WO2020052425A1 - 信息传输方法、网络设备及终端 - Google Patents

信息传输方法、网络设备及终端 Download PDF

Info

Publication number
WO2020052425A1
WO2020052425A1 PCT/CN2019/102208 CN2019102208W WO2020052425A1 WO 2020052425 A1 WO2020052425 A1 WO 2020052425A1 CN 2019102208 W CN2019102208 W CN 2019102208W WO 2020052425 A1 WO2020052425 A1 WO 2020052425A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency network
information
cell group
terminal
cell
Prior art date
Application number
PCT/CN2019/102208
Other languages
English (en)
French (fr)
Inventor
姜大洁
潘学明
吴凯
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to ES19860120T priority Critical patent/ES2966502T3/es
Priority to JP2021512880A priority patent/JP7179160B2/ja
Priority to EP19860120.5A priority patent/EP3843476B1/en
Publication of WO2020052425A1 publication Critical patent/WO2020052425A1/zh
Priority to US17/192,450 priority patent/US20210195603A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an information transmission method, a network device, and a terminal.
  • 5G fifth-generation
  • 5G fifth-generation
  • 10Gbps uplink transmission rate of the target in order to achieve a downlink transmission rate of 20Gbps, 10Gbps uplink transmission rate of the target, and a large-scale high frequency communication antenna technology has been introduced.
  • High-frequency communication can provide wider system bandwidth and smaller antenna size, which is more conducive to large-scale antenna deployment in network equipment and terminals (User Equipment, UE).
  • the network device side can support sending and receiving of Multi-beam / Transmit Receive Point (Multi-TRP), and the terminal side can also support sending and receiving of Multi-beam.
  • Multi-TRP Multi-TRP
  • each cell can send signals through multiple narrow beams, and the transmission of multiple beams can be time division, and each beam can cover a certain direction of the cell.
  • the gain through a narrow beam transmission is about 9dB (8 times) compared with the transmission through a wide beam (such as a beam covering the entire cell).
  • a terminal needs to frequently perform cell reselection between cells.
  • the Single-Frequency Network (SFN) transmission scheme is: multiple cells or multiple transmission points send the same signal, there is no same-frequency interference in different cells, and multiple signals can improve the signal to interference plus noise ratio ( Signal to Interference plus Noise Ratio (SINR), transmission quality and coverage effect.
  • Multiple cells can send signals by means of SFN transmission, where each cell is transmitted with a wide beam, and at a certain time, the terminal can receive the wide beams transmitted by multiple cells to obtain diversity gain.
  • the strongest cell received by the terminal is generally three. Assuming that the signal strengths of the three cells are equal, the signal energy of the three cells is three times that of the signal energy of the single cell, and the gain is about 4dB.
  • the terminal does not need to frequently perform cell reselection between cells, but the transmission gain of this scheme is lower than that of the narrow beam transmission scheme, and there is a coverage problem.
  • the embodiments of the present disclosure provide an information transmission method, a network device, and a terminal to solve the problems of low transmission gain or frequent cell reselection during the information transmission process.
  • an embodiment of the present disclosure provides an information transmission method, which is applied to a network device and includes:
  • the downlink information is sent to the terminal through the first beam of the single-frequency network cell group.
  • the single-frequency network cell group includes at least two cells, and the at least two cells include the first cell supporting at least two beam transmissions.
  • the first beam is One of the beams supported by the first cell.
  • an embodiment of the present disclosure further provides an information transmission method, which is applied to a terminal and includes:
  • the downlink information is received through the first beam of the single-frequency network cell group.
  • the single-frequency network cell group includes at least two cells, and the at least two cells include a first cell supporting at least two beam transmissions, and the first beam is the first One of the beams supported by the cell.
  • an embodiment of the present disclosure provides a network device, including:
  • a first sending module is configured to send downlink information to a terminal through a first beam of a single-frequency network cell group.
  • the single-frequency network cell group includes at least two cells, and the at least two cells include a first channel that supports at least two beam transmissions.
  • the first beam is one of the beams supported by the first cell.
  • an embodiment of the present disclosure provides a network device.
  • the network device includes a processor, a memory, and a program stored on the memory and running on the processor. When the processor executes the program, the steps of the foregoing information transmission method are implemented. .
  • an embodiment of the present disclosure provides a terminal, including:
  • a first receiving module is configured to receive downlink information through a first beam of a single-frequency network cell group.
  • the single-frequency network cell group includes at least two cells, and the at least two cells include a first cell that supports at least two beam transmissions.
  • the first beam is one of the beams supported by the first cell.
  • an embodiment of the present disclosure further provides a terminal.
  • the terminal includes a processor, a memory, and a program stored on the memory and running on the processor.
  • the program When the program is executed by the processor, implement the steps of the foregoing information transmission method. .
  • an embodiment of the present disclosure provides a computer-readable storage medium.
  • a program is stored on the computer-readable storage medium, and when the program is executed by a processor, the steps of the foregoing information transmission method are implemented.
  • a single-frequency network gain can be obtained, network coverage can be improved, and the number of cell reselections can be reduced.
  • the number of The first beam of multiple beams transmits information to obtain a narrow beam gain, which further improves network coverage.
  • FIG. 1 shows a block diagram of a mobile communication system applicable to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of an information transmission method for a network device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of cell coverage of a TA list according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a module of a network device according to an embodiment of the present disclosure.
  • FIG. 5 shows a block diagram of a network device according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of an information transmission method of a terminal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a module of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 shows a block diagram of a terminal according to an embodiment of the present disclosure.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single Carrier Frequency-Division Multiple Access
  • system and “network” are often used interchangeably.
  • the techniques described herein can be used for both the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • NR New Radio
  • the wireless communication system includes a network device 01 and a terminal 02.
  • the network device 01 may be a base station or a core network.
  • the base station may be a base station of 5G and later versions (for example, gNB, 5G, NR, NB, etc.), or a base station in other communication systems (for example, eNB, WLAN access).
  • the base station may be referred to as Node B, evolved Node B, access point, Base Transceiver Station (BTS), radio base station, radio transceiver, basic service set (Basic Service Set, BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home B Node, Home Evolved Node B, WLAN Access Point, WiFi Node or said
  • BSS Base Transceiver Station
  • ESS Extended Service Set
  • eNB Evolved Node B
  • Home B Node Home Evolved Node B
  • WLAN Access Point WiFi Node or said
  • WiFi Node WiFi Node or said
  • the base station is not limited to a specific technical vocabulary. It should be noted that, in the embodiment of the present disclosure, only the base station in the NR system is taken as an example, but it is not limited The specific type of base station.
  • the terminal 02 may also be called a terminal device or a user terminal (User Equipment), and the terminal 02 may be a mobile phone, a tablet computer (laptop computer), a laptop computer (laptop computer), or a personal digital assistant (PDA). ), Mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or terminal equipment such as vehicle-mounted equipment, it should be noted that the specific type of terminal 02 is not limited in the embodiments of the present disclosure.
  • the base station may communicate with the terminal 02 under the control of a base station controller.
  • the base station controller may be part of the core network or some base stations.
  • Some base stations can communicate control information or user data with the core network through the backhaul.
  • some of these base stations may communicate with each other directly or indirectly through a backhaul link, which may be a wired or wireless communication link.
  • Wireless communication systems can support operation on multiple carriers (waveform signals of different frequencies).
  • Multi-carrier transmitters can transmit modulated signals on these multiple carriers simultaneously.
  • each communication link may be a multi-carrier signal modulated according to various radio technologies.
  • Each modulated signal can be sent on a different carrier and can carry control information (eg, reference signals, control channels, etc.), overhead information, data, and so on.
  • the base station may perform wireless communication with the terminal 02 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that constitute only a part of the coverage area.
  • the wireless communication system may include different types of base stations (for example, a macro base station, a pico base station, or a pico base station). Base stations can also utilize different radio technologies, such as cellular or WLAN radio access technologies. Base stations can be associated with the same or different access networks or operator deployments. The coverage areas of different base stations (including the coverage areas of the same or different types of base stations, the coverage areas using the same or different radio technologies, or the coverage areas belonging to the same or different access networks) may overlap.
  • the communication link in the wireless communication system may include an uplink used to carry uplink (Uplink, UL) transmission (for example, from terminal 02 to network device 01), or used to carry downlink (Downlink, DL) Downlink for transmission (for example, from network device 01 to terminal 02).
  • Uplink, UL transmission may also be referred to as reverse link transmission
  • Downlink transmission may also be referred to as forward link transmission.
  • signal transmission is performed between the network device 01 and the terminal 02 through an antenna beam, and the antenna beam is formed by an airspace transmission filter.
  • Both network device 01 and terminal 02 can include multiple beams.
  • network device 01 includes N Transmit Receive Points (TRPs), and each TRP includes an airspace transmission filter to form N
  • Terminal 02 includes M spatial-domain transmission filters to form M beams, where N and M are both integers greater than 1.
  • N and M may be the same or different, and the present disclosure is not limited.
  • An embodiment of the present disclosure provides an information transmission method, which is applied to a network device. As shown in FIG. 2, the method includes:
  • Step 21 Send downlink information to the terminal through the first beam of the single-frequency network cell group.
  • the single-frequency network cell group includes at least two cells, and the at least two cells include the first cell supporting at least two beam transmissions. One beam is one of the beams supported by the first cell.
  • a single-frequency network cell group includes multiple cells, and the cells included in the SFN cell group can be configured by network equipment.
  • the network device can configure the number of cells and cell identifiers in the SFN cell group.
  • These cells include a first cell that supports multiple beams. Among them, all cells in a single-frequency network cell group that support multi-beam transmission are referred to as the first cell.
  • the number of the first cells may be one or multiple.
  • the first beam may be one of the beams supported by the cells in the cell group of the single frequency network. It is worth pointing out that the cells included in a single-frequency network cell group can be cells that support the same number of beams.
  • all cells in a single-frequency network cell group support 2 beams
  • all cells in the single-frequency network cell group are Is a first cell
  • the first beam is one of the beams supported by the first cell.
  • the cells included in the single-frequency network cell group may also be cells that support different numbers of beams. For example, some cells in the single-frequency network cell group support two beams, so the first beam is one of the two beams supported by the first cell. One, the remaining cells support one beam, and the first beam may also be the beam supported by the remaining cells.
  • a single-frequency network cell group includes cell 1 and cell 2. Both cell 1 and cell 2 support beam 1 and beam 2. Then at time T1, both cell 1 and cell 2 are transmitted through beam 1; at time T2, cell 1 and cell 2 are transmitted through beam 2. That is to say, at T1, all the cells in the single-frequency network cell group are transmitted through beam 1. At T2, all the cells in the single-frequency network cell group are transmitted through beam 2.
  • the single frequency network cell group includes cell 1 and cell 2, where cell 1 supports one beam (beam 1), and cell 2 supports beam 1 and beam 2, then at time T1, both cell 1 and cell 2 are transmitted through their respective beams 1; At time T2, cell 1 is still transmitting through its corresponding beam 1, and cell 2 is transmitting through its corresponding beam 2.
  • a single-frequency network cell group includes cell 1 and cell 2, cell 1 supports beam 1 and beam 2, cell 2 supports beam 1, beam 2, beam 3, and beam 4, then at time T1, both cell 1 and cell 2 pass Respective beam 1 transmission; at time T2, cell 1 is still transmitting through its corresponding beam 1 and cell 2 is transmitting through its corresponding beam 2; at time T3, cell 1 is transmitting through its corresponding beam 2 and cell 2 is transmitting through its corresponding beam 3 transmission; at time T4, cell 1 transmits through its corresponding beam 2 and cell 2 transmits through its corresponding beam 4.
  • the beam 1, beam 2, beam 3, and beam 4 mentioned in this embodiment are only beam numbers.
  • the beam directions of beams with the same number in different cells may be different. For example, when cell 1 only supports beam 1, the beam 1 is an omnidirectional beam; when cell 1 supports beam 1 and beam 2, both beam 1 and beam 2 are narrow-band beams.
  • step 21 includes: sending downlink information to the terminal through the first beam of the single-frequency network cell group in different transmission time periods.
  • the different transmission time periods mentioned here refer to different transmission time periods corresponding to the first beam, for example, transmit beam 1 at time T1, transmit beam 2 at time T2, transmit beam 1 at time T3, and transmit beam 2 at time T4
  • the different transmission time periods corresponding to beam 1 refer to T1 and T3, and the different transmission time periods corresponding to beam 2 refer to T2 and T4.
  • the downlink information is repeatedly transmitted in units of transmission time periods, that is, the network device can support repeated transmission of signals in time.
  • each downlink information is repeatedly transmitted at multiple times in the same beam, and the corresponding terminal can Combined reception of the beam signals is performed at multiple times.
  • downlink information is repeatedly transmitted through beam 1 at time T1 and time T3.
  • the downlink information is jointly transmitted through the first beam in different transmission time periods.
  • the downlink information is channel-coded and rate-matched to obtain a bit sequence to be transmitted, the bit sequence is divided into a plurality of bit subsequences, and transmitted through a first beam of a different transmission time period.
  • the bit sequence of the downlink information is divided into two bit subsequences, and these two bit subsequences are jointly transmitted through the beam 1 at time T1 and time T3.
  • the downlink information is transmitted in an Orthogonal Frequency Division Multiplexing (OFDM) mode, and the OFDM mode thereof is a Cyclic Prefix (CP) or a normal CP.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP Cyclic Prefix
  • the downlink information is transmitted in OFDM mode with extended CP to counter the larger multipath delay extension.
  • the downlink information in the embodiment of the present disclosure is sent through a dedicated bandwidth part (Bandwidth Part, BWP) corresponding to a single-frequency network cell group, such as an Initial BWP (Down Initial BWP).
  • BWP Bandwidth Part
  • the network device may configure the terminal on a dedicated BWP corresponding to a single-frequency network cell group, or configure the terminal on a BWP corresponding to a cell.
  • the two can be switched between each other.
  • the network device can switch the terminal from the dedicated BWP of the single-frequency network cell group to the BWP of the cell, and vice versa, so it will not be repeated here.
  • the downlink information in the embodiment of the present disclosure includes: Synchronization Signal Block (PBCH Block, SSB), Paging Signal, Wake Up Signal (WUS), Sleep Signal (GTS, Sleep Signal, GTS) Signal), Physical Broadcast Channel (PBCH), De-Modulation Reference Signal (DMRS), Channel State Information Reference Signal (CSI-RS), and System Message Block (CSI-RS) At least one of the information carried by the System Information Block (SIB).
  • PBCH Block, SSB Synchronization Signal Block
  • WUS Wake Up Signal
  • WUS Wake Up Signal
  • Sleep Signal GTS, Sleep Signal, GTS) Signal
  • Physical Broadcast Channel PBCH
  • DMRS De-Modulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • CSI-RS System Message Block
  • SIB System Information Block
  • the downlink information may be transmitted in an extended OFDM or normal CP OFDM manner, and repeatedly or jointly transmitted in different transmission time periods corresponding to the first beam of the single-frequency network cell group.
  • the transmission format related information of the downlink information is configured through cell specific information, such as through cell specific PBCH, SIB1, or Radio Resource Control (RRC) signaling.
  • the transmission format-related information is configured through SFN based group information (for example, through SFN based PBCH, SIB1, or RRC signaling).
  • the information about the transmission format is predefined, such as a protocol agreement.
  • the transmission format-related information referred to here includes at least one of a transmission period, a parameter set (Numerology), a number of beams, and time-frequency domain resources.
  • the parameter set includes at least one of a subcarrier interval, an OFDM symbol length, and a CP length.
  • the network device may further: configure the terminal to perform radio resource management (Radio Resource Management (RRM) measurement and / or radio link monitoring (Radio Link Monitoring) through at least one of SSB, CSI-RS, and DMRS dedicated to the SFN cell group. RLM) measurement.
  • RRM Radio Resource Management
  • Radio Link Monitoring Radio Link Monitoring
  • the cells in the single-frequency network cell group include: cells in a tracking area (TA), cells in a TA list (TA list), or a radio access network notification (RAN-based Notification Area, RNA) Area of the district.
  • the tracking area is a concept established by the system for the location management of the terminal.
  • the network device can know the tracking area where the terminal is located.
  • the terminal in the idle state needs to be paged, it must page in all the cells in the tracking area where the terminal is registered.
  • TA is a cell-level configuration, multiple cells can be configured with the same TA, and a cell can only belong to one TA.
  • PLMN public land mobile network
  • TAI tracking area code
  • FIG. 3 multiple TAs form a TA list and are assigned to a terminal at the same time.
  • PLMN public land mobile network
  • TAC tracking area code
  • the network device re-assigns a group of TAs to the terminal.
  • the newly allocated TA may also include some TAs in the original TA list. If the terminal moves between multiple TAs in the TA list, no TA update is performed.
  • the set of cells covered by the RNA may be a subset of the set of cells that make up a TA or TA list.
  • the method further includes: configuring the group-related information of the single-frequency network cell group for the terminal, where the group-related information includes: the single-frequency network cell group identifier, the single-frequency network cell group frequency point, and the synchronization signal block pattern (pattern ).
  • the RRM measurement period can be relaxed, that is, the radio resource management RRM measurement period of the single-frequency network cell group is greater than or equal to the cell's RRM measurement period; where the cell is a single-frequency network Cells included in a cell group.
  • the single-frequency network cell group supports dedicated beam management (beam management) and / or dedicated beam failure recovery (BFR).
  • beam management beam management
  • BFR dedicated beam failure recovery
  • the system supports SFN cell-specific beam management and / or beam failure recovery.
  • the synchronization grating of the SSB corresponding to the cell group of the single frequency network is different from the synchronization grating of the SSB corresponding to one cell.
  • the location of the SFN and SSB can be different from the sync and raster of the cell and the SSB. It is worth pointing out that the terminal does not search for the SFN and SSB during the initial access.
  • At least one of the SSB, CSI-RS and DMRS of the single-frequency network cell group corresponds to a generation sequence and / or a scrambling sequence dedicated to the single-frequency network cell group.
  • a DMRS (SFN based DMRS) for demodulating a PBCH in a single-frequency network cell group corresponds to a dedicated scrambling phase and a generated sequence.
  • the signal quality of the single-frequency network cell group is determined by the terminal according to the beam detection of the single-frequency network cell group.
  • the signal quality of the SFN cell group can be evaluated by joint detection of multiple beams in the single-frequency network cell group. .
  • the network equipment can also be configured to switch on and off the SFN, cell, and specific BWP. Configure the on and off of at least one of SSB, PBCH, SIB, Paging, WUS, and GTS on the SFN cell group specific BWP.
  • the terminal can also be configured to reside on the SSB of the SFN or on the SSB of the cell, and the two support switching between the two.
  • the embodiments of the present disclosure can obtain a single-frequency network gain, improve network coverage, and reduce the number of cell reselections.
  • a narrow beam gain can be obtained to further improve network coverage.
  • the network device 400 in the embodiment of the present disclosure can implement sending the downlink information to the terminal through the first beam of the single-frequency network cell group in the foregoing embodiment.
  • the single-frequency network cell group includes at least two cells.
  • the at least two cells include a first cell that supports transmission of at least two beams, and the first beam is a detail of a method supported by the first cell and achieves the same effect.
  • the network device 400 specifically includes the following functional modules:
  • a first sending module 410 is configured to send downlink information to a terminal through a first beam of a single-frequency network cell group.
  • the single-frequency network cell group includes at least two cells, and the at least two cells include at least two beams. In a first cell, the first beam is one of the beams supported by the first cell.
  • the first sending module 410 includes:
  • the first sending submodule is configured to send downlink information to the terminal through the first beam of the single-frequency network cell group in different transmission time periods.
  • the downlink information is repeatedly transmitted in units of transmission time periods, or the downlink information is jointly transmitted through the first beam in different transmission time periods.
  • the downlink information is transmitted using an orthogonal frequency division multiplexing OFDM method, and the OFDM method uses an extended cyclic prefix CP or a normal CP.
  • the downlink information is sent through the dedicated bandwidth part BWP corresponding to the single-frequency network cell group.
  • the network device 400 further includes:
  • a first configuration module configured to configure a terminal on a dedicated BWP corresponding to a single-frequency network cell group
  • the second configuration module is configured to configure the terminal on a BWP corresponding to a cell.
  • the downlink information includes: a synchronization signal block SSB, a paging signal, a wake-up signal WUS, a sleep signal GTS, a physical broadcast channel PBCH, a dedicated demodulation reference signal DMRS, a channel state information reference signal CSI-RS, and a system message block SIB. At least one of the messages.
  • the transmission format related information of the downlink information is configured through the cell specific information, or the transmission format related information is configured through the single frequency network cell group specific information, or the transmission format related information is predefined;
  • the transmission format related information includes at least one of a transmission period, a parameter set Numerology, a number of beams, and time-frequency domain resources.
  • the network device 400 further includes:
  • the third configuration module is configured to configure the terminal to perform radio resource management RRM measurement and / or radio link monitoring RLM measurement through at least one of SSB, CSI-RS, and DMRS.
  • the cells in the single-frequency network cell group include: cells in the tracking area TA, cells in the TA list, or cells in the radio access network notification area.
  • the network device 400 further includes:
  • the fourth configuration module is configured to configure the group-related information of the single-frequency network cell group for the terminal, where the group-related information includes at least one of a single-frequency network cell group identifier, a single-frequency network cell group frequency point, and a synchronization signal block pattern. item.
  • the radio resource management RRM measurement period of the single-frequency network cell group is greater than or equal to the RRM measurement period of the cell; where the cell is a cell included in the single-frequency network cell group.
  • the single frequency network cell group supports dedicated beam management and / or dedicated beam failure recovery.
  • the synchronization grating of the SSB corresponding to the cell group of the single frequency network is different from the synchronization grating of the SSB corresponding to one cell.
  • At least one of the SSB, CSI-RS and DMRS of the single-frequency network cell group corresponds to a generation sequence and / or a scrambling sequence dedicated to the single-frequency network cell group.
  • the signal quality of the single-frequency network cell group is determined according to the beam detection of the single-frequency network cell group.
  • the embodiments of the present disclosure can obtain single frequency network gain, improve network coverage, and reduce the number of cell reselections.
  • narrow beam gain can be obtained to further improve network coverage.
  • an embodiment of the present disclosure further provides a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program.
  • the steps in the information transmission method as described above are implemented.
  • An embodiment of the invention also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the information transmission method described above.
  • the network device 500 includes: an antenna 51, a radio frequency device 52, and a baseband device 53.
  • the antenna 51 is connected to a radio frequency device 52.
  • the radio frequency device 52 receives information through the antenna 51 and sends the received information to the baseband device 53 for processing.
  • the baseband device 53 processes the information to be sent and sends it to the radio frequency device 52.
  • the radio frequency device 52 processes the received information and sends it out via the antenna 51.
  • the above-mentioned frequency band processing device may be located in a baseband device 53, and the method performed by the network device in the above embodiments may be implemented in the baseband device 53.
  • the baseband device 53 includes a processor 54 and a memory 55.
  • the baseband device 53 may include, for example, at least one baseband board. A plurality of chips are provided on the baseband board, as shown in FIG. 5. One of the chips is, for example, a processor 54 connected to the memory 55 to call a program in the memory 55 and execute The network device operations shown in the above method embodiments are operated.
  • the baseband device 53 may further include a network interface 56 for exchanging information with the radio frequency device 52.
  • the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective name for multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the methods performed by the above network devices.
  • Integrated circuits such as: one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • a storage element may be a single memory or a collective term for multiple storage elements.
  • the memory 55 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDRSDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM SLDRAM
  • Direct RAMbus RAM Direct RAMbus RAM
  • the network device further includes a computer program stored in the memory 55 and executable on the processor 54, and the processor 54 calls the computer program in the memory 55 to execute the method executed by each module shown in FIG. .
  • the computer program can be used to execute when called by the processor 54: sending downlink information to the terminal through the first beam of the single-frequency network cell group; wherein the single-frequency network cell group includes at least two cells, and A first cell supporting at least two beam transmissions, and the first beam is one of the beams supported by the first cell.
  • the network devices in the embodiments of the present disclosure can obtain SFN gain, improve network coverage, and reduce the number of cell reselections.
  • a narrow beam gain can be obtained to further improve network coverage.
  • an information transmission method is applied to a terminal.
  • the method includes the following steps:
  • Step 61 Receive downlink information through a first beam of a single-frequency network cell group.
  • the single-frequency network cell group includes at least two cells, and the at least two cells include a first cell that supports at least two beam transmissions.
  • the first beam Is one of the beams supported by the first cell.
  • the single-frequency network cell group includes multiple cells, and these cells include a first cell that supports multiple beams. Among them, all cells in the single-frequency network cell group that support multi-beam transmission are referred to as a first cell.
  • the number of cells can be one or multiple.
  • the first beam is one of the beams supported by the cells in the cell group of the single frequency network. It is worth pointing out that the cells included in the single-frequency network cell group may be cells supporting the same number of beams.
  • the cells included in the single frequency network cell group may also be cells that support different numbers of beams.
  • the beams of the cells in the single-frequency network cell group are transmitted in a time division manner. The beam directions of beams with the same number in different cells may be different.
  • Step 61 includes: receiving downlink information through a first beam of a single-frequency network cell group in different transmission time periods.
  • the different transmission time periods described herein refer to different transmission time periods corresponding to the first beam.
  • the method further includes:
  • the downlink information received in different transmission time periods is combined to obtain downlink information.
  • This method corresponds to a scenario in which downlink information is repeatedly transmitted in at least two transmission time periods corresponding to the first beam.
  • the terminal combines information received in each transmission time period to obtain downlink information.
  • the downlink information received during the synchronous transmission time period is concatenated and channel decoded to obtain the downlink information.
  • This method corresponds to a scenario in which downlink information is jointly transmitted in at least two transmission time periods corresponding to the first beam.
  • the terminal concatenates the information received in each transmission time period to perform channel decoding to obtain downlink information.
  • the downlink information is transmitted using an orthogonal frequency division multiplexing OFDM method, and the OFDM method uses an extended cyclic prefix CP or a normal CP.
  • the downlink information is transmitted in OFDM mode with extended CP to counter the larger multipath delay extension.
  • the method further includes: activating or deactivating the dedicated bandwidth part BWP according to the configuration of the network device.
  • the network device may configure the terminal on a dedicated BWP corresponding to the cell group of the single frequency network, and then the terminal activates the dedicated BWP.
  • the network device may also configure the terminal on a BWP corresponding to a cell. At this time, the terminal deactivates the BWP dedicated to the single-frequency network cell group.
  • the downlink information includes: a synchronization signal block SSB, a paging signal, a wake-up signal WUS, a sleep signal GTS signal, a physical broadcast channel PBCH, a dedicated demodulation reference signal DMRS, a channel state information reference signal CSI-RS, and a system message block SIB. At least one of the information carried.
  • These downlink information may be transmitted in an extended OFDM or normal CP OFDM manner, and repeatedly or jointly transmitted in different transmission time periods corresponding to the first beam of the single-frequency network cell group.
  • the transmission format related information of the downlink information includes at least one of a transmission period, a parameter set Numerology, a number of beams, and time-frequency domain resources.
  • the parameter set includes at least one of a subcarrier interval, an OFDM symbol length, and a CP length.
  • the terminal may further perform radio resource management RRM measurement and / or radio link monitoring RLM measurement through at least one of SSB, CSI-RS, and DMRS.
  • the terminal moves within a single-frequency network cell group, no cell reselection or cell switching is performed. In other words, the terminal moves within the coverage of an SFN cell or group, and does not need to reselect or switch the SFN cell or group / cell.
  • the terminal when the terminal moves between different single-frequency network cell groups, the terminal performs re-selection of the single-frequency network cell group or switching of the single-frequency network cell group.
  • the terminal when a terminal moves between different SFN cells and groups, it is necessary to perform reselection or switching of the SFN cells and groups.
  • the method further includes: performing the following steps to access the cell: searching for SSB corresponding to the cell for synchronization, reading broadcast information through the PBCH corresponding to the cell, and reading system messages through the SIB corresponding to the cell;
  • the cells included in the single-frequency network cell group are described. Among them, there is no strict timing requirement between these steps, and synchronization can be performed first to read the broadcast information, or vice versa.
  • the terminal performs synchronization through the SSB of the cell during initial access, and reads broadcast information and system messages through the cell's PBCH and SIB, respectively.
  • the information transmission method further includes the following steps: when the terminal is in an idle state or an inactive state, accessing a single-frequency network cell group; that is, in an Idle / inactive state, the terminal connects After entering the SSB of the SFN, the terminal can perform RRM measurement, synchronization, and system information acquisition through the SSB's SSB. Or, when the amount of data to be transmitted is below the threshold, access to a single-frequency network cell group, for example, a small amount of data or infrequent data packets (such as heartbeat packets), etc., receive or upload data through the SFN cell group specific BWP .
  • the information transmission method further includes the following steps: when the terminal is in a connected state, accessing a cell; that is, when the terminal is in a connected state, RRM measurement, synchronization, and system information acquisition are performed through a cell-specific SSB. Or, when the amount of data to be transmitted is higher than the threshold, the cell is accessed; for example, when the amount of data to be transmitted is large, the large amount of data is received or uploaded through the cell-specific BWP.
  • the cell here is a cell included in a single-frequency network cell group.
  • the RRM measurement period can be relaxed, that is, the radio resource management RRM measurement period of the single-frequency network cell group is greater than or equal to the RRM measurement period of the cell; where the cell is a single-frequency network Cells included in a cell group.
  • the single frequency network cell group supports dedicated beam management and / or dedicated beam failure recovery.
  • the system supports SFN cell-specific beam management and / or beam failure recovery.
  • the synchronization grating of the SSB corresponding to the cell group of the single frequency network is different from the synchronization grating of the SSB corresponding to one cell.
  • the position of the SFN and SSB can be different from the synchronization grating of the cell and the SSB. It is worth pointing out that the terminal does not search for the SFN and SSB during the initial access.
  • At least one of the SSB, CSI-RS and DMRS of the single-frequency network cell group corresponds to a generation sequence and / or a scrambling sequence dedicated to the single-frequency network cell group.
  • the DMRS used to demodulate the PBCH in a single-frequency network cell group corresponds to a dedicated scrambling phase and generation sequence.
  • the signal quality of the single-frequency network cell group is determined according to the beam detection of the single-frequency network cell group.
  • the signal quality of the SFN cell group can be evaluated by joint detection of multiple beams in the single-frequency network cell group.
  • the network equipment can also be configured to switch on and off the SFN, cell, and specific BWP. Configure the on and off of at least one of SSB, PBCH, SIB, Paging, WUS, and GTS signals on the SFN cell group specific BWP.
  • the terminal can also be configured to reside on the SSB of the SFN or on the SSB of the cell, and the two support switching between the two.
  • the embodiments of the present disclosure can obtain a single-frequency network gain, improve network coverage, and reduce the number of cell reselections.
  • a narrow beam gain can be obtained to further improve network coverage.
  • the terminal 700 can implement receiving downlink information through the first beam of a single-frequency network cell group in the foregoing embodiment.
  • the single-frequency network cell group includes at least two cells, at least two. Each cell includes a first cell supporting at least two beam transmissions, and the first beam is a detail of one of the methods supported by the first cell and achieves the same effect.
  • the terminal 700 specifically includes the following functional modules:
  • a first receiving module 710 is configured to receive downlink information through a first beam of a single-frequency network cell group.
  • the single-frequency network cell group includes at least two cells, and the at least two cells include a first channel that supports at least two beam transmissions. Cell, the first beam is one of the beams supported by the first cell.
  • the first receiving module 710 includes:
  • the first receiving submodule is configured to receive downlink information through a first beam of a single-frequency network cell group in different transmission time periods.
  • the terminal 700 further includes:
  • a first processing module configured to combine downlink information received in different transmission time periods to obtain downlink information
  • the second processing module is configured to perform concatenation and channel decoding on the downlink information received during the synchronous transmission time period to obtain downlink information.
  • the downlink information is transmitted using an orthogonal frequency division multiplexing OFDM method, and the OFDM method uses an extended cyclic prefix CP or a normal CP.
  • the downlink information is received through the dedicated bandwidth part BWP corresponding to the single-frequency network cell group.
  • the terminal 700 further includes:
  • the third processing module is configured to activate or deactivate the dedicated bandwidth part BWP according to the configuration of the network device.
  • the downlink information includes: a synchronization signal block SSB, a paging signal, a wake-up signal WUS, a sleep signal GTS, a physical broadcast channel PBCH, a dedicated demodulation reference signal DMRS, a channel state information reference signal CSI-RS, and a system message block SIB. At least one of the messages.
  • the transmission format related information of the downlink information includes at least one of a transmission period, a parameter set Numerology, a number of beams, and time-frequency domain resources.
  • the terminal 700 includes:
  • a measurement module configured to perform radio resource management RRM measurement and / or radio link monitoring RLM measurement through at least one of SSB, CSI-RS, and DMRS.
  • the terminal when the terminal moves between different single-frequency network cell groups, the terminal performs re-selection of the single-frequency network cell group or switching of the single-frequency network cell group.
  • the terminal 700 further includes:
  • the first access module is configured to perform the following steps to access the cell:
  • the system message is read through the SIB corresponding to the cell; where the cell is a cell included in a single-frequency network cell group.
  • the terminal 700 further includes:
  • a second access module configured to access a single-frequency network cell group when the terminal is in an idle state or an inactive state
  • a third access module is configured to access a single-frequency network cell group when the amount of data to be transmitted is lower than a threshold.
  • the terminal 700 further includes:
  • a fourth access module configured to access a cell when the terminal is in a connected state
  • a fifth access module configured to access a cell when the amount of data to be transmitted is higher than a threshold
  • the cell is a cell included in a single-frequency network cell group.
  • the radio resource management RRM measurement period of the single-frequency network cell group is greater than or equal to the RRM measurement period of the cell; where the cell is a cell included in the single-frequency network cell group.
  • the single frequency network cell group supports dedicated beam management and / or dedicated beam failure recovery.
  • the synchronization grating of the SSB corresponding to the cell group of the single frequency network is different from the synchronization grating of the SSB corresponding to one cell.
  • At least one of the SSB, CSI-RS and DMRS of the single-frequency network cell group corresponds to a generation sequence and / or a scrambling sequence dedicated to the single-frequency network cell group.
  • the signal quality of the single-frequency network cell group is determined according to the beam detection of the single-frequency network cell group.
  • the embodiments of the present disclosure can obtain single frequency network gain, improve network coverage, and reduce the number of cell reselections.
  • narrow beam gain can be obtained to further improve network coverage.
  • each module of the above network equipment and terminal is only a division of logical functions. In actual implementation, it can be fully or partially integrated into a physical entity, or it can be physically separated. And these modules can all be implemented in the form of software called by processing elements; they can also be all implemented in hardware; some modules can be implemented in the form of software called by processing elements, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or it may be integrated and implemented in a certain chip of the above device.
  • it may also be stored in the form of a program code in the memory of the above device, and a certain processing element of the above device may be used. Invoke and execute the functions of the above identified modules.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in a processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a Central Processing Unit (CPU) or other processor that can call program code.
  • CPU Central Processing Unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 8 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 80 includes but is not limited to a radio frequency unit 81, a network module 82, an audio output unit 83, The input unit 84, the sensor 85, the display unit 86, the user input unit 87, the interface unit 88, the memory 89, the processor 810, and the power supply 811 and other components.
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown, or some components may be combined, or different components may be arranged.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the radio frequency unit 81 is configured to transmit and receive data under the control of the processor 810, and is specifically configured to receive downlink information through the first beam of the single-frequency network cell group.
  • the single-frequency network cell group includes at least two cells, The two cells include a first cell supporting at least two beam transmissions, and the first beam is one of the beams supported by the first cell;
  • the terminal in the embodiment of the present disclosure can obtain a single-frequency network gain, improve network coverage, and at the same time reduce the number of cell reselections; in addition, a narrow beam gain can be obtained to further improve network coverage.
  • the radio frequency unit 81 may be used to receive and send signals during the transmission and reception of information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 810; The uplink data is sent to the base station.
  • the radio frequency unit 81 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 81 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 82, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 83 may convert audio data received by the radio frequency unit 81 or the network module 82 or stored in the memory 89 into audio signals and output them as sound. Moreover, the audio output unit 83 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 80.
  • the audio output unit 83 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 84 is used to receive audio or video signals.
  • the input unit 84 may include a Graphics Processing Unit (GPU) 841 and a microphone 842.
  • the graphics processor 841 may pair images of still pictures or videos obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode. Data is processed.
  • the processed image frames may be displayed on the display unit 86.
  • the image frames processed by the graphics processor 841 may be stored in the memory 89 (or other storage medium) or transmitted via the radio frequency unit 81 or the network module 82.
  • the microphone 842 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 81 in the case of a telephone call mode and output.
  • the terminal 80 further includes at least one sensor 85, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 861 according to the brightness of the ambient light, and the proximity sensor can close the display panel 861 and / when the terminal 80 moves to the ear. Or backlight.
  • an accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • sensor 85 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 86 is used to display information input by the user or information provided to the user.
  • the display unit 86 may include a display panel 861.
  • the display panel 861 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 87 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 87 includes a touch panel 871 and other input devices 872.
  • the touch panel 871 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses a finger, a stylus or any suitable object or accessory on the touch panel 871 or near the touch panel 871 operating).
  • the touch panel 871 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it
  • the processor 810 receives and executes a command sent by the processor 810.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 871.
  • the user input unit 87 may further include other input devices 872.
  • other input devices 872 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 871 may be overlaid on the display panel 861.
  • the touch panel 871 detects a touch operation on or near the touch panel 871, the touch panel 871 is transmitted to the processor 810 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 861.
  • the touch panel 871 and the display panel 861 are implemented as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 871 and the display panel 861 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 88 is an interface through which an external device is connected to the terminal 80.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 88 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 80 or may be used to communicate between the terminal 80 and an external device. Transfer data.
  • the memory 89 can be used to store software programs and various data.
  • the memory 89 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 89 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage device.
  • the processor 810 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal.
  • the processor 810 runs or executes software programs and / or modules stored in the memory 89 and calls data stored in the memory 89 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 810.
  • the terminal 80 may further include a power source 811 (such as a battery) for supplying power to various components.
  • a power source 811 such as a battery
  • the power source 811 may be logically connected to the processor 810 through a power management system, thereby realizing management of charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 80 includes some functional modules that are not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal, including a processor 810, a memory 89, and a computer program stored on the memory 89 and executable on the processor 810.
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and / or other business data connectivity to the user, a handheld device with a wireless connection function, or other processing equipment connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal
  • it can be a portable, compact, handheld, computer-built or vehicle-mounted mobile device that exchanges language and / or data with a wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a wireless terminal can also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a mobile station, a remote station, a remote terminal,
  • the access terminal Access terminal
  • user terminal User terminal
  • user agent User agent
  • user equipment User Equipment
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the processes of the foregoing information transmission method embodiments are implemented, and the same technology can be achieved. Effect, in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially a part that contributes to the existing technology or a part of the technical solution may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be disassembled and / or recombined.
  • These decompositions and / or recombinations should be regarded as equivalent solutions of the present disclosure.
  • the steps for performing the series of processes described above can be performed naturally in chronological order in accordance with the described order, but need not necessarily be performed in chronological order, and certain steps can be performed in parallel or independently of each other.
  • it is able to understand all or any steps or components of the methods and devices of the present disclosure and may be implemented in hardware, firmware in any computing device (including a processor, a storage medium, etc.) or a network of computing devices.
  • Software, or a combination thereof which can be achieved by a person of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product including a program code that implements the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future. It should also be noted that, in the apparatus and method of the present disclosure, it is obvious that each component or each step can be disassembled and / or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供了一种信息传输方法、网络设备及终端,该方法包括:通过单频网小区组的第一波束,向终端发送下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个。

Description

信息传输方法、网络设备及终端
相关申请的交叉引用
本申请主张在2018年9月10日在中国提交的中国专利申请号No.201811052563.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息传输方法、网络设备及终端。
背景技术
在第五代(5 th Generation,5G)移动通信系统中,为达到下行链路传输速率20Gbps,上行链路传输速率10Gbps的目标,高频通信和大规模天线技术被引入。高频通信可提供更宽的系统带宽,天线尺寸也可以更小,更加有利于大规模天线在网络设备和终端(User Equipment,UE)中部署。网络设备侧可支持多波束(Multi-beam)/多收发节点(Transmit Receive Point,Multi-TRP)的发送和接收,终端侧也可支持Multi-beam的发送和接收。
其中,每个小区可以通过多个窄波束进行信号发送,多个波束的发送可以是时分的,每个波束可以覆盖小区的某一个方向。某个时刻通过一个窄波束发送相比通过一个宽波束(如覆盖整个小区的beam)发送的增益大约是9dB(8倍)。但单小区多波束的发送方案中,终端需要在小区间频繁的进行小区重选。
而单频网(Single-Frequency Network,SFN)传输方案为:多个小区或多个发送点发送同样的信号,不同小区间没有同频干扰,且多个信号可提升信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)、传输质量和覆盖效果。多个小区可以通过SFN传输的方式进行信号的发送,其中每个小区以宽波束发送,某一时刻终端可以接收到多个小区发送的宽波束,从而获得分集增益。终端接收到的最强的小区一般是3个,假设三个小区的信号强度相当,则接收到三个小区的信号能量是接收到单个小区信号能量的3倍, 约4dB增益。SFN传输方案中,终端不需要在小区间频繁的进行小区重选,但该方案的传输增益比窄波束传输方案的传输增益低,存在覆盖问题。
发明内容
本公开实施例提供了一种信息传输方法、网络设备及终端,以解决信息传输过程中传输增益低或频繁小区重选的问题。
第一方面,本公开实施例提供了一种信息传输方法,应用于网络设备,包括:
通过单频网小区组的第一波束,向终端发送下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个。
第二方面,本公开实施例还提供了一种信息传输方法,应用于终端,包括:
通过单频网小区组的第一波束,接收下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个。
第三方面,本公开实施例提供了一种网络设备,包括:
第一发送模块,用于通过单频网小区组的第一波束,向终端发送下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个。
第四方面,本公开实施例提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并在处理器上运行的程序,处理器执行该程序时实现上述的信息传输方法的步骤。
第五方面,本公开实施例提供了一种终端,包括:
第一接收模块,用于通过单频网小区组的第一波束,接收下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个。
第六方面,本公开实施例还提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的程序,该程序被处理器执行时实现 上述的信息传输方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有程序,该程序被处理器执行时实现上述的信息传输方法的步骤。
这样,本公开实施例通过单频网小区组内的多个小区传输信息,可获得单频网增益,提高网络覆盖率,同时可减少小区重选的次数;此外,进一步通过多个小区支持的多个波束中的第一波束传输信息,可获得窄波束增益,进一步提高网络覆盖率。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开实施例可应用的一种移动通信系统框图;
图2表示本公开实施例网络设备的信息传输方法的流程示意图;
图3表示本公开实施例TA列表的小区覆盖示意图;
图4表示本公开实施例网络设备的模块结构示意图;
图5表示本公开实施例的网络设备框图;
图6表示本公开实施例终端的信息传输方法的流程示意图;
图7表示本公开实施例终端的模块结构示意图;
图8表示本公开实施例的终端框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类 似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本公开实施例可应用的一种无线通信系统的框图。无线通信系统包括网络设备01和终端02。其中,网络设备01可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站 (Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。终端02也可以称作终端设备或者用户终端(User Equipment,UE),终端02可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端02的具体类型。
基站可在基站控制器的控制下与终端02通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端02进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端02到网络设备01)的上行链路,或用于承载下行链路 (Downlink,DL)传输(例如,从网络设备01到终端02)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。
如图1所示的场景中,网络设备01和终端02之间通过天线波束实现信号传输,天线波束为空域传输滤波器形成的。网络设备01和终端02均可包含多个波束,以图1为例,假设网络设备01包含N个发送接收点(Transmit Receive Point,TRP),每个TRP包括一个空域传输滤波器,以形成N个波束,终端02包含M个空域传输滤波器,以形成M个波束,其中N、M均为大于1的整数。N和M可以相同也可以不相同,本公开不作限制。
本公开实施例提供了一种信息传输方法,应用于网络设备,如图2所示,该方法包括:
步骤21:通过单频网小区组的第一波束,向终端发送下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个。
本公开实施例中,单频网小区组(SFN cell group)内包括多个小区,SFN cell group所包含的小区可以由网络设备配置,如网络设备可配置SFN cell group内小区的数量和小区标识,这些小区中包括支持多个波束的第一小区,其中,单频网小区组内所有支持多波束传输的小区均称为第一小区,第一小区的个数可以是一个,也可以是多个。第一波束可以是单频网小区组内小区所支持的波束中的一个。值得指出的是,单频网小区组内所包含的小区可以是支持相同波束数量的小区,如单频网小区组内所有小区均支持2个波束,那么单频网小区组内的所有小区均为第一小区,第一波束为第一小区所支持波束中的一个。单频网小区组内所包含的小区还可以是支持不同波束数量的小区,如单频网小区组内部分小区支持2个波束,那么第一波束为第一小区所支持的2个波束中的一个,其余部分小区支持1个波束,第一波束还可以为其余部分小区支持的那个波束。
其中,单频网小区组内小区的波束是按照时分方式传输的。例如单频网小区组包括小区1和小区2,小区1和小区2均支持波束1和波束2。那么T1时刻,小区1和小区2均通过波束1传输;T2时刻,小区1和小区2均通过波束2传输。也就是说T1时刻,单频网小区组的所有小区通过波束1 发送,T2时刻,单频网小区组所有小区通过波束2发送,若每小区支持更多波束,以此类推,例如4个beam,T1时刻,单频网小区组的所有小区通过波束1发送,T2时刻,单频网小区组所有小区通过波束2发送,T3时刻,单频网小区组的所有小区通过波束3发送,T4时刻,单频网小区组所有小区通过波束4发送。或者,单频网小区组包括小区1和小区2,小区1支持一个波束(波束1),小区2支持波束1和波束2,那么T1时刻,小区1和小区2均通过各自的波束1传输;T2时刻,小区1仍通过其对应的波束1传输,小区2通过其对应的波束2传输。又或者,单频网小区组包括小区1和小区2,小区1支持波束1和波束2,小区2支持波束1、波束2、波束3和波束4,那么T1时刻,小区1和小区2均通过各自的波束1传输;T2时刻,小区1仍通过其对应的波束1传输,小区2通过其对应的波束2传输;T3时刻,小区1通过其对应的波束2传输,小区2通过其对应的波束3传输;T4时刻,小区1通过其对应的波束2传输,小区2通过其对应的波束4传输。其中,本实施例所说的波束1、波束2、波束3和波束4等仅为波束编号,不同小区对应有相同编号的波束的波束方向可以不同,例如当小区1仅支持波束1时,波束1为全向波束;当小区1支持波束1和波束2,波束1和波束2均为窄带波束。
本公开实施例中,步骤21包括:在不同传输时间段内,通过单频网小区组的第一波束,向终端发送下行信息。这里所述的不同传输时间段指的是对应于第一波束的不同传输时间段,例如在T1时刻传输波束1,在T2时刻传输波束2,在T3时刻传输波束1,在T4时刻传输波束2,对应于波束1的不同传输时间段指的是T1和T3,对应于波束2的不同传输时间段指的是T2和T4。
进一步地,下行信息是以传输时间段为单位重复发送的,也就是说网络设备可支持信号在时间上的重复发送,例如每个下行信息在同一波束的多个时刻重复发送,对应的终端可以在多个时刻进行该波束信号的合并接收。例如在T1时刻和T3时刻通过波束1重复发送下行信息。或者,下行信息是通过不同传输时间段内的第一波束联合发送的。具体地,将下行信息进行信道编码和速率匹配,得到待发送的比特序列,将比特序列划分多个比特子序列, 并通过不同传输时间段的第一波束发送。例如,将下行信息的比特序列分为2个比特子序列,在T1时刻和T3时刻通过波束1联合发送这两个比特子序列。
本公开实施例中,下行信息采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)方式发送,其OFDM方式采用扩展循环前缀(Cyclic Prefix,CP)或正常CP。下行信息采用扩展CP的OFDM方式传输,以对抗更大的多径时延扩展。
本公开实施例的下行信息是通过单频网小区组对应的专用带宽部分(Bandwidth Part,BWP),如下行初始BWP(Down Initial BWP),发送的。进一步地,网络设备可以将终端配置在单频网小区组对应的专用BWP上,或者,将终端配置在一个小区对应的BWP上。其中,两者之间可以互相切换,例如,网络设备可以将终端由单频网小区组的专用BWP切换至小区的BWP上,反之亦可,故在此不再赘述。
其中,本公开实施例的下行信息包括:同步信号块(Synchronization Signal and PBCH Block,SSB)、寻呼(Paging)信号、唤醒信号(Wake Up Signal,WUS)、睡眠信号(Go To Sleep Signal,GTS Signal)、物理广播信道(Physical Broadcast Channel,PBCH)、专用解调参考信号(De-Modulation Reference Signal,DMRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)和系统消息块(System Information Block,SIB)所承载的信息中至少一项。这些下行信息均可采用扩展CP或正常CP的OFDM方式,在单频网小区组的第一波束对应的不同传输时间段内重复或联合发送。
其中,下行信息的传输格式相关信息是通过小区专用(cell specific)信息配置的,如通过cell specific的PBCH、SIB1或无线资源控制(Radio Resource Control,RRC)信令等。或者,传输格式相关信息是通过单频网小区组专用(SFN based)信息配置的,如通过SFN based的PBCH、SIB1或者RRC信令等。或者,传输格式相关信息是预定义的,如协议约定。其中,这里所说的传输格式相关信息包括:传输周期、参数集(Numerology)、波束的数目、时频域资源中的至少一项。其中,参数集包括:子载波间隔、OFDM符号长度和CP长度等的至少一项。
其中,网络设备还可以:配置终端通过SFN小区组专用的SSB、CSI-RS和DMRS的至少一项进行无线资源管理(Radio Resource Management,RRM)测量和/或无线链路监测(Radio Link Monitoring,RLM)测量。
进一步地,单频网小区组内的小区包括:跟踪区(Tracking Area,TA)内的小区、TA列表(TA list)中的小区或基于无线接入网通知(RAN-based Notification Area,RNA)区域的小区。其中,跟踪区是系统为终端的位置管理设立的概念。当终端处于空闲状态时,网络设备能够知道终端所在的跟踪区,同时当处于空闲状态的终端需要被寻呼时,必须在终端所注册的跟踪区的所有小区进行寻呼。其中,TA是小区级的配置,多个小区可以配置相同的TA,且一个小区只能属于一个TA。跟踪区标识(Tracking Area Identity,TAI)是由公共陆地移动网络(Public Land Mobile Network,PLMN)和跟踪区码(Tracking Area Code,TAC)组成:TAI=PLMN+TAC。如图3所示,多个TA组成一个TA列表,同时分配给一个终端,终端在该TA列表内移动时不需要执行TA更新,以减少与网络的频繁交互;当终端进入不在其所注册的TA列表中的新TA区域时,需要执行TA更新,网络设备给终端重新分配一组TA,新分配的TA也可包含原有TA列表中的一些TA。如果终端在TA list里的多个TA间移动,是不做TA更新。RNA覆盖的小区集合可以是组成一个TA或TA列表的小区集合的子集。
其中,步骤21之前,还包括:为终端配置单频网小区组的组相关信息,其中,组相关信息包括:单频网小区组标识、单频网小区组频点和同步信号块图样(pattern)中的至少一项。
其中,终端接入一个SFN cell group时,RRM测量周期可以放松,也就是说,单频网小区组的无线资源管理RRM测量周期大于或等于小区的RRM测量周期;其中,该小区是单频网小区组包含的小区。
其中,单频网小区组支持专用波束管理(beam management)和/或专用波束失败恢复(Beam Failure Recovery,BFR)。也就是说,系统支持SFN cell group specific的波束管理和/或波束失败恢复。
其中,单频网小区组对应的SSB的同步光栅(sync raster)与一个小区对应的SSB的同步光栅不同。也就是说,SFN SSB的位置可以跟cell SSB的sync  raster不一样,值得指出的是,初始接入时终端不搜索SFN SSB。
其中,单频网小区组的SSB、CSI-RS和DMRS中的至少一项对应有单频网小区组专用的生成序列和/或加扰序列。例如,单频网小区组的用于解调PBCH的DMRS(SFN based DMRS)对应有专用的加扰相位(scrambling phase)和生成序列。
其中,单频网小区组的信号质量是终端根据单频网小区组的波束检测确定的,例如,可以通过对单频网小区组内的多个波束的联合检测来评估SFN cell group的信号质量。
此外,网络设备还可以配置SFN cell group specific BWP的开和关。配置SFN cell group specific BWP上的SSB、PBCH、SIB、Paging、WUS和GTS中至少一项的开和关。还可以配置终端驻留在SFN的SSB上,或者驻留在小区的SSB上,二者之间支持互相切换。
本公开实施例可获得单频网增益,提高网络覆盖率,同时可减少小区重选的次数;此外,还可获得窄波束增益,进一步提高网络覆盖率。
以上实施例分别详细介绍了不同场景下的信息传输方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图4所示,本公开实施例的网络设备400,能实现上述实施例中通过单频网小区组的第一波束,向终端发送下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个方法的细节,并达到相同的效果,该网络设备400具体包括以下功能模块:
第一发送模块410,用于通过单频网小区组的第一波束,向终端发送下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个。
其中,第一发送模块410包括:
第一发送子模块,用于在不同传输时间段内,通过单频网小区组的第一波束,向终端发送下行信息。
其中,下行信息是以传输时间段为单位重复发送的,或者,下行信息是通过不同传输时间段内的第一波束联合发送的。
其中,下行信息采用正交频分复用OFDM方式发送,且OFDM方式采用扩展循环前缀CP或正常CP。
其中,下行信息是通过单频网小区组对应的专用带宽部分BWP发送的。
其中,网络设备400还包括:
第一配置模块,用于将终端配置在单频网小区组对应的专用BWP上,
或者,
第二配置模块,用于将终端配置在一个小区对应的BWP上。
其中,下行信息包括:同步信号块SSB、寻呼信号、唤醒信号WUS、睡眠信号GTS、物理广播信道PBCH、专用解调参考信号DMRS、信道状态信息参考信号CSI-RS和系统消息块SIB所承载的信息中至少一项。
其中,下行信息的传输格式相关信息是通过小区专用信息配置的,或者,传输格式相关信息是通过单频网小区组专用信息配置的,或者,传输格式相关信息是预定义的;
其中,传输格式相关信息包括:传输周期、参数集Numerology、波束的数目、时频域资源中的至少一项。
其中,网络设备400还包括:
第三配置模块,用于配置终端通过SSB、CSI-RS和DMRS的至少一项进行无线资源管理RRM测量和/或无线链路监测RLM测量。
其中,单频网小区组内的小区包括:跟踪区TA内的小区、TA列表中的小区或基于无线接入网通知区域内的小区。
其中,网络设备400还包括:
第四配置模块,用于为终端配置单频网小区组的组相关信息,其中,组相关信息包括:单频网小区组标识、单频网小区组频点和同步信号块图样中的至少一项。
其中,单频网小区组的无线资源管理RRM测量周期大于或等于小区的RRM测量周期;其中,小区是单频网小区组包含的小区。
其中,单频网小区组支持专用波束管理和/或专用波束失败恢复。
其中,单频网小区组对应的SSB的同步光栅与一个小区对应的SSB的同步光栅不同。
其中,单频网小区组的SSB、CSI-RS和DMRS中的至少一项对应有单频网小区组专用的生成序列和/或加扰序列。
其中,单频网小区组的信号质量是根据单频网小区组的波束检测确定的。
值得指出的是,本公开实施例可获得单频网增益,提高网络覆盖率,同时可减少小区重选的次数;此外,还可获得窄波束增益,进一步提高网络覆盖率。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的信息传输方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的信息传输方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图5所示,该网络设备500包括:天线51、射频装置52、基带装置53。天线51与射频装置52连接。在上行方向上,射频装置52通过天线51接收信息,将接收的信息发送给基带装置53进行处理。在下行方向上,基带装置53对要发送的信息进行处理,并发送给射频装置52,射频装置52对收到的信息进行处理后经过天线51发送出去。
上述频带处理装置可以位于基带装置53中,以上实施例中网络设备执行的方法可以在基带装置53中实现,该基带装置53包括处理器54和存储器55。
基带装置53例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图5所示,其中一个芯片例如为处理器54,与存储器55连接,以调用存储器55中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置53还可以包括网络接口56,用于与射频装置52交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或, 一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器55可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开描述的存储器55旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器55上并可在处理器54上运行的计算机程序,处理器54调用存储器55中的计算机程序执行图4所示各模块执行的方法。
具体地,计算机程序被处理器54调用时可用于执行:通过单频网小区组的第一波束,向终端发送下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个。
本公开实施例中的网络设备,可获得SFN增益,提高网络覆盖率,同时可减少小区重选的次数;此外,还可获得窄波束增益,进一步提高网络覆盖率。
以上实施例从网络设备侧介绍了本公开的信息传输方法,下面本实施例将结合附图对终端侧的信息传输方法做进一步介绍。
如图6所示,本公开实施例的信息传输方法,应用于终端,该方法包括 以下步骤:
步骤61:通过单频网小区组的第一波束,接收下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个。
其中,单频网小区组内包括多个小区,这些小区中包括支持多个波束的第一小区,其中,单频网小区组内所有支持多波束传输的小区均称为第一小区,第一小区的个数可以是一个,也可以是多个。第一波束为单频网小区组内小区支持的波束中一个。值得指出的是,单频网小区组内所包含的小区可以是支持相同波束数量的小区。单频网小区组内所包含的小区还可以是支持不同波束数量的小区。其中,单频网小区组内小区的波束是按照时分方式传输的。其中,不同小区对应有相同编号的波束的波束方向可以不同。
其中,步骤61包括:在不同传输时间段内,通过单频网小区组的第一波束,接收下行信息。这里所述的不同传输时间段指的是对应于第一波束的不同传输时间段。
进一步地,在不同传输时间段内,通过单频网小区组的第一波束,接收下行信息的步骤之后还包括:
将不同传输时间段内接收到的下行信息进行合并,以得到下行信息。该方式对应于下行信息在第一波束对应的至少两个传输时间段内重复传输的场景,终端将每个传输时间段接收到的信息进行合并,得到下行信息。
或者,将同步传输时间段内接收到的下行信息进行级联和信道译码,以得到所述下行信息。该方式对应于下行信息在第一波束对应的至少两个传输时间段内联合传输的场景,终端将每个传输时间段接收到的信息进行级联在一起进行信道译码,以得到下行信息。
其中,下行信息采用正交频分复用OFDM方式发送,且OFDM方式采用扩展循环前缀CP或正常CP。下行信息采用扩展CP的OFDM方式传输,以对抗更大的多径时延扩展。
其中,下行信息是通过单频网小区组对应的专用带宽部分BWP如下行初始BWP接收的。相应地,步骤61之前还包括:根据网络设备的配置,激活或去激活专用带宽部分BWP。进一步地,网络设备可以将终端配置在单频网 小区组对应的专用BWP上,这时终端激活专用BWP。或者,网络设备还可以将终端配置在一个小区对应的BWP上,这时终端去激活单频网小区组专用BWP。
其中,下行信息包括:同步信号块SSB、寻呼信号、唤醒信号WUS、睡眠信号GTS Signal、物理广播信道PBCH、专用解调参考信号DMRS、信道状态信息参考信号CSI-RS和系统消息块SIB所承载的信息中至少一项。这些下行信息均可采用扩展CP或正常CP的OFDM方式,在单频网小区组的第一波束对应的不同传输时间段内重复或联合传输。
其中,下行信息的传输格式相关信息包括:传输周期、参数集Numerology、波束的数目、时频域资源中的至少一项。其中,参数集包括:子载波间隔、OFDM符号长度和CP长度等的至少一项。
其中,终端还可以:通过SSB、CSI-RS和DMRS的至少一项进行无线资源管理RRM测量和/或无线链路监测RLM测量。
其中,终端在一个单频网小区组内移动时,不进行小区重选或小区切换。也就是说,终端在一个SFN cell group覆盖范围内移动,不需要进行SFN cell group/cell的重选或切换。
其中,终端在不同的单频网小区组间移动时,进行单频网小区组的重选或单频网小区组的切换。也就是说,终端在不同的SFN cell group之间移动是需要进行SFN cell group的重选或切换。
其中,步骤61之前还包括:执行以下步骤,以接入小区:搜索小区对应的SSB进行同步,通过小区对应的PBCH读取广播信息,通过小区对应的SIB读取系统消息;其中,小区是所述单频网小区组包含的小区。其中,这些步骤之间没有严格的时序要求,可以先进行同步在进行广播信息的读取,或者反之。也就是说,终端初始接入时通过小区的SSB进行同步,通过小区的PBCH和SIB分别读取广播信息和系统消息。
其中,本公开实施例的信息传输方法还包括以下步骤:当终端处于空闲态(Idle)或非激活态(inactive)时,接入单频网小区组;即处于Idle/inactive态时,终端接入到SFN的SSB,终端可以通过SFN的SSB进行RRM测量,同步和系统信息获取。或者,当待传输的数据量低于阈值时,接入单频网小 区组,例如很少的数据量或者不频繁的数据包(例如心跳包)等通过SFN cell group specific BWP进行数据接收或上传。
其中,本公开实施例的信息传输方法还包括以下步骤:当终端处于连接态(connected)时,接入小区;即终端进入connected态时,通过cell specific SSB进行RRM测量、同步和系统信息获取。或者,当待传输的数据量高于阈值时,接入小区;例如待传输的数据量较大时,大数据量通过cell group specific的BWP进行数据接收或上传。其中,这里的小区是单频网小区组包含的小区。
其中,终端接入一个SFN cell group时,RRM测量周期可以放松,也就是说,单频网小区组的无线资源管理RRM测量周期大于或等于小区的RRM测量周期;其中,该小区是单频网小区组包含的小区。
其中,单频网小区组支持专用波束管理和/或专用波束失败恢复。也就是说,系统支持SFN cell group specific的波束管理和/或波束失败恢复。
其中,单频网小区组对应的SSB的同步光栅与一个小区对应的SSB的同步光栅不同。也就是说,SFN SSB的位置可以跟cell SSB的同步光栅不一样,值得指出的是,初始接入时终端不搜索SFN SSB。
其中,单频网小区组的SSB、CSI-RS和DMRS中的至少一项对应有单频网小区组专用的生成序列和/或加扰序列。例如,单频网小区组的用于解调PBCH的DMRS对应有专用的加扰相位和生成序列。
其中,单频网小区组的信号质量是根据单频网小区组的波束检测确定的,例如,可以通过对单频网小区组内的多个波束的联合检测来评估SFN cell group的信号质量。
此外,网络设备还可以配置SFN cell group specific BWP的开和关。配置SFN cell group specific BWP上的SSB、PBCH、SIB、Paging、WUS和GTS signal中至少一项的开和关。还可以配置终端驻留在SFN的SSB上,或者驻留在小区的SSB上,二者之间支持互相切换。
本公开实施例可获得单频网增益,提高网络覆盖率,同时可减少小区重选的次数;此外,还可获得窄波束增益,进一步提高网络覆盖率。
以上实施例介绍了不同场景下的信息传输方法,下面将结合附图对与其 对应的终端做进一步介绍。
如图7所示,本公开实施例的终端700,能实现上述实施例中通过单频网小区组的第一波束,接收下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个方法的细节,并达到相同的效果,该终端700具体包括以下功能模块:
第一接收模块710,用于通过单频网小区组的第一波束,接收下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个。
其中,第一接收模块710包括:
第一接收子模块,用于在不同传输时间段内,通过单频网小区组的第一波束,接收下行信息。
其中,终端700还包括:
第一处理模块,用于将不同传输时间段内接收到的下行信息进行合并,以得到下行信息;
或者,
第二处理模块,用于将同步传输时间段内接收到的下行信息进行级联和信道译码,以得到下行信息。
其中,下行信息采用正交频分复用OFDM方式发送,且OFDM方式采用扩展循环前缀CP或正常CP。
其中,下行信息是通过单频网小区组对应的专用带宽部分BWP接收的。
其中,终端700还包括:
第三处理模块,用于根据网络设备的配置,激活或去激活专用带宽部分BWP。
其中,下行信息包括:同步信号块SSB、寻呼信号、唤醒信号WUS、睡眠信号GTS、物理广播信道PBCH、专用解调参考信号DMRS、信道状态信息参考信号CSI-RS和系统消息块SIB所承载的信息中至少一项。
其中,下行信息的传输格式相关信息包括:传输周期、参数集Numerology、波束的数目、时频域资源中的至少一项。
其中,终端700包括:
测量模块,用于通过SSB、CSI-RS和DMRS的至少一项进行无线资源管理RRM测量和/或无线链路监测RLM测量。
其中,终端在一个单频网小区组内移动时,不进行小区重选或小区切换。
其中,终端在不同的单频网小区组间移动时,进行单频网小区组的重选或单频网小区组的切换。
其中,终端700还包括:
第一接入模块,用于执行以下步骤,以接入小区:
搜索小区对应的SSB进行同步,
通过小区对应的PBCH读取广播信息,
通过小区对应的SIB读取系统消息;其中,小区是单频网小区组包含的小区。
其中,终端700还包括:
第二接入模块,用于当终端处于空闲态或非激活态时,接入单频网小区组;
或者,
第三接入模块,用于当待传输的数据量低于阈值时,接入单频网小区组。
其中,终端700还包括:
第四接入模块,用于当终端处于连接态时,接入小区;
或者,
第五接入模块,用于当待传输的数据量高于阈值时,接入小区;
其中,小区是单频网小区组包含的小区。
其中,单频网小区组的无线资源管理RRM测量周期大于或等于小区的RRM测量周期;其中,小区是单频网小区组包含的小区。
其中,单频网小区组支持专用波束管理和/或专用波束失败恢复。
其中,单频网小区组对应的SSB的同步光栅与一个小区对应的SSB的同步光栅不同。
其中,单频网小区组的SSB、CSI-RS和DMRS中的至少一项对应有单频网小区组专用的生成序列和/或加扰序列。
其中,单频网小区组的信号质量是根据单频网小区组的波束检测确定的。
值得指出的是,本公开实施例可获得单频网增益,提高网络覆盖率,同时可减少小区重选的次数;此外,还可获得窄波束增益,进一步提高网络覆盖率。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,进一步地,图8为实现本公开各个实施例的一种终端的硬件结构示意图,该终端80包括但不限于:射频单元81、网络模块82、音频输出单元83、输入单元84、传感器85、显示单元86、用户输入单元87、接口单元88、存储器89、处理器810、以及电源811等部件。本领域技术人员可以理解,图8中示出的终端结构并不构成对终端的限定,终 端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元81,用于在处理器810的控制下收发数据,具体用于通过单频网小区组的第一波束,接收下行信息;其中,单频网小区组包括至少两个小区,至少两个小区包括支持至少两个波束传输的第一小区,第一波束为第一小区支持的波束中的一个;
本公开实施例的终端可获得单频网增益,提高网络覆盖率,同时可减少小区重选的次数;此外,还可获得窄波束增益,进一步提高网络覆盖率。
应理解的是,本公开实施例中,射频单元81可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器810处理;另外,将上行的数据发送给基站。通常,射频单元81包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元81还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块82为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元83可以将射频单元81或网络模块82接收的或者在存储器89中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元83还可以提供与终端80执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元83包括扬声器、蜂鸣器以及受话器等。
输入单元84用于接收音频或视频信号。输入单元84可以包括图形处理器(Graphics Processing Unit,GPU)841和麦克风842,图形处理器841对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元86上。经图形处理器841处理后的图像帧可以存储在存储器89(或其它存储介质)中或者经由射频单元81或网络模块82进行发送。麦克风842可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元81发送到移动通信基站的格式输出。
终端80还包括至少一种传感器85,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板861的亮度,接近传感器可在终端80移动到耳边时,关闭显示面板861和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器85还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元86用于显示由用户输入的信息或提供给用户的信息。显示单元86可包括显示面板861,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板861。
用户输入单元87可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元87包括触控面板871以及其他输入设备872。触控面板871,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板871上或在触控面板871附近的操作)。触控面板871可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器810,接收处理器810发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板871。除了触控面板871,用户输入单元87还可以包括其他输入设备872。具体地,其他输入设备872可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板871可覆盖在显示面板861上,当触控面板871检测到在其上或附近的触摸操作后,传送给处理器810以确定触摸事件的类型,随后处理器810根据触摸事件的类型在显示面板861上提供相应的视觉输出。 虽然在图8中,触控面板871与显示面板861是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板871与显示面板861集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元88为外部装置与终端80连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元88可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端80内的一个或多个元件或者可以用于在终端80和外部装置之间传输数据。
存储器89可用于存储软件程序以及各种数据。存储器89可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器89可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器810是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器89内的软件程序和/或模块,以及调用存储在存储器89内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
终端80还可以包括给各个部件供电的电源811(比如电池),可选的,电源811可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端80包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器810,存储器89,存储在存储器89上并可在所述处理器810上运行的计算机程序,该计算机程序被处理器810执行时实现上述信息传输方法实施例的各个过程,且能达到 相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,可以 通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编 程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (35)

  1. 一种信息传输方法,应用于网络设备,包括:
    通过单频网小区组的第一波束,向终端发送下行信息;其中,所述单频网小区组包括至少两个小区,所述至少两个小区包括支持至少两个波束传输的第一小区,所述第一波束为所述第一小区支持的波束中的一个。
  2. 根据权利要求1所述的信息传输方法,其中,通过单频网小区组的第一波束,向终端发送下行信息的步骤,包括:
    在不同传输时间段内,通过所述单频网小区组的第一波束,向终端发送下行信息。
  3. 根据权利要求2所述的信息传输方法,其中,所述下行信息是以所述传输时间段为单位重复发送的,或者,所述下行信息是通过不同传输时间段内的第一波束联合发送的。
  4. 根据权利要求1所述的信息传输方法,其中,所述下行信息采用正交频分复用OFDM方式发送,且所述OFDM方式采用扩展循环前缀CP或正常CP。
  5. 根据权利要求1所述的信息传输方法,其中,所述下行信息是通过所述单频网小区组对应的专用带宽部分BWP发送的。
  6. 根据权利要求5所述的信息传输方法,还包括:
    将所述终端配置在所述单频网小区组对应的所述专用BWP上,
    或者,
    将所述终端配置在一个小区对应的BWP上。
  7. 根据权利要求1所述的信息传输方法,其中,所述下行信息包括:同步信号块SSB、寻呼信号、唤醒信号WUS、睡眠信号GTS、物理广播信道PBCH、专用解调参考信号DMRS、信道状态信息参考信号CSI-RS和系统消息块SIB所承载的信息中至少一项。
  8. 根据权利要求1或7所述的信息传输方法,其中,所述下行信息的传输格式相关信息是通过小区专用信息配置的,或者,所述传输格式相关信息是通过单频网小区组专用信息配置的,或者,所述传输格式相关信息是预定 义的;
    其中,所述传输格式相关信息包括:传输周期、参数集Numerology、波束的数目、时频域资源中的至少一项。
  9. 根据权利要求7所述的信息传输方法,还包括:
    配置所述终端通过所述SSB、CSI-RS和DMRS的至少一项进行无线资源管理RRM测量和/或无线链路监测RLM测量。
  10. 根据权利要求1所述的信息传输方法,其中,所述单频网小区组内的小区包括:跟踪区TA内的小区、TA列表中的小区或基于无线接入网通知区域内的小区。
  11. 根据权利要求1所述的信息传输方法,其中,通过单频网小区组的第一波束,向终端发送下行信息的步骤之前,还包括:
    为所述终端配置所述单频网小区组的组相关信息,其中,所述组相关信息包括:单频网小区组标识、单频网小区组频点和同步信号块图样中的至少一项。
  12. 一种信息传输方法,应用于终端,包括:
    通过单频网小区组的第一波束,接收下行信息;其中,所述单频网小区组包括至少两个小区,所述至少两个小区包括支持至少两个波束传输的第一小区,所述第一波束为所述第一小区支持的波束中的一个。
  13. 根据权利要求12所述的信息传输方法,其中,通过单频网小区组的第一波束,接收下行信息的步骤,包括:
    在不同传输时间段内,通过所述单频网小区组的第一波束,接收下行信息。
  14. 根据权利要求13所述的信息传输方法,其中,在不同传输时间段内,通过所述单频网小区组的第一波束,接收下行信息的步骤之后,还包括:
    将不同传输时间段内接收到的下行信息进行合并,以得到所述下行信息;
    或者,
    将同步传输时间段内接收到的下行信息进行级联和信道译码,以得到所述下行信息。
  15. 根据权利要求12所述的信息传输方法,其中,所述下行信息采用正 交频分复用OFDM方式发送,且所述OFDM方式采用扩展循环前缀CP。
  16. 根据权利要求12所述的信息传输方法,其中,所述下行信息是通过所述单频网小区组对应的专用带宽部分BWP接收的。
  17. 根据权利要求16所述的信息传输方法,其中,通过单频网小区组内小区的第一波束,接收下行信息的步骤之前,还包括:
    根据网络设备的配置,激活或去激活所述专用带宽部分BWP。
  18. 根据权利要求12所述的信息传输方法,其中,所述下行信息包括:同步信号块SSB、寻呼信号、唤醒信号WUS、睡眠信号GTS、物理广播信道PBCH、专用解调参考信号DMRS、信道状态信息参考信号CSI-RS和系统消息块SIB所承载的信息中至少一项。
  19. 根据权利要求12或18所述的信息传输方法,其中,所述下行信息的传输格式相关信息包括:传输周期、参数集Numerology、波束的数目、时频域资源中的至少一项。
  20. 根据权利要求18所述的信息传输方法,还包括:
    通过所述SSB、CSI-RS和DMRS的至少一项进行无线资源管理RRM测量和/或无线链路监测RLM测量。
  21. 根据权利要求12所述的信息传输方法,其中,所述终端在一个单频网小区组内移动时,不进行小区重选或小区切换。
  22. 根据权利要求12所述的信息传输方法,其中,所述终端在不同的单频网小区组间移动时,进行单频网小区组的重选或单频网小区组的切换。
  23. 根据权利要求12所述的信息传输方法,其中,通过单频网小区组的第一波束,接收下行信息的步骤之前,还包括:
    执行以下步骤,以接入小区:
    搜索小区对应的SSB进行同步,
    通过小区对应的PBCH读取广播信息,
    通过小区对应的SIB读取系统消息;其中,所述小区是所述单频网小区组包含的小区。
  24. 根据权利要求12所述的信息传输方法,还包括:
    当所述终端处于空闲态或非激活态时,接入所述单频网小区组;
    或者,
    当待传输的数据量低于阈值时,接入所述单频网小区组。
  25. 根据权利要求24所述的信息传输方法,还包括:
    当所述终端处于连接态时,接入小区;
    或者,
    当待传输的数据量高于所述阈值时,接入小区;
    其中,所述小区是所述单频网小区组包含的小区。
  26. 根据权利要求1或12所述的信息传输方法,其中,所述单频网小区组的无线资源管理RRM测量周期大于或等于小区的RRM测量周期;其中,所述小区是所述单频网小区组包含的小区。
  27. 根据权利要求1或12所述的信息传输方法,其中,所述单频网小区组支持专用波束管理和/或专用波束失败恢复。
  28. 根据权利要求1或12所述的信息传输方法,其中,所述单频网小区组对应的SSB的同步光栅与一个小区对应的SSB的同步光栅不同。
  29. 根据权利要求1或12所述的信息传输方法,其中,所述单频网小区组的SSB、CSI-RS和DMRS中的至少一项对应有所述单频网小区组专用的生成序列和/或加扰序列。
  30. 根据权利要求1或12所述的信息传输方法,其中,所述单频网小区组的信号质量是根据所述单频网小区组的波束检测确定的。
  31. 一种网络设备,包括:
    第一发送模块,用于通过单频网小区组的第一波束,向终端发送下行信息;其中,所述单频网小区组包括至少两个小区,所述至少两个小区包括支持至少两个波束传输的第一小区,所述第一波束为所述第一小区支持的波束中的一个。
  32. 一种网络设备,所述网络设备包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的程序,所述处理器执行所述程序时实现如权利要求1至11、26至30任一项所述的信息传输方法的步骤。
  33. 一种终端,包括:
    第一接收模块,用于通过单频网小区组的第一波束,接收下行信息;其 中,所述单频网小区组包括至少两个小区,所述至少两个小区包括支持至少两个波束传输的第一小区,所述第一波束为所述第一小区支持的波束中的一个。
  34. 一种终端,所述终端包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求12至30中任一项所述的信息传输方法的步骤。
  35. 一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至30中任一项所述的信息传输方法的步骤。
PCT/CN2019/102208 2018-09-10 2019-08-23 信息传输方法、网络设备及终端 WO2020052425A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES19860120T ES2966502T3 (es) 2018-09-10 2019-08-23 Método de transmisión y recepción de información, dispositivo de red y terminal
JP2021512880A JP7179160B2 (ja) 2018-09-10 2019-08-23 情報伝送方法、ネットワークデバイス、及び端末
EP19860120.5A EP3843476B1 (en) 2018-09-10 2019-08-23 Information transmission and reception method, network device and terminal
US17/192,450 US20210195603A1 (en) 2018-09-10 2021-03-04 Information transmission method, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811052563.X 2018-09-10
CN201811052563.XA CN110891313B (zh) 2018-09-10 2018-09-10 信息传输方法、网络设备及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/192,450 Continuation US20210195603A1 (en) 2018-09-10 2021-03-04 Information transmission method, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2020052425A1 true WO2020052425A1 (zh) 2020-03-19

Family

ID=69745284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102208 WO2020052425A1 (zh) 2018-09-10 2019-08-23 信息传输方法、网络设备及终端

Country Status (8)

Country Link
US (1) US20210195603A1 (zh)
EP (1) EP3843476B1 (zh)
JP (1) JP7179160B2 (zh)
CN (1) CN110891313B (zh)
ES (1) ES2966502T3 (zh)
HU (1) HUE064460T2 (zh)
PT (1) PT3843476T (zh)
WO (1) WO2020052425A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4203563A4 (en) * 2020-09-29 2024-02-21 Vivo Mobile Communication Co Ltd CONNECTION SETUP METHOD AND DEVICE AS WELL AS DEVICE AND STORAGE MEDIUM

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477760B2 (en) * 2019-12-19 2022-10-18 Qualcomm Incorporated Frequency diversity techniques for single frequency networks
CN115552950A (zh) * 2020-05-13 2022-12-30 Oppo广东移动通信有限公司 一种确定测量放松要求的方法、电子设备及存储介质
CN112218356B (zh) * 2020-09-25 2022-04-29 紫光展锐(重庆)科技有限公司 一种唤醒同步方法、装置、终端和计算机可读存储介质
CN114337947A (zh) * 2020-09-29 2022-04-12 维沃移动通信有限公司 确定传输模式的方法、装置和通信设备
CN115175315A (zh) * 2021-04-02 2022-10-11 大唐移动通信设备有限公司 波束信号传输方法、装置、网络侧节点及终端
WO2023050442A1 (en) * 2021-10-01 2023-04-06 Qualcomm Incorporated Multiple transmission configuration indicator states for serving cells not configured for single frequency network transmissions
US20230199649A1 (en) * 2021-12-17 2023-06-22 Qualcomm Incorporated Signaling to wake up a cell
WO2024025107A1 (en) * 2022-07-25 2024-02-01 Samsung Electronics Co., Ltd. Method and apparatus for beam information

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973399A (zh) * 2013-01-31 2014-08-06 中兴通讯股份有限公司 一种生成载波配置信息的方法及网络侧设备及用户设备
WO2018063070A1 (en) * 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, radio network node and methods performed therein
CN108282198A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信号传输方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101305563B (zh) * 2006-10-31 2012-05-23 华为技术有限公司 陆地无线通信系统中分配通信资源的方法及系统
US9143984B2 (en) 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
CN110036677B (zh) * 2016-07-20 2023-09-26 艾普拉控股有限公司 使用波束成形和选择的无线电设备的移动性
WO2018062845A1 (ko) * 2016-09-27 2018-04-05 엘지전자 주식회사 무선 통신 시스템에서 단말의 동작 방법 및 이를 지원하는 장치
CN108135030B (zh) * 2016-09-30 2020-10-23 华为技术有限公司 传输物理控制信道的指示方法及其装置
KR102240171B1 (ko) * 2016-11-04 2021-04-14 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 셀 식별 정보
WO2018084663A1 (en) * 2016-11-06 2018-05-11 Lg Electronics Inc. Method and user equipment for transmitting random access signals, and method and base station for receiving random access signals
TWI753075B (zh) * 2017-01-05 2022-01-21 華碩電腦股份有限公司 無線通訊系統中用於決定基礎參數的方法和設備
US10951285B2 (en) * 2017-01-06 2021-03-16 Futurewei Technologies, Inc. Hybrid mobility and radio resource management mechanisms
US10862606B2 (en) 2017-06-16 2020-12-08 Qualcomm Incorporated Signaling and using virtual cell identification for SFN-type transmissions
WO2019170224A1 (en) * 2018-03-06 2019-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Radio location technique
US11224002B2 (en) * 2018-07-16 2022-01-11 Qualcomm Incorporated Multi-cell notification zone single frequency network
US11234180B2 (en) * 2019-01-03 2022-01-25 Qualcomm Incorporated Mobility procedures with hierarchical mobility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973399A (zh) * 2013-01-31 2014-08-06 中兴通讯股份有限公司 一种生成载波配置信息的方法及网络侧设备及用户设备
WO2018063070A1 (en) * 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, radio network node and methods performed therein
CN108282198A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信号传输方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Handover in Unidirectional SFN", 3GPP TSG RAN WG4 MEETING #76BIS R4-156658, vol. RAN WG4, 16 October 2015 (2015-10-16), XP051009603 *
ERICSSON: "On NR Paging Design", 3GPP TSG-RAN WG1 MEETING #89 R1-1708724, vol. RAN WG1, 14 May 2017 (2017-05-14), XP051273907 *
VIVO: "Remaining Details on NR Paging Design", 3GPP TSG RAN WG1 MEETING #91 R1-1719759, vol. RAN WG1, 18 November 2017 (2017-11-18), XP051369502 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4203563A4 (en) * 2020-09-29 2024-02-21 Vivo Mobile Communication Co Ltd CONNECTION SETUP METHOD AND DEVICE AS WELL AS DEVICE AND STORAGE MEDIUM

Also Published As

Publication number Publication date
EP3843476A4 (en) 2022-05-25
PT3843476T (pt) 2023-11-29
JP2021536194A (ja) 2021-12-23
ES2966502T3 (es) 2024-04-22
EP3843476B1 (en) 2023-11-08
EP3843476A1 (en) 2021-06-30
CN110891313B (zh) 2022-08-02
CN110891313A (zh) 2020-03-17
US20210195603A1 (en) 2021-06-24
JP7179160B2 (ja) 2022-11-28
HUE064460T2 (hu) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2020052425A1 (zh) 信息传输方法、网络设备及终端
WO2020011084A1 (zh) 调度参数的确定方法、配置方法、终端和网络侧设备
US11601902B2 (en) Synchronization signal block transmission method, network device, and terminal
JP2022520447A (ja) ハイブリッド自動再送要求harqフィードバック方法、端末及びネットワーク機器
US20210250936A1 (en) Information transmission method and communications device
WO2021027717A1 (zh) Mbms配置信息的获取方法、装置及通信设备
US20220369097A1 (en) Multiple sim card operation of an electronic device
US11800556B2 (en) Information transmission method, network device, and terminal
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
WO2020015628A1 (zh) 物理随机接入信道的功率控制方法及终端
WO2020038241A1 (zh) 功率控制方法、终端及网络设备
WO2021190478A1 (zh) 业务接收方法及装置、通信设备
JP2022518467A (ja) ランダムアクセス伝送方法及び端末
AU2020210990A1 (en) Random access transmission method and terminal
CN110691389B (zh) 上行数据速率匹配方法、配置方法、终端及网络设备
CN113452488B (zh) 传输节点的配置方法及装置、通信设备
WO2021088783A1 (zh) 物理下行控制信道的检测方法及装置
KR102591425B1 (ko) 정보 전송 방법, 네트워크 기기 및 단말
WO2023066355A1 (zh) 目标信息上报方法、终端及接入网设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019860120

Country of ref document: EP

Effective date: 20210322