WO2022161083A1 - 基于分布式光纤传感技术的涌浪监测装置及方法 - Google Patents

基于分布式光纤传感技术的涌浪监测装置及方法 Download PDF

Info

Publication number
WO2022161083A1
WO2022161083A1 PCT/CN2021/142248 CN2021142248W WO2022161083A1 WO 2022161083 A1 WO2022161083 A1 WO 2022161083A1 CN 2021142248 W CN2021142248 W CN 2021142248W WO 2022161083 A1 WO2022161083 A1 WO 2022161083A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
optical cable
disturbance
armored
optical fiber
Prior art date
Application number
PCT/CN2021/142248
Other languages
English (en)
French (fr)
Inventor
向欣
周文松
孙志禹
李晶华
刘伟康
张丽
霍旭佳
Original Assignee
中国长江三峡集团有限公司
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110111724.3A external-priority patent/CN112785815B/zh
Priority claimed from CN202120230657.2U external-priority patent/CN214410234U/zh
Application filed by 中国长江三峡集团有限公司, 哈尔滨工业大学 filed Critical 中国长江三峡集团有限公司
Publication of WO2022161083A1 publication Critical patent/WO2022161083A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the invention belongs to the technical field of surge monitoring, and relates to a surge monitoring device and method based on distributed optical fiber sensing technology.
  • Landslide swell is a secondary disaster that occurs along with bank landslides. It is mainly caused by the sudden sliding of slope rock and soil or river submerged rock and soil and the interaction with water bodies. The occurrence of landslide swells may lead to serious disasters. For example, the impact of landslide swells on the reservoir dam body may cause cracks in the dam body, and in severe cases, the dam body will burst, endangering the life and property safety of coastal residents; The second largest cause of tsunamis, sometimes as destructive as earthquake-induced tsunamis, can seriously threaten the navigation safety of passing ships in the waters where the swell occurs.
  • the technical problem to be solved by the present invention is to provide a surge monitoring device and method based on distributed optical fiber sensing technology, which has a simple structure, and adopts armored disturbance monitoring optical cable to connect with buoy and mass block, and signal transmission optical cable and armored disturbance monitoring
  • the optical fiber cable is connected with the optical fiber demodulation system, and the connecting cable is anchored with the rock and soil mass. Multiple buoys are connected in series. The buoy floats in the water area with potential landslides, and the mass block is suspended in the water.
  • the optical fiber demodulation system is used for signal demodulation in the armored disturbance monitoring fiber optic cable. , When a surge occurs, the optical fiber demodulation system compares the monitoring signal threshold with the monitoring alarm threshold, and conducts online real-time monitoring and early warning of surge disasters, which is convenient for operation.
  • the technical scheme adopted in the present invention is: a surge monitoring device based on distributed optical fiber sensing technology, which includes a buoy, an armored disturbance monitoring optical cable, a mass block, an optical fiber demodulation system and a signal transmission system.
  • Optical cable the two ends of the armored disturbance monitoring optical cable are respectively connected with the buoy and the mass block, the signal transmission optical cable is connected with the armored disturbance monitoring optical cable and the optical fiber demodulation system, and the mass block is perpendicular to the buoy at the lower part; the buoy floats on On the water surface, the mass block is suspended in the water, and the optical fiber demodulation system is used for signal demodulation in the armored disturbance monitoring optical cable.
  • the buoy is of a truncated cone structure, the top of the cone with a smaller cross-section faces the mass block, and the armored disturbance monitoring optical cable is connected to the center of the truncated cone.
  • the mass block is a cylinder with a tapered tip at one end, and the armored disturbance monitoring optical cable is connected to the tapered tip.
  • the number of the buoys is multiple, connected in series by connecting cables, and anchors are arranged at both ends of the connecting cables.
  • a plurality of said buoy-connected armored disturbance monitoring optical cables are connected with signal transmission optical cables.
  • the armored disturbance monitoring optical cable is subjected to the action of the water flow load q in the horizontal direction, and is subjected to the tensile force T 1 of the surge monitoring device, the tensile force T 2 of the anchor and its own gravity G in the vertical direction, and the magnitude of the force q of the water flow on the optical cable for, Among them, T 1 , T 2 and G are the balance forces, which will not disturb the armored disturbance monitoring optical cable.
  • C d is the drag coefficient
  • is the water flow density
  • v is the water flow velocity
  • A is the water flowing through the armor Install disturbance monitoring cable cross section area.
  • the armored disturbance monitoring optical cable is demodulated by the surge disturbance signal through the ⁇ -OTDR optical cable optical intensity signal demodulator, injects a high-coherence light source into the armored disturbance monitoring optical cable, and detects the light scattered back to Rayleigh Strong changes are monitored for disturbance events.
  • the disturbance signal of the armored disturbance monitoring optical cable realizes the online real-time monitoring of the location and time of disturbance by setting the alarm threshold of the demodulator.
  • I is the light intensity detected by the demodulator
  • A is the scattered light amplitude
  • is the wavelength of the light wave
  • n f is the refractive index of the fiber
  • c is the speed of light in the fiber
  • T P is the light pulse width.
  • connection the signal transmission optical cable is connected with multiple armored disturbance monitoring optical cables and then connected to the ⁇ -OTDR optical cable optical intensity signal demodulator;
  • the ⁇ -OTDR optical cable light intensity signal demodulator sends out an early warning signal.
  • a surge monitoring device based on distributed optical fiber sensing technology which includes a buoy, an armored disturbance monitoring optical cable, a mass block, an optical fiber demodulation system and a signal transmission optical cable; two ends of the armored disturbance monitoring optical cable are respectively connected with the buoy and the mass Block connection, the signal transmission optical cable is connected with the armored disturbance monitoring optical cable and the optical fiber demodulation system, the mass block is perpendicular to the buoy at the lower part; the buoy floats on the water surface, the mass block hangs in the water, and the optical fiber demodulation system is used for the armored disturbance monitoring optical fiber cable signal demodulation.
  • the structure is simple.
  • the armored disturbance monitoring optical cable is connected to the buoy and the mass block.
  • the signal transmission optical cable is connected to the armored disturbance monitoring optical cable and the optical fiber demodulation system.
  • the connecting cable is anchored with the rock and soil mass to connect multiple buoys in series.
  • the mass block is suspended in the water, and the optical fiber demodulation system is used for signal demodulation in the armored disturbance monitoring optical cable.
  • the monitoring signal threshold is compared with the monitoring alarm threshold through the optical fiber demodulation system. Online real-time monitoring and early warning of disasters are carried out, and the operation room is convenient.
  • the buoy is a truncated cone structure, the top of the cone with a smaller cross-section faces the mass block, and the armored disturbance monitoring optical cable is connected to the center of the truncated cone.
  • the structure is simple. When in use, the buoy floats on the water surface, and the mass block connected to the buoy hangs in the water to play a stabilizing role.
  • the armored disturbance monitoring optical cable is connected to the buoy of the conical frustum structure, which has low resistance and good stability when the water current impacts.
  • the mass block is a cylinder with a tapered tip at one end, and the armored disturbance monitoring optical cable is connected to the tapered tip.
  • the structure is simple, when in use, the mass block is a cylindrical cone-tip structure, the cone-tip is connected with the armored disturbance monitoring optical cable, and the suspension is stable in water.
  • the number of buoys is multiple, connected in series by connecting cables, and anchors are provided at both ends of the connecting cables.
  • the structure is simple. When in use, the anchors at both ends of the connecting cable are anchored with the rock and soil mass, and a plurality of buoys connected in series on the connecting cable float in the potential landslide waters.
  • the armored disturbance monitoring optical cables connected by the plurality of buoys are connected with the signal transmission optical cables.
  • the structure is simple, and when in use, a plurality of armored disturbance monitoring optical cables connected with signal transmission optical cables are used to monitor the surge signal in potential water areas, and the coverage area is large and the measured data error is small.
  • the armored disturbance monitoring optical cable is subjected to the water flow load q in the horizontal direction, and is subjected to the tensile force T 1 of the surge monitoring device, the tensile force T 2 of the anchor and its own gravity G in the vertical direction, and the water flow acts on the optical cable.
  • the magnitude of the force q is, Among them, T 1 , T 2 and G are the balance forces, which will not disturb the armored disturbance monitoring optical cable.
  • C d is the drag coefficient
  • is the water flow density
  • v is the water flow velocity
  • A is the water flowing through the armor Install disturbance monitoring cable cross section area.
  • the armored disturbance monitoring optical cable is demodulated by the surge disturbance signal through the ⁇ -OTDR optical cable optical intensity signal demodulator, and injects a high-coherence light source into the armored disturbance monitoring optical cable, and sends the Rayleigh signal after detection. Changes in the intensity of scattered light to monitor disturbance events.
  • the disturbance signal of the armored disturbance monitoring optical cable realizes online real-time monitoring of the location and time of disturbance by setting the alarm threshold of the demodulator.
  • I is the light intensity detected by the demodulator;
  • A is the scattered light amplitude;
  • is the wavelength of the light wave;
  • n f is the refractive index of the fiber;
  • c is the speed of light in the fiber;
  • T P is the light pulse width.
  • the monitoring method of the surge monitoring device based on distributed optical fiber sensing technology as above is characterized in that it comprises the following steps:
  • connection the signal transmission optical cable is connected with multiple armored disturbance monitoring optical cables and then connected to the ⁇ -OTDR optical cable optical intensity signal demodulator;
  • the ⁇ -OTDR optical cable light intensity signal demodulator sends out an early warning signal.
  • the method is simple and convenient to operate, and has on-line real-time monitoring and early warning of surge disasters.
  • a surge monitoring device and method based on distributed optical fiber sensing technology comprising a buoy, an armored disturbance monitoring optical cable, a mass block, an optical fiber demodulation system and a signal transmission optical cable, and the armored disturbance monitoring optical cable, the buoy and the mass block Connection, the signal transmission optical cable is connected with the armored disturbance monitoring optical cable and the optical fiber demodulation system, the connecting cable is anchored with the rock and soil mass, and multiple buoys are connected in series.
  • the monitoring signal threshold is compared with the monitoring alarm threshold through the optical fiber demodulation system.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a force analysis diagram of the present invention.
  • Fig. 3 is a use state diagram of the present invention.
  • FIG. 4 is a signal diagram of the present invention when no surge occurs and when a surge occurs.
  • buoy 1 buoy 1, armored disturbance monitoring optical cable 2, mass block 3, optical fiber demodulation system 4, signal transmission optical cable 5, connecting cable 6.
  • a surge monitoring device based on distributed optical fiber sensing technology includes a buoy 1, an armored disturbance monitoring optical cable 2, a mass block 3, an optical fiber demodulation system 4 and a signal transmission optical cable 5;
  • the two ends of the armored disturbance monitoring optical cable 2 are respectively connected with the buoy 1 and the mass block 3,
  • the signal transmission optical cable 5 is connected with the armored disturbance monitoring optical cable 2 and the optical fiber demodulation system 4, and the mass block 3 is perpendicular to the buoy 1 and is located at its lower part.
  • the buoy 1 floats on the water surface, the mass block 3 is suspended in the water, and the optical fiber demodulation system 4 is used for signal demodulation in the armored disturbance monitoring optical cable 2.
  • the structure is simple, the armored disturbance monitoring optical cable 2 is connected to the buoy 1 and the mass block 3, the signal transmission optical cable 5 is connected to the armored disturbance monitoring optical cable 2 and the optical fiber demodulation system 4, and the connecting cable 6 is connected to the rock and soil anchorage in series with multiple buoys 1.
  • the buoy 1 floats in the waters of potential landslides, the mass block 3 is suspended in the water, and the optical fiber demodulation system 4 is used for signal demodulation in the armored disturbance monitoring optical cable 2.
  • the optical fiber demodulation system 4 will The monitoring signal threshold is compared with the monitoring alarm threshold, and online real-time monitoring and early warning of surge disasters are carried out, which is convenient in the operation room.
  • the buoy 1 is a truncated cone structure, the top of the cone with a smaller cross-section faces the mass block 3, and the armored disturbance monitoring optical cable 2 is connected to the center of the truncated cone.
  • the structure is simple. When in use, the buoy 1 floats on the water surface, and the mass block 3 connected to the buoy 1 hangs in the water to play a stabilizing role.
  • the armored disturbance monitoring optical cable 2 is connected to the buoy 1 of the truncated cone structure. , good stability.
  • the mass block 3 is a cylinder with a tapered tip at one end, and the armored disturbance monitoring optical cable 2 is connected to the tapered tip.
  • the structure is simple.
  • the mass block 3 is a cylindrical cone-tip structure, and the cone-tip is connected with the armored disturbance monitoring optical cable 2, and the suspension has good stability in water.
  • the number of the buoys 1 is multiple, and the buoys 1 are connected in series by connecting cables 6 , and anchors are provided at both ends of the connecting cables 6 .
  • the structure is simple. When in use, the anchors at both ends of the connecting cable 6 are anchored with the rock and soil, and a plurality of buoys 1 connected in series on the connecting cable 6 float in the potential landslide water area.
  • a plurality of armored disturbance monitoring optical cables 2 connected to the buoys 1 are connected to a signal transmission optical cable 5 .
  • the structure is simple, and in use, a plurality of armored disturbance monitoring optical cables 2 connected to the signal transmission optical cable 5 are used to monitor the surge signal in the potential water area, and the coverage area is large and the measured data error is small.
  • the armored disturbance monitoring optical cable 2 is subjected to the water flow load q in the horizontal direction, and is subjected to the tensile force T 1 of the surge monitoring device, the tensile force T 2 of the anchor and its own gravity G in the vertical direction.
  • the size of the cable force q is, Among them, T 1 , T 2 and G are balance forces, which will not disturb the armored disturbance monitoring optical cable 2, where C d is the drag coefficient; ⁇ is the water flow density; v is the water flow velocity; A is the water flow through The armor disturbance monitors the area of the cross section of the optical cable 2 .
  • the armored disturbance monitoring optical cable 2 is demodulated by the surge disturbance signal through a ⁇ -OTDR optical cable optical intensity signal demodulator, by injecting a high-coherence light source into the armored disturbance monitoring optical cable 2, and after detection Perturbation events are monitored by changes in the intensity of light scattered towards Rayleigh.
  • the disturbance signal of the armored disturbance monitoring optical cable 2 realizes online real-time monitoring of the location and time of disturbance by setting the alarm threshold of the demodulator,
  • I is the light intensity detected by the demodulator
  • A is the scattered light amplitude
  • is the wavelength of the light wave
  • n f is the refractive index of the fiber
  • c is the speed of light in the fiber
  • T P is the light pulse width.
  • the above-mentioned monitoring method for a surge monitoring device based on distributed optical fiber sensing technology is characterized in that it includes the following steps:
  • the anchors at both ends of the connecting cable 6 are anchored with the rock and soil mass, and the multiple buoys 1 connected in series on the connecting cable 6 are located in the water area of potential landslides and float on the water surface, and the mass block 3 is suspended in the water;
  • connection, the signal transmission optical cable 5 is connected with a plurality of armored disturbance monitoring optical cables 2 and then connected with the ⁇ -OTDR optical cable optical intensity signal demodulator;
  • the ⁇ -OTDR optical cable light intensity signal demodulator sends out an early warning signal.
  • the method is simple and convenient to operate, and has on-line real-time monitoring and early warning of surge disasters.
  • the above-mentioned surge monitoring device and method based on distributed optical fiber sensing technology when installed and used, the armored disturbance monitoring optical cable 2 is connected with the buoy 1 and the mass block 3, and the signal transmission optical cable 5 is connected with the armored disturbance monitoring optical cable 2 and 3.
  • the optical fiber demodulation system 4 is connected, the connecting cable 6 is anchored with the rock and soil mass, and a plurality of buoys 1 are connected in series.
  • the buoy 1 floats in the water area with potential landslides, and the mass block 3 is suspended in the water.
  • the optical fiber demodulation system 4 is used for the armored disturbance monitoring optical cable 2.
  • Signal demodulation When a surge occurs, the optical fiber demodulation system 4 compares the monitoring signal threshold with the monitoring alarm threshold, and performs online real-time monitoring and early warning of surge disasters, which is easy to operate.
  • the buoy 1 When in use, the buoy 1 floats on the water surface, and the mass block 3 connected to the buoy 1 hangs in the water to play a stabilizing role.
  • the armored disturbance monitoring optical cable 2 is connected to the buoy 1 of the truncated cone structure, and the resistance is small and stable when the water current impacts. it is good.
  • the mass block 3 When in use, the mass block 3 has a cylindrical cone-tip structure, and the cone-tip is connected with the armored disturbance monitoring optical cable 2, and the suspension has good stability in water.
  • the anchors at both ends of the connecting cable 6 are anchored with the rock and soil mass, and a plurality of buoys 1 connected in series on the connecting cable 6 float in the potential landslide water area.
  • a plurality of armored disturbance monitoring optical cables 2 connected to the signal transmission optical cable 5 are used to monitor the surge signal in the potential water area, which has a large coverage area and small error in the measured data.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种基于分布式光纤传感技术的涌浪监测装置及方法,它包括浮标(1)、铠装扰动监测光缆(2)、质量块(3)、光纤解调系统(4)和信号传输光缆(5),通过铠装扰动监测光缆(2)与浮标(1)和质量块(3)连接,信号传输光缆(5)与铠装扰动监测光缆(2)和光纤解调系统(4)连接,连接索(6)与岩土体锚固串联多个浮标(1),浮标(1)浮动于潜在滑坡的水域内,质量块(3)悬垂于水中,光纤解调系统(4)用于铠装扰动监测光缆(2)中信号解调,在涌浪发生时,通过光纤解调系统(4)将监测信号阈值与监测报警阈值比对。克服了原涌浪监测利用水位计点式监测无法对水体内部暗流及其分布特征进行测量,低估水中暗流幅度对沿岸危害的问题。具有结构简单,对涌浪灾害进行在线实时监测和预警,操作简单方便的特点。

Description

基于分布式光纤传感技术的涌浪监测装置及方法 技术领域
本发明属于涌浪监测技术领域,涉及一种基于分布式光纤传感技术的涌浪监测装置及方法。
背景技术
滑坡涌浪是一种伴随着岸边滑坡发生的次生灾害,其主要是由于边坡岩土体或河流浸没岩土体突然滑动,并与水体相互作用而产生的波浪。滑坡涌浪的发生可能导致严重灾害,如滑坡涌浪对水库坝体的冲击轻则造成坝体产生裂缝,重则使坝体溃堤,危害沿岸居民的生命财产安全;滑坡涌浪同时也是产生海啸的第二大诱因,其破坏程度有时不亚于地震诱发的海啸,会严重威胁涌浪发生水域过往船只的航行安全。
已有的关于涌浪的研究多集中于经验公式、物理模型和数值模拟方面,学者们希望通过上述研究方法展现涌浪的发生过程及传播规律。然而,对于涌浪的监测与预警方法仍较稀少。现有的涌浪监测方法主要是利用水位计对涌浪的波高、波向进行测量。然而,水位计一般用于水面波高测量,属于点式监测,无法对水体内部暗流及其分布特征进行测量,导致低估了水中暗流幅度及其对沿岸的危害。
发明内容
本发明所要解决的技术问题是提供一种基于分布式光纤传感技术的涌浪监测装置及方法,结构简单,采用铠装扰动监测光缆与浮标和质量块连接,信号传输光缆与铠装扰动监测光缆和光纤解调系统连接,连接索与岩土体锚固串联多个浮标,浮标浮动于潜在滑坡的水域内,质量块悬垂于水中,光纤解调系统用于铠装扰动监测光缆中信号解调,在涌浪发生时,光纤解调系统将监测信号阈值与监测报警阈值比对,对涌浪灾害进行在线实时监测和预警,操作间方便。
为解决上述技术问题,本发明所采用的技术方案是:一种基于分布式光纤传感技术的涌浪监测装置,它包括浮标、铠装扰动监测光缆、质量块、光纤解调系统和信号传输光缆;所述铠装扰动监测光缆的两端分别与浮标和质量块连接,信号传输光缆与铠装扰动监测光缆和光纤解调系统连接,质量块垂直于浮标位于其下部;所述浮标浮动于水面,质量块悬垂于水中,光纤解调系统用于铠装扰动监测光缆中信号解调。
所述浮标为圆锥台结构,截面较小的锥顶朝向质量块,铠装扰动监测光缆与圆锥台的中心连接。
所述质量块为一端设置锥尖的圆柱体,铠装扰动监测光缆与锥尖连接。
所述浮标的数量为多个,由连接索串联,位于连接索两端设置有锚件。
多个所述的浮标连接的铠装扰动监测光缆与信号传输光缆连接。
所述铠装扰动监测光缆在水平方向受到水流荷载q的作用,在竖直方向受到涌浪监测装置拉力T 1、锚件的拉力T 2及自身的重力G,水流对光缆作用力q的大小为,
Figure PCTCN2021142248-appb-000001
其中,T 1、T 2和G为平衡力,不会对铠装扰动监测光缆产生扰动,式中,C d为曳力系数;ρ为水流密度;v为水流流速;A为水流流过铠装扰动监测光缆横截面的面积。
所述铠装扰动监测光缆受涌浪扰动信号通过Ф-OTDR光缆光强信号解调仪进行解调,通过向铠装扰动监测光缆中注入高相干光源,并探测后向瑞利散射光的光强变化,对扰动事件进行监测。
所述铠装扰动监测光缆的扰动信号通过设定解调仪的报警阈值,实现对扰动发生的位置及时间的在线实时监测,
Figure PCTCN2021142248-appb-000002
式中,I为解调仪探测到的光强;A为散射光振幅;λ为光波波长;n f为光纤折射率;c为光纤中光速;T P为光脉冲宽度。
如上所述的基于分布式光纤传感技术的涌浪监测装置的监测方法,其特征是,它包括如下步骤:
S1,安装,将连接索两端的锚件与岩土体锚固,位于连接索上串联的多个浮标位于潜在滑坡的水域内浮于水面上,质量块悬垂于水中;
S2,连接,信号传输光缆与多个铠装扰动监测光缆连接后与Ф-OTDR光缆光强信号解调仪进行连接;
S3,设置,测试确定合理的监测报警阈值,使Ф-OTDR光缆光强信号解调仪收到的信号在该阈值之下时不报警;
S4,检测,当收到的信号幅值高于设定的报警阈值时,Ф-OTDR光缆光强信号解调仪发出预警信号。
一种基于分布式光纤传感技术的涌浪监测装置,它包括浮标、铠装扰动监测光缆、质量块、光纤解调系统和信号传输光缆;铠装扰动监测光缆的两端分别与浮标和质量块连接,信号传输光缆与铠装扰动监测光缆和光纤解调系统连接,质量块垂直于浮标位于其下部;浮标浮动于水面,质量块悬垂于水中,光纤解调系统用于铠装扰动监测光缆中信号解调。结构简单,通过铠装扰动监测光缆与浮标和质量块连接,信号传输光缆与铠装扰动监测光缆和光纤解调系统连接,连接索与岩土体锚固串联多个浮标,浮标浮动于潜在滑坡的水域内,质量块悬垂于水中,光纤解调系统用于铠装扰动监测光缆中信号解调,在涌浪发生时,通过光纤解调系统将监测信号阈值与监测报警阈值比对,对涌浪灾害进行在线实时监测和预警,操作间方便。
在优选的方案中,浮标为圆锥台结构,截面较小的锥顶朝向质量块,铠装扰动监测光缆与圆锥台的中心连接。结构简单,使用时,浮标浮于水面上,与浮标连接的质量块悬垂于水中起到稳定作用,铠装扰动监测光缆与圆锥台结构的浮标连接,在水流冲击时阻力小,稳定性好。
在优选的方案中,质量块为一端设置锥尖的圆柱体,铠装扰动监测光缆与锥尖连接。结构简单,使用时,质量块为圆柱体锥尖结构,锥尖与铠装扰动监测光缆连接,悬垂于水中稳定性好。
在优选的方案中,浮标的数量为多个,由连接索串联,位于连接索两端设置有锚件。结构简单,使用时,连接索两端的锚件与岩石土体锚固,位于连接索上串联的多个浮标浮于潜在滑坡水域内。
在优选的方案中,多个浮标连接的铠装扰动监测光缆与信号传输光缆连接。结构简单,使用时,采用多个与信号传输光缆连接的铠装扰动监测光缆监测潜在水域的涌浪信号,其覆盖面积大,测得数据误差小。
在优选的方案中,铠装扰动监测光缆在水平方向受到水流荷载q的作用,在竖直方向受到涌浪监测装置拉力T 1、锚件的拉力T 2及自身的重力G,水流对光缆作用力q的大小为,
Figure PCTCN2021142248-appb-000003
其中,T 1、T 2和G为平衡力,不会对铠装扰动监测光缆产生扰动,式中,C d为曳力系数;ρ为水流密度;v为水流流速;A为水流流过铠装扰动监测光缆横截面的面积。
在优选的方案中,铠装扰动监测光缆受涌浪扰动信号通过Ф-OTDR光缆光强信号解调仪进行解调,通过向铠装扰动监测光缆中注入高相干光源,并探测后向瑞利散射光的光强变化,对扰动事件进行监测。
在优选的方案中,铠装扰动监测光缆的扰动信号通过设定解调仪的报警阈值,实现对扰动发生的位置及时间的在线实时监测,
Figure PCTCN2021142248-appb-000004
式中,I为解调仪探测到的光强;A为散射光振幅;λ为光波波长;n f为光纤折射率;c为光纤中光速;T P为光脉冲宽度。
在优选的方案中,如上基于分布式光纤传感技术的涌浪监测装置的监测方法,其特征是,它包括如下步骤:
S1,安装,将连接索两端的锚件与岩土体锚固,位于连接索上串联的多个浮标位于潜在滑坡的水域内浮于水面上,质量块悬垂于水中;
S2,连接,信号传输光缆与多个铠装扰动监测光缆连接后与Ф-OTDR光缆光强信号解调仪进行连接;
S3,设置,测试确定合理的监测报警阈值,使Ф-OTDR光缆光强信号解调仪收到的信号在该阈值之下时不报警;
S4,检测,当收到的信号幅值高于设定的报警阈值时,Ф-OTDR光缆光强信号解调仪发出预警信号。该方法操作简单方便,具有对涌浪灾害进行在线实时监测和预警。
一种基于分布式光纤传感技术的涌浪监测装置及方法,它包括浮标、铠装扰动监测光缆、质量块、光纤解调系统和信号传输光缆,通过铠装扰动监测光缆与浮标和质量块连接,信号传输光缆与铠装扰动监测光缆和光纤解调系统连接,连接索与岩土体锚固串联多个浮标,浮标浮动于潜在滑坡的水域内,质量块悬垂于水中,光纤解调系统用于铠装扰动监测光缆中信号解调,在涌浪发生时,通过光纤解调系统将监测信号阈值与监测报警阈值比对。克服了原涌浪监测利用水位计点式监测无法对水体内部暗流及其分布特征进行测量,低估水中暗流幅度对沿岸危害的问题。具有结构简单,对涌浪灾害进行在线实时监测和预警,操作简单方便的特点。
附图说明
下面结合附图和实施例对本发明作进一步说明:
图1为本发明的结构示意图。
图2为本发明的受力分析图。
图3为本发明的使用状态图。
图4为本发明无涌浪发生和有涌浪发生时的信号图。
图中:浮标1,铠装扰动监测光缆2,质量块3,光纤解调系统4,信号传输光缆5,连接索6。
具体实施方式
如图1~图4中,一种基于分布式光纤传感技术的涌浪监测装置,它包括浮标1、铠装扰动监测光缆2、质量块3、光纤解调系统4和信号传输光缆5;所述铠装扰动监测光缆2的两端分别与浮标1和质量块3连接,信号传输光缆5与铠装扰动监测光缆2和光纤解调系统4连接,质量块3垂直于浮标1位于其下部;所述浮标1浮动于水面,质量块3悬垂于水中,光纤解调系统4用于铠装扰动监测光缆2中信号解调。结构简单,通过铠装扰动监测光缆2与浮标1和质量块3连接,信号传输光缆5与铠装扰动监测光缆2和光纤解调系统4连接,连接索6与岩土体锚固串联多个浮标1,浮标1浮动于潜在滑坡的水域内,质量块3悬垂于水中,光纤解调系统4用于铠装扰动监测光缆2中信号解调,在涌浪发生时,通过光纤解调系统4将监测信号阈值与监测报警阈值比对,对涌浪灾害进行在线实时监测和预警,操作间方便。
优选的方案中,所述浮标1为圆锥台结构,截面较小的锥顶朝向质量块3,铠装扰动监测光缆2与圆锥台的中心连接。结构简单,使用时,浮标1浮于水面上,与浮标1连接的质量块3悬垂于水中起到稳定作用,铠装扰动监测光缆2与圆锥台结构的浮标1连接,在水流冲击时阻力小,稳定性好。
优选的方案中,所述质量块3为一端设置锥尖的圆柱体,铠装扰动监测光缆2与锥尖连接。结构简单,使用时,质量块3为圆柱体锥尖结构,锥尖与铠装扰动监测光缆2连接,悬垂于水中稳定性好。
优选的方案中,所述浮标1的数量为多个,由连接索6串联,位于连接索6两端设置有锚件。结构简单,使用时,连接索6两端的锚件与岩石土体锚固,位于连接索6上串联的多个浮标1浮于潜在滑坡水域内。
在优选的方案中,多个所述的浮标1连接的铠装扰动监测光缆2与信号传输光缆5连接。结构简单,使用时,采用多个与信号传输光缆5连接的铠装扰动监测光缆2监测潜在水域的涌浪信号,其覆盖面积大,测得数据误差小。
优选的方案中,所述铠装扰动监测光缆2在水平方向受到水流荷载q的作用,在竖直方向受到涌浪监测装置拉力T 1、锚件的拉力T 2及自身的重力G,水流对光缆作用力q的大小为,
Figure PCTCN2021142248-appb-000005
其中,T 1、T 2和G为平衡力,不会对铠装扰动监测光缆2产生扰动,式中,C d为曳力系数;ρ为水流密度;v为水流流速;A为水流流过铠装扰动监测光缆2横截面的面积。
优选的方案中,所述铠装扰动监测光缆2受涌浪扰动信号通过Ф-OTDR光缆光强信号解调仪进行解调,通过向铠装扰动监测光缆2中注入高相干光源,并探测后向瑞利散射光的光强变化,对扰动事件进行监测。
优选的方案中,所述铠装扰动监测光缆2的扰动信号通过设定解调仪的报警阈值,实现对扰动发生的位置及时间的在线实时监测,
Figure PCTCN2021142248-appb-000006
式中,I为解 调仪探测到的光强;A为散射光振幅;λ为光波波长;n f为光纤折射率;c为光纤中光速;T P为光脉冲宽度。
在优选的方案中,如上所述的基于分布式光纤传感技术的涌浪监测装置的监测方法,其特征是,它包括如下步骤:
S1,安装,将连接索6两端的锚件与岩土体锚固,位于连接索6上串联的多个浮标1位于潜在滑坡的水域内浮于水面上,质量块3悬垂于水中;
S2,连接,信号传输光缆5与多个铠装扰动监测光缆2连接后与Ф-OTDR光缆光强信号解调仪进行连接;
S3,设置,测试确定合理的监测报警阈值,使Ф-OTDR光缆光强信号解调仪收到的信号在该阈值之下时不报警;
S4,检测,当收到的信号幅值高于设定的报警阈值时,Ф-OTDR光缆光强信号解调仪发出预警信号。该方法操作简单方便,具有对涌浪灾害进行在线实时监测和预警。
如上所述的基于分布式光纤传感技术的涌浪监测装置及方法,安装使用时,铠装扰动监测光缆2与浮标1和质量块3连接,信号传输光缆5与铠装扰动监测光缆2和光纤解调系统4连接,连接索6与岩土体锚固串联多个浮标1,浮标1浮动于潜在滑坡的水域内,质量块3悬垂于水中,光纤解调系统4用于铠装扰动监测光缆2中信号解调,在涌浪发生时,光纤解调系统4将监测信号阈值与监测报警阈值比对,对涌浪灾害进行在线实时监测和预警,操作方便。
使用时,浮标1浮于水面上,与浮标1连接的质量块3悬垂于水中起到稳定作用,铠装扰动监测光缆2与圆锥台结构的浮标1连接,在水流冲击时阻力小,稳定性好。
使用时,质量块3为圆柱体锥尖结构,锥尖与铠装扰动监测光缆2连接,悬垂于水中稳定性好。
使用时,连接索6两端的锚件与岩石土体锚固,位于连接索6上串联的多个浮标1浮于潜在滑坡水域内。
使用时,采用多个与信号传输光缆5连接的铠装扰动监测光缆2监测潜在水域的涌浪信号,其覆盖面积大,测得数据误差小。
上述的实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本申请中的实施例及实施例中的特征在不冲突的情况下,可以相互任意组合。本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围。即在此范围内的等同替换改进,也在本发明的保护范围之内。

Claims (9)

  1. 一种基于分布式光纤传感技术的涌浪监测装置,其特征是:它包括浮标(1)、铠装扰动监测光缆(2)、质量块(3)、光纤解调系统(4)和信号传输光缆(5);所述铠装扰动监测光缆(2)的两端分别与浮标(1)和质量块(3)连接,信号传输光缆(5)与铠装扰动监测光缆(2)和光纤解调系统(4)连接,质量块(3)垂直于浮标(1)位于其下部;所述浮标(1)浮动于水面,质量块(3)悬垂于水中,光纤解调系统(4)用于铠装扰动监测光缆(2)中信号解调。
  2. 根据权利要求1所述的基于分布式光纤传感技术的涌浪监测装置,其特征是:所述浮标(1)为圆锥台结构,截面较小的锥顶朝向质量块(3),铠装扰动监测光缆(2)与圆锥台的中心连接。
  3. 根据权利要求1所述的基于分布式光纤传感技术的涌浪监测装置,其特征是:所述质量块(3)为一端设置锥尖的圆柱体,铠装扰动监测光缆(2)与锥尖连接。
  4. 根据权利要求1所述的基于分布式光纤传感技术的涌浪监测装置,其特征是:所述浮标(1)的数量为多个,由连接索(6)串联,位于连接索(6)两端设置有锚件。
  5. 根据权利要求4所述的基于分布式光纤传感技术的涌浪监测装置,其特征是:多个所述的浮标(1)连接的铠装扰动监测光缆(2)与信号传输光缆(5)连接。
  6. 根据权利要求1所述的基于分布式光纤传感技术的涌浪监测装置,其特征是:所述铠装扰动监测光缆(2)在水平方向受到水流荷载q的作用,在竖直方向受到涌浪监测装置拉力T 1、锚件的拉力T 2及自身的重力G,水流对光缆作用力q的大小为
    Figure PCTCN2021142248-appb-100001
    其中,T 1、T 2和G为平衡力,不会对铠装扰动监测光缆(2)产生扰动,式中,C d为曳力系数;ρ为水流密度;v为水流流速;A为水流流过铠装扰动监测光缆(2)横截面的面积。
  7. 根据权利要求1所述的基于分布式光纤传感技术的涌浪监测装置,其特征是:所述铠装扰动监测光缆(2)受涌浪扰动信号通过Ф-OTDR光缆光强信号解调仪进行解调,通过向铠装扰动监测光缆(2)中注入高相干光源,并探测后向瑞利散射光的光强变化,对扰动事件进行监测。
  8. 根据权利要求7所述的基于分布式光纤传感技术的涌浪监测装置,其特征是:所述铠装扰动监测光缆(2)的扰动信号通过设定解调仪的报警阈值,实现对扰动发生的位置及时间的在线实时监测,
    Figure PCTCN2021142248-appb-100002
    式中,I为解调仪探测到的光强;A为散射光振幅;λ为光波波长;n f为光纤折射率;c为光纤中光速;T P为光脉冲宽度。
  9. 根据权利要求1~8任一项所述的基于分布式光纤传感技术的涌浪监测装置的监测方法,其特征是,它包括如下步骤:
    S1,安装,将连接索(6)两端的锚件与岩土体锚固,位于连接索(6)上串联的多个浮标(1)位于潜在滑坡的水域内浮于水面上,质量块(3)悬垂于水中;
    S2,连接,信号传输光缆(5)与多个铠装扰动监测光缆(2)连接后与Ф-OTDR光缆光强信号解调仪进行连接;
    S3,设置,测试确定合理的监测报警阈值,使Ф-OTDR光缆光强信号解调仪收到的信号在该阈值之下时不报警;
    S4,检测,当收到的信号幅值高于设定的报警阈值时,Ф-OTDR光缆光强信号解调仪发 出预警信号。
PCT/CN2021/142248 2021-01-27 2021-12-29 基于分布式光纤传感技术的涌浪监测装置及方法 WO2022161083A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110111724.3A CN112785815B (zh) 2021-01-27 2021-01-27 基于分布式光纤传感技术的涌浪监测装置及方法
CN202120230657.2 2021-01-27
CN202120230657.2U CN214410234U (zh) 2021-01-27 2021-01-27 基于分布式光纤传感技术的涌浪监测装置
CN202110111724.3 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022161083A1 true WO2022161083A1 (zh) 2022-08-04

Family

ID=82653009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142248 WO2022161083A1 (zh) 2021-01-27 2021-12-29 基于分布式光纤传感技术的涌浪监测装置及方法

Country Status (1)

Country Link
WO (1) WO2022161083A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130483A (ja) * 2011-12-21 2013-07-04 Fujitsu Ltd 測定装置及び測定方法
CN105300554A (zh) * 2015-09-14 2016-02-03 中国人民解放军国防科学技术大学 基于分布式光纤传感的多功能海洋环境监测装置和方法
CN107449515A (zh) * 2017-09-12 2017-12-08 中国船舶重工集团公司第七〇九研究所 一种船舶自载尾流温度场测量装置
CN109061720A (zh) * 2018-09-12 2018-12-21 国家海洋局第海洋研究所 一种基于海底物联网的海底地震监测装置及系统
CN111983563A (zh) * 2020-08-30 2020-11-24 山东省科学院海洋仪器仪表研究所 基于分布式光纤声波传感的远距离超前反潜预警阵列及系统
CN112785815A (zh) * 2021-01-27 2021-05-11 哈尔滨工业大学 基于分布式光纤传感技术的涌浪监测装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130483A (ja) * 2011-12-21 2013-07-04 Fujitsu Ltd 測定装置及び測定方法
CN105300554A (zh) * 2015-09-14 2016-02-03 中国人民解放军国防科学技术大学 基于分布式光纤传感的多功能海洋环境监测装置和方法
CN107449515A (zh) * 2017-09-12 2017-12-08 中国船舶重工集团公司第七〇九研究所 一种船舶自载尾流温度场测量装置
CN109061720A (zh) * 2018-09-12 2018-12-21 国家海洋局第海洋研究所 一种基于海底物联网的海底地震监测装置及系统
CN111983563A (zh) * 2020-08-30 2020-11-24 山东省科学院海洋仪器仪表研究所 基于分布式光纤声波传感的远距离超前反潜预警阵列及系统
CN112785815A (zh) * 2021-01-27 2021-05-11 哈尔滨工业大学 基于分布式光纤传感技术的涌浪监测装置及方法

Similar Documents

Publication Publication Date Title
JP5148589B2 (ja) 振動測定により橋梁構造の安全性を評価する方法
CN107460898B (zh) 一种沉入式桥梁桩基冲刷实时监测系统及其监测方法
CN105442437B (zh) 一种工作性能参数可监测和识别的隔震橡胶支座
CN207244680U (zh) 一种沉入式桥梁桩基冲刷实时监测系统
TW200819594A (en) Monitoring device for monitoring depth of scour at riverbed of bridge abutments, r emote monitoring system and a bridge having automatic monitoring features.
CN206056655U (zh) 一种地震诱发土石坝滑坡的联动监测预警系统
CN112785815B (zh) 基于分布式光纤传感技术的涌浪监测装置及方法
CN214410234U (zh) 基于分布式光纤传感技术的涌浪监测装置
WO2022161083A1 (zh) 基于分布式光纤传感技术的涌浪监测装置及方法
CN113763674A (zh) 一种远程绝对应力实时监测与预警系统及方法
CN104280017A (zh) 亚潮带区域近底泥沙及全水深流速流向观测方法及其装置
CN109898568A (zh) 一种危桥爆破拆除对周围建筑桩基下拉安全性预测方法
CN109975811A (zh) 一种适合单向水流的高承台桥墩局部冲刷在线监测平台及方法
CN216747787U (zh) 一种泥石流预警装置
TWI230218B (en) Water monitoring device and monitoring method
Zhu et al. Seepage and settlement monitoring for earth embankment dams using fully distributed sensing along optical fibers
CN206740109U (zh) 投掷式泥沙淤积深度采集装置
Nishihata et al. Topography change due to the Dec 2004 Indian Ocean Tsunami—Field and numerical study at Kirinda port, Sri Lanka
CN207456521U (zh) 基于压力传感器的接触式泥石流监测装置
Troch et al. Full scale measurements of wave attenuation inside a rubble mound breakwater
TW574458B (en) A cantilever monitor device and method using it
Pan et al. Influence factors analysis of seismic liquefaction risk for tailings dam
Illanes et al. Geotechnical instrumentation in tailings sand dams
CN117889791B (zh) 地下工程断层滑移监测系统与控制方法
D’Alessandro et al. Wave storm induced dune erosion and overwash in large-scale flume experiments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922671

Country of ref document: EP

Kind code of ref document: A1