CN111623935B - 基于近红外光谱法的核电站主蒸汽管道泄露监测方法 - Google Patents

基于近红外光谱法的核电站主蒸汽管道泄露监测方法 Download PDF

Info

Publication number
CN111623935B
CN111623935B CN202010511887.6A CN202010511887A CN111623935B CN 111623935 B CN111623935 B CN 111623935B CN 202010511887 A CN202010511887 A CN 202010511887A CN 111623935 B CN111623935 B CN 111623935B
Authority
CN
China
Prior art keywords
leakage
main steam
steam pipeline
pipeline
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010511887.6A
Other languages
English (en)
Other versions
CN111623935A (zh
Inventor
吴鹏
王颖
王明明
邸甲峻
徐北
夏栓
江浩
张明旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc
Original Assignee
SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc filed Critical SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc
Priority to CN202010511887.6A priority Critical patent/CN111623935B/zh
Publication of CN111623935A publication Critical patent/CN111623935A/zh
Application granted granted Critical
Publication of CN111623935B publication Critical patent/CN111623935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/002Detection of leaks
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/017Inspection or maintenance of pipe-lines or tubes in nuclear installations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明公开了一种基于近红外光谱法的核电站主蒸汽管道泄露监测方法,包括步骤一、采用光发生器发出监测光信号,对主蒸汽管道周围的气体进行透射;二、采用光探测器对主蒸汽管道周围气体中的气态水分子进行高频扫描探测,获得气态水分子吸收峰窄带的扫描探测信号;三、采用光谱仪对扫描探测信号进行光电转换和模数转换,获得数字信号;四、采用计算机对数字信号进行分析计算,并与计算机预先存储数据库中的同湿度下的光吸收度进行对比,得到气态水的浓度;五、计算机根据气态水浓度的梯度变化计算管道泄漏率和泄露量,并评估泄露位置。本发明方法步骤简单,实现方便,能够有效应用在核电站的主蒸汽管道泄漏监测中,使用效果好,便于推广使用。

Description

基于近红外光谱法的核电站主蒸汽管道泄露监测方法
技术领域
本发明属于蒸汽管道泄露监测技术领域,具体涉及一种基于近红外光谱法的核电站主蒸汽管道泄露监测方法。
背景技术
核电站主蒸汽管道的不可识别泄漏监测基于LBB(Leak Before Breaking,破前先漏)设计准测,对其监测方法主要包括:安全壳地坑液位、安全壳大气放射性、安全壳大气压力温度和湿度、安全壳淹没液位和目视检查。安全壳地坑液位或安全壳淹没液位的测量精度和响应时间与泄漏蒸汽的冷凝回收情况有关,受环境条件、介质传输路径等多种因素的影响,且安全壳内其他不可识别泄漏也会造成安全壳地坑液位或安全壳淹没液位上升。因此,目前这两种方法作为监测主蒸汽管道泄漏的主要方法,其监测精度和响应时间存在不确定性,因此,对核电站主蒸汽管道泄露监测应用LBB技术的条件不够充分。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种基于近红外光谱法的核电站主蒸汽管道泄露监测方法,其步骤简单,实现方便,能够有效应用在核电站的主蒸汽管道泄漏监测中,使用效果好,便于推广使用。
为解决上述技术问题,本发明采用的技术方案是:一种基于近红外光谱法的核电站主蒸汽管道泄露监测方法,包括以下步骤:
步骤一、采用光发生器发出监测光信号,对主蒸汽管道周围的气体进行透射;
步骤二、采用光探测器对主蒸汽管道周围气体中的气态水分子进行高频扫描探测,获得气态水分子吸收峰窄带的扫描探测信号;
步骤三、采用光谱仪对扫描探测信号进行光电转换和模数转换,获得数字信号;
步骤四、采用计算机对数字信号进行分析计算,并与计算机预先存储数据库中的同湿度下的光吸收度进行对比,得到气态水的浓度;
步骤五、所述计算机根据气态水浓度的梯度变化计算管道泄漏率和泄露量,并评估泄露位置。
上述的基于近红外光谱法的核电站主蒸汽管道泄露监测方法,步骤一中所述光发生器为卤素灯。
上述的基于近红外光谱法的核电站主蒸汽管道泄露监测方法,步骤一中所述监测光信号为波长范围360nm~2400nm的近红外光。
上述的基于近红外光谱法的核电站主蒸汽管道泄露监测方法,步骤二中所述光探测器为光谱吸收式光纤气体传感器。
上述的基于近红外光谱法的核电站主蒸汽管道泄露监测方法,步骤三中所述光谱仪为近红外光谱仪。
上述的基于近红外光谱法的核电站主蒸汽管道泄露监测方法,步骤五中所述气态水浓度的梯度变化通过对主蒸汽管道周围气体中的气态水分子进行多点扫描探测获得。
本发明与现有技术相比具有以下优点:
1、本发明方法步骤简单,实现方便。
2、本发明采用近红外光谱法进行蒸汽管道的泄漏监测,探测结果灵敏度高、精度高、响应时间快,且该方法为非接触式、无损测量,能够在高温、辐射环境下,实现在线实时监测。
3、本发明能够有效应用在核电站的主蒸汽管道泄漏监测中,根据气态水浓度的梯度变化计算管道泄漏率,评估泄露位置,使用效果好,便于推广使用。
综上所述,本发明方法步骤简单,实现方便,能够有效应用在核电站的主蒸汽管道泄漏监测中,使用效果好,便于推广使用。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明的方法流程图。
具体实施方式
如图1所示,本发明的基于近红外光谱法的核电站主蒸汽管道泄露监测方法,包括以下步骤:
步骤一、采用光发生器发出监测光信号,对主蒸汽管道周围的气体进行透射;
步骤二、采用光探测器对主蒸汽管道周围气体中的气态水分子进行高频扫描探测,获得气态水分子吸收峰窄带的扫描探测信号;
步骤三、采用光谱仪对扫描探测信号进行光电转换和模数转换,获得数字信号;
步骤四、采用计算机对数字信号进行分析计算,并与计算机预先存储数据库中的同湿度下的光吸收度进行对比,得到气态水的浓度;
步骤五、所述计算机根据气态水浓度的梯度变化计算管道泄漏率和泄露量,并评估泄露位置。
具体实施时,管道泄漏率的具体计算过程包括:
当主蒸汽管道处于泄漏初期时,通过主蒸汽管道各测点水蒸气浓度变化率、主蒸汽管道环腔体积和监测时间间隔计算主蒸汽管道环腔内水蒸汽的质量增加速率,即泄漏率;
当主蒸汽管道处于泄漏后期时,由于管道环隙已被蒸汽充满,各测点水蒸汽浓度将趋于稳定,但在泄漏点附近由于泄漏会导致压力增大,蒸汽从保温层端部及搭接的泄漏形成沿轴向逐步降低的压力梯度,进而形成相似的水蒸汽浓度梯度分布,然后通过布置在管道轴向的多个测点,测量各测点的水蒸汽浓度,获取其梯度分布,进而计算其泄漏率。
本方法步骤一中所述光发生器为卤素灯。
本方法步骤一中所述监测光信号为波长范围360nm~2400nm的近红外光。
本方法步骤二中所述光探测器为光谱吸收式光纤气体传感器。
具体实施时,光谱吸收式光纤气体传感器能够有效应用在核电站主蒸汽管道泄漏监测中,具有耐高温、耐辐照、耐腐蚀、抗干扰特性,且尺寸小,能够伸入主蒸汽管道保温层内,响应时间短。
本方法步骤三中所述光谱仪为近红外光谱仪。
具体实施时,近红外光谱仪采用长波形InGaAs探测器,能够覆盖900nm~2500nm整个近红外光区域,能够完成瞬态1ms光谱采集。
本方法步骤五中所述气态水浓度的梯度变化通过对主蒸汽管道周围气体中的气态水分子进行多点扫描探测获得。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (5)

1.一种基于近红外光谱法的核电站主蒸汽管道泄露监测方法,其特征在于:包括以下步骤:
步骤一、采用光发生器发出监测光信号,对主蒸汽管道周围的气体进行透射;
步骤二、采用光探测器对主蒸汽管道周围气体中的气态水分子进行高频扫描探测,获得气态水分子吸收峰窄带的扫描探测信号;
步骤三、采用光谱仪对扫描探测信号进行光电转换和模数转换,获得数字信号;
步骤四、采用计算机对数字信号进行分析计算,并与计算机预先存储数据库中的同湿度下的光吸收度进行对比,得到气态水的浓度;
步骤五、所述计算机根据气态水浓度的梯度变化计算管道泄漏率和泄露量,并评估泄露位置;
所述气态水浓度的梯度变化通过对主蒸汽管道周围气体中的气态水分子进行多点扫描探测获得;
所述管道泄漏率的具体计算过程包括:
当主蒸汽管道处于泄漏初期时,通过主蒸汽管道各测点水蒸气浓度变化率、主蒸汽管道环腔体积和监测时间间隔计算主蒸汽管道环腔内水蒸汽的质量增加速率,即泄漏率;
当主蒸汽管道处于泄漏后期时,由于管道环隙已被蒸汽充满,各测点水蒸汽浓度将趋于稳定,但在泄漏点附近由于泄漏会导致压力增大,蒸汽从保温层端部及搭接的泄漏形成沿轴向逐步降低的压力梯度,进而形成相似的水蒸汽浓度梯度分布,然后通过布置在管道轴向的多个测点,测量各测点的水蒸汽浓度,获取其梯度分布,进而计算其泄漏率。
2.按照权利要求1所述的基于近红外光谱法的核电站主蒸汽管道泄露监测方法,其特征在于:步骤一中所述光发生器为卤素灯。
3.按照权利要求1所述的基于近红外光谱法的核电站主蒸汽管道泄露监测方法,其特征在于:步骤一中所述监测光信号为波长范围360nm~2400nm的近红外光。
4.按照权利要求1所述的基于近红外光谱法的核电站主蒸汽管道泄露监测方法,其特征在于:步骤二中所述光探测器为光谱吸收式光纤气体传感器。
5.按照权利要求1所述的基于近红外光谱法的核电站主蒸汽管道泄露监测方法,其特征在于:步骤三中所述光谱仪为近红外光谱仪。
CN202010511887.6A 2020-06-08 2020-06-08 基于近红外光谱法的核电站主蒸汽管道泄露监测方法 Active CN111623935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010511887.6A CN111623935B (zh) 2020-06-08 2020-06-08 基于近红外光谱法的核电站主蒸汽管道泄露监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010511887.6A CN111623935B (zh) 2020-06-08 2020-06-08 基于近红外光谱法的核电站主蒸汽管道泄露监测方法

Publications (2)

Publication Number Publication Date
CN111623935A CN111623935A (zh) 2020-09-04
CN111623935B true CN111623935B (zh) 2022-01-25

Family

ID=72271330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010511887.6A Active CN111623935B (zh) 2020-06-08 2020-06-08 基于近红外光谱法的核电站主蒸汽管道泄露监测方法

Country Status (1)

Country Link
CN (1) CN111623935B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420324A (zh) * 2022-01-30 2022-04-29 上海核工程研究设计院有限公司 一种光谱法和冷凝液位法结合的主蒸汽管道泄漏监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183665A (ja) * 1997-09-05 1999-03-26 Mitsubishi Heavy Ind Ltd 水蒸気検知装置
KR20100053814A (ko) * 2008-11-13 2010-05-24 한국원자력연구원 원자로 시스템의 중수누설 검지장치 및 이를 이용한 중수누설 검지방법
CN104977129A (zh) * 2014-04-10 2015-10-14 通用电气公司 用于检测蒸汽涡轮中的泄漏的方法和系统
CN106679905A (zh) * 2015-11-11 2017-05-17 上海笙港光学科技有限公司 一种基于激光技术的密封瓶密封完整性检漏的装置及方法
CN109087719A (zh) * 2018-09-12 2018-12-25 上海核工程研究设计院有限公司 一种安全壳内主蒸汽管道泄漏监测系统
CN109087720A (zh) * 2018-09-12 2018-12-25 上海核工程研究设计院有限公司 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统
CN110207899A (zh) * 2019-05-24 2019-09-06 中国航天空气动力技术研究院 一种基于激光吸收光谱的电弧加热器漏水诊断系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183665A (ja) * 1997-09-05 1999-03-26 Mitsubishi Heavy Ind Ltd 水蒸気検知装置
KR20100053814A (ko) * 2008-11-13 2010-05-24 한국원자력연구원 원자로 시스템의 중수누설 검지장치 및 이를 이용한 중수누설 검지방법
CN104977129A (zh) * 2014-04-10 2015-10-14 通用电气公司 用于检测蒸汽涡轮中的泄漏的方法和系统
CN106679905A (zh) * 2015-11-11 2017-05-17 上海笙港光学科技有限公司 一种基于激光技术的密封瓶密封完整性检漏的装置及方法
CN109087719A (zh) * 2018-09-12 2018-12-25 上海核工程研究设计院有限公司 一种安全壳内主蒸汽管道泄漏监测系统
CN109087720A (zh) * 2018-09-12 2018-12-25 上海核工程研究设计院有限公司 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统
WO2020052589A1 (zh) * 2018-09-12 2020-03-19 上海核工程研究设计院有限公司 一种用于核电厂主蒸汽管道的声光结合泄漏监测系统
CN110207899A (zh) * 2019-05-24 2019-09-06 中国航天空气动力技术研究院 一种基于激光吸收光谱的电弧加热器漏水诊断系统

Also Published As

Publication number Publication date
CN111623935A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN103293117B (zh) 一种微脉冲差分吸收激光雷达水汽时空分布反演方法
CN107907502A (zh) 叠片电弧加热器高焓气流参数诊断系统
KR101193492B1 (ko) 원자력 발전소 냉각계통의 온도 측정을 위한 삽입형 적외선 광섬유 프로브 및 이를 이용한 온도 측정 시스템
CN105424651B (zh) 一种可定位的甲烷泄漏监测系统
Wang et al. A systematic study of the residual gas effect on vacuum solar receiver
Jiang et al. Tracing methane dissolved in transformer oil by tunable diode laser absorption spectrum
CN111623935B (zh) 基于近红外光谱法的核电站主蒸汽管道泄露监测方法
Ke et al. Optical fiber evanescent-wave sensing technology of hydrogen sulfide gas concentration in oil and gas fields
CN104848985A (zh) 一种基于红外激光光谱的真空度检测方法与系统
Kim et al. Fiber-optic humidity sensor system for the monitoring and detection of coolant leakage in nuclear power plants
Wang et al. Detection of dissolved acetylene in power transformer oil based on photonic crystal fiber
CN110057426B (zh) 基于布喇格光栅周围应变层的暗池液位测量系统及方法
CN204086134U (zh) 一种管道腐蚀检测仪
CN204612860U (zh) 一种基于红外激光光谱的真空度检测系统
CN108333143B (zh) 一种基于可调谐激光吸收光谱的水汽浓度测量修正方法
Navarro-Hermoso et al. Parabolic trough solar receivers characterization using specific test bench for transmittance, absorptance and heat loss simultaneous measurement
CN117664398A (zh) 用于火电厂锅炉传热管路中的分布式光纤测温标定方法
CN103308186A (zh) 基于波长调制光谱技术的真空环境下温度测量方法
CN106482658A (zh) 一种光纤应变系数自动标定方法
Mitra et al. Development of steam quality measurement and monitoring technique using absorption spectroscopy with diode lasers
CN109916885A (zh) 绝缘油溶解氧气含量实时在线检测装置
CN110567899B (zh) 一种cod检测低温补偿方法
CN113063819A (zh) 一种发动机环境热阻涂层辐射特性研究系统及方法
CN209461163U (zh) 一种安全壳内主蒸汽管道泄漏监测系统
Zhang et al. Ultraviolet differential spectroscopy quantitative analysis of SF6 decomposition component SO2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Leakage monitoring method of main steam pipeline of nuclear power plant based on near infrared spectroscopy

Effective date of registration: 20220328

Granted publication date: 20220125

Pledgee: Xi'an Science and Technology Financial Service Center Co.,Ltd.

Pledgor: SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc.

Registration number: Y2022610000112