30a (or dark portion 30b) of the self-image 30 and the slit 4a (or X-ray This is a state in which the absorber 4b) and the absorber 4b) are arranged at substantially equal positions.
  • the example shown in FIG. 5B is an example in which the first grid 3 is moved in parallel with respect to the second grid 4 between the imaging without the subject and the imaging with the subject.
  • the first grating 3 moves in parallel in the plus direction (X2 direction).
  • the average value of the luminance values of the X-rays detected by the detector 2 becomes higher than in the example shown in FIG. Therefore, the phase differential image 12b shown in FIG. 5B is an image brighter than the phase differential image 12a shown in FIG.
  • the example shown in FIG. 5C is an example in which the first grating 3 is moved in parallel with the second grating 4 in the minus direction (X1 direction) between the imaging without the subject and the imaging with the subject.
  • the first grating 3 moves in the minus direction, the average value of the luminance values of the X-rays detected by the detector 2 becomes lower than in the example shown in FIG. Therefore, the phase differential image 12c shown in FIG. 5C is an image darker than the phase differential image 12a shown in FIG.
  • the first grating 3 moves in the rotation direction Rz about the X-ray optical axis with respect to the second grating 4 between the imaging without the subject and the imaging with the subject.
  • the first lattice 3 on the Y1 direction side is in a state of being translated in the plus direction (X2 direction).
  • the first grating 3 is in a state of parallel movement in the minus direction (X1 direction). Therefore, the phase differential image 12d shown in FIG. 5D is brighter on the Y1 side of the image than the phase differential image 12a shown in FIG.
  • the brightness of the phase differential image 12 refers to the phase value in the phase differential image 12. That is, as shown in the legend 20 of the brightness with respect to the displacement amount in FIG. 5, the phase differential image 12 becomes a brighter image as the phase value approaches “ ⁇ ”. Further, the phase differential image 12 becomes a darker image as the phase value approaches “ ⁇ ”.
  • an artifact 21 occurs in the phase differential image 12 as shown in FIG.
  • the artifact 21 has a dark part 21a and a light part 21b.
  • a change in the phase value along the horizontal arrow HA is illustrated as a graph G1.
  • a change in the phase value along the vertical arrow VA in the phase differential image 12 is illustrated as a graph G2.
  • the horizontal axis indicates the position in the X direction
  • the vertical axis indicates the phase change.
  • the horizontal axis represents the position in the Y direction
  • the vertical axis represents the phase change.
  • the graph G1 since the artifact 21 is generated along the X direction, the graph G1 has a low phase value at a position corresponding to the dark portion 21a of the artifact 21, and the light beam 21b of the artifact 21 has a low phase value. The phase value is higher at the corresponding position.
  • the graph G2 shows a change in the phase value in a direction intersecting with the artifact 21, the graph G2 has a shape in which the phase value does not substantially change.
  • FIG. 6 when an artifact 21 occurs in the phase differential image 12, shading occurs in the phase differential image 12, so that the image quality of the phase differential image 12 deteriorates. Therefore, it is conceivable to perform correction for removing the artifact 21 generated in the phase differential image 12.
  • an artifact 21 generated in the phase differential image 12 as shown in FIG. 7A is approximated by a plane using a linear function. Then, by subtracting the approximated artifact 21 from the phase differential image 12, a corrected phase differential image 14 as shown in FIG. 7B is obtained. Note that the example illustrated in FIG. 7A is the same as that in FIG. 6, and thus detailed description is omitted.
  • a change in the phase value along the horizontal arrow HA in the corrected phase differential image 14 is shown as a graph G3.
  • a change in the phase value along the vertical arrow VA in the corrected phase differential image 14 is shown as a graph G4.
  • the horizontal axis indicates the position in the X direction, and the vertical axis indicates the phase change.
  • the horizontal axis indicates the position in the Y direction, and the vertical axis indicates the phase change.
  • the width d2 of the change in the phase value in the graph G3 is smaller than the width d1 of the change in the phase value in the graph G1.
  • the phase value decreases and increases. This is because the intensity distribution of the artifact 21 is approximated by a linear function, so that the artifact 21 cannot be accurately approximated, and the artifact 21 remains in the corrected phase differential image 14. it is conceivable that.
  • the control unit 6 controls the third-order or higher-order multidimensional function represented by using the position coordinates of the pixel P (see FIG. 6) in the generated phase contrast image 10 (phase differential image 12).
  • an artifact 21 generated in the phase contrast image 10 is approximated, and the phase contrast image 10 is corrected based on the approximated artifact 21.
  • the control unit 6 acquires the intensity distribution of the artifact 21 as a three-dimensional approximated surface CS based on a third-order or higher-order function, and calculates a phase based on the acquired three-dimensional approximated surface CS.
  • the contrast image 10 is configured to be corrected.
  • control unit 6 corrects an artifact 21 caused by a three-dimensional displacement of a relative position between a plurality of lattices caused by heat fluctuation by using a three-dimensional approximate curved surface CS. It is configured as follows. Further, the control unit 6 is configured to correct an artifact 21 in the phase differential image 12 as the phase contrast image 10.
  • the example shown in FIG. 8 is an example of a three-dimensional approximated surface CS in which each pixel P is plotted by taking the x coordinate of the pixel P on the x axis, the y coordinate of the pixel P on the y axis, and the pixel value of the pixel P on the z axis. It is.
  • the control unit 6 acquires a plurality of pixels P from the phase contrast image 10, plots the acquired pixels P, and It is configured to obtain a three-dimensional approximated surface CS by fitting a third-order or higher-order multi-order function.
  • the control unit 6 is configured to acquire a three-dimensional approximate curved surface CS based on the pixels P on which the subject Q is not reflected in the phase contrast image 10.
  • the control unit 6 acquires at least ten or more pixels P from the phase contrast image 10.
  • ten or more pixels P are illustrated for convenience, but in the first embodiment, ten pixels P are obtained from the phase contrast image 10.
  • the pixel P may be selected from a background portion of the phase contrast image 10 by a user such as a doctor, or may be selected from a background portion of the phase contrast image 10 by image recognition by the control unit 6.
  • the control unit 6 uses Equation (1) defined below as a third-order or higher-order function.
  • z is a curved surface on which the pixels P are distributed.
  • a 0 to a 9 are coefficients for determining a multi-order function (cubic function).
  • x and y are position coordinates (x coordinate and y coordinate) of each pixel P.
  • the control unit 6 is configured to obtain a three-dimensional approximation surface CS by performing fitting of a multi-dimensional function by least-squares fitting. Specifically, the control unit 6 defines the deviation E k of the plurality of pixels P by the following equation (2) and obtains the sum of squares E of the deviation E k shown in the following equation (3). To obtain a three-dimensional approximated surface CS.
  • k is an integer from 1 to N.
  • N is the number of pixels P to be obtained. In the first embodiment, N is 10 because ten pixels P are used.
  • equations (4) to (13) are simultaneous equations, they can be expressed as the following equation (14). Further, A, x ( ⁇ ) and b ( ⁇ ) in the above equation (14) can be expressed as the following equations (15), (16) and (17).
  • the control unit 6 is configured to calculate Expression (14) by, for example, the LU decomposition method.
  • the LU decomposition method is a method of calculating a determinant by decomposing a square matrix into a product of a lower triangular matrix and an upper triangular matrix.
  • the control unit 6 performs correction to remove the artifact 21 from the phase differential image 12 using each coefficient (a 0 to a 9 ) obtained by the LU decomposition method and the following equation (18).
  • z k is the distribution of pixel values in the background portion of the phase differential image 12 before correction.
  • Z 1k is the distribution of pixel values in the background portion of the corrected phase differential image 12.
  • control unit 6 approximates the artifact 21 with a three-dimensional three-dimensional approximation surface CS and subtracts the three-dimensional approximation surface CS from the phase differential image 12 to obtain a phase
  • the differential image 12 is configured to be corrected.
  • the example shown in FIG. 9A is a schematic diagram of the phase differential image 12 before correction.
  • the example illustrated in FIG. 9A is the same as the example illustrated in FIG. 6, and thus a detailed description is omitted.
  • the example illustrated in FIG. 9B is a schematic diagram of the phase differential image 12e after the correction processing has been performed by the control unit 6.
  • a change in phase value along the horizontal arrow HA in the corrected phase differential image 12e is shown as a graph G5.
  • a change in the phase value along the vertical arrow VA in the corrected phase differential image 12e is illustrated as a graph G6.
  • the horizontal axis indicates the position in the X direction
  • the vertical axis indicates the phase change.
  • the horizontal axis indicates the position in the Y direction
  • the vertical axis indicates the phase change.
  • the width d3 of the change in the phase value in the graph G5 is smaller than the width d1 of the change in the phase value in the graph G1.
  • the corrected phase differential image 12 e is corrected by the control unit 6 by subtracting the three-dimensional approximate curved surface CS from the phase differential image 12, and the artifact 21 has been removed. . Therefore, unlike the phase value of the graph G3 according to the first comparative example, the shape is such that the phase value of the graph G5 does not substantially change. Further, since the graph G6 shows a change in the phase value in a direction intersecting the artifact 21, the graph G6 has a shape in which the phase value does not substantially change, like the graph G2 and the graph G4 according to the first comparative example.
  • step S1 the X-ray phase imaging system 100 acquires the pixel values and the position coordinates of the plurality of pixels P in the phase contrast image 10 (phase differential image 12).
  • step S2 the control unit 6 approximates the intensity distribution of the artifact 21 using a cubic function (Equation (1)). That is, the control unit 6 acquires a three-dimensional approximate curved surface CS that approximates the intensity distribution of the artifact 21. Thereafter, the processing proceeds to step S3.
  • step S3 the control unit 6 corrects the phase contrast image 10 (phase differential image 12) based on the approximated artifact 21 (three-dimensional approximated curved surface CS), and ends the process.
  • the X-ray phase imaging system 100 includes the X-ray source 1 that irradiates the subject Q with X-rays, and the detector 2 that detects the X-rays emitted from the X-ray source 1.
  • An X-ray source 1 and a detector 2 which are irradiated with X-rays from the X-ray source 1 to form a grid image (self-image 30);
  • a plurality of gratings including a second grating 4 for generating moiré fringes M by interference with a grating image (self-image 30) and a phase contrast image 10 (phase differential image) based on a signal detected by the detector 2
  • the image processing unit 5 that generates the image 12) and a cubic function expressed using the position coordinates of the pixel P in the generated phase contrast image 10 (the phase differential image 12) cause an artifact generated in the phase contrast image 10.
  • Approximate 21 and approximated Arte Based on the facts 21 includes a control unit 6 for correcting a phase contrast image 10 (differential phase image 12), the.
  • the control unit 6 acquires the intensity distribution of the artifact 21 as a three-dimensional approximate surface CS based on the cubic function, and assigns the acquired three-dimensional approximate surface CS to the acquired three-dimensional approximate surface CS.
  • the phase contrast image 10 phase differential image 12
  • the deterioration of the image quality of the phase contrast image 10 (the phase differential image 12) due to the artifact 21 can be further suppressed.
  • the control unit 6 removes an artifact 21 caused by a three-dimensional displacement of a relative position between a plurality of lattices caused by heat fluctuation, and a three-dimensional approximated surface. It is configured to perform correction by CS. Accordingly, even when a complicated positional shift due to thermal fluctuation occurs in the lattice, the artifact 21 can be corrected based on the three-dimensional approximated curved surface CS. As a result, it is possible to prevent the image quality of the phase contrast image 10 (the phase differential image 12) from deteriorating due to the artifact 21 caused by the thermal fluctuation.
  • the control unit 6 acquires a plurality of pixels P from the phase contrast image 10 (the phase differential image 12), and plots and plots the acquired pixels P.
  • a cubic function By fitting a cubic function to a plurality of pixels P, a three-dimensional approximated surface CS is obtained.
  • the calculation cost (calculation load) for approximating the artifact 21 increases as compared with the case where the intensity distribution of the artifact 21 is obtained from all the pixels P of the phase contrast image 10 (the phase differential image 12). Can be suppressed.
  • control unit 6 is configured to obtain a three-dimensional approximated surface CS by performing cubic function fitting by least-squares fitting. This makes it possible to easily obtain a three-dimensional approximate curved surface CS by the least squares fitting method. As a result, the artifact 21 generated in the phase contrast image 10 (phase differential image 12) can be easily corrected.
  • the control unit 6 acquires the three-dimensional approximate curved surface CS based on the pixel P on which the subject Q is not reflected in the phase contrast image 10 (phase differential image 12).
  • the phase contrast image 10 (the phase differential image 12) is corrected by subtracting the three-dimensional approximate curved surface CS from the phase differential image 12.
  • the artifact 21 in the background portion can be accurately approximated as compared with the case where the three-dimensional approximated curved surface CS including not only the pixel P in the background portion but also the pixel P in which the subject Q appears is obtained.
  • control unit 6 is configured to correct the artifact 21 in the phase differential image 12 as the phase contrast image 10. This makes it possible to correct the artifact 21 in the phase differential image 12 that is imaged using the lattice image (the self image 30) of the first grating 3, and it is possible to prevent the image quality of the phase differential image 12 from deteriorating. It is particularly effective when suppressing.
  • the X-ray phase imaging system 200 includes an X-ray source 1, a detector 2, a first grating 3, a second grating 4, an image processing unit 5, a control unit 60, and a storage unit. A section 7 and a grid moving mechanism 8 are provided.
  • the X-ray phase imaging system 200 has the same configuration as the X-ray phase imaging system 100 according to the first embodiment, except that the X-ray phase imaging system 200 includes a control unit 60.
  • control unit 60 uses the three-dimensional approximation surface CS to extract the artifact 40 caused by the moiré fringes M generated when the relative positions of the plurality of lattices deviate from a predetermined positional relationship. It is configured to correct.
  • FIG. 11 is a schematic diagram of the X-ray image 41 when the relative positions of a plurality of grids are shifted from a predetermined positional relationship.
  • moire fringes M are generated in the X-ray image 41.
  • the moire fringe M has a bright part M1 and a dark part M2.
  • the light portion M1 and the dark portion M2 are formed at predetermined intervals.
  • the moire fringes M are formed on the X-ray image 41, as shown in FIG. 12, in the phase contrast image 42 (the absorption image 43, the phase differential image 44, and the dark field image 45) generated by the image processing unit 5, Artifacts 40 due to moire fringes M may be formed.
  • the artifact 40 has a dark part 40a and a light part 40b.
  • the artifact 40 due to the moire fringes M occurs in the phase contrast image 42, the image quality of the phase contrast image 42 deteriorates. Therefore, it is conceivable to perform correction for removing the artifact 40 generated in the phase contrast image 42.
  • the artifact 40 is approximated using a linear function in the phase differential image 44 in which the artifact 40 as shown in FIG. Then, by correcting the phase differential image 44 using the approximated artifact 40, a corrected phase differential image 44a as shown in FIG. 13B is obtained.
  • a change in the phase value along the horizontal arrow HA in the phase differential image 44 is shown as a graph G7.
  • the horizontal axis indicates the position in the X direction
  • the vertical axis indicates the phase change.
  • a change in the phase value along the horizontal arrow HA in the corrected phase differential image 44a is illustrated as a graph G8.
  • the horizontal axis indicates the position in the X direction
  • the vertical axis indicates the phase change.
  • the graph G7 has a low phase value at a position corresponding to the dark portion 40a of the artifact 40. At the position corresponding to the light portion 40b of the artifact 40, the phase value is high.
  • the width d5 of the phase value change in the graph G8 is smaller than the width d4 of the phase value change in the graph G7.
  • the phase value changes at a position corresponding to the dark portion 40a of the artifact 40 and at a position corresponding to the light portion 40b of the artifact 40. This is because the intensity distribution of the artifact 40 is approximated by a linear function, so that the artifact 40 cannot be accurately approximated, and the artifact 40 remains even in the corrected phase differential image 44a. it is conceivable that.
  • FIG. 14 is a schematic diagram of a third comparative example according to the related art.
  • the example illustrated in FIG. 14A is the same as that in FIG. 13A, and thus a detailed description is omitted.
  • a change in the phase value along the horizontal arrow HA in the corrected phase differential image 44b is shown as a graph G9.
  • the horizontal axis indicates the position in the X direction
  • the vertical axis indicates the phase change.
  • the width d6 of the phase value change in the graph G9 in the third comparative example is smaller than the width d4 of the phase value change in the graph G7.
  • the phase value changes at a position corresponding to the dark portion 40a of the artifact 40 and at a position corresponding to the light portion 40b of the artifact 40. This change in the phase value is considered to be because the artifact 40 cannot be accurately approximated as in the second comparative example, and the artifact 40 remains in the corrected phase differential image 44b.
  • the control unit 60 is configured to acquire the artifact 40 generated in the phase differential image 44 as a three-dimensional approximated surface CS based on a cubic function (the above equation (1)). ing.
  • the configuration in which the control unit 60 acquires the three-dimensional approximate curved surface CS is the same as the configuration in which the control unit 6 according to the first embodiment acquires the three-dimensional approximate curved surface CS. Omitted.
  • FIG. 15A is the same as the example shown in FIG.
  • FIG. 15B is a schematic diagram of the phase differential image 44c after the correction processing has been performed by the control unit 60.
  • a change in the phase value along the horizontal arrow HA in the corrected phase differential image 44c is illustrated as a graph G10.
  • the horizontal axis indicates the position in the X direction
  • the vertical axis indicates the phase change.
  • the width d7 of the change in the phase value in the graph G10 is smaller than the width d4 of the change in the phase value in the graph G7.
  • the phase value of the graph G10 has a shape that does not substantially change.
  • the corrected phase differential image 44c has been corrected by the control unit 60 by subtracting the three-dimensional approximate curved surface CS from the phase differential image 44, Artifact 40 has been removed. Therefore, the graph G10 has a shape in which the phase value does not substantially change.
  • step S4 the control unit 60 acquires the pixel values and the position coordinates of the plurality of pixels P in the X-ray image 41. Thereafter, the processing proceeds to step S5.
  • step S5 the control unit 60 approximates the intensity distribution of the artifact 40 caused by the moiré fringes M by a cubic function (Equation (1)). That is, the control unit 60 obtains a three-dimensional approximated surface CS that approximates the intensity distribution of the artifact 40 caused by the moire fringes M. Thereafter, the processing proceeds to step S6.
  • step S6 the control unit 60 corrects the phase contrast image 42 (phase differential image 44) based on the approximated artifact 40 (three-dimensional approximated curved surface CS), and ends the process.
  • the control unit 60 converts the artifact 40 caused by the moiré fringes M generated when the relative positions of the plurality of grids deviate from the predetermined positional relationship into a three-dimensional shape. Is corrected by the approximate curved surface CS.
  • the moiré stripe M is a stripe pattern in which a bright portion M1 and a dark portion M2 are repeated at a predetermined cycle.
  • the artifact 40 caused by the moire fringe M has a dark part 40a and a light part 40b corresponding to the bright part M1 and the dark part M2 of the moiré fringe M, respectively.
  • the dark portion 40a and the light portion 40b of the artifact 40 caused by the moire fringes M are also repeated at a predetermined cycle. It is considered that the artifact 40 caused by such moiré fringes M is difficult to approximate by a linear function or a quadratic function. Therefore, with the above-described configuration, the artifact 40 caused by the moiré fringes M can be accurately approximated by the three-dimensional approximated surface CS, unlike the case of approximation using a linear function or a quadratic function. As a result, it is possible to suppress the image quality of the phase contrast image 42 (the phase differential image 44) from deteriorating due to the artifact 40 caused by the moiré fringes M.
  • the first grating 3 is an example of the phase grating as the plurality of gratings, but the present invention is not limited to this.
  • the first grating 3 may be an absorption grating that forms a stripe pattern generated by blocking a part of X-rays as a grating image.
  • the first grating 3 generates X-rays similarly to the interferometer that generates the phase contrast image 10 based on the self-image 30 generated by the interference of the X-rays diffracted by the first grating 3.
  • the artifact 21 (artifact 40) that occurs in the phase contrast image 10 (the phase contrast image 42) is generated.
  • the striped pattern of the first grating 3 is generated by blocking a part of the X-rays. Therefore, unlike the Talbot interferometer that generates the self-image 30 of the first grating 3, the first grating 3 does not have to be arranged at a predetermined distance (Talbot distance) from the X-ray source 1. As a result, the degree of freedom in the arrangement position of the first grating 3 can be improved.
  • the X-ray phase imaging system 100 has been described as an example of the configuration including the first grating 3 and the second grating 4 as a plurality of gratings. Not limited to this.
  • a plurality of gratings are arranged between the X-ray source 1 and the first grating 3, and X-rays irradiated with X-rays from the X-ray source 1 are used.
  • Third grating 50 has a plurality of slits 50a arranged at a predetermined period (pitch) p 4 in the X direction and has an X-ray absorbing portion 50b.
  • Each of the slits 50a and the X-ray absorbing portions 50b are formed so as to extend linearly along the Y direction.
  • the slits 50a and the X-ray absorbing portions 50b are formed so as to extend in parallel with each other.
  • the third grating 50 is a so-called absorption grating.
  • the third grating 50 is irradiated with X-rays from the X-ray source 1.
  • the third grating 50 is configured so that the X-rays passing through each slit 50a are used as a line light source corresponding to the position of each slit 50a. That is, the third grating 50 is a grating for increasing the coherence of the X-ray emitted from the X-ray source 1. With the configuration described above, even when the focal size of the X-ray source 1 is large, the third grating 50 improves the coherence of the X-rays, so that the grid image (self-image 30) of the first grating 3 can be formed. Can be caused. As a result, the degree of freedom in selecting the X-ray source 1 can be improved.
  • the second grid 4 may be configured to be moved in the X direction and imaged by the grid moving mechanism 8.
  • the third grating 50 is provided as a plurality of gratings as in the X-ray phase imaging system 300 shown in FIG. 17, the third grating 50 is moved in the X direction by the grating moving mechanism 8 for imaging. It may be configured.
  • control unit 6 (60) acquires the three-dimensional approximate curved surface CS by the least squares fitting
  • the control unit 6 (60) may acquire the three-dimensional approximate surface CS by any method as long as the three-dimensional approximate surface CS can be acquired.
  • the control unit 6 (60) may be configured to obtain a three-dimensional approximated surface CS by an iterative method.
  • control unit 6 has been described as an example of the configuration in which the phase contrast image 10 corrects the artifact 21 generated in the phase differential image 12, but the present invention is not limited to this.
  • control unit 6 may be configured to perform a process of correcting an artifact 21 occurring in the dark field image 13 as the phase contrast image 10.
  • control unit 60 has been described as an example of the configuration in which the artifact 40 generated in the phase differential image 44 is corrected as the phase contrast image 42, but the present invention is not limited to this.
  • the control unit 60 may be configured to correct the artifact 40 occurring in the absorption image 43 or the dark field image 45 as the phase contrast image 42.
  • the control unit 6 (60) obtains a three-dimensional approximate surface CS using a cubic function (the above equation (1)) as a cubic or higher-order function.
  • a cubic function the above equation (1)
  • the present invention is not limited to this.
  • the control unit 6 (60) may obtain the three-dimensional approximate curved surface CS using any function as long as it is a multi-dimensional function of third order or higher.
  • the control unit 6 (60) may be configured to obtain a three-dimensional approximate curved surface CS using a quartic function as a tertiary or higher order function.
  • control unit 6 corrects the artifact 21 due to the three-dimensional displacement of the relative position between the plurality of lattices caused by heat fluctuation.
  • the present invention is not limited to this.
  • the control unit 6 may be configured to correct an artifact caused by a three-dimensional displacement of a relative position between a plurality of grids caused by the subject Q or the like contacting the grid.
  • control process of the control unit 6 (60) is described with reference to an example described using a flow-driven flowchart in which processes are sequentially performed along a process flow.
  • the present invention is not limited to this.
  • the control process of the control unit 6 (60) may be performed by an event-driven (event-driven) process of executing a process in event units. In this case, it may be performed in a completely event-driven manner, or may be performed in a combination of event-driven and flow-driven.
  • Reference Signs List 1 X-ray source 2 Detector 3 First grating 4 Second grating 5 Image processing unit 6, 60 Control unit 10, 44 Phase contrast image 12, 42b Phase differential image 21, 40 Artifact 30 Self image (grating image) 100, 200, 300 X-ray phase imaging system CS Approximate three-dimensional curved surface M Moiré fringe P pixel Q subject

Abstract

This X-ray phase imaging system is provided with: an X-ray source (1); a detector (2); multiple grids including a first grid (3) and a second grid (4); an image processing unit (5) which generates a phase contrast image (10); and a control unit (6) which, by means of a cubic function represented using position coordinates of a pixel (P) in the generated phase contrast image, approximates an artifact (21) generated in the phase contrast image and corrects the phase contrast image.

Description

X線位相撮像システムX-ray phase imaging system
 本発明は、X線位相撮像システムに関し、複数の格子を備えるX線位相撮像システムに関する。 The present invention relates to an X-ray phase imaging system, and more particularly to an X-ray phase imaging system including a plurality of gratings.
 従来、複数の格子を備えるX線位相撮像システムが知られている。このようなX線位相撮像システムは、たとえば、特許第5831614号公報に開示されている。 Conventionally, an X-ray phase imaging system including a plurality of gratings is known. Such an X-ray phase imaging system is disclosed in, for example, Japanese Patent No. 5833114.
 特許第5831614号公報のX線位相撮像システムは、X線源と、検出器と、X線の可干渉性を高めるためのG0格子と、X線を回折するためのG1格子と、G1格子の格子像と干渉させるためのG2格子と、を備えている。特許第5831614号公報のX線位相撮像システムは、複数の格子のいずれか1つを格子のピッチの方向に移動させながら撮像する縞走査法により、位相コントラスト画像を取得するように構成されている。縞走査法とは、被写体を通過したX線の位相差やX線の小角散乱に基づいて、被写体内部を画像化する手法である。 The X-ray phase imaging system disclosed in Japanese Patent No. 5831614 includes an X-ray source, a detector, a G0 grating for increasing the coherence of X-rays, a G1 grating for diffracting X-rays, and a G1 grating. A G2 grating for causing interference with the grating image. The X-ray phase imaging system disclosed in Japanese Patent No. 5831614 is configured to acquire a phase contrast image by a fringe scanning method in which one of a plurality of gratings is imaged while being moved in the direction of the pitch of the grating. . The fringe scanning method is a method of imaging the inside of a subject based on the phase difference of X-rays passing through the subject and small-angle scattering of X-rays.
 ここで、縞走査法によって被写体内部を画像化する場合、複数の格子の格子間における相対位置に位置ずれが生じていると、生成される位相コントラスト画像にアーティファクトが生じる。したがって、得られる位相コントラスト画像の画質が劣化する。そこで、特許第5831614号公報には、位相コントラスト画像に生じたアーティファクトを補正する構成が開示されている。 Here, in the case where the inside of the subject is imaged by the fringe scanning method, if the relative positions between the plurality of grids are misaligned, artifacts occur in the generated phase contrast image. Therefore, the image quality of the obtained phase contrast image deteriorates. Thus, Japanese Patent No. 5831614 discloses a configuration for correcting an artifact generated in a phase contrast image.
 具体的には、特許第5831614号公報に開示されているX線位相撮像システムは、1次関数または2次関数によって、位相コントラスト画像に生じたアーティファクトを近似するように構成されている。そして、特許第5831614号公報に開示されているX線位相撮像システムは、位相コントラスト画像から近似したアーティファクトを差分することにより、位相コントラスト画像を補正するように構成されている。 Specifically, the X-ray phase imaging system disclosed in Japanese Patent No. 5833114 is configured to approximate an artifact generated in a phase contrast image by a linear function or a quadratic function. The X-ray phase imaging system disclosed in Japanese Patent No. 5831614 is configured to correct a phase contrast image by subtracting an approximate artifact from the phase contrast image.
特許第5831614号公報Japanese Patent No. 5833114
 しかしながら、特許第5831614号公報に開示されている構成は、1次関数または2次関数によってアーティファクトを近似する構成である。そのため、位相コントラスト画像において1次関数または2次関数によって近似することができない比較的複雑なグラデーション(濃淡が連続的に変化する)のようなアーティファクトが生じている場合、アーティファクトを正確に近似することができず、位相コントラスト画像の画質が劣化することを抑制することが困難であるという問題点が生じる。 However, the configuration disclosed in Japanese Patent No. 5831614 is a configuration in which an artifact is approximated by a linear function or a quadratic function. For this reason, when an artifact such as a relatively complicated gradation (shading continuously changes) that cannot be approximated by a linear function or a quadratic function occurs in a phase contrast image, it is necessary to accurately approximate the artifact. And it is difficult to suppress the deterioration of the image quality of the phase contrast image.
 この発明は、上記のような課題を解決するためになされたものであり、位相コントラスト画像において、比較的複雑なアーティファクトが生じていた場合でも、得られる位相コントラスト画像の画質が劣化することを抑制することが可能なX線位相撮像システムを提供することである。 The present invention has been made in order to solve the above-described problems, and suppresses the deterioration of the image quality of the obtained phase contrast image even when relatively complicated artifacts have occurred in the phase contrast image. To provide an X-ray phase imaging system capable of performing such operations.
 上記目的を達成するために、この発明の一の局面におけるX線位相撮像システムは、被写体にX線を照射するX線源と、X線源から照射されたX線を検出する検出器と、X線源と検出器との間に配置され、X線源からのX線が照射され、格子像を形成するための第1格子と、第1格子の格子像との干渉によりモアレ縞を生じさせるための第2格子とを含む複数の格子と、検出器によって検出された信号に基づいて位相コントラスト画像を生成する画像処理部と、生成された位相コントラスト画像における画素の位置座標を用いて表される3次以上の多次関数によって、位相コントラスト画像に生じたアーティファクトを近似し、近似されたアーティファクトに基づいて、位相コントラスト画像の補正を行う制御部と、を備える。なお、本明細書において、アーティファクトとは、位相コントラスト画像の背景部分の各画素の画素値が不均等になることにより生じる濃淡の模様(グラデーション)のことである。 In order to achieve the above object, an X-ray phase imaging system according to one aspect of the present invention includes an X-ray source that irradiates a subject with X-rays, a detector that detects X-rays emitted from the X-ray source, X-rays from the X-ray source are arranged between the X-ray source and the detector, and moire fringes are generated by interference between the first grating for forming a grating image and the grating image of the first grating. A plurality of gratings including a second grating for causing a phase contrast image to be generated based on a signal detected by the detector, and a position coordinate of a pixel in the generated phase contrast image. And a control unit that approximates an artifact generated in the phase contrast image by a third-order or higher-order function and corrects the phase contrast image based on the approximated artifact. Note that, in this specification, an artifact refers to a light and shade pattern (gradation) caused by non-uniform pixel values of pixels in a background portion of a phase contrast image.
 この発明の一の局面におけるX線位相撮像システムでは、上記のように、生成された位相コントラスト画像における画素の位置座標を用いて表される3次以上の多次関数によって、位相コントラスト画像に生じたアーティファクトを近似し、近似されたアーティファクトに基づいて、位相コントラスト画像の補正を行う制御部を備える。これにより、位相コントラスト画像に生じたアーティファクトが1次関数または2次関数によって近似することができない複雑な形状(分布)であっても、3次以上の多次関数によって近似できる場合がある。その結果、位相コントラスト画像において、比較的複雑なアーティファクトが生じていた場合でも、得られる位相コントラスト画像の画質が劣化することを抑制することができる。 In the X-ray phase imaging system according to one aspect of the present invention, as described above, a third-order or higher-order function expressed using the position coordinates of the pixel in the generated phase contrast image causes the phase contrast image to be generated in the phase contrast image. A control unit that approximates the artifact and corrects the phase contrast image based on the approximated artifact. As a result, even if an artifact generated in the phase contrast image has a complicated shape (distribution) that cannot be approximated by a linear function or a quadratic function, it may be approximated by a cubic or higher-order function. As a result, even when relatively complicated artifacts occur in the phase contrast image, it is possible to suppress the image quality of the obtained phase contrast image from deteriorating.
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、制御部は、3次以上の多次関数に基づいて、アーティファクトの強度分布を3次元の近似曲面として取得し、取得した3次元の近似曲面に基づいて、位相コントラスト画像の補正を行うように構成されている。このように構成すれば、3次以上の多次関数によって3次元の近似曲面を取得することが可能となるので、3次元の近似曲面により、アーティファクトの強度分布をより正確に近似することができる。その結果、アーティファクトに起因する位相コントラスト画像の画質の劣化をより抑制することができる。 In the X-ray phase imaging system according to the one aspect, preferably, the control unit acquires the intensity distribution of the artifact as a three-dimensional approximated surface based on a third-order or higher-order function, and acquires the acquired three-dimensional approximation. The phase contrast image is configured to be corrected based on the curved surface. With this configuration, it is possible to obtain a three-dimensional approximated surface using a third-order or higher order function, so that the three-dimensional approximated surface can more accurately approximate the intensity distribution of the artifact. . As a result, it is possible to further suppress the deterioration of the image quality of the phase contrast image due to the artifact.
 この場合、好ましくは、制御部は、熱変動によって生じる複数の格子の格子間における相対位置の3次元的な位置ずれに起因するアーティファクトを、3次元の近似曲面によって補正を行うように構成されている。このように構成すれば、格子において、熱変動による複雑な位置ずれが生じていた場合でも、3次元の近似曲面に基づいてアーティファクトを補正することができる。その結果、熱変動に起因するアーティファクトによって、位相コントラスト画像の画質が劣化することを抑制することができる。 In this case, preferably, the control unit is configured to correct an artifact caused by a three-dimensional displacement of a relative position between the plurality of grids caused by heat fluctuation by using a three-dimensional approximated surface. I have. According to this configuration, even when a complicated positional shift due to thermal fluctuation occurs in the lattice, the artifact can be corrected based on the three-dimensional approximated surface. As a result, it is possible to suppress the image quality of the phase contrast image from deteriorating due to an artifact due to the thermal fluctuation.
 上記取得した3次元の近似曲面に基づいて位相コントラスト画像の補正を行う構成において、好ましくは、制御部は、複数の格子の格子間における相対位置が、所定の位置関係からずれている場合に生じるモアレ縞に起因するアーティファクトを、3次元の近似曲面によって補正するように構成されている。ここで、モアレ縞とは、所定の周期で明部と暗部とが繰り返される縞模様である。モアレ縞に起因するアーティファクトは、モアレ縞の明部および暗部にそれぞれ対応する濃部と淡部とを有している。したがって、モアレ縞に起因するアーティファクトの濃部および淡部も、所定の周期で繰り返される。このようなモアレ縞に起因するアーティファクトは、1次関数または2次関数によって近似することが困難であると考えられる。したがって、上記のように構成すれば、1次関数または2次関数によって近似する場合と異なり、3次元の近似曲面によって、モアレ縞に起因するアーティファクトを正確に近似することができる。その結果、モアレ縞に起因するアーティファクトによって、位相コントラスト画像の画質が劣化することを抑制することができる。 In the configuration in which the phase contrast image is corrected based on the acquired three-dimensional approximated surface, the control unit preferably occurs when a relative position between the plurality of gratings is shifted from a predetermined positional relationship. It is configured to correct artifacts caused by moire fringes by using a three-dimensional approximated surface. Here, the moiré stripe is a stripe pattern in which a bright portion and a dark portion are repeated at a predetermined cycle. The artifact caused by the moiré fringe has a dark part and a light part corresponding to the bright part and the dark part of the moiré fringe, respectively. Therefore, the dark part and the light part of the artifact caused by the moire fringes are also repeated at a predetermined cycle. It is considered that artifacts caused by such moiré fringes are difficult to approximate by a linear function or a quadratic function. Therefore, with the above configuration, unlike the case of approximation using a linear function or a quadratic function, an artifact due to moiré fringes can be accurately approximated by a three-dimensional approximated surface. As a result, it is possible to suppress deterioration in image quality of the phase contrast image due to artifacts caused by the moire fringes.
 上記取得した3次元の近似曲面に基づいて位相コントラスト画像の補正を行う構成において、好ましくは、制御部は、位相コントラスト画像から複数の画素を取得するとともに、取得した複数の画素をプロットし、プロットした複数の画素に対して3次以上の多次関数をフィッティングすることにより、3次元の近似曲面を取得するように構成されている。このように構成すれば、位相コントラスト画像から取得した画素をプロットすることによってアーティファクトの強度分布を近似した3次元の近似曲面を取得することができる。その結果、位相コントラスト画像の全画素からアーティファクトの強度分布を取得する場合と比較して、アーティファクトを近似する際の計算コスト(計算負荷)が上昇することを抑制することができる。 In the configuration in which the phase contrast image is corrected based on the acquired three-dimensional approximated surface, preferably, the control unit acquires a plurality of pixels from the phase contrast image, plots the acquired pixels, and plots the acquired pixels. It is configured to obtain a three-dimensional approximated surface by fitting a third-order or higher-order multi-dimensional function to the plurality of pixels. With this configuration, it is possible to obtain a three-dimensional approximated surface that approximates the intensity distribution of the artifact by plotting the pixels obtained from the phase contrast image. As a result, it is possible to suppress an increase in calculation cost (calculation load) when approximating the artifact as compared with a case where the intensity distribution of the artifact is obtained from all pixels of the phase contrast image.
 上記取得した3次元の近似曲面に基づいて位相コントラスト画像の補正を行う構成において、好ましくは、制御部は、最小二乗フィッティングによって多次関数のフィッティングを行うことにより、3次元の近似曲面を取得するように構成されている。このように構成すれば、最小二乗法フィッティングによって、容易に3次元の近似曲面を取得することができる。その結果、位相コントラスト画像に生じたアーティファクトを容易に補正することができる。 In the configuration in which the phase contrast image is corrected based on the obtained three-dimensional approximated surface, preferably, the control unit obtains the three-dimensional approximated surface by performing multidimensional function fitting by least squares fitting. It is configured as follows. With this configuration, a three-dimensional approximated surface can be easily obtained by the least squares fitting. As a result, artifacts generated in the phase contrast image can be easily corrected.
 上記取得した3次元の近似曲面に基づいて位相コントラスト画像の補正を行う構成において、好ましくは、制御部は、位相コントラスト画像において、被写体が映り込んでいない画素に基づいて3次元の近似曲面を取得し、位相コントラスト画像から3次元の近似曲面を減算することにより、位相コントラスト画像の補正を行うように構成されている。このように構成すれば、背景部分の画素だけでなく、被写体が映る画素も含めて3次元の近似曲面を取得する場合と比較して、背景部分のアーティファクトを正確に近似することができる。その結果、アーティファクトを正確に近似した3次元の近似曲面によって補正することが可能となるので、位相コントラスト画像の画質が劣化することをより一層抑制することができる。 In the configuration in which the phase contrast image is corrected based on the obtained three-dimensional approximated surface, preferably, the control unit obtains the three-dimensional approximated surface based on a pixel in which the subject is not reflected in the phase contrast image. Then, the phase contrast image is corrected by subtracting a three-dimensional approximate curved surface from the phase contrast image. With this configuration, it is possible to accurately approximate the artifact in the background portion, as compared with a case where a three-dimensional approximated surface including not only pixels in the background portion but also pixels in which the subject is reflected is acquired. As a result, the artifact can be corrected by a three-dimensional approximation surface that accurately approximates the artifact, so that the image quality of the phase contrast image can be further suppressed from deteriorating.
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、制御部は、位相コントラスト画像として、位相微分像におけるアーティファクトの補正を行うように構成されている。このように構成すれば、第1格子の格子像を用いて画像化する位相微分像において、アーティファクトを補正することが可能となるので、位相微分像の画質が劣化することを抑制する場合に、特に有効である。 In the X-ray phase imaging system according to the above aspect, preferably, the control unit is configured to correct an artifact in the phase differential image as a phase contrast image. With this configuration, it is possible to correct artifacts in a phase differential image formed by using the lattice image of the first lattice, and therefore, when suppressing deterioration in image quality of the phase differential image, Especially effective.
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、複数の格子は、X線源と第1格子との間に配置され、X線源からX線が照射されるX線の可干渉性を高めるための第3格子を含む。このように構成すれば、X線源の焦点サイズが大きい場合でも、第3格子によってX線の可干渉性を向上させることにより、第1格子の格子像を生じさせることができる。その結果、X線源の選択の自由度を向上させることができる。 In the X-ray phase imaging system according to the above aspect, preferably, the plurality of gratings are arranged between the X-ray source and the first grating, and the X-ray coherence of X-rays irradiated with X-rays from the X-ray source is provided. A third grating to enhance the With this configuration, even when the focal size of the X-ray source is large, the third grating can improve the coherence of the X-rays, thereby generating a grating image of the first grating. As a result, the degree of freedom in selecting the X-ray source can be improved.
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、第1格子は、格子像として、X線の一部を遮蔽することにより生じる縞模様を形成する吸収格子である。このように構成すれば、第1格子によって回折されたX線が干渉することにより生じる自己像に基づいて位相コントラスト画像を生成する干渉計と同様に、第1格子によってX線の一部が遮蔽されることによって生じる第1格子の縞模様に基づいて被写体を画像化する非干渉計においても、位相コントラスト画像に生じるアーティファクトを補正することができる。また、第1格子の縞模様は、X線の一部が遮蔽されることにより生じる。したがって、第1格子の自己像を生じさせるタルボ干渉計とは異なり、第1格子をX線源から所定の距離(タルボ距離)に配置しなくてもよい。その結果、第1格子の配置位置の自由度を向上させることができる。 In the X-ray phase imaging system according to the above aspect, preferably, the first grating is an absorption grating that forms a stripe pattern generated by shielding a part of the X-rays as a grating image. According to this structure, like the interferometer that generates a phase contrast image based on a self-image generated by interference of X-rays diffracted by the first grating, a part of the X-rays is shielded by the first grating. Even in a non-interferometer that images a subject based on the first lattice stripe pattern generated by this, it is possible to correct an artifact that occurs in a phase contrast image. Further, the striped pattern of the first lattice is generated by blocking a part of the X-rays. Therefore, unlike the Talbot interferometer that generates a self-image of the first grating, the first grating does not have to be arranged at a predetermined distance (Talbot distance) from the X-ray source. As a result, the degree of freedom of the arrangement position of the first grating can be improved.
 本発明によれば、上記のように、位相コントラスト画像において、比較的複雑なアーティファクトが生じていた場合でも、得られる位相コントラスト画像の画質が劣化することを抑制することが可能なX線位相撮像システムを提供することができる。 Advantageous Effects of Invention According to the present invention, as described above, even when relatively complicated artifacts occur in a phase contrast image, X-ray phase imaging capable of suppressing deterioration of the quality of the obtained phase contrast image A system can be provided.
第1実施形態によるX線位相撮像システムをY方向から見た模式図である。FIG. 2 is a schematic diagram of the X-ray phase imaging system according to the first embodiment as viewed from a Y direction. 第1実施形態によるX線位相撮像システムが備える格子移動機構の斜視図である。FIG. 2 is a perspective view of a grating moving mechanism included in the X-ray phase imaging system according to the first embodiment. 第1実施形態によるX線位相撮像システムにおける第1格子の格子像と第2格子とを説明するための模式図である。FIG. 3 is a schematic diagram for explaining a lattice image of a first lattice and a second lattice in the X-ray phase imaging system according to the first embodiment. 第1実施形態によるX線位相撮像システムによって生成される吸収像の模式図(A)、位相微分像の模式図(B)および暗視野像の模式図(C)である。It is a schematic diagram (A) of an absorption image generated by the X-ray phase imaging system according to the first embodiment, a schematic diagram of a phase differential image (B), and a schematic diagram of a dark field image (C). 第1格子の格子像と第2格子とにおいて、位置ずれが生じた場合の位相微分像の変化を説明するための模式図(A)~(D)である。FIGS. 7A to 7D are schematic diagrams (A) to (D) for explaining a change in a phase differential image when a positional shift occurs between a lattice image of a first grating and a second grating. 位相コントラスト画像に生じるアーティファクトを説明するための模式図である。FIG. 3 is a schematic diagram for explaining an artifact that occurs in a phase contrast image. 第1比較例によるアーティファクトの補正を説明するための模式図(A)および(B)である。FIGS. 7A and 7B are schematic diagrams for explaining correction of an artifact according to a first comparative example. FIGS. 第1実施形態による制御部が取得する3次元の近似曲面を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a three-dimensional approximate curved surface acquired by a control unit according to the first embodiment. 第1実施形態によるアーティファクトの補正を説明するための模式図(A)および(B)である。FIGS. 3A and 3B are schematic diagrams for explaining correction of an artifact according to the first embodiment. FIGS. 第1実施形態によるアーティファクト補正処理を説明するためのフローチャートである。5 is a flowchart illustrating an artifact correction process according to the first embodiment. X線画像に生じるモアレ縞を説明するための模式図である。FIG. 3 is a schematic diagram for explaining moire fringes generated in an X-ray image. モアレ縞に起因するアーティファクトが生じた吸収像の模式図(A)、位相微分像の模式図(B)および暗視野像の模式図(C)である。3A is a schematic diagram of an absorption image in which an artifact caused by moiré fringes has occurred, FIG. 3B is a schematic diagram of a phase differential image, and FIG. 第2比較例によるアーティファクトの補正を説明するための模式図(A)および(B)である。FIGS. 7A and 7B are schematic diagrams for explaining correction of an artifact according to a second comparative example. FIGS. 第3比較例によるアーティファクトの補正を説明するための模式図(A)および(B)である。FIGS. 11A and 11B are schematic diagrams for explaining correction of an artifact according to a third comparative example. FIGS. 第2実施形態によるアーティファクトの補正を説明するための模式図(A)および(B)である。FIGS. 7A and 7B are schematic diagrams for explaining correction of an artifact according to the second embodiment. FIGS. 第2実施形態によるアーティファクト補正処理を説明するためのフローチャートである。9 is a flowchart illustrating an artifact correction process according to the second embodiment. 変形例によるX線位相撮像システムをY方向から見た模式図である。It is the schematic diagram which looked at the X-ray phase imaging system by the modification from Y direction.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第1実施形態]
 図1~図6を参照して、第1実施形態によるによるX線位相撮像システム100の構成について説明する。
[First Embodiment]
The configuration of the X-ray phase imaging system 100 according to the first embodiment will be described with reference to FIGS.
 (X線位相撮像システムの構成)
 まず、図1を参照して、本発明の本実施形態によるX線位相撮像システム100の構成について説明する。
(Configuration of X-ray phase imaging system)
First, the configuration of the X-ray phase imaging system 100 according to the present embodiment of the present invention will be described with reference to FIG.
 図1に示すように、X線位相撮像システム100は、タルボ(Talbot)効果を利用して、被写体Qの内部を画像化する装置である。X線位相撮像システム100は、複数の格子のうち、いずれか1つを、格子の周期方向(X方向)に並進移動させながら被写体Qを撮像するように構成されている。 X As shown in FIG. 1, the X-ray phase imaging system 100 is an apparatus for imaging the inside of the subject Q using the Talbot effect. The X-ray phase imaging system 100 is configured to image the subject Q while translating any one of the plurality of gratings in the periodic direction of the grating (X direction).
 図1に示すように、X線位相撮像システム100は、X線源1と、検出器2と、第1格子3と第2格子4とを含む複数の格子と、画像処理部5と、制御部6と、記憶部7と、格子移動機構8とを備えている。なお、本明細書において、X線源1から第1格子3に向かう方向をZ2方向、その逆向きの方向をZ1方向とする。また、Z方向と直交する面内の左右方向をX方向とし、図1の紙面の上方向をX1方向、図1の紙面の下方向をX2方向とする。また、Z方向と直交する紙面内の上下方向をY方向とし、図1の紙面の手前側に向かう方向をY1方向、図1の紙面の奥に向かう方向をY2方向とする。 As shown in FIG. 1, the X-ray phase imaging system 100 includes an X-ray source 1, a detector 2, a plurality of gratings including a first grating 3 and a second grating 4, an image processing unit 5, The storage unit includes a unit 6, a storage unit 7, and a grid moving mechanism 8. In this specification, a direction from the X-ray source 1 toward the first grating 3 is defined as a Z2 direction, and a direction opposite thereto is defined as a Z1 direction. The left and right directions in a plane orthogonal to the Z direction are defined as X directions, the upper direction of the paper of FIG. 1 is defined as X1 direction, and the lower direction of the paper of FIG. 1 is defined as X2 direction. The vertical direction in the plane of the paper perpendicular to the Z direction is defined as the Y direction, the direction toward the near side of the paper of FIG. 1 is defined as the Y1 direction, and the direction toward the back of the paper of FIG. 1 is defined as the Y2 direction.
 X線源1は、高電圧が印加されることにより、X線を発生させるとともに、発生されたX線を被写体Qに向けて照射するように構成されている。 The X-ray source 1 is configured to generate X-rays when a high voltage is applied, and to irradiate the generated X-rays to the subject Q.
 検出器2は、X線を検出するとともに、検出されたX線を電気信号に変換し、変換された電気信号を画像信号として読み取るように構成されている。検出器2は、たとえば、FPD(Flat Panel Detector)である。検出器2は、複数の変換素子(図示せず)と複数の変換素子上に配置された画素電極(図示せず)とにより構成されている。複数の変換素子および画素電極は、所定の周期で、X方向およびY方向にアレイ状に配列されている。また、検出器2は、取得した画像信号を、画像処理部5に出力するように構成されている。 The detector 2 is configured to detect X-rays, convert the detected X-rays into an electric signal, and read the converted electric signal as an image signal. The detector 2 is, for example, an FPD (Flat @ Panel @ Detector). The detector 2 includes a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements. The plurality of conversion elements and pixel electrodes are arranged in an array in the X direction and the Y direction at a predetermined cycle. The detector 2 is configured to output the acquired image signal to the image processing unit 5.
 第1格子3は、X線源1と、第2格子4との間に配置されており、X線源1からX線が照射される。第1格子3は、タルボ効果により、第1格子3の格子像(自己像30(図3参照))を形成するために設けられている。可干渉性を有するX線が、スリットが形成された格子を通過すると、格子から所定の距離(タルボ距離)離れた位置に、格子像(自己像30)が形成される。これをタルボ効果という。 The first grating 3 is disposed between the X-ray source 1 and the second grating 4, and is irradiated with X-rays from the X-ray source 1. The first grating 3 is provided to form a grating image (self-image 30 (see FIG. 3)) of the first grating 3 by the Talbot effect. When the coherent X-rays pass through the grid in which the slit is formed, a grid image (self image 30) is formed at a position separated from the grid by a predetermined distance (Talbot distance). This is called the Talbot effect.
 第1格子3は、X方向に所定の周期(ピッチ)pで配列される複数のX線透過部3aおよび、X線位相変化部3bを有している。各X線透過部3aおよびX線位相変化部3bはそれぞれ、Y方向に沿って直線状に延びるように形成されている。また、各X線透過部3aおよびX線位相変化部3bはそれぞれ、互いに平行に延びるように形成されている。第1格子3は、いわゆる位相格子である。 The first grating 3, a plurality of X-ray transmitting portion 3a arranged at a predetermined period (pitch) p 1 in the X direction and has an X-ray phase change portion 3b. Each of the X-ray transmitting portions 3a and the X-ray phase changing portions 3b is formed so as to extend linearly along the Y direction. The X-ray transmitting portions 3a and the X-ray phase changing portions 3b are formed so as to extend in parallel with each other. The first grating 3 is a so-called phase grating.
 第2格子4は、X方向に所定の周期(ピッチ)pで配列される複数のスリット4aおよびX線吸収部4bを有している。各スリット4aおよびX線吸収部4bは、それぞれ、Y方向に沿って直線状に延びるように形成されている。また、スリット4aおよびX線吸収部4bはそれぞれ、互いに平行に延びるように形成されている。第2格子4は、いわゆる、吸収格子である。第1格子3、第2格子4はそれぞれ異なる役割を持つ格子であるが、X線透過部3aおよびスリット4aはそれぞれX線を透過させる。また、X線位相変化部3bは、X線透過部3aとの屈折率の違いによってX線の位相を変化させる役割を担っており、X線吸収部4bは、X線を遮蔽する役割を担っている。 The second grating 4 has a plurality of slits 4a and X-ray absorbing portion 4b which is arranged at a predetermined period (pitch) p 2 in the X direction. Each of the slits 4a and the X-ray absorbing portions 4b are formed so as to extend linearly along the Y direction. The slit 4a and the X-ray absorbing portion 4b are formed so as to extend in parallel with each other. The second grating 4 is a so-called absorption grating. The first grating 3 and the second grating 4 are gratings having different roles, respectively, but the X-ray transmitting portion 3a and the slit 4a respectively transmit X-rays. Further, the X-ray phase changing section 3b has a role of changing the phase of X-rays by a difference in refractive index from the X-ray transmitting section 3a, and the X-ray absorbing section 4b has a role of shielding X-rays. ing.
 第2格子4は、第1格子3と検出器2との間に配置されており、第1格子3を通過したX線が照射される。また、第2格子4は、第1格子3からタルボ距離だけ離れた位置に配置される。第2格子4は、第1格子3の格子像(自己像30)と干渉して、検出器2の検出表面上にモアレ縞M(図11参照)を形成する。 The second grating 4 is disposed between the first grating 3 and the detector 2 and is irradiated with X-rays passing through the first grating 3. The second grating 4 is arranged at a position away from the first grating 3 by the Talbot distance. The second grating 4 interferes with the grating image (self-image 30) of the first grating 3 to form Moire fringes M (see FIG. 11) on the detection surface of the detector 2.
 画像処理部5は、検出器2から出力された画像信号に基づいて、位相コントラスト画像10(図4参照)を生成するように構成されている。画像処理部5は、たとえば、GPU(Graphics Processing Unit)または画像処理用に構成されたFPGA(Field-Programmable Gate Array)などのプロセッサを含む。 The image processing unit 5 is configured to generate the phase contrast image 10 (see FIG. 4) based on the image signal output from the detector 2. The image processing unit 5 includes, for example, a processor such as a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) configured for image processing.
 制御部6は、格子移動機構8を制御して、第1格子3を並進移動させるように構成されている。制御部6は、たとえば、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)などを含む。 The control unit 6 is configured to control the lattice moving mechanism 8 to translate the first lattice 3 in translation. Control unit 6 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
 記憶部7は、画像処理部5が生成した位相コントラスト画像10などを保存するように構成されている。記憶部7は、たとえば、HDD(Hard Disk Drive)や不揮発性のメモリなどを含む。 The storage unit 7 is configured to store the phase contrast image 10 generated by the image processing unit 5 and the like. The storage unit 7 includes, for example, an HDD (Hard Disk Drive), a nonvolatile memory, and the like.
 格子移動機構8は、制御部6の制御の下、複数の格子のうちのいずれか1つを、格子の周期方向(X方向)に並進移動させるように構成されている。第1実施形態では、格子移動機構8は、第1格子3を保持しており、第1格子3を並進移動させるように構成されている。 The lattice moving mechanism 8 is configured to translate one of the plurality of lattices in the periodic direction of the lattice (X direction) under the control of the control unit 6. In the first embodiment, the grid moving mechanism 8 holds the first grid 3 and is configured to translate the first grid 3.
 (格子移動機構)
 図2に示すように、格子移動機構8は、X方向、Y方向、Z方向、Z方向の軸線周りの回転方向Rz、X方向の軸線周りの回転方向Rx、および、Y方向の軸線周りの回転方向Ryに第1格子3を移動可能に構成されている。具体的には、格子移動機構8は、X方向直動機構80と、Y方向直動機構81と、Z方向直動機構82と、直動機構接続部83と、ステージ支持部駆動部84と、ステージ支持部85と、ステージ駆動部86と、ステージ87とを含む。X方向直動機構80は、X方向に移動可能に構成されている。X方向直動機構80は、たとえば、モータなどを含む。Y方向直動機構81は、Y方向に移動可能に構成されている。Y方向直動機構81は、たとえば、モータなどを含む。Z方向直動機構82は、Z方向に移動可能に構成されている。Z方向直動機構82は、たとえば、モータなどを含む。
(Lattice moving mechanism)
As shown in FIG. 2, the grid moving mechanism 8 includes an X direction, a Y direction, a Z direction, a rotation direction Rz around an axis in the Z direction, a rotation direction Rx around an axis in the X direction, and a rotation direction Rx around the axis in the Y direction. The first grating 3 is configured to be movable in the rotation direction Ry. Specifically, the lattice moving mechanism 8 includes an X-direction linear movement mechanism 80, a Y-direction linear movement mechanism 81, a Z-direction linear movement mechanism 82, a linear movement mechanism connection unit 83, a stage support unit driving unit 84, , A stage support unit 85, a stage driving unit 86, and a stage 87. The X direction translation mechanism 80 is configured to be movable in the X direction. X-direction linear motion mechanism 80 includes, for example, a motor. The Y direction translation mechanism 81 is configured to be movable in the Y direction. The Y-direction linear motion mechanism 81 includes, for example, a motor. The Z-direction translation mechanism 82 is configured to be movable in the Z direction. The Z-direction linear motion mechanism 82 includes, for example, a motor.
 格子移動機構8は、X方向直動機構80の動作により、第1格子3をX方向に移動させるように構成されている。また、格子移動機構8は、Y方向直動機構81の動作により、第1格子3をY方向に移動させるように構成されている。また、格子移動機構8は、Z方向直動機構82の動作により、第1格子3をZ方向に移動させるように構成されている。 The lattice moving mechanism 8 is configured to move the first lattice 3 in the X direction by the operation of the X-direction linear moving mechanism 80. The grating moving mechanism 8 is configured to move the first grating 3 in the Y direction by the operation of the Y-direction linear moving mechanism 81. The lattice moving mechanism 8 is configured to move the first lattice 3 in the Z direction by the operation of the Z-direction linear moving mechanism 82.
 ステージ支持部85は、ステージ87を下方(Y1方向)から支持している。ステージ駆動部86は、ステージ87をX方向に往復移動させるように構成されている。ステージ87は、底部がステージ支持部85に向けて凸曲面状に形成されており、X方向に往復移動されることにより、X線の光軸周り(Rz方向)に回動するように構成されている。また、ステージ支持部駆動部84は、ステージ支持部85をZ方向に往復移動させるように構成されている。また、ステージ支持部85は底部が直動機構接続部83に向けて凸曲面状に形成されており、Z方向に往復移動されることにより、X方向の軸線周り(Rx方向)に回動するように構成されている。また、直動機構接続部83は、Y方向の軸線周り(Ry方向)に回動可能にX方向直動機構80に設けられている。したがって、格子移動機構8は、格子をY方向の中心軸線周りに回動させることができる。 The stage support 85 supports the stage 87 from below (Y1 direction). The stage drive unit 86 is configured to reciprocate the stage 87 in the X direction. The stage 87 has a bottom formed in a convex curved shape toward the stage support portion 85, and is configured to rotate around the optical axis of the X-ray (Rz direction) by being reciprocated in the X direction. ing. Further, the stage support drive unit 84 is configured to reciprocate the stage support 85 in the Z direction. The bottom of the stage support portion 85 is formed in a convex curved shape toward the direct-acting mechanism connection portion 83, and reciprocates in the Z direction to rotate around the axis in the X direction (Rx direction). It is configured as follows. The linear motion mechanism connecting portion 83 is provided in the X direction linear motion mechanism 80 so as to be rotatable around an axis in the Y direction (Ry direction). Therefore, the grid moving mechanism 8 can rotate the grid about the central axis in the Y direction.
 (第1格子の自己像)
 第1実施形態では、第1格子3からタルボ距離離れた位置に、第2格子4を配置している。具体的には、図3に示すように、第1格子3からタルボ距離だけ離れた位置に、第1格子3の自己像30が形成される。自己像30は、明部30aと、暗部30bとを有している。第1格子3によって回折されたX線が強め合う位置に明部30aが形成される。また、第1格子3によって回折されたX線が弱め合う位置に、暗部30bが形成される。自己像30の明部30aと暗部30bとは、それぞれ、所定の周期p毎に形成される。第2格子4は、周期pが自己像30の周期pと略一致するように設計されている。したがって、自己像30の明部30aは、第2格子4のスリット4aの配置と略等しい位置となる。また、自己像30の暗部30bは、第2格子4のX線吸収部4bと略等しい位置となる。
(Self image of the first lattice)
In the first embodiment, the second grating 4 is arranged at a position away from the first grating 3 by the Talbot distance. Specifically, as shown in FIG. 3, a self-image 30 of the first grating 3 is formed at a position away from the first grating 3 by the Talbot distance. The self-image 30 has a bright part 30a and a dark part 30b. A bright portion 30a is formed at a position where X-rays diffracted by the first grating 3 reinforce each other. Further, a dark portion 30b is formed at a position where X-rays diffracted by the first grating 3 weaken. The bright part 30a and a dark 30b of self-image 30, respectively, are formed at predetermined intervals p 3. The second grating 4, the period p 2 is designed to substantially coincident with the period p 3 of the self-image 30. Therefore, the bright portion 30a of the self-image 30 is located at a position substantially equal to the arrangement of the slits 4a of the second grating 4. Further, the dark part 30b of the self-image 30 is located at a position substantially equal to the X-ray absorbing part 4b of the second grating 4.
 第1実施形態では、X線位相撮像システム100は、第1格子3をX方向に並進移動させながら撮像する縞走査法により、位相コントラスト画像10を生成する。具体的には、画像処理部5は、被写体Qを配置しない状態において、第1格子3を並進移動させながら撮像した複数の画像に基づいて生成した第1中間画像(図示せず)を生成する。また、画像処理部5は、被写体Qを配置した状態において、第1格子3を並進移動させながら撮像した複数の画像に基づいて生成した第2中間画像(図示せず)を生成する。画像処理部5は、第1中間画像と第2中間画像とに基づいて、位相コントラスト画像10を生成する。画像処理部5は、位相コントラスト画像10として、図4(A)~図4(C)に示す吸収像11、位相微分像12、および暗視野像13を生成する。なお、以下の記載では、第1中間画像を取得するための複数の画像の撮像を「被写体なし撮像」として記載する。また、第2中間画像を取得するための複数の画像の撮像を「被写体あり撮像」として記載する。 In the first embodiment, the X-ray phase imaging system 100 generates the phase contrast image 10 by a fringe scanning method in which the first grating 3 is imaged while being translated in the X direction. Specifically, the image processing unit 5 generates a first intermediate image (not shown) generated based on a plurality of images captured while translating the first lattice 3 in a state where the subject Q is not arranged. . Further, the image processing unit 5 generates a second intermediate image (not shown) generated based on a plurality of images captured while translating the first lattice 3 in a state where the subject Q is arranged. The image processing unit 5 generates a phase contrast image 10 based on the first intermediate image and the second intermediate image. The image processing unit 5 generates an absorption image 11, a phase differential image 12, and a dark field image 13 shown in FIGS. 4A to 4C as the phase contrast image 10. In the following description, the imaging of a plurality of images for acquiring the first intermediate image is described as “imaging without a subject”. In addition, imaging of a plurality of images for acquiring the second intermediate image is referred to as “imaging with subject”.
 また、吸収像11とは、X線が被写体Qを通過した際に生じるX線の減衰に基づいて画像化した像である。また、位相微分像12とは、X線が被写体Qを通過した際に発生するX線の位相のずれをもとに画像化した像である。また、暗視野像13とは、X線の小角散乱に基づくVisibilityの変化によって得られる、Visibility像のことである。また、暗視野像13は、小角散乱像とも呼ばれる。「Visibility」とは、鮮明度のことである。 吸収 The absorption image 11 is an image formed based on attenuation of X-rays generated when X-rays pass through the subject Q. The phase differential image 12 is an image formed based on a phase shift of the X-ray generated when the X-ray passes through the subject Q. The dark field image 13 is a Visibility image obtained by a change in Visibility based on small-angle scattering of X-rays. The dark-field image 13 is also called a small-angle scattering image. “Visibility” refers to sharpness.
 ここで、被写体なし撮像と被写体あり撮像との間に、第1格子3と第2格子4との相対位置に位置ずれが生じると、自己像30と第2格子4との位置関係にも位置ずれが生じる。以下、図5を参照して、自己像30と第2格子4との相対位置に位置ずれが生じた場合の、位相微分像12の変化について説明する。 Here, if the relative position between the first grating 3 and the second grating 4 is displaced between the imaging without the subject and the imaging with the subject, the positional relationship between the self-image 30 and the second grating 4 is also increased. Misalignment occurs. Hereinafter, with reference to FIG. 5, a description will be given of a change in the phase differential image 12 when the relative position between the self-image 30 and the second grating 4 is displaced.
 図5(A)は、被写体なし撮像と被写体あり撮像との間に、第1格子3と第2格子4との相対位置に位置ずれが生じていない場合の例である。図5(A)に示す例は、第1格子3と第2格子4との相対位置に位置ずれが生じていない例である。そのため、自己像30と第2格子4との相対位置においても位置ずれが生じていない。なお、自己像30と第2格子4との相対位置において、位置ずれが生じていない状態とは、自己像30の明部30a(または暗部30b)と第2格子4のスリット4a(またはX線吸収部4b)とが略等しい位置に配置される状態のことである。 FIG. 5A shows an example in which the relative position between the first grating 3 and the second grating 4 does not deviate between the imaging without the subject and the imaging with the subject. The example shown in FIG. 5A is an example in which the relative position between the first grating 3 and the second grating 4 has no positional shift. For this reason, no displacement occurs even in the relative position between the self-image 30 and the second grating 4. It should be noted that the state in which the relative position between the self-image 30 and the second grating 4 is not displaced means that the bright portion 30a (or dark portion 30b) of the self-image 30 and the slit 4a (or X-ray This is a state in which the absorber 4b) and the absorber 4b) are arranged at substantially equal positions.
 図5(B)に示す例は、被写体なし撮像と被写体あり撮像との間に、第2格子4に対して第1格子3が平行移動した場合の例である。図5(B)に示す例では、第1格子3は、プラス方向(X2方向)に平行移動している。第1格子3がプラス方向に移動した場合、図5(A)に示す例と比較して、検出器2において検出されるX線の輝度値の平均値が高くなる。したがって、図5(B)に示す位相微分像12bは、図5(A)に示す位相微分像12aよりも明るい画像となる。 The example shown in FIG. 5B is an example in which the first grid 3 is moved in parallel with respect to the second grid 4 between the imaging without the subject and the imaging with the subject. In the example shown in FIG. 5B, the first grating 3 moves in parallel in the plus direction (X2 direction). When the first grating 3 moves in the plus direction, the average value of the luminance values of the X-rays detected by the detector 2 becomes higher than in the example shown in FIG. Therefore, the phase differential image 12b shown in FIG. 5B is an image brighter than the phase differential image 12a shown in FIG.
 図5(C)に示す例は、被写体なし撮像と被写体あり撮像との間に、第2格子4に対して第1格子3がマイナス方向(X1方向)に平行移動した場合の例である。第1格子3がマイナス方向に移動した場合、図5(A)に示す例と比較して、検出器2において検出されるX線の輝度値の平均値が低くなる。したがって、図5(C)に示す位相微分像12cは、図5(A)に示す位相微分像12aよりも暗い画像となる。 The example shown in FIG. 5C is an example in which the first grating 3 is moved in parallel with the second grating 4 in the minus direction (X1 direction) between the imaging without the subject and the imaging with the subject. When the first grating 3 moves in the minus direction, the average value of the luminance values of the X-rays detected by the detector 2 becomes lower than in the example shown in FIG. Therefore, the phase differential image 12c shown in FIG. 5C is an image darker than the phase differential image 12a shown in FIG.
 図5(D)に示す例は、被写体なし撮像と被写体あり撮像との間に、第1格子3が、第2格子4に対してX線の光軸の軸線周りの回転方向Rzにおいて移動した場合の例である。図5(D)に示す例では、第1格子3のY1方向側においては、プラス方向(X2方向)に平行移動した状態となっている。また、第1格子3のY2方向側においては、マイナス方向(X1方向)に平行移動した状態となっている。したがって、図5(D)に示す位相微分像12dは、画像のY1方向側では、図5(A)に示す位相微分像12aよりも明るく、画像のY2方向側では位相微分像12aよりも暗い画像となる。なお、図5において、位相微分像12の明るさとは、位相微分像12における位相値のことである。すなわち、図5の位置ずれ量に対する明るさの凡例20に示すように、位相値が「π」に近づくほど位相微分像12は明るい画像となる。また、位相値が「-π」に近づくほど位相微分像12は暗い画像となる。 In the example illustrated in FIG. 5D, the first grating 3 moves in the rotation direction Rz about the X-ray optical axis with respect to the second grating 4 between the imaging without the subject and the imaging with the subject. This is an example of the case. In the example shown in FIG. 5D, the first lattice 3 on the Y1 direction side is in a state of being translated in the plus direction (X2 direction). On the Y2 direction side of the first grating 3, the first grating 3 is in a state of parallel movement in the minus direction (X1 direction). Therefore, the phase differential image 12d shown in FIG. 5D is brighter on the Y1 side of the image than the phase differential image 12a shown in FIG. 5A, and darker on the Y2 direction side of the image than the phase differential image 12a. It becomes an image. In FIG. 5, the brightness of the phase differential image 12 refers to the phase value in the phase differential image 12. That is, as shown in the legend 20 of the brightness with respect to the displacement amount in FIG. 5, the phase differential image 12 becomes a brighter image as the phase value approaches “π”. Further, the phase differential image 12 becomes a darker image as the phase value approaches “−π”.
 図5(B)~図5(D)に示すような位置ずれが複合的に生じた場合、図6に示すように、位相微分像12において、アーティファクト21が生じる。アーティファクト21は、濃部21aと、淡部21bとを有している。また、図6に示す例では、位相微分像12において、横方向の矢印HAに沿った位相値の変化を、グラフG1として図示している。また、図6に示す例では、位相微分像12において、縦方向の矢印VAに沿った位相値の変化を、グラフG2として図示している。グラフG1は、横軸がX方向の位置であり、縦軸が位相変化を示している。また、グラフG2は、横軸がY方向の位置であり、縦軸が位相変化を示している。 場合 When the misregistration as shown in FIGS. 5B to 5D occurs in a complex manner, an artifact 21 occurs in the phase differential image 12 as shown in FIG. The artifact 21 has a dark part 21a and a light part 21b. Further, in the example shown in FIG. 6, in the phase differential image 12, a change in the phase value along the horizontal arrow HA is illustrated as a graph G1. Further, in the example shown in FIG. 6, a change in the phase value along the vertical arrow VA in the phase differential image 12 is illustrated as a graph G2. In the graph G1, the horizontal axis indicates the position in the X direction, and the vertical axis indicates the phase change. In the graph G2, the horizontal axis represents the position in the Y direction, and the vertical axis represents the phase change.
 図6に示す例では、アーティファクト21がX方向に沿って生じているため、グラフG1は、アーティファクト21の濃部21aに対応する位置では位相値が低くなっており、アーティファクト21の淡部21bに対応する位置では位相値が高くなっている。一方、グラフG2は、アーティファクト21と交差する方向の位相値の変化を示しているため、位相値が略変化しない形状となっている。図6に示すように、位相微分像12においてアーティファクト21が生じると、位相微分像12中において濃淡が生じるため、位相微分像12の画質が劣化する。そこで、位相微分像12に生じたアーティファクト21を除去する補正を行うことが考えられる。 In the example shown in FIG. 6, since the artifact 21 is generated along the X direction, the graph G1 has a low phase value at a position corresponding to the dark portion 21a of the artifact 21, and the light beam 21b of the artifact 21 has a low phase value. The phase value is higher at the corresponding position. On the other hand, since the graph G2 shows a change in the phase value in a direction intersecting with the artifact 21, the graph G2 has a shape in which the phase value does not substantially change. As shown in FIG. 6, when an artifact 21 occurs in the phase differential image 12, shading occurs in the phase differential image 12, so that the image quality of the phase differential image 12 deteriorates. Therefore, it is conceivable to perform correction for removing the artifact 21 generated in the phase differential image 12.
 アーティファクト21を除去する補正を行う構成として、1次関数(または2次関数)によってアーティファクト21の強度分布を近似し、位相微分像12を補正する構成が知られている。以下、図7を参照して、従来技術による位相微分像12を補正する構成について説明する。 As a configuration for performing the correction for removing the artifact 21, a configuration is known in which the intensity distribution of the artifact 21 is approximated by a linear function (or a quadratic function) to correct the phase differential image 12. Hereinafter, a configuration for correcting the phase differential image 12 according to the related art will be described with reference to FIG.
 従来技術による第1比較例では、図7(A)に示すような位相微分像12において生じたアーティファクト21を、1次関数を用いて平面で近似する。そして、位相微分像12から近似したアーティファクト21を差分することにより、図7(B)に示すような補正後の位相微分像14を取得する。なお、図7(A)に示す例は、図6と同様の例であるため、詳細な説明は省略する。 In the first comparative example according to the related art, an artifact 21 generated in the phase differential image 12 as shown in FIG. 7A is approximated by a plane using a linear function. Then, by subtracting the approximated artifact 21 from the phase differential image 12, a corrected phase differential image 14 as shown in FIG. 7B is obtained. Note that the example illustrated in FIG. 7A is the same as that in FIG. 6, and thus detailed description is omitted.
 なお、図7(B)に示す例では、補正後の位相微分像14において、横方向の矢印HAに沿った位相値の変化を、グラフG3として図示している。また、図7(B)に示す例では、補正後の位相微分像14において、縦方向の矢印VAに沿った位相値の変化を、グラフG4として図示している。グラフG3は、横軸がX方向の位置であり、縦軸が位相変化を示している。また、グラフG4は、横軸がY方向の位置であり、縦軸が位相変化を示している。 In the example shown in FIG. 7B, a change in the phase value along the horizontal arrow HA in the corrected phase differential image 14 is shown as a graph G3. In the example shown in FIG. 7B, a change in the phase value along the vertical arrow VA in the corrected phase differential image 14 is shown as a graph G4. In the graph G3, the horizontal axis indicates the position in the X direction, and the vertical axis indicates the phase change. In the graph G4, the horizontal axis indicates the position in the Y direction, and the vertical axis indicates the phase change.
 図7(B)に示す例では、グラフG3における位相値の変化の幅d2は、グラフG1における位相値の変化の幅d1よりも小さくなっている。しかしながら、アーティファクト21の濃部21aに対応する位置およびアーティファクト21の淡部21bに対応する位置において、位相値の減少および増加がみられる。これは、アーティファクト21の強度分布を1次関数によって近似しているため、アーティファクト21を正確に近似することができず、補正後の位相微分像14においても、アーティファクト21が残っているためであると考えられる。 In the example shown in FIG. 7B, the width d2 of the change in the phase value in the graph G3 is smaller than the width d1 of the change in the phase value in the graph G1. However, at a position corresponding to the dark portion 21a of the artifact 21 and at a position corresponding to the light portion 21b of the artifact 21, the phase value decreases and increases. This is because the intensity distribution of the artifact 21 is approximated by a linear function, so that the artifact 21 cannot be accurately approximated, and the artifact 21 remains in the corrected phase differential image 14. it is conceivable that.
 そこで、第1実施形態では、制御部6は、生成された位相コントラスト画像10(位相微分像12)における画素P(図6参照)の位置座標を用いて表される3次以上の多次関数によって、位相コントラスト画像10に生じたアーティファクト21を近似し、近似されたアーティファクト21に基づいて、位相コントラスト画像10の補正を行うように構成されている。具体的には、制御部6は、3次以上の多次関数に基づいて、アーティファクト21の強度分布を3次元の近似曲面CSとして取得し、取得した3次元の近似曲面CSに基づいて、位相コントラスト画像10の補正を行うように構成されている。なお、第1実施形態では、制御部6は、熱変動によって生じる複数の格子の格子間における相対位置の3次元的な位置ずれに起因するアーティファクト21を、3次元の近似曲面CSによって補正を行うように構成されている。また、制御部6は、位相コントラスト画像10として、位相微分像12におけるアーティファクト21の補正を行うように構成されている。 Therefore, in the first embodiment, the control unit 6 controls the third-order or higher-order multidimensional function represented by using the position coordinates of the pixel P (see FIG. 6) in the generated phase contrast image 10 (phase differential image 12). Thus, an artifact 21 generated in the phase contrast image 10 is approximated, and the phase contrast image 10 is corrected based on the approximated artifact 21. Specifically, the control unit 6 acquires the intensity distribution of the artifact 21 as a three-dimensional approximated surface CS based on a third-order or higher-order function, and calculates a phase based on the acquired three-dimensional approximated surface CS. The contrast image 10 is configured to be corrected. In the first embodiment, the control unit 6 corrects an artifact 21 caused by a three-dimensional displacement of a relative position between a plurality of lattices caused by heat fluctuation by using a three-dimensional approximate curved surface CS. It is configured as follows. Further, the control unit 6 is configured to correct an artifact 21 in the phase differential image 12 as the phase contrast image 10.
 図8に示す例は、x軸に画素Pのx座標、y軸に画素Pのy座標、z軸に画素Pの画素値をとり、各画素Pをプロットした3次元の近似曲面CSの例である。図8に示す3次元の第1実施形態では、制御部6は、位相コントラスト画像10から複数の画素Pを取得するとともに、取得した複数の画素Pをプロットし、プロットした複数の画素Pに対して3次以上の多次関数をフィッティングすることにより、3次元の近似曲面CSを取得するように構成されている。なお、制御部6は、位相コントラスト画像10において、被写体Qが映り込んでいない画素Pに基づいて3次元の近似曲面CSを取得するように構成されている。また、第1実施形態では、3次以上の多次関数として、3次関数を用いるため、制御部6は、位相コントラスト画像10から少なくとも10個以上の画素Pを取得する。なお、図8に示す例では、便宜上、10個以上の画素Pを図示しているが、第1実施形態では、位相コントラスト画像10から10個の画素Pを取得するように構成されている。また、画素Pは、医師などのユーザによって位相コントラスト画像10の背景部分から選択されてもよいし、制御部6による画像認識によって位相コントラスト画像10の背景部分から選択されてもよい。 The example shown in FIG. 8 is an example of a three-dimensional approximated surface CS in which each pixel P is plotted by taking the x coordinate of the pixel P on the x axis, the y coordinate of the pixel P on the y axis, and the pixel value of the pixel P on the z axis. It is. In the three-dimensional first embodiment shown in FIG. 8, the control unit 6 acquires a plurality of pixels P from the phase contrast image 10, plots the acquired pixels P, and It is configured to obtain a three-dimensional approximated surface CS by fitting a third-order or higher-order multi-order function. The control unit 6 is configured to acquire a three-dimensional approximate curved surface CS based on the pixels P on which the subject Q is not reflected in the phase contrast image 10. In the first embodiment, since the cubic function is used as the tertiary or higher order function, the control unit 6 acquires at least ten or more pixels P from the phase contrast image 10. In the example illustrated in FIG. 8, ten or more pixels P are illustrated for convenience, but in the first embodiment, ten pixels P are obtained from the phase contrast image 10. The pixel P may be selected from a background portion of the phase contrast image 10 by a user such as a doctor, or may be selected from a background portion of the phase contrast image 10 by image recognition by the control unit 6.
 第1実施形態では、制御部6は、3次以上の多次関数として、以下に定義する式(1)を用いている。
Figure JPOXMLDOC01-appb-M000001
 ここで、zは、画素Pが分布する曲面である。また、a~aは、多次関数(3次関数)を決定するための係数である。また、xおよびyは、各画素Pの位置座標(x座標およびy座標)である。
In the first embodiment, the control unit 6 uses Equation (1) defined below as a third-order or higher-order function.
Figure JPOXMLDOC01-appb-M000001
Here, z is a curved surface on which the pixels P are distributed. A 0 to a 9 are coefficients for determining a multi-order function (cubic function). Further, x and y are position coordinates (x coordinate and y coordinate) of each pixel P.
 第1実施形態では、制御部6は、最小二乗フィッティングによって多次関数のフィッティングを行うことにより、3次元の近似曲面CSを取得するように構成されている。具体的には、制御部6は、以下に示す式(2)により複数の画素Pの偏差Eを定義し、以下に示す式(3)に示す偏差Eの二乗和Eを取得することにより3次元の近似曲面CSを取得するように構成されている。
Figure JPOXMLDOC01-appb-M000002
 ここで、kは、1からNまでの整数である。また、Nは、取得する画素Pの個数である。第1実施形態では、10個の画素Pを用いるため、Nは10である。
In the first embodiment, the control unit 6 is configured to obtain a three-dimensional approximation surface CS by performing fitting of a multi-dimensional function by least-squares fitting. Specifically, the control unit 6 defines the deviation E k of the plurality of pixels P by the following equation (2) and obtains the sum of squares E of the deviation E k shown in the following equation (3). To obtain a three-dimensional approximated surface CS.
Figure JPOXMLDOC01-appb-M000002
Here, k is an integer from 1 to N. N is the number of pixels P to be obtained. In the first embodiment, N is 10 because ten pixels P are used.
 なお、偏差Eの二乗和Eを取得するためには、上記式(3)の各係数(a~a)に対する偏微分をとり、それらが0(ゼロ)となるケースを考えればよい。すなわち、制御部6は、以下に示す式(4)~式(13)を満たすような各係数(a~a)を取得する。
Figure JPOXMLDOC01-appb-M000003
Note that in order to obtain the sum of squares E of the deviation E k , it is only necessary to consider a case where partial differentiation is performed on each coefficient (a 0 to a 9 ) of the above equation (3) and they become 0 (zero). . That is, the control unit 6 acquires the coefficients (a 0 to a 9 ) that satisfy the following equations (4) to (13).
Figure JPOXMLDOC01-appb-M000003
 上記式(4)~式(13)を連立方程式とすると、以下に示す式(14)のように表すことができる。
Figure JPOXMLDOC01-appb-M000004
 また、上記式(14)のA、x(→)およびb(→)は、以下に示す式(15)、式(16)および式(17)のように表すことができる。
Figure JPOXMLDOC01-appb-M000005
If the above equations (4) to (13) are simultaneous equations, they can be expressed as the following equation (14).
Figure JPOXMLDOC01-appb-M000004
Further, A, x (→) and b (→) in the above equation (14) can be expressed as the following equations (15), (16) and (17).
Figure JPOXMLDOC01-appb-M000005
 上記式(14)の解法としては、どのような解法であってもよい。第1実施形態では、制御部6は、たとえば、LU分解法によって、上記式(14)を計算するように構成されている。ここで、LU分解法とは、正方行列を下三角行列と上三角との積に分解することにより行列式を計算する方法である。 解 As a solution of the above equation (14), any solution may be used. In the first embodiment, the control unit 6 is configured to calculate Expression (14) by, for example, the LU decomposition method. Here, the LU decomposition method is a method of calculating a determinant by decomposing a square matrix into a product of a lower triangular matrix and an upper triangular matrix.
 制御部6は、LU分解法によって求めた各係数(a~a)と、以下の式(18)とを用いて、位相微分像12からアーティファクト21を除去する補正を行う。
Figure JPOXMLDOC01-appb-M000006
 ここで、zは、補正前の位相微分像12の背景部分の画素値の分布である。また、z1kは、補正後の位相微分像12の背景部分の画素値の分布である。
The control unit 6 performs correction to remove the artifact 21 from the phase differential image 12 using each coefficient (a 0 to a 9 ) obtained by the LU decomposition method and the following equation (18).
Figure JPOXMLDOC01-appb-M000006
Here, z k is the distribution of pixel values in the background portion of the phase differential image 12 before correction. Z 1k is the distribution of pixel values in the background portion of the corrected phase differential image 12.
 上記式(18)に示すように、制御部6は、アーティファクト21を3次元の3次元の近似曲面CSで近似するとともに、位相微分像12から3次元の近似曲面CSを減算することにより、位相微分像12の補正を行うように構成されている。 As shown in the above equation (18), the control unit 6 approximates the artifact 21 with a three-dimensional three-dimensional approximation surface CS and subtracts the three-dimensional approximation surface CS from the phase differential image 12 to obtain a phase The differential image 12 is configured to be corrected.
 図9(A)に示す例は、補正前の位相微分像12の模式図である。図9(A)に示す例は、図6に示す例と同様であるため、詳細な説明は省略する。図9(B)に示す例は、制御部6によって補正処理が行われた後の位相微分像12eの模式図である。なお、図9(B)に示す例では、補正後の位相微分像12eにおいて、横方向の矢印HAに沿った位相値の変化を、グラフG5として図示している。また、図9(B)に示す例では、補正後の位相微分像12eにおいて、縦方向の矢印VAに沿った位相値の変化を、グラフG6として図示している。グラフG5は、横軸がX方向の位置であり、縦軸が位相変化を示している。また、グラフG6は、横軸がY方向の位置であり、縦軸が位相変化を示している。 The example shown in FIG. 9A is a schematic diagram of the phase differential image 12 before correction. The example illustrated in FIG. 9A is the same as the example illustrated in FIG. 6, and thus a detailed description is omitted. The example illustrated in FIG. 9B is a schematic diagram of the phase differential image 12e after the correction processing has been performed by the control unit 6. In the example shown in FIG. 9B, a change in phase value along the horizontal arrow HA in the corrected phase differential image 12e is shown as a graph G5. In the example shown in FIG. 9B, a change in the phase value along the vertical arrow VA in the corrected phase differential image 12e is illustrated as a graph G6. In the graph G5, the horizontal axis indicates the position in the X direction, and the vertical axis indicates the phase change. In the graph G6, the horizontal axis indicates the position in the Y direction, and the vertical axis indicates the phase change.
 図9(B)に示す例では、グラフG5の位相値の変化の幅d3は、グラフG1における位相値の変化の幅d1よりも小さくなっている。図9(B)に示すように、補正後の位相微分像12eは、制御部6によって、位相微分像12から3次元の近似曲面CSを減算することにより補正され、アーティファクト21が除去されている。したがって、上記第1比較例によるグラフG3の位相値とは異なり、グラフG5の位相値が略変化しない形状となっている。また、グラフG6は、アーティファクト21と交差する方向の位相値の変化を示すため、グラフG2および上記第1比較例によるグラフG4と同様に、位相値が略変化しない形状となっている。 で は In the example shown in FIG. 9B, the width d3 of the change in the phase value in the graph G5 is smaller than the width d1 of the change in the phase value in the graph G1. As shown in FIG. 9B, the corrected phase differential image 12 e is corrected by the control unit 6 by subtracting the three-dimensional approximate curved surface CS from the phase differential image 12, and the artifact 21 has been removed. . Therefore, unlike the phase value of the graph G3 according to the first comparative example, the shape is such that the phase value of the graph G5 does not substantially change. Further, since the graph G6 shows a change in the phase value in a direction intersecting the artifact 21, the graph G6 has a shape in which the phase value does not substantially change, like the graph G2 and the graph G4 according to the first comparative example.
 次に、図10を参照して、第1実施形態によるX線位相撮像システム100によるアーティファクト21の補正処理について説明する。なお、アーティファクト21の補正処理は、ユーザなどによる入力操作によって、アーティファクト21を補正する処理が開始される信号が制御部6に入力されることにより開始される。 Next, with reference to FIG. 10, a process of correcting the artifact 21 by the X-ray phase imaging system 100 according to the first embodiment will be described. Note that the correction processing of the artifact 21 is started when a signal for starting the processing of correcting the artifact 21 is input to the control unit 6 by an input operation by a user or the like.
 ステップS1において、X線位相撮像システム100は、位相コントラスト画像10(位相微分像12)における複数の画素Pの画素値および位置座標を取得する。次に、ステップS2において、制御部6は、3次関数(上記式(1))によって、アーティファクト21の強度分布を近似する。すなわち、制御部6は、アーティファクト21の強度分布を近似した3次元の近似曲面CSを取得する。その後、処理は、ステップS3へ進む。 In step S1, the X-ray phase imaging system 100 acquires the pixel values and the position coordinates of the plurality of pixels P in the phase contrast image 10 (phase differential image 12). Next, in step S2, the control unit 6 approximates the intensity distribution of the artifact 21 using a cubic function (Equation (1)). That is, the control unit 6 acquires a three-dimensional approximate curved surface CS that approximates the intensity distribution of the artifact 21. Thereafter, the processing proceeds to step S3.
 ステップS3において、制御部6は、近似されたアーティファクト21(3次元の近似曲面CS)に基づいて、位相コントラスト画像10(位相微分像12)を補正し、処理を終了する。 In step S3, the control unit 6 corrects the phase contrast image 10 (phase differential image 12) based on the approximated artifact 21 (three-dimensional approximated curved surface CS), and ends the process.
 (第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
(Effect of First Embodiment)
In the first embodiment, the following effects can be obtained.
 第1実施形態では、上記のように、X線位相撮像システム100は、被写体QにX線を照射するX線源1と、X線源1から照射されたX線を検出する検出器2と、X線源1と検出器2との間に配置され、X線源1からのX線が照射され、格子像(自己像30)を形成するための第1格子3と、第1格子3の格子像(自己像30)との干渉によりモアレ縞Mを生じさせるための第2格子4とを含む複数の格子と、検出器2によって検出された信号に基づいて位相コントラスト画像10(位相微分像12)を生成する画像処理部5と、生成された位相コントラスト画像10(位相微分像12)における画素Pの位置座標を用いて表される3次関数によって、位相コントラスト画像10に生じたアーティファクト21を近似し、近似されたアーティファクト21に基づいて、位相コントラスト画像10(位相微分像12)の補正を行う制御部6と、を備える。これにより、位相コントラスト画像10(位相微分像12)に生じたアーティファクト21が1次関数または2次関数によって近似することができない複雑な形状(分布)であっても、3次以上の多次関数によって近似できる場合がある。その結果、位相コントラスト画像10(位相微分像12)において、1次関数または2次関数によって近似することができないアーティファクト21が生じていた場合でも、得られる位相コントラスト画像10(位相微分像12)の画質が劣化することを抑制することができる。 In the first embodiment, as described above, the X-ray phase imaging system 100 includes the X-ray source 1 that irradiates the subject Q with X-rays, and the detector 2 that detects the X-rays emitted from the X-ray source 1. , An X-ray source 1 and a detector 2, which are irradiated with X-rays from the X-ray source 1 to form a grid image (self-image 30); A plurality of gratings including a second grating 4 for generating moiré fringes M by interference with a grating image (self-image 30) and a phase contrast image 10 (phase differential image) based on a signal detected by the detector 2 The image processing unit 5 that generates the image 12) and a cubic function expressed using the position coordinates of the pixel P in the generated phase contrast image 10 (the phase differential image 12) cause an artifact generated in the phase contrast image 10. Approximate 21 and approximated Arte Based on the facts 21 includes a control unit 6 for correcting a phase contrast image 10 (differential phase image 12), the. Thereby, even if the artifact 21 generated in the phase contrast image 10 (the phase differential image 12) has a complicated shape (distribution) that cannot be approximated by a linear function or a quadratic function, a multi-dimensional function of a third or higher order May be approximated by As a result, even when an artifact 21 that cannot be approximated by a linear function or a quadratic function occurs in the phase contrast image 10 (phase differential image 12), the obtained phase contrast image 10 (phase differential image 12) Deterioration of image quality can be suppressed.
 また、第1実施形態では、上記のように、制御部6は、3次関数に基づいて、アーティファクト21の強度分布を3次元の近似曲面CSとして取得し、取得した3次元の近似曲面CSに基づいて、位相コントラスト画像10(位相微分像12)の補正を行うように構成されている。これにより、3次関数によって3次元の近似曲面CSを取得することが可能となるので、3次元の近似曲面CSにより、アーティファクト21の強度分布をより正確に近似することができる。その結果、アーティファクト21に起因する位相コントラスト画像10(位相微分像12)の画質の劣化をより抑制することができる。 Further, in the first embodiment, as described above, the control unit 6 acquires the intensity distribution of the artifact 21 as a three-dimensional approximate surface CS based on the cubic function, and assigns the acquired three-dimensional approximate surface CS to the acquired three-dimensional approximate surface CS. On the basis of the correction, the phase contrast image 10 (phase differential image 12) is corrected. This makes it possible to obtain a three-dimensional approximated surface CS by using a cubic function, so that the three-dimensional approximated surface CS can more accurately approximate the intensity distribution of the artifact 21. As a result, the deterioration of the image quality of the phase contrast image 10 (the phase differential image 12) due to the artifact 21 can be further suppressed.
 また、第1実施形態では、上記のように、制御部6は、熱変動によって生じる複数の格子の格子間における相対位置の3次元的な位置ずれに起因するアーティファクト21を、3次元の近似曲面CSによって補正を行うように構成されている。これにより、格子において、熱変動による複雑な位置ずれが生じていた場合でも、3次元の近似曲面CSに基づいてアーティファクト21を補正することができる。その結果、熱変動に起因するアーティファクト21によって、位相コントラスト画像10(位相微分像12)の画質が劣化することを抑制することができる。 Further, in the first embodiment, as described above, the control unit 6 removes an artifact 21 caused by a three-dimensional displacement of a relative position between a plurality of lattices caused by heat fluctuation, and a three-dimensional approximated surface. It is configured to perform correction by CS. Accordingly, even when a complicated positional shift due to thermal fluctuation occurs in the lattice, the artifact 21 can be corrected based on the three-dimensional approximated curved surface CS. As a result, it is possible to prevent the image quality of the phase contrast image 10 (the phase differential image 12) from deteriorating due to the artifact 21 caused by the thermal fluctuation.
 また、第1実施形態では、上記のように、制御部6は、位相コントラスト画像10(位相微分像12)から複数の画素Pを取得するとともに、取得した複数の画素Pをプロットし、プロットした複数の画素Pに対して3次関数をフィッティングすることにより、3次元の近似曲面CSを取得するように構成されている。これにより、位相コントラスト画像10(位相微分像12)から取得した画素Pをプロットすることによってアーティファクト21の強度分布を近似した3次元の近似曲面CSを取得することができる。その結果、位相コントラスト画像10(位相微分像12)の全画素Pからアーティファクト21の強度分布を取得する場合と比較して、アーティファクト21を近似する際の計算コスト(計算負荷)が上昇することを抑制することができる。 In the first embodiment, as described above, the control unit 6 acquires a plurality of pixels P from the phase contrast image 10 (the phase differential image 12), and plots and plots the acquired pixels P. By fitting a cubic function to a plurality of pixels P, a three-dimensional approximated surface CS is obtained. This makes it possible to obtain a three-dimensional approximated surface CS that approximates the intensity distribution of the artifact 21 by plotting the pixels P obtained from the phase contrast image 10 (phase differential image 12). As a result, the calculation cost (calculation load) for approximating the artifact 21 increases as compared with the case where the intensity distribution of the artifact 21 is obtained from all the pixels P of the phase contrast image 10 (the phase differential image 12). Can be suppressed.
 また、第1実施形態では、上記のように、制御部6は、最小二乗フィッティングによって3次関数のフィッティングを行うことにより、3次元の近似曲面CSを取得するように構成されている。これにより、最小二乗法フィッティングによって、容易に3次元の近似曲面CSを取得することができる。その結果、位相コントラスト画像10(位相微分像12)に生じたアーティファクト21を容易に補正することができる。 In the first embodiment, as described above, the control unit 6 is configured to obtain a three-dimensional approximated surface CS by performing cubic function fitting by least-squares fitting. This makes it possible to easily obtain a three-dimensional approximate curved surface CS by the least squares fitting method. As a result, the artifact 21 generated in the phase contrast image 10 (phase differential image 12) can be easily corrected.
 また、第1実施形態では、上記のように、制御部6は、位相コントラスト画像10(位相微分像12)において、被写体Qが映り込んでいない画素Pに基づいて3次元の近似曲面CSを取得し、位相微分像12から3次元の近似曲面CSを減算することにより、位相コントラスト画像10(位相微分像12)の補正を行うように構成されている。これにより、背景部分の画素Pだけでなく、被写体Qが映る画素Pも含めて3次元の近似曲面CSを取得する場合と比較して、背景部分のアーティファクト21を正確に近似することができる。その結果、アーティファクト21を正確に近似した3次元の近似曲面CSによって補正することが可能となるので、位相コントラスト画像10(位相微分像12)の画質が劣化することをより一層抑制することができる。 Further, in the first embodiment, as described above, the control unit 6 acquires the three-dimensional approximate curved surface CS based on the pixel P on which the subject Q is not reflected in the phase contrast image 10 (phase differential image 12). The phase contrast image 10 (the phase differential image 12) is corrected by subtracting the three-dimensional approximate curved surface CS from the phase differential image 12. Thereby, the artifact 21 in the background portion can be accurately approximated as compared with the case where the three-dimensional approximated curved surface CS including not only the pixel P in the background portion but also the pixel P in which the subject Q appears is obtained. As a result, it is possible to correct the artifact 21 by using a three-dimensional approximated curved surface CS that accurately approximates the artifact 21. Therefore, it is possible to further suppress the deterioration of the image quality of the phase contrast image 10 (the phase differential image 12). .
 また、第1実施形態では、上記のように、制御部6は、位相コントラスト画像10として、位相微分像12におけるアーティファクト21の補正を行うように構成されている。これにより、第1格子3の格子像(自己像30)を用いて画像化する位相微分像12において、アーティファクト21を補正することが可能となるので、位相微分像12の画質が劣化することを抑制する場合に、特に有効である。 In the first embodiment, as described above, the control unit 6 is configured to correct the artifact 21 in the phase differential image 12 as the phase contrast image 10. This makes it possible to correct the artifact 21 in the phase differential image 12 that is imaged using the lattice image (the self image 30) of the first grating 3, and it is possible to prevent the image quality of the phase differential image 12 from deteriorating. It is particularly effective when suppressing.
 [第2実施形態]
 次に、図1、図11および図12を参照して、第2実施形態によるX線位相撮像システム200(図1参照)の構成について説明する。熱変動によって位相コントラスト画像10(位相微分像12)に生じたアーティファクト21を3次元の近似曲面CSによって補正する第1実施形態とは異なり、第2実施形態によるX線位相撮像システム200が備える制御部60(図1参照)は、モアレ縞M(図11参照)に起因するアーティファクト40を、3次元の近似曲面CSによって補正するように構成されている。なお、上記第1実施形態と同様の構成については同様の符号を付し、説明を省略する。
[Second embodiment]
Next, a configuration of an X-ray phase imaging system 200 (see FIG. 1) according to the second embodiment will be described with reference to FIGS. Unlike the first embodiment in which the artifact 21 generated in the phase contrast image 10 (the phase differential image 12) due to the thermal fluctuation is corrected by the three-dimensional approximated surface CS, the control provided in the X-ray phase imaging system 200 according to the second embodiment The unit 60 (see FIG. 1) is configured to correct the artifact 40 caused by the moire fringes M (see FIG. 11) by using a three-dimensional approximated surface CS. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 図1に示すように、X線位相撮像システム200は、X線源1と、検出器2と、第1格子3と、第2格子4と、画像処理部5と、制御部60と、記憶部7と、格子移動機構8とを備える。X線位相撮像システム200は、制御部60を備えている点を除いて、第1実施形態によるX線位相撮像システム100と同様の構成である。 As shown in FIG. 1, the X-ray phase imaging system 200 includes an X-ray source 1, a detector 2, a first grating 3, a second grating 4, an image processing unit 5, a control unit 60, and a storage unit. A section 7 and a grid moving mechanism 8 are provided. The X-ray phase imaging system 200 has the same configuration as the X-ray phase imaging system 100 according to the first embodiment, except that the X-ray phase imaging system 200 includes a control unit 60.
 第2実施形態では、制御部60は、複数の格子の格子間における相対位置が、所定の位置関係からずれている場合に生じるモアレ縞Mに起因するアーティファクト40を、3次元の近似曲面CSによって補正するように構成されている。 In the second embodiment, the control unit 60 uses the three-dimensional approximation surface CS to extract the artifact 40 caused by the moiré fringes M generated when the relative positions of the plurality of lattices deviate from a predetermined positional relationship. It is configured to correct.
 図11は、複数の格子の格子間における相対位置が、所定の位置関係からずれている場合のX線画像41の模式図である。複数の格子の格子間における相対位置が、所定の位置関係からずれている場合、X線画像41にモアレ縞Mが生じる。モアレ縞Mは、明部M1と暗部M2とを有している。明部M1と暗部M2とは、所定の周期毎に形成される。 FIG. 11 is a schematic diagram of the X-ray image 41 when the relative positions of a plurality of grids are shifted from a predetermined positional relationship. When the relative positions of the plurality of grids are shifted from a predetermined positional relationship, moire fringes M are generated in the X-ray image 41. The moire fringe M has a bright part M1 and a dark part M2. The light portion M1 and the dark portion M2 are formed at predetermined intervals.
 X線画像41にモアレ縞Mが形成されている場合、図12に示すように、画像処理部5が生成する位相コントラスト画像42(吸収像43、位相微分像44および暗視野像45)において、モアレ縞Mに起因するアーティファクト40が形成される場合がある。アーティファクト40は、濃部40aおよび淡部40bを有している。図12に示すように、位相コントラスト画像42において、モアレ縞Mに起因するアーティファクト40が生じると、位相コントラスト画像42の画質が劣化する。そこで、位相コントラスト画像42に生じたアーティファクト40を除去する補正を行うことが考えられる。 When the moire fringes M are formed on the X-ray image 41, as shown in FIG. 12, in the phase contrast image 42 (the absorption image 43, the phase differential image 44, and the dark field image 45) generated by the image processing unit 5, Artifacts 40 due to moire fringes M may be formed. The artifact 40 has a dark part 40a and a light part 40b. As shown in FIG. 12, when the artifact 40 due to the moire fringes M occurs in the phase contrast image 42, the image quality of the phase contrast image 42 deteriorates. Therefore, it is conceivable to perform correction for removing the artifact 40 generated in the phase contrast image 42.
 アーティファクト40を除去する補正を行う構成として、1次関数または2次関数によってアーティファクト40の強度分布を近似し、位相コントラスト画像42を補正する構成が考えられる。以下、図13および14を参照して、従来技術による位相微分像44を補正する構成について説明する。 As a configuration for performing the correction for removing the artifact 40, a configuration in which the intensity distribution of the artifact 40 is approximated by a linear function or a quadratic function to correct the phase contrast image 42 is considered. Hereinafter, a configuration for correcting the phase differential image 44 according to the related art will be described with reference to FIGS.
 従来技術による第2比較例では、図13(A)に示すようなアーティファクト40が生じた位相微分像44において、1次関数を用いてアーティファクト40を近似する。そして、近似したアーティファクト40を用いて位相微分像44を補正することにより、図13(B)に示すような補正後の位相微分像44aを取得する。 In the second comparative example according to the prior art, the artifact 40 is approximated using a linear function in the phase differential image 44 in which the artifact 40 as shown in FIG. Then, by correcting the phase differential image 44 using the approximated artifact 40, a corrected phase differential image 44a as shown in FIG. 13B is obtained.
 なお、図13(A)に示す例では、位相微分像44において、横方向の矢印HAに沿った位相値の変化を、グラフG7として図示している。グラフG7は、横軸がX方向の位置であり、縦軸が位相変化を示している。また、図13(B)に示す例では、補正後の位相微分像44aにおいて、横方向の矢印HAに沿った位相値の変化を、グラフG8として図示している。グラフG8は、横軸がX方向の位置であり、縦軸が位相変化を示している。 In the example shown in FIG. 13A, a change in the phase value along the horizontal arrow HA in the phase differential image 44 is shown as a graph G7. In the graph G7, the horizontal axis indicates the position in the X direction, and the vertical axis indicates the phase change. In the example shown in FIG. 13B, a change in the phase value along the horizontal arrow HA in the corrected phase differential image 44a is illustrated as a graph G8. In the graph G8, the horizontal axis indicates the position in the X direction, and the vertical axis indicates the phase change.
 図13(A)に示す例では、位相微分像44においてアーティファクト40がX方向に沿って生じているため、グラフG7は、アーティファクト40の濃部40aに対応する位置では位相値が低くなっており、アーティファクト40の淡部40bに対応する位置では位相値が高くなっている。 In the example shown in FIG. 13A, since the artifact 40 is generated along the X direction in the phase differential image 44, the graph G7 has a low phase value at a position corresponding to the dark portion 40a of the artifact 40. At the position corresponding to the light portion 40b of the artifact 40, the phase value is high.
 図13(B)に示す例では、グラフG8における位相値の変化の幅d5は、グラフG7における位相値の変化の幅d4よりも小さくなっている。しかしながら、アーティファクト40の濃部40aに対応する位置およびアーティファクト40の淡部40bに対応する位置において、位相値が変化している。これは、アーティファクト40の強度分布を1次関数によって近似しているため、アーティファクト40を正確に近似することができず、補正後の位相微分像44aにおいても、アーティファクト40が残っているためであると考えられる。 In the example shown in FIG. 13B, the width d5 of the phase value change in the graph G8 is smaller than the width d4 of the phase value change in the graph G7. However, the phase value changes at a position corresponding to the dark portion 40a of the artifact 40 and at a position corresponding to the light portion 40b of the artifact 40. This is because the intensity distribution of the artifact 40 is approximated by a linear function, so that the artifact 40 cannot be accurately approximated, and the artifact 40 remains even in the corrected phase differential image 44a. it is conceivable that.
 図14に示す例は、従来技術による第3比較例の模式図である。図14(A)に示す例は、図13(A)と同様であるため、詳細な説明は省略する。図14(B)に示す例では、補正後の位相微分像44bにおいて、横方向の矢印HAに沿った位相値の変化を、グラフG9として図示している。グラフG9は、横軸がX方向の位置であり、縦軸が位相変化を示している。 例 The example shown in FIG. 14 is a schematic diagram of a third comparative example according to the related art. The example illustrated in FIG. 14A is the same as that in FIG. 13A, and thus a detailed description is omitted. In the example shown in FIG. 14B, a change in the phase value along the horizontal arrow HA in the corrected phase differential image 44b is shown as a graph G9. In the graph G9, the horizontal axis indicates the position in the X direction, and the vertical axis indicates the phase change.
 図14(B)に示すように、第3比較例におけるグラフG9の位相値の変化の幅d6は、グラフG7における位相値の変化の幅d4よりも小さくなっているも。しかしながら、アーティファクト40の濃部40aに対応する位置およびアーティファクト40の淡部40bに対応する位置において、位相値が変化している。この位相値の変化も、第2比較例と同様に、アーティファクト40を正確に近似することができないため、補正後の位相微分像44bにおいて、アーティファクト40が残っているためであると考えられる。 示 す As shown in FIG. 14B, the width d6 of the phase value change in the graph G9 in the third comparative example is smaller than the width d4 of the phase value change in the graph G7. However, the phase value changes at a position corresponding to the dark portion 40a of the artifact 40 and at a position corresponding to the light portion 40b of the artifact 40. This change in the phase value is considered to be because the artifact 40 cannot be accurately approximated as in the second comparative example, and the artifact 40 remains in the corrected phase differential image 44b.
 そこで、第2実施形態では、制御部60は、位相微分像44に生じたアーティファクト40を3次関数(上記式(1))に基づいて、3次元の近似曲面CSとして取得するように構成されている。なお、制御部60が3次元の近似曲面CSを取得する構成は、上記第1実施形態による制御部6が3次元の近似曲面CSを取得する構成の同様の構成であるため、詳細な説明は省略する。 Therefore, in the second embodiment, the control unit 60 is configured to acquire the artifact 40 generated in the phase differential image 44 as a three-dimensional approximated surface CS based on a cubic function (the above equation (1)). ing. The configuration in which the control unit 60 acquires the three-dimensional approximate curved surface CS is the same as the configuration in which the control unit 6 according to the first embodiment acquires the three-dimensional approximate curved surface CS. Omitted.
 図15(A)に示す例は、図13(A)に示す例と同様であるため、詳細な説明は省略する。図15(B)に示す例は、制御部60によって補正処理が行われた後の位相微分像44cの模式図である。なお、図15(B)に示す例では、補正後の位相微分像44cにおいて、横方向の矢印HAに沿った位相値の変化を、グラフG10として図示している。グラフG10は、横軸がX方向の位置であり、縦軸が位相変化を示している。 例 The example shown in FIG. 15A is the same as the example shown in FIG. The example illustrated in FIG. 15B is a schematic diagram of the phase differential image 44c after the correction processing has been performed by the control unit 60. In the example shown in FIG. 15B, a change in the phase value along the horizontal arrow HA in the corrected phase differential image 44c is illustrated as a graph G10. In the graph G10, the horizontal axis indicates the position in the X direction, and the vertical axis indicates the phase change.
 図15(B)に示す例では、グラフG10の位相値の変化の幅d7は、グラフG7における位相値の変化の幅d4よりも小さくなっている。グラフG10の位相値は、略変化しない形状となっている。図15(B)に示すように、補正後の位相微分像44cは、制御部60によって、位相微分像44から3次元の近似曲面CSを減算することにより補正されたので、モアレ縞Mに起因するアーティファクト40が除去されている。したがって、グラフG10の位相値が略変化しない形状となっている。 In the example shown in FIG. 15B, the width d7 of the change in the phase value in the graph G10 is smaller than the width d4 of the change in the phase value in the graph G7. The phase value of the graph G10 has a shape that does not substantially change. As shown in FIG. 15B, the corrected phase differential image 44c has been corrected by the control unit 60 by subtracting the three-dimensional approximate curved surface CS from the phase differential image 44, Artifact 40 has been removed. Therefore, the graph G10 has a shape in which the phase value does not substantially change.
 次に、図16を参照して、第2実施形態による制御部60が行う、アーティファクト40の補正処理について説明する。なお、上記第1実施形態による制御部6と同様の処理を行うステップについては、詳細な説明を省略する。 Next, the correction processing of the artifact 40 performed by the control unit 60 according to the second embodiment will be described with reference to FIG. Steps for performing the same processes as those performed by the control unit 6 according to the first embodiment will not be described in detail.
 ステップS4において、制御部60は、X線画像41における複数の画素Pの画素値および位置座標を取得する。その後、処理は、ステップS5へ進む。 In step S4, the control unit 60 acquires the pixel values and the position coordinates of the plurality of pixels P in the X-ray image 41. Thereafter, the processing proceeds to step S5.
 ステップS5において、制御部60は、3次関数(上記式(1))によって、モアレ縞Mに起因するアーティファクト40の強度分布を近似する。すなわち、制御部60は、モアレ縞Mに起因するアーティファクト40の強度分布を近似した3次元の近似曲面CSを取得する。その後、処理は、ステップS6へ進む。 In step S5, the control unit 60 approximates the intensity distribution of the artifact 40 caused by the moiré fringes M by a cubic function (Equation (1)). That is, the control unit 60 obtains a three-dimensional approximated surface CS that approximates the intensity distribution of the artifact 40 caused by the moire fringes M. Thereafter, the processing proceeds to step S6.
 ステップS6において、制御部60は、近似されたアーティファクト40(3次元の近似曲面CS)に基づいて、位相コントラスト画像42(位相微分像44)を補正し、処理を終了する。 In step S6, the control unit 60 corrects the phase contrast image 42 (phase differential image 44) based on the approximated artifact 40 (three-dimensional approximated curved surface CS), and ends the process.
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。 The other configurations of the second embodiment are the same as those of the first embodiment.
 (第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
(Effect of Second Embodiment)
In the second embodiment, the following effects can be obtained.
 第2実施形態では、上記のように、制御部60は、複数の格子の格子間における相対位置が、所定の位置関係からずれている場合に生じるモアレ縞Mに起因するアーティファクト40を、3次元の近似曲面CSによって補正するように構成されている。ここで、モアレ縞Mとは、所定の周期で明部M1と暗部M2とが繰り返される縞模様である。モアレ縞Mに起因するアーティファクト40は、モアレ縞Mの明部M1および暗部M2にそれぞれ対応する濃部40aと淡部40bとを有している。したがって、モアレ縞Mに起因するアーティファクト40の濃部40aおよび淡部40bも、所定の周期で繰り返される。このようなモアレ縞Mに起因するアーティファクト40は、1次関数または2次関数によって近似することが困難であると考えられる。したがって、上記のように構成することにより、1次関数または2次関数によって近似する場合と異なり、3次元の近似曲面CSによって、モアレ縞Mに起因するアーティファクト40を正確に近似することができる。その結果、モアレ縞Mに起因するアーティファクト40によって、位相コントラスト画像42(位相微分像44)の画質が劣化することを抑制することができる。 In the second embodiment, as described above, the control unit 60 converts the artifact 40 caused by the moiré fringes M generated when the relative positions of the plurality of grids deviate from the predetermined positional relationship into a three-dimensional shape. Is corrected by the approximate curved surface CS. Here, the moiré stripe M is a stripe pattern in which a bright portion M1 and a dark portion M2 are repeated at a predetermined cycle. The artifact 40 caused by the moire fringe M has a dark part 40a and a light part 40b corresponding to the bright part M1 and the dark part M2 of the moiré fringe M, respectively. Therefore, the dark portion 40a and the light portion 40b of the artifact 40 caused by the moire fringes M are also repeated at a predetermined cycle. It is considered that the artifact 40 caused by such moiré fringes M is difficult to approximate by a linear function or a quadratic function. Therefore, with the above-described configuration, the artifact 40 caused by the moiré fringes M can be accurately approximated by the three-dimensional approximated surface CS, unlike the case of approximation using a linear function or a quadratic function. As a result, it is possible to suppress the image quality of the phase contrast image 42 (the phase differential image 44) from deteriorating due to the artifact 40 caused by the moiré fringes M.
 なお、上記第2実施形態におけるその他の効果は、上記第1実施形態と同様である。 The other effects of the second embodiment are the same as those of the first embodiment.
 (変形例)
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく、請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
(Modification)
It should be understood that the embodiments disclosed this time are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description of the embodiments, and includes all modifications (modifications) within the scope and meaning equivalent to the terms of the claims.
 たとえば、上記第1および第2実施形態では、複数の格子として、第1格子3が位相格子の例を示したが、本発明はこれに限られない。たとえば、第1格子3は、格子像として、X線の一部を遮蔽することにより生じる縞模様を形成する吸収格子であってもよい。このように構成すれば、第1格子3によって回折されたX線が干渉することにより生じる自己像30に基づいて位相コントラスト画像10を生成する干渉計と同様に、第1格子3によってX線の一部が遮蔽されることによって生じる第1格子3の縞模様に基づいて被写体Qを画像化する非干渉計においても、位相コントラスト画像10(位相コントラスト画像42)に生じるアーティファクト21(アーティファクト40)を補正することができる。また、第1格子3の縞模様は、X線の一部が遮蔽されることにより生じる。したがって、第1格子3の自己像30を生じさせるタルボ干渉計とは異なり、第1格子3をX線源1から所定の距離(タルボ距離)に配置しなくてもよい。その結果、第1格子3の配置位置の自由度を向上させることができる。 For example, in the first and second embodiments, the first grating 3 is an example of the phase grating as the plurality of gratings, but the present invention is not limited to this. For example, the first grating 3 may be an absorption grating that forms a stripe pattern generated by blocking a part of X-rays as a grating image. With this configuration, the first grating 3 generates X-rays similarly to the interferometer that generates the phase contrast image 10 based on the self-image 30 generated by the interference of the X-rays diffracted by the first grating 3. Even in a non-interferometer that images the subject Q based on the striped pattern of the first grating 3 that is generated by being partially shielded, the artifact 21 (artifact 40) that occurs in the phase contrast image 10 (the phase contrast image 42) is generated. Can be corrected. Further, the striped pattern of the first grating 3 is generated by blocking a part of the X-rays. Therefore, unlike the Talbot interferometer that generates the self-image 30 of the first grating 3, the first grating 3 does not have to be arranged at a predetermined distance (Talbot distance) from the X-ray source 1. As a result, the degree of freedom in the arrangement position of the first grating 3 can be improved.
 また、上記第1および第2実施形態では、X線位相撮像システム100(200)が、複数の格子として、第1格子3および第2格子4を含む構成の例を示したが、本発明はこれに限られない。たとえば、図17に示すX線位相撮像システム300のように、複数の格子は、X線源1と第1格子3との間に配置され、X線源1からX線が照射されるX線の可干渉性を高めるための第3格子50を含んでいてもよい。 Further, in the first and second embodiments, the X-ray phase imaging system 100 (200) has been described as an example of the configuration including the first grating 3 and the second grating 4 as a plurality of gratings. Not limited to this. For example, as in an X-ray phase imaging system 300 shown in FIG. 17, a plurality of gratings are arranged between the X-ray source 1 and the first grating 3, and X-rays irradiated with X-rays from the X-ray source 1 are used. May include a third grating 50 for increasing the coherence of the light.
 第3格子50は、X方向に所定の周期(ピッチ)pで配列される複数のスリット50aおよび、X線吸収部50bを有している。各スリット50aおよびX線吸収部50bはそれぞれ、Y方向に沿って直線状に延びるように形成されている。また、各スリット50aおよびX線吸収部50bはそれぞれ、互いに平行に延びるように形成されている。第3格子50は、いわゆる吸収格子である。第3格子50には、X線源1からX線が照射される。第3格子50は、各スリット50aを通過したX線を、各スリット50aの位置に対応する線光源とするように構成されている。すなわち、第3格子50は、X線源1から照射されるX線の可干渉性を高めるための格子である。上記のように構成すれば、X線源1の焦点サイズが大きい場合でも、第3格子50によってX線の可干渉性を向上させることにより、第1格子3の格子像(自己像30)を生じさせることができる。その結果、X線源1の選択の自由度を向上させることができる。 Third grating 50 has a plurality of slits 50a arranged at a predetermined period (pitch) p 4 in the X direction and has an X-ray absorbing portion 50b. Each of the slits 50a and the X-ray absorbing portions 50b are formed so as to extend linearly along the Y direction. The slits 50a and the X-ray absorbing portions 50b are formed so as to extend in parallel with each other. The third grating 50 is a so-called absorption grating. The third grating 50 is irradiated with X-rays from the X-ray source 1. The third grating 50 is configured so that the X-rays passing through each slit 50a are used as a line light source corresponding to the position of each slit 50a. That is, the third grating 50 is a grating for increasing the coherence of the X-ray emitted from the X-ray source 1. With the configuration described above, even when the focal size of the X-ray source 1 is large, the third grating 50 improves the coherence of the X-rays, so that the grid image (self-image 30) of the first grating 3 can be formed. Can be caused. As a result, the degree of freedom in selecting the X-ray source 1 can be improved.
 また、上記第1および第2実施形態では、格子移動機構8が第1格子3を移動させる構成の例を示したが、本発明はこれに限られない。たとえば、格子移動機構8によって、第2格子4をX方向に移動させて撮像するように構成されていてもよい。また、図17に示すX線位相撮像システム300のように、複数の格子として、第3格子50を備える場合、格子移動機構8によって、第3格子50をX方向に移動させて撮像するように構成されていてもよい。 In the first and second embodiments, the example in which the grid moving mechanism 8 moves the first grid 3 has been described, but the present invention is not limited to this. For example, the second grid 4 may be configured to be moved in the X direction and imaged by the grid moving mechanism 8. In the case where the third grating 50 is provided as a plurality of gratings as in the X-ray phase imaging system 300 shown in FIG. 17, the third grating 50 is moved in the X direction by the grating moving mechanism 8 for imaging. It may be configured.
 また、上記第1および第2実施形態では、制御部6(60)が最小二乗フィッティングによって、3次元の近似曲面CSを取得する構成の例を示したが、本発明はこれに限られない。3次元の近似曲面CSを取得することができれば、制御部6(60)は、どのような手法によって3次元の近似曲面CSを取得してもよい。たとえば、制御部6(60)は、反復法によって3次元の近似曲面CSを取得するように構成されていてもよい。 Also, in the first and second embodiments, an example of the configuration in which the control unit 6 (60) acquires the three-dimensional approximate curved surface CS by the least squares fitting has been described, but the present invention is not limited to this. The control unit 6 (60) may acquire the three-dimensional approximate surface CS by any method as long as the three-dimensional approximate surface CS can be acquired. For example, the control unit 6 (60) may be configured to obtain a three-dimensional approximated surface CS by an iterative method.
 また、上記第1実施形態では、制御部6は、位相コントラスト画像10として、位相微分像12に生じるアーティファクト21を補正する構成の例を示したが、本発明はこれに限られない。たとえば、制御部6は、位相コントラスト画像10として、暗視野像13に生じるアーティファクト21を補正する処理を行うように構成されていてもよい。 In the first embodiment, the control unit 6 has been described as an example of the configuration in which the phase contrast image 10 corrects the artifact 21 generated in the phase differential image 12, but the present invention is not limited to this. For example, the control unit 6 may be configured to perform a process of correcting an artifact 21 occurring in the dark field image 13 as the phase contrast image 10.
 また、上記第2実施形態では、制御部60は、位相コントラスト画像42として、位相微分像44に生じるアーティファクト40の補正を行う構成の例を示したが、本発明はこれに限られない。たとえば、制御部60は、位相コントラスト画像42として、吸収像43または暗視野像45に生じるアーティファクト40の補正を行うように構成されていてもよい。 In the second embodiment, the control unit 60 has been described as an example of the configuration in which the artifact 40 generated in the phase differential image 44 is corrected as the phase contrast image 42, but the present invention is not limited to this. For example, the control unit 60 may be configured to correct the artifact 40 occurring in the absorption image 43 or the dark field image 45 as the phase contrast image 42.
 また、上記第1および第2実施形態では、制御部6(60)が、3次以上の多次関数として、3次関数(上記式(1))を用いて3次元の近似曲面CSを取得する構成の例を示したが、本発明はこれに限られない。3次以上の多次関数であれば、制御部6(60)は、どのような関数を用いて3次元の近似曲面CSを取得してもよい。たとえば、制御部6(60)は、3次以上の多次関数として、4次関数を用いて3次元の近似曲面CSを取得するように構成されていてもよい。 In the first and second embodiments, the control unit 6 (60) obtains a three-dimensional approximate surface CS using a cubic function (the above equation (1)) as a cubic or higher-order function. Although an example of the configuration is shown, the present invention is not limited to this. The control unit 6 (60) may obtain the three-dimensional approximate curved surface CS using any function as long as it is a multi-dimensional function of third order or higher. For example, the control unit 6 (60) may be configured to obtain a three-dimensional approximate curved surface CS using a quartic function as a tertiary or higher order function.
 また、上記第1実施形態では、制御部6が、熱変動によって生じる複数の格子の格子間における相対位置の3次元的な位置ずれに起因するアーティファクト21の補正を行う構成の例を示したが、本発明はこれに限られない。たとえば、制御部6は、被写体Qなどが格子に接触することによって生じる複数の格子の格子間における相対位置の3次元的な位置ずれに起因するアーティファクトを補正するように構成されていてもよい。 Further, in the first embodiment, an example of the configuration in which the control unit 6 corrects the artifact 21 due to the three-dimensional displacement of the relative position between the plurality of lattices caused by heat fluctuation has been described. However, the present invention is not limited to this. For example, the control unit 6 may be configured to correct an artifact caused by a three-dimensional displacement of a relative position between a plurality of grids caused by the subject Q or the like contacting the grid.
 また、上記第1および第2実施形態では、説明の便宜上、制御部6(60)の制御処理を、処理フローに沿って順番に処理を行うフロー駆動型のフローチャートを用いて説明した例について示したが、本発明はこれに限られない。本発明では、制御部6(60)の制御処理を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。 Further, in the first and second embodiments, for convenience of explanation, the control process of the control unit 6 (60) is described with reference to an example described using a flow-driven flowchart in which processes are sequentially performed along a process flow. However, the present invention is not limited to this. In the present invention, the control process of the control unit 6 (60) may be performed by an event-driven (event-driven) process of executing a process in event units. In this case, it may be performed in a completely event-driven manner, or may be performed in a combination of event-driven and flow-driven.
 1 X線源
 2 検出器
 3 第1格子
 4 第2格子
 5 画像処理部
 6、60 制御部
 10、44 位相コントラスト画像
 12、42b 位相微分像
 21、40 アーティファクト
 30 自己像(格子像)
 100、200、300 X線位相撮像システム
 CS 3次元の近似曲面
 M モアレ縞
 P 画素
 Q 被写体
Reference Signs List 1 X-ray source 2 Detector 3 First grating 4 Second grating 5 Image processing unit 6, 60 Control unit 10, 44 Phase contrast image 12, 42b Phase differential image 21, 40 Artifact 30 Self image (grating image)
100, 200, 300 X-ray phase imaging system CS Approximate three-dimensional curved surface M Moiré fringe P pixel Q subject

Claims (10)

  1.  被写体にX線を照射するX線源と、
     前記X線源から照射されたX線を検出する検出器と、
     前記X線源と前記検出器との間に配置され、前記X線源からのX線が照射され、格子像を形成するための第1格子と、前記第1格子の前記格子像との干渉によりモアレ縞を生じさせるための第2格子とを含む複数の格子と、
     前記検出器によって検出された信号に基づいて位相コントラスト画像を生成する画像処理部と、
     生成された前記位相コントラスト画像における画素の位置座標を用いて表される3次以上の多次関数によって、前記位相コントラスト画像に生じたアーティファクトを近似し、近似された前記アーティファクトに基づいて、前記位相コントラスト画像を行う制御部と、を備える、X線位相撮像システム。
    An X-ray source for irradiating the subject with X-rays,
    A detector for detecting X-rays emitted from the X-ray source;
    An X-ray from the X-ray source, which is arranged between the X-ray source and the detector, and which is irradiated with X-rays from the X-ray source, and which interferes with the first grating for forming a grating image and the grating image of the first grating; A plurality of gratings, including a second grating for generating moiré fringes,
    An image processing unit that generates a phase contrast image based on the signal detected by the detector,
    An artifact generated in the phase contrast image is approximated by a third-order or higher-order function represented by using a position coordinate of a pixel in the generated phase contrast image, and the phase is determined based on the approximated artifact. An X-ray phase imaging system, comprising: a control unit that performs a contrast image.
  2.  前記制御部は、前記3次以上の多次関数に基づいて、前記アーティファクトの強度分布を3次元の近似曲面として取得し、取得した前記3次元の近似曲面に基づいて、前記位相コントラスト画像を行うように構成されている、請求項1に記載のX線位相撮像システム。 The control unit acquires the intensity distribution of the artifact as a three-dimensional approximated surface based on the third-order or higher order function, and performs the phase contrast image based on the acquired three-dimensional approximated surface. The X-ray phase imaging system according to claim 1, wherein the system is configured as follows.
  3.  前記制御部は、熱変動によって生じる前記複数の格子の格子間における相対位置の3次元的な位置ずれに起因する前記アーティファクトを、前記3次元の近似曲面によって補正を行うように構成されている、請求項2に記載のX線位相撮像システム。 The control unit is configured to correct the artifact caused by a three-dimensional displacement of a relative position between the plurality of lattices caused by heat fluctuation by the three-dimensional approximated surface, The X-ray phase imaging system according to claim 2.
  4.  前記制御部は、前記複数の格子の格子間における相対位置が、所定の位置関係からずれている場合に生じるモアレ縞に起因する前記アーティファクトを、前記3次元の近似曲面によって補正するように構成されている、請求項2に記載のX線位相撮像システム。 The control unit is configured to correct, by the three-dimensional approximation surface, the artifact caused by the moiré fringe generated when the relative positions of the plurality of lattices deviate from a predetermined positional relationship. The X-ray phase imaging system according to claim 2, wherein:
  5.  前記制御部は、前記位相コントラスト画像から複数の前記画素を取得するとともに、取得した複数の前記画素をプロットし、プロットした複数の前記画素に対して前記3次以上の多次関数をフィッティングすることにより、前記3次元の近似曲面を取得するように構成されている、請求項2に記載のX線位相撮像システム。 The control unit acquires the plurality of pixels from the phase contrast image, plots the acquired plurality of pixels, and fits the third-order or higher-order function to the plotted plurality of pixels. 3. The X-ray phase imaging system according to claim 2, wherein the X-ray phase imaging system is configured to acquire the three-dimensional approximate curved surface.
  6.  前記制御部は、最小二乗フィッティングによって前記多次関数のフィッティングを行うことにより、前記3次元の近似曲面を取得するように構成されている、請求項2に記載のX線位相撮像システム。 3. The X-ray phase imaging system according to claim 2, wherein the control unit is configured to obtain the three-dimensional approximated surface by performing fitting of the multidimensional function by least-squares fitting. 4.
  7.  前記制御部は、前記位相コントラスト画像において、被写体が映り込んでいない前記画素に基づいて前記3次元の近似曲面を取得し、前記位相コントラスト画像から前記3次元の近似曲面を減算することにより、前記位相コントラスト画像の補正を行うように構成されている、請求項2に記載のX線位相撮像システム。 The control unit obtains the three-dimensional approximate surface based on the pixels in which the subject is not reflected in the phase contrast image, and subtracts the three-dimensional approximate surface from the phase contrast image, 3. The X-ray phase imaging system according to claim 2, wherein the system is configured to perform correction of a phase contrast image.
  8.  前記制御部は、前記位相コントラスト画像として、位相微分像における前記アーティファクトの補正を行うように構成されている、請求項1に記載のX線位相撮像システム。 The X-ray phase imaging system according to claim 1, wherein the control unit is configured to correct the artifact in a phase differential image as the phase contrast image.
  9.  前記複数の格子は、前記X線源と前記第1格子との間に配置され、前記X線源からX線が照射されるX線の可干渉性を高めるための第3格子を含む、請求項1に記載のX線位相撮像システム。 The plurality of gratings may include a third grating disposed between the X-ray source and the first grating to increase coherence of X-rays irradiated with X-rays from the X-ray source. Item 2. The X-ray phase imaging system according to Item 1.
  10.  前記第1格子は、前記格子像として、X線の一部を遮蔽することにより生じる縞模様を形成する吸収格子である、請求項1に記載のX線位相撮像システム。 2. The X-ray phase imaging system according to claim 1, wherein the first grating is an absorption grating that forms a stripe pattern generated by blocking a part of X-rays as the grating image. 3.
PCT/JP2019/023129 2018-09-11 2019-06-11 X-ray phase imaging system WO2020054159A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-169787 2018-09-11
JP2018169787 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020054159A1 true WO2020054159A1 (en) 2020-03-19

Family

ID=69777093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023129 WO2020054159A1 (en) 2018-09-11 2019-06-11 X-ray phase imaging system

Country Status (1)

Country Link
WO (1) WO2020054159A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102598A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. Radiographic imaging device and radiographic imaging system
JP2012170618A (en) * 2011-02-22 2012-09-10 Konica Minolta Medical & Graphic Inc Radiography system
JP2013146537A (en) * 2011-12-22 2013-08-01 Fujifilm Corp Radiographic apparatus and method for processing image
JP2017006588A (en) * 2015-06-26 2017-01-12 コニカミノルタ株式会社 Radiographic system and image processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102598A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. Radiographic imaging device and radiographic imaging system
JP2012170618A (en) * 2011-02-22 2012-09-10 Konica Minolta Medical & Graphic Inc Radiography system
JP2013146537A (en) * 2011-12-22 2013-08-01 Fujifilm Corp Radiographic apparatus and method for processing image
JP2017006588A (en) * 2015-06-26 2017-01-12 コニカミノルタ株式会社 Radiographic system and image processing apparatus

Similar Documents

Publication Publication Date Title
US10801971B2 (en) X-ray phase contrast imaging with fourier transform determination of grating displacement
US20150103972A1 (en) Motion layer decomposition calibration of x-ray ct imagers
CN112955735B (en) X-ray phase camera system
JP6897799B2 (en) X-ray phase imaging system
WO2019220689A1 (en) X-ray imaging device
WO2020054159A1 (en) X-ray phase imaging system
JP7031371B2 (en) X-ray phase difference imaging system
JP7040625B2 (en) X-ray phase imaging system
JP7166964B2 (en) Geometric Alignment, Subject Motion Correction and Intensity Normalization of Computed Tomography Projections Using π-Line Optimization
CN109106387B (en) X-ray phase difference imaging device
WO2020188856A1 (en) X-ray imaging device
JP6813107B2 (en) X-ray phase difference imaging system
JP7021676B2 (en) X-ray phase difference imaging system
JP7131625B2 (en) X-ray phase imaging system
JP7021705B2 (en) X-ray phase imaging device
JP7111166B2 (en) X-ray phase imaging system
JP7226212B2 (en) X-RAY PHASE IMAGING DEVICE AND PHASE CONTRAST IMAGE GENERATING METHOD
JP7060090B2 (en) Optical imaging device and image processing method
US11179124B2 (en) X-ray phase imaging method
WO2023223871A1 (en) X-ray phase imaging device, x-ray image processing device, x-ray image processing method, and correction curve generating method
JP7180562B2 (en) X-ray phase imaging device
JP2022006401A (en) X-ray image photographing apparatus and x-ray image generation method
WO2020054151A1 (en) X-ray phase imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP