WO2020052867A1 - Procédé pour effectuer un diagnostic fonctionnel d'un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion interne et dispositif de post-traitement des gaz d'échappement - Google Patents

Procédé pour effectuer un diagnostic fonctionnel d'un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion interne et dispositif de post-traitement des gaz d'échappement Download PDF

Info

Publication number
WO2020052867A1
WO2020052867A1 PCT/EP2019/071211 EP2019071211W WO2020052867A1 WO 2020052867 A1 WO2020052867 A1 WO 2020052867A1 EP 2019071211 W EP2019071211 W EP 2019071211W WO 2020052867 A1 WO2020052867 A1 WO 2020052867A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle filter
lambda
exhaust gas
lambda value
value
Prior art date
Application number
PCT/EP2019/071211
Other languages
German (de)
English (en)
Inventor
Hong Zhang
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of WO2020052867A1 publication Critical patent/WO2020052867A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for the function diagnosis of an exhaust gas aftertreatment system of an internal combustion engine, in particular a diesel engine, which has a particle filter arranged in an exhaust pipe and one
  • Fuel supply device for adding fuel to the exhaust gas mass flow in the exhaust gas mass flow upstream, that is, upstream of the particle filter, and a lambda sensor, in the exhaust gas mass flow downstream, that is to say downstream of the particle filter.
  • Legislators are continually lowering the emission limit values for exhaust gases from vehicles with internal combustion engines (internal combustion engines) and are issuing regulations to monitor their proper functioning. This applies in particular to the so-called OBD diagnosis (on-board diagnosis, ongoing, automatic self-diagnosis in the intended operation of the vehicle) in such vehicles. So nowadays the particle filters of such a, frequent and exact
  • the present invention is therefore based on the object of providing a method and a corresponding exhaust gas aftertreatment system of an internal combustion engine which enable particularly rapid and accurate automatic functional diagnosis of a particle filter with regard to particle filtering in the operation of the
  • the invention relates to a method for functional diagnosis of an exhaust gas aftertreatment system of an internal combustion engine
  • the exhaust gas aftertreatment system has a gas line for guiding an exhaust gas mass flow and a particle filter arranged in the exhaust gas line and wherein a fuel supply device for adding fuel into the exhaust gas mass flow upstream, that is, upstream of the particle filter, and a lambda sensor (10), in the exhaust gas mass flow downstream , that is, after the particle filter.
  • a so-called lambda sensor also known as an l-sensor or l-probe, detects the combustion air ratio in the exhaust gas.
  • the combustion air ratio is the ratio of the air mass is available in the combustion chamber of an internal combustion engine for the combustion of the supplied fuel mass, to the air mass required for complete combustion of the supplied fuel mass, and thus provides information about an air or fuel excess in the exhaust gas.
  • l> 1 there is excess air and thus a so-called lean combustion
  • l ⁇ 1 there is excess fuel and thus a so-called rich combustion.
  • the method according to the invention has the steps shown below:
  • the steady-state operating mode of the internal combustion engine and the constant lambda value are to be understood to mean that the relevant operating parameters, such as, for example, the speed under certain load and in particular the
  • Lambda value lie or move within a predetermined range of fluctuation, which is dimensioned such that its effects on the implementation of the method are negligible if the diagnostic result is sufficiently accurate. It is therefore also possible to speak of a quasi-static operating mode and a quasi-constant lambda value.
  • the specified fluctuation range can be determined empirically or with the help of model calculations.
  • a predetermined limit value can be exceeded both in the positive and in the negative direction. Exceeding is not to be understood here in the sense of “getting bigger” but in the sense of "crossing the border” regardless of the direction.
  • the invention further relates to an exhaust gas aftertreatment system of an internal combustion engine, which has an exhaust gas line for guiding an exhaust gas mass flow and a particle filter arranged in the exhaust gas line, and a fuel supply device for adding fuel into the exhaust gas mass flow upstream, that is to say upstream of the particle filter, and a lambda sensor in the exhaust gas mass flow downstream, that is, after the particle filter.
  • This exhaust gas aftertreatment system is further characterized in that it has an electronic computing and Control unit is assigned, which is set up for the targeted, defined induction of a lambda value change in the exhaust gas mass flow upstream, in front of the particle filter, by changing the fuel addition by means of the fuel supply device mentioned and for detecting one of the
  • Lambda sensor output measurement signal wherein the electronic computing and control unit is further set up to carry out the method for functional diagnosis of an exhaust gas aftertreatment system of an internal combustion engine, according to a method according to the invention as described above or below.
  • Particle filter to use in conjunction with a
  • Functional damage to particle filters usually consists of openings or holes in the substrate of the filter, the number or cross-sectional area of which determine the degree of damage and through which a corresponding part of the exhaust gas can pass through unfiltered and untreated. If the total cross section of the breakthroughs or open holes is above a threshold value, the corresponding particle emission exceeds a diagnostic threshold value (OBD threshold value).
  • OBD threshold value diagnostic threshold value
  • the lambda value upstream of the particle filter preferably in one Step, increased, starting from a previously given lambda value and the signal curve representing the lambda value after the particle filter is observed.
  • the corresponding change in lambda value is therefore measured after
  • the lambda value measured after the filter has a short period of time within a defined time window that immediately follows the increase in lambda value upstream of the particle filter, and
  • a lambda comparison value determined from the lambda value measurement is now below or above a correspondingly predetermined limit value, it can be assumed that the entire cross section of openings in the filter substrate is so small that the full functionality can be assumed to be given. However, if the limit value is exceeded, the entire cross-section of breakthroughs in the filter substrate is so large that the exhaust gas flows unfiltered through the particle filter to a large extent and almost without delay, so that the corresponding lambda sensor after the particle filter unites within the specified, immediately following time window immediate, lambda value increase registered with a much higher gradient.
  • Fuel supply device which enables an accurate metering of the amount of fuel.
  • Fuel supply devices are common to many
  • Control values are, for example, based on, in
  • Figure 1 is a schematic representation of an embodiment of a
  • Figure 2 is a schematic representation of another
  • FIG. 3 is a block diagram showing the
  • Figure 4 is a qualitative representation of curves of
  • Figure 5 is a qualitative representation of traces of the
  • Figure 1 shows schematically in a simplified representation an embodiment of an internal combustion engine with an exhaust gas aftertreatment system according to the invention, for example a diesel engine.
  • the internal combustion engine 1 has an exhaust tract 3 and an intake tract 12.
  • the intake tract 12 includes an intake manifold 12a connected to the internal combustion engine 1 with an intake pipe 12b connected to it.
  • a throttle valve 15 for regulating the air mass flow 20 in the intake pipe 12b and the air supply to the combustion chambers of the internal combustion engine 1 is arranged in the intake pipe 12b.
  • the exhaust tract 3 contains an exhaust manifold 3a, which also includes the exhaust line 3b and thus the exhaust gas aftertreatment system 2 connects the internal combustion engine 1.
  • the exhaust gas aftertreatment system 2 includes the exhaust gas line 3b for guiding the exhaust gas mass flow 10 and a particle filter 5 arranged in the exhaust gas line 3b, and a fuel supply device 7 for adding fuel 7d into the exhaust gas mass flow 10 upstream, that is to say upstream of the particle filter 5 and Lambda sensor 6, in the exhaust gas mass flow 10 downstream, that is after the particle filter 5.
  • the exhaust gas aftertreatment system 2 includes an electronic computing and control unit 30, hereinafter also abbreviated to ECU, which is set up to specifically and specifically bring about a change in the lambda value in the exhaust gas mass flow 10 upstream of the particle filter 5 by changing the fuel addition by means of the fuel supply device 7 and for detecting a measurement signal output by the lambda sensor 6.
  • ECU electronic computing and control unit
  • the ECU 30 is also set up to carry out a method according to the invention for the functional diagnosis of the exhaust gas aftertreatment system 2 of the internal combustion engine 1, as described above and below.
  • the ECU is connected, among other things, via electrical signal lines 6c, 7c and 15c to the lambda sensor 6, the fuel supply device 7 and the throttle valve 15.
  • the fuel supply device 7 has, in particular, a metering device 7b arranged upstream of the particle filter 5 on the exhaust gas line 3b, which is arranged on the exhaust gas line 3b for precise metering and introduction of the fuel 7d into the exhaust gas mass flow 10.
  • the fuel 7d is stored in a storage container 7a, which in turn is connected to the metering device 7b via a fuel line 7e.
  • An embodiment of the exhaust gas aftertreatment system 2, as described above, is characterized in that the ECU 30 is a integral part of a central control unit 32 of the internal combustion engine, which is also referred to as CPU 32 for short, the method to be carried out being part of an on-board diagnosis. nose system for monitoring the exhaust-gas-related functional units of the internal combustion engine in normal operation.
  • FIG. 2 also shows an internal combustion engine 1 with a further embodiment of an exhaust gas aftertreatment system 2 according to the invention, which, in a further embodiment of the embodiment shown in FIG. 1, has an exhaust gas mass flow 10 between the particle filter 5 and the fuel supply device 7, in particular the metering device 7b , in the exhaust pipe 3b on an ordered oxidation catalyst 8.
  • the ECU 30 is further configured to carry out the method for the functional diagnosis of the exhaust gas aftertreatment system 2 of an internal combustion engine 1 in such a way that the setting or verification of the stationary operating mode includes an immediately preceding regeneration of the oxidation catalytic converter 8.
  • the internal combustion engine is set to a stationary operating mode in the first method step, identified by "BP_Stat", a specific, constant lambda value in the Exhaust gas mass flow 10 before the particle filter 5 of the internal combustion engine 1 is adjusted. . Because in real operation the
  • the stationary operating mode and the constant lambda value are characterized by values of the corresponding operating parameters which are within a predetermined fluctuation range which is considered to be negligible for the method or lie within them.
  • the stationary operating mode BP_Stat is additionally characterized in that an immediately preceding regeneration of the oxidation catalytic converter (8) is sufficient Has. This ensures that the oxidation catalytic converter is "discharged" and has a minimal influence on the lambda value in the exhaust gas.
  • the targeted, defined induction of a lambda value change X_Var in the exhaust gas mass flow 10 upstream of the particle filter 5 is then carried out, starting from the aforementioned constant lambda value, by changing the force Addition of substance by means of the fuel supply device 7 mentioned, in particular by correspondingly controlling the metering device 7b, by the ECU 30, as shown in FIG.
  • the defined lambda value change X_Var upstream of the particle filter 5 can include a reduction and / or increase in the lambda value, which is set by a defined increase and / or reduction in fuel addition by means of the fuel supply device 7 mentioned. This is done, for example, by correspondingly controlling the metering device 7b
  • Fuel supply device 7 by means of the ECU 30.
  • the lambda value change X_Var in front of the particle filter 5 can have a lambda value change in one direction and a subsequent lambda value change in the opposite direction.
  • the lambda value changes in the positive and negative direction in addition, can be used for the functional diagnosis of the particle filter, as will be explained further below and with the aid of FIG. 5.
  • the lambda value change X_Sig in the exhaust gas mass flow 10 after the particle filter 5 is then measured within a defined time window TW immediately after the aforementioned lambda value change X_Var before the particle filter 5, in accordance with the method step identified with “X_Sig”.
  • marked “LVgW” a correlating Lamb is provided
  • da comparison value LVgW based on the measured lambda value change.
  • a lambda comparison value LVgW for example, a subsequent time period TF from the time tO of the start of the lambda value change X_Var before the particle filter 5 to a time t1 at which the lambda value change X_Var after the particle filter 5 has a certain proportionate value L_% of the maximum lambda value change X_Var has reached 5 in front of the particle filter.
  • L_% the maximum lambda value change X_Var has reached 5 in front of the particle filter.
  • L_Max_l, L_Max_2, or minimum value of the lambda value change X_Sig_l, X_Sig_2 after the particle filter and / or a gradient determined within the defined time window TW, is used as the lambda comparison value LVgW Gl the lambda value change used.
  • Lambda value change X_Sig_l a gradient Gl which can optionally also be used as a lambda comparison value LVgW. The same applies accordingly to a lambda value reduction not shown in FIG. 4.
  • the before the Particle filters predefined and, within the defined time window TW, lambda values measured after the particle filter at a specific point in time and / or the gradients of the lambda value changes X_Var, X_Sig_l, X_Sig_2, are related to one another, as will be explained in more detail below using FIG. 4 should. This enables a particularly reliable Lamb to be provided
  • da comparison value LVgW increases the diagnostic certainty of the procedure.
  • a further embodiment of the method according to the invention is characterized in that, in order to provide a lambda comparison value LVgW, the lambda values and / or the gradients of successive opposite lambda value changes, as described above, are used in combination with one another after and before the particle filter 5 , as will be explained further below using the example shown in FIG. 5.
  • the lambda value change X_Sig_l, X_Sig_2, X_Sig measured within the defined time window TW is evaluated according to the particle filter 5 on the basis of the respective lambda comparison value LVgW and predetermined limit values GW GW.
  • a respective maximum value or minimum value of the lambda value change and / or a determined gradient of the lambda value change or also comparison or ratio values based on the respectively before and after Particle filter 5 measured values or gradients of the lambda value change can be used, which enables a wide variance in the design of the method according to the invention and the adaptation to the needs in the respective application.
  • the comparative value LVgW must then be given correspondingly adjusted limit values GW.
  • E_Sp2 an electronic memory area of the electronic computing and control unit ECU and is called up from there for evaluating the lambda value change.
  • E_Sp2 an electronic memory area of the electronic computing and control unit ECU and contains the corresponding limit values GW, which are shown as “(1) GW”.
  • the respective limit value may be exceeded, as already explained above in the positive direction, in the sense of a higher value, and in the negative direction, in the sense of a lower value.
  • the targeted, defined lambda value change in front of the particle filter 5 is withdrawn again, and the internal combustion engine 1 is switched back to the normal working mode BP_Norm depending on the diagnosis result and is operated or operated as intended limited to an emergency operation BP Not.
  • BP_Norm normal working mode
  • BP_Norm is shown in the process step labeled "BP_Norm".
  • the method according to the invention can be repeated in certain cycles during operation, wherein these cycles can be based on a specific operating time period, a specific operating performance or on demand values determined during operation.
  • the respective defined time window TW for measuring the lambda value change in the exhaust gas mass flow 10 after the particle filter 5 has a duration of less than or equal to 5 seconds, in particular less than or equal to 3 seconds on.
  • the length of this time window ensures that only a rapid change in lambda value after the particle filter 5, as occurs exclusively when the particle filter 5 is defective, has an effect in the determination of the lambda comparison value LVgW and thus in the diagnosis of the particle filter 5.
  • Figure 4 shows an example of the course of the lambda value change over time.
  • the curve marked with X_Var shows the lambda value change upstream of the particle filter 5, starting from a lambda value regulated in the diagnostic mode of operation at time tO, a defined, abruptly shown lambda value change is brought about.
  • the change in lambda value is shown in% of the change value and can therefore be seen as an amount both positive and negative.
  • the curve marked X_Sig_l shows the lambda value recorded downstream of the particle filter in the event of a defective particle filter. Shortly after the time tO, i.e. immediately after the lambda value change X_Var has been brought about in front of the particle filter 5, the lambda value begins to rise with a gradient Gl within the time window TW and rises to a maximum value L_Max_l at the time tw at the end of the time window TW. In the further course of time, the lambda value after the particle filter increases to 100% of the predetermined lambda value change X_Var before the particle filter.
  • the curve marked X_Sig_2 shows the lambda value recorded downstream of the particle filter with an intact particle filter. Immediately after the point in time tO, the lambda value also begins to increase within the time window TW here, but with a gradient G2 that is significantly smaller than the curve X_Sig_l. Accordingly, until Time tw, at the end of the time window TW, only a significantly smaller maximum value L_Max_2 is reached.
  • the respective lambda maximum value L_Max_l, L_Max_2 reached by the specific time tw at the end of the time window TW or the respective gradient Gl, G2 of the lambda value increase within the Time window TW can be used.
  • a follow-up time period TF from the time tO of the start of the lambda value change X_Var before the particle filter 5 to a time t1 at which the lambda value change X_Sig_l, X_Sig_2, after the particle filter 5, can also optionally have a specific proportional value as a lambda comparison value LVgW L_% (here, for example, 63%) of the maximum lambda value change X_Var before the particle filter has been reached.
  • LVgW L_% a specific proportional value
  • the lambda value change X_Var upstream of the particle filter can be based on the default values or can be determined using model considerations.
  • the gradient Gl of the lambda value change downstream of the particle filter 5 determined within the time window TW can be divided by the grade rule LSpl of the lambda value change X_Var upstream of the particle filter. The result is used as the lambda comparison value LVgW.
  • a lambda comparison value For example, if the gradient of the concentration increase downstream of the particle filter is 30% / s and the grade rule of the change in concentration upstream of the particle filter is 100%, a lambda comparison value of:
  • a further embodiment of the method is characterized in that the lambda value change X_Var upstream of the particle filter has a lambda value change in one direction and a subsequent lambda value change in the opposite direction.
  • the reverse case also being possible.
  • the values and or the gradients of the lambda value increase and the lambda value value are Reduction in each case before and in front of the particle filter 5 in combination with each other for evaluating the particle filter 5.
  • a ratio value of the gradient Gla of the lambda value increase downstream and the grade rule LSpl of the lambda value increase upstream of the particle filter and of the gradient Give the subsequent lambda value drop downstream and the associated grade rule LSp2 of the lambda value reduction upstream of the particle filter and the sum thereof can be calculated.
  • Lambda values over time window TW1 up to time t20 This is followed by an abrupt reduction of the lambda value by the grade rule LSp2, which is brought about in a targeted and defined manner, by the same amount, that is to say a complete withdrawal of the lambda value increase, at time t20.
  • the resulting curve of the lambda value downstream of the particle filter shows an increase with the gradient Gla following the time t10, within the time window TW1 immediately following the change in the lambda value before the particle filter, until the time t20 and a subsequent drop in the

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention concerne un procédé pour effectuer un diagnostic fonctionnel d'un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion interne (1) et un dispositif de post-traitement des gaz d'échappement correspondant. Le procédé comprend une étape consistant à vérifier un filtre à particules (5) du dispositif de post-traitement des gaz d'échappement quant à sa capacité de fonctionnement en ce qui concerne son effet filtrant, une modification de valeur lambda définie en amont du filtre à particules (5) étant provoquée par modification d'un apport de carburant au moyen d'un dispositif d'alimentation en carburant en amont du filtre à particules, et la modification de valeur lambda correspondante étant mesurée en aval du filtre à particules (5) au cours d'une fenêtre temporelle (TW) fixée directement après la modification de valeur lambda mentionnée, et une valeur de comparaison lambda (LVGW) étant fournie en conséquence. Grâce à une comparaison de la valeur de comparaison lambda (LVgW) avec des valeurs limites (GW) prédéfinies, le filtre à particules (5) est diagnostiqué comme défectueux ou intact. Selon l'invention, le dispositif de post-traitement des gaz d'échappement est conçu pour permettre la mise en œuvre du procédé susmentionné. À l'aide du procédé susmentionné ainsi que du dispositif de post-traitement des gaz d'échappement, un diagnostic fonctionnel du filtre à particule (5) peut être réalisé en tant que diagnostic embarqué, avec une fiabilité et une robustesse élevées vis-à-vis d'effets perturbateurs.
PCT/EP2019/071211 2018-09-13 2019-08-07 Procédé pour effectuer un diagnostic fonctionnel d'un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion interne et dispositif de post-traitement des gaz d'échappement WO2020052867A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018215629.8 2018-09-13
DE102018215629.8A DE102018215629A1 (de) 2018-09-13 2018-09-13 Verfahren zur Funktionsdiagnose einer Abgasnachbehandlungsanlage einer Brennkraftmaschine und Abgasnachbehandlungsanlage

Publications (1)

Publication Number Publication Date
WO2020052867A1 true WO2020052867A1 (fr) 2020-03-19

Family

ID=67659834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/071211 WO2020052867A1 (fr) 2018-09-13 2019-08-07 Procédé pour effectuer un diagnostic fonctionnel d'un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion interne et dispositif de post-traitement des gaz d'échappement

Country Status (2)

Country Link
DE (1) DE102018215629A1 (fr)
WO (1) WO2020052867A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7281369B2 (en) * 2004-02-27 2007-10-16 Nissan Motor Co., Ltd. Deterioration diagnosis of diesel particulate filter
DE102007059523A1 (de) * 2007-12-11 2009-06-18 Continental Automotive Gmbh Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
FR2958971A1 (fr) * 2010-04-14 2011-10-21 Peugeot Citroen Automobiles Sa Dispositif et procede de diagnostic de l'absence d'un filtre a particules
DE102011106933A1 (de) * 2011-07-08 2013-01-10 Audi Ag Verfahren zum Prüfen eines Partikelfilters, insbesondere für Abgase aus einem Ottomotor
WO2015040300A1 (fr) * 2013-09-23 2015-03-26 Peugeot Citroen Automobiles Sa Procede de diagnostic de l'absence d'un filtre a particules
DE102016213767A1 (de) * 2016-07-27 2018-02-01 Audi Ag Verfahren zur Diagnose einer Abgasanlage einer Brennkraftmaschine
DE102016114901A1 (de) * 2016-08-11 2018-02-15 Volkswagen Aktiengesellschaft Diagnoseverfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit einer Komponente zur Abgasnachbehandlung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090324A (ja) * 2003-09-16 2005-04-07 Toyota Motor Corp 内燃機関の排気浄化システム
FR2979949B1 (fr) * 2011-09-13 2015-02-20 Peugeot Citroen Automobiles Sa Procede et dispositif de detection d'un organe de depollution dans une ligne d'echappement d'un vehicule automobile, ligne d'echappement et vehicule automobile comprenant un tel dispositif
DE102016111574A1 (de) * 2016-06-23 2017-12-28 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Einrichtung zur Abgasreinigung mit Filterfunktion und Diagnoseverfahren für diese Einrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7281369B2 (en) * 2004-02-27 2007-10-16 Nissan Motor Co., Ltd. Deterioration diagnosis of diesel particulate filter
DE102007059523A1 (de) * 2007-12-11 2009-06-18 Continental Automotive Gmbh Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
FR2958971A1 (fr) * 2010-04-14 2011-10-21 Peugeot Citroen Automobiles Sa Dispositif et procede de diagnostic de l'absence d'un filtre a particules
DE102011106933A1 (de) * 2011-07-08 2013-01-10 Audi Ag Verfahren zum Prüfen eines Partikelfilters, insbesondere für Abgase aus einem Ottomotor
WO2015040300A1 (fr) * 2013-09-23 2015-03-26 Peugeot Citroen Automobiles Sa Procede de diagnostic de l'absence d'un filtre a particules
DE102016213767A1 (de) * 2016-07-27 2018-02-01 Audi Ag Verfahren zur Diagnose einer Abgasanlage einer Brennkraftmaschine
DE102016114901A1 (de) * 2016-08-11 2018-02-15 Volkswagen Aktiengesellschaft Diagnoseverfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit einer Komponente zur Abgasnachbehandlung

Also Published As

Publication number Publication date
DE102018215629A1 (de) 2020-03-19

Similar Documents

Publication Publication Date Title
EP3717757B1 (fr) Procédé d'opération d'un système de post-traitement d'un moteur à combustion interne et système de post-traitement
EP1097299B1 (fr) PROCEDE DE VERIFICATION DU RENDEMENT D'UN POT CATALYTIQUE A ACCUMULATION DE NOx
EP1373693B2 (fr) Procede et dispositif de controle d'un systeme de traitement ulterieur de gaz d'echappement
DE102008038677B4 (de) Verfahren und Vorrichtung zum Diagnostizieren eines Abgaskatalysators
EP3111061B1 (fr) Procédé pour la détermination du vieillissement d'un catalyseur d'oxydation dans un système de post-traitement de gaz d'échappement d'un moteur à combustion interne, procédé pour la détection de cendres dans un filtre à particules d'un système de post-traitement de gaz d'échappement, dispositif de commande et moteur à combustion interne
EP1192340B1 (fr) Procede pour la verification d'un pot d'echappement catalytique a trois voies d'un moteur a combustion interne
WO2018177897A1 (fr) Procédé et produit de programme informatique pour le diagnostic d'un filtre à particules
EP1426575A1 (fr) Procédé et dispositif de surveillance d'un système de traitement des gaz d'échappement
DE102011001045A1 (de) Verfahren zur Diagnose von Abgassonden und/oder Katalysatoren
DE102010040678A1 (de) Verfahren zur Überwachung der Schadstoff-Konvertierungsfähigkeit in einem Abgasnachbehandlungssystem
DE102009055082A1 (de) Verfahren zur Überwachung einer Schadstoff-Konvertierungsfähigkeit in einem Abgasnachbehandlungssystem
EP2238321B1 (fr) Procede et appareil de commande pour controler un systeme de post-traitement des gaz d'echappement d'un moteur a combustion interne
DE102004001831B4 (de) Verfahren und System zur Überwachung eines Katalysatorwirkungsgrads und einer Sekundärlufteinblasung
DE112013003836T5 (de) Verfahren und System zum Feststellen einer Sensorfunktion für einen PM-Sensor
DE102016200158A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
DE102015200751B4 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
EP1364111B2 (fr) Procede permettant de determiner "on-borad" une grandeur de temperature
DE102016225758B4 (de) Verfahren und Vorrichtung zur Überwachung eines im Abgassystem einer Brennkraftmaschine angeordneten Partikelfilters und eines Sekundärluftsystems
EP1180210B1 (fr) Procede et dispositif pour commander un moteur a combustion interne equipe d'un systeme de retraitement des gaz d'echappement
DE102015200762A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
WO2020052866A1 (fr) Procédé pour effectuer un diagnostic fonctionnel d'un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion interne et dispositif de post-traitement des gaz d'échappement
DE102013218900A1 (de) Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
WO2020052867A1 (fr) Procédé pour effectuer un diagnostic fonctionnel d'un dispositif de post-traitement des gaz d'échappement d'un moteur à combustion interne et dispositif de post-traitement des gaz d'échappement
DE102007006487B4 (de) Verfahren zur Diagnose eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Abgassensors und Vorrichtung zur Durchführung des Verfahrens
DE102004018676B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19753304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19753304

Country of ref document: EP

Kind code of ref document: A1