WO2020051950A1 - 一种基于海底物联网的海底地震监测装置及系统 - Google Patents

一种基于海底物联网的海底地震监测装置及系统 Download PDF

Info

Publication number
WO2020051950A1
WO2020051950A1 PCT/CN2018/107802 CN2018107802W WO2020051950A1 WO 2020051950 A1 WO2020051950 A1 WO 2020051950A1 CN 2018107802 W CN2018107802 W CN 2018107802W WO 2020051950 A1 WO2020051950 A1 WO 2020051950A1
Authority
WO
WIPO (PCT)
Prior art keywords
submarine
network
seismic
subsea
photoelectric
Prior art date
Application number
PCT/CN2018/107802
Other languages
English (en)
French (fr)
Inventor
裴彦良
刘保华
支鹏遥
阚光明
刘晨光
Original Assignee
国家海洋局第一海洋研究所
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家海洋局第一海洋研究所, 山东科技大学 filed Critical 国家海洋局第一海洋研究所
Priority to JP2019548032A priority Critical patent/JP6975247B2/ja
Priority to US16/603,043 priority patent/US11327186B2/en
Publication of WO2020051950A1 publication Critical patent/WO2020051950A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/168Deployment of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3843Deployment of seismic devices, e.g. of streamers
    • G01V1/3852Deployment of seismic devices, e.g. of streamers to the seabed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • G01V1/181Geophones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/226Optoseismic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3808Seismic data acquisition, e.g. survey design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B2022/006Buoys specially adapted for measuring or watch purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2211/00Applications
    • B63B2211/02Oceanography
    • G01V1/01
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/14Signal detection
    • G01V2210/142Receiver location
    • G01V2210/1427Sea bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/18Network protocols supporting networked applications, e.g. including control of end-device applications over a network

Definitions

  • the invention relates to the technical field of seismic detection, in particular to a subsea seismic monitoring device and system based on the submarine Internet of Things.
  • the submarine seismograph is a high-tech subsea detection technology developed in the past fifty years and has been widely used in the fields of subsea structural scientific research, subsea seismic monitoring, and marine oil and gas resource exploration.
  • Current submarine seismographs use a self-contained self-sinking and floating structure.
  • the equipment is deployed on the sea floor to collect data.
  • the collected data is stored in the equipment in a self-contained manner. The data can only be read after the equipment is recycled.
  • This submarine seismograph can only be used for subsea structure detection, and cannot be used in disaster prevention fields such as earthquake disasters and tsunami warning.
  • the present invention provides the following solutions:
  • a submarine seismic monitoring device based on the submarine Internet of Things comprising: surface buoy network equipment, submarine network equipment, anchor system and submarine seismic detection equipment;
  • the sea surface buoy network device floats on the sea surface, and the sea floor network device and the sea floor seismic detection device are both placed on the sea floor; the sea floor seismic detection device is one or more; the sea surface buoy network device and the sea floor A network device is connected through the anchor system; the submarine network device and the submarine seismic detection device are connected through a submarine photoelectric composite cable;
  • the sea buoy network equipment includes a satellite transceiver, an Internet of Things platform server, a network time server, and an autonomous energy supply device; the satellite transceiver and the network time server are in communication connection with the Internet of Things platform server; the satellite The transceiver device communicates with the shore-based network control center via satellite; the autonomous energy supply device is connected to the satellite transceiver device and the network time server respectively; the IoT platform server is used to monitor the submarine seismic detection equipment And manage, and send the received seismic signals uploaded by the submarine seismic detection device to the sea surface satellite transceiving device, and send the received control instructions sent by the sea surface satellite transceiving device to the submarine seismic detection device;
  • the network time server is configured to provide a clock signal to the submarine seismic detection device through the IoT platform server; the autonomous energy supply device is configured to provide the satellite transceiver, the network time server, and the submarine network Equipment provides power signal;
  • the submarine network equipment includes a photoelectric separation cabin, a subsea server, a bottom anchor weight, and a mechanical release;
  • the photoelectric separation cabin is connected to the anchor system and the submarine seismic detection equipment, respectively, for detecting the submarine seismic
  • the device provides a high-voltage power signal, and sends the received seismic signal sent by the submarine seismic detection device to the sea surface buoy network device;
  • the subsea server is connected to the photoelectric separation cabin and is used to connect with the IoT platform The server cooperates to monitor and manage the submarine seismic detection equipment;
  • the bottom anchor weight is connected to the anchor system through the mechanical releaser, and is used to fix the submarine network equipment on the sea floor;
  • the submarine seismometer includes a plurality of submarine seismometer network nodes; a plurality of the submarine seismometer network nodes are serially connected in series through the submarine photoelectric composite cable; the submarine seismometer network node includes a digital transmission shorting section and Submarine seismograph module; the digital transmission short-circuiting section is connected to the submarine seismograph module; the digital transmission short-circuiting section is used to step down the high-voltage power signal and perform photoelectric conversion on the received signal; The subsea seismograph module is used to sense the vibration of the sea floor and detect and generate seismic signals.
  • the monitoring device further includes an underwater wireless sensor; the underwater wireless sensor is wirelessly connected to the submarine network device for collecting underwater acoustic data and wirelessly transmitting the underwater acoustic data to the ocean floor Internet equipment.
  • the sea buoy network device further includes a buoy buoy, a tower, a beacon, and a target-aware network camera;
  • the tower is provided on the buoy buoy; the satellite transceiver, the IoT platform server, the network time server, the autonomous energy supply device, the navigation mark, and the target are provided on the tower. Perception network camera;
  • the navigation mark is used for broadcasting the serial number and position information of the surface buoy network device
  • the target-aware network camera is connected to the IoT platform server, and is used to automatically sense the passing ships, take pictures of the ships, and automatically upload the captured images to the IoT platform server.
  • the anchor system includes a sea surface connector, a photoelectric conversion cavity, a subsea load-bearing connector, an armored photoelectric composite cable, and an anchor system floating body;
  • the photoelectric conversion cavity and the subsea load-bearing connector are respectively connected to both ends of the armored photoelectric composite cable, and the anchor-type floating body is located on a side of the armored photoelectric composite cable near the subsea load-bearing connector
  • the sea surface connector mechanically connects the photoelectric conversion cavity with the sea surface buoy network device
  • the subsea load-bearing connection member mechanically connects the mechanical release of the subsea network device with the armored photoelectric composite cable
  • the photoelectric conversion cavity is used for converting a power signal provided by the autonomous energy supply device into a high-voltage power signal, and transmitting the high-voltage power signal to the subsea network equipment, and is also used for photoelectric conversion of the received signal.
  • the submarine network device further includes a photoelectric hybrid connector, a wet-swappable photoelectric connector, and a wireless network interface;
  • the photoelectric hybrid connector is used to connect the anchor system and the photoelectric separation cabin;
  • the wet-plug optical connector is used to connect the submarine seismic detection equipment and the photoelectric separation cabin;
  • the wireless network interface is used for Wirelessly connected with the underwater wireless sensor.
  • the submarine seismometer network node further includes a submarine hydrophone module; the submarine hydrophone module and the digital transmission short-circuiting section are configured to sense vibration of seawater.
  • the submarine seismometer module includes a seismic sensor, a first signal conditioning conversion circuit, a first processor, a fiber optic gyro northfinder, and an attitude sensor;
  • each of the seismic sensors is connected to the first signal conditioning conversion circuit; the first signal conditioning conversion circuit, the fiber optic gyro northfinder, and the attitude sensor are all connected to the The first processor is connected; the first signal conditioning conversion circuit is used for conditioning and analog-to-digital conversion of the received signal to obtain a seismic signal; the fiber optic gyro north finder is used for obtaining azimuth information; the attitude sensor is used for For acquiring a pitch angle and a roll angle; the first processor is configured to transmit the seismic signal, the azimuth information, the pitch angle, and the roll angle to the digital transmission shorting section.
  • the subsea hydrophone module includes a hydrophone, a second signal conditioning conversion circuit, and a second processor;
  • the hydrophone is used to obtain an analog vibration signal of seawater;
  • the second signal conditioning conversion circuit is respectively connected to the hydrophone and the second processor, and is used to condition and adjust the analog vibration signal of the seawater Converting to obtain a seawater vibration signal, and transmitting the seawater vibration signal to the second processor;
  • the second processor is configured to transmit the seawater vibration signal to the digital transmission shorting section.
  • the sea surface connector includes a universal joint connector and a load-bearing electric slip ring; the universal joint connector mechanically connects a buoy buoy of the sea surface buoy network device with one end of the load-bearing electric slip ring; The other end of the load-bearing electric slip ring is connected to the photoelectric conversion cavity.
  • the invention also provides a submarine seismic monitoring system based on the submarine Internet of Things.
  • the monitoring system includes a plurality of the monitoring devices described above; the end of any one of the subsea seismic detection equipment in each of the monitoring devices is adjacent to the adjacent Connection of the monitoring device.
  • the present invention proposes a submarine seismic monitoring device and system based on the Submarine Internet of Things, in which the surface buoy network device and the submarine network device are connected by an anchor system; the submarine network device and the submarine seismic detection device are connected by a submarine photoelectric composite cable; Sea buoy network equipment includes satellite transceivers, Internet of Things platform servers, network time servers and autonomous energy supply devices; submarine network equipment includes photoelectric separation tanks, subsea servers, bottom anchor weights and mechanical releases; submarine seismic detection equipment includes multiple Submarine seismometer network node; multiple submarine seismometer network nodes are connected in series through the end of the submarine optoelectronic composite cable.
  • the invention can be used for submarine structure detection as well as earthquake disaster and tsunami early warning; setting up an autonomous energy supply device realizes autonomous energy supply, long time series, and unattended work; setting up a network time server realizes network timing, and solves the problem The clock drift problem of self-contained self-sinking floating seabed seismometer.
  • FIG. 1 is a schematic structural diagram of a subsea seismic monitoring device based on a submarine Internet of Things according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a sea surface buoy network device according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a subsea network device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an anchor system according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of an anchor system according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a submarine seismometer network node according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a subsea seismograph module according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a submarine hydrophone module according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a subsea seismic monitoring system based on the submarine Internet of Things according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a subsea seismic monitoring device based on the submarine Internet of Things according to an embodiment of the present invention.
  • an embodiment of a subsea seismic monitoring device based on the submarine Internet of Things includes: a sea surface buoy network device 1, a subsea network device 2, an anchor system 3, a sea bottom seismic detection device 4, and an underwater wireless sensor 5; the sea surface buoy The network device 1 floats on the sea surface, and the submarine network device 2 and the submarine seismic detection device 4 are both disposed on the sea bottom; the submarine seismic detection device 4 is one or more; the surface buoy network device 1 and the The submarine network device 2 is connected through the anchor system 3; the submarine network device 2 and the submarine seismic detection device 4 are connected through a submarine photoelectric composite cable 6; the underwater wireless sensor 5 is wirelessly connected with the submarine network device 2 For collecting underwater acoustic data and wirelessly transmitting the underwater acoustic data to the subsea network device 2.
  • FIG. 2 is a structural block diagram of a sea surface buoy network device according to an embodiment of the present invention.
  • the sea surface buoy network device 1 includes a satellite transceiver 101, an Internet of Things platform server 102, a network time server 103, and an autonomous energy supply device 104; the satellite transceiver 101 and the network time server 103 are connected to all
  • the IoT platform server 102 is connected to the communication; the satellite transceiver 101 communicates with the shore-based network control center 8 through the satellite 7; the autonomous energy supply device 104 is connected to the satellite transceiver 101 and the network time server 103 respectively
  • the IoT platform server 102 is configured to monitor and manage the submarine seismic detection device 4 and send the received seismic signals uploaded by the submarine seismic detection device 4 to the sea surface satellite transceiver 101 and send The received control instruction sent by the submarine satellite transceiver 101 is sent to the submarine seismic detection device 4; the network time server 103 is configured to provide a clock for the submarine seismic detection device 4 through the IoT platform server 102
  • the satellite transceiver 101 includes a data satellite antenna, a satellite data transceiver, and a transceiver sealed cabin; the satellite transceiver 101 can pass seismic data collected by the subsea seismic detection device 4 and state data of the subsea seismic detection device 4
  • the satellite 7 is sent to the shore-based network control center 8; the data satellite antenna and the satellite data transceiver may be one of the currently commonly used low-orbit satellite data transceivers such as Iridium, Beidou satellite, Silk Road satellite, or Multiple combinations;
  • the transceiver sealed cabin is used to carry satellite data transceivers to prevent seawater erosion.
  • the IoT platform server 102 includes a main server, an upgrade server, and a server enclosure; the main server has high processing capacity and large storage capacity, and is used to monitor and manage the submarine seismic detection device 4 and underwater wireless sensors. 5. It also aggregates and stores the data uploaded by the submarine network device 2 and forwards the data to the satellite transceiver 101.
  • the upgrade server is used to automatically identify the newly added submarine seismic detection equipment 4 or new peripheral sensors.
  • the device or sensor enables the Internet of Things to be upgraded; the server sealed cabin is used to carry the main server and the upgraded server from seawater erosion.
  • the network time server 103 includes a PTP master clock, a timing satellite antenna, and a master clock sealed capsule;
  • the PTP master clock adopts the IEEE1588 standard (full name is "Precision Clock Synchronization Protocol Standard for Network Measurement and Control Systems"), and uses GPS Satellites or Beidou satellites serve as clock reference sources, supporting thousands of PTP slave clocks, which can provide accurate clocks for each subsea seismic detection device 4 to ensure that the entire subsea seismic monitoring device has a uniform, millisecond-level clock accuracy;
  • the satellite antenna is a necessary accessory of the PTP master clock, and is used to receive the GPS satellite or Beidou satellite time signal;
  • the master clock sealed cabin is used to carry the PTP master clock to prevent seawater erosion.
  • the autonomous energy supply device 104 includes a solar panel group, a battery pack, a power management system, and a battery sealed compartment;
  • the solar panel group may be one or more solar panel combinations, and the solar panel group may charge the battery pack during the day;
  • the battery pack may be one or more battery packs, and the battery powers the submarine seismic monitoring device;
  • the power management system manages the charging and discharging of the battery pack, avoids overcharging and overcharging the battery pack, and improves the battery life;
  • the battery sealed compartment Used to carry battery packs and power management systems from seawater erosion.
  • the sea surface buoy network device 1 further includes a buoy buoy 105, a tower 106, a beacon 107, and a target-aware network camera 108;
  • the buoy buoy 105 is provided with the tower 106;
  • the tower 106 is provided with the satellite transceiver 101, the IoT platform server 102, the network time server 103, the autonomous energy supply device 104, the beacon 107, and the target-aware network camera 108;
  • the beacon 107 is used to broadcast the number and position information of the surface buoy network device 1 from a VHF channel to ships in the nearby waters, so that neighboring ships can timely grasp the dynamic and static information of the surface buoy network platform, and take necessary avoidance actions to ensure The safety of the ship and the safety of the buoy network equipment 1;
  • the target-aware network camera 108 is connected to the IoT platform server 102, and is used to automatically sense the passing ships, and take pictures of the ships to capture the captured images Automatically uploaded to the IoT platform server 102, the purpose of which is to provide
  • the buoy buoy 105 provides buoyancy for surface equipment. In order to ensure the normal operation of the equipment under severe sea conditions, the buoy buoy 105 needs to leave a sufficient margin for displacement; preferably, the buoy buoy 105 is made of a polymer foam material. The specific gravity is small, the water absorption is low, corrosion resistance and collision resistance are preferred; preferably, the surface of the buoy buoy 105 is sprayed with an anti-biological adhesion material; the total displacement of the buoy buoy 105 is not less than 4 tons.
  • FIG. 3 is a structural block diagram of a subsea network device according to an embodiment of the present invention.
  • the submarine network device 2 includes a photoelectric separation module 201, a subsea server 202, a bottom anchor weight 203, and a mechanical release 204; the photoelectric separation module 201 is connected to the anchor system 3 and the subsea seismic detection, respectively.
  • the device 4 is connected to provide a high-voltage power signal for the subsea seismic detection device 4 and send the received seismic signal sent by the subsea seismic detection device 4 to the sea surface buoy network device 1; the subsea server 202 It is connected to the photoelectric separation module 201 and is used to cooperate with the IoT platform server 102 to monitor and manage the submarine seismic detection device 4; the bottom anchor weight 203 is communicated with all units through the mechanical release 204
  • the anchor system 3 is connected to fix the subsea network equipment 2 on the sea floor. When the monitoring device is recovered, the mechanical release device 204 is released, and the anchor system 3 is separated from the bottom anchor weight 203.
  • the bottom anchor The weight of the weight 203 in water should not be less than the maximum displacement of the buoy buoy 105; preferably, the weight of the bottom anchor weight 203 should not be less than 4 tons.
  • the photoelectric separation module 201 includes a first optical transceiver module and an Ethernet switch; the optical fibers and cables in the anchor system 3 enter the photoelectric separation module 201 together, and the optical fiber signals sent by the anchor system 3 enter the photoelectric separation module 201.
  • a first optical fiber transceiver module; the Ethernet switch is respectively connected to the first optical fiber transceiver module and the subsea server 202, and is configured to receive the optical fiber signal sent by the first optical fiber transceiver module, and send the received optical fiber signal to The subsea server 202.
  • the subsea network device 2 further includes a first PTP slave clock 205, a first DC / DC voltage stabilizing module 206, a first DC / DC step-down module 207, a backup power source 208, and a photoelectric hybrid.
  • the first PTP slave clock 205 is used in conjunction with the PTP master clock of the sea surface buoy network device 1 to provide a uniform, millisecond-accurate clock for the entire network; the first DC / DC voltage regulator module 206 receives the slave anchor system 3 The transmitted high-voltage power signal transmitted through the photoelectric separation module 201 and stabilizes the high-voltage power signal, and then provides power to the submarine seismic detection device 4; the first DC / DC step-down module 207, The high-voltage power signal transmitted by the anchor system is stepped down to reach the voltage that can be used by each module unit of the subsea network device 2.
  • the autonomous energy supply device 104 provides the subsea network device 2 to the sea floor.
  • the DC power supply voltage is 200 VDC or higher.
  • the backup power supply 208 is a rechargeable battery pack and the power provided by the buoy network device 1 on the sea surface.
  • the photoelectric hybrid connector 209 is used to connect the anchor system 3 and the photoelectric separation cabin 201;
  • the plug-in photoelectric connector 210 is used to connect the submarine seismic detection device 4 and the photoelectric separation module 201;
  • the wireless network interface 211 is used to wirelessly connect with the underwater wireless sensor 5, and the wireless network interface 211 includes A network coordinator adopts underwater acoustic communication technology or low-frequency electromagnetic wave communication technology;
  • the backup charging and discharging interface 212 is used to connect the backup power source 208 and an external power module;
  • the external power module may be a power source of an underwater mobile platform such as AUV
  • the external power supply module may recharge the backup power supply 208, and the backup power supply 208 may also charge the external power supply
  • the photoelectric separation module 201 in this embodiment is also used as a collection cabin of the submarine seismic detection device 4, and is connected to a plurality of wet-pluggable photoelectric connectors at the same time to provide the submarine seismic detection device 4 with the first DC.
  • the high-voltage power supply signal of the / DC voltage stabilization module 206 collects and summarizes the optical fiber signals of each of the subsea seismic detection equipment 4; the subsea server 202 monitors and manages the subsea seismic detection equipment 4 and the underwater wireless sensor 5, and The data sent by the submarine seismic detection device 4 and the underwater wireless sensor 5 are collected and stored, and transmitted to the sea surface buoy network device 1 through the photoelectric separation capsule 201, the photoelectric hybrid connector 209, and the anchor system 3.
  • FIG. 4 is a schematic structural diagram of an anchor system according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of an anchor system according to an embodiment of the present invention.
  • the anchor system 3 includes a sea surface connector 301, a photoelectric conversion cavity 302, a subsea load-bearing connector 303, an armored photoelectric composite cable 304, and an anchor system floating body 305.
  • the photoelectric conversion cavity 302 and the subsea load-bearing connection piece 303 are respectively connected to both ends of the armored photoelectric composite cable 304, and the anchoring floating body 305 is located near the subsea load bearing of the armored photoelectric composite cable 304
  • the photoelectric conversion cavity 302 is configured to convert a power signal provided by the autonomous energy supply device 104 into a high-voltage power signal, and transmit the high-voltage power signal to the subsea network
  • the device 2 is further configured to perform photoelectric conversion on the received signal.
  • the photoelectric conversion cavity 302 includes a DC / DC boost module and a second optical fiber transceiver module; the DC / DC boost module uses the DC / DC boost module to increase the voltage of the low-voltage DC power provided by the autonomous energy supply device 104 The purpose is to reduce the long-distance transmission loss of the cable; preferably, the low-voltage DC power supply voltage provided by the autonomous energy supply device 104 is 12 VDC, and after the DC / DC boost module, the voltage is increased to 200 VDC or higher; Two optical fiber transceiver modules convert optical fiber signals and Ethernet electrical signals into each other, convert the optical signals sent by the submarine network device 2 through the armored photoelectric composite cable 304 into Ethernet electrical signals, and forward them to the surface buoy network device 1.
  • the submarine load-bearing connector 303 is used for the mechanical connection of the armored optoelectronic composite cable 304 and the submarine network device 2 and is used to strengthen the offshore terminal of the armored optoelectronic composite cable 304 to avoid repeated bending and transitional bending. Damaged armored cable.
  • the armored photoelectric composite cable 304 is composed of a multi-core optical fiber, a multi-core power cable, an inner sheath, an armor layer, and an outer sheath; preferably, the multi-core optical fiber is a single-mode optical fiber and the number of cores is 4 Core, the optical attenuation is not greater than 0.45dB / km; the multi-core power cable has 6 cores, and the conductor DC resistance is not greater than 25 ⁇ / km; the inner sheath is covered outside the cable core to protect the cable core;
  • the armor layer is provided with tensile and abrasion resistance by a steel wire armor; the outer layer is covered outside the steel wire armor layer to protect the steel wire armor layer from seawater erosion.
  • the armored photoelectric composite cable 304 has a safe working load of not less than 2 tons, a maximum working load of not less than 4 tons, and a breaking force of not less than 8 tons.
  • the anchoring floating body 305 is connected to one end of the armored photoelectric composite cable 304 near the bottom of the sea. In the water, part of the weight of the armored photoelectric composite cable 304 is offset to prevent the length of the armored photoelectric composite cable 304 from landing.
  • the anchor-type floating body 305 of the present invention is made of a polymer foam material, has a small specific gravity, a low water absorption rate, and is resistant to corrosion and collision.
  • the sea surface connecting piece 301 includes a gimbal connecting piece 3010 and a load-bearing electric slip ring 3011; the gimbal connecting piece 3010 connects the buoy floating body 105 of the sea surface buoy network device 1 with One end of the load-bearing electric slip ring 3011 is mechanically connected to strengthen the offshore terminal of the armored photoelectric composite cable 304 to avoid damage to the armored cable due to repeated bending and transitional bending; the other of the load-bearing electric slip ring 3011 is One end is connected to the photoelectric conversion cavity 302, and is used for transmitting power and seismic signals in a state of relative rotational movement between the buoy buoy 105 and the armored photoelectric composite cable 304.
  • the submarine seismometer 4 includes a plurality of submarine seismometer network nodes; it adopts a streamlined design, and a plurality of the submarine seismometer network nodes are serially connected in series through the submarine photoelectric composite cable 6; the subsea seismometer network node It includes a digital transmission shorting section 401 and a submarine seismometer module 402; the digital transmission shorting section 401 is connected to the submarine seismometer module 402; and the digital transmission shorting section 401 is used for reducing the high-voltage power signal.
  • the subsea seismometer module 402 is used for sensing the vibration of the sea floor and detecting the seismic signals generated; FIG.
  • each Each of the subsea seismometer network nodes includes one or two subsea seismometer modules 402, as shown in diagrams (a) and (b) in FIG. 6.
  • the digital transmission short-circuiting section 401 includes a DC / DC step-down unit, an optical fiber transceiver unit, and a photoelectric connector; the DC / DC step-down unit is adapted to the high voltage transmitted from the submarine network device 2 through the submarine photoelectric composite cable.
  • the power source is stepped down to reach a voltage that can be used by each unit of the submarine seismometer network node.
  • the high-voltage power source transmitted from the submarine network device 2 through the submarine photoelectric composite cable is 200VDC or higher, and passes DC / DC.
  • the voltage reduction unit After the voltage reduction unit, the voltage is reduced to 12 VDC; the optical fiber transceiver unit converts the optical fiber signal and the Ethernet electrical signal into each other, and converts the optical signal sent by the submarine network device 2 through the submarine photoelectric composite cable into an Ethernet electrical signal It is forwarded to the submarine seismometer module 402, and vice versa; the optoelectronic connector is used to connect the submarine seismometer network node with the submarine optoelectronic composite cable, and must be able to withstand a certain pulling force, so that the submarine seismometer network node can be on the sea floor Smooth deployment.
  • Each of the submarine seismometer modules 402 includes three seismic sensors, a first signal conditioning conversion circuit, a first processor, a fiber optic gyro northfinder, an attitude sensor, an electronic compass, a second PTP slave clock, and a first timekeeping A module, a first storage array, and a first network communication interface.
  • the seismic sensor is a high-frequency seismic sensor, a broadband seismic sensor, or an acceleration sensor; the frequency and sensitivity parameters of the three seismic sensors in the subsea seismometer module 402 are completely the same; when a subsea seismometer network node includes two subsea earthquakes When the instrument module 402 is used, the two submarine seismometer modules 402 should select two different types of seismic sensors. For example, in the same subsea seismometer network node, one subsea seismometer module 402 uses three high-frequency seismic sensors. A subsea seismograph module 402 uses three wideband seismic sensors.
  • the three seismic sensors in the submarine seismometer module 402 are arranged according to three orthogonal coordinate axes of X, Y, and Z.
  • a leveling device In the conventional self-capacitive self-sinking and floating seabed seismometer, in order to ensure that two sensors in the X and Y directions of the three seismic sensors are on a horizontal plane and the Z-direction sensor is vertically downward, a leveling device is required.
  • the leveling device causes the conventional self-capacitive self-sinking floating seabed seismometer to be bulky, and the inclination angle of the sea floor is generally not greater than 15 degrees during deployment, which is not suitable for cable deployment.
  • the leveling device is completely abandoned, and the submarine seismometer network nodes can be placed in any direction without being restricted by the inclination of the sea floor.
  • FIG. 7 is a structural block diagram of a submarine seismograph module according to an embodiment of the present invention.
  • each of the seismic sensors in the submarine seismometer module 402 is connected to the first signal conditioning conversion circuit; the first signal conditioning conversion circuit, the fiber optic gyro northfinder, and the attitude sensor
  • the electronic compass, the second PTP slave clock, the first timekeeping module, the first storage array, and the first network communication interface are all connected to the first processor;
  • the first The signal conditioning conversion circuit is used for conditioning and analog-to-digital conversion of the received signal to obtain a seismic signal;
  • the fiber optic gyro northfinder is used to obtain azimuth information;
  • the attitude sensor is used to obtain elevation and roll angles;
  • the electronic compass is used to provide the azimuth reference information of the submarine seismometer module 402.
  • the accuracy is lower than that of the fiber optic gyro north finder, and it is susceptible to interference from external magnetic bodies (such as the instrument shell, etc.). It is used for mutual reference with the fiber gyro north finder;
  • the first processor is configured to transmit the seismic signal, the azimuth information, the elevation angle, the roll angle, and the reference information to the digital transmission shorting section 401;
  • a storage array for locally storing seismic data measured by the submarine seismometer module 402.
  • the first storage array in this embodiment uses multiple eMMC memory chips to form a storage array;
  • the second PTP slave clock Used in conjunction with the PTP master clock of the sea surface buoy network device 1, to provide a uniform, millisecond-accurate clock for the entire network;
  • the first punctuality module uses a high-precision crystal oscillator and a clock chip, and uses a second PTP slave
  • the 1 pps second pulse sent from the clock is the UTC standard time of the reference calibration track;
  • the first network communication interface converts the serial signal of the first processor into an Ethernet signal and sends it to the digital transmission shorting section 401.
  • the submarine seismometer network node further includes a subsea hydrophone module 403; the subsea hydrophone module 403 and the digital transmission short-circuiting section 401 are configured to sense the vibration of seawater, See Figure (c) and (d) in Figure 6.
  • FIG. 8 is a structural block diagram of a submarine hydrophone module according to an embodiment of the present invention.
  • the subsea hydrophone module 403 includes a hydrophone, a second signal conditioning conversion circuit, a second processor, a third PTP slave clock, a second timekeeping module, a second storage array, and a second network communication.
  • the hydrophone is a piezoelectric ceramic hydrophone, and adopts an oil-filled pressure-resistant structure for obtaining an analog vibration signal of seawater;
  • the second signal conditioning conversion circuit is respectively connected with the hydrophone and the first Two processors are connected to condition and convert the analog vibration signal of the seawater to obtain the seawater vibration signal and transmit the seawater vibration signal to the second processor;
  • the second processor is used to convert the The seawater vibration signal is transmitted to the digital transmission shorting section 401;
  • the third PTP slave clock is used in conjunction with the PTP master clock of the sea surface buoy network device 1 to provide a uniform, millisecond-accurate clock for the entire network;
  • the second time-keeping module uses a high-precision crystal oscillator and a clock chip, and uses the 1pps second pulse sent from the clock by the third PTP to calibrate the UTC standard time;
  • the second network communication interface converts the second Processor serial signal becomes the Ethernet signal to the data transmission unit 401 shorting.
  • underwater wireless sensors 5 there are one or more underwater wireless sensors 5; the underwater wireless sensors 5 are self-contained and use underwater acoustic communication technology or low frequency electromagnetic wave communication technology to wirelessly upload data to the subsea network platform.
  • the underwater wireless sensor 5 may be a static sensor or a dynamic sensor.
  • the so-called dynamic sensor refers to a sensor carried by an autonomous underwater vehicle (AUV).
  • the underwater wireless sensor 5 may also be a submarine seismograph wirelessly transmitted, and may also be pressure, acceleration, temperature, density, salinity, acidity, chemical properties, conductivity, pH value, oxygen, hydrogen, dissolved methane, Turbidity and other sensors.
  • the subsea seismic monitoring device based on the submarine Internet of Things in this embodiment is used to receive data from the subsea seismic detection device 4 and the underwater wireless sensor 5 in real time, and receive the seismic data And other sensor data are sent to the shore-based network control center 8 via satellite 7; the sea surface buoy network platform 8 is powered by solar panel sea surface buoy network equipment 1 carrying equipment, and is transmitted to the subsea network equipment 2 and subsea seismic detection equipment 4 through the anchor system 3. power supply.
  • the shore-based network control center 8 receives the seismic data and other sensor data sent by the satellite 7, stores the data as a file, displays it graphically, and publishes it through the network.
  • the buoy network device 1 and the submarine network device 2 and the submarine network device 2 and the submarine seismic detection device 4 are connected in a cabled manner.
  • the submarine seismometer module completely abandons the leveling device of traditional equipment.
  • the submarine seismometer network nodes can be placed in any direction, and it is not restricted by the inclination of the sea floor, which is convenient for construction.
  • the submarine seismometer uses the PTP network to provide time.
  • the time system of the node is consistent with Coordinated Universal Time (UTC), and the error is not greater than 1ms, which completely solves the problem of clock drift of traditional equipment.
  • UTC Coordinated Universal Time
  • the submarine network equipment can be connected with a variety of underwater wireless sensors, including the wireless sensors carried by the AUV. It has distributed and rich environmental awareness capabilities and forms an expandable Internet of Things.
  • FIG. 9 is a schematic structural diagram of a submarine seismic monitoring system based on the Submarine Internet of Things according to an embodiment of the present invention.
  • the monitoring system includes a plurality of monitoring devices described above; the end of any one of the subsea seismic detection equipment 4 in each of the monitoring devices is connected to an adjacent monitoring device.
  • the submarine seismic monitoring system based on the Submarine Internet of Things can be used for submarine structure detection, as well as earthquake disasters and tsunami early warning; it can achieve autonomous energy supply, long time series, and unattended work; solve the self-capacitive self-sinking floating seabed The clock drift problem of the seismograph; the multi-platform subsea interconnection mode work is realized.

Abstract

一种基于海底物联网的海底地震监测装置,包括:海面浮标网络设备(1)、海底网络设备(2)、锚系(3)和海底地震探测设备(4);其中,海面浮标网络设备(1)与海底网络设备(2)通过锚系(3)连接;海底网络设备(2)与海底地震探测设备(4)通过海底光电复合缆(6)连接;海底地震探测设备(4)为一个或多个;海面浮标网络设备(1)包括卫星收发装置(101)、物联网平台服务器(102)、网络时间服务器(103)和自主供能装置(104);海底网络设备(2)包括光电分离舱(201)、海底服务器(202)、底锚重块(203)和机械释放器(204);海底地震探测设备(4)包括多个海底地震计网络节点;多个海底地震计网络节点通过海底光电复合缆(6)首尾依次串接。还提供一种基于海底物联网的海底地震监测系统,包括相互连接的多个海底地震监测装置。该装置或系统能够自主供能,实现长时序、无值守工作,可用于海底结构探测、地震灾害及海啸预警。

Description

一种基于海底物联网的海底地震监测装置及系统
本申请要求于2018年09月12日提交中国专利局、申请号为201811063041.X、发明名称为“一种基于海底物联网的海底地震监测装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及地震探测技术领域,特别是涉及一种基于海底物联网的海底地震监测装置及系统。
背景技术
海底地震仪是近五十年来发展起来的高新海底探测技术,在海底构造科学研究、海底地震监测,以及海洋油气资源勘查领域等领域得到广泛应用。目前的海底地震仪采用自容式自沉浮结构,设备布放到海底采集数据,采集的数据自容式存储于设备内部,只能待设备回收后才能将数据读取出来。这种海底地震仪只能用于海底结构探测,无法用于地震灾害及海啸预警等灾害预防领域。
发明内容
基于此,有必要提供一种既可以用于海底结构探测,又可以用于地震灾害及海啸预警的基于海底物联网的海底地震监测装置及系统。
为实现上述目的,本发明提供了如下方案:
一种基于海底物联网的海底地震监测装置,包括:海面浮标网络设备、海底网络设备、锚系和海底地震探测设备;
所述海面浮标网络设备漂浮于海面,所述海底网络设备与所述海底地震探测设备均布放于海底;所述海底地震探测设备为一个或多个;所述海面浮标网络设备与所述海底网络设备通过所述锚系连接;所述海底网络设备与所述海底地震探测设备通过海底光电复合缆连接;
所述海面浮标网络设备包括卫星收发装置、物联网平台服务器、网络 时间服务器和自主供能装置;所述卫星收发装置和所述网络时间服务器均与所述物联网平台服务器通信连接;所述卫星收发装置通过卫星与岸基网络操控中心通信;所述自主供能装置分别与所述卫星收发装置和所述网络时间服务器连接;所述物联网平台服务器用于对所述海底地震探测设备进行监测和管理,并将接收到的所述海底地震探测设备上传的地震信号发送至所述海面卫星收发装置以及将接收到的所述海面卫星收发装置发送的控制指令发送至所述海底地震探测设备;所述网络时间服务器用于通过所述物联网平台服务器为所述海底地震探测设备提供时钟信号;所述自主供能装置用于为所述卫星收发装置、所述网络时间服务器和所述海底网络设备提供电源信号;
所述海底网络设备包括光电分离舱、海底服务器、底锚重块和机械释放器;所述光电分离舱分别与所述锚系和所述海底地震探测设备连接,用于为所述海底地震探测设备提供高压电源信号,并将接收到的所述海底地震探测设备发送的地震信号发送至所述海面浮标网络设备;所述海底服务器与所述光电分离舱连接,用于与所述物联网平台服务器配合,对所述海底地震探测设备进行监测和管理;所述底锚重块通过所述机械释放器与所述锚系连接,用于将所述海底网络设备固定于海底;
所述海底地震探测设备包括多个海底地震计网络节点;多个所述海底地震计网络节点通过所述海底光电复合缆首尾依次串接;所述海底地震计网络节点包括数传短接部和海底地震仪模块;所述数传短接部与所述海底地震仪模块连接;所述数传短接部用于对所述高压电源信号进行降压,并对接收到信号进行光电转换;所述海底地震仪模块用于感知海底振动,探测产生地震信号。
可选的,所述监测装置还包括水下无线传感器;所述水下无线传感器与所述海底网络设备无线连接,用于采集水声数据,并将所述水声数据无线传输至所述海底网络设备。
可选的,所述海面浮标网络设备还包括浮标浮体、塔架、航标和目标感知网络摄像机;
所述浮标浮体上设置所述塔架;所述塔架上设置所述卫星收发装置、 所述物联网平台服务器、所述网络时间服务器、所述自主供能装置、所述航标、所述目标感知网络摄像机;
所述航标用于对所述海面浮标网络设备的编号和位置信息进行广播;
所述目标感知网络摄像机与所述物联网平台服务器连接,用于自动感知过往的船只,并对所述船只进行摄像,将拍摄的图像自动上传至所述物联网平台服务器。
可选的,所述锚系包括海面连接件、光电转换腔、海底承重连接件、铠装光电复合缆和锚系浮体;
所述光电转换腔和所述海底承重连接件分别连接在所述铠装光电复合缆的两端,所述锚系浮体位于所述铠装光电复合缆的靠近所述海底承重连接件的一侧;所述海面连接件将所述光电转换腔与所述海面浮标网络设备机械连接,所述海底承重连接件将所述海底网络设备的机械释放器与所述铠装光电复合缆机械连接;所述光电转换腔用于将所述自主供能装置提供的电源信号转换高压电源信号,并将所述高压电源信号传输至所述海底网络设备,还用于对接收到的信号进行光电转换。
可选的,所述海底网络设备还包括光电混合接插件、湿插拔光电接插件和无线网络接口;
所述光电混合接插件用于连接所述锚系与所述光电分离舱;所述湿插拔光电接插件用于连接所述海底地震探测设备与所述光电分离舱;所述无线网络接口用于与所述水下无线传感器无线连接。
可选的,所述海底地震计网络节点还包括海底水听器模块;所述海底水听器模块与所述数传短接部,用于感知海水的振动。
可选的,所述海底地震仪模块包括地震传感器、第一信号调理转换电路、第一处理器、光纤陀螺寻北仪和姿态传感器;
所述地震传感器为三个,每个所述地震传感器连接一个所述第一信号调理转换电路;所述第一信号调理转换电路、所述光纤陀螺寻北仪和所述姿态传感器均与所述第一处理器连接;所述第一信号调理转换电路用于对接收到的信号进行调理和模数转换,得到地震信号;所述光纤陀螺寻北仪用于获取方位信息;所述姿态传感器用于获取俯仰角和侧倾角;所述第一 处理器用于将所述地震信号、所述方位信息、所述俯仰角和所述侧倾角传输至所述数传短接部。
可选的,所述海底水听器模块包括水听器、第二信号调理转换电路和第二处理器;
所述水听器用于获取海水的模拟振动信号;所述第二信号调理转换电路分别与所述水听器和所述第二处理器连接,用于对所述海水的模拟振动信号进行调理和转换,得到海水振动信号,并将所述海水振动信号传输至所述第二处理器;所述第二处理器用于将所述海水振动信号传输至所述数传短接部。
可选的,所述海面连接件包括万向节连接件和承重电滑环;所述万向节连接件将所述海面浮标网络设备的浮标浮体与所述承重电滑环的一端机械连接;所述承重电滑环的另一端与所述光电转换腔连接。
本发明还提供了一种基于海底物联网的海底地震监测系统,所述监测系统包括多个上述所述的监测装置;每个所述监测装置中的任意一个海底地震探测设备的末端与相邻的监测装置连接。
与现有技术相比,本发明的有益效果是:
本发明提出了一种基于海底物联网的海底地震监测装置及系统,该监测装置中海面浮标网络设备与海底网络设备通过锚系连接;海底网络设备与海底地震探测设备通过海底光电复合缆连接;海面浮标网络设备包括卫星收发装置、物联网平台服务器、网络时间服务器和自主供能装置;海底网络设备包括光电分离舱、海底服务器、底锚重块和机械释放器;海底地震探测设备包括多个海底地震计网络节点;多个海底地震计网络节点通过海底光电复合缆首尾依次串接。本发明既可以用于海底结构探测,还可以用于地震灾害及海啸预警;设置自主供能装置实现了自主供能、长时序、无值守工作;设置网络时间服务器实现了网络对时,解决了自容式自沉浮海底地震仪存在的时钟漂移问题。
说明书附图
下面结合附图对本发明作进一步说明:
图1为本发明实施例一种基于海底物联网的海底地震监测装置的结构示意图;
图2为本发明实施例海面浮标网络设备的结构框图;
图3为本发明实施例海底网络设备的结构框图;
图4为本发明实施例锚系的结构示意图;
图5为本发明实施例锚系的结构框图;
图6为本发明实施例海底地震计网络节点的结构示意图;
图7为本发明实施例海底地震仪模块的结构框图;
图8为本发明实施例海底水听器模块的结构框图;
图9为本发明实施例一种基于海底物联网的海底地震监测系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明实施例一种基于海底物联网的海底地震监测装置的结构示意图。
参见图1,实施例的基于海底物联网的海底地震监测装置,包括:海面浮标网络设备1、海底网络设备2、锚系3、海底地震探测设备4和水下无线传感器5;所述海面浮标网络设备1漂浮于海面,所述海底网络设备2与所述海底地震探测设备4均布放于海底;所述海底地震探测设备4为一个或多个;所述海面浮标网络设备1与所述海底网络设备2通过所述锚系3连接;所述海底网络设备2与所述海底地震探测设备4通过海底光 电复合缆6连接;所述水下无线传感器5与所述海底网络设备2无线连接,用于采集水声数据,并将所述水声数据无线传输至所述海底网络设备2。
海面浮标网络设备1:
图2为本发明实施例海面浮标网络设备的结构框图。参见图2,所述海面浮标网络设备1包括卫星收发装置101、物联网平台服务器102、网络时间服务器103和自主供能装置104;所述卫星收发装置101和所述网络时间服务器103均与所述物联网平台服务器102通信连接;所述卫星收发装置101通过卫星7与岸基网络操控中心8通信;所述自主供能装置104分别与所述卫星收发装置101和所述网络时间服务器103连接;所述物联网平台服务器102用于对所述海底地震探测设备4进行监测和管理,并将接收到的所述海底地震探测设备4上传的地震信号发送至所述海面卫星收发装置101以及将接收到的所述海面卫星收发装置101发送的控制指令发送至所述海底地震探测设备4;所述网络时间服务器103用于通过所述物联网平台服务器102为所述海底地震探测设备4提供时钟信号;所述自主供能装置104用于为所述卫星收发装置101、所述网络时间服务器103和所述海底网络设备2提供电源信号。
所述卫星收发装置101,包括数据卫星天线、卫星数据收发器和收发器密封舱;所述卫星收发装置101,可以将海底地震探测设备4采集的地震数据以及海底地震探测设备4的状态数据通过卫星7发送至岸基网络操控中心8;所述数据卫星天线和所述卫星数据收发器,可以是铱星、北斗卫星、丝路卫星等目前通用的低轨卫星数据收发设备中的一种或者多种组合;所述收发器密封舱,用于承载卫星数据收发器,以免受海水侵蚀。
所述物联网平台服务器102,包括主服务器、升级服务器和服务器密封舱;所述主服务器,具有高处理能力和大存储容量,用于监测和管理所述海底地震探测设备4和水下无线传感器5,并汇聚、存储海底网络设备2上传的数据,并将数据转发给卫星收发装置101;所述升级服务器,用于在新增海底地震探测设备4或新增外围传感器时,自动识别新增设备或传感器,使物联网得以升级更新;所述服务器密封舱,用于承载主服务器和升级服务器,免受海水侵蚀。
所述网络时间服务器103,包括PTP主时钟、授时卫星天线和主时钟密封舱;所述PTP主时钟,采用IEEE1588标准(全称是“网络测量和控制系统的精密时钟同步协议标准”),使用GPS卫星或北斗卫星作为时钟参考源,支持数千台PTP从时钟,可以为每一个海底地震探测设备4提供精确的时钟,保证整个海底地震监测装置拥有统一的、毫秒级的时钟精度;所述授时卫星天线是PTP主时钟的必备附件,用于接收GPS卫星或北斗卫星授时信号;所述主时钟密封舱,用于承载PTP主时钟,免受海水侵蚀。
自主供能装置104,包括太阳能板组、蓄电池组、电源管理系统和电池密封舱;所述太阳能板组可以是一块或者多块太阳能板组合,太阳能板组在白天可以为蓄电池组充电;所述蓄电池组可以是一块或者多块蓄电池组合,蓄电池为海底地震监测装置供电;所述电源管理系统管理蓄电池组的充电和放电,避免蓄电池组过充和过放,提高电池寿命;所述电池密封舱,用于承载蓄电池组和电源管理系统,免受海水侵蚀。
作为一种可选的实施方式,所述海面浮标网络设备1还包括浮标浮体105、塔架106、航标107和目标感知网络摄像机108;所述浮标浮体105上设置所述塔架106;所述塔架106上设置所述卫星收发装置101、所述物联网平台服务器102、所述网络时间服务器103、所述自主供能装置104、所述航标107、所述目标感知网络摄像机108;所述航标107用于对所述海面浮标网络设备1的编号和位置信息由甚高频频道向附近水域船舶进行广播,使邻近船舶能及时掌握海面浮标网络平台之动静态资讯,采取必要避让行动,保证船舶安全和所述海面浮标网络设备1的安全;所述目标感知网络摄像机108与所述物联网平台服务器102连接,用于自动感知过往的船只,并对所述船只进行摄像,将拍摄的图像自动上传至所述物联网平台服务器102,其目的是提供过往船只信息,并在所述海面浮标网络设备1遭遇破坏时提供取证材料。
所述浮标浮体105,为海面设备提供浮力,为保证在恶劣海况下设备正常工作,所述浮标浮体105排水量需要留有足够裕量;优选的,所述浮标浮体105采用高分子泡沫材料制作,比重小,吸水率低,耐腐蚀,耐碰 撞;优选的,所述浮标浮体105的表面喷涂抗生物附着材料;所述浮标浮体105的总排水量不小于4吨。
海底网络设备2:
图3为本发明实施例海底网络设备的结构框图。参见图3,所述海底网络设备2包括光电分离舱201、海底服务器202、底锚重块203和机械释放器204;所述光电分离舱201分别与所述锚系3和所述海底地震探测设备4连接,用于为所述海底地震探测设备4提供高压电源信号,并将接收到的所述海底地震探测设备4发送的地震信号发送至所述海面浮标网络设备1;所述海底服务器202与所述光电分离舱201连接,用于与所述物联网平台服务器102配合,对所述海底地震探测设备4进行监测和管理;所述底锚重块203通过所述机械释放器204与所述锚系3连接,用于将所述海底网络设备2固定于海底,当监测装置回收时,所述机械释放器204释放,所述锚系3与底锚重块203分离;所述底锚重块203在水中重量应不小于所述浮标浮体105的最大排水量;优选的,所述底锚重块203的重量应不小于4吨。
所述光电分离舱201包括第一光纤收发模块和以太网交换机;所述锚系3中的光纤与电缆共同进入光电分离舱201,所述锚系3发送的光纤信号进入光电分离舱201内的第一光纤收发模块;所述以太网交换机分别与所述第一光纤收发模块和所述海底服务器202连接,用于接收第一光纤收发模块发送的光纤信号,并将接收到的光纤信号发送至所述海底服务器202。
作为一种可选的实施方式,所述海底网络设备2还包括第一PTP从时钟205、第一DC/DC稳压模块206、第一DC/DC降压模块207、后备电源208、光电混合接插件209、湿插拔光电接插件210、无线网络接口211和备用充放电接口212。
所述第一PTP从时钟205,与海面浮标网络设备1的PTP主时钟配合使用,为整个网络提供统一的、毫秒精度的时钟;所述第一DC/DC稳压模块206接收从锚系3传输下来的经光电分离舱201传输后的高压电源信号,并对高压电源信号进行稳压,之后为所述海底地震探测设备4提供 电源;所述第一DC/DC降压模块207,对从锚系传输下来的高压电源信号进行降压,以达到所述海底网络设备2各模块单元可以使用的电压,优选地,所述自主供能装置104提供的并由所述锚系3输送到海底的直流电源电压为200VDC或者更高,经过;所述第一DC/DC降压模块207后,电压降低至12VDC;所述后备电源208为可充电电池组,在海面浮标网络设备1提供的电量不足时,为所述海底网络设备2各模块单元和所述海底地震探测设备4供电;所述光电混合接插件209用于连接所述锚系3与所述光电分离舱201;所述湿插拔光电接插件210用于连接所述海底地震探测设备4与所述光电分离舱201;所述无线网络接口211用于与所述水下无线传感器5无线连接,所述无线网络接口211包括网络协调器,采用水声通讯技术或低频电磁波通讯技术;所述备用充放电接口212用于连接所述后备电源208与外接电源模块;所述外接电源模块可以是AUV等水下移动平台的电源,所述外接电源模块可以为所述后备电源208补充电量,所述后备电源208也可以为所述外接电源模块充电。
本实施例中所述光电分离舱201,同时作为所述海底地震探测设备4的汇集舱,同时连接多个湿插拔光电接插件,为所述海底地震探测设备4提供经过所述第一DC/DC稳压模块206的高压电源信号,并收集汇总各个所述海底地震探测设备4的光纤信号;所述海底服务器202,监测和管理所述海底地震探测设备4和水下无线传感器5,并汇聚、存储所述海底地震探测设备4和水下无线传感器5发送的数据,并通过光电分离舱201、光电混合接插件209、锚系3传送给海面浮标网络设备1。
锚系3:
图4为本发明实施例锚系的结构示意图;图5为本发明实施例锚系的结构框图。参见图4和图5,所述锚系3包括海面连接件301、光电转换腔302、海底承重连接件303、铠装光电复合缆304和锚系浮体305。
所述光电转换腔302和所述海底承重连接件303分别连接在所述铠装光电复合缆304的两端,所述锚系浮体305位于所述铠装光电复合缆304的靠近所述海底承重连接件303的一侧;所述海面连接件301将所述光电转换腔302与所述海面浮标网络设备1机械连接,所述海底承重连接件 303将所述海底网络设备2的机械释放器204与所述铠装光电复合缆304机械连接;所述光电转换腔302用于将所述自主供能装置104提供的电源信号转换高压电源信号,并将所述高压电源信号传输至所述海底网络设备2,还用于对接收到的信号进行光电转换。
所述光电转换腔302包括DC/DC升压模块和第二光纤收发模块;所述DC/DC升压模块,将自主供能装置104提供的低电压直流电源通过DC/DC升压模块提高电压,目的是降低电缆长距离传输损耗;优选地,所述自主供能装置104提供的低电压直流电源电压为12VDC,经过DC/DC升压模块后,电压提升至200VDC或者更高;所述第二光纤收发模块,将光纤信号与以太网电信号相互转化,将所述海底网络设备2经过铠装光电复合缆304发来的光信号转换为以太网电信号后转发给所述海面浮标网络设备1。
所述海底承重连接件303,用于铠装光电复合缆304与所述海底网络设备2的机械连接,用于铠装光电复合缆304近海底终端的加强,避免由于反复折弯、过渡弯曲导致的铠装缆损坏。
所述铠装光电复合缆304,由多芯光纤、多芯动力电缆、内护层、铠装层、和外护层组成;优选的,所述多芯光纤为单模光纤,芯数为4芯,光衰减不大于0.45dB/km;所述多芯动力电缆,芯数为6芯,导体直流电阻不大于25Ω/km;所述内护层,包覆于缆芯之外保护缆芯;所述铠装层,由钢丝铠装提供抗拉、抗磨性能;所述外护层,包覆于钢丝铠装层之外,保护钢丝铠装层免受海水侵蚀。本实施例中,所述铠装光电复合缆304,安全工作负荷不小于2吨,最大工作负荷不小于4吨,破断力不小于8吨。
所述锚系浮体305,挂接于铠装光电复合缆304近海底一端,在水中为于铠装光电复合缆304抵消部分重量,用于防止过长的铠装光电复合缆304着底。优选的,本发明锚系浮体305由采用高分子泡沫材料制作,比重小,吸水率低,耐腐蚀,耐碰撞。
作为一种可选的实施方式,所述海面连接件301包括万向节连接件3010和承重电滑环3011;所述万向节连接件3010将所述海面浮标网络设 备1的浮标浮体105与所述承重电滑环3011的一端机械连接,用于铠装光电复合缆304近海面终端的加强,避免由于反复折弯、过渡弯曲导致的铠装缆损坏;所述承重电滑环3011的另一端与所述光电转换腔302连接,用于浮标浮体105与铠装光电复合缆304这两者之间相对旋转运动状态下电源、地震信号的传输。
海底地震探测设备4:
所述海底地震探测设备4包括多个海底地震计网络节点;其采用流线型设计,多个所述海底地震计网络节点通过所述海底光电复合缆6首尾依次串接;所述海底地震计网络节点包括数传短接部401和海底地震仪模块402;所述数传短接部401与所述海底地震仪模块402连接;所述数传短接部401用于对所述高压电源信号进行降压,并对接收到信号进行光电转换;所述海底地震仪模块402用于感知海底振动,探测产生地震信号;图6为本发明实施例海底地震计网络节点的结构示意图,参见图6,每个所述海底地震计网络节点包括一个或两个海底地震仪模块402,如图6中的图(a)和图(b)。
所述数传短接部401包括DC/DC降压单元、光纤收发单元和光电接插件;所述DC/DC降压单元,对从所述海底网络设备2经过海底光电复合缆传输过来的高压电源进行降压,达到海底地震计网络节点各单元可以使用的电压,优选地,所述从所述海底网络设备2经过海底光电复合缆传输过来的高压电源为200VDC或者更高,经过DC/DC降压单元后,电压降低至12VDC;所述光纤收发单元,将光纤信号与以太网电信号相互转化,将所述海底网络设备2经过海底光电复合缆发来的光信号转换为以太网电信号后转发给海底地震仪模块402,反之亦然;所述光电接插件,用于海底地震计网络节点与海底光电复合缆的连接,须能承受一定的拉力,使海底地震计网络节点能在海底的顺利布放。
每个所述海底地震仪模块402均包括三个地震传感器、第一信号调理转换电路、第一处理器、光纤陀螺寻北仪、姿态传感器、电子罗盘、第二PTP从时钟、第一守时模块、第一存储阵列和第一网络通讯接口。
所述地震传感器为高频地震传感器、宽频地震传感器或加速度传感 器;所述海底地震仪模块402中三个地震传感器的频带、灵敏度等参数完全相同;当一个海底地震计网络节点包含两个海底地震仪模块402时,这两个海底地震仪模块402应分别选择不同类型的两种地震传感器,例如,同一个海底地震计网络节点中,一个海底地震仪模块402使用三个高频地震传感器,另一个海底地震仪模块402使用三个宽频地震传感器。
所述海底地震仪模块402中的三个地震传感器按照X、Y、Z三个正交坐标轴布放。传统的自容式自沉浮海底地震仪,为了保证三个地震传感器中X、Y方向的两个传感器位于水平面上、而Z方向传感器垂直向下,均需要有调平装置。调平装置导致传统的自容式自沉浮海底地震仪体积庞大,且布放时要求海底面倾角一般不能大于15度,其不适合缆式布放,而本发明的所述海底地震仪模块402,完全抛弃了调平装置,海底地震计网络节点可以任意方向布放,且不受海底面倾角限制。
图7为本发明实施例海底地震仪模块的结构框图。参见图7,所述海底地震仪模块402中每个所述地震传感器连接一个所述第一信号调理转换电路;所述第一信号调理转换电路、所述光纤陀螺寻北仪、所述姿态传感器、所述电子罗盘、所述第二PTP从时钟、所述第一守时模块、所述第一存储阵列、所述第一网络通讯接口均与所述第一处理器连接;所述第一信号调理转换电路用于对接收到的信号进行调理和模数转换,得到地震信号;所述光纤陀螺寻北仪用于获取方位信息;所述姿态传感器用于获取俯仰角和侧倾角;所述电子罗盘,用于提供海底地震仪模块402的方位参考信息,精度较光纤陀螺寻北仪低,且易受外部磁性体(如仪器外壳等)干扰,用于与光纤陀螺寻北仪相互参考;所述第一处理器用于将所述地震信号、所述方位信息、所述俯仰角、所述侧倾角和所述参考信息传输至所述数传短接部401;所述第一存储阵列,用于本地存储海底地震仪模块402测得的地震数据,优选地,本实施例中的所述第一存储阵列,采用多片eMMC存储芯片组成存储阵列;所述第二PTP从时钟,与海面浮标网络设备1的PTP主时钟配合使用,为整个网络提供统一的、毫秒精度的时钟;所述第一守时模块,采用高精度晶体振荡器与时钟芯片,并以第二PTP从时钟发来的1pps秒脉冲为基准校准道UTC标准时间;所述第一网络通讯接口,将所述第一处理器的串口信号变为以太网信号发送至所述数 传短接部401。
作为一种可选的实施方式,所述海底地震计网络节点还包括海底水听器模块403;所述海底水听器模块403与所述数传短接部401,用于感知海水的振动,如图6中的图(c)和图(d)。
图8为本发明实施例海底水听器模块的结构框图。参见图8,所述海底水听器模块403包括水听器、第二信号调理转换电路、第二处理器、第三PTP从时钟、第二守时模块、第二存储阵列和第二网络通讯接口;所述水听器为压电陶瓷水听器,采用充油耐压结构,用于获取海水的模拟振动信号;所述第二信号调理转换电路分别与所述水听器和所述第二处理器连接,用于对所述海水的模拟振动信号进行调理和转换,得到海水振动信号,并将所述海水振动信号传输至所述第二处理器;所述第二处理器用于将所述海水振动信号传输至所述数传短接部401;所述第三PTP从时钟,与海面浮标网络设备1的PTP主时钟配合使用,为整个网络提供统一的、毫秒精度的时钟;所述第二守时模块,采用高精度晶体振荡器与时钟芯片,并以第三PTP从时钟发来的1pps秒脉冲为基准校准道UTC标准时间;所述第二网络通讯接口,将所述第二处理器的串口信号变为以太网信号发送至所述数传短接部401。
水下无线传感器5:
所述水下无线传感器5为一个或多个;所述水下无线传感器5为自容式工作,采用水声通讯技术或低频电磁波通讯技术无线上传数据给海底网络平台。可选的,所述水下无线传感器5,可以为静态传感器或动态传感器,所谓动态传感器是指自主水下航行器(AUV)携带的传感器。所述水下无线传感器5,也可以是无线传输的海底地震仪,还可以是压力、加速度、温度、密度、盐度、酸性、化学性、导电性、pH值、氧气、氢气、溶解甲烷、浑浊度等传感器。
本实施例中的所述基于海底物联网的海底地震监测装置在实际应用中,海面浮标网络设备1用于实时接收海底地震探测设备4和水下无线传感器5的数据,并将接收到地震数据和其它传感器数据通过卫星7发送给岸基网络操控中心8;海面浮标网络平台8通过太阳能板海面浮标网络设 备1搭载设备供电,并通过锚系3向海底网络设备2、海底地震探测设备4传输电源。
岸基网络操控中心8接收卫星7发送的地震数据和其它传感器数据,将数据以文件方式存储、以图形方式显示、并通过网络发布。
为了电源和信号的传输,海面浮标网络设备1与海底网络设备2之间、海底网络设备2与海底地震探测设备4之间均以有缆方式连接。
本实施例的基于海底物联网的海底地震监测装置,具有以下优点:
1)既可以海底地震探测,用于海底结构科学研究;又可以进行海底地震监测,用于地震灾害及海啸预警;还可以自主供能、长时序、无值守工作。
2)海底地震仪模块完全抛弃了传统设备的调平装置,海底地震计网络节点可以任意方向布放,且不受海底面倾角限制,便于施工;而且海底地震仪使用PTP网络授时,网络内所有节点的时间系统与世界协调时间(UTC)一致,误差不大于1ms,完全解决了传统设备时钟漂移的问题。
3)海底网络设备可以与多种水下无线传感器连接,包括与AUV携带的无线传感器连接,具有分布式的丰富的环境感知能力,组成可扩充的物联网。
本发明还提供了一种基于海底物联网的海底地震监测系统,图9为本发明实施例一种基于海底物联网的海底地震监测系统的结构示意图。参见图9,所述监测系统包括多个上述所述的监测装置;每个所述监测装置中的任意一个海底地震探测设备4的末端与相邻的监测装置连接。
该基于海底物联网的海底地震监测系统,可以用于海底结构探测,还可以用于地震灾害及海啸预警;且能够实现自主供能、长时序、无值守工作;解决了自容式自沉浮海底地震仪存在的时钟漂移问题;实现了多平台海底互联模式工作。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (10)

  1. 一种基于海底物联网的海底地震监测装置,其特征在于,包括:海面浮标网络设备、海底网络设备、锚系和海底地震探测设备;
    所述海面浮标网络设备漂浮于海面,所述海底网络设备与所述海底地震探测设备均布放于海底;所述海底地震探测设备为一个或多个;所述海面浮标网络设备与所述海底网络设备通过所述锚系连接;所述海底网络设备与所述海底地震探测设备通过海底光电复合缆连接;
    所述海面浮标网络设备包括卫星收发装置、物联网平台服务器、网络时间服务器和自主供能装置;所述卫星收发装置和所述网络时间服务器均与所述物联网平台服务器通信连接;所述卫星收发装置通过卫星与岸基网络操控中心通信;所述自主供能装置分别与所述卫星收发装置和所述网络时间服务器连接;所述物联网平台服务器用于对所述海底地震探测设备进行监测和管理,并将接收到的所述海底地震探测设备上传的地震信号发送至所述海面卫星收发装置以及将接收到的所述海面卫星收发装置发送的控制指令发送至所述海底地震探测设备;所述网络时间服务器用于通过所述物联网平台服务器为所述海底地震探测设备提供时钟信号;所述自主供能装置用于为所述卫星收发装置、所述网络时间服务器和所述海底网络设备提供电源信号;
    所述海底网络设备包括光电分离舱、海底服务器、底锚重块和机械释放器;所述光电分离舱分别与所述锚系和所述海底地震探测设备连接,用于为所述海底地震探测设备提供高压电源信号,并将接收到的所述海底地震探测设备发送的地震信号发送至所述海面浮标网络设备;所述海底服务器与所述光电分离舱连接,用于与所述物联网平台服务器配合,对所述海底地震探测设备进行监测和管理;所述底锚重块通过所述机械释放器与所述锚系连接,用于将所述海底网络设备固定于海底;
    所述海底地震探测设备包括多个海底地震计网络节点;多个所述海底地震计网络节点通过所述海底光电复合缆首尾依次串接;所述海底地震计网络节点包括数传短接部和海底地震仪模块;所述数传短接部与所述海底地震仪模块连接;所述数传短接部用于对所述高压电源信号进行降压,并对接收到信号进行光电转换;所述海底地震仪模块用于感知海底振动,探 测产生地震信号。
  2. 根据权利要求1所述的一种基于海底物联网的海底地震监测装置,其特征在于,所述监测装置还包括水下无线传感器;所述水下无线传感器与所述海底网络设备无线连接,用于采集水声数据,并将所述水声数据无线传输至所述海底网络设备。
  3. 根据权利要求1所述的一种基于海底物联网的海底地震监测装置,其特征在于,所述海面浮标网络设备还包括浮标浮体、塔架、航标和目标感知网络摄像机;
    所述浮标浮体上设置所述塔架;所述塔架上设置所述卫星收发装置、所述物联网平台服务器、所述网络时间服务器、所述自主供能装置、所述航标、所述目标感知网络摄像机;
    所述航标用于对所述海面浮标网络设备的编号和位置信息进行广播;
    所述目标感知网络摄像机与所述物联网平台服务器连接,用于自动感知过往的船只,并对所述船只进行摄像,将拍摄的图像自动上传至所述物联网平台服务器。
  4. 根据权利要求1所述的一种基于海底物联网的海底地震监测装置,其特征在于,所述锚系包括海面连接件、光电转换腔、海底承重连接件、铠装光电复合缆和锚系浮体;
    所述光电转换腔和所述海底承重连接件分别连接在所述铠装光电复合缆的两端,所述锚系浮体位于所述铠装光电复合缆的靠近所述海底承重连接件的一侧;所述海面连接件将所述光电转换腔与所述海面浮标网络设备机械连接,所述海底承重连接件将所述海底网络设备的机械释放器与所述铠装光电复合缆机械连接;所述光电转换腔用于将所述自主供能装置提供的电源信号转换高压电源信号,并将所述高压电源信号传输至所述海底网络设备,还用于对接收到的信号进行光电转换。
  5. 根据权利要求2所述的一种基于海底物联网的海底地震监测装置,其特征在于,所述海底网络设备还包括光电混合接插件、湿插拔光电接插件和无线网络接口;
    所述光电混合接插件用于连接所述锚系与所述光电分离舱;所述湿插 拔光电接插件用于连接所述海底地震探测设备与所述光电分离舱;所述无线网络接口用于与所述水下无线传感器无线连接。
  6. 根据权利要求1所述的一种基于海底物联网的海底地震监测装置,其特征在于,所述海底地震计网络节点还包括海底水听器模块;所述海底水听器模块与所述数传短接部,用于感知海水的振动。
  7. 根据权利要求1所述的一种基于海底物联网的海底地震监测装置,其特征在于,所述海底地震仪模块包括地震传感器、第一信号调理转换电路、第一处理器、光纤陀螺寻北仪和姿态传感器;
    所述地震传感器为三个,每个所述地震传感器连接一个所述第一信号调理转换电路;所述第一信号调理转换电路、所述光纤陀螺寻北仪和所述姿态传感器均与所述第一处理器连接;所述第一信号调理转换电路用于对接收到的信号进行调理和模数转换,得到地震信号;所述光纤陀螺寻北仪用于获取方位信息;所述姿态传感器用于获取俯仰角和侧倾角;所述第一处理器用于将所述地震信号、所述方位信息、所述俯仰角和所述侧倾角传输至所述数传短接部。
  8. 根据权利要求6所述的一种基于海底物联网的海底地震监测装置,其特征在于,所述海底水听器模块包括水听器、第二信号调理转换电路和第二处理器;
    所述水听器用于获取海水的模拟振动信号;所述第二信号调理转换电路分别与所述水听器和所述第二处理器连接,用于对所述海水的模拟振动信号进行调理和转换,得到海水振动信号,并将所述海水振动信号传输至所述第二处理器;所述第二处理器用于将所述海水振动信号传输至所述数传短接部。
  9. 根据权利要求4所述的一种基于海底物联网的海底地震监测装置,其特征在于,所述海面连接件包括万向节连接件和承重电滑环;所述万向节连接件将所述海面浮标网络设备的浮标浮体与所述承重电滑环的一端机械连接;所述承重电滑环的另一端与所述光电转换腔连接。
  10. 一种基于海底物联网的海底地震监测系统,其特征在于,包括多个如权利要求1-9任意一项所述的监测装置;每个所述监测装置中的任意 一个海底地震探测设备的末端与相邻的监测装置连接。
PCT/CN2018/107802 2018-09-12 2018-09-27 一种基于海底物联网的海底地震监测装置及系统 WO2020051950A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019548032A JP6975247B2 (ja) 2018-09-12 2018-09-27 海底のモノのインターネットに基づく海底地震観測装置及びシステム
US16/603,043 US11327186B2 (en) 2018-09-12 2018-09-27 Submarine seismic monitoring apparatus and system based on submarine internet of things

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811063041.X 2018-09-12
CN201811063041.XA CN109061720B (zh) 2018-09-12 2018-09-12 一种基于海底物联网的海底地震监测装置及系统

Publications (1)

Publication Number Publication Date
WO2020051950A1 true WO2020051950A1 (zh) 2020-03-19

Family

ID=64761451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107802 WO2020051950A1 (zh) 2018-09-12 2018-09-27 一种基于海底物联网的海底地震监测装置及系统

Country Status (4)

Country Link
US (1) US11327186B2 (zh)
JP (1) JP6975247B2 (zh)
CN (1) CN109061720B (zh)
WO (1) WO2020051950A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112211770A (zh) * 2020-10-14 2021-01-12 江苏科技大学 兼具海流能发电的海底基平台
WO2022005975A1 (en) * 2020-06-29 2022-01-06 Magseis Ff Llc Seismic data acquisition unit apparatus and positioning systems and methods
JP2022001852A (ja) * 2020-06-22 2022-01-06 応用地質株式会社 水底微動探査装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142196B1 (en) * 2016-04-15 2018-11-27 Senseware, Inc. System, method, and apparatus for bridge interface communication
US11616378B2 (en) * 2019-06-11 2023-03-28 Raytheon Company Power transfer system with multiple energy storage modules
CN110320560A (zh) * 2019-07-09 2019-10-11 浙江大学 一种海洋地震和海啸实时监测系统
CN110456410B (zh) * 2019-08-28 2021-10-26 之江实验室 基于超强抗弯多芯光纤柔性光缆的分布式水听器
WO2021058051A1 (de) * 2019-09-26 2021-04-01 Geomar Helmholtz-Zentrum Für Ozeanforschung Kiel Meeresbodenmessungen-messeinheit, meeresbodenmessungen-messeinheiten-sensorschwarm und einsatzverfahren dafür
CN110510068B (zh) * 2019-09-30 2020-08-21 青岛海洋科学与技术国家实验室发展中心 一种基于光电复合缆的全海深剖面立体浮标观测系统
CN110780324B (zh) * 2019-10-08 2020-07-31 中国地质大学(北京) 一种基于物联网实时连接的电子船舶牌
CN110910625B (zh) * 2019-11-15 2022-04-19 浙江大学 基于485总线的海底原位低功耗多节点数据采集系统
US10914588B1 (en) * 2019-12-06 2021-02-09 Toyota Research Institute, Inc. Pulse per second signal generation using a fiber optic gyroscope
CN113447066A (zh) * 2020-03-25 2021-09-28 中天海洋系统有限公司 海底数据监测装置及系统
CN111551998B (zh) * 2020-05-14 2021-03-19 中国科学院地质与地球物理研究所 一种海底电磁采集站通信装置和方法
CN112055320A (zh) * 2020-07-31 2020-12-08 中科长城海洋信息系统有限公司 一种用于深海海底信息网络的综合基站系统
CN114123477B (zh) * 2020-08-25 2023-03-31 深圳欧特海洋科技有限公司 一种数据中心系统
CN111983563B (zh) * 2020-08-30 2023-02-21 山东省科学院海洋仪器仪表研究所 基于分布式光纤声波传感的远距离超前反潜预警阵列及系统
CN112260768B (zh) * 2020-10-23 2021-11-09 军事科学院系统工程研究院网络信息研究所 基于光纤拉远的电光混合水下通信方法
WO2022161083A1 (zh) * 2021-01-27 2022-08-04 中国长江三峡集团有限公司 基于分布式光纤传感技术的涌浪监测装置及方法
CN112785815A (zh) * 2021-01-27 2021-05-11 哈尔滨工业大学 基于分布式光纤传感技术的涌浪监测装置及方法
CN112977724A (zh) * 2021-03-29 2021-06-18 青岛海洋科学与技术国家实验室发展中心 自升降水声通讯浮标
CN113552634B (zh) * 2021-07-07 2022-07-19 自然资源部第二海洋研究所 一种链式海底地震监测装置
CN113763685B (zh) * 2021-09-16 2023-03-21 中英海底系统有限公司 一种海底光缆保护装置及系统
CN113759423B (zh) * 2021-09-30 2023-10-31 中国石油集团东方地球物理勘探有限责任公司 海底四分量节点地震数据采集系统及其数据采集方法
CN114459591B (zh) * 2021-12-28 2024-04-26 南方海洋科学与工程广东省实验室(广州) 一种深海高灵敏度光纤矢量声学探测潜标装置及系统
CN114859692A (zh) * 2022-04-11 2022-08-05 河南中多科技发展有限公司 一种基于北斗系统的透地通信设备授时方法
CN115240397A (zh) * 2022-07-01 2022-10-25 南方科技大学 大陆架灾害数据采集系统及监测系统
CN115421187B (zh) * 2022-09-01 2023-06-06 中国科学院声学研究所 缆式海底地震海啸监测系统
CN115432121B (zh) * 2022-09-28 2023-03-21 广西壮族自治区海洋环境监测中心站 海洋信息综合在线监测浮标系统
CN116929538B (zh) * 2023-07-27 2024-01-23 山东博华电子科技发展有限公司 具有姿态控制功能的水听器及其监听设备
CN117031402B (zh) * 2023-10-10 2023-12-12 南方海洋科学与工程广东省实验室(珠海) 一种基于小型浮标的声光融合监测设备及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424592A (zh) * 2001-12-10 2003-06-18 法国石油研究所 应用海底采集站的地震数据采集系统
US20050105392A1 (en) * 2000-05-03 2005-05-19 Westerngeco L.L.C. Marine seismic surveying
US20080048881A1 (en) * 2006-08-24 2008-02-28 Schlumberger Technology Corporation Technique and Apparatus to Track and Position Electromagnetic Receivers
US20120087206A1 (en) * 2005-01-17 2012-04-12 Fairfield Industries Incorporated Apparatus for Deployment of Ocean Bottom Seismometers
CN105738951A (zh) * 2016-05-06 2016-07-06 广州海洋地质调查局 多节点obs垂直缆地震采集系统
CN107076867A (zh) * 2014-05-13 2017-08-18 离子地球物理公司 海底系统
CN107179554A (zh) * 2017-07-17 2017-09-19 国家深海基地管理中心 一种海底地震探测装置及探测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843805B1 (fr) * 2002-08-22 2004-12-17 Inst Francais Du Petrole Methode et dispositif d'acquisition pour l'exploration sismique d'une formation geologique par des recepteurs permanents implantes au fond de la mer
US8279714B2 (en) * 2008-12-05 2012-10-02 Wood Hole Oceanographic Institution Compliant ocean wave mitigation device and method to allow underwater sound detection with oceanographic buoy moorings
CN204557102U (zh) * 2015-01-26 2015-08-12 中国海洋大学 一种海洋动力环境海底有缆在线观测系统
CN108007505A (zh) * 2017-12-28 2018-05-08 上海亨通海洋装备有限公司 水下锚泊立体观测系统
CN208705483U (zh) * 2018-09-12 2019-04-05 国家海洋局第一海洋研究所 一种基于海底物联网的海底地震监测装置及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050105392A1 (en) * 2000-05-03 2005-05-19 Westerngeco L.L.C. Marine seismic surveying
CN1424592A (zh) * 2001-12-10 2003-06-18 法国石油研究所 应用海底采集站的地震数据采集系统
US20120087206A1 (en) * 2005-01-17 2012-04-12 Fairfield Industries Incorporated Apparatus for Deployment of Ocean Bottom Seismometers
US20080048881A1 (en) * 2006-08-24 2008-02-28 Schlumberger Technology Corporation Technique and Apparatus to Track and Position Electromagnetic Receivers
CN107076867A (zh) * 2014-05-13 2017-08-18 离子地球物理公司 海底系统
CN105738951A (zh) * 2016-05-06 2016-07-06 广州海洋地质调查局 多节点obs垂直缆地震采集系统
CN107179554A (zh) * 2017-07-17 2017-09-19 国家深海基地管理中心 一种海底地震探测装置及探测方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022001852A (ja) * 2020-06-22 2022-01-06 応用地質株式会社 水底微動探査装置
JP7082643B2 (ja) 2020-06-22 2022-06-08 応用地質株式会社 水底微動探査装置
WO2022005975A1 (en) * 2020-06-29 2022-01-06 Magseis Ff Llc Seismic data acquisition unit apparatus and positioning systems and methods
US11940582B2 (en) 2020-06-29 2024-03-26 Magseis Ff Llc Seismic data acquisition unit apparatus and positioning systems and methods
CN112211770A (zh) * 2020-10-14 2021-01-12 江苏科技大学 兼具海流能发电的海底基平台

Also Published As

Publication number Publication date
JP2021501871A (ja) 2021-01-21
JP6975247B2 (ja) 2021-12-01
CN109061720B (zh) 2023-10-20
CN109061720A (zh) 2018-12-21
US20200257009A1 (en) 2020-08-13
US11327186B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2020051950A1 (zh) 一种基于海底物联网的海底地震监测装置及系统
CN208705483U (zh) 一种基于海底物联网的海底地震监测装置及系统
Howe et al. A smart sensor web for ocean observation: Fixed and mobile platforms, integrated acoustics, satellites and predictive modeling
RU2596383C2 (ru) Судовое устройство
EA027580B1 (ru) Регистрирующая аппаратура морского донного сейсмического кабеля
JP5615229B2 (ja) 海底探査装置
US20030117893A1 (en) Seismic data acquisition system using acquisition stations set on the sea bottom
CN109143325A (zh) 一种海底四分量节点地震仪器系统及海底地震数据采集方法
CN113759423B (zh) 海底四分量节点地震数据采集系统及其数据采集方法
US20160245945A1 (en) Single vessel range navigation and positioning of an ocean bottom seismic node
WO2018058736A1 (zh) 一种海洋磁力探测方法及装置
Howe et al. Sensor networks for cabled ocean observatories
JP2009543147A (ja) 深海ネットワークおよび配置装置
Momma et al. Monitoring system for submarine earthquakes and deep sea environment
CN208872883U (zh) 一种海底四分量节点地震仪器系统
JP2009017241A (ja) Gps内蔵高機能ブイ
CN115258105A (zh) 基于卫星链路传输的全海深近实时海底观测平台及方法
RU111691U1 (ru) Донный модуль сейсмической станции
Kawaguchi et al. A new approach for mobile and expandable real-time deep seafloor observation-adaptable observation system
CN110379946B (zh) 一种面向海底大地坐标基准的水下动力站
CN109061746B (zh) 一种卫星传输海洋磁力探测装置
Zhang et al. Prototype system design of mooring buoy for seafloor observation and construction of its communication link
CN208705494U (zh) 一种卫星传输海洋磁力探测装置
CN206114925U (zh) 一种海洋磁力探测装置
RU66063U1 (ru) Стационарный гидрофизический измерительный комплекс

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019548032

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933460

Country of ref document: EP

Kind code of ref document: A1