WO2020052589A1 - 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统 - Google Patents

一种用于核电厂主蒸汽管道的声光结合泄漏监测系统 Download PDF

Info

Publication number
WO2020052589A1
WO2020052589A1 PCT/CN2019/105366 CN2019105366W WO2020052589A1 WO 2020052589 A1 WO2020052589 A1 WO 2020052589A1 CN 2019105366 W CN2019105366 W CN 2019105366W WO 2020052589 A1 WO2020052589 A1 WO 2020052589A1
Authority
WO
WIPO (PCT)
Prior art keywords
main steam
leakage monitoring
nuclear power
power plant
acoustic emission
Prior art date
Application number
PCT/CN2019/105366
Other languages
English (en)
French (fr)
Inventor
牛婷婷
江浩
严锦泉
刘春丽
施伟
夏栓
蔡友强
詹敏明
李飞
张铭旭
Original Assignee
上海核工程研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海核工程研究设计院有限公司 filed Critical 上海核工程研究设计院有限公司
Priority to EP19859751.0A priority Critical patent/EP3852121A4/en
Priority to US17/273,055 priority patent/US11823805B2/en
Publication of WO2020052589A1 publication Critical patent/WO2020052589A1/zh
Priority to ZA2021/01622A priority patent/ZA202101622B/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/022Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/017Inspection or maintenance of pipe-lines or tubes in nuclear installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/005Protection or supervision of installations of gas pipelines, e.g. alarm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/002Detection of leaks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of pipeline leakage monitoring.
  • the application of the LBB (Leakage before Breaking) criterion in the design of nuclear power plants requires that nuclear power plants have high pipeline leakage monitoring capabilities.
  • the leakage monitoring system can be used to find pipeline leaks in a timely and effective manner, and there is enough time to take corresponding measures to avoid further expansion of pipeline cracks leading to large breaks.
  • the leakage monitoring of main steam pipelines requires positioning and quantitative capabilities.
  • a sound and light combined leakage monitoring system for a main steam pipe of a nuclear power plant is particularly needed to solve the existing problems mentioned above.
  • the purpose of the present invention is to provide an acousto-optic combined leak monitoring system for a main steam pipe of a nuclear power plant.
  • the stress change of the main steam pipe is monitored in real time, and the leak is accurately and quickly found after the pipe leak Point and determine the amount of leakage to ensure the safe operation of nuclear power plants.
  • the invention relates to an acoustic-optical combined leakage monitoring system for a main steam pipe of a nuclear power plant, which includes an acoustic emission leakage monitoring circuit and a spectral leakage monitoring circuit, a signal input terminal of the acoustic emission leakage monitoring circuit and the spectral leakage monitoring.
  • the signal input terminals of the loop are respectively arranged at a plurality of detection points of the main steam pipeline, and the signal output terminal of the acoustic emission leakage monitoring circuit and the signal output terminal of the spectral leakage monitoring circuit are communicably connected to each other through a network switch.
  • the network switch is connected with a control unit and a display unit in this order.
  • a plurality of detection points are respectively arranged around the main steam pipe weld
  • the acoustic emission leakage monitoring circuit includes a plurality of acoustic emission sensors, signal amplifiers and data acquisition units installed around the main steam pipe weld.
  • the acoustic emission sensor is communicatively connected with the data acquisition unit through a signal amplifier.
  • the acoustic emission sensor, the signal amplifier, and the data acquisition unit are communicatively connected to each other through an armored optical fiber.
  • the data acquisition unit includes a chassis, a acquisition card, and an I / O card.
  • the acquisition card collects signals transmitted by the signal amplifier, and converts the signals into digital signals.
  • the I / O card converts the digital signals. To the network switch.
  • a plurality of detection points are respectively arranged around the main steam pipe weld
  • the spectrum leakage monitoring circuit includes a plurality of micro-optical fiber probes, laser transmitters and spectrum analyzers installed around the main steam pipe weld.
  • the micro-optical fiber probe is communicatively connected with a spectrum analyzer through a laser transmitter.
  • the miniature optical fiber probe, the laser transmitter and the spectrum analyzer are connected to each other through an armored optical fiber.
  • the micro-optical fiber probe is installed in a safety shell, and two ends of the micro-optical fiber probe are provided with optical fiber interfaces, a hollow air chamber is provided in the middle, and surrounding air can pass freely through the hollow air chamber, and collimating lenses are provided at both ends of the hollow air chamber.
  • the laser transmitter comprises a near-infrared diode laser, and performs high-frequency narrow-band laser scanning near a characteristic absorption peak wavelength of water molecules.
  • the spectrum analyzer includes an analysis module and a signal output port; the spectrum analyzer is installed outside the containment, and is connected to a miniature optical fiber probe in the containment through an armored optical fiber.
  • the acoustic and optical combined leak monitoring system for a main steam pipe of a nuclear power plant of the present invention realizes the diversity and redundancy of the main steam pipe leak monitoring method through the combination of acoustic emission and spectrometry.
  • the test results are more credible.
  • Direct monitoring of multiple measuring points of gaseous leaking steam in the containment environment has extremely low maintenance costs after installation.
  • Higher detection sensitivity and faster response time significantly increase the response speed after leak detection.
  • Provide greater safety margin judge the structural damage of the main steam pipeline during the crack propagation stage of the pipeline, make an early warning before the main steam pipeline leaks, and achieve the purpose of the present invention.
  • FIG. 1 is a functional block diagram of an acousto-optic combined leak monitoring system for a main steam pipe of a nuclear power plant according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of an acousto-optic combined leakage monitoring system for a main steam pipe of a nuclear power plant according to an embodiment of the present invention.
  • the main steam pipeline of a nuclear power plant is welded by multiple sections of pipelines, which has the characteristics of high thermal parameters, multiple welds, complicated stresses, and high safety requirements.
  • the acousto-optic combined leak monitoring system for a main steam pipe of a nuclear power plant of the present invention has an input end installed on the main steam pipe of the nuclear power plant, an output end connected to a network switch to output signal data, and records the signal data through a control system. And processing analysis, when it is found that there is a leak or the risk of leaks, an alarm is issued.
  • FIG. 1 is a functional block diagram of an acousto-optic combined leak monitoring system for a main steam pipe of a nuclear power plant according to an embodiment of the present invention.
  • the acoustic-optical combined leakage monitoring system for a main steam pipe of a nuclear power plant in this embodiment includes an acoustic emission leakage monitoring circuit 10 and a spectral leakage monitoring circuit 20.
  • the signal input terminal of the acoustic emission leakage monitoring circuit 10 and the signal input terminal of the spectral leakage monitoring circuit 20 are respectively arranged at a plurality of detection points 2 of the main steam pipe 1.
  • the signal output terminal of the acoustic emission leakage monitoring circuit 10 and the spectral leakage monitoring circuit 20 The signal output ends are connected to each other through a network switch 30, and the network switch 30 is connected to the control unit 40 and the display unit 50 in this order.
  • Acoustic emission leakage monitoring circuit 10 can detect pipeline stress changes at the early stage of pipeline structure changes through acoustic emission, and collect ultrasonic signals reflected from the pipeline to achieve stress monitoring; spectral leakage monitoring circuit 20 can detect by scanning and processing spectral signals Water vapor leakage from the main steam pipeline; the acoustic emission leakage monitoring circuit 10 and the spectral leakage monitoring circuit 20 transmit the collected signal data to the network switch 30, and the network switch 30 transmits the received signal data to the control unit 40, and the control unit 40 pairs The signal data is processed and analyzed and recorded, and the processed data is displayed by the display unit 50.
  • the control unit 40 When the data processed by the control unit 40 shows that the signal data collected by one or more of the plurality of detection points 2 is abnormal, that is, outside the normal value range, that is, the detection point may leak or there is a leak. Danger, the audible and visual alarm is issued by the display unit 50, indicating that there is a danger of leakage, and the specific detection position and number of the abnormal data are displayed. At this time, the operator receives the alarm and can take immediate action to accurately find the Troubleshoot and maintain the location of detection point 2 with abnormal data.
  • the acoustic emission leakage monitoring circuit 10 monitors the stress change of the main steam pipeline in real time, and the spectral leakage monitoring circuit 20 accurately and quickly finds the leak point after the pipeline leaks And determine the amount of leakage, to achieve the redundant setting of the main steam pipeline and diversified leakage monitoring, thereby ensuring the safe operation of nuclear power plants.
  • the acoustic emission leakage monitoring circuit 10 includes a plurality of acoustic emission sensors 11, a signal amplifier 12, a data acquisition unit 13, and an acoustic emission sensor 11 installed around each weld of the main steam pipe 1 in the thermal insulation layer.
  • the signal acquisition unit 12 and the data acquisition unit 13 are communicatively connected to each other.
  • the acoustic emission sensor 11, the signal amplifier 12 and the data acquisition unit 13 are preferably connected to each other through an armored optical fiber 14.
  • the acoustic emission sensor 11 sends the collected acoustic signals to the data acquisition unit 13 through the armored optical fiber 14 and the signal amplifier 12.
  • the armored optical fiber 14 is a high temperature resistant stainless steel armored optical fiber, which can be used for a long time at 400 ° C and meets the working environment requirements in the containment.
  • the acoustic emission sensor 11 uses a piezoelectric ceramic material, which can withstand the environmental radiation dose during the life of the power plant.
  • the acoustic emission sensor 11 has a working frequency range of 50kHz-300kHz, a sensitivity greater than -70dB, and can work for a long time in a high temperature environment below 400 ° C.
  • the signal amplifier 12 is located between the acoustic emission sensor 11 and the data acquisition unit 13, and is configured to amplify the signal detected by the acoustic emission sensor 11 and transmit the signal to the data acquisition unit 13.
  • a signal conditioner 15 may be provided between the signal amplifier 12 and the data collector 13.
  • the signal data is amplified by the signal amplifier 12 and then transmitted to the signal conditioner 15.
  • the signal conditioner 15 performs non-linear compensation level conversion on the received signal, which meets the requirements of remote data acquisition.
  • the data acquisition unit 13 includes a chassis, a acquisition card, and an I / O card.
  • the acquisition card collects signals transmitted by the signal amplifier 12 and converts the signals into digital signals.
  • the I / O card transmits the digital signals to the network switch 30.
  • the data acquisition unit 13 uses an independent acquisition card to complete signal acquisition according to the measurement point area, thereby improving the security of system operation.
  • the acoustic emission sensor 11 is installed around the welding seam of the main steam pipe 1 in the insulation layer.
  • the acoustic emission sensor 11 can be used in the process of cracking, crack propagation, and pipe rupture of the main steam pipe
  • the signal is amplified by the amplifier 12 and sent to the data acquisition unit 13 through the signal line.
  • the data acquisition unit 13 After the data acquisition unit 13 receives the signal data, it transmits the signal data to the network switch 30, and the network switch 30 will receive the received signal.
  • the signal data is transmitted to the control unit 40.
  • the control unit 40 processes and analyzes and records the signal data, and displays the processed data through the display unit 50, thereby realizing the detection of the leakage position and the leakage amount of the main steam pipe.
  • the spectral leakage monitoring circuit 20 includes a plurality of micro-optical fiber probes 21, laser transmitters 22, and a spectrum analyzer 23 installed around each weld of the main steam pipe in the thermal insulation layer.
  • the laser transmitter 22 and the spectrum analyzer 23 are communicatively connected to each other.
  • the micro-optical fiber probe 21, the laser transmitter 22 and the spectrum analyzer 23 are preferably connected to each other through an armored optical fiber 24 in communication.
  • the armored optical fiber 24 is a high temperature resistant stainless steel armored optical fiber, which can be used for a long time at 400 ° C and meets the working environment requirements in the containment.
  • the miniature optical fiber probe 21 is used to detect water vapor leakage.
  • An optical fiber interface is provided at both ends, and a hollow air chamber is provided in the middle.
  • the surrounding gas can pass freely through the hollow air chamber.
  • Collimating lenses are provided at both ends of the hollow air chamber.
  • the main material of the micro-optical fiber probe 21 is 316SS, and the lens is made of quartz, which can work for a long time in a high temperature environment below 400 ° C, and meets the working requirements in the containment of a nuclear power plant.
  • the laser transmitter 22 is used to emit laser light of a specific wavelength, and a near-infrared diode laser is used as a light source.
  • the laser transmitter 22 implements high-frequency narrow-band laser scanning around 1575 nm by changing temperature and injected current. At this wavelength, the detection sensitivity of H 2 O can reach 1 ppm / meter of light path, the optical path of the micro-probe is about 20 mm, and its detection sensitivity is about 50 ppm, that is, the volume percentage is 0.05%, and the upper detection limit is 50%.
  • the spectrum analyzer 23 is used to receive and process spectral signals, including an analysis module and a signal output port.
  • the spectrum analyzer 23 is connected to the miniature optical fiber probe 21 inside the containment through the armored optical fiber 24 outside the containment.
  • the spectrum analyzer 23 is used to lock the gaseous water absorption peak by using a reference cell, and qualitatively and quantitatively analyze the gaseous water absorption peak signal.
  • the analyzer has no system drift and does not need calibration for life.
  • the spectrum analyzer 23 uses a fiber-optic output laser, and the analyzer is configured as a multi-channel analyzer system, which can realize multi-point simultaneous detection and real-time monitoring on the spot, and the response time is within 1 min.
  • the spectral leakage monitoring circuit 20 of this embodiment is installed around each welding seam of the main steam pipeline in the thermal insulation layer.
  • the water vapor leakage is detected by the micro-optical fiber probe 21, and then a laser with a specific wavelength is emitted by the laser transmitter 22 for laser scanning, and the scanning result is scanned.
  • the signal is transmitted to the spectrum analyzer 23 for spectral signal analysis processing.
  • the processed signal data is transmitted to the network switch 30.
  • the network switch 30 transmits the received signal data to the control unit 40.
  • the control unit 40 processes, analyzes, and records the signal data.
  • the processed data is displayed by the display unit 50, thereby detecting the leakage position and the leakage amount of the main steam pipeline.
  • the acousto-optic combined leakage monitoring system for the main steam pipeline of the nuclear power plant in the above embodiment is provided with an acoustic emission leakage monitoring circuit 10 and a spectral leakage monitoring circuit 20 on the main steam pipeline, and the signal data of each circuit is received through the network switch 30 and passed through The control unit 40 performs data analysis processing.
  • the network switch 30 may receive the signals of the acoustic emission leakage monitoring circuit 10 and the spectral leakage monitoring circuit 20 respectively, and analyze and process the signal data through the control unit 40, and may also receive the acoustic emission leakage monitoring circuit 10 and the spectral leakage monitoring circuit 20 at the same time.
  • the integrated signal is received and processed by the control unit 40 to realize the redundant setting of the main steam pipeline and the diversified leak monitoring. After a leak occurs in the pipeline, the leak point can be quickly and accurately found and the amount of leakage can be determined.
  • FIG. 2 is a schematic flowchart of an acousto-optic combined leakage monitoring system for a main steam pipe of a nuclear power plant according to an embodiment of the present invention.
  • the acousto-optic combined leakage monitoring system for a main steam pipe of a nuclear power plant uses the following specific process:
  • Step 1 Set up multiple detection points on the main steam pipeline.
  • the main steam pipeline 1 of a nuclear power plant is welded by multiple sections of pipelines, which has the characteristics of high thermal parameters, multiple welds, complicated stresses, and high safety requirements.
  • Step 2 Perform acoustic emission leakage monitoring and spectral leakage monitoring on multiple detection points, respectively.
  • Acoustic emission leakage monitoring includes: performing ultrasonic signal detection at each of the plurality of detection points; amplifying the detected signals and performing data collection.
  • Acoustic emission leak detection circuit detects pipeline cracks.
  • Acoustic emission sensors can be used to detect pipeline stress changes in the early stages of pipeline structure changes. The ultrasonic signals reflected by the pipeline are collected, the signals are amplified, and the signals are processed to achieve stress monitoring. Determine the amount of leakage.
  • Spectral leak monitoring includes: water vapor detection at the multiple detection points; using a light generator to emit high-frequency scanning light signals to perform laser scanning of vaporous water molecules around the pipeline; receiving and processing the spectral signals obtained by the laser scanning , Comparing and judging the attenuated optical signal, judging whether there is leakage through the attenuation spectrum, and comparing with the optical attenuation database under different humidity, so as to obtain the air humidity around each optical probe, and judge the leakage amount according to the air humidity.
  • step 3 the output signal of the acoustic emission monitoring and the output signal of the spectral leakage monitoring are received and communicated.
  • step 4 the received output signal is processed to determine whether there are leaks at multiple detection points on the main steam pipeline and / or there is a risk of leakage. If so, assess the amount of leakage, determine the location of the leak, and issue a leak warning.
  • the operator After receiving the alarm, the operator can take immediate action to accurately find the location of the detection point 2 with abnormal data for troubleshooting and maintenance.
  • the acoustic-optical combined leakage monitoring system for a main steam pipeline of a nuclear power plant of the present invention realizes the diversity and redundancy of the main steam pipeline leakage monitoring method through the combination of acoustic emission and spectrometry, and makes the detection results more reliable.
  • Direct monitoring of multiple measuring points of gaseous leaking steam in the containment environment low maintenance cost after installation; higher detection sensitivity, faster response time, significantly improving the response speed after leak detection, and providing greater safety margin ; To judge the structural damage of the main steam pipeline during the crack propagation stage of the pipeline, and to give an early warning before the main steam pipeline leaks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Examining Or Testing Airtightness (AREA)
  • General Physics & Mathematics (AREA)

Abstract

一种用于核电厂主蒸汽管道(1)的声光结合泄漏监测系统,系统包括声发射泄漏监测回路(10)和光谱泄漏监测回路(20),声发射泄漏监测回路(10)的信号输入端和光谱泄漏监测回路(20)的信号输入端分别设置在主蒸汽管道(1)的探测点(2),声发射泄漏监测回路(10)的信号输出端和光谱泄漏监测回路(20)的信号输出端通过网络交换机(30)互相通讯连接,网络交换机(30)依次连接有控制单元(40)和显示单元(50)。通过声发射与光谱法的结合,在主蒸汽管道(1)泄漏前作出预警,实现主蒸汽管道(1)泄漏监测方法的多样性及冗余性,使检测结果更为可信,安装后维护成本极低,检测灵敏度更高,响应时间更快,显著地提升发现泄漏后的反应速度,提供更大的安全裕量。

Description

一种用于核电厂主蒸汽管道的声光结合泄漏监测系统 技术领域
本发明涉及管道泄漏监测技术领域。
背景技术
核电厂设计中关于主蒸汽管道LBB(破前先漏)准则的应用,要求核电厂具备较高管道泄漏监测能力。利用泄漏监测系统,能够及时有效地发现管道的泄漏,并有足够的时间采取相应的处理措施,从而避免管道裂纹进一步扩展导致大破口,主蒸汽管道泄漏监测要求具有定位及定量能力。
目前,核电厂设计中普遍应用的主蒸汽管道泄漏监测技术,如安全壳地坑液位测量等响应时间较长,定位及定量精度较差,因此需要在使用LBB技术的主蒸汽管道上增加泄漏监测系统,以满足LBB的要求,实现监测方法多样性。
因此,特别需要一种用于核电厂主蒸汽管道的声光结合泄漏监测系统,以解决上述现有存在的问题。
发明内容
本发明的目的在于提供一种用于核电厂主蒸汽管道的声光结合泄漏监测系统,针对现有技术的不足,实时监测主蒸汽管道的应力变化,并在管道发生泄漏后准确快速找出泄漏点并确定泄漏量,从而保障核电厂的安全运行。
本发明所解决的技术问题可以采用以下技术方案来实现:
本发明涉及一种用于核电厂主蒸汽管道的声光结合泄漏监测系统,它包括声发射泄漏监测回路和光谱泄漏监测回路,所述声发射泄漏监测回路的信号输入端和所述光谱泄漏监测回路的信号输入端分别设置在所述主蒸汽管道的多个探测点,所述声发射泄漏监测回路的信号输出端和所述光谱泄漏监测回路的信号输出端通过网络交换机互相通讯连接,所述网络交换机依次连接有控制单元和显示单元。
在本发明的一个实施例中,多个探测点分别设置在主蒸汽管道焊缝周围,声发射泄漏监测回路包括多个安装在主蒸汽管道焊缝周围的声发射传感器、信号放大器和数据采集单元,所述声发射传感器通过信号放大器与数据采集单元互相通讯连接。
优选地,所述声发射传感器、信号放大器和数据采集单元之间通过铠装光纤互相通讯连接。
优选地,所述数据采集单元包括机箱、采集卡和I/O卡所述采集卡采集所述信号放大器传送的信号,并将信号转换为数字信号,所述I/O卡将所述数字信号传送给所述网络交换机。
在本发明的一个实施例中,多个探测点分别设置在主蒸汽管道焊缝周围,光谱泄漏监测回路包括多个安装在主蒸汽管道焊缝周围的微型光纤探头、激光发射器和光谱分析仪,所述微型光纤探头通过激光发射器与光谱分析仪互相通讯连接。
优选地,所述微型光纤探头、激光发射器和光谱分析仪之间通过铠装光纤互相通讯连接。
优选地,所述微型光纤探头安装在安全壳内,其两端设有光纤接口,中间设有镂空气室,周围气体可自由通过镂空气室,镂空气室两端设有准直透镜。
优选地,所述激光发射器包括近红外二极管激光器,在水分子特征吸收峰波长附近进行高频窄波段激光扫描。
优选地,所述光谱分析仪包括分析模块和信号输出端口;所述光谱分析仪安装在安全壳以外,通过铠装光纤与安全壳内微型光纤探头相连接。
本发明的用于核电厂主蒸汽管道的声光结合泄漏监测系统,与现有技术相比,通过声发射与光谱法的结合,实现主蒸汽管道泄漏监测方法的多样性及冗余性,使检测结果更为可信,在安全壳环境下对气态泄漏蒸汽的多测点直接监测,安装后维护成本极低;检测灵敏度更高、更快的响应时间,显著地提升发现泄漏后的反应速度,提供更大的安全裕量;在管道裂纹扩展阶段对主蒸汽管道结构损伤进行判断,在主蒸汽管道泄漏前作出预警,实现本发明的目的。
本发明的特点可参阅本案图式及以下较好实施方式的详细说明而获得清楚地了解。
附图说明
图1为本发明一个实施例的用于核电厂主蒸汽管道的声光结合泄漏监测系统的功能框图;
图2为本发明一个实施例的用于核电厂主蒸汽管道的声光结合泄漏监测系统的流程示意图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
核电厂主蒸汽管道由多段管路焊接而成,其具有热工参数高、焊缝多、受力复杂的特点,具有较高的安全性要求。本发明的用于核电厂主蒸汽管道的声光结合泄漏监测系统,其输入端安装在核电厂主蒸汽管道上,输出端连接至网络交换机进行信号数据输出,并通过控制系统对信号数据进行记录和处理分析,当发现有发生泄漏或发生泄漏的危险时,发出警报。
图1为本发明一个实施例的用于核电厂主蒸汽管道的声光结合泄漏监测系统的功能框图。
如图1所示,本实施例的用于核电厂主蒸汽管道的声光结合泄漏监测系统,包括声发射泄漏监测回路10和光谱泄漏监测回路20。在主蒸汽管道1上设有多个探测点2,由于管道焊缝部位易产生应力集中,且对焊接质量和接管的补强都有较高的要求,因此管道泄漏通常发生在管道的焊缝处,因此多个探测点2分别优选地设置于主蒸汽管道1的各个焊缝周围。
声发射泄漏监测回路10的信号输入端和光谱泄漏监测回路20的信号输入端分别设置在主蒸汽管道1的多个探测点2,声发射泄漏监测回路10的信号输出端和光谱泄漏监测回路20的信号输出端通过网络交换机30互相通讯连接,网络交换机30依次连接有控制单元40和显示单元50。
声发射泄漏监测回路10通过声发射可在管道结构变化初期监测出管道应力变化,并对管道反射的超声波信号进行采集,实现应力监测;光谱泄漏监测回路20通过激光扫描并处理光谱信号可探测出主蒸汽管道的水蒸汽泄漏;声 发射泄漏监测回路10和光谱泄漏监测回路20将采集的信号数据传输给网络交换机30,网络交换机30将接收到的信号数据传输给控制单元40,控制单元40对信号数据进行处理分析和记录,并通过显示单元50对处理得到的数据进行显示。
当控制单元40处理得到的数据显示多个探测点2中的其中某一个或多个探测点2所采集的信号数据异常,即超出正常值范围,即该探测点可能发生泄漏或者有发生泄漏的危险,显示单元50发出声光报警,提示有泄漏危险,并显示具体的数据异常的探测点位置和编号,此时,操作人员接到报警,可立即采取行动,准确找到显示单元50所显示的数据异常的探测点2的位置,进行故障排查和维护。
本实施例的用于核电厂主蒸汽管道的声光结合泄漏监测系统,声发射泄漏监测回路10实时监测主蒸汽管道的应力变化,光谱泄漏监测回路20在管道发生泄漏后准确快速找出泄漏点并确定泄漏量,实现主蒸汽管道的冗余设置及多样性泄漏监测,从而保障核电厂的安全运行。
进一步地,在本实施例中,声发射泄漏监测回路10包括多个安装在保温层内主蒸汽管道1各焊缝周围的声发射传感器11、信号放大器12和数据采集单元13,声发射传感器11通过信号放大器12与数据采集单元13互相通讯连接。
声发射传感器11、信号放大器12和数据采集单元13之间优选通过铠装光纤14互相通讯连接。声发射传感器11通过铠装光纤14及信号放大器12,将采集声信号送至数据采集单元13。
铠装光纤14为耐高温不锈钢铠装光纤,可在400℃下长久使用,满足安全壳内工作环境要求。
声发射传感器11中采用压电陶瓷材料,可耐受电厂寿期内的环境辐照剂量。声发射传感器11工作频率范围为50kHz-300kHz,灵敏度大于-70dB,能够在400℃以下的高温环境长久工作。
信号放大器12位于声发射传感器11与数据采集单元13之间,用于将声发射传感器11检测的信号放大后传输到数据采集单元13。
如图1所示,在信号放大器12和数据采集器13之间也可以设置信号调整 器15。信号数据经过信号放大器12放大之后,传输给信号调整器15。信号调整器15对接收的信号进行非线性补偿的电平转换,满足了远程数据采集的需求。
数据采集单元13包括机箱、采集卡和I/O卡,采集卡采集信号放大器12传送的信号,并将信号转换为数字信号,I/O卡将所述数字信号传送给网络交换机30。数据采集单元13根据测点区域,采用独立的采集卡完成信号采集,提高系统运行的安全性。
本实施例的声发射泄漏监测回路10,将声发射传感器11安装在保温层内主蒸汽管道1的焊缝周围,声发射传感器11可在主蒸汽管道产生裂纹、裂纹扩展、管道破裂的过程中探测到特定频率的超声波信号,信号经过放大器12放大后通过信号线送至数据采集单元13,数据采集单元13接收到信号数据后,将信号数据传输给网络交换机30,网络交换机30将接收到的信号数据传输给控制单元40,控制单元40对信号数据进行处理分析和记录,并通过显示单元50对处理得到的数据进行显示,从而实现了主蒸汽管道的泄漏位置及泄漏量的检测。
进一步地,在本实施例中,光谱泄漏监测回路20包括多个安装在保温层内主蒸汽管道各焊缝周围的微型光纤探头21、激光发射器22和光谱分析仪23,微型光纤探头21通过激光发射器22与光谱分析仪23互相通讯连接。
微型光纤探头21、激光发射器22和光谱分析仪23之间优选通过铠装光纤24互相通讯连接。铠装光纤24为耐高温不锈钢铠装光纤,可在400℃下长久使用,满足安全壳内工作环境要求。
微型光纤探头21用于探测水蒸汽泄漏,两端设有光纤接口,中间设有镂空气室,周围气体可自由通过镂空气室,镂空气室两端设有准直透镜。微型光纤探头21的主体材质是316SS,透镜是石英材质,能够在400℃以下的高温环境长久工作,满足核电厂安全壳内工作要求。
激光发射器22用于发射特定波长激光,使用近红外二极管激光器作为光源,激光发射器22通过改变温度及注入电流,在1575nm附近实现高频窄波段的激光扫描。在此波长处H 2O的检测灵敏度可以达到1ppm/每米光程,微型探头的光程约为20mm,其检测灵敏度大约为50ppm,即体积百分含量为 0.05%,检测上限为50%。
光谱分析仪23用于接收并处理光谱信号,包括分析模块和信号输出端口;光谱分析仪23在安全壳以外,通过铠装光纤24与安全壳内微型光纤探头21相连接。
光谱分析仪23用于采用参比池锁定气态水吸收峰,定性和定量分析气态水吸收峰信号,分析仪无系统漂移,终身无需标定。光谱分析仪23使用光纤输出激光器,分析仪配置成多通道的分析仪系统,可实现现场多点同时检测与实时监测,响应时间在1min以内。
本实施例的光谱泄漏监测回路20安装在保温层内主蒸汽管道各焊缝周围,通过微型光纤探头21探测水蒸汽泄漏,再通过激光发射器22发射特定波长激光进行激光扫描,并将扫描结果传输给光谱分析仪23进行光谱信号分析处理,处理后的信号数据传输给网络交换机30,网络交换机30将接收到的信号数据传输给控制单元40,控制单元40对信号数据进行处理分析和记录,并通过显示单元50对处理得到的数据进行显示,从而实现了主蒸汽管道的泄漏位置及泄漏量的检测。
以上实施例的用于核电厂主蒸汽管道的声光结合泄漏监测系统,在主蒸汽管道上设置声发射泄漏监测回路10和光谱泄漏监测回路20,通过网络交换机30接收各回路的信号数据并通过控制单元40进行数据分析处理。网络交换机30可分别接收声发射泄漏监测回路10和光谱泄漏监测回路20的信号,并通过控制单元40分别对信号数据进行分析处理,也可以同时接收声发射泄漏监测回路10和光谱泄漏监测回路20的信号,并通过控制单元40将接收的信号数据进行整合分析处理,实现主蒸汽管道的冗余设置及多样性泄漏监测,在管道发生泄漏后更快速准确找出泄漏点并确定泄漏量。
图2为本发明一个实施例的用于核电厂主蒸汽管道的声光结合泄漏监测系统的流程示意图。
如图2所示,本发明的用于核电厂主蒸汽管道的声光结合泄漏监测系统,其使用的具体流程如下:
步骤1,在主蒸汽管道上设置多个探测点。
核电厂主蒸汽管道1由多段管路焊接而成,其具有热工参数高、焊缝多、 受力复杂的特点,具有较高的安全性要求。在主蒸汽管道1上设有多个探测点2,由于管道焊缝部位易产生应力集中,且对焊接质量和接管的补强都有较高的要求,因此管道泄漏通常发生在管道的焊缝处,因此多个探测点2分别优选地设置于主蒸汽管道1的各个焊缝周围。
步骤2,对多个探测点分别进行声发射泄漏监测和光谱泄漏监测。
声发射泄漏监测包括:在所述多个探测点分别进行超声波信号探测;对探测的信号进行放大并进行数据采集。声发射泄漏监测回路检测管道裂纹,通过声发射传感器可在管道结构变化初期监测出管道应力变化,并对管道反射的超声波信号进行采集,将信号放大后并对信号进行处理,实现应力监测,从而判断泄漏量。
光谱泄漏监测包括:在所述多个探测点分别水蒸汽探测;利用光发生器发射高频扫描光信号,对管道周围汽态水分子进行激光扫描;接收并处理所述激光扫描得到的光谱信号,对衰减后的光信号进行对比判定,通过衰减光谱判定是否存在泄漏,并与不同湿度下光衰减数据库进行对比,从而得到各光学探头周围空气湿度,根据空气湿度从而判断泄漏量。
步骤3,将所述声发射泄漏监测的输出信号和所述光谱泄漏监测的输出信号进行接收并通讯。
步骤4,对接收的输出信号进行处理,判断主蒸汽管道上的多个探测点位置是否发生泄漏和/或有泄漏的风险,若是,评估泄漏量,并得出泄漏位置,发出泄漏预警。
操作人员接到报警,可立即采取行动,准确找到数据异常的探测点2的位置,进行故障排查和维护。
本发明的用于核电厂主蒸汽管道的声光结合泄漏监测系统,通过声发射与光谱法的结合,实现主蒸汽管道泄漏监测方法的多样性及冗余性,使检测结果更为可信,在安全壳环境下对汽态泄漏蒸汽的多测点直接监测,安装后维护成本低;检测灵敏度更高、更快的响应时间,显著提升发现泄漏后的反应速度,提供更大的安全裕量;在管道裂纹扩展阶段对主蒸汽管道结构损伤进行判断,在主蒸汽管道泄漏前作出预警。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业 的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (9)

  1. 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统,其特征在于,包括声发射泄漏监测回路和光谱泄漏监测回路;
    所述声发射泄漏监测回路的信号输入端和所述光谱泄漏监测回路的信号输入端分别设置在所述主蒸汽管道的多个探测点;
    所述声发射泄漏监测回路的信号输出端和所述光谱泄漏监测回路的信号输出端通过网络交换机互相通讯连接;
    所述网络交换机依次连接有控制单元和显示单元。
  2. 如权利要求1所述的用于核电厂主蒸汽管道的声光结合泄漏监测系统,其特征在于,
    所述多个探测点分别设置在主蒸汽管道焊缝周围,
    所述声发射泄漏监测回路包括多个安装在主蒸汽管道焊缝周围的声发射传感器、信号放大器和数据采集单元,
    所述声发射传感器通过信号放大器与数据采集单元互相通讯连接。
  3. 如权利要求2所述的用于核电厂主蒸汽管道的声光结合泄漏监测系统,其特征在于,所述声发射传感器、信号放大器和数据采集单元之间通过铠装光纤互相通讯连接。
  4. 如权利要求2所述的用于核电厂主蒸汽管道的声光结合泄漏监测系统,其特征在于,所述数据采集单元包括机箱、采集卡和I/O卡,所述采集卡采集所述信号放大器传送的信号,并将信号转换为数字信号,所述I/O卡将所述数字信号传送给所述网络交换机。
  5. 如权利要求1所述的用于核电厂主蒸汽管道的声光结合泄漏监测系统,其特征在于,
    所述多个探测点分别设置在主蒸汽管道焊缝周围;
    所述光谱泄漏监测回路包括多个安装在主蒸汽管道焊缝周围的微型光纤探头、激光发射器和光谱分析仪;
    所述微型光纤探头通过激光发射器与光谱分析仪互相通讯连接。
  6. 如权利要求5所述的用于核电厂主蒸汽管道的声光结合泄漏监测系统,其特征在于,所述微型光纤探头、激光发射器和光谱分析仪之间通过铠装光纤互相通讯连接。
  7. 如权利要求6所述的用于核电厂主蒸汽管道的声光结合泄漏监测系统,其特征在于,所述微型光纤探头安装在安全壳内,其两端设有光纤接口,中间设有镂空气室,周围气体可自由通过所述镂空气室,所述镂空气室两端设有准直透镜。
  8. 如权利要求6所述的用于核电厂主蒸汽管道的声光结合泄漏监测系统,其特征在于,所述激光发射器包括近红外二极管激光器,在水分子特征吸收峰波长附近进行高频窄波段激光扫描。
  9. 如权利要求6所述的用于核电厂主蒸汽管道的声光结合泄漏监测系统,其特征在于,所述光谱分析仪包括分析模块和信号输出端口;所述光谱分析仪安装在安全壳以外,通过铠装光纤与安全壳内微型光纤探头相连接。
PCT/CN2019/105366 2018-09-12 2019-09-11 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统 WO2020052589A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19859751.0A EP3852121A4 (en) 2018-09-12 2019-09-11 ACUSTO-OPTICAL LEAK MONITORING SYSTEM FOR A MAIN STEAM PIPELINE OF A NUCLEAR POWER PLANT
US17/273,055 US11823805B2 (en) 2018-09-12 2019-09-11 Acousto-optic leakage monitoring system for nuclear power plant main steam pipeline
ZA2021/01622A ZA202101622B (en) 2018-09-12 2021-03-10 Acousto-optic leakage monitoring system for nuclear power plant main steam pipeline

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811062972.8A CN109087720A (zh) 2018-09-12 2018-09-12 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统
CN201811062972.8 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020052589A1 true WO2020052589A1 (zh) 2020-03-19

Family

ID=64841460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105366 WO2020052589A1 (zh) 2018-09-12 2019-09-11 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统

Country Status (5)

Country Link
US (1) US11823805B2 (zh)
EP (1) EP3852121A4 (zh)
CN (1) CN109087720A (zh)
WO (1) WO2020052589A1 (zh)
ZA (1) ZA202101622B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111623935A (zh) * 2020-06-08 2020-09-04 陕西卫峰核电子有限公司 基于近红外光谱法的核电站主蒸汽管道泄露监测方法
CN115662665A (zh) * 2022-09-09 2023-01-31 中国核动力研究设计院 一种压水核反应堆承压容器泄漏监测方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109087720A (zh) * 2018-09-12 2018-12-25 上海核工程研究设计院有限公司 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统
US11519812B2 (en) 2019-09-12 2022-12-06 Flow International Corporation Acoustic emissions monitoring of high pressure systems
CN112599260A (zh) * 2020-12-09 2021-04-02 中广核研究院有限公司 核动力设备的健康监测系统、方法、装置和计算机设备
CN114234056B (zh) * 2021-11-30 2023-11-10 武汉理工大学 一种分布式光纤声波传感管道泄漏监测系统与方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060225507A1 (en) * 2003-01-13 2006-10-12 Paulson Peter O Pipeline monitoring system
CN202598147U (zh) * 2012-05-04 2012-12-12 中国石油天然气股份有限公司 一种基于传感光纤的天然气管道泄漏监测系统
CN103836348A (zh) * 2014-03-24 2014-06-04 南开大学 基于光纤光栅的油气管线泄漏检测方法及装置
CN103968257A (zh) * 2014-05-26 2014-08-06 青岛厚科化学有限公司 一种基于网格化光纤传感器的管道监测系统及其方法
CN104977298A (zh) * 2015-06-13 2015-10-14 李洋 一种旋转式光学和声学合并成像探头和导管
CN106104246A (zh) * 2014-03-26 2016-11-09 通用显示器公司 超声气体泄露检测器和测试方法
CN106287238A (zh) * 2016-08-09 2017-01-04 华北科技学院 一种天然气管道泄漏检测装置
CN109087720A (zh) * 2018-09-12 2018-12-25 上海核工程研究设计院有限公司 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849655A (en) * 1972-12-15 1974-11-19 Combustion Eng Light water reactor primary coolant leakage monitor
US3921440A (en) * 1975-01-02 1975-11-25 Air Prod & Chem Ultrasonic pipe testing system
DE2557992C3 (de) * 1975-12-22 1978-06-29 Kraftwerk Union Ag, 4330 Muelheim Prüfsystemträger zum Prüfen des AnschluBstutzenbereiches bei Druckbehältern, insbesondere Reaktordruckbehältern von Kernkraftwerken mit Ultraschall
DE3036951C2 (de) * 1980-09-30 1982-11-25 Kraftwerk Union AG, 4330 Mülheim Verfahren zur Schallemissionsprüfung von aus Stahl bestehenden Behältern oder Rohrleitungen, insbesondere für Kernreaktoranlagen
JPS58168934A (ja) * 1982-03-31 1983-10-05 Hitachi Ltd 流体の漏洩検出方法とその装置
DE3336245A1 (de) * 1983-10-05 1985-04-25 Kraftwerk Union AG, 4330 Mülheim Verfahren zum ermitteln einer leckstelle an druckfuehrenden behaeltern und einrichtung dazu
RU2132510C1 (ru) * 1997-04-03 1999-06-27 Производственное объединение "МАЯК" Способ диагностики течей в арматуре, трубопроводах, сосудах давления и устройство для его осуществления
KR100807441B1 (ko) * 2000-02-24 2008-02-25 동경 엘렉트론 주식회사 가스 누설 검지 시스템, 가스 누설 검지 방법 및 반도체제조 장치
DE10140174B4 (de) * 2001-08-22 2005-11-10 Leica Microsystems Semiconductor Gmbh Koordinaten-Messtisch und Koordinaten-Messgerät
CN100374776C (zh) * 2006-04-14 2008-03-12 北京工业大学 基于分布式光纤声学传感技术的管道泄漏监测装置及方法
KR100984020B1 (ko) * 2008-11-13 2010-09-28 한국원자력연구원 원자로 시스템의 중수누설 검지장치 및 이를 이용한 중수누설 검지방법
KR101063658B1 (ko) * 2009-05-06 2011-09-07 한국수력원자력 주식회사 보상 능동형 음향누출감지 방법 및 장치
KR101026236B1 (ko) * 2009-12-09 2011-03-31 한국원자력연구원 레이저유도 플라즈마 스펙트럼을 이용한 원자로 냉각수 누설 감지 시스템 및 방법
CN202252866U (zh) * 2011-09-14 2012-05-30 中国石油天然气集团公司 一种天然气管道泄漏光纤监测传感器的复用/解复用系统
KR101463444B1 (ko) * 2013-04-11 2014-11-19 한국원자력연구원 원자로 용기 헤드의 냉각재 누설 검지 장치 및 이를 이용한 냉각재 누설 검지 방법
WO2015051225A1 (en) * 2013-10-03 2015-04-09 Schlumberger Canada Limited Pipe damage assessment system and method
EP3081000A1 (de) * 2013-12-11 2016-10-19 AREVA GmbH Übertragungssystem für ein kernkraftwerk und zugehöriges verfahren
CN204420586U (zh) * 2014-12-16 2015-06-24 青岛派科森光电技术股份有限公司 基于双Sagnac双波长光纤干涉仪的管道泄漏监测装置
CN106678551A (zh) * 2017-03-06 2017-05-17 中国石油大学(华东) 一种高压co2管道泄漏检测系统及方法
CN106958742A (zh) * 2017-03-08 2017-07-18 武汉理工大学 多参量的光纤光栅传感管道健康监测系统
CN108506732A (zh) 2018-04-25 2018-09-07 江苏太平橡胶股份有限公司 输油管道防泄漏监测系统
CN209747139U (zh) * 2018-09-12 2019-12-06 上海核工程研究设计院有限公司 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060225507A1 (en) * 2003-01-13 2006-10-12 Paulson Peter O Pipeline monitoring system
CN202598147U (zh) * 2012-05-04 2012-12-12 中国石油天然气股份有限公司 一种基于传感光纤的天然气管道泄漏监测系统
CN103836348A (zh) * 2014-03-24 2014-06-04 南开大学 基于光纤光栅的油气管线泄漏检测方法及装置
CN106104246A (zh) * 2014-03-26 2016-11-09 通用显示器公司 超声气体泄露检测器和测试方法
CN103968257A (zh) * 2014-05-26 2014-08-06 青岛厚科化学有限公司 一种基于网格化光纤传感器的管道监测系统及其方法
CN104977298A (zh) * 2015-06-13 2015-10-14 李洋 一种旋转式光学和声学合并成像探头和导管
CN106287238A (zh) * 2016-08-09 2017-01-04 华北科技学院 一种天然气管道泄漏检测装置
CN109087720A (zh) * 2018-09-12 2018-12-25 上海核工程研究设计院有限公司 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3852121A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111623935A (zh) * 2020-06-08 2020-09-04 陕西卫峰核电子有限公司 基于近红外光谱法的核电站主蒸汽管道泄露监测方法
CN111623935B (zh) * 2020-06-08 2022-01-25 陕西卫峰核电子有限公司 基于近红外光谱法的核电站主蒸汽管道泄露监测方法
CN115662665A (zh) * 2022-09-09 2023-01-31 中国核动力研究设计院 一种压水核反应堆承压容器泄漏监测方法及系统
CN115662665B (zh) * 2022-09-09 2024-01-30 中国核动力研究设计院 一种压水核反应堆承压容器泄漏监测方法及系统

Also Published As

Publication number Publication date
CN109087720A (zh) 2018-12-25
EP3852121A4 (en) 2022-06-15
US20210343434A1 (en) 2021-11-04
US11823805B2 (en) 2023-11-21
ZA202101622B (en) 2022-07-27
EP3852121A1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
WO2020052589A1 (zh) 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统
CN205374298U (zh) 基于tdlas的痕量气体浓度检测装置
CN111141460A (zh) 一种基于人工智能感官的装备气体泄漏监测系统及方法
CN103792206B (zh) 在线检测gis中sf6分解组分的内置红外气体传感器
CN110542839B (zh) 用于sf6气体绝缘设备的全光学绝缘故障监测系统
CN102661918A (zh) 非共振光声光谱检测分析装置
CN104613321A (zh) 基于分布式光纤测温的核电厂管道泄漏探测装置及方法
CN104165880A (zh) 一种变压器油中溶解气体的在线检测方法
CN112730383B (zh) 一种用于在线检测的光纤阵列libs探测系统
CN109087719A (zh) 一种安全壳内主蒸汽管道泄漏监测系统
CN103940777A (zh) 便携式检测sf6分解组分红外激光气体传感器
CN104949915A (zh) 一种基于光纤布喇格光栅的油浸式变压器故障定位装置
CN102346133A (zh) 煤矿瓦斯监测装置和监测方法
CN209747139U (zh) 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统
CN112903628A (zh) 一种负压状态下痕量气体检测装置及其检测方法
CN109239008B (zh) 一种基于微纳光纤倏逝场的油浸式变压器故障检测装置
CN102954949A (zh) 一种多路组网同时监测煤矿瓦斯浓度的系统
TR202022551T (tr) Nükleer Santraldeki Ana Buhar Boru Hattı İçin Bir Akusto-Optik Sızıntı İzleme Sistemi
CN114607944A (zh) 一种天然气管道泄漏监测装置及方法
CN209461163U (zh) 一种安全壳内主蒸汽管道泄漏监测系统
JP2783753B2 (ja) 微少漏洩ガス雰囲気下での新規漏洩源の検知方法
CN206496874U (zh) 一种基于光纤的水冷器在线泄漏监测仪
CN202794114U (zh) 一种用于高温高压水环境下的波导装置
JP2021189155A (ja) 遠隔点検が可能な水晶温度計と温度測定システム及び遠隔点検方法
CN105823431A (zh) 一种光纤过度弯曲的检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019859751

Country of ref document: EP

Effective date: 20210412