WO2020054001A1 - Antenna - Google Patents

Antenna Download PDF

Info

Publication number
WO2020054001A1
WO2020054001A1 PCT/JP2018/033879 JP2018033879W WO2020054001A1 WO 2020054001 A1 WO2020054001 A1 WO 2020054001A1 JP 2018033879 W JP2018033879 W JP 2018033879W WO 2020054001 A1 WO2020054001 A1 WO 2020054001A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer resin
resin substrate
substrate
antenna
electrically connected
Prior art date
Application number
PCT/JP2018/033879
Other languages
French (fr)
Japanese (ja)
Inventor
哲成 齋藤
幸宣 垂井
靖朗 白井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/033879 priority Critical patent/WO2020054001A1/en
Priority to JP2020546609A priority patent/JP6949239B2/en
Publication of WO2020054001A1 publication Critical patent/WO2020054001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the present invention relates to an antenna having a microwave device.
  • Patent Literature 1 discloses a printed board on which components such as a microstrip line having a plurality of antenna elements and an electronic device are mounted. .
  • an antenna structure a layer on which a substrate on which an antenna element is mounted is arranged on the same plane, a layer on which a substrate on which a microwave device is mounted are arranged on the same plane, and a layer on which a power supply circuit is mounted are laminated.
  • Antennas that realize a low profile by electrically connecting the layers are being studied.
  • a multi-pole board-to-board connector is used for the electrical connection between the layers.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an antenna that can be reduced in height and reduced in size.
  • an antenna according to the present invention includes a support member, a control board provided on a first surface side of the support member, and a control substrate provided on a side opposite to the first surface of the support member.
  • a first multilayer resin substrate provided on the second surface side of the support member, which is a surface, and electrically connected to the control board via a connector; and a first multilayer resin substrate on the support member side of the first multilayer resin substrate.
  • a plurality of microwave devices provided on the first surface and electrically connected to the first multilayer resin substrate; and a plurality of microwave devices provided on the first multilayer resin substrate, the first multilayer resin substrate being a surface opposite to the first surface.
  • a plurality of antenna elements provided on the second surface side and electrically connected to the first multilayer resin substrate.
  • the antenna is provided between the first multilayer resin substrate and the bus bar in contact with the first multilayer resin substrate and the bus bar, the bus bar being provided on the surface of the support member on the first multilayer resin substrate side.
  • a conductive leaf spring electrically connected to the first multilayer resin substrate and the bus bar.
  • Sectional view of a microwave device according to an embodiment of the present invention.
  • Sectional view of an antenna with the microwave device shown in FIG. Overall view of the support shown in FIG.
  • the figure which shows the functional block of the microwave device shown in FIG. The figure which shows the modification of the microwave device shown in FIG.
  • FIG. 1 is a sectional view of a microwave device according to an embodiment of the present invention.
  • FIG. 2 is a sectional view of an antenna having the microwave device shown in FIG.
  • FIG. 3 is an overall view of the support member shown in FIG.
  • FIG. 4 is a diagram showing functional blocks of the microwave device shown in FIG.
  • the microwave device 100 includes a multilayer resin substrate 1 that is a multilayer resin substrate for the device, an IC (Integrated Circuit) 4 that is a high heat-generating RF (Radio Frequency) device, and a thermally integrated IC 4. And a conductive heat spreader 5 that is connected to the heat spreader 5.
  • IC Integrated Circuit
  • RF Radio Frequency
  • the microwave device 100 also includes an IC 6 that is an RF device having high heat generation, a conductive heat spreader 7 that is thermally connected to the IC 6, and a chip component 8 that is surface-mounted on the multilayer resin substrate 1.
  • IC4 and IC6 are examples of a high-frequency circuit which is a circuit device.
  • IC4 is a driver amplifier (Driver Amplifier).
  • the IC 6 is a high power amplifier (High Power Amplifier): HPA.
  • the chip component 8 is a bypass capacitor that suppresses an RF superimposed wave.
  • the multilayer resin substrate 1 has a first plate surface 1a which is an end surface on one end side in the Y-axis direction of the multilayer resin substrate 1 and a second plate surface which is an end surface on the other end side in the Y-axis direction of the multilayer resin substrate 1. 1b.
  • the arrangement direction of IC4 and IC6 is the X-axis direction
  • the arrangement direction of first plate surface 1a and second plate surface 1b of multilayer resin substrate 1 is the Y-axis direction.
  • the direction orthogonal to both the X-axis direction and the Y-axis direction is defined as the Z-axis direction.
  • a plurality of ground via holes 11, signal via holes 12, and signal via holes 13 formed near the outer periphery of the multilayer resin substrate 1 are formed.
  • a ground pattern 14 electrically connected to one end of each of the plurality of ground via holes 11 in the Y-axis direction and a chip component 8 are electrically connected.
  • a signal line 15, a pad 16 electrically connected to one end of the signal via hole 12 in the Y-axis direction, a pad 17 electrically connected to one end of the signal via hole 13 in the Y-axis direction, and a plurality of pads 18. Is provided.
  • a ground pattern 19 electrically connected to the other end of the ground via hole 11 in the Y-axis direction, and a ground pattern electrically connected to the other end of the signal via hole 12 in the Y-axis direction.
  • a signal input / output terminal 21 electrically connected to the other end of the signal via hole 13 in the Y-axis direction.
  • the plurality of ground via holes 11 include a signal line 15, pads 16, 17, 18, signal pads such as signal input / output terminals 20, 21, and signal via holes 12, 13 near the outer peripheral surface of the multilayer resin substrate 1. It is formed so as to surround it.
  • the types of the signal line 15 include an input RF line, a gate bias supply line, an output RF line, and a drain bias supply line.
  • Two input / output terminals 41 and 42 are provided on one end surface 4a side of the IC 4 in the Y-axis direction.
  • the input / output terminal 41 is electrically connected to the pad 16 via the fine bonding material 30.
  • the input / output terminal 42 is electrically connected to the pad 18 via the fine bonding material 30.
  • Examples of the fine bonding material 30 include a conductive copper pillar or a solder ball.
  • a heat spreader 5 is provided on the other end surface 4b side of the IC 4 in the Y-axis direction. That is, the heat spreader 5 is provided on the surface of the IC 4 opposite to the surface facing the multilayer resin substrate 1 side.
  • the IC 4 is thermally connected to one end surface 5a of the heat spreader 5 in the Y-axis direction.
  • Two input / output terminals 61 and 62 are provided on one end surface 6a side of the IC 6 in the Y-axis direction.
  • the input / output terminal 61 is electrically connected to the pad 18 via the fine bonding material 30.
  • the input / output terminal 62 is electrically connected to the pad 17 via the fine bonding material 30.
  • a heat spreader 7 is provided on the other end surface 6b side of the IC 6 in the Y-axis direction.
  • the IC 6 is thermally connected to one end surface 7a of the heat spreader 7 in the Y-axis direction.
  • the ICs 4 and 6 provided to be in contact with the heat spreaders 5 and 7 are joined to the multilayer resin substrate 1, and a mold resin 50 is formed on the multilayer resin substrate 1 to which the ICs 4 and 6 are joined.
  • the mold resin 50 is molded so as to include the ICs 4 and 6, the heat spreaders 5 and 7, the chip component 8, the signal line 15, and the pads 16, 17 and 18 therein.
  • the outer peripheral surface of the IC 4 is covered with the mold resin 50 except for the other end surface 4b of the IC 4 in the Y-axis direction.
  • the outer peripheral surface of the IC 6 is covered with the mold resin 50 except for the other end surface 6b of the IC 6 in the Y-axis direction.
  • the outer peripheral surface of the heat spreader 5 is covered with the mold resin 50 except for one end surface 5a of the heat spreader 5 in the Y-axis direction and the other end surface 5b of the heat spreader 5 in the Y-axis direction.
  • the outer peripheral surface of the heat spreader 7 is covered with the mold resin 50 except for one end surface 7a of the heat spreader 7 in the Y-axis direction and the other end surface 7b of the heat spreader 7 in the Y-axis direction.
  • the other end surface 5b in the Y-axis direction of the heat spreader 5 is exposed without being covered with the mold resin 50.
  • the other end surface 7b of the heat spreader 7 in the Y-axis direction is exposed without being covered with the mold resin 50.
  • the end surfaces of the mold resin 50 on the inner side surface 2 a side and the upper end surfaces of the heat spreaders 5 and 7 are polished so as to be substantially flush with each other.
  • the other end surfaces 5b, 7b of the heat spreaders 5, 7 may be exposed by polishing so that the end surfaces of the mold resin 50 on the inner surface 2a side and the upper end surfaces of the heat spreaders 5, 7 are flat.
  • the conductive film 2 is formed on the surfaces of the mold resin 50 and the heat spreaders 5 and 7.
  • the conductive film 2 is a conductive film such as electroless plating or a conductive adhesive. Examples of the material of the plating film include Ni (nickel) and silver, and the conductive adhesive includes silver particles. And the like.
  • electroless plating is used as the conductive film 2
  • a conductive adhesive or a thin film conductive metal is provided on the upper surface of the boundary region where the end surface on the inner surface 2 a side of the mold resin 50 and the upper end surfaces of the heat spreaders 5 and 7 are adjacent to each other.
  • the sheet may be contacted to enhance the electrical connection and electromagnetic shielding (shielding) functions in the boundary region between the end surface on the inner surface 2a side of the mold resin 50 and the upper end surfaces of the heat spreaders 5, 7.
  • a region indicated by reference numeral 3 is a space formed between the multilayer resin substrate 1 and the conductive film 2 and filled with the mold resin 50.
  • the inner surface 2a of the conductive film 2 provided on the multilayer resin substrate 1 is thermally connected to the other end surface 5b of the heat spreader 5 in the Y-axis direction, and is thermally connected to the other end surface 7b of the heat spreader 7 in the Y-axis direction. You. An end of the conductive film 2 provided on the multilayer resin substrate 1 in the Y-axis direction is electrically connected to the ground pattern 14.
  • an RF signal is input to the signal input / output terminal 20.
  • An RF signal which is a transmission signal input to the signal input / output terminal 20, is input to the IC 4 via the signal via hole 12, the pad 16, the fine bonding material 30, and the input / output terminal 41.
  • the RF signal input to the IC 4 is transmitted to the IC 6 via the input / output terminal 42, the fine bonding material 30, and the pad 18.
  • the RF signal input to the IC 6 via the input / output terminal 61 is transmitted to the signal input / output terminal 21 via the input / output terminal 62, the fine bonding material 30, the pad 17, and the signal via hole 13.
  • the pad 16, the signal via hole 12, and the signal input / output terminal 20 constitute a signal terminal portion 84 having a coaxial structure.
  • the pad 17, the signal via hole 13, and the signal input / output terminal 21 constitute a signal terminal 85 having a coaxial structure.
  • the antenna 500 includes the microwave module 200, a heat radiating sheet 150 having elasticity, a heat radiating plate 140, and a control board 160.
  • the elastic modulus of the heat radiation sheet 150 is smaller than the elastic modulus of the conductive film 2 of the microwave device 100.
  • the microwave module 200, the heat radiating sheet 150, the heat radiating plate 140, and the control board 160 are arranged in the order of the microwave module 200, the heat radiating sheet 150, the heat radiating plate 140, and the control board 160 in the Y-axis direction.
  • the microwave module 200 includes a multilayer resin substrate 110, which is a multilayer resin substrate for the module, a plurality of microwave devices 100, a control IC 120, a chip component 130, a leaf spring 190, and a plurality of antenna elements 210.
  • a multilayer resin substrate 110 which is a multilayer resin substrate for the module
  • the multilayer resin substrate 1 for a device described above can be said to be a second multilayer resin substrate.
  • the plurality of microwave devices 100, control ICs 120, chip components 130, and leaf springs 190 are provided on one end surface 110 a of the multilayer resin substrate 110 in the Y-axis direction.
  • the control IC 120, the leaf spring 190, and the chip component 130 are surface-mounted on the multilayer resin substrate 110.
  • As the chip component 130 a resistor or a capacitor can be exemplified.
  • the plurality of antenna elements 210 are provided on the other end surface 110b of the multilayer resin substrate 110 in the Y-axis direction.
  • One end face 110 a is the first face of multilayer resin substrate 110.
  • the other end surface 110b is a second surface of the multilayer resin substrate 110, and is a surface opposite to the first surface of the multilayer resin substrate 110.
  • a support member 141 having a flat plate shape is disposed on the surface of the control substrate 160 on the side of the multilayer resin substrate 110. That is, the control board 160 is provided on the one end surface 141a side of the support member 141 in the Y-axis direction. Further, the multilayer resin substrate 110 is provided on the other end surface 141b side of the support member 141 in the Y-axis direction.
  • the one end surface 141a is a first surface of the support 141.
  • the other end surface 141b is a second surface of the support 141 that is a surface of the support opposite to the first surface.
  • the support 141 is made of, for example, a conductive metal.
  • the support member 141 is, for example, a metal turning process, a process of partially cutting a cast product formed by casting, a diffusion bonding process of bonding a plate member formed by sheet metal processing by a diffusion bonding technique, that is, a so-called 3D printer. It is formed by a metal additive manufacturing process using manufacturing (Additive Manufacturing: AM), a process of partially cutting a sheet metal process, or the like.
  • AM additive Manufacturing
  • the support member 141 is provided with a plurality of bus bars 142 and a plurality of slits 143. Each slit 143 passes through the supporting member 141 in the thickness direction. Each heat sink 140 is fitted into each slit 143. Further, the RF / power / control connector 170 is electrically connected to the multilayer resin substrate 110 via the slit 143. As the RF / power / control connector 170, a general board-to-board connection connector can be used.
  • the microwave module 200 is laid on the support member 141 on the side opposite to the side on which the control board 160 is arranged. In FIG. 3, the arrangement position of the microwave module 200 in the in-plane direction of the support member 141 is indicated by a broken line.
  • a bus bar 142 that is electrically connected to the control board 160 is provided on the surface of the support member 141 on the multilayer resin substrate 110 side.
  • the support member 141 and the bus bar 142 are electrically insulated.
  • a through hole 1191 serving as an outer conductor is formed in the support member 141, and a cylindrical insulator 1192 is inserted.
  • An inner conductor 119 is provided at the center of the axis of the cylindrical insulator 1192.
  • the multilayer resin substrate 110 and the bus bar 142 are electrically connected to each other through the inner surface of the through hole 1191 and the inner conductor 119.
  • An insulating film 1193 is formed over the supporting member 141, and a bus bar 142 is mounted on the insulating film 1193.
  • the inner conductor 119 is electrically connected to a bias power supply terminal on the control board 160.
  • an external power supply board (not shown) may be provided outside the control board 160, and the bus bar 142 may be electrically connected to the bias power supply terminal on the external power supply board.
  • the bias power supply terminal of the external power supply board and the bus bar 142 are connected via a noise-resistant power supply wiring or a connector provided outside the control board 160.
  • a hole is provided in the control board 160, and a noise-resistant power supply wiring is passed through the hole while being insulated from the hole to supply power between the bus bar 142 and the external power supply board. It may be electrically connected by a wiring or a connector. By doing so, the control board 160 and the bus bar 142 can be electrically insulated.
  • control board 160 can be prevented from being affected by noise due to the large power supply, and the power durability of the control board 160 can be reduced.
  • the control board 160 can be manufactured at lower cost.
  • a twisted pair cable may be used as the noise-resistant power supply wiring. Twisted pair cables are also called twisted pair wires.
  • a conductive leaf spring 190 electrically connected to the multilayer resin substrate 110 and the bus bar 142 is provided between the multilayer resin substrate 110 and the bus bar 142.
  • the bus bar 142 has one end face in the Y-axis direction in contact with the end of the through hole 1191, the cylindrical insulator 1192, the insulating film 1193, and the inner conductor 119, and the other end face in the Y-axis direction is one end of the leaf spring 190. Is in contact with The other end of the leaf spring 190 is connected to a pad 1901 on the multilayer resin substrate 110. That is, the leaf spring 190 has a Z-shaped cross section.
  • the leaf spring 190 has a flat surface provided on one end side of the Z-shaped cross section in surface contact with a surface of the bus bar 142 on the multilayer resin substrate 110 side, and a flat surface provided on the other end side of the Z-shaped cross section has a pad 1901. Is in surface contact with the surface on the side of the support member 141. Thus, the leaf spring 190 is electrically connected to the multilayer resin substrate 110 and the bus bar 142.
  • the microwave module 200 and the supporting member 141 are screwed in a state where the side of the microwave module 200 on which the microwave device 100 is surface-mounted and the side of the supporting member 141 on which the bus bar 142 is provided face each other.
  • the fastening portion 1190 includes a bolt and a nut, or a female screw formed on the support member 141 and a female screw formed on the multilayer resin substrate 110.
  • the multilayer resin substrate 110 may be fastened to the support member 141 with a spacer 1195 through which a bolt passes between the multilayer resin substrate 110 and the support member 141 interposed therebetween.
  • the heat dissipation sheet 150 has one end face in the Y-axis direction in contact with the heat sink 140 and the other end face in the Y-axis direction in contact with the conductive films 2 of the plurality of microwave devices 100. That is, the heat radiating plate 140 is provided on the side of the heat radiating sheet 150 opposite to the side facing the microwave device 100.
  • the heat radiation sheet 150 is a sheet having high elasticity and high thermal conductivity. As a material of the heat radiation sheet 150, silicon rubber or the like in which a high heat conductive material such as carbon or silver is embedded can be exemplified.
  • the plurality of heat sinks 140 are arranged in the plurality of slits 143 formed in the support member 141, respectively.
  • Each heat dissipation plate 140 has an internal flow path 1801 through which the coolant 1800 flows, and forms a cold plate, that is, a cooling plate.
  • the inlet and outlet of the internal flow channel 1801 of each heat sink 140 are connected to the refrigerant flow channel 1401 provided inside the support member 141 with a rubber seal or the like in a watertight manner.
  • the refrigerant flow path 1401 is connected to a pump (not shown), and has a function of circulating the refrigerant 1800 sent from the pump inside each heat sink 140.
  • a pipe that realizes the same function as the coolant channel 1401 may be disposed inside the support member 141.
  • the heat sink 140 and the coolant channel 1401 are made of a metal having conductivity and good thermal conductivity, respectively.
  • the radiator plate 140 and the coolant channel 1401 are formed by, for example, forming a channel groove by performing a process of partially cutting a casting formed by turning or casting a metal, and then welding the metal plate.
  • the heat dissipation plate 140 and the coolant passage 1401 may be integrally formed with the internal passage 1801 by diffusion bonding in which a plate member formed by sheet metal processing is fixed by diffusion bonding.
  • the heat dissipation plate 140 and the coolant passage 1401 may be integrally formed with the internal passage 1801 by metal additive manufacturing using a 3D printer.
  • the coolant flow path 1401 or the pipe may be formed integrally with the heat sink 140 by metal additive manufacturing using a 3D printer.
  • heatsink 140 made of a good heat conductor such as a graphite plate, an aluminum alloy plate, or a copper tungsten plate may be used in place of the heatsink 140 as long as the heat transfer performance required for the heatsink 140 is obtained.
  • a hole is provided in the control board 160, another cooling plate is inserted into the hole, and the back surface of the other cooling plate on the side opposite to the microwave device 100 side in the Y-axis direction is in close contact or thermally. It is better to connect.
  • the multilayer resin board 110 and the control board 160 are interconnected by an RF / power / control connector 170 which is a connector for transmitting an RF signal, a power supply and a control signal, with the heat dissipation sheet 150 and the heat dissipation plate 140 interposed therebetween.
  • an RF / power / control connector 170 which is a connector for transmitting an RF signal, a power supply and a control signal, with the heat dissipation sheet 150 and the heat dissipation plate 140 interposed therebetween.
  • the conductive film 2 of the microwave device 100 Since the multilayer resin substrate 110 is fixed to the heat radiating plate 140 by the fastening force of the fastening portion 1190 such as a screw while applying pressure in the Y-axis direction, the conductive film 2 of the microwave device 100 has elastic heat radiation. The sheet is pressed against the sheet 150. Thereby, the conductive film 2 of the microwave device 100, the heat radiation sheet 150, and the heat radiation plate 140 are thermally connected.
  • the multilayer resin substrate 110 is provided with signal terminals 115 and 121 having a coaxial structure, an RF transmission line 116 as an inner layer signal line, and an RF transmission line 117 as an inner layer signal line.
  • the RF / power / control connector 170 and the microwave device 100 are connected to each other via the RF transmission line 116 and the signal terminal 115.
  • the antenna element 210 and the microwave device 100 are mutually connected via the RF transmission line 117 and the signal terminal unit 121.
  • an inner layer wiring 118 connected to the pad 1901 is formed on the multilayer resin substrate 110.
  • the inner layer wiring 118 is connected to a bias terminal of the microwave module 200.
  • the control board 160 generates a power supply and a control signal to be supplied to the microwave module 200, and the power supply and the control signal are input to the microwave device 100 on the multilayer resin substrate 110 via the RF / power / control connector 170. Is done. That is, the control board 160 has a function as a power supply board on which a power supply circuit is mounted.
  • a power source that requires a large current among the power sources generated by the control board 160 is connected to the microwave on the multilayer resin substrate 110 via a bus bar 142, a leaf spring 190, and an inner layer wiring 118 provided on the multilayer resin substrate 110. Input to the device 100.
  • the bus bar 142 includes three bus bars, each having two ground bus bars and a direct current (DC) signal bus bar provided between the two ground bus bars. May be.
  • the bus bar 142 supplies a drain bias current to, for example, a field-effect transistor (FET) of the amplifier in the microwave module 200.
  • FET field-effect transistor
  • the transmission input signal and the reception output signal which are the RF signals of the microwave module 200 are transmitted between the antenna element 210 and the transceiver 600 via the RF / power / control connector 170 and the control board 160, or The signal is transmitted between 210 and the distribution / synthesis circuit 700.
  • the connection order of the transceiver 600 and the distribution / combination circuit 700 is arbitrary. Although the transceiver 600 is provided separately from the control board 160 here, the transceiver 600 may be integrated with the control board 160.
  • the RF transmission signal output from the transceiver 600 is transmitted via the control board 160, the RF / power / control connector 170, the RF transmission line 116, and the signal terminal 115 to the signal input / output terminal 20 shown in FIG. Is transmitted to
  • the RF transmission signal output from the signal input / output terminal 21 illustrated in FIG. 1 is transmitted to the antenna element 210 via the RF transmission line 117 and output from the antenna element 210.
  • the RF reception signal received by the antenna element 210 is transmitted to the signal input / output terminal 21 shown in FIG. 1 via the RF transmission line 117, and further transmitted to the signal input / output terminal 20 shown in FIG. Is transmitted to the transceiver 600 via the RF transmission line 116 and the RF / power / control connector 170.
  • the microwave module 200 is provided with a plurality of microwave devices 100.
  • the microwave device 100 includes a low noise amplifier (Low Noise Amplifier: LNA), a circulator (CirculatoR: CIR), a phase shifter (Phase Shifter: PS), and the like, in addition to the above-described HPA and DA.
  • the RF transmission signal output from transceiver 600 is transmitted to antenna element 210 via PS, DA, HPA, and CIR.
  • the RF reception signal received by antenna element 210 is transmitted to transceiver 600 via CIR, LNA, and PS.
  • a switch may be used in the transmission / reception switching circuit on the antenna side instead of the CIR. In FIG. 4, the switch is described as "SW" (Switch). Further, the size of the microwave module 200 illustrated in FIG. 2 can be further reduced by using a switch instead of the CIR.
  • FIG. 5 is a view showing a modification of the microwave device shown in FIG.
  • FIG. 6 is a diagram showing a circulator having a shield structure according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a modification of the antenna shown in FIG.
  • the difference between the microwave device 100-1 shown in FIG. 5 and the microwave device 100 shown in FIG. 1 is that the microwave device 100-1 has a heat spreader 7A and a transistor that does not include a transistor instead of the IC 6 and the heat spreader 7.
  • the semiconductor device includes a low-cost semiconductor substrate 310 as one semiconductor substrate and a high-cost semiconductor substrate 320 as a second semiconductor substrate including a transistor.
  • the high-cost semiconductor substrate 320 is provided with a transistor made of, for example, gallium nitride
  • the low-cost semiconductor substrate 310 is provided with a matching circuit made of, for example, gallium arsenide.
  • the transistor provided on the high-cost semiconductor substrate 320 is a field-effect transistor or a bipolar transistor with high power durability and high voltage, and generates a large amount of heat because it amplifies and outputs a high-output microwave signal.
  • a transistor may be mounted on the low-cost semiconductor substrate 310, a transistor having a lower voltage than that of the high-cost semiconductor substrate 320 is used.
  • the low-cost semiconductor substrate 310 as the first semiconductor substrate and the high-cost semiconductor substrate 320 as the second semiconductor substrate are circuit devices having circuits.
  • the low-cost semiconductor substrate 310 is provided on the multilayer resin substrate 1 and is electrically connected to the multilayer resin substrate 1.
  • the high-cost semiconductor substrate 320 is provided on the opposite side of the low-cost semiconductor substrate 310 facing the multilayer resin substrate 1 and is electrically connected to the low-cost semiconductor substrate 310.
  • the signal pad 310a of the low-cost semiconductor substrate 310 and the signal pad 320a of the high-cost semiconductor substrate 320 are arranged so as to face each other, and the signal pad 310a and the signal pad 320a are connected to the fine bonding material 330.
  • the surface patterns 313 and 314 of the low-cost semiconductor substrate 310 are electrically connected to the signal pads 320a via the signal pads 310a and the fine bonding material 330.
  • the high-cost semiconductor substrate 320 is thermally connected to the heat spreader 7A.
  • the heat spreader 7A is thermally connected to the conductive film 2 similarly to the heat spreader 7 shown in FIG. That is, the heat spreader 7A is provided on the opposite side of the high-cost semiconductor substrate 320 from the side facing the low-cost semiconductor substrate 310, and is in contact with the high-cost semiconductor substrate 320.
  • the input / output terminals 311 provided on the low-cost semiconductor substrate 310 are electrically connected to the surface pattern 313 via through holes 315 formed in the low-cost semiconductor substrate 310.
  • the input / output terminals 311 are electrically connected to the pads 18 on the multilayer resin substrate 1 via the fine bonding material 30.
  • the input / output terminals 312 provided on the low-cost semiconductor substrate 310 are electrically connected to the surface patterns 314 via the through holes 316 formed on the low-cost semiconductor substrate 310.
  • the input / output terminals 312 are electrically connected to the pads 17 on the multilayer resin substrate 1 via the fine bonding material 30.
  • the circulator 800 shown in FIG. 6 includes a mold package 860, a permanent magnet 850 provided on the mold package 860, and a resin substrate 880 provided below the mold package 860. That is, the permanent magnet 850 is provided on one end surface side of the mold package 860. The resin substrate 880 is provided on the other end side of the mold package 860.
  • the mold package 860 includes a plurality of signal terminals 811, a plurality of ground terminals 812 surrounding the plurality of signal terminals 811, and a die pad 810.
  • the mold package 860 includes a ferrite substrate 820 having a signal pattern 821 and provided on the die pad 810, and a wire 830 for electrically connecting the signal terminal 811 and the signal pattern 821.
  • the mold package 860 includes a mold resin 840 covering the die pad 810, the ferrite substrate 820, and the wires 830, and a conductor film 861 covering the surface of the mold resin 840.
  • the mold resin 840 is provided so that the plurality of signal terminals 811, the plurality of ground terminals 812, and the die pad 810 are exposed.
  • the resin substrate 880 includes a ground via 881, a signal via 882, and a signal pattern 883.
  • the signal terminal 811, the signal via 882, and the signal pattern 883 are electrically connected.
  • the ground terminal 812 and the ground via 881 are electrically connected.
  • the antenna 500-1 shown in FIG. 7 is different from the antenna 500 shown in FIG. 2 in that the antenna 500-1 includes a microwave module 200-1 instead of the microwave module 200.
  • the microwave module 200-1 includes the antenna substrate 450 and the multilayer resin substrate 110.
  • the antenna substrate 450 and the multilayer resin substrate 110 are arranged in the order of the antenna substrate 450 and the multilayer resin substrate 110 in the Y-axis direction.
  • the antenna substrate 450 is disposed on the other end surface 110b side of the multilayer resin substrate 110 in the Y-axis direction.
  • a plurality of microwave devices 100-1, a control IC 120, and a chip component 130 are provided on one end surface 110a in the Y-axis direction of the multilayer resin substrate 110.
  • a plurality of circulators 800 and a control IC 410 are surface-mounted on the other end surface 110b in the Y-axis direction of the multilayer resin substrate 110.
  • the shield structure is formed by electrically connecting the ground of the circulator 800 and the ground surface on the other end surface 110b of the multilayer resin substrate 110.
  • a plurality of antenna elements 210 are provided on the surface of the antenna substrate 450 opposite to the side on which the multilayer resin substrate 110 is arranged.
  • the plurality of antenna elements 210 provided on the antenna substrate 450 are electrically connected to the RF connector 470.
  • the multilayer resin substrate 110 and the antenna substrate 450 are fixed together by screws or the like.
  • the multilayer resin substrate 110 is provided with an RF transmission line 122 as an inner layer signal line and an RF transmission line 123 as an inner layer signal line.
  • the circulator 800 is connected to the RF connector 470 via the RF transmission line 122.
  • the circulator 800 is connected to the microwave device 100-1 via the RF transmission line 123.
  • the microwave device 100-1 is connected to the RF / power / control connector 170 similarly to the microwave device 100. Since the multilayer resin substrate 110 and the control substrate 160 are connected to each other by the RF / power / control connector 170, the plurality of antenna elements 210 provided on the antenna substrate 450 connect the microwave device 100-1 to the microwave device 100-1. Through this, it is connected to the transceiver 600.
  • the antennas 500 and 500-1 shown in FIGS. 2 and 7 since the heat sink 140, the microwave modules 200 and 200-1 and the antenna element 210 are arranged in layers, the antennas 500 and 500-1 are arranged in layers. The thickness of the antenna 500-1 in the Y-axis direction can be reduced, and a small and lightweight antenna can be realized.
  • the ICs 4 and 6, the heat spreaders 5 and 7, the conductive film 2 and the heat sink 140 are thermally connected, and the cross-sectional area of the heat spreader 5 in the X-axis direction is the X-axis of the IC 4.
  • the cross-sectional area of the heat spreader 7 in the X-axis direction is equal to or larger than the cross-sectional area of the IC 6 in the X-axis direction.
  • the cross-sectional area of the back-side penetrating electrode provided on the back-side cap portion is smaller than the surface area of the back-side electrode provided on the semiconductor chip. The radiation cannot be effectively emitted to the outside of the semiconductor package.
  • the microwave device 100 since the heat spreaders 5 and 7 having a large cross-sectional area are used, the thermal resistance between the ICs 4 and 6 and the heat sink 140 is reduced, and the ICs 4 and 6 are reduced. Can effectively be transmitted to the heat sink 140.
  • a plurality of microwave devices 100 are caused by a height variation of the microwave device 100, a warp of the multilayer resin substrate 110, a height variation of a bonding layer between the microwave device 100 and the multilayer resin substrate 110, and the like. Even when the respective conductive films 2 have different heights in the Y-axis direction, the thermal connection between the conductive film 2 and the heat dissipation sheet 150 can be ensured by the heat dissipation sheet 150 having elasticity.
  • the microwave device 100 can be manufactured at low cost. Further, in the embodiment, since the periphery of the ICs 4 and 6 and the heat spreaders 5 and 7 are solidified with a resin material, even when the microwave device 100 is fixed by being pressed against the heat dissipation sheet 150, the conductive film 2 is formed. Since the pressure applied to the ICs 4 and 6 via the IC 4 and 6 is also dispersed in the mold resin 50, the mechanical stress applied to the terminals provided on the ICs 4 and 6 is reduced.
  • the microwave device 100 is fixed so as to be pressed against the heat radiating sheet 150 in order to reduce the thermal resistance between the ICs 4 and 6 and the heat radiating sheet 150, the connection between the multilayer resin substrate 1 and the ICs 4 and 6 is prevented. A decrease in mechanical connection strength is suppressed, and a decrease in the life of the microwave device 100 is suppressed.
  • the periphery of the mold resin 50 and the heat spreaders 5 and 7 is covered with the conductive film 2, and the ground via hole 11 of the multilayer resin substrate 1 is electrically connected to the conductive film 2. Furthermore, signal terminals 84 and 85 having a coaxial structure are connected to signal terminals 115 and 121 having a coaxial structure formed on the multilayer resin substrate 110, respectively. Therefore, the electromagnetic waves radiated from the ICs 4 and 6 are confined inside the microwave device 100. Therefore, it is not necessary to cover the entire multilayer resin substrate 110 with a shield, and the structure can be simplified.
  • the size of the microwave device 100 is about 10 [mm] square.
  • the resonance frequency decreases to near the X band (10 GHz band).
  • the mold dimension is 10 [mm] ⁇ 10 [mm] ⁇ 1 [mm]
  • the entire outer periphery of the mold resin is covered with a conductor, and when the dielectric constant of the mold material is 3.5, the minimum value is obtained.
  • the next resonance frequency is 11.33 [GHz].
  • the resonance frequency can be set sufficiently higher than the operating frequency, and the RF signal inside the microwave device 100 can be set. Oscillation due to coupling can be suppressed.
  • the loss between the microwave device 100 and the antenna element 210 needs to be minimized, but a certain loss is allowed between the microwave device 100 and the transceiver 600.
  • the RF line is routed inside the multilayer resin substrate 110 and wired, and the RF / power / control connector 170 is assembled at a position where the influence on the heat radiation performance is small. Can be penetrated.
  • This makes it possible to design the heat radiating plate 140 with emphasis on the heat radiating performance of the heat spreaders 5 and 7.
  • the number of RF connectors penetrating through the heat radiating plate 140 can be reduced by distributing and synthesizing the transmission path of the RF signal in the multilayer resin substrate 110.
  • a power source requiring a large current capacity such as a drain power source of the microwave device 100 is transmitted from the control board 160 or the external power board to the multilayer resin board 110 via the leaf spring 190 and the bus bar 142. can do.
  • a power supply having a small current capacity which can be handled by the current capacity of one terminal of a general board-to-board connection connector, uses a single terminal provided in the RF / power / control connector 170 to control the control board. 160 to the multilayer resin substrate 110. Therefore, in the RF / power / control connector 170, power can be transmitted to the multilayer resin substrate 110 with a small number of terminals.
  • a power supply multi-core connector is used in addition to the RF / power / control connector 170, and one power supply multi-core connector and the RF / power / control connector 170 are connected between the multilayer resin substrate 110 and the control substrate 160, respectively. And electrical connection between the two substrates is also possible.
  • a plurality of pin connection type power supply multi-core connectors for passing large power are used, a plurality of pins and a housing space for casing the insulator and a connector case are required, and the multilayer resin substrate 110 The mounting space for the power supply multi-core connector between the control board 160 and the control board 160 is increased.
  • the multi-core power supply connector for supplying a large amount of power can be configured by a surface-mount type terminal connection using the bus bar 142 and the leaf spring 190.
  • the mounting space for the components for supplying large power can be reduced.
  • bus bar 142 and the leaf spring 190 can be surface-mounted using a solder reflow process, the assembling and mounting operations of the power supply multi-core connector can be reduced.
  • the connector portion including the bus bar 142 and the leaf spring 190 and the RF / power / control connector 170 need to be connected to a connector portion provided in the plane of the multilayer resin substrate 110 and the control substrate 160.
  • the RF / power / control connector 170 and the power supply multi-core connector are mounted between the multilayer resin substrate 110 and the control board 160, each of the RF / power / control connector 170 and the power supply multi-core connector Cannot be connected unless it is accurately aligned with a connector provided in the plane of the multilayer resin board 110 and the plane of the control board 160.
  • the RF / power / control connector 170 is located at a predetermined position between the multilayer resin substrate 110 and the control substrate 160.
  • the positioning accuracy of the connector portion including the bus bar 142 and the leaf spring 190 with respect to the in-plane of the multilayer resin substrate 110 and the in-plane of the control substrate 160 is different from that of the power supply multi-core connector in the in-plane of the multilayer resin substrate 110.
  • the accuracy of the alignment with respect to the connector provided in the plane between the control circuit board 160 and the control board 160 is extremely low, so that the electrical connection between the multilayer resin board 110 and the control board 160 can be easily performed.
  • the antennas 500 and 500-1 according to the embodiment it is possible to reduce the height and size of the antenna.
  • a CIR or a switch is used for the transmission / reception switching circuit on the antenna side.
  • the antenna element 210 is provided on the back surface of the multilayer resin substrate 110 provided with the CIR or the switch, the antenna The body-shaped microwave module 200 can be realized, and the number of parts can be reduced.
  • the microwave device 100-1 shown in FIG. 5 since only the transistors are mounted on the high-cost semiconductor substrate 320, the chip area is minimized. Further, since the matching circuit is formed on the low-cost semiconductor substrate 310, the cost of the microwave device 100-1 is reduced as compared with the IC 6 of FIG. 1 in which the transistor matching circuit is monolithically manufactured on the high-cost semiconductor substrate 320. it can.
  • the circulator 800 is used outside the microwave device 100-1.
  • the circulator 800 is provided on the other end surface 110b of the multilayer resin substrate 110 in the Y-axis direction, that is, on the surface of the multilayer resin substrate 110 on the antenna element 210 side.
  • a change in the characteristics of the IC 4 due to a change in the load impedance on the antenna surface can be reduced.
  • antenna 500-1 shown in FIG. 7 since circulator 800 has a shield structure by being mounted on multilayer resin substrate 110, a shield structure is provided between multilayer resin substrate 110 and antenna substrate 450. There is no need to provide it separately. Also, by mounting the circulator 800 and the control IC 410 on the same surface as the microwave device 100-1, the antenna substrate 450 can be omitted as in the antenna 500.
  • the heat radiating plate 140 is disposed on the side opposite to the antenna element 210 side of the multilayer resin substrate 110, the heat radiating plate is disposed between the multilayer resin substrate 110 and the antenna substrate 450. As compared with the case where the 140 is arranged, restrictions on arranging the RF wiring and the RF / power / control connector 170 are reduced, and the cooling performance is improved.
  • 1,110 ⁇ multilayer resin substrate 1a ⁇ first plate surface, 1b ⁇ second plate surface, 2 ⁇ conductive film, 2a inner surface, 3 ⁇ space, 4,6 IC, 4a, 5a, 6a, 7a, 110a, 141a ⁇ one end surface , 4b, 5b, 6b, 7b, 110b, 141b ⁇ other end surface, 5, 7, 7A ⁇ heat spreader, 8, 130 ⁇ chip component, 11 ⁇ ground via hole, 12, 13 ⁇ signal via hole, 14, 19 ⁇ ground pattern, 15 ⁇ signal line, 16, 17, 18 pad, 20, 21 signal input / output terminal, 30, 330 fine bonding material, 41, 42, 61, 62, 311, 312 input / output terminal, 50 molding resin, 84, 85, 115, 121 signal terminal, 100, 100-1 ⁇ microwave device, 116, 117, 122, 123 ⁇ RF transmission line, 118 ⁇ inner layer 119 119 inner conductor, 120 control IC, 140 heat sink, 141 support, 142 bus bar, 143 s

Abstract

An antenna (500) according to the present invention is provided with: a control substrate (160) which is provided on a first surface side of a supporting material (141); a multilayer resin substrate for antennas, which is provided on a second surface side of the supporting material (141); a plurality of microwave devices (100) which are provided on a first surface of a first multilayer resin substrate and are electrically connected to the multilayer resin substrate for antennas, said first surface being on the supporting material side; and a plurality of antenna elements (210) which are provided on a second surface side of the first multilayer resin substrate and are electrically connected to the multilayer resin substrate for antennas, said second surface being on the reverse side of the first surface of the first multilayer resin substrate. This antenna (500) is provided with: a bus bar (142) which is provided on a surface of the supporting material (141), said surface being on the multilayer resin substrate for antennas side; and a conductive leaf spring (190) which is provided between the multilayer resin substrate for antennas and the bus bar (142) so as to be in contact with the multilayer resin substrate for antennas and the bus bar (142), while being electrically connected to the multilayer resin substrate for antennas and the bus bar (142).

Description

空中線Aerial
 本発明は、マイクロ波デバイスを有する空中線に関する。 The present invention relates to an antenna having a microwave device.
 マイクロ波を用いた通信に用いられる送受信用の空中線として、特許文献1には、複数のアンテナ素子を有するマイクロストリップ線路および電子デバイス等の構成部がプリント板に搭載されたものが開示されている。 As an antenna for transmission and reception used for communication using microwaves, Patent Literature 1 discloses a printed board on which components such as a microstrip line having a plurality of antenna elements and an electronic device are mounted. .
 一方、空中線の構造として、アンテナ素子を搭載した基板を同一平面上に配置した層と、マイクロ波デバイスを搭載した基板を同一平面上に配置した層と、電源回路を実装した層とを積層させ、層間を電気的に接続することで低背化を実現する空中線が検討されている。このような層間の電気的接続には、一般的に多極の基板対基板接続コネクタが用いられる。 On the other hand, as an antenna structure, a layer on which a substrate on which an antenna element is mounted is arranged on the same plane, a layer on which a substrate on which a microwave device is mounted are arranged on the same plane, and a layer on which a power supply circuit is mounted are laminated. Antennas that realize a low profile by electrically connecting the layers are being studied. Generally, a multi-pole board-to-board connector is used for the electrical connection between the layers.
特開平6-112719号公報JP-A-6-11219
 しかしながら、増幅器を駆動するためのドレイン電流などの大きな電流容量が必要な電源の伝送については、一般的な多極の基板対基板接続コネクタに設けられている1つの端子の電流容量では対応できない。このため、複数の端子を用いることが必要となり、基板対基板接続コネクタが大型化してしまう。基板対基板接続コネクタの大型化は、基板対基板接続コネクタの大型化に起因した基板における基板対基板接続コネクタの実装自由度の低減、および基板対基板接続コネクタの大型化に起因した基板における部品実装面積の低減といった問題につながり、空中線が大型化するという問題が生じる。 However, transmission of a power supply requiring a large current capacity such as a drain current for driving an amplifier cannot be handled by the current capacity of one terminal provided in a general multi-pole board-to-board connector. For this reason, it is necessary to use a plurality of terminals, and the board-to-board connector becomes large. Increasing the size of the board-to-board connector reduces the degree of freedom in mounting the board-to-board connector on the board due to the enlargement of the board-to-board connector, and the parts on the board resulting from the enlargement of the board-to-board connector. This leads to a problem such as a reduction in the mounting area, and a problem that the antenna becomes large.
 本発明は、上記に鑑みてなされたものであって、低背化及び小型化が可能な空中線を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an antenna that can be reduced in height and reduced in size.
 上述した課題を解決し、目的を達成するために、本発明の空中線は、支持材と、支持材の第1の面側に設けられる制御基板と、支持材における第1の面と反対側の面である支持材の第2の面側に設けられ、コネクタを介して制御基板と電気的に接続される第1の多層樹脂基板と、第1の多層樹脂基板の支持材側の第1の面に設けられ、第1の多層樹脂基板と電気的に接続される複数のマイクロ波デバイスと、第1の多層樹脂基板における第1の面の反対側の面である第1の多層樹脂基板の第2の面側に設けられ、第1の多層樹脂基板と電気的に接続される複数のアンテナ素子と、を備える。また、空中線は、支持材における第1の多層樹脂基板側の面上に設けられるブスバーと、第1の多層樹脂基板とブスバーとに接触して第1の多層樹脂基板とブスバーとの間に設けられて、第1の多層樹脂基板とブスバーとに電気的に接続される導電性の板ばねと、を備える。 In order to solve the above-described problems and achieve the object, an antenna according to the present invention includes a support member, a control board provided on a first surface side of the support member, and a control substrate provided on a side opposite to the first surface of the support member. A first multilayer resin substrate provided on the second surface side of the support member, which is a surface, and electrically connected to the control board via a connector; and a first multilayer resin substrate on the support member side of the first multilayer resin substrate. A plurality of microwave devices provided on the first surface and electrically connected to the first multilayer resin substrate; and a plurality of microwave devices provided on the first multilayer resin substrate, the first multilayer resin substrate being a surface opposite to the first surface. A plurality of antenna elements provided on the second surface side and electrically connected to the first multilayer resin substrate. The antenna is provided between the first multilayer resin substrate and the bus bar in contact with the first multilayer resin substrate and the bus bar, the bus bar being provided on the surface of the support member on the first multilayer resin substrate side. A conductive leaf spring electrically connected to the first multilayer resin substrate and the bus bar.
 本発明によれば、低背化及び小型化が可能な空中線が得られる、という効果を奏する。 According to the present invention, it is possible to obtain an antenna that can be reduced in height and reduced in size.
本発明の実施の形態に係るマイクロ波デバイスの断面図Sectional view of a microwave device according to an embodiment of the present invention. 図1に示すマイクロ波デバイスを備えた空中線の断面図Sectional view of an antenna with the microwave device shown in FIG. 図2に示す支持材の全体図Overall view of the support shown in FIG. 図1に示すマイクロ波デバイスの機能ブロックを示す図The figure which shows the functional block of the microwave device shown in FIG. 図1に示すマイクロ波デバイスの変形例を示す図The figure which shows the modification of the microwave device shown in FIG. 本発明の実施の形態に係るシールド構造を有するサーキュレータを示す図The figure which shows the circulator which has the shield structure based on Embodiment of this invention. 図2に示す空中線の変形例を示す図The figure which shows the modification of the antenna shown in FIG.
 以下に、本発明の実施の形態に係る空中線を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an antenna according to an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited by the embodiment.
実施の形態.
 図1は本発明の実施の形態に係るマイクロ波デバイスの断面図である。図2は図1に示すマイクロ波デバイスを備えた空中線の断面図である。図3は図2に示す支持材の全体図である。図4は図1に示すマイクロ波デバイスの機能ブロックを示す図である。
Embodiment.
FIG. 1 is a sectional view of a microwave device according to an embodiment of the present invention. FIG. 2 is a sectional view of an antenna having the microwave device shown in FIG. FIG. 3 is an overall view of the support member shown in FIG. FIG. 4 is a diagram showing functional blocks of the microwave device shown in FIG.
 図1に示すようにマイクロ波デバイス100は、デバイス用の多層樹脂基板である多層樹脂基板1と、高発熱性のRF(Radio Frequency)デバイスであるIC(Integrated Circuit)4と、IC4に熱的に接続される導電性のヒートスプレッダ5とを備える。 As shown in FIG. 1, the microwave device 100 includes a multilayer resin substrate 1 that is a multilayer resin substrate for the device, an IC (Integrated Circuit) 4 that is a high heat-generating RF (Radio Frequency) device, and a thermally integrated IC 4. And a conductive heat spreader 5 that is connected to the heat spreader 5.
 またマイクロ波デバイス100は、高発熱性のRFデバイスであるIC6と、IC6に熱的に接続される導電性のヒートスプレッダ7と、多層樹脂基板1に表面実装されるチップ部品8とを備える。 The microwave device 100 also includes an IC 6 that is an RF device having high heat generation, a conductive heat spreader 7 that is thermally connected to the IC 6, and a chip component 8 that is surface-mounted on the multilayer resin substrate 1.
 IC4及びIC6は回路装置である高周波回路の一例であり、本実施の形態ではIC4は、ドライバ増幅器(Driver Amprifier:DA)である。IC6は、高出力増幅器(High Power Amplifier:HPA)である。チップ部品8は、RF重畳波を抑圧するバイパスキャパシタである。 IC4 and IC6 are examples of a high-frequency circuit which is a circuit device. In the present embodiment, IC4 is a driver amplifier (Driver Amplifier). The IC 6 is a high power amplifier (High Power Amplifier): HPA. The chip component 8 is a bypass capacitor that suppresses an RF superimposed wave.
 多層樹脂基板1は、多層樹脂基板1のY軸方向の一端側の端面である第1の板面1aと、多層樹脂基板1のY軸方向の他端側の端面である第2の板面1bとを有する。図1では、右手系のXYZ座標において、IC4及びIC6の配列方向がX軸方向とされ、多層樹脂基板1の第1の板面1a及び第2の板面1bの配列方向がY軸方向とされ、X軸方向及びY軸方向の双方に直交する方向がZ軸方向とされる。 The multilayer resin substrate 1 has a first plate surface 1a which is an end surface on one end side in the Y-axis direction of the multilayer resin substrate 1 and a second plate surface which is an end surface on the other end side in the Y-axis direction of the multilayer resin substrate 1. 1b. In FIG. 1, in the right-handed XYZ coordinates, the arrangement direction of IC4 and IC6 is the X-axis direction, and the arrangement direction of first plate surface 1a and second plate surface 1b of multilayer resin substrate 1 is the Y-axis direction. The direction orthogonal to both the X-axis direction and the Y-axis direction is defined as the Z-axis direction.
 多層樹脂基板1には、多層樹脂基板1の外周寄りに形成された複数のグランドビアホール11と、信号ビアホール12と、信号ビアホール13とが形成される。多層樹脂基板1の第2の板面1b側には、複数のグランドビアホール11のそれぞれのY軸方向における一端と電気的に接続されるグランドパターン14と、チップ部品8と電気的に接続される信号線路15と、信号ビアホール12のY軸方向の一端と電気的に接続されるパッド16と、信号ビアホール13のY軸方向の一端と電気的に接続されるパッド17と、複数のパッド18とが設けられている。 (4) In the multilayer resin substrate 1, a plurality of ground via holes 11, signal via holes 12, and signal via holes 13 formed near the outer periphery of the multilayer resin substrate 1 are formed. On the second plate surface 1 b side of the multilayer resin substrate 1, a ground pattern 14 electrically connected to one end of each of the plurality of ground via holes 11 in the Y-axis direction and a chip component 8 are electrically connected. A signal line 15, a pad 16 electrically connected to one end of the signal via hole 12 in the Y-axis direction, a pad 17 electrically connected to one end of the signal via hole 13 in the Y-axis direction, and a plurality of pads 18. Is provided.
 多層樹脂基板1の第1の板面1a側には、グランドビアホール11のY軸方向の他端と電気的に接続されるグランドパターン19と、信号ビアホール12のY軸方向の他端と電気的に接続される信号入出力端子20と、信号ビアホール13のY軸方向の他端と電気的に接続される信号入出力端子21とが設けられている。 On the first plate surface 1a side of the multilayer resin substrate 1, a ground pattern 19 electrically connected to the other end of the ground via hole 11 in the Y-axis direction, and a ground pattern electrically connected to the other end of the signal via hole 12 in the Y-axis direction. And a signal input / output terminal 21 electrically connected to the other end of the signal via hole 13 in the Y-axis direction.
 複数のグランドビアホール11は、多層樹脂基板1の外周面寄りに、信号線路15と、パッド16,17,18と、信号入出力端子20,21等の信号パッドと、信号ビアホール12,13とを取り囲むように形成される。 The plurality of ground via holes 11 include a signal line 15, pads 16, 17, 18, signal pads such as signal input / output terminals 20, 21, and signal via holes 12, 13 near the outer peripheral surface of the multilayer resin substrate 1. It is formed so as to surround it.
 信号線路15の種類としては、入力RF線路、ゲートバイアス供給線路、出力RF線路及びドレインバイアス供給線路である。 The types of the signal line 15 include an input RF line, a gate bias supply line, an output RF line, and a drain bias supply line.
 IC4のY軸方向の一端面4a側には2つの入出力端子41,42が設けられている。入出力端子41は、微細接合材30を介してパッド16と電気的に接続される。入出力端子42は、微細接合材30を介してパッド18と電気的に接続される。微細接合材30としては、導電性の銅ピラー又はソルダーボールを例示できる。IC4のY軸方向の他端面4b側にはヒートスプレッダ5が設けられている。すなわち、ヒートスプレッダ5は、IC4における多層樹脂基板1側を向く面と反対側の面に設けられている。IC4はヒートスプレッダ5のY軸方向の一端面5aと熱的に接続される。 Two input / output terminals 41 and 42 are provided on one end surface 4a side of the IC 4 in the Y-axis direction. The input / output terminal 41 is electrically connected to the pad 16 via the fine bonding material 30. The input / output terminal 42 is electrically connected to the pad 18 via the fine bonding material 30. Examples of the fine bonding material 30 include a conductive copper pillar or a solder ball. A heat spreader 5 is provided on the other end surface 4b side of the IC 4 in the Y-axis direction. That is, the heat spreader 5 is provided on the surface of the IC 4 opposite to the surface facing the multilayer resin substrate 1 side. The IC 4 is thermally connected to one end surface 5a of the heat spreader 5 in the Y-axis direction.
 IC6のY軸方向の一端面6a側には2つの入出力端子61,62が設けられている。入出力端子61は、微細接合材30を介してパッド18と電気的に接続される。入出力端子62は、微細接合材30を介してパッド17と電気的に接続される。IC6のY軸方向の他端面6b側にはヒートスプレッダ7が設けられている。IC6はヒートスプレッダ7のY軸方向の一端面7aと熱的に接続される。 Two input / output terminals 61 and 62 are provided on one end surface 6a side of the IC 6 in the Y-axis direction. The input / output terminal 61 is electrically connected to the pad 18 via the fine bonding material 30. The input / output terminal 62 is electrically connected to the pad 17 via the fine bonding material 30. A heat spreader 7 is provided on the other end surface 6b side of the IC 6 in the Y-axis direction. The IC 6 is thermally connected to one end surface 7a of the heat spreader 7 in the Y-axis direction.
 ヒートスプレッダ5,7と接触するように設けられたIC4,6は、多層樹脂基板1に接合され、IC4,6が接合された多層樹脂基板1上にはモールド樹脂50が成形されている。モールド樹脂50は、IC4,6と、ヒートスプレッダ5,7と、チップ部品8と、信号線路15と、パッド16,17,18とを内部に含むように成形されている。 The ICs 4 and 6 provided to be in contact with the heat spreaders 5 and 7 are joined to the multilayer resin substrate 1, and a mold resin 50 is formed on the multilayer resin substrate 1 to which the ICs 4 and 6 are joined. The mold resin 50 is molded so as to include the ICs 4 and 6, the heat spreaders 5 and 7, the chip component 8, the signal line 15, and the pads 16, 17 and 18 therein.
 IC4の外周面は、IC4のY軸方向の他端面4bを除き、モールド樹脂50で覆われている。IC6の外周面は、IC6のY軸方向の他端面6bを除き、モールド樹脂50で覆われている。ヒートスプレッダ5の外周面は、ヒートスプレッダ5のY軸方向の一端面5aとヒートスプレッダ5のY軸方向の他端面5bとを除き、モールド樹脂50で覆われている。 The outer peripheral surface of the IC 4 is covered with the mold resin 50 except for the other end surface 4b of the IC 4 in the Y-axis direction. The outer peripheral surface of the IC 6 is covered with the mold resin 50 except for the other end surface 6b of the IC 6 in the Y-axis direction. The outer peripheral surface of the heat spreader 5 is covered with the mold resin 50 except for one end surface 5a of the heat spreader 5 in the Y-axis direction and the other end surface 5b of the heat spreader 5 in the Y-axis direction.
 ヒートスプレッダ7の外周面は、ヒートスプレッダ7のY軸方向の一端面7aとヒートスプレッダ7のY軸方向の他端面7bとを除き、モールド樹脂50で覆われている。ヒートスプレッダ5のY軸方向の他端面5bは、モールド樹脂50で覆われることなく露出している。ヒートスプレッダ7のY軸方向の他端面7bは、モールド樹脂50で覆われることなく露出している。 The outer peripheral surface of the heat spreader 7 is covered with the mold resin 50 except for one end surface 7a of the heat spreader 7 in the Y-axis direction and the other end surface 7b of the heat spreader 7 in the Y-axis direction. The other end surface 5b in the Y-axis direction of the heat spreader 5 is exposed without being covered with the mold resin 50. The other end surface 7b of the heat spreader 7 in the Y-axis direction is exposed without being covered with the mold resin 50.
 モールド樹脂50の成形方法としては、導電膜2のY軸方向の内側面2a側の端面に段差が生じないように、IC4,6及びヒートスプレッダ5,7の周囲に樹脂材をモールド成形する方法でもよい。また、IC4,6及びヒートスプレッダ5,7の周囲に樹脂材をモールド成形した後に内側面2a側のモールド樹脂50の端面とヒートスプレッダ5,7の上端面とが概ね同一平面になるように研磨され、又は内側面2a側のモールド樹脂50の端面とヒートスプレッダ5,7の上端面とが平坦になるように研磨されることで、ヒートスプレッダ5,7の他端面5b,7bを露出させてもよい。 As a molding method of the molding resin 50, a method of molding a resin material around the ICs 4, 6 and the heat spreaders 5, 7 so that a step does not occur on the end surface of the conductive film 2 on the inner side surface 2a side in the Y-axis direction. Good. Further, after the resin material is molded around the ICs 4 and 6 and the heat spreaders 5 and 7, the end surfaces of the mold resin 50 on the inner side surface 2 a side and the upper end surfaces of the heat spreaders 5 and 7 are polished so as to be substantially flush with each other. Alternatively, the other end surfaces 5b, 7b of the heat spreaders 5, 7 may be exposed by polishing so that the end surfaces of the mold resin 50 on the inner surface 2a side and the upper end surfaces of the heat spreaders 5, 7 are flat.
 モールド樹脂50及びヒートスプレッダ5,7の表面には、導電膜2が形成されている。導電膜2は、無電解メッキ又は導電性接着剤等の導電性を有する被膜であり、メッキ被膜の材料としては、Ni(ニッケル)又は銀等を例示でき、導電性接着剤としては、銀粒子を含むエポキシ材料等を例示できる。なお、導電膜2として無電解メッキを用いる場合は、モールド樹脂50の内側面2a側の端面とヒートスプレッダ5,7の上端面とが隣接する境界領域の上面に、導電性接着剤又は薄膜導電金属シートを接触させて、モールド樹脂50の内側面2a側の端面とヒートスプレッダ5,7の上端面との境界領域の電気的接続及び電磁遮蔽(シールド)機能を強化しても良い。符号3で示される領域は、多層樹脂基板1と導電膜2との間に形成され、モールド樹脂50が充填された空間である。 The conductive film 2 is formed on the surfaces of the mold resin 50 and the heat spreaders 5 and 7. The conductive film 2 is a conductive film such as electroless plating or a conductive adhesive. Examples of the material of the plating film include Ni (nickel) and silver, and the conductive adhesive includes silver particles. And the like. When electroless plating is used as the conductive film 2, a conductive adhesive or a thin film conductive metal is provided on the upper surface of the boundary region where the end surface on the inner surface 2 a side of the mold resin 50 and the upper end surfaces of the heat spreaders 5 and 7 are adjacent to each other. The sheet may be contacted to enhance the electrical connection and electromagnetic shielding (shielding) functions in the boundary region between the end surface on the inner surface 2a side of the mold resin 50 and the upper end surfaces of the heat spreaders 5, 7. A region indicated by reference numeral 3 is a space formed between the multilayer resin substrate 1 and the conductive film 2 and filled with the mold resin 50.
 多層樹脂基板1に設けられた導電膜2の内側面2aは、ヒートスプレッダ5のY軸方向の他端面5bと熱的に接続され、ヒートスプレッダ7のY軸方向の他端面7bと熱的に接続される。また多層樹脂基板1に設けられた導電膜2のY軸方向の端部は、グランドパターン14と電気的に接続される。 The inner surface 2a of the conductive film 2 provided on the multilayer resin substrate 1 is thermally connected to the other end surface 5b of the heat spreader 5 in the Y-axis direction, and is thermally connected to the other end surface 7b of the heat spreader 7 in the Y-axis direction. You. An end of the conductive film 2 provided on the multilayer resin substrate 1 in the Y-axis direction is electrically connected to the ground pattern 14.
 このように構成されたマイクロ波デバイス100では、信号入出力端子20にRF信号が入力される。信号入出力端子20に入力された送信信号であるRF信号は、信号ビアホール12、パッド16、微細接合材30及び入出力端子41を介してIC4に入力される。IC4に入力されたRF信号は、入出力端子42、微細接合材30及びパッド18を介して、IC6側に伝送される。入出力端子61を介してIC6に入力されたRF信号は、入出力端子62、微細接合材30、パッド17及び信号ビアホール13を介して、信号入出力端子21に伝送される。 で は In the microwave device 100 configured as described above, an RF signal is input to the signal input / output terminal 20. An RF signal, which is a transmission signal input to the signal input / output terminal 20, is input to the IC 4 via the signal via hole 12, the pad 16, the fine bonding material 30, and the input / output terminal 41. The RF signal input to the IC 4 is transmitted to the IC 6 via the input / output terminal 42, the fine bonding material 30, and the pad 18. The RF signal input to the IC 6 via the input / output terminal 61 is transmitted to the signal input / output terminal 21 via the input / output terminal 62, the fine bonding material 30, the pad 17, and the signal via hole 13.
 パッド16、信号ビアホール12及び信号入出力端子20は、同軸構造の信号端子部84を構成する。パッド17、信号ビアホール13及び信号入出力端子21は、同軸構造の信号端子部85を構成する。 The pad 16, the signal via hole 12, and the signal input / output terminal 20 constitute a signal terminal portion 84 having a coaxial structure. The pad 17, the signal via hole 13, and the signal input / output terminal 21 constitute a signal terminal 85 having a coaxial structure.
 図2に示すように空中線500は、マイクロ波モジュール200と、弾性を有する放熱シート150と、放熱板140と、制御基板160とを備える。放熱シート150の弾性率は、マイクロ波デバイス100の導電膜2の弾性率よりも小さい。マイクロ波モジュール200、放熱シート150、放熱板140及び制御基板160は、Y軸方向にマイクロ波モジュール200、放熱シート150、放熱板140、制御基板160の順で配列されている。 空 As shown in FIG. 2, the antenna 500 includes the microwave module 200, a heat radiating sheet 150 having elasticity, a heat radiating plate 140, and a control board 160. The elastic modulus of the heat radiation sheet 150 is smaller than the elastic modulus of the conductive film 2 of the microwave device 100. The microwave module 200, the heat radiating sheet 150, the heat radiating plate 140, and the control board 160 are arranged in the order of the microwave module 200, the heat radiating sheet 150, the heat radiating plate 140, and the control board 160 in the Y-axis direction.
 マイクロ波モジュール200は、モジュール用の多層樹脂基板である多層樹脂基板110と、複数のマイクロ波デバイス100と、制御用IC120と、チップ部品130と、板ばね190と、複数のアンテナ素子210とを備える。モジュール用の多層樹脂基板110を、第1の多層樹脂基板とすると、上述したデバイス用の多層樹脂基板1は、第2の多層樹脂基板といえる。 The microwave module 200 includes a multilayer resin substrate 110, which is a multilayer resin substrate for the module, a plurality of microwave devices 100, a control IC 120, a chip component 130, a leaf spring 190, and a plurality of antenna elements 210. Prepare. Assuming that the multilayer resin substrate 110 for a module is a first multilayer resin substrate, the multilayer resin substrate 1 for a device described above can be said to be a second multilayer resin substrate.
 複数のマイクロ波デバイス100と制御用IC120とチップ部品130と板ばね190とは、多層樹脂基板110のY軸方向の一端面110aに設けられている。制御用IC120、板ばね190及びチップ部品130は、多層樹脂基板110に表面実装されている。チップ部品130としては、抵抗又はコンデンサを例示できる。複数のアンテナ素子210は、多層樹脂基板110のY軸方向の他端面110bに設けられている。一端面110aは、多層樹脂基板110の第1の面である。他端面110bは、多層樹脂基板110の第2の面であり、多層樹脂基板110における第1の面の反対側の面である。 The plurality of microwave devices 100, control ICs 120, chip components 130, and leaf springs 190 are provided on one end surface 110 a of the multilayer resin substrate 110 in the Y-axis direction. The control IC 120, the leaf spring 190, and the chip component 130 are surface-mounted on the multilayer resin substrate 110. As the chip component 130, a resistor or a capacitor can be exemplified. The plurality of antenna elements 210 are provided on the other end surface 110b of the multilayer resin substrate 110 in the Y-axis direction. One end face 110 a is the first face of multilayer resin substrate 110. The other end surface 110b is a second surface of the multilayer resin substrate 110, and is a surface opposite to the first surface of the multilayer resin substrate 110.
 図2に示すように、制御基板160の多層樹脂基板110側の面上には、平板状を呈する支持材141が配置されている。すなわち、制御基板160は、支持材141のY軸方向の一端面141a側に設けられている。また、多層樹脂基板110は、支持材141のY軸方向の他端面141b側に設けられている。一端面141aは、支持材141の第1の面である。他端面141bは、支持材における第1の面と反対側の面である支持材141の第2の面である。 {Circle around (2)} As shown in FIG. 2, on the surface of the control substrate 160 on the side of the multilayer resin substrate 110, a support member 141 having a flat plate shape is disposed. That is, the control board 160 is provided on the one end surface 141a side of the support member 141 in the Y-axis direction. Further, the multilayer resin substrate 110 is provided on the other end surface 141b side of the support member 141 in the Y-axis direction. The one end surface 141a is a first surface of the support 141. The other end surface 141b is a second surface of the support 141 that is a surface of the support opposite to the first surface.
 支持材141は、例えば導電性の金属により構成される。支持材141は、例えば金属の旋削加工、鋳造で形成した鋳造品に一部切削加工を加える加工、板金加工で形成した板部材を拡散接合技術により接着する拡散接合加工、いわゆる3Dプリンターである付加製造(Additive Manufacturing:AM)を用いた金属積層造形加工、および板金加工に一部切削加工を加える加工などによって加工形成される。 The support 141 is made of, for example, a conductive metal. The support member 141 is, for example, a metal turning process, a process of partially cutting a cast product formed by casting, a diffusion bonding process of bonding a plate member formed by sheet metal processing by a diffusion bonding technique, that is, a so-called 3D printer. It is formed by a metal additive manufacturing process using manufacturing (Additive Manufacturing: AM), a process of partially cutting a sheet metal process, or the like.
 図2および図3に示すように、支持材141には、複数のブスバー142および複数のスリット143が設けられている。それぞれのスリット143は、支持材141を厚さ方向に貫通している。それぞれのスリット143には、それぞれの放熱板140が嵌め込まれている。また、RF/電源/制御コネクタ170は、スリット143を介して多層樹脂基板110に電気的に接続される。RF/電源/制御コネクタ170には、一般的な基板対基板接続コネクタを用いることができる。マイクロ波モジュール200は、支持材141の制御基板160が配置されている側と反対側に敷詰められる。図3においては、支持材141の面内方向におけるマイクロ波モジュール200の配置位置を破線で示している。 お よ び As shown in FIGS. 2 and 3, the support member 141 is provided with a plurality of bus bars 142 and a plurality of slits 143. Each slit 143 passes through the supporting member 141 in the thickness direction. Each heat sink 140 is fitted into each slit 143. Further, the RF / power / control connector 170 is electrically connected to the multilayer resin substrate 110 via the slit 143. As the RF / power / control connector 170, a general board-to-board connection connector can be used. The microwave module 200 is laid on the support member 141 on the side opposite to the side on which the control board 160 is arranged. In FIG. 3, the arrangement position of the microwave module 200 in the in-plane direction of the support member 141 is indicated by a broken line.
 支持材141における多層樹脂基板110側の面上には、制御基板160に電気的に接続されるブスバー142が設けられている。支持材141とブスバー142とは、電気的に絶縁されている。例えば、支持材141に外導体をなす貫通孔1191を形成し、円筒形状絶縁体1192を挿入する。円筒形状絶縁体1192の軸中心に内導体119を設ける。これにより、多層樹脂基板110とブスバー142とは、貫通孔1191の内面と内導体119とを介して電気的に接続されている。支持材141の上には絶縁膜1193を形成し、絶縁膜1193の上にブスバー142を載置する。内導体119は制御基板160上のバイアス電源端子に電気的に接続される。 A bus bar 142 that is electrically connected to the control board 160 is provided on the surface of the support member 141 on the multilayer resin substrate 110 side. The support member 141 and the bus bar 142 are electrically insulated. For example, a through hole 1191 serving as an outer conductor is formed in the support member 141, and a cylindrical insulator 1192 is inserted. An inner conductor 119 is provided at the center of the axis of the cylindrical insulator 1192. As a result, the multilayer resin substrate 110 and the bus bar 142 are electrically connected to each other through the inner surface of the through hole 1191 and the inner conductor 119. An insulating film 1193 is formed over the supporting member 141, and a bus bar 142 is mounted on the insulating film 1193. The inner conductor 119 is electrically connected to a bias power supply terminal on the control board 160.
 なお、別の態様として、制御基板160の外部に図示しない外部電源基板を設けて、ブスバー142を当該外部電源基板上のバイアス電源端子に電気的に接続しても良い。この場合、外部電源基板のバイアス電源端子とブスバー142とは、制御基板160の外部に設けた耐ノイズ性の電源供給用配線またはコネクタ等を介して接続される。またこのとき、制御基板160に孔を設けて、当該孔に対して絶縁された状態で、耐ノイズ性の電源供給用配線を孔に通して、ブスバー142と外部電源基板との間を電源供給用配線またはコネクタ等により電気的に接続しても良い。このようにすることで、制御基板160とブスバー142とを電気的に絶縁することができる。これにより、ブスバー142に大電力が給電されても、大電力の給電に起因したノイズの影響を制御基板160が受けることを抑制し、制御基板160の耐電力性を緩和することができるので、制御基板160をより安価に製造することができる。この際、耐ノイズ性の電源供給用配線としては、例えばツイストペアケーブルを用いると良い。ツイストペアケーブルは、撚り対線とも呼ばれる。 As another mode, an external power supply board (not shown) may be provided outside the control board 160, and the bus bar 142 may be electrically connected to the bias power supply terminal on the external power supply board. In this case, the bias power supply terminal of the external power supply board and the bus bar 142 are connected via a noise-resistant power supply wiring or a connector provided outside the control board 160. At this time, a hole is provided in the control board 160, and a noise-resistant power supply wiring is passed through the hole while being insulated from the hole to supply power between the bus bar 142 and the external power supply board. It may be electrically connected by a wiring or a connector. By doing so, the control board 160 and the bus bar 142 can be electrically insulated. Accordingly, even if a large power is supplied to the bus bar 142, the control board 160 can be prevented from being affected by noise due to the large power supply, and the power durability of the control board 160 can be reduced. The control board 160 can be manufactured at lower cost. At this time, for example, a twisted pair cable may be used as the noise-resistant power supply wiring. Twisted pair cables are also called twisted pair wires.
 多層樹脂基板110とブスバー142との間には、多層樹脂基板110とブスバー142とに電気的に接続される導電性の板ばね190が設けられている。ブスバー142は、Y軸方向の一端面が、貫通孔1191の端部、円筒形状絶縁体1192、絶縁膜1193および内導体119に接しており、Y軸方向の他端面が板ばね190の一方端に接している。また、板ばね190の他方端は、多層樹脂基板110上のパッド1901に接続される。すなわち、板ばね190は、断面Z形状を有する。板ばね190は、断面Z形状における一端側に設けられた平坦面がブスバー142の多層樹脂基板110側の面に面接触するとともに、断面Z形状における他端側に設けられた平坦面がパッド1901の支持材141側の面に面接触している。これにより、板ばね190は、多層樹脂基板110とブスバー142とに電気的に接続されている。 導電 A conductive leaf spring 190 electrically connected to the multilayer resin substrate 110 and the bus bar 142 is provided between the multilayer resin substrate 110 and the bus bar 142. The bus bar 142 has one end face in the Y-axis direction in contact with the end of the through hole 1191, the cylindrical insulator 1192, the insulating film 1193, and the inner conductor 119, and the other end face in the Y-axis direction is one end of the leaf spring 190. Is in contact with The other end of the leaf spring 190 is connected to a pad 1901 on the multilayer resin substrate 110. That is, the leaf spring 190 has a Z-shaped cross section. The leaf spring 190 has a flat surface provided on one end side of the Z-shaped cross section in surface contact with a surface of the bus bar 142 on the multilayer resin substrate 110 side, and a flat surface provided on the other end side of the Z-shaped cross section has a pad 1901. Is in surface contact with the surface on the side of the support member 141. Thus, the leaf spring 190 is electrically connected to the multilayer resin substrate 110 and the bus bar 142.
 また、マイクロ波モジュール200と支持材141とは、マイクロ波モジュール200のマイクロ波デバイス100が表面実装されている側と、支持材141のブスバー142が設けられている側とが向かい合う状態で、ねじ等の締結部1190により固定されている。例えば図2の例において、締結部1190は、ボルトおよびナット、または支持材141に形成された雌ねじおよび多層樹脂基板110に形成された雌ねじ、により構成される。また、多層樹脂基板110と支持材141との間にボルトが貫通するスペーサ1195を挟んで、多層樹脂基板110を支持材141に締結しても良い。 Further, the microwave module 200 and the supporting member 141 are screwed in a state where the side of the microwave module 200 on which the microwave device 100 is surface-mounted and the side of the supporting member 141 on which the bus bar 142 is provided face each other. And the like. For example, in the example of FIG. 2, the fastening portion 1190 includes a bolt and a nut, or a female screw formed on the support member 141 and a female screw formed on the multilayer resin substrate 110. Alternatively, the multilayer resin substrate 110 may be fastened to the support member 141 with a spacer 1195 through which a bolt passes between the multilayer resin substrate 110 and the support member 141 interposed therebetween.
 放熱シート150は、Y軸方向の一端面が放熱板140に接しており、Y軸方向の他端面が複数のマイクロ波デバイス100の導電膜2に接している。すなわち、放熱板140は、放熱シート150におけるマイクロ波デバイス100を向く側と反対側に設けられている。放熱シート150は、高い弾力性を有すると共に高い熱伝導性を有するシートである。放熱シート150の材料としては、カーボン、銀等の高熱伝導材が埋め込まれたシリコンゴム等を例示できる。 The heat dissipation sheet 150 has one end face in the Y-axis direction in contact with the heat sink 140 and the other end face in the Y-axis direction in contact with the conductive films 2 of the plurality of microwave devices 100. That is, the heat radiating plate 140 is provided on the side of the heat radiating sheet 150 opposite to the side facing the microwave device 100. The heat radiation sheet 150 is a sheet having high elasticity and high thermal conductivity. As a material of the heat radiation sheet 150, silicon rubber or the like in which a high heat conductive material such as carbon or silver is embedded can be exemplified.
 複数の放熱板140は、支持材141に形成される複数のスリット143にそれぞれ配置されている。各放熱板140は、内部に冷媒1800を流す内部流路1801が形成されて、コールドプレート、すなわち冷却板を構成する。各放熱板140の内部流路1801の入口と出口とは、それぞれ支持材141の内部に設けられた冷媒流路1401に対し、ラバーシール等により水密を有して接続される。冷媒流路1401は、図示しないポンプに接続されて、ポンプから送られる冷媒1800を各放熱板140の内部に循環させる機能を有する。なお、冷媒流路1401の代わりに、冷媒流路1401と同じ機能を実現する配管を支持材141の内部に配置しても良い。 The plurality of heat sinks 140 are arranged in the plurality of slits 143 formed in the support member 141, respectively. Each heat dissipation plate 140 has an internal flow path 1801 through which the coolant 1800 flows, and forms a cold plate, that is, a cooling plate. The inlet and outlet of the internal flow channel 1801 of each heat sink 140 are connected to the refrigerant flow channel 1401 provided inside the support member 141 with a rubber seal or the like in a watertight manner. The refrigerant flow path 1401 is connected to a pump (not shown), and has a function of circulating the refrigerant 1800 sent from the pump inside each heat sink 140. Instead of the coolant channel 1401, a pipe that realizes the same function as the coolant channel 1401 may be disposed inside the support member 141.
 放熱板140および冷媒流路1401は、それぞれ導電性および熱良導性を有する金属により構成される。放熱板140および冷媒流路1401は、例えば金属の旋削加工または鋳造で形成した鋳造品に一部切削加工を加える加工で流路溝を形成した後に、金属板を溶接することにより形成される。また、放熱板140および冷媒流路1401は、板金加工で形成した板部材を拡散接合技術により固着する拡散接合加工によって、内部流路1801を一体化形成しても良い。また、放熱板140および冷媒流路1401は、3Dプリンターを用いた金属積層造形加工により、内部流路1801を一体化形成しても良い。 The heat sink 140 and the coolant channel 1401 are made of a metal having conductivity and good thermal conductivity, respectively. The radiator plate 140 and the coolant channel 1401 are formed by, for example, forming a channel groove by performing a process of partially cutting a casting formed by turning or casting a metal, and then welding the metal plate. In addition, the heat dissipation plate 140 and the coolant passage 1401 may be integrally formed with the internal passage 1801 by diffusion bonding in which a plate member formed by sheet metal processing is fixed by diffusion bonding. In addition, the heat dissipation plate 140 and the coolant passage 1401 may be integrally formed with the internal passage 1801 by metal additive manufacturing using a 3D printer.
 なお、冷媒流路1401または配管は、3Dプリンターを用いた金属積層造形加工により、放熱板140と一体的に形成されても良い。 The coolant flow path 1401 or the pipe may be formed integrally with the heat sink 140 by metal additive manufacturing using a 3D printer.
 勿論、放熱板140に必要な熱伝導性能が得られるのであれば、グラファイト板、アルミ合金板、銅タングステン板等の熱良導体からなる他の放熱板を放熱板140の代わりに用いても良い。この場合は、制御基板160に穴を設け、穴に他の冷却板を挿入して、他の冷却板の、Y軸方向におけるマイクロ波デバイス100側と反対側の裏面を、密着または熱的に接続するようにすると良い。 Of course, another heatsink made of a good heat conductor such as a graphite plate, an aluminum alloy plate, or a copper tungsten plate may be used in place of the heatsink 140 as long as the heat transfer performance required for the heatsink 140 is obtained. In this case, a hole is provided in the control board 160, another cooling plate is inserted into the hole, and the back surface of the other cooling plate on the side opposite to the microwave device 100 side in the Y-axis direction is in close contact or thermally. It is better to connect.
 多層樹脂基板110及び制御基板160は、放熱シート150及び放熱板140を間に挟んだ状態で、RF信号と電源と制御信号とを伝送するコネクタであるRF/電源/制御コネクタ170により相互に接続されている。 The multilayer resin board 110 and the control board 160 are interconnected by an RF / power / control connector 170 which is a connector for transmitting an RF signal, a power supply and a control signal, with the heat dissipation sheet 150 and the heat dissipation plate 140 interposed therebetween. Have been.
 多層樹脂基板110は、Y軸方向に圧力が加えられながら放熱板140に対してねじ等の締結部1190による締結力で固定されているため、マイクロ波デバイス100の導電膜2が弾性を有する放熱シート150に押し当てられた状態となる。これにより、マイクロ波デバイス100の導電膜2と放熱シート150と放熱板140とが熱的に接続される。 Since the multilayer resin substrate 110 is fixed to the heat radiating plate 140 by the fastening force of the fastening portion 1190 such as a screw while applying pressure in the Y-axis direction, the conductive film 2 of the microwave device 100 has elastic heat radiation. The sheet is pressed against the sheet 150. Thereby, the conductive film 2 of the microwave device 100, the heat radiation sheet 150, and the heat radiation plate 140 are thermally connected.
 多層樹脂基板110には、同軸構造の信号端子部115,121と、内層信号線路であるRF伝送線路116と、内層信号線路であるRF伝送線路117とが設けられている。RF/電源/制御コネクタ170とマイクロ波デバイス100とは、RF伝送線路116及び信号端子部115を介して相互に接続される。アンテナ素子210とマイクロ波デバイス100とは、RF伝送線路117及び信号端子部121を介して相互に接続される。 (4) The multilayer resin substrate 110 is provided with signal terminals 115 and 121 having a coaxial structure, an RF transmission line 116 as an inner layer signal line, and an RF transmission line 117 as an inner layer signal line. The RF / power / control connector 170 and the microwave device 100 are connected to each other via the RF transmission line 116 and the signal terminal 115. The antenna element 210 and the microwave device 100 are mutually connected via the RF transmission line 117 and the signal terminal unit 121.
 また、多層樹脂基板110には、パッド1901に接続された内層配線118が形成される。内層配線118は、マイクロ波モジュール200のバイアス端子に接続される。 {Circle around (4)} On the multilayer resin substrate 110, an inner layer wiring 118 connected to the pad 1901 is formed. The inner layer wiring 118 is connected to a bias terminal of the microwave module 200.
 制御基板160では、マイクロ波モジュール200に供給される電源と制御信号とが生成され、電源及び制御信号は、RF/電源/制御コネクタ170を介して多層樹脂基板110上のマイクロ波デバイス100に入力される。すなわち、制御基板160は、電源回路が実装された電源基板としての機能を有する。 The control board 160 generates a power supply and a control signal to be supplied to the microwave module 200, and the power supply and the control signal are input to the microwave device 100 on the multilayer resin substrate 110 via the RF / power / control connector 170. Is done. That is, the control board 160 has a function as a power supply board on which a power supply circuit is mounted.
 一方、制御基板160で生成された電源のうち大電流を要する電源は、後述するブスバー142と板ばね190と多層樹脂基板110に設けられた内層配線118を介して多層樹脂基板110上のマイクロ波デバイス100に入力される。 On the other hand, a power source that requires a large current among the power sources generated by the control board 160 is connected to the microwave on the multilayer resin substrate 110 via a bus bar 142, a leaf spring 190, and an inner layer wiring 118 provided on the multilayer resin substrate 110. Input to the device 100.
 ブスバー142は、2本のグランド用ブスバーと、2本のグランド用ブスバーの間に設けた直流(Direct Current:DC)信号用ブスバーとが並置されてなる、3本で一組となるブスバーを用いても良い。ブスバー142により、マイクロ波モジュール200内の増幅器のたとえば電界効果トランジスタ(Field Effect Transistor:FET)に、ドレインバイアス電流が供給される。 The bus bar 142 includes three bus bars, each having two ground bus bars and a direct current (DC) signal bus bar provided between the two ground bus bars. May be. The bus bar 142 supplies a drain bias current to, for example, a field-effect transistor (FET) of the amplifier in the microwave module 200.
 マイクロ波モジュール200のRF信号である送信入力信号及び受信出力信号は、RF/電源/制御コネクタ170および制御基板160を介して、アンテナ素子210と送受信機600との間で伝送され、又はアンテナ素子210と分配合成回路700との間で伝送される。送受信機600と分配合成回路700の接続順は任意である。なお、ここでは、送受信機600が制御基板160と別個に設けられているが、送受信機600は制御基板160と一体化されて構成されてもよい。 The transmission input signal and the reception output signal which are the RF signals of the microwave module 200 are transmitted between the antenna element 210 and the transceiver 600 via the RF / power / control connector 170 and the control board 160, or The signal is transmitted between 210 and the distribution / synthesis circuit 700. The connection order of the transceiver 600 and the distribution / combination circuit 700 is arbitrary. Although the transceiver 600 is provided separately from the control board 160 here, the transceiver 600 may be integrated with the control board 160.
 送受信機600から出力されたRF送信信号は、制御基板160と、RF/電源/制御コネクタ170と、RF伝送線路116と、信号端子部115とを介して、図1に示す信号入出力端子20に伝送される。図1に示す信号入出力端子21から出力されたRF送信信号は、RF伝送線路117を介してアンテナ素子210へ伝送され、アンテナ素子210から出力される。 The RF transmission signal output from the transceiver 600 is transmitted via the control board 160, the RF / power / control connector 170, the RF transmission line 116, and the signal terminal 115 to the signal input / output terminal 20 shown in FIG. Is transmitted to The RF transmission signal output from the signal input / output terminal 21 illustrated in FIG. 1 is transmitted to the antenna element 210 via the RF transmission line 117 and output from the antenna element 210.
 アンテナ素子210で受信されたRF受信信号は、RF伝送線路117を介して、図1に示す信号入出力端子21へ伝送され、さらに図1に示す信号入出力端子20と、信号端子部115と、RF伝送線路116と、RF/電源/制御コネクタ170とを介して、送受信機600に伝送される。 The RF reception signal received by the antenna element 210 is transmitted to the signal input / output terminal 21 shown in FIG. 1 via the RF transmission line 117, and further transmitted to the signal input / output terminal 20 shown in FIG. Is transmitted to the transceiver 600 via the RF transmission line 116 and the RF / power / control connector 170.
 図4に示すようにマイクロ波モジュール200には複数のマイクロ波デバイス100が設けられている。マイクロ波デバイス100は、前述したHPA及びDA以外にも、低雑音増幅器(Low Noise Amplifier:LNA)、サーキュレータ(CIrculatoR:CIR)及び移相器(Phase Shifter:PS)等を備える。送受信機600から出力されたRF送信信号は、PS、DA、HPA及びCIRを介して、アンテナ素子210に伝送される。アンテナ素子210で受信されたRF受信信号は、CIR、LNA及びPSを介して、送受信機600に伝送される。ここでアンテナ側の送受切替回路にはCIRの代わりにスイッチを用いてもよい。図4ではスイッチを「SW」(Switch)と表記している。また、図2に例示するマイクロ波モジュール200は、CIRの代わりにスイッチを用いることで、より小型化することができる。 マ イ ク ロ As shown in FIG. 4, the microwave module 200 is provided with a plurality of microwave devices 100. The microwave device 100 includes a low noise amplifier (Low Noise Amplifier: LNA), a circulator (CirculatoR: CIR), a phase shifter (Phase Shifter: PS), and the like, in addition to the above-described HPA and DA. The RF transmission signal output from transceiver 600 is transmitted to antenna element 210 via PS, DA, HPA, and CIR. The RF reception signal received by antenna element 210 is transmitted to transceiver 600 via CIR, LNA, and PS. Here, a switch may be used in the transmission / reception switching circuit on the antenna side instead of the CIR. In FIG. 4, the switch is described as "SW" (Switch). Further, the size of the microwave module 200 illustrated in FIG. 2 can be further reduced by using a switch instead of the CIR.
 図5は図1に示すマイクロ波デバイスの変形例を示す図である。図6は本発明の実施の形態に係るシールド構造を有するサーキュレータを示す図である。図7は図2に示す空中線の変形例を示す図である。 FIG. 5 is a view showing a modification of the microwave device shown in FIG. FIG. 6 is a diagram showing a circulator having a shield structure according to the embodiment of the present invention. FIG. 7 is a diagram showing a modification of the antenna shown in FIG.
 図5に示すマイクロ波デバイス100-1と図1に示すマイクロ波デバイス100との相違点は、マイクロ波デバイス100-1は、IC6及びヒートスプレッダ7の代わりに、ヒートスプレッダ7Aと、トランジスタを含まない第1の半導体基板である低コスト半導体基板310と、トランジスタを含む第2の半導体基板である高コスト半導体基板320とを備えることである。高コスト半導体基板320には、例えば窒化ガリウムを材料とするトランジスタが設けられ、低コスト半導体基板310には、例えばガリウム砒素を材料とする整合回路が設けられる。高コスト半導体基板320に設けられるトランジスタは、高耐電力及び高電圧の電界効果トランジスタ又はバイポーラトランジスタであり、高出力マイクロ波信号を増幅出力するため、発熱量が高い。低コスト半導体基板310には、トランジスタを実装しても良いが、高コスト半導体基板320よりも低電圧のトランジスタが使われるので、高コスト半導体基板320に比べて発熱量が低い。第1の半導体基板である低コスト半導体基板310および第2の半導体基板である高コスト半導体基板320は、回路を有する回路装置である。 The difference between the microwave device 100-1 shown in FIG. 5 and the microwave device 100 shown in FIG. 1 is that the microwave device 100-1 has a heat spreader 7A and a transistor that does not include a transistor instead of the IC 6 and the heat spreader 7. The semiconductor device includes a low-cost semiconductor substrate 310 as one semiconductor substrate and a high-cost semiconductor substrate 320 as a second semiconductor substrate including a transistor. The high-cost semiconductor substrate 320 is provided with a transistor made of, for example, gallium nitride, and the low-cost semiconductor substrate 310 is provided with a matching circuit made of, for example, gallium arsenide. The transistor provided on the high-cost semiconductor substrate 320 is a field-effect transistor or a bipolar transistor with high power durability and high voltage, and generates a large amount of heat because it amplifies and outputs a high-output microwave signal. Although a transistor may be mounted on the low-cost semiconductor substrate 310, a transistor having a lower voltage than that of the high-cost semiconductor substrate 320 is used. The low-cost semiconductor substrate 310 as the first semiconductor substrate and the high-cost semiconductor substrate 320 as the second semiconductor substrate are circuit devices having circuits.
 低コスト半導体基板310は、多層樹脂基板1に設けられて、多層樹脂基板1と電気的に接続される。高コスト半導体基板320は、低コスト半導体基板310における多層樹脂基板1を向く側とは反対側に設けられ、低コスト半導体基板310と電気的に接続される。 (4) The low-cost semiconductor substrate 310 is provided on the multilayer resin substrate 1 and is electrically connected to the multilayer resin substrate 1. The high-cost semiconductor substrate 320 is provided on the opposite side of the low-cost semiconductor substrate 310 facing the multilayer resin substrate 1 and is electrically connected to the low-cost semiconductor substrate 310.
 図5に示すように、低コスト半導体基板310の信号パッド310aと、高コスト半導体基板320の信号パッド320aとが互いに対向するように配置され、信号パッド310a及び信号パッド320aは、微細接合材330によりフリップチップ接合される。これにより、低コスト半導体基板310の表面パターン313及び表面パターン314は、信号パッド310a及び微細接合材330を介して、信号パッド320aと電気的に接続される。 As shown in FIG. 5, the signal pad 310a of the low-cost semiconductor substrate 310 and the signal pad 320a of the high-cost semiconductor substrate 320 are arranged so as to face each other, and the signal pad 310a and the signal pad 320a are connected to the fine bonding material 330. Are flip-chip bonded. Thus, the surface patterns 313 and 314 of the low-cost semiconductor substrate 310 are electrically connected to the signal pads 320a via the signal pads 310a and the fine bonding material 330.
 高コスト半導体基板320は、ヒートスプレッダ7Aと熱的に接続されている。ヒートスプレッダ7Aは、図1に示すヒートスプレッダ7と同様に、導電膜2と熱的に接続されている。すなわち、ヒートスプレッダ7Aは、高コスト半導体基板320における低コスト半導体基板310を向く側とは反対側に設けられて、高コスト半導体基板320に接している。 (4) The high-cost semiconductor substrate 320 is thermally connected to the heat spreader 7A. The heat spreader 7A is thermally connected to the conductive film 2 similarly to the heat spreader 7 shown in FIG. That is, the heat spreader 7A is provided on the opposite side of the high-cost semiconductor substrate 320 from the side facing the low-cost semiconductor substrate 310, and is in contact with the high-cost semiconductor substrate 320.
 低コスト半導体基板310に設けられた入出力端子311は、低コスト半導体基板310に形成されたスルーホール315を介して、表面パターン313と電気的に接続される。また入出力端子311は、微細接合材30を介して、多層樹脂基板1上のパッド18と電気的に接続される。 (4) The input / output terminals 311 provided on the low-cost semiconductor substrate 310 are electrically connected to the surface pattern 313 via through holes 315 formed in the low-cost semiconductor substrate 310. The input / output terminals 311 are electrically connected to the pads 18 on the multilayer resin substrate 1 via the fine bonding material 30.
 低コスト半導体基板310に設けられた入出力端子312は、低コスト半導体基板310に形成されたスルーホール316を介して表面パターン314と電気的に接続される。また入出力端子312は、微細接合材30を介して、多層樹脂基板1上のパッド17と電気的に接続される。 (4) The input / output terminals 312 provided on the low-cost semiconductor substrate 310 are electrically connected to the surface patterns 314 via the through holes 316 formed on the low-cost semiconductor substrate 310. The input / output terminals 312 are electrically connected to the pads 17 on the multilayer resin substrate 1 via the fine bonding material 30.
 図6に示されるサーキュレータ800は、モールドパッケージ860と、モールドパッケージ860上に設けられる永久磁石850と、モールドパッケージ860の下に設けられる樹脂基板880と、を備える。すなわち、永久磁石850は、モールドパッケージ860の一端面側に設けられる。また、樹脂基板880は、モールドパッケージ860の他端面側に設けられる。 The circulator 800 shown in FIG. 6 includes a mold package 860, a permanent magnet 850 provided on the mold package 860, and a resin substrate 880 provided below the mold package 860. That is, the permanent magnet 850 is provided on one end surface side of the mold package 860. The resin substrate 880 is provided on the other end side of the mold package 860.
 モールドパッケージ860は、複数の信号端子811と、複数の信号端子811を取り囲む複数のグランド端子812と、ダイパッド810と、を備える。また、モールドパッケージ860は、信号パターン821を有してダイパッド810上に設けられるフェライト基板820と、信号端子811と信号パターン821とを電気的に接続するワイヤ830と、を備える。また、モールドパッケージ860は、ダイパッド810とフェライト基板820とワイヤ830とを覆うモールド樹脂840と、モールド樹脂840の表面を覆う導体膜861と、を備える。モールド樹脂840は、複数の信号端子811、複数のグランド端子812及びダイパッド810が露出するように設けられる。 The mold package 860 includes a plurality of signal terminals 811, a plurality of ground terminals 812 surrounding the plurality of signal terminals 811, and a die pad 810. The mold package 860 includes a ferrite substrate 820 having a signal pattern 821 and provided on the die pad 810, and a wire 830 for electrically connecting the signal terminal 811 and the signal pattern 821. The mold package 860 includes a mold resin 840 covering the die pad 810, the ferrite substrate 820, and the wires 830, and a conductor film 861 covering the surface of the mold resin 840. The mold resin 840 is provided so that the plurality of signal terminals 811, the plurality of ground terminals 812, and the die pad 810 are exposed.
 樹脂基板880は、グランドビア881と、信号ビア882と、信号パターン883を備える。信号端子811と信号ビア882と信号パターン883とは、電気的に接続される。グランド端子812とグランドビア881とは、電気的に接続される。 The resin substrate 880 includes a ground via 881, a signal via 882, and a signal pattern 883. The signal terminal 811, the signal via 882, and the signal pattern 883 are electrically connected. The ground terminal 812 and the ground via 881 are electrically connected.
 図7に示される空中線500-1と図2に示される空中線500との相違点は、空中線500-1は、マイクロ波モジュール200の代わりにマイクロ波モジュール200-1を備えることである。 相違 The antenna 500-1 shown in FIG. 7 is different from the antenna 500 shown in FIG. 2 in that the antenna 500-1 includes a microwave module 200-1 instead of the microwave module 200.
 マイクロ波モジュール200-1は、アンテナ基板450と、多層樹脂基板110とを備える。アンテナ基板450及び多層樹脂基板110は、Y軸方向にアンテナ基板450、多層樹脂基板110の順で配列されている。アンテナ基板450は、多層樹脂基板110のY軸方向の他端面110b側に配置されている。 The microwave module 200-1 includes the antenna substrate 450 and the multilayer resin substrate 110. The antenna substrate 450 and the multilayer resin substrate 110 are arranged in the order of the antenna substrate 450 and the multilayer resin substrate 110 in the Y-axis direction. The antenna substrate 450 is disposed on the other end surface 110b side of the multilayer resin substrate 110 in the Y-axis direction.
 多層樹脂基板110のY軸方向の一端面110aには、複数のマイクロ波デバイス100-1と制御用IC120とチップ部品130とが設けられている。多層樹脂基板110のY軸方向の他端面110bには、複数のサーキュレータ800と、制御IC410とが表面実装されている。サーキュレータ800のグランドと、多層樹脂基板110の他端面110b上のグランド面とを電気的に接続することによりシールド構造を形成する。 複数 A plurality of microwave devices 100-1, a control IC 120, and a chip component 130 are provided on one end surface 110a in the Y-axis direction of the multilayer resin substrate 110. A plurality of circulators 800 and a control IC 410 are surface-mounted on the other end surface 110b in the Y-axis direction of the multilayer resin substrate 110. The shield structure is formed by electrically connecting the ground of the circulator 800 and the ground surface on the other end surface 110b of the multilayer resin substrate 110.
 アンテナ基板450における、多層樹脂基板110が配置されている側と反対側の面には、複数のアンテナ素子210が設けられている。アンテナ基板450に設けられた複数のアンテナ素子210はRFコネクタ470と電気的に接続される。多層樹脂基板110と、アンテナ基板450とは、ねじ等により共締め固定されている。 複数 A plurality of antenna elements 210 are provided on the surface of the antenna substrate 450 opposite to the side on which the multilayer resin substrate 110 is arranged. The plurality of antenna elements 210 provided on the antenna substrate 450 are electrically connected to the RF connector 470. The multilayer resin substrate 110 and the antenna substrate 450 are fixed together by screws or the like.
 多層樹脂基板110には、内層信号線路であるRF伝送線路122と、内層信号線路であるRF伝送線路123とが設けられている。サーキュレータ800は、RF伝送線路122を介してRFコネクタ470に接続される。またサーキュレータ800は、RF伝送線路123を介してマイクロ波デバイス100-1に接続される。マイクロ波デバイス100-1は、マイクロ波デバイス100と同様に、RF/電源/制御コネクタ170と相互に接続される。そして、多層樹脂基板110と制御基板160とは、RF/電源/制御コネクタ170により相互に接続されているため、アンテナ基板450に設けられた複数のアンテナ素子210は、マイクロ波デバイス100-1を介して、送受信機600と接続される。 The multilayer resin substrate 110 is provided with an RF transmission line 122 as an inner layer signal line and an RF transmission line 123 as an inner layer signal line. The circulator 800 is connected to the RF connector 470 via the RF transmission line 122. The circulator 800 is connected to the microwave device 100-1 via the RF transmission line 123. The microwave device 100-1 is connected to the RF / power / control connector 170 similarly to the microwave device 100. Since the multilayer resin substrate 110 and the control substrate 160 are connected to each other by the RF / power / control connector 170, the plurality of antenna elements 210 provided on the antenna substrate 450 connect the microwave device 100-1 to the microwave device 100-1. Through this, it is connected to the transceiver 600.
 以上に説明したように図2及び図7に示される空中線500,500-1では、放熱板140、マイクロ波モジュール200,200-1及びアンテナ素子210が層状に配列されているため、空中線500,500-1のY軸方向の厚みを低減でき、小型かつ軽量な空中線を実現できる。 As described above, in the antennas 500 and 500-1 shown in FIGS. 2 and 7, since the heat sink 140, the microwave modules 200 and 200-1 and the antenna element 210 are arranged in layers, the antennas 500 and 500-1 are arranged in layers. The thickness of the antenna 500-1 in the Y-axis direction can be reduced, and a small and lightweight antenna can be realized.
 また実施の形態に係るマイクロ波デバイス100では、IC4,6とヒートスプレッダ5,7と導電膜2と放熱板140とが熱的に接続され、ヒートスプレッダ5のX軸方向の断面積がIC4のX軸方向の断面積以上であり、ヒートスプレッダ7のX軸方向の断面積が、IC6のX軸方向の断面積以上である。特許文献1に開示される半導体パッケージでは、裏面側キャップ部に設けられた裏面側貫通電極の断面積が、半導体チップに設けられた裏面電極の表面積未満であるため、半導体チップで発生した熱を効果的に半導体パッケージの外部へ放射できない。これに対して実施の形態に係るマイクロ波デバイス100では、広い断面積のヒートスプレッダ5,7が用いられているため、IC4,6と放熱板140との間の熱抵抗が低減され、IC4,6で発生した熱を効果的に放熱板140へ伝えることができる。 In the microwave device 100 according to the embodiment, the ICs 4 and 6, the heat spreaders 5 and 7, the conductive film 2 and the heat sink 140 are thermally connected, and the cross-sectional area of the heat spreader 5 in the X-axis direction is the X-axis of the IC 4. The cross-sectional area of the heat spreader 7 in the X-axis direction is equal to or larger than the cross-sectional area of the IC 6 in the X-axis direction. In the semiconductor package disclosed in Patent Document 1, the cross-sectional area of the back-side penetrating electrode provided on the back-side cap portion is smaller than the surface area of the back-side electrode provided on the semiconductor chip. The radiation cannot be effectively emitted to the outside of the semiconductor package. On the other hand, in the microwave device 100 according to the embodiment, since the heat spreaders 5 and 7 having a large cross-sectional area are used, the thermal resistance between the ICs 4 and 6 and the heat sink 140 is reduced, and the ICs 4 and 6 are reduced. Can effectively be transmitted to the heat sink 140.
 またマイクロ波デバイス100では、マイクロ波デバイス100の高さばらつき、多層樹脂基板110の反り、マイクロ波デバイス100と多層樹脂基板110との接合層の高さばらつき等により、複数のマイクロ波デバイス100のそれぞれの導電膜2のY軸方向の高さが異なる場合でも、弾性を有する放熱シート150により、導電膜2と放熱シート150との熱的な接続を確保することができる。 Further, in the microwave device 100, a plurality of microwave devices 100 are caused by a height variation of the microwave device 100, a warp of the multilayer resin substrate 110, a height variation of a bonding layer between the microwave device 100 and the multilayer resin substrate 110, and the like. Even when the respective conductive films 2 have different heights in the Y-axis direction, the thermal connection between the conductive film 2 and the heat dissipation sheet 150 can be ensured by the heat dissipation sheet 150 having elasticity.
 またモールド樹脂50の成形方法は従来から採用されている工法であるため、マイクロ波デバイス100は安価に製造できる。また実施の形態では、IC4,6及びヒートスプレッダ5,7の周囲が樹脂材で固められているため、マイクロ波デバイス100が放熱シート150に押し付けられるようにして固定された場合でも、導電膜2を介してIC4,6に加えられる圧力がモールド樹脂50にも分散されるため、IC4,6に設けられた端子に加わる機械的なストレスが軽減される。従って、IC4,6と放熱シート150との間の熱抵抗を低下させるためにマイクロ波デバイス100が放熱シート150に押し付けられるようにして固定された場合でも、多層樹脂基板1とIC4,6との機械的な接続強度の低下が抑制され、マイクロ波デバイス100の寿命の低下が抑制される。 Also, since the molding method of the mold resin 50 is a conventionally adopted method, the microwave device 100 can be manufactured at low cost. Further, in the embodiment, since the periphery of the ICs 4 and 6 and the heat spreaders 5 and 7 are solidified with a resin material, even when the microwave device 100 is fixed by being pressed against the heat dissipation sheet 150, the conductive film 2 is formed. Since the pressure applied to the ICs 4 and 6 via the IC 4 and 6 is also dispersed in the mold resin 50, the mechanical stress applied to the terminals provided on the ICs 4 and 6 is reduced. Therefore, even when the microwave device 100 is fixed so as to be pressed against the heat radiating sheet 150 in order to reduce the thermal resistance between the ICs 4 and 6 and the heat radiating sheet 150, the connection between the multilayer resin substrate 1 and the ICs 4 and 6 is prevented. A decrease in mechanical connection strength is suppressed, and a decrease in the life of the microwave device 100 is suppressed.
 また実施の形態に係るマイクロ波デバイス100では、モールド樹脂50及びヒートスプレッダ5,7の周囲が導電膜2で覆われ、多層樹脂基板1のグランドビアホール11と導電膜2とが電気的に接続され、さらに同軸構造の信号端子部84,85が、多層樹脂基板110に形成された同軸構造の信号端子部115,121とそれぞれ接続されている。そのため、IC4,6から放射された電磁波がマイクロ波デバイス100の内部に閉じ込められる。従って、多層樹脂基板110の全体をシールドで覆う必要がなく、構造を簡素化できる。 In the microwave device 100 according to the embodiment, the periphery of the mold resin 50 and the heat spreaders 5 and 7 is covered with the conductive film 2, and the ground via hole 11 of the multilayer resin substrate 1 is electrically connected to the conductive film 2. Furthermore, signal terminals 84 and 85 having a coaxial structure are connected to signal terminals 115 and 121 having a coaxial structure formed on the multilayer resin substrate 110, respectively. Therefore, the electromagnetic waves radiated from the ICs 4 and 6 are confined inside the microwave device 100. Therefore, it is not necessary to cover the entire multilayer resin substrate 110 with a shield, and the structure can be simplified.
 また実施の形態のように、複数のIC4,6がマイクロ波デバイス100に格納される場合、マイクロ波デバイス100のサイズは10[mm]角程度になる。ここで、導電性材料で覆われるパッケージ内にヒートスプレッダ5,7が設けられていない場合、共振周波数はX帯(10GHz帯)近くまで低下する。具体例で示すと、モールド寸法を10[mm]×10[mm]×1[mm]とし、モールド樹脂の外周の全体を導体で覆い、モールド材の誘電率が3.5であるとき、最低次の共振周波数は11.33[GHz]である。実施の形態では、グランド電位の導電性のヒートスプレッダ5,7によりパッケージ内が短絡されるため、共振周波数を動作周波数よりも十分に高く設定することが可能となり、マイクロ波デバイス100内部でのRF信号結合による発振を抑制できる。 (4) When a plurality of ICs 4 and 6 are stored in the microwave device 100 as in the embodiment, the size of the microwave device 100 is about 10 [mm] square. Here, when the heat spreaders 5 and 7 are not provided in the package covered with the conductive material, the resonance frequency decreases to near the X band (10 GHz band). As a specific example, when the mold dimension is 10 [mm] × 10 [mm] × 1 [mm], the entire outer periphery of the mold resin is covered with a conductor, and when the dielectric constant of the mold material is 3.5, the minimum value is obtained. The next resonance frequency is 11.33 [GHz]. In the embodiment, since the inside of the package is short-circuited by the conductive heat spreaders 5 and 7 at the ground potential, the resonance frequency can be set sufficiently higher than the operating frequency, and the RF signal inside the microwave device 100 can be set. Oscillation due to coupling can be suppressed.
 またマイクロ波デバイス100とアンテナ素子210との間の損失は最小化する必要があるが、マイクロ波デバイス100と送受信機600との間では一定の損失が許容される。このため、空中線500の製造時においては、RF線路を多層樹脂基板110内に引き回して配線し、放熱性能への影響の小さい位置でRF/電源/制御コネクタ170をまとめた後に、放熱板140に貫通させることができる。これによりヒートスプレッダ5,7の放熱性能を重視した放熱板140の設計が可能となる。また空中線500の仕様によっては、多層樹脂基板110内でRF信号の伝送経路を分配及び合成することにより、放熱板140に貫通するRFコネクタ数を低減させることができる。 Also, the loss between the microwave device 100 and the antenna element 210 needs to be minimized, but a certain loss is allowed between the microwave device 100 and the transceiver 600. For this reason, at the time of manufacturing the antenna 500, the RF line is routed inside the multilayer resin substrate 110 and wired, and the RF / power / control connector 170 is assembled at a position where the influence on the heat radiation performance is small. Can be penetrated. This makes it possible to design the heat radiating plate 140 with emphasis on the heat radiating performance of the heat spreaders 5 and 7. Further, depending on the specifications of the antenna 500, the number of RF connectors penetrating through the heat radiating plate 140 can be reduced by distributing and synthesizing the transmission path of the RF signal in the multilayer resin substrate 110.
 実施の形態に係るマイクロ波デバイス100では、マイクロ波デバイス100のドレイン電源といった大きな電流容量を要する電源を、板ばね190及びブスバー142を介して制御基板160もしくは外部電源基板から多層樹脂基板110に伝送することができる。一方、一般的な基板対基板接続コネクタの1つの端子の電流容量で対応することができるような電流容量の小さい電源は、RF/電源/制御コネクタ170に備えた1つの端子を用いて制御基板160から多層樹脂基板110に伝送する。このため、RF/電源/制御コネクタ170においては少ない端子で多層樹脂基板110に電源を伝送することが可能である。 In the microwave device 100 according to the embodiment, a power source requiring a large current capacity such as a drain power source of the microwave device 100 is transmitted from the control board 160 or the external power board to the multilayer resin board 110 via the leaf spring 190 and the bus bar 142. can do. On the other hand, a power supply having a small current capacity, which can be handled by the current capacity of one terminal of a general board-to-board connection connector, uses a single terminal provided in the RF / power / control connector 170 to control the control board. 160 to the multilayer resin substrate 110. Therefore, in the RF / power / control connector 170, power can be transmitted to the multilayer resin substrate 110 with a small number of terminals.
 例えば、RF/電源/制御コネクタ170に加えて給電用多芯コネクタを使用し、1つの給電用多芯コネクタとRF/電源/制御コネクタ170とを、それぞれ多層樹脂基板110と制御基板160の間に実装し、両基板間を電気的に接続することも可能である。しかしながら、この場合、大電力を流すための複数のピン接続型の給電用多芯コネクタを用いると、複数のピンと絶縁体をケーシングするための収容空間とコネクタケースとが必要となり、多層樹脂基板110と制御基板160とにおける給電用多芯コネクタの実装スペースが大きくなる。 For example, a power supply multi-core connector is used in addition to the RF / power / control connector 170, and one power supply multi-core connector and the RF / power / control connector 170 are connected between the multilayer resin substrate 110 and the control substrate 160, respectively. And electrical connection between the two substrates is also possible. However, in this case, if a plurality of pin connection type power supply multi-core connectors for passing large power are used, a plurality of pins and a housing space for casing the insulator and a connector case are required, and the multilayer resin substrate 110 The mounting space for the power supply multi-core connector between the control board 160 and the control board 160 is increased.
 一方、しかしながら、実施の形態に係る空中線500では、大電力を流すための給電用多芯コネクタを、ブスバー142と板ばね190とを用いた表面実装型の端子間接続によって構成することができるので、大電力を流すための構成部の実装スペースをより小さくすることができる。 On the other hand, however, in the antenna 500 according to the embodiment, the multi-core power supply connector for supplying a large amount of power can be configured by a surface-mount type terminal connection using the bus bar 142 and the leaf spring 190. In addition, the mounting space for the components for supplying large power can be reduced.
 これにより、RF/電源/制御コネクタ170を小型化することが可能となる。そして、RF/電源/制御コネクタ170を小型化することにより、制御基板160と多層樹脂基板110とにおけるRF/電源/制御コネクタ170の実装自由度の低減の抑制、およびRF/電源/制御コネクタ170の大型化に起因した制御基板160と多層樹脂基板110とにおける部品実装面積の低減の抑制が可能である。これにより、制御基板160と多層樹脂基板110との大型化による空中線500の大型化を抑制して空中線500の小型化が可能となる。なお、RF/電源/制御コネクタ170に備える電源の伝送用の端子が複数となる場合であっても端子数を低減できる効果が得られる。マイクロ波デバイス100-1においても同様の効果が得られる。 This makes it possible to reduce the size of the RF / power / control connector 170. By reducing the size of the RF / power / control connector 170, the degree of freedom in mounting the RF / power / control connector 170 on the control board 160 and the multilayer resin substrate 110 is suppressed, and the RF / power / control connector 170 is suppressed. It is possible to suppress a reduction in the component mounting area in the control board 160 and the multilayer resin board 110 due to the increase in the size of the component. Accordingly, the antenna 500 is prevented from being enlarged due to the enlargement of the control board 160 and the multilayer resin substrate 110, and the antenna 500 can be downsized. The effect of reducing the number of terminals can be obtained even when a plurality of power transmission terminals are provided in the RF / power / control connector 170. Similar effects can be obtained in the microwave device 100-1.
 また、ブスバー142と板ばね190とは、半田リフロー工程を用いて、表面実装することができるので、給電用多芯コネクタの組立および実装作業が削減できる。 Also, since the bus bar 142 and the leaf spring 190 can be surface-mounted using a solder reflow process, the assembling and mounting operations of the power supply multi-core connector can be reduced.
 また、ブスバー142と板ばね190とからなるコネクタ部およびRF/電源/制御コネクタ170は、共に多層樹脂基板110と制御基板160との面内に設けられたコネクタ部に接続される必要がある。例えば、RF/電源/制御コネクタ170と給電用多芯コネクタとを多層樹脂基板110と制御基板160の間に実装する場合には、RF/電源/制御コネクタ170と給電用多芯コネクタとのそれぞれを、多層樹脂基板110の面内と制御基板160との面内において設けられたコネクタ部に対して正確に位置合わせしないと接続することができない。 コ ネ ク タ Further, the connector portion including the bus bar 142 and the leaf spring 190 and the RF / power / control connector 170 need to be connected to a connector portion provided in the plane of the multilayer resin substrate 110 and the control substrate 160. For example, when the RF / power / control connector 170 and the power supply multi-core connector are mounted between the multilayer resin substrate 110 and the control board 160, each of the RF / power / control connector 170 and the power supply multi-core connector Cannot be connected unless it is accurately aligned with a connector provided in the plane of the multilayer resin board 110 and the plane of the control board 160.
 一方、ブスバー142と板ばね190とからなるコネクタ部およびRF/電源/制御コネクタ170を用いる場合には、RF/電源/制御コネクタ170は、多層樹脂基板110と制御基板160との既定の位置に正確に位置合わせしなければならない。しかしながら、ブスバー142と板ばね190とからなるコネクタ部は、多層樹脂基板110の面内および制御基板160との面内に対する位置合わせの精度は、給電用多芯コネクタを多層樹脂基板110の面内と制御基板160との面内において設けられたコネクタ部に対して位置合わせする精度よりも極端に緩くなるため、多層樹脂基板110と制御基板160の電気的接続を容易に行うことができる。 On the other hand, when the connector portion including the bus bar 142 and the leaf spring 190 and the RF / power / control connector 170 are used, the RF / power / control connector 170 is located at a predetermined position between the multilayer resin substrate 110 and the control substrate 160. Must be precisely aligned. However, the positioning accuracy of the connector portion including the bus bar 142 and the leaf spring 190 with respect to the in-plane of the multilayer resin substrate 110 and the in-plane of the control substrate 160 is different from that of the power supply multi-core connector in the in-plane of the multilayer resin substrate 110. The accuracy of the alignment with respect to the connector provided in the plane between the control circuit board 160 and the control board 160 is extremely low, so that the electrical connection between the multilayer resin board 110 and the control board 160 can be easily performed.
 したがって、実施の形態に係る空中線500,500-1では、空中線の低背化及び小型化が実現可能である。 Therefore, with the antennas 500 and 500-1 according to the embodiment, it is possible to reduce the height and size of the antenna.
 また実施の形態では、アンテナ側の送受切替回路にCIR又はスイッチが用いられるが、これらのCIR又はスイッチが設けられている多層樹脂基板110の裏面にアンテナ素子210が設けられているため、アンテナ一体型のマイクロ波モジュール200を実現でき、部品点数が削減される。 In the embodiment, a CIR or a switch is used for the transmission / reception switching circuit on the antenna side. However, since the antenna element 210 is provided on the back surface of the multilayer resin substrate 110 provided with the CIR or the switch, the antenna The body-shaped microwave module 200 can be realized, and the number of parts can be reduced.
 また図5に示されるマイクロ波デバイス100-1では、高コスト半導体基板320にトランジスタのみ実装されているため、チップ面積が最小化される。また低コスト半導体基板310に整合回路が構成されているため、高コスト半導体基板320にトランジスタ整合回路がモノリシックに製造される図1のIC6と比較して、マイクロ波デバイス100-1のコストを低減できる。 In the microwave device 100-1 shown in FIG. 5, since only the transistors are mounted on the high-cost semiconductor substrate 320, the chip area is minimized. Further, since the matching circuit is formed on the low-cost semiconductor substrate 310, the cost of the microwave device 100-1 is reduced as compared with the IC 6 of FIG. 1 in which the transistor matching circuit is monolithically manufactured on the high-cost semiconductor substrate 320. it can.
 また図7に示される空中線500-1では、マイクロ波デバイス100-1の外部にサーキュレータ800が用いられている。サーキュレータ800は、多層樹脂基板110のY軸方向の他端面110b、すなわち多層樹脂基板110のアンテナ素子210側の面に設けられている。これによりアンテナ面での負荷インピーダンスの変動によるIC4の特性変化を低減できる。 In the antenna 500-1 shown in FIG. 7, the circulator 800 is used outside the microwave device 100-1. The circulator 800 is provided on the other end surface 110b of the multilayer resin substrate 110 in the Y-axis direction, that is, on the surface of the multilayer resin substrate 110 on the antenna element 210 side. Thus, a change in the characteristics of the IC 4 due to a change in the load impedance on the antenna surface can be reduced.
 また図7に示される空中線500-1において、サーキュレータ800は、多層樹脂基板110に実装されることでシールド構造を有しているため、多層樹脂基板110とアンテナ基板450との間にシールド構造を別に設ける必要が無くなる。またサーキュレータ800と制御IC410とをマイクロ波デバイス100-1と同一面に実装することにより、空中線500のようにアンテナ基板450を省略できる。 Further, in antenna 500-1 shown in FIG. 7, since circulator 800 has a shield structure by being mounted on multilayer resin substrate 110, a shield structure is provided between multilayer resin substrate 110 and antenna substrate 450. There is no need to provide it separately. Also, by mounting the circulator 800 and the control IC 410 on the same surface as the microwave device 100-1, the antenna substrate 450 can be omitted as in the antenna 500.
 また図7に示された空中線500-1では、多層樹脂基板110のアンテナ素子210側とは反対側に放熱板140が配置されるため、多層樹脂基板110とアンテナ基板450との間に放熱板140が配置される場合に比べて、RF配線及びRF/電源/制御コネクタ170を配置する際の制約が軽減され、冷却性能が向上する。 In the antenna 500-1 shown in FIG. 7, since the heat radiating plate 140 is disposed on the side opposite to the antenna element 210 side of the multilayer resin substrate 110, the heat radiating plate is disposed between the multilayer resin substrate 110 and the antenna substrate 450. As compared with the case where the 140 is arranged, restrictions on arranging the RF wiring and the RF / power / control connector 170 are reduced, and the cooling performance is improved.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are merely examples of the contents of the present invention, and can be combined with other known technologies, and can be combined with other known technologies without departing from the gist of the present invention. Parts can be omitted or changed.
 1,110 多層樹脂基板、1a 第1の板面、1b 第2の板面、2 導電膜、2a 内側面、3 空間、4,6 IC、4a,5a,6a,7a,110a,141a 一端面、4b,5b,6b,7b,110b,141b 他端面、5,7,7A ヒートスプレッダ、8,130 チップ部品、11 グランドビアホール、12,13 信号ビアホール、14,19 グランドパターン、15 信号線路、16,17,18 パッド、20,21 信号入出力端子、30,330 微細接合材、41,42,61,62,311,312 入出力端子、50 モールド樹脂、84,85,115,121 信号端子部、100,100-1 マイクロ波デバイス、116,117,122,123 RF伝送線路、118 内層配線、119 内導体、120 制御用IC、140 放熱板、141 支持材、142 ブスバー、143 スリット、150 放熱シート、160 制御基板、170 RF/電源/制御コネクタ、190 板ばね、200,200-1 マイクロ波モジュール、210 アンテナ素子、310 低コスト半導体基板、310a,320a 信号パッド、313,314 表面パターン、315,316 スルーホール、320 高コスト半導体基板、410 制御IC、450 アンテナ基板、470 RFコネクタ、500,500-1 空中線、600 送受信機、700 分配合成回路、800 サーキュレータ、810 ダイパッド、811 信号端子、812 グランド端子、820 フェライト基板、821 信号パターン、830 ワイヤ、840 モールド樹脂、850 永久磁石、860 モールドパッケージ、861 導体膜、880 樹脂基板、881 グランドビア、882 信号ビア、883 信号パターン。 1,110 {multilayer resin substrate, 1a} first plate surface, 1b {second plate surface, 2} conductive film, 2a inner surface, 3} space, 4,6 IC, 4a, 5a, 6a, 7a, 110a, 141a {one end surface , 4b, 5b, 6b, 7b, 110b, 141b {other end surface, 5, 7, 7A} heat spreader, 8, 130} chip component, 11 {ground via hole, 12, 13} signal via hole, 14, 19 {ground pattern, 15} signal line, 16, 17, 18 pad, 20, 21 signal input / output terminal, 30, 330 fine bonding material, 41, 42, 61, 62, 311, 312 input / output terminal, 50 molding resin, 84, 85, 115, 121 signal terminal, 100, 100-1 {microwave device, 116, 117, 122, 123} RF transmission line, 118} inner layer 119 119 inner conductor, 120 control IC, 140 heat sink, 141 support, 142 bus bar, 143 slit, 150 heat sink, 160 control board, 170 RF / power / control connector, 190 leaf spring, 200, 200-1 micro Wave module, 210 antenna element, 310 low cost semiconductor substrate, 310a, 320a signal pad, 313, 314 surface pattern, 315, 316 through hole, 320 high cost semiconductor substrate, 410 control IC, 450 antenna substrate, 470 RF connector, 500 , 500-1 antenna, 600 transceiver, 700 distribution circuit, 800 circulator, 810 die pad, 811 signal terminal, 812 ground terminal, 820 ferrite substrate, 821 signal pattern 830 wire, 840 a molding resin, 850 permanent magnet, 860 molded package, 861 conductive film, 880 a resin substrate, 881 ground via, 882 signal via, 883 signal pattern.

Claims (11)

  1.  支持材と、
     前記支持材の第1の面側に設けられる制御基板と、
     前記支持材における前記第1の面と反対側の面である前記支持材の第2の面側に設けられ、コネクタを介して前記制御基板と電気的に接続される第1の多層樹脂基板と、
     前記第1の多層樹脂基板の前記支持材側の第1の面に設けられ、前記第1の多層樹脂基板と電気的に接続される複数のマイクロ波デバイスと、
     前記第1の多層樹脂基板における前記第1の面の反対側の面である前記第1の多層樹脂基板の第2の面側に設けられ、前記第1の多層樹脂基板と電気的に接続される複数のアンテナ素子と、
     前記支持材における前記第1の多層樹脂基板側の面上に設けられるブスバーと、
     前記第1の多層樹脂基板と前記ブスバーとに接触して前記第1の多層樹脂基板と前記ブスバーとの間に設けられて、前記第1の多層樹脂基板と前記ブスバーとに電気的に接続される導電性の板ばねと、
     を備えること、
     を特徴とする空中線。
    Support material,
    A control board provided on the first surface side of the support member;
    A first multilayer resin substrate provided on a second surface side of the support member opposite to the first surface of the support member and electrically connected to the control substrate via a connector; ,
    A plurality of microwave devices provided on the first surface of the first multilayer resin substrate on the support material side and electrically connected to the first multilayer resin substrate;
    The first multilayer resin substrate is provided on a second surface side of the first multilayer resin substrate, which is a surface opposite to the first surface, and is electrically connected to the first multilayer resin substrate. A plurality of antenna elements,
    A bus bar provided on a surface of the support member on the first multilayer resin substrate side;
    The first multilayer resin board is provided between the first multilayer resin board and the bus bar in contact with the first multilayer resin board and the bus bar, and is electrically connected to the first multilayer resin board and the bus bar. A conductive leaf spring,
    Having,
    Antenna.
  2.  前記マイクロ波デバイスは、前記第1の多層樹脂基板と前記コネクタと前記制御基板とを介して、前記制御基板と一体化又は別個に設けられた送受信機に接続されること、
     を特徴とする請求項1に記載の空中線。
    The microwave device is connected to a transceiver integrated with or separately provided from the control board via the first multilayer resin board, the connector, and the control board,
    The antenna according to claim 1, wherein:
  3.  前記複数のアンテナ素子を有するアンテナ基板を備え、
     前記複数のアンテナ素子は、前記マイクロ波デバイスを介して、前記送受信機と接続されること、
     を特徴とする請求項2に記載の空中線。
    An antenna substrate having the plurality of antenna elements,
    The plurality of antenna elements are connected to the transceiver via the microwave device,
    The antenna according to claim 2, wherein:
  4.  前記マイクロ波デバイスは、
     第2の多層樹脂基板と、
     前記第2の多層樹脂基板に設けられ前記第2の多層樹脂基板と電気的に接続される回路装置と、
     前記回路装置における前記第2の多層樹脂基板を向く面と反対側の面に設けられて前記回路装置に接するヒートスプレッダと、
     前記回路装置及び前記ヒートスプレッダの周囲を覆う樹脂と、
     前記樹脂及びヒートスプレッダを覆う導電膜と、
     を備え、
     前記導電膜の内側が前記ヒートスプレッダに接し、前記導電膜が前記第2の多層樹脂基板のグランドビアホールと電気的に接続されること、
     を特徴とする請求項1から3のいずれか1つに記載の空中線。
    The microwave device,
    A second multilayer resin substrate;
    A circuit device provided on the second multilayer resin substrate and electrically connected to the second multilayer resin substrate;
    A heat spreader provided on the surface of the circuit device opposite to the surface facing the second multilayer resin substrate and in contact with the circuit device;
    A resin covering around the circuit device and the heat spreader;
    A conductive film covering the resin and the heat spreader,
    With
    The inside of the conductive film is in contact with the heat spreader, and the conductive film is electrically connected to a ground via hole of the second multilayer resin substrate;
    The antenna according to any one of claims 1 to 3, wherein:
  5.  前記第2の多層樹脂基板と対向して設けられ、前記導電膜に接する放熱シートを備えること、
     を特徴とする請求項4に記載の空中線。
    A heat radiation sheet provided in opposition to the second multilayer resin substrate and in contact with the conductive film;
    The antenna according to claim 4, wherein:
  6.  前記放熱シートの弾性率は、前記マイクロ波デバイスの弾性率よりも小さいこと、
     を特徴とする請求項5に記載の空中線。
    The elastic modulus of the heat dissipation sheet is smaller than the elastic modulus of the microwave device,
    The antenna according to claim 5, wherein:
  7.  前記放熱シートの前記マイクロ波デバイスを向く側とは反対側に設けられ、前記放熱シートに接する放熱板を備え、
     前記支持材は、前記放熱板が嵌めこまれるスリット部を有すること、
     を特徴とする請求項5または6に記載の空中線。
    A heat radiating plate is provided on a side of the heat radiating sheet opposite to a side facing the microwave device, and includes a heat radiating plate in contact with the heat radiating sheet,
    The support member has a slit portion into which the heat sink is fitted,
    The antenna according to claim 5 or 6, wherein:
  8.  前記回路装置は、高周波回路であること、
     を特徴とする請求項4から7のいずれか1つに記載の空中線。
    The circuit device is a high-frequency circuit,
    The antenna according to any one of claims 4 to 7, characterized in that:
  9.  前記回路装置は、
     前記第2の多層樹脂基板に設けられ、前記第2の多層樹脂基板と電気的に接続される第1の半導体基板と、
     前記第1の半導体基板における前記第2の多層樹脂基板を向く側とは反対側に設けられ、前記第1の半導体基板と電気的に接続される第2の半導体基板と、
     前記ヒートスプレッダは、前記第2の半導体基板の前記第1の半導体基板を向く側とは反対側に設けられ、前記第2の半導体基板に接し、
     前記樹脂は、前記第1の半導体基板、前記第2の半導体基板及び前記ヒートスプレッダの周囲を覆うこと、
     を特徴とする請求項4から8のいずれか1つに記載の空中線。
    The circuit device includes:
    A first semiconductor substrate provided on the second multilayer resin substrate and electrically connected to the second multilayer resin substrate;
    A second semiconductor substrate provided on a side of the first semiconductor substrate opposite to a side facing the second multilayer resin substrate and electrically connected to the first semiconductor substrate;
    The heat spreader is provided on a side of the second semiconductor substrate opposite to a side facing the first semiconductor substrate, and is in contact with the second semiconductor substrate,
    The resin covers the first semiconductor substrate, the second semiconductor substrate, and the periphery of the heat spreader;
    The antenna according to any one of claims 4 to 8, wherein:
  10.  前記第2の半導体基板には、窒化ガリウムから形成されるトランジスタが設けられること、
     を特徴とする請求項9に記載の空中線。
    A transistor formed of gallium nitride is provided on the second semiconductor substrate;
    The antenna according to claim 9, wherein:
  11.  前記第1の半導体基板には、ガリウム砒素から形成される回路が設けられること、
     を特徴とする請求項9に記載の空中線。
    A circuit formed of gallium arsenide is provided on the first semiconductor substrate;
    The antenna according to claim 9, wherein:
PCT/JP2018/033879 2018-09-12 2018-09-12 Antenna WO2020054001A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/033879 WO2020054001A1 (en) 2018-09-12 2018-09-12 Antenna
JP2020546609A JP6949239B2 (en) 2018-09-12 2018-09-12 Antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033879 WO2020054001A1 (en) 2018-09-12 2018-09-12 Antenna

Publications (1)

Publication Number Publication Date
WO2020054001A1 true WO2020054001A1 (en) 2020-03-19

Family

ID=69776857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033879 WO2020054001A1 (en) 2018-09-12 2018-09-12 Antenna

Country Status (2)

Country Link
JP (1) JP6949239B2 (en)
WO (1) WO2020054001A1 (en)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160635A (en) * 1991-12-03 1993-06-25 Yuseisho Tsushin Sogo Kenkyusho Active phased array antenna
JP2002138205A (en) * 2000-11-02 2002-05-14 Polymatech Co Ltd Thermal conductive molded article
JP2003519457A (en) * 1998-09-23 2003-06-17 ノースロップ グラマン コーポレーション Antenna device with dual channel transmission / reception module
JP2005117139A (en) * 2003-10-03 2005-04-28 Mitsubishi Electric Corp Microwave module, and array antenna system employing the same
US20090135085A1 (en) * 2007-09-17 2009-05-28 Raby Scott A Rhombic shaped, modularly expandable phased array antenna and method therefor
JP2010098274A (en) * 2008-10-20 2010-04-30 Sibeam Inc Packaging mechanism of surface-mountable integrated circuit
JP2012100412A (en) * 2010-11-01 2012-05-24 Mitsubishi Electric Corp Dc/dc converter
US20120280380A1 (en) * 2011-05-05 2012-11-08 Telesphor Kamgaing High performance glass-based 60 ghz / mm-wave phased array antennas and methods of making same
WO2014020787A1 (en) * 2012-08-03 2014-02-06 パナソニック株式会社 Electronic component module and mounting body therefor
JP2014513492A (en) * 2011-05-05 2014-05-29 インテル コーポレイション Through-silicon via of stacked die package for shielding radio / electromagnetic interference, and manufacturing method thereof
US20150171523A1 (en) * 2013-12-12 2015-06-18 Telesphor Teles Kamgaing Distributed on-package millimeter-wave radio
JP2015211056A (en) * 2014-04-24 2015-11-24 日本電気株式会社 Electronic device
WO2016067969A1 (en) * 2014-10-31 2016-05-06 株式会社村田製作所 Antenna module and circuit module
WO2016117196A1 (en) * 2015-01-21 2016-07-28 株式会社村田製作所 Power amplifier module
WO2017047396A1 (en) * 2015-09-17 2017-03-23 株式会社村田製作所 Antenna-integrated communication module and method for manufacturing same
WO2017073644A1 (en) * 2015-10-30 2017-05-04 三菱電機株式会社 High-frequency antenna module and array antenna device
WO2017099145A1 (en) * 2015-12-07 2017-06-15 三菱電機株式会社 Microwave module and high-frequency module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098200A (en) * 2011-10-28 2013-05-20 Mitsubishi Electric Corp Semiconductor module

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160635A (en) * 1991-12-03 1993-06-25 Yuseisho Tsushin Sogo Kenkyusho Active phased array antenna
JP2003519457A (en) * 1998-09-23 2003-06-17 ノースロップ グラマン コーポレーション Antenna device with dual channel transmission / reception module
JP2002138205A (en) * 2000-11-02 2002-05-14 Polymatech Co Ltd Thermal conductive molded article
JP2005117139A (en) * 2003-10-03 2005-04-28 Mitsubishi Electric Corp Microwave module, and array antenna system employing the same
US20090135085A1 (en) * 2007-09-17 2009-05-28 Raby Scott A Rhombic shaped, modularly expandable phased array antenna and method therefor
JP2010098274A (en) * 2008-10-20 2010-04-30 Sibeam Inc Packaging mechanism of surface-mountable integrated circuit
JP2012100412A (en) * 2010-11-01 2012-05-24 Mitsubishi Electric Corp Dc/dc converter
JP2014513492A (en) * 2011-05-05 2014-05-29 インテル コーポレイション Through-silicon via of stacked die package for shielding radio / electromagnetic interference, and manufacturing method thereof
US20120280380A1 (en) * 2011-05-05 2012-11-08 Telesphor Kamgaing High performance glass-based 60 ghz / mm-wave phased array antennas and methods of making same
WO2014020787A1 (en) * 2012-08-03 2014-02-06 パナソニック株式会社 Electronic component module and mounting body therefor
US20150171523A1 (en) * 2013-12-12 2015-06-18 Telesphor Teles Kamgaing Distributed on-package millimeter-wave radio
JP2015211056A (en) * 2014-04-24 2015-11-24 日本電気株式会社 Electronic device
WO2016067969A1 (en) * 2014-10-31 2016-05-06 株式会社村田製作所 Antenna module and circuit module
WO2016117196A1 (en) * 2015-01-21 2016-07-28 株式会社村田製作所 Power amplifier module
WO2017047396A1 (en) * 2015-09-17 2017-03-23 株式会社村田製作所 Antenna-integrated communication module and method for manufacturing same
WO2017073644A1 (en) * 2015-10-30 2017-05-04 三菱電機株式会社 High-frequency antenna module and array antenna device
WO2017099145A1 (en) * 2015-12-07 2017-06-15 三菱電機株式会社 Microwave module and high-frequency module

Also Published As

Publication number Publication date
JPWO2020054001A1 (en) 2021-05-20
JP6949239B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6821008B2 (en) Microwave devices and antennas
JP7031004B2 (en) Microwave devices and antennas
WO2016031807A1 (en) High-frequency module
US20210185795A1 (en) Electronic control device
WO2017099145A1 (en) Microwave module and high-frequency module
US20210351503A1 (en) Antenna module and communication device
US6984887B2 (en) Heatsink arrangement for semiconductor device
EP3327767B1 (en) Mount structure, method of manufacturing mount structure, and wireless device
WO2017022221A1 (en) Heat dissipating structure and electronic apparatus
US20170179982A1 (en) High-frequency module and microwave transceiver
KR20050002659A (en) Hybrid integrated circuit
JP2019036587A (en) Circuit board and electronic device
JP6910313B2 (en) High frequency devices and antennas
WO2020054001A1 (en) Antenna
US20060033207A1 (en) Microwave-monolithic-integrated-circuit-mounted substrate, transmitter device for transmission only and transceiver device for transmission/reception in microwave-band communication
CN107750478B (en) Buried block-free RF power amplifier
JP6952913B2 (en) Semiconductor device and antenna device
JP4830917B2 (en) High frequency module device and transmission / reception module device using the same
JP2008263360A (en) High-frequency substrate device
JP7412644B2 (en) antenna device
US20230011922A1 (en) Circuit board module
WO2023053228A1 (en) Semiconductor device
US20050082652A1 (en) Integrated circuit housing
JP2004319905A (en) High frequency integrated circuit package and electronic device
GB2598674A (en) Array antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933152

Country of ref document: EP

Kind code of ref document: A1