WO2020051915A1 - 一种放疗设备及其控制方法和装置 - Google Patents

一种放疗设备及其控制方法和装置 Download PDF

Info

Publication number
WO2020051915A1
WO2020051915A1 PCT/CN2018/105843 CN2018105843W WO2020051915A1 WO 2020051915 A1 WO2020051915 A1 WO 2020051915A1 CN 2018105843 W CN2018105843 W CN 2018105843W WO 2020051915 A1 WO2020051915 A1 WO 2020051915A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
energy
rays
sub
target
Prior art date
Application number
PCT/CN2018/105843
Other languages
English (en)
French (fr)
Inventor
昝鹏
闫浩
Original Assignee
西安大医集团有限公司
深圳市奥沃医学新技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团有限公司, 深圳市奥沃医学新技术发展有限公司 filed Critical 西安大医集团有限公司
Priority to CN201880006254.0A priority Critical patent/CN111194183B/zh
Priority to PCT/CN2018/105843 priority patent/WO2020051915A1/zh
Publication of WO2020051915A1 publication Critical patent/WO2020051915A1/zh
Priority to US17/152,421 priority patent/US20210162237A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1089Electrons

Definitions

  • the invention relates to the field of radiation therapy, in particular to a radiotherapy device and a control method and device thereof.
  • Image-Guided Radiation Therapy technology is to acquire images during and / or during fractionated treatment, and use these images to guide the treatment and / or subsequent fractional treatment.
  • an image of the patient is obtained through the imaging device, and this image is compared with a reference image in the treatment planning system (such as a digitally reconstructed radiographic image obtained by computer tomography (CT)).
  • Digitally Reconstrured Radiography DRR) to perform fusion registration to obtain the positioning error, and then adjust the position of the patient's target area according to the positioning error to achieve accurate treatment of the patient's target area.
  • Radiotherapy equipment in current IGRT systems can only generate single energy level X-rays for imaging.
  • high-energy (100KV-6MV) X-rays it has a strong penetrating power, can form clearer images for denser targets such as bones, and has a poor imaging effect for targets with lower density such as soft tissues.
  • low-energy-level (50-100KV) X-rays its penetrating power is weak, and it can form a clearer image for less dense targets such as soft tissue.
  • the current radiotherapy equipment cannot meet the different needs of different body tissues of patients for X-ray imaging during the radiotherapy process, which easily leads to the inaccurate positioning of the patient's to-be-treated part during the radiotherapy process, which affects the radiotherapy. Precision and effect.
  • Embodiments of the present invention provide a radiotherapy device and a control method and device thereof, which are used to satisfy different requirements of different body tissues of patients for X-ray imaging during radiotherapy, and can better treat patients. Accurate positioning of the treatment site improves the accuracy and effect of radiotherapy.
  • a radiotherapy apparatus which includes: a rotating frame and a multi-energy imaging device rotatable about a central axis; the multi-energy imaging device includes an imaging source and an imager; the imaging source and the imager are disposed opposite to the rotating frame On; the imaging source is used to generate X-rays of at least two energy levels and emit X-rays of at least one of the two energy levels through the patient's site to be treated; the imager is used to receive the X-rays of at least one energy level of the site to be treated and generating X-ray images of at least one energy level of the site to be treated based on the X-rays of the at least one energy level.
  • a method for controlling a radiotherapy apparatus including: controlling the imaging source to acquire a target X-ray image in combination with the imager; registering the target X-ray image and a pre-stored reference image ; Obtaining the positional deviation of the site to be treated according to the registration result of the target X-ray image and the reference image.
  • a control device for a radiotherapy apparatus including: a control module, a processing module, a registration module, and a storage module; a control module configured to control an imaging source and an imager to acquire a target X-ray image ; A registration module for registering the target X-ray image acquired by the control module and a reference image pre-stored in the storage module; a processing module for obtaining a target X-ray image and a reference image based on the registration result of the registration module Deviation in the location of the treatment site.
  • a control device for a radiotherapy apparatus including: a memory, a processor, a bus, and a communication interface; the memory is configured to store a computer to execute instructions, and the processor and the memory are connected through the bus; When the control device of the computer is running, the processor executes computer execution instructions stored in the memory, so that the control device of the radiotherapy device executes the method for controlling a radiotherapy device provided in the second aspect.
  • the radiotherapy equipment and the control method and device thereof provided by the embodiments of the present invention because the radiotherapy equipment includes: a rotating frame and a multi-energy imaging device that can be rotated about a central axis; the multi-energy imaging device includes an imaging source and an imager; the imaging source and The imager is directly arranged on the rotating frame; the imaging source is used to generate X-rays of at least two energy levels, and emit X-rays of at least one energy level of the X-rays of at least two energy levels to pass through the patient.
  • the treatment site; the imager is configured to receive X-rays of at least one energy level passing through the site to be treated and generate X-ray images of at least one energy level of the site to be treated according to the X-rays of the at least one energy level. Therefore, when positioning the patient's area to be treated, the imaging source and the imager can be controlled to generate the target X-ray image; the target X-ray image and the pre-stored reference image are registered; finally, the target X-ray image and The registration result of the reference image obtains the position deviation of the site to be treated.
  • the position of the current part to be treated relative to the treatment bed can be determined according to the position deviation, thereby determining whether to adjust the treatment bed to change the position of the patient in the future, so that the radiotherapy can be performed smoothly.
  • the imaging source used can generate X-rays of various energy levels, so that X-ray images of different energy levels can be generated, which can satisfy X-rays of any body tissue of a patient during radiotherapy.
  • Imaging requirements so that during the radiotherapy process, it is possible to form X-ray images of any part to be treated that meets the positioning needs (such as positioning before radiotherapy and fine-tuning and updating of the treatment plan during radiotherapy), improving the efficiency and accuracy of radiotherapy degree.
  • FIG. 1 is a schematic structural diagram of a radiotherapy device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an imaging source according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another imaging source according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another radiotherapy device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of still another radiotherapy apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for controlling a radiotherapy device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a control device for a radiotherapy apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another control device for a radiotherapy apparatus according to an embodiment of the present invention.
  • the words “first” and “second” are used to distinguish between the same or similar items having substantially the same functions and functions.
  • the skilled person can understand that the words “first”, “second” and so on are not limiting the quantity and execution order.
  • Radiotherapy equipment uses a single X-ray for imaging, which can only generate X-ray images of corresponding energy levels. It cannot meet the different needs of patients with different body tissues during radiotherapy for X-ray imaging, resulting in the use of X-ray images during radiotherapy. The positioning performed is not accurate enough, which affects the effect and accuracy of radiotherapy.
  • an embodiment of the present invention provides a radiotherapy apparatus including: a rotating frame 11 and a multi-energy imaging device 12 that can be rotated around a central axis; the multi-energy imaging device includes an imaging source 13 and an imager 14;
  • the imaging source 13 and the imager 14 are oppositely disposed on the rotating frame 11; as shown in FIG. 1, in actual radiotherapy equipment, the imaging source 13 and the imager 14 provided on the rotating frame 11 need to be directly opposite to each other. So that the X-rays emitted by the imaging source 13 can be received by the imager 14;
  • the imaging source 13 is configured to generate X-rays of at least two energy levels, and emit X-rays of at least one energy level of the X-rays of at least two energy levels to pass through the site to be treated of the patient;
  • the site to be treated may be located at the central axis of the rotating frame; for example, at least two energy levels of X-rays include at least one kilovolt level X-ray and one megavolt level X-ray;
  • the imager 14 is configured to receive X-rays of at least one energy level passing through the site to be treated and generate X-ray images of at least one energy level of the site to be treated according to the X-rays of the at least one energy level.
  • the rotating frame may be a ring frame or a C-shaped frame.
  • the radiotherapy equipment provided in the foregoing embodiment may control an imaging source and an imager to generate a target X-ray image when the location of a patient to be treated is required; and then register the target X-ray image and a pre-stored reference image; Finally, the position deviation of the site to be treated is obtained according to the registration result of the target X-ray image and the reference image. After obtaining the position deviation of the part to be treated, the position of the current part to be treated relative to the treatment bed can be determined according to the position deviation, thereby determining whether to adjust the treatment bed to change the position of the patient in the future, so that the radiotherapy can be performed smoothly.
  • the imaging source used can generate X-rays of various energy levels, so that X-ray images of different energy levels can be generated, which can satisfy X-rays of any body tissue of a patient during radiotherapy. Imaging requirements, so that during the radiotherapy process, it is possible to form X-ray images of any part to be treated that meets the positioning needs (such as positioning before radiotherapy and fine-tuning and updating of the treatment plan during radiotherapy), improving the efficiency and accuracy of radiotherapy degree.
  • the embodiments of the present invention provide the following four specific embodiments for description.
  • Embodiment 1 As shown in FIG. 2, an embodiment of the present invention provides an imaging source 15 in a radiotherapy apparatus.
  • the remaining components in the radiotherapy apparatus can be referred to FIG. 1 and corresponding expressions.
  • the imaging source 15 is a switching target imaging source.
  • the switching target type imaging source is an imaging source that generates X-rays of different energy levels by switching the electron generation target.
  • the radiation generation target is used to generate X-rays under the bombardment of electrons, including: electron emission power source 151, electron emission device 152, rays Generation target 153, radiation generation target switching device 154, and electron acceleration power source 155;
  • X-rays of at least two energy levels include at least: first energy level X-ray and second energy level X-ray;
  • radiation generation target 153 includes at least two sub-rays
  • the target is generated, and at least two sub-ray generation targets 153 include at least: a first sub-ray generation target 1531 and a second sub-ray generation target 1532;
  • an electron emission power source 151 is used to power the electron emission device 152 to cause the electron emission device 152 to emit electrons to A predetermined position;
  • the ray generation target switching device 154 is configured to switch the positions of the first sub-ray generation target 1531 and the second sub-ray generation target 1532 to switch between Sub-ray generation target position;
  • the electron acceleration power source 155 is used to generate an acceleration electric field between the electron emission device 152 and a predetermined position to accelerate electrons emitted by the electron emission device 152;
  • the first sub-ray generation target 1531 When the first sub-ray generation target 1531 is located at a predetermined position, the first sub-ray generation target 1531 is used to receive the electron emission device 152 to emit electrons and generate a first energy level X-ray; when the second sub-ray generation target 1532 is located at a predetermined position The second sub-ray generation target 1532 is used to receive electrons emitted by the electron emission device 152 and generate a second energy level X-ray.
  • the first sub-ray generation target and the second sub-ray generation target in the first embodiment may be composed of tungsten, molybdenum, copper, carbon, or an alloy, and the specific components of the two may be different; it should be noted that,
  • the imaging source provided in the foregoing embodiment may have multiple sub-ray generating targets according to actual conditions, so as to generate X-rays with more energy levels.
  • the first energy level X-ray in the first embodiment is a low energy level (50-100KV) X-ray
  • the second energy level X-ray is a high energy level (100KV-6MV) X-ray
  • the composition and quantity of the neutron-ray generating target in the first embodiment will determine the energy level and number of types of X-rays that the imaging source can provide.
  • the electron emission power source in the first embodiment is a low voltage power source (5-10V), and the electron emission device may be composed of any substance (such as tungsten wire) that emits electrons when it generates heat.
  • the ray generating target switching device in the first embodiment may be a drawer type, and the first sub-ray generating target and the second sub-ray generating target are switched by pushing and pulling, or the rotary type is used to rotate the first
  • the switching of the first sub-ray generating target and the second sub-ray generating target may be automatic or manual.
  • the imaging source provided in the first embodiment is capable of generating a plurality of X-rays of different energy levels because there are a plurality of mutually-switchable sub-ray generating targets therein, which satisfies the needs of radiotherapy equipment that requires X-rays of various energy levels.
  • Embodiment 2 provides an imaging source 16 in a radiotherapy apparatus.
  • the remaining components in the radiotherapy apparatus can be referred to FIG. 1 and corresponding expressions.
  • the imaging source 16 is a switched voltage imaging source.
  • the switched voltage imaging source is an imaging source that generates X-rays of different energy levels by switching the acceleration voltage of the electrons to be accelerated.
  • the electrons to be accelerated are used to bombard the radiation-generating target after the acceleration voltage is accelerated to cause the radiation-generating target to generate X-rays.
  • the voltage provided by the electron acceleration power supply 164 includes at least two acceleration voltages, and at least two acceleration voltages include at least: The first acceleration voltage and the second acceleration voltage; the X-rays of at least two energy levels include at least: the first energy level X-rays and the second energy level X-rays; the electron emission power source 161 is used to supply power to the electron emission device 162 to make the electrons
  • the emission device 162 emits electrons to the radiation generating target 163;
  • the electron acceleration power source 164 is used to emit electrons using the acceleration voltage provided by itself Generated between opposed 162 and 163-ray generation target acceleration electric field to accelerate electrons emitted from the electron-emitting devices 162; 165 voltage switching means for accelerating an electron acceleration voltage switching power source 164 is provided.
  • the radiation generation target 163 is used to receive the electron emission device 162 to emit electrons and generate a first energy level X-ray;
  • the electron acceleration power source 164 uses the second acceleration voltage to generate an accelerated electric field between the electron emitting device 162 and the radiation generating target 163, the radiation generating target 163 is used to receive the electrons emitted from the electron emitting device 162 and generate a second energy level X-ray.
  • the ray generation target in the second embodiment may be only one, or may be a plurality of sub-ray generation targets according to the first embodiment.
  • a ray generation target switching device is required.
  • the imaging source can generate X-rays of m * n energy levels, where m is the number of different voltages that the electron acceleration power can provide, and n is the number of sub-ray generation targets. Therefore, this embodiment is only an exemplary expression, and no specific limitation is imposed on devices other than the electronic acceleration power supply.
  • the electron emission power source in the second embodiment is a low voltage power source (5-10V), and the electron emission device may be composed of any substance (such as tungsten wire) that emits electrons when it generates heat.
  • the voltage switching device and the electronic acceleration power supply in the second embodiment may be a variable voltage source (the switching method may be automatic switching or manual switching), and the voltage switching device is not specifically limited here.
  • the first energy level X-ray in the second embodiment is a low energy level (50-100KV) X-ray
  • the second energy level X-ray is a high energy level (100KV-6MV) X-ray
  • the magnitude and number of voltages that can be provided by the electronic acceleration power source in Embodiment 2 will determine the energy level and number of types of X-rays that the imaging source can provide.
  • the imaging source provided in the second embodiment provides different acceleration voltages through an electronic voltage source to change the electron velocity of the target produced by the bombardment ray, so that the imaging source can generate X-rays of different energy levels to meet the needs of radiotherapy equipment requiring multiple energy-level X-rays .
  • the radiation generating target switching device and / or voltage switching device may be connected to the rotating rack of the radiotherapy equipment (including wired connection and wireless connection). ), So that when the rotating frame of the radiotherapy equipment shown in FIG. 1 is rotated by a preset angle, the X-rays generated by the imaging source are changed; the X-rays of at least two energy levels include at least: the first energy-level X-rays and X-ray of the second energy level.
  • the preset angle includes at least two preset sub-angles, and the at least two preset sub-angles include at least: a first preset sub-angle and a second preset sub-angle; for example, the preset angle is 180 degrees, where the first One preset angle is 0 degrees, and the second preset angle is 180 degrees.
  • the specific settings can be determined according to the actual situation, and there is no specific limitation here.
  • the imaging source When a preset sub-angle is reached, the imaging source generates X-rays of a first energy level; when the rotating frame rotates a second preset sub-angle, the imaging source generates X-rays of a second energy level.
  • the imaging source when the rotating frame is rotated to 0 degrees, the imaging source generates first energy level X-rays, and when the rotating frame is rotated 180 degrees, that is, when the rotating frame is rotated to 180 degrees, the imaging source generates second energy level X-rays, The rotating frame rotates 180 degrees again, that is, when the rotating frame rotates to 0 degrees, the imaging source generates first energy level X-rays, and so on.
  • the first preset sub-angle and the second preset sub-angle may be the same as each other, or they may not be the same, which is not specifically limited here.
  • an embodiment of the present invention provides a radiotherapy apparatus, including: a rotating frame 41 rotatable about a central axis, a multi-energy imaging device 42 and an imaging source control device 45; the multi-energy imaging device includes The imaging source 43 and the imager 44; the imaging source 43 and the imager 44 are disposed opposite to each other on the rotating frame 41; as shown in FIG. 4, in the actual radiotherapy equipment, the imaging source 43 provided on the rotating frame 41 As long as the imager 44 and the imager 44 are directly aligned, the X-rays emitted by the imaging source 43 can be received by the imager 44.
  • the imaging source 43 includes at least two sub-imaging sources, and at least two sub-imaging sources include at least: the first sub-imaging source. 431 and a second sub-imaging source 432; the imaging source 43 is used to generate X-rays of at least two energy levels, and the X-rays of at least two energy levels include at least: a first energy level X-ray and a second energy level X-ray; One sub-imaging source 431 is used to generate a first energy-level X-ray, and the second sub-imaging source 432 is used to generate a second energy-level X-ray; the imaging source control device 45 is used to control the switching emission through the patient's to-be-treated site.
  • X-ray sub-imaging source imaging 44 for receiving the target site to be treated through the target energy level X-rays and X-ray energy level in accordance with the target site to be treated to generate energy level X-ray image.
  • the imaging source control device controls the switching of the sub-imaging sources, it does not limit the number of sub-imaging sources it controls.
  • the imaging source controls The device can switch one sub-imaging source at a time.
  • the imaging source control device can switch one or more sub-imaging sources at a time, depending on the actual situation.
  • the first energy level X-ray in the third embodiment is a low energy level (50-100KV) X-ray
  • the second energy level X-ray is a high energy level (100KV-6MV) X-ray
  • the number and type of neutron imaging sources in the third embodiment will determine the energy level and number of types of X-rays that the imaging source can provide.
  • the imaging source control device in the third embodiment may be a mechanical control device or a software control device; when it is a mechanical control device, it may be an additional device or it may reuse a rotating frame, and the rotating frame rotates a certain amount.
  • the angle can switch the sub imaging source.
  • each sub-imaging source in the third embodiment can be referred to the expressions in the first and second embodiments, and can be freely combined, which is not repeated here. It only needs to ensure that the two sub-imaging sources can be different. Energy level X-rays are sufficient.
  • the radiotherapy equipment provided in Embodiment 3 is provided with different sub-imaging sources that can generate X-rays of different energy levels, so that the radiotherapy equipment can use X-rays of different energy levels to illuminate the patient's to-be-treated site at different energy levels during work.
  • X-ray images can be used to obtain position deviations after obtaining X-ray images and stored reference images, and then the patient's position or treatment plan can be adjusted according to the position deviations to improve the efficiency and effectiveness of radiotherapy.
  • an embodiment of the present invention provides a radiotherapy apparatus, which includes a rotating frame 51 capable of rotating about a central axis and a multi-energy Imaging device 52; multi-energy imaging device includes imaging source 53 and imager 54; imaging source 53 includes at least two sub-imaging sources, at least two sub-imaging sources include at least: first sub-imaging source 531 and second sub-imaging source 532; imaging The imager 54 includes at least two sub-imagers. The at least two sub-imagers include at least: a first sub-imager 541 and a second sub-imager 542.
  • the imaging source 53 is used to generate X-rays of at least two energy levels, and at least two energies.
  • Level X-rays include at least: first energy level X-rays and second energy level X-rays, a first sub-imaging source 531 is used to generate a first energy level X-ray, and a second sub-imaging source 532 is used to generate a second energy level X-rays; the first sub-imaging source 531 and the first sub-imager 541 are oppositely disposed on the rotating frame 51, and the second sub-imaging source 532 and the second sub-imager 542 are oppositely disposed on the rotating frame 51;
  • a sub imaging source 531 is rotating The connection between the installation position of the frame 51 and the installation position of the first sub-imager 541 on the rotating frame 51 and the installation position of the second sub-imaging source 532 on the rotation frame 51 and the second sub-imager 542 on the rotating machine
  • the connection lines at the setting positions on the frame 51 intersect; for example,
  • this imaging method is orthogonal dual-plate imaging.
  • the first sub-imaging source 531 is used to generate first energy level X-rays. And emits a first energy level X-ray and irradiates the first sub-imager 541 after passing through the site to be treated, so that the first sub-imager 541 generates a first energy level X of the site to be treated according to the first energy level X-ray X-ray image;
  • the second sub-imaging source 532 is used to generate second energy-level X-rays, and emit the second energy-level X-rays and irradiate the second sub-imager 542 after passing through the site to be treated to make the second sub-image
  • the generator 542 generates a second energy level X-ray image of the site to be treated according to the second energy level X-rays.
  • the settings of the imaging source and the rotating frame in the fourth embodiment can refer to the settings in the first, second, and third embodiments.
  • the four embodiments can be freely combined, and are not described here. Specific restrictions.
  • the first energy level X-ray in the fourth embodiment is a low energy level (50-100KV) X-ray
  • the second energy level X-ray is a high energy level (100KV-6MV) X-ray
  • the number and type of neutron imaging sources in the fourth embodiment will determine the energy level and number of types of X-rays that the imaging source can provide.
  • the radiotherapy equipment provided in the fourth embodiment by setting a plurality of pairs of sub imaging sources and self-imagers on the rack, can make the radiotherapy equipment simultaneously generate multiple energy-level X-rays when X-ray imaging is needed.
  • the X-ray image has higher efficiency in acquiring X-ray images of different energy levels, and thus ultimately improves the efficiency of radiotherapy. .
  • the imager in each of the foregoing embodiments includes at least: a first sub-imager and a second sub-imager;
  • the X-rays of at least two energy levels include at least: the first energy-level X-rays and the second energy-level X-rays;
  • the first sub-imager is configured to receive first energy-level X-rays passing through the site to be treated and generate a first energy-level X-ray image of the site to be treated according to the first energy-level X-rays;
  • the second sub-imager is used to receive A second energy level X-ray that passes through the site to be treated and generates a second energy level X-ray image of the site to be treated according to the second energy level X-ray.
  • the first sub-imager receives the first energy-level X-rays and deposits energy to release visible light, and then converts the optical signal into an electrical signal.
  • the radiotherapy equipment includes: a rotating frame and a multi-energy imaging device rotatable about a central axis; the multi-energy imaging device includes an imaging source and an imager; the imaging source and the imaging The imaging device is directly opposite to the rotating frame; the imaging source is used to generate X-rays of at least two energy levels and emit X-rays of at least one energy level of the at least two energy levels to pass through the patient to be treated Site; the imager is configured to receive X-rays of at least one energy level passing through the site to be treated and generate X-ray images of at least one energy level of the site to be treated according to the X-rays of the at least one energy level.
  • the imaging source and the imager can be controlled to generate the target X-ray image; the target X-ray image and the pre-stored reference image are registered; finally, the target X-ray image and The registration result of the reference image obtains the position deviation of the site to be treated.
  • the position of the current part to be treated relative to the treatment bed can be determined according to the position deviation, thereby determining whether to adjust the treatment bed to change the position of the patient in the future, so that the radiotherapy can be performed smoothly.
  • the imaging source used can generate X-rays of various energy levels, so that X-ray images of different energy levels can be generated, which can satisfy X-rays of any body tissue of a patient during radiotherapy. Imaging requirements, so that during the radiotherapy process, it is possible to form X-ray images of any part to be treated that meets the positioning needs (such as positioning before radiotherapy and fine-tuning and updating of the treatment plan during radiotherapy), improving the efficiency and accuracy of radiotherapy degree.
  • an embodiment of the present invention further provides a method for controlling a radiotherapy apparatus, including:
  • the target X-ray image may be at least one image of at least one energy level X-ray image of the site to be treated.
  • the required target X-ray image is selected from the X-ray image of the energy level; the energy level of the X-rays to be emitted by the emission source may be determined as the target energy level according to the information of the site to be treated, and then the imaging source is controlled to emit the target energy level.
  • X-rays pass through the site to be treated so that the imager generates a target X-ray image.
  • step 601 when controlling the imaging source to emit at least a preset X-ray (the preset X-ray is at least two energy levels of X-rays or a target energy level of X-rays) to pass through the patient's site to be treated includes: controlling The rotating frame rotates at least two different imaging angles, so that there are at least two X-rays corresponding to different imaging angles in the X-ray image generated by the imager according to the X-rays of each energy level (or target energy level). Ray image.
  • the preset X-ray is at least two energy levels of X-rays or a target energy level of X-rays
  • the reference image is generally a DRR (Digitally Reconstructured Radiograph) image generated from a CT (Computed Tomography) image; and when the reference When the image (can be a DRR image, CT image, or other image) is a three-dimensional image, in practice, an additional step of image reconstruction is performed in step 603 so that the acquired target X-ray image is reconstructed into a three-dimensional image, and the reconstructed target is then reconstructed.
  • DRR Digitally Reconstructured Radiograph
  • step 602 includes:
  • the processing mentioned here refers to the fusion and reconstruction of different target X-ray images to obtain a reconstructed target X-ray image.
  • the reconstruction process may change the dimension of the target X-ray image or may not change the target X-ray image. The number of dimensions depends on the timing.
  • the position deviation obtained by the embodiment of the present invention includes a position error; the control method further includes:
  • the treatment bed may be adjusted to adjust the patient position, or other equipment may be adjusted to achieve the purpose of adjusting the patient position.
  • the control method further includes:
  • the preset deviation range is a deviation range relative to 0, for example, [-0.1mm, + 0.1mm].
  • the deviation correction may be adjusting the patient's position, adjusting the treatment area (such as an accelerator), or updating a pre-stored treatment plan, wherein the treatment plan may include the movement of the treatment bed during the radiotherapy process and the X-ray energy level in the radiotherapy equipment Switching during treatment changes specific moments.
  • the treatment plan may include the movement of the treatment bed during the radiotherapy process and the X-ray energy level in the radiotherapy equipment Switching during treatment changes specific moments.
  • the method for controlling a radiotherapy device can control an imaging source and an imager to generate a target X-ray image when it is necessary to locate a patient's to-be-treated portion; and then combine the target X-ray image and a pre-stored reference image Perform registration; finally, obtain the position deviation of the site to be treated according to the registration results of the target X-ray image and the reference image.
  • the position of the current part to be treated relative to the treatment bed can be determined according to the position deviation, thereby determining whether to adjust the treatment bed to change the position of the patient in the future, so that the radiotherapy can be performed smoothly.
  • the imaging source used can generate X-rays of various energy levels, so that X-ray images of different energy levels can be generated, which can satisfy X-rays of any body tissue of a patient during radiotherapy. Imaging requirements, so that during the radiotherapy process, it is possible to form X-ray images of any part to be treated that meets the positioning needs (such as positioning before radiotherapy and fine-tuning and updating of the treatment plan during radiotherapy), improving the efficiency and accuracy of radiotherapy degree.
  • an embodiment of the present invention further provides a control device 01 for the radiotherapy equipment, which is connected to the radiotherapy equipment 02 (including wired) Connection and wireless connection), the control device 01 includes:
  • a control module 71 a processing module 72, a registration module 73, and a storage module 74;
  • a control module 71 configured to control the imaging source and the imager to obtain a target X-ray image
  • a registration module 73 configured to register the target X-ray image acquired by the control module 71 and a reference image pre-stored by the storage module 74;
  • the processing module 72 is configured to obtain the position deviation of the part to be treated according to the registration result of the target X-ray image and the reference image by the registration module 73.
  • control module 71 is specifically configured to control the imaging source to emit X-rays of at least two energy levels through the patient's to-be-treated site, so that the imager can pass the X-rays of at least two energy-levels that pass through the site to be treated.
  • X-ray images of at least two energy levels are generated by rays;
  • a target X-ray image is selected from the X-ray images of at least two energy levels according to the information of the site to be treated stored in the storage module 74;
  • control module 71 is further configured to: when controlling the imaging source to emit preset X-rays to pass through the patient's to-be-treated site, control the rotating frame to rotate at least two different imaging angles, so that the imager can There are at least two X-ray images corresponding to different imaging angles in the X-ray images generated by the X-rays of the energy level; the preset X-rays are X-rays of at least two energy levels or X-rays of the target energy level.
  • the processing module 72 is also used to control the radiotherapy equipment to adjust the patient's position according to the position deviation after acquiring the position deviation; when the radiotherapy equipment When used in the treatment of a patient, the positional deviation includes the positional deviation of the tumor in the site to be treated; after acquiring the positional offset, the processing module 72 is also used to determine when the positional deviation of the tumor is not equal to zero or within a preset deviation range , Performing deviation correction according to the target X-ray image; the deviation correction may be adjusting a patient's position, adjusting a treatment area (such as an accelerator), or updating a treatment plan stored in the storage module 74.
  • a treatment area such as an accelerator
  • the registration module 73 is specifically configured to: perform fusion processing on different target X-ray images in the target X-ray image acquired by the control module 71; perform processing on the processed target X-ray image and a reference image pre-stored in the storage module 74 Registration.
  • the registration module 73 is specifically configured to: use the sagittal plane of the target X-ray image acquired by the control module 71 The coronal plane and the cross-section are registered with the sagittal plane, the coronal plane, and the cross-section of the reference image stored in the storage module 74, respectively.
  • each module in the control device of the radiotherapy equipment provided by the foregoing embodiments may be expressed by referring to the method for controlling the radiotherapy equipment provided by the foregoing embodiments, and will not be repeated here.
  • an embodiment of the present invention further provides another control device for a radiotherapy apparatus, including: a memory 81, a processor 82 (82-1 and 82-2), a bus 83, and a communication interface 84; the memory 81 is used for The computer stores instructions to be executed, and the processor 82 is connected to the memory 81 through the bus 83.
  • the processor 82 executes the computer execution instructions stored in the memory 81, so that the control device of the radiotherapy equipment executes the Control method of radiotherapy equipment.
  • the processor 82 (82-1 and 82-2) may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 8.
  • the control device of the radiotherapy apparatus may include multiple processors 82, such as the processor 82-1 and the processor 82-2 shown in FIG. 8.
  • Each of these processors 82 may be a single-core processor (Single-CPU) or a multi-core processor (Multi-CPU).
  • the processor 82 herein may refer to one or more devices, circuits, and / or processing cores for processing data (eg, computer program instructions).
  • the memory 81 may be a read-only memory 81 (Read-Only Memory, ROM) or other type of static storage device that can store static information and instructions, a random access memory (Random Access Memory, RAM), or other information that can store information and instructions.
  • Type of dynamic storage device which can also be electrically erasable programmable read-only memory (Erasable, Programmable, Read-Only Memory, EEPROM), Compact Disc (Read-Only Memory, CD-ROM) or other optical disk storage, optical disc Storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store the desired program code in the form of instructions or data structures and can be implemented by Any other media that the computer accesses, but is not limited to.
  • the memory 81 may exist independently, and is connected to the processor 82 through a communication bus 83.
  • the memory 81 may also be integrated with the processor 82.
  • the memory 81 is configured to store data in the present application and computer execution instructions corresponding to a software program executing the present application.
  • the processor 82 may execute various functions of the control device of the radiotherapy apparatus by running or executing a software program stored in the memory 81 and calling data stored in the memory 81.
  • the communication interface 84 uses any device such as a transceiver to communicate with other devices or communication networks, such as a control system, a radio access network (RAN), a wireless local area network (WLAN), etc. .
  • the communication interface 84 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function.
  • the bus 83 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 83 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • the radiotherapy equipment and the control method and device thereof provided by the embodiments of the present invention, because the radiotherapy equipment includes: a rotating frame and a multi-energy imaging device rotatable about a central axis; the multi-energy imaging device includes an imaging source and an imaging device.
  • the imaging source and the imager are arranged on the rotating frame oppositely; the imaging source is used to generate X-rays of at least two energy levels and emit X-rays of at least one energy level of the X-rays of at least two energy levels; Pass the patient's site to be treated; the imager is used to receive X-rays of at least one energy level passing through the site to be treated and generate X-ray images of at least one energy level of the site to be treated according to the X-rays of at least one energy level .
  • the imaging source and the imager can be controlled to generate the target X-ray image; the target X-ray image and the pre-stored reference image are registered; finally, the target X-ray image and The registration result of the reference image obtains the position deviation of the site to be treated.
  • the position of the current part to be treated relative to the treatment bed can be determined according to the position deviation, thereby determining whether to adjust the treatment bed to change the position of the patient in the future, so that the radiotherapy can be performed smoothly.
  • the imaging source used can generate X-rays of various energy levels, so that X-ray images of different energy levels can be generated, which can satisfy X-rays of any body tissue of a patient during radiotherapy. Imaging requirements, so that during the radiotherapy process, it is possible to form X-ray images of any part to be treated that meets the positioning needs (such as positioning before radiotherapy and fine-tuning and updating of the treatment plan during radiotherapy), improving the efficiency and accuracy of radiotherapy degree.
  • An embodiment of the present invention also provides a computer program, which can be directly loaded into a memory and contains software codes.
  • the computer program can be loaded and executed by a computer to implement the foregoing method for controlling a radiotherapy device.
  • the functions described in the present invention may be implemented by hardware, software, firmware, or any combination thereof.
  • the functions may be stored on a computer-readable medium or transmitted as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种放疗设备及其控制方法和装置,可以更好的对病患的待治疗部位准确定位,提高放疗的精度和效果。该放疗设备包括:可绕中心轴旋转的旋转机架(11、41、51)和多能成像装置(12、42、52);多能成像装置(12、42、52)包括成像源(13、15、16、43、53)和成像器(14、44、54);成像源(13、15、16、43、53)和成像器(14、44、54)正对设置在旋转机架(11、41、51)上;成像源(13、15、16、43、53)用于产生至少两种能量级的X射线,并发射至少两种能量级的X射线中至少一种能量级的X射线穿过病患的待治疗部位;成像器(14、44、54)用于接收穿过待治疗部位的至少一种能量级的X射线并根据至少一种能量级的X射线生成待治疗部位的至少一种能量级的X射线图像。

Description

一种放疗设备及其控制方法和装置 技术领域
本发明涉及放射治疗领域,尤其涉及一种放疗设备及其控制方法和装置。
背景技术
在现代社会,图像引导放射治疗(Image Guided Radiation Therapy,IGRT)技术是在分次治疗摆位时和/或治疗中采集图像,利用这些图像引导此次治疗和/或后续分次治疗。在每次分次治疗过程中,通过成像装置获取摆位后患者的图像,将该图像与治疗计划系统中的参考图像(如通过计算机断层扫描(Computer Tomography,CT)获取的数字重建射线图像(Digitally Reconstrured Radiography,DRR))进行融合配准,得到摆位误差,再根据摆位误差对患者靶区位置进行调整,以实现对患者靶区的精确治疗。
目前的IGRT系统中的放射治疗设备仅能产生单一能量级X射线进行成像。对于高能量级(100KV-6MV)的X射线,其穿透能力较强,对骨骼等密度较大的目标能够形成较清晰的图像,而对于软组织等密度较小的目标,成像效果较差。相反,对于低能量级(50-100KV)的X射线,其穿透能力较弱,对于软组织等密度较小的目标能够形成较清晰的图像。所以,目前的放射治疗设备不能很好的满足在放射治疗过程中患者不同身体组织对于X射线成像的不同需求,容易导致放射治疗过程中对病患的待治疗部位的定位不准确,影响放射治疗的精度和效果。
发明内容
本发明的实施例提供一种放疗设备及其控制方法和装置,用于很好的满足在放射治疗过程中病患不同身体组织对于X射线成像的不同需求,可以更好的对病患的待治疗部位准确定位,提高放射治疗的精度和效果。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种放疗设备,包括:可绕中心轴旋转的旋转机架和多能成像装置;多能成像装置包括成像源和成像器;成像源和成像器正对设置在旋转机架上;成像源用于产生至少两种能量级的X射 线,并发射至少两种能量级的X射线中至少一种能量级的X射线穿过病患的待治疗部位;成像器用于接收穿过待治疗部位的至少一种能量级的X射线并根据至少一种能量级的X射线生成待治疗部位的至少一种能量级的X射线图像。
第二方面,提供一种如第一方面提供的放疗设备的控制方法,包括:控制所述成像源结合所述成像器获取目标X射线图像;将目标X射线图像和预存的基准图像进行配准;根据目标X射线图像和基准图像的配准结果获取待治疗部位的位置偏差。
第三方面,提供一种如第一方面提供的放疗设备的控制装置,包括:控制模块、处理模块、配准模块和存储模块;控制模块,用于控制成像源结合成像器获取目标X射线图像;配准模块,用于将控制模块获取的目标X射线图像和存储模块预存的基准图像进行配准;处理模块,用于根据配准模块对目标X射线图像和基准图像的配准结果获取待治疗部位的位置偏差。
第四方面,提供一种如第一方面提供的放疗设备的控制装置,包括:存储器、处理器、总线和通信接口;存储器用于存储计算机执行指令,处理器与存储器通过总线连接;当放疗设备的控制装置运行时,处理器执行存储器存储的计算机执行指令,以使放疗设备的控制装置执行如第二方面提供的放疗设备的控制方法。
本发明实施例提供的放疗设备及其控制方法和装置,因为该放疗设备包括:可绕中心轴旋转的旋转机架和多能成像装置;多能成像装置包括成像源和成像器;成像源和成像器正对设置在旋转机架上;成像源用于产生至少两种能量级的X射线,并发射至少两种能量级的X射线中至少一种能量级的X射线穿过病患的待治疗部位;成像器用于接收穿过待治疗部位的至少一种能量级的X射线并根据至少一种能量级的X射线生成待治疗部位的至少一种能量级的X射线图像。所以在需要对病患的待治疗部位进行定位时,可以控制成像源和成像器配合生成目标X射线图像;再将目标X射线图像和预存的基准图像进行配准;最后根据目标X射线图像和基准图像的配准结果获取待治疗部位的位置偏差。获取到待治疗部位的位置偏差后,便可以根据该位置偏差确定当前待治疗部位相对于治疗床的位置,从而决定后续是否要调整治疗床以改变病患的位置,使得放射治疗可以顺利进行。本发明实 施例提供的技术方案中,使用的成像源可以产生多种能量级的X射线,从而可以生成多种不同能量级的X射线图像,可以满足放射治疗时病患任意身体组织的X射线成像需求,从而在放射治疗过程中可以形成满足定位需求(例如放射治疗前的摆位和放射治疗过程中治疗计划的微调更新)的任意待治疗部位的X射线图像,提高放射治疗的效率和精准度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种放疗设备的结构示意图;
图2为本发明实施例提供的一种成像源的结构示意图;
图3为本发明实施例提供的另一种成像源的结构示意图;
图4为本发明实施例提供的另一种放疗设备的结构示意图;
图5为本发明实施例提供的又一种放疗设备的结构示意图;
图6为本发明实施例提供的一种放疗设备的控制方法的流程示意图;
图7为本发明实施例提供的一种放疗设备的控制装置的结构示意图;
图8为本发明实施例提供的另一种放疗设备的控制装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者 “例如”等词旨在以具体方式呈现相关概念。
还需要说明的是,本发明实施例中,“的(英文:of)”,“相应的(英文:corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
为了便于清楚描述本发明实施例的技术方案,在本发明的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不是在对数量和执行次序进行限定。
现有的放疗设备使用单一的X射线进行成像,只能生成相应能量级的X射线图像,不能满足放射治疗时病患不同身体组织对X射线成像的不同需求,导致放射治疗时利用X射线图像进行的定位不够准确,影响放射治疗的效果和精度。
针对上述问题,参照图1所示,本发明实施例提供一种放疗设备,包括:可绕中心轴旋转的旋转机架11和多能成像装置12;多能成像装置包括成像源13和成像器14;
成像源13和成像器14正对设置在旋转机架11上;参照图1所示,在实际中的放疗设备中,设置在旋转机架11上的成像源13和成像器14只要保证正对,使得成像源13发出的X射线可以被成像器14接收到即可;
成像源13用于产生至少两种能量级的X射线,并发射至少两种能量级的X射线中至少一种能量级的X射线穿过病患的待治疗部位;示例性的,病患的待治疗部位可以是处在旋转机架的中心轴处;示例性的,至少两种能量级的X射线至少包括一种千伏级的X射线和一种兆伏级的X射线;
成像器14用于接收穿过待治疗部位的至少一种能量级的X射线并根据至少一种能量级的X射线生成待治疗部位的至少一种能量级的X射线图像。
可选的,旋转机架可以为环形机架也可以为C形机架。
上述实施例提供的放疗设备,在需要对病患的待治疗部位进行定位时,可以控制成像源和成像器配合生成目标X射线图像;再将目标 X射线图像和预存的基准图像进行配准;最后根据目标X射线图像和基准图像的配准结果获取待治疗部位的位置偏差。获取到待治疗部位的位置偏差后,便可以根据该位置偏差确定当前待治疗部位相对于治疗床的位置,从而决定后续是否要调整治疗床以改变病患的位置,使得放射治疗可以顺利进行。本发明实施例提供的技术方案中,使用的成像源可以产生多种能量级的X射线,从而可以生成多种不同能量级的X射线图像,可以满足放射治疗时病患任意身体组织的X射线成像需求,从而在放射治疗过程中可以形成满足定位需求(例如放射治疗前的摆位和放射治疗过程中治疗计划的微调更新)的任意待治疗部位的X射线图像,提高放射治疗的效率和精准度。
为了能够实现上述实施例提供的放疗设备中成像源可以发射出不同能量级的X射线的目的,本发明实施例提供如下四种具体实施例进行说明。
实施例一、参照图2所示,本发明实施例提供一种放疗设备中的成像源15,放疗设备中其余部件可参照图1及其对应表述,该成像源15为切换靶式成像源,切换靶式成像源为通过切换电子产生靶以产生不同能量级的X射线的成像源,射线产生靶用于在电子的轰击下产生X射线,包括:电子发射电源151、电子发射装置152、射线产生靶153、射线产生靶切换装置154和电子加速电源155;至少两种能量级的X射线至少包括:第一能量级X射线和第二能量级X射线;射线产生靶153包括至少两个子射线产生靶,至少两个子射线产生靶153至少包括:第一子射线产生靶1531和第二子射线产生靶1532;电子发射电源151用于给电子发射装置152供电以使电子发射装置152发射电子至预定位置;射线产生靶切换装置154用于切换第一子射线产生靶1531和第子二射线产生靶1532的位置,以切换位于预定位置的子射线产生靶;
电子加速电源155用于在电子发射装置152和预定位置之间产生加速电场,以加速电子发射装置152发射的电子;
当第一子射线产生靶1531位于预定位置时,第一子射线产生靶1531用于接收电子发射装置152发射电子并产生第一能量级X射线;当第二子射线产生靶1532位于预定位置时,第二子射线产生靶1532用于接收电子发射装置152发射电子并产生第二能量级X射线。
示例性的,上述实施例一中的第一子射线产生靶和第二子射线产生靶可以由钨、钼、铜、碳或合金构成,两者的具体成分不同即可;需要说明的是,上述实施例提供的成像源依据实际情况可以存在多个子射线产生靶,以产生更多能量级的X射线。
示例性的,上述实施例一中的第一能量级X射线为低能量级(50-100KV)X射线,第二能量级X射线为高能量级(100KV-6MV)X射线;具体的,上述实施例一中子射线产生靶的组成和数量将决定成像源能够提供的X射线的能量级和种类数。
示例性的,上述实施例一中的电子发射电源为低压电源(5-10V),电子发射装置可以由任一种发热会发射电子的物质(例如钨丝)组成。
示例性的,上述实施例一中的射线产生靶切换装置可以为抽屉式的,通过推拉带动第一子射线产生靶和第二子射线产生靶切换,也可以是旋转式的,通过旋转带动第一子射线产生靶和第二子射线产生靶切换,任一方式的射线产生靶切换装置可以是自动的,也可以是手动的。
实施例一提供的成像源因为其中存在多个可以互相切换的子射线产生靶,所以能够产生多种不同能量级的X射线,满足需要多种能量级X射线的放疗设备的需求。
实施例二、参照图3所示,本发明实施例提供一种放疗设备中的成像源16,放疗设备中其余部件可参照图1及其对应表述,该成像源16为切换电压式成像源,切换电压式成像源为通过切换待加速电子的加速电压以产生不同能量级的X射线的成像源,待加速电子用于在经过加速电压加速后轰击射线产生靶以使射线产生靶产生X射线,包括:电子发射电源161、电子发射装置162、射线产生靶163、电子加速电源164和电压切换装置165;电子加速电源164可提供的电压包括至少两个加速电压,至少两个加速电压至少包括:第一加速电压和第二加速电压;至少两种能量级的X射线至少包括:第一能量级X射线和第二能量级X射线;电子发射电源161用于给电子发射装置162供电以使电子发射装置162发射电子至射线产生靶163;电子加速电源164用于使用自身提供的加速电压在电子发射装置162和射线产生靶163之间产生加速电场,以加速电子发射装置162发射的电子;电压切换装置165用于切换电子加速电源164提供的加速电压。
当电子加速电源164使用第一加速电压在电子发射装置162和射线产生靶163之间产生加速电场时,射线产生靶163用于接收电子发射装置162发射电子并产生第一能量级X射线;当电子加速电源164使用第二加速电压在电子发射装置162和射线产生靶163之间产生加速电场时,射线产生靶163用于接收电子发射装置162发射电子并产生第二能量级X射线。
示例性的,实施例二中射线产生靶可以只为一个,也可以为实施例一种所述的多个子射线产生靶,在存在多个子射线产生靶的同时需要配备有射线产生靶切换装置,在存在有多个子射线产生靶的时候,成像源可以产生m*n种能量级的X射线,其中,m为电子加速电源可提供的不同电压的个数,n为子射线产生靶的个数,所以本实施例中仅为一种示例性表述,不对除电子加速电源以外的装置做具体限制。
示例性的,上述实施例二中的电子发射电源为低压电源(5-10V),电子发射装置可以由任一种发热会发射电子的物质(例如钨丝)组成。
示例性的,实施例二中的电压切换装置和电子加速电源组成起来可以为可变电压源(切换方式可为自动切换或手动切换),此处并不对电压切换装置做具体限制。
示例性的,上述实施例二中的第一能量级X射线为低能量级(50-100KV)X射线,第二能量级X射线为高能量级(100KV-6MV)X射线;具体的,上述实施例二中电子加速电源可提供电压的大小和个数将决定成像源能够提供的X射线的能量级和种类数。
实施例二提供的成像源通过电子电压源提供不同的加速电压改变轰击射线产生靶的电子速度从而使得成像源可以产生不同能量级的X射线,满足需要多种能量级X射线的放疗设备的需求。
需要说明的是,在实施例一和/或实施例二的基础上,实际中可以将射线产生靶切换装置和/或电压切换装置与放疗设备的旋转机架相连接(包括有线连接和无线连接),从而使得,参照图1所示的放疗设备的旋转机架旋转预设角度时,成像源产生的X射线产生改变;至少两种能量级的X射线至少包括:第一能量级X射线和第二能量级X射线。
预设角度包括至少两个预设子角度,至少两个预设子角度至少包括:第一预设子角度和第二预设子角度;示例性的,预设角度为180 度,其中,第一预设角度为0度,第二预设角度为180度;但存在多个预设子角度时,具体设置情况可以根据实际情况而定,此处不做具体限制;当旋转机架旋转第一预设子角度时,成像源产生第一能量级X射线;当旋转机架旋转第二预设子角度时,成像源产生第二能量级X射线。示例性的,旋转机架旋转至0度时,成像源产生第一能量级X射线,旋转机架旋转180度,即旋转机架旋转至180度时,成像源产生第二能量级X射线,旋转机架再旋转180度,即旋转机架旋转至0度时,成像源产生第一能量级X射线,如此反复。其中,第一预设子角度和第二预设子角度可以重合相同,也可以不重合不相同,此处不对此作具体限制。
实施例三、参照图4所示,本发明实施例提供一种放疗设备,包括:可绕中心轴旋转的旋转机架41、多能成像装置42和成像源控制装置45;多能成像装置包括成像源43和成像器44;成像源43和成像器44正对设置在旋转机架41上;参照图4所示,在实际中的放疗设备中,设置在旋转机架41上的成像源43和成像器44只要保证正对,使得成像源43发出的X射线可以被成像器44接收到即可;成像源43包括至少两个子成像源,至少两个子成像源至少包括:第一子成像源431和第二子成像源432;成像源43用于产生至少两种能量级的X射线,至少两种能量级的X射线至少包括:第一能量级X射线和第二能量级X射线,第一子成像源431用于产生第一能量级X射线,第二子成像源432用于产生第二能量级X射线;成像源控制装置45用于控制切换发射穿过病患的待治疗部位的X射线的子成像源;成像器44用于接收穿过待治疗部位的目标能量级X射线并根据目标能量级X射线生成待治疗部位的目标能量级X射线图像。
需要说明的是,成像源控制装置控制子成像源进行切换时,并不对其控制的子成像源的数量做限制,当该放疗设备同一时间只有一个子成像源发射X射线时,该成像源控制装置可以每一次切换一个子成像源,当该放疗设备同一时间可以有多个子成像源发射X射线时,该成像源控制装置可以每一次切换一个或多个子成像源,具体情况依据实际而定。
示例性的,上述实施例三中的第一能量级X射线为低能量级(50-100KV)X射线,第二能量级X射线为高能量级(100KV-6MV)X 射线;具体的,上述实施例三中子成像源的数量以及种类将决定成像源能够提供的X射线的能量级和种类数。
示例性的,上述实施例三中的成像源控制装置可以是机械控制装置也可以是软件控制装置;当为机械控制装置时可以为另设装置也可以复用旋转机架,旋转机架旋转一定角度即可切换子成像源。
需要说明的是,上述实施例三中的各个子成像源的结构可以参照实施例一和实施例二中的表述,可以自由组合,此处不再赘述,只需要保证两个子成像源可以产生不同能量级的X射线即可。
实施例三提供的放疗设备,通过设置可以产生不同能量级X射线的不同子成像源,从而使得放疗设备在工作时可以使用不同能量等级的X射线照射病患的待治疗部位得到不同能量等级的X射线图像,从而可以根据获得X射线图像以及运存的基准图像配准后获取位置偏差,而后便可以根据位置偏差对病患的位置或治疗计划进行调整,提高放射治疗的效率和效果。
实施例四、为了更节省放射治疗过程中的时间,提高放射治疗效率,参照图5所示,本发明实施例提供一种放疗设备,包括:可绕中心轴旋转的旋转机架51和多能成像装置52;多能成像装置包括成像源53和成像器54;成像源53包括至少两个子成像源,至少两个子成像源至少包括:第一子成像源531和第二子成像源532;成像器54包括至少两个子成像器,至少两个子成像器至少包括:第一子成像器541和第二子成像器542;成像源53用于产生至少两种能量级的X射线,至少两种能量级的X射线至少包括:第一能量级X射线和第二能量级X射线,第一子成像源531用于产生第一能量级X射线,第二子成像源532用于产生第二能量级X射线;第一子成像源531和第一子成像器541正对设置在旋转机架51上,第二子成像源532和第二子成像器542正对设置在旋转机架51上;第一子成像源531在旋转机架51的设置位置和第一子成像器541在旋转机架51上的设置位置的连线与第二子成像源532在旋转机架51的设置位置和第二子成像器542在旋转机架51上的设置位置的连线相交;示例性的,可以为正交,实际中此种成像方式则为正交双平板成像;第一子成像源531用于产生第一能量级X射线,并发射第一能量级X射线在穿过待治疗部位后照射在第一子成像器541上,以使第一子成像器541根据第一能量级X射线生 成待治疗部位的第一能量级X射线图像;第二子成像源532用于产生第二能量级X射线,并发射第二能量级X射线在穿过待治疗部位后照射在第二子成像器542上,以使第二子成像器542根据第二能量级X射线生成待治疗部位的第二能量级X射线图像。
需要说明的是,实施例四中的成像源和旋转机架的设置均可参照实施例一、实施例二和实施例三中的各项设置,四种实施例可以自由组合,此处不做具体限制。
示例性的,上述实施例四中的第一能量级X射线为低能量级(50-100KV)X射线,第二能量级X射线为高能量级(100KV-6MV)X射线;具体的,上述实施例四中子成像源的数量以及种类将决定成像源能够提供的X射线的能量级和种类数。
实施例四中提供的放疗设备,通过在机架上设置多对正对的子成像源和自成像器,可以使得放疗设备在需要进行X射线成像时,同时生成多种能量级X射线对应的X射线图像,相较于实施例一、实施例二和实施例三提供的技术方案而言,在获取不同能量级的X射线图像的效率更高,从而最终提高的放射治疗的效率也更大。
示例性的,上述各个实施例中的成像器包括至少包括:第一子成像器和第二子成像器;至少两种能量级的X射线至少包括:第一能量级X射线和第二能量级X射线;第一子成像器用于接收穿过待治疗部位的第一能量级X射线并根据第一能量级X射线生成待治疗部位的第一能量级X射线图像;第二子成像器用于接收穿过待治疗部位的第二能量级X射线并根据第二能量级X射线生成待治疗部位的第二能量级X射线图像。
具体的,其中,第一子成像器接收第一能量级X射线并沉积能量释放出可见光,再将该光信号转换成电信号,没有和第一子成像器发生作用的第二能量级X射线被第二子成像器吸收,释放出可见光并被转换为电信号,从而分别产生第一能量级X射线图像和第二能量级X射线图像。
综上可得,本发明实施例提供的放疗设备,因为该放疗设备包括:可绕中心轴旋转的旋转机架和多能成像装置;多能成像装置包括成像源和成像器;成像源和成像器正对设置在旋转机架上;成像源用于产生至少两种能量级的X射线,并发射至少两种能量级的X射线中至少 一种能量级的X射线穿过病患的待治疗部位;成像器用于接收穿过待治疗部位的至少一种能量级的X射线并根据至少一种能量级的X射线生成待治疗部位的至少一种能量级的X射线图像。所以在需要对病患的待治疗部位进行定位时,可以控制成像源和成像器配合生成目标X射线图像;再将目标X射线图像和预存的基准图像进行配准;最后根据目标X射线图像和基准图像的配准结果获取待治疗部位的位置偏差。获取到待治疗部位的位置偏差后,便可以根据该位置偏差确定当前待治疗部位相对于治疗床的位置,从而决定后续是否要调整治疗床以改变病患的位置,使得放射治疗可以顺利进行。本发明实施例提供的技术方案中,使用的成像源可以产生多种能量级的X射线,从而可以生成多种不同能量级的X射线图像,可以满足放射治疗时病患任意身体组织的X射线成像需求,从而在放射治疗过程中可以形成满足定位需求(例如放射治疗前的摆位和放射治疗过程中治疗计划的微调更新)的任意待治疗部位的X射线图像,提高放射治疗的效率和精准度。
参照图6所示,本发明实施例还提供一种放疗设备的控制方法,包括:
601、控制成像源结合成像器获取目标X射线图像。
这里,目标X射线图像可为所述待治疗部位的至少一种能量级的X射线图像中的至少一个图像。
因为实际中可以是先控制成像源发射至少两种能量级的X射线穿过待治疗部位,以使成像器生成至少两种能量级的X射线图像,然后根据待治疗部位的信息从至少两种能量级的X摄像图像中选取需要的目标X射线图像;也可以是先根据待治疗部位的信息确定发射源需要发射的X射线的能量级为目标能量级,然后控制成像源发射目标能量级的X射线穿过待治疗部位,以使成像器生成目标X射线图像。
另外,实际中在获取X射线时,为了保证后续的基准图像配准结果更加准确,需要每一种能量级(或目标能量级)的X射线都获取至少两种不同成像角度下的X射线图像,所以在601步骤中在控制成像源发射至少预设X射线(预设X射线为至少两个能量级的X射线或目标能量级的X射线)穿过病患的待治疗部位时包括:控制旋转机架旋转至少两个不同的成像角度,以使成像器根据每一种能量级(或目标能量级)的X射线生成的X射线图像中均存在至少两个分别对应不同 的成像角度的X射线图像。
602、将目标X射线图像和预存的基准图像进行配准。
需要说明的是,目标X射线图像为二维图像时,基准图像一般为由CT(Computed Tomography,即电子计算机断层扫描)图像生成的DRR(Digitally Reconstructured Radiograph,数字重建放射影像)图像;而当基准图像(可以为DRR图像、CT图像或其他图像)为三维图像时,实际中在603步骤中会多进行一步图像重建从而使得获取到的目标X射线图像重建为三维图像,然后将重建后的目标X射线图像的矢状面、冠状面和横断面分别与基准图像的矢状面、冠状面和横断面进行配准;示例性的,因为实际中获取的目标X射线图像会存在多幅,每一幅中最清晰的部分不同,所以为了保证配准结果更为准确,602步骤包括:
6021、对目标X射线图像中不同的目标X射线图像进行处理。
示例性的,这里所说的处理是指将不同的目标X射线图像进行融合重建以获取重建目标X射线图像,重建过程可以改变目标X射线图像的维数,也可以不改变目标X射线图像的维数,具体情况依据时机而定。
6022、将处理后的目标X射线图像和基准图像进行配准。
603、根据目标X射线图像和基准图像的配准结果获取待治疗部位的位置偏差。
可选的,当放疗设备用于病患治疗前时,需要对变换的待治疗部位进行摆位固定,此时本发明实施例获取的位置偏差包括摆位误差;该控制方法还包括:
6041、根据位置偏差控制放疗设备调整病患的位置。
示例性的,可以是调整治疗床来调整病患位置,也可以是调整其他设备达到调整病患位置的目的。
可选的,当放疗设备用于病患治疗中时,因为患者的待治疗部位中的肿瘤可能会随着病患的生理活动或不经意的活动导致位置产生变化,此时本发明实施例获取的位置偏差包括待治疗部位中肿瘤的位置偏差;该控制方法还包括:
60421、判断肿瘤的位置偏差是否等于零或者是否在预设偏差范 围内。
当确定肿瘤的位置偏差不等于零或在预设偏差范围时,执行60622。预设偏差范围为相对于0的偏差范围,例如[-0.1mm,+0.1mm]。
60422、根据目标X射线图像进行偏差校正。
示例性的,偏差校正可以是调整病患的位置、调整治疗区域(例如加速器)或者更新预存的治疗计划,其中治疗计划可以包括治疗床在放射治疗过程中的移动以及放疗设备中X射线能量级在治疗过程中的的切换改变具体时刻。
本发明实施例提供的放疗设备的控制方法,在需要对病患的待治疗部位进行定位时,可以控制成像源和成像器配合生成目标X射线图像;再将目标X射线图像和预存的基准图像进行配准;最后根据目标X射线图像和基准图像的配准结果获取待治疗部位的位置偏差。获取到待治疗部位的位置偏差后,便可以根据该位置偏差确定当前待治疗部位相对于治疗床的位置,从而决定后续是否要调整治疗床以改变病患的位置,使得放射治疗可以顺利进行。本发明实施例提供的技术方案中,使用的成像源可以产生多种能量级的X射线,从而可以生成多种不同能量级的X射线图像,可以满足放射治疗时病患任意身体组织的X射线成像需求,从而在放射治疗过程中可以形成满足定位需求(例如放射治疗前的摆位和放射治疗过程中治疗计划的微调更新)的任意待治疗部位的X射线图像,提高放射治疗的效率和精准度。
为了更好的实施例上述实施例提供的放疗设备的控制方法,参照图7所示,本发明实施例还提供一种放疗设备的控制装置01,该控制装置与放疗设备02相连接(包括有线连接和无线连接),该控制装置01包括:
控制模块71、处理模块72、配准模块73和存储模块74;
控制模块71,用于控制成像源结合成像器获取目标X射线图像;
配准模块73,用于将控制模块71获取的目标X射线图像和存储模块74预存的基准图像进行配准;
处理模块72,用于根据配准模块73对目标X射线图像和基准图像的配准结果获取待治疗部位的位置偏差。
可选的,控制模块71具体用于:控制成像源发射至少两个能量 级的X射线穿过病患的待治疗部位,以使成像器根据穿过待治疗部位的至少两个能量级的X射线生成至少两个能量级的X射线图像;根据存储模块74预存的待治疗部位的信息从至少两个能量级的X射线图像中选取目标X射线图像;
或者,
根据存储模块74预存的待治疗部位的信息从成像源可产生的至少两种能量级的X射线中选取目标能量级的X射线;控制成像源发射目标能量级的X射线,以使成像器根据穿过待治疗部位的目标能量级的X射线生成目标X射线图像。
可选的,控制模块71在控制成像源发射预设X射线穿过病患的待治疗部位时还用于:控制旋转机架旋转至少两个不同的成像角度,以使成像器根据每一种能量级的X射线生成的X射线图像中均存在至少两个分别对应不同的成像角度的X射线图像;预设X射线为至少两个能量级的X射线或目标能量级的X射线。
可选的,当放疗设备用于病患治疗前时,位置偏差包括摆位误差;则处理模块72在获取位置偏差后,还用于根据位置偏差控制放疗设备调整病患的位置;当放疗设备用于病患治疗中时,位置偏差包括待治疗部位中肿瘤的位置偏差;则处理模块72在获取位置偏置后,还用于在确定肿瘤的位置偏差不等于零或在预设偏差范围内时,根据目标X射线图像进行偏差校正;偏差校正可以是调整病患的位置、调整治疗区域(例如加速器)或者更新存储模块74预存的治疗计划。
可选的,配准模块73具体用于:对控制模块71获取的目标X射线图像中不同的目标X射线图像进行融合处理;将处理后的目标X射线图像和存储模块74预存的基准图像进行配准。
可选的,当控制模块71获取的目标X射线图像和存储模块74存储的基准图像均为三维图像时,配准模块73具体用于:将控制模块71获取的目标X射线图像的矢状面、冠状面和横断面分别与存储模块74预存的基准图像的矢状面、冠状面和横断面进行配准。
上述实施例提供的放疗设备的控制装置中各个模块的有益效果或存在理由均可参照前述实施例提供的放疗设备的控制方法中表述,此处不再赘述。
参照图8所示,本发明实施例还提供另一种放疗设备的控制装置, 包括:存储器81、处理器82(82-1和82-2)、总线83和通信接口84;存储器81用于存储计算机执行指令,处理器82与存储器81通过总线83连接;当放疗设备的控制装置运行时,处理器82执行存储器81存储的计算机执行指令,以使放疗设备的控制装置执行上述实施例提供的放疗设备的控制方法。
在具体的实现中,作为一种实施例,处理器82(82-1和82-2)可以包括一个或多个CPU,例如图8中所示的CPU0和CPU1。且,作为一种实施例,放疗设备的控制装置可以包括多个处理器82,例如图8中所示的处理器82-1和处理器82-2。这些处理器82中的每一个可以是一个单核处理器(Single-CPU),也可以是一个多核处理器(Multi-CPU)。这里的处理器82可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器81可以是只读存储器81(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器81可以是独立存在,通过通信总线83与处理器82相连接。存储器81也可以和处理器82集成在一起。
在具体的实现中,存储器81,用于存储本申请中的数据和执行本申请的软件程序对应的计算机执行指令。处理器82可以通过运行或执行存储在存储器81内的软件程序,以及调用存储在存储器81内的数据,执行放疗设备的控制装置的各种功能。
通信接口84,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如控制系统、无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。通信接口84可以包括接收单元实现接收功能,以及发送单元实现发送功能。
总线83,可以是工业标准体系结构(Industry Standard  Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线83可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
综上所述,本发明实施例提供的放疗设备及其控制方法和装置,因为该放疗设备包括:可绕中心轴旋转的旋转机架和多能成像装置;多能成像装置包括成像源和成像器;成像源和成像器正对设置在旋转机架上;成像源用于产生至少两种能量级的X射线,并发射至少两种能量级的X射线中至少一种能量级的X射线穿过病患的待治疗部位;成像器用于接收穿过待治疗部位的至少一种能量级的X射线并根据至少一种能量级的X射线生成待治疗部位的至少一种能量级的X射线图像。所以在需要对病患的待治疗部位进行定位时,可以控制成像源和成像器配合生成目标X射线图像;再将目标X射线图像和预存的基准图像进行配准;最后根据目标X射线图像和基准图像的配准结果获取待治疗部位的位置偏差。获取到待治疗部位的位置偏差后,便可以根据该位置偏差确定当前待治疗部位相对于治疗床的位置,从而决定后续是否要调整治疗床以改变病患的位置,使得放射治疗可以顺利进行。本发明实施例提供的技术方案中,使用的成像源可以产生多种能量级的X射线,从而可以生成多种不同能量级的X射线图像,可以满足放射治疗时病患任意身体组织的X射线成像需求,从而在放射治疗过程中可以形成满足定位需求(例如放射治疗前的摆位和放射治疗过程中治疗计划的微调更新)的任意待治疗部位的X射线图像,提高放射治疗的效率和精准度。
本发明实施例还提供一种计算机程序,该计算机程序可直接加载到存储器中,并含有软件代码,该计算机程序经由计算机载入并执行后能够实现上述的放疗设备的控制方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程 序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种放疗设备,其特征在于,包括:可绕中心轴旋转的旋转机架和多能成像装置;所述多能成像装置包括成像源和成像器;
    所述成像源和所述成像器正对设置在所述旋转机架上;
    所述成像源用于产生至少两种能量级的X射线,并发射所述至少两种能量级的X射线中至少一种能量级的X射线穿过病患的待治疗部位;
    所述成像器用于接收穿过所述待治疗部位的所述至少一种能量级的X射线并根据所述至少一种能量级的X射线生成所述待治疗部位的至少一种能量级的X射线图像。
  2. 根据权利要求1所述的放疗设备,其特征在于,所述成像源包括以下至少一种:切换靶式成像源和切换电压式成像源。
  3. 根据权利要求1所述的放疗设备,其特征在于,所述放疗设备还包括成像源控制装置;所述成像源包括至少两个子成像源,所述至少两个子成像源至少包括:第一子成像源和第二子成像源;
    所述至少两种能量级的X射线至少包括:第一能量级X射线和第二能量级X射线;
    所述第一子成像源用于产生所述第一能量级X射线,所述第二子成像源用于产生所述第二能量级X射线;
    所述成像源控制装置用于控制切换发射穿过病患的待治疗部位的X射线的子成像源。
  4. 根据权利要求1所述的放疗设备,其特征在于,所述成像源包括至少两个子成像源,所述至少两个子成像源至少包括:第一子成像源和第二子成像源;所述成像器包括至少两个子成像器,所述至少两个子成像器至少包括:第一子成像器和第二子成像器;
    所述至少两种能量级的X射线至少包括:第一能量级X射线和第二能量级X射线;
    所述第一子成像源和所述第一子成像器正对设置在所述旋转机架上,所述第二子成像源和所述第二子成像器正对设置在所述旋转机架上;
    所述第一子成像源在所述旋转机架的设置位置和所述第一子成像器在所述旋转机架上的设置位置的连线与所述第二子成像源在所述旋转机架的设置位置和所述第二子成像器在所述旋转机架上的设置位置的连线相交;
    所述第一子成像源用于产生所述第一能量级X射线,并发射所述第一能量级X射线在穿过所述待治疗部位后照射在所述第一子成像器上,以使所述第一子成像器根据所述第一能量级X射线生成所述待治疗部位的第一能量级X射线图像;
    所述第二子成像源用于产生所述第二能量级X射线,并发射所述第二能量级X射线在穿过所述待治疗部位后照射在所述第二子成像器上,以使所述第二子成像器根据所述第二能量级X射线生成所述待治疗部位的第二能量级X射线图像。
  5. 根据权利要求1所述的放疗设备,其特征在于,当所述旋转机架旋转预设角度时,所述成像源产生的X射线产生改变;
    所述至少两种能量级的X射线至少包括:第一能量级X射线和第二能量级X射线;
    所述预设角度包括至少两个预设子角度,所述至少两个预设子角度至少包括:第一预设子角度和第二预设子角度;
    当所述旋转机架旋转第一预设子角度时,所述成像源产生所述第一能量级X射线;
    当所述旋转机架旋转第二预设子角度时,所述成像源产生所述第二能量级X射线。
  6. 根据权利要求1所述的放疗设备,其特征在于,所述成像器至少包括:第一子成像器和第二子成像器;
    所述至少两种能量级的X射线至少包括:第一能量级X射线和第二能量级X射线;
    所述第一子成像器用于接收穿过所述待治疗部位的第一能量级X射线并根据所述第一能量级X射线生成所述待治疗部位的第一能量级X射线图像;
    所述第二子成像器用于接收穿过所述待治疗部位的第二能量级X射线并根据所述第二能量级X射线生成所述待治疗部位的第二能量级X射线图像。
  7. 根据权利要求1所述的放疗设备,其特征在于,所述旋转机架包括以下任一种:环形机架和C形机架。
  8. 根据权利要求1所述的放疗设备,其特征在于,所述至少两种能量级的X射线至少包括一种千伏级的X射线和一种兆伏级的X射线。
  9. 一种如权利要求1-8任一项所述的放疗设备的控制方法,其特 征在于,包括:
    控制所述成像源结合所述成像器获取目标X射线图像,所述目标X射线图像为所述待治疗部位的至少一种能量级的X射线图像中的至少一个图像;
    将所述目标X射线图像和预存的基准图像进行配准;
    根据所述目标X射线图像和所述基准图像的配准结果获取所述待治疗部位的位置偏差。
  10. 根据权利要求9所述的放疗设备的控制方法,其特征在于,所述控制所述成像源结合所述成像器获取目标X射线图像包括:
    控制所述成像源发射至少两个能量级的X射线穿过病患的待治疗部位,以使所述成像器根据穿过所述待治疗部位的所述至少两个能量级的X射线生成至少两个能量级的X射线图像;根据预存的所述待治疗部位的信息从所述至少两个能量级的X射线图像中选取目标X射线图像;
    或者,
    根据预存的所述待治疗部位的信息从所述成像源可产生的至少两种能量级的X射线中选取目标能量级的X射线;控制所述成像源发射所述目标能量级的X射线,以使所述成像器根据穿过所述待治疗部位的所述目标能量级的X射线生成目标X射线图像。
  11. 根据权利要求10所述的放疗设备的控制方法,其特征在于,控制所述成像源发射预设X射线穿过病患的待治疗部位时,还包括:
    控制所述旋转机架旋转至少两个不同的成像角度,以使所述成像器根据每一种能量级的X射线生成的X射线图像中均存在至少两个分别对应不同的成像角度的X射线图像;
    所述预设X射线为所述至少两个能量级的X射线或所述目标能量级的X射线。
  12. 根据权利要求9所述的放疗设备的控制方法,其特征在于,还包括:
    当所述放疗设备用于所述病患治疗前时,所述位置偏差包括摆位误差;所述根据所述目标X射线图像和预存的基准图像获取所述待治疗部位的位置偏差之后还包括:根据所述位置偏差控制所述放疗设备调整所述病患的位置;
    当所述放疗设备用于所述病患治疗中时,所述位置偏差包括所述 待治疗部位中肿瘤的位置偏差;所述根据所述目标X射线图像和预存的基准图像获取所述待治疗部位的位置偏差之后还包括:当确定所述肿瘤的位置偏差不等于零或者在预设偏差范围内时,根据所述目标X射线图像进行偏差校正。
  13. 根据权利要求9所述的放疗设备的控制方法,其特征在于,所述将所述目标X射线图像和预存的基准图像进行配准包括:
    对所述目标X射线图像中不同的目标X射线图像进行处理;
    将处理后的目标X射线图像和所述基准图像进行配准。
  14. 一种如权利要求1-8任一项所述的放疗设备的控制装置,其特征在于,包括:控制模块、处理模块、配准模块和存储模块;
    所述控制模块,用于控制所述成像源结合所述成像器获取目标X射线图像,所述目标X射线图像为所述待治疗部位的至少一种能量级的X射线图像中的至少一个图像;
    所述配准模块,用于将所述控制模块获取的所述目标X射线图像和所述存储模块预存的基准图像进行配准;
    所述处理模块,用于根据所述配准模块对所述目标X射线图像和所述基准图像的配准结果获取所述待治疗部位的位置偏差。
  15. 根据权利要求14所述的放疗设备的控制装置,其特征在于,所述控制模块具体用于:
    控制所述成像源发射至少两个能量级的X射线穿过病患的待治疗部位,以使所述成像器根据穿过所述待治疗部位的所述至少两个能量级的X射线生成至少两个能量级的X射线图像;根据所述存储模块预存的所述待治疗部位的信息从所述至少两个能量级的X射线图像中选取目标X射线图像;
    或者,
    根据所述存储模块预存的所述待治疗部位的信息从所述成像源可产生的至少两种能量级的X射线中选取目标能量级的X射线;控制所述成像源发射所述目标能量级的X射线,以使所述成像器根据穿过所述待治疗部位的所述目标能量级的X射线生成目标X射线图像。
  16. 根据权利要求15所述放疗设备的控制装置,其特征在于,所述控制模块在控制所述成像源发射预设X射线穿过病患的待治疗部位时还用于:
    控制所述旋转机架旋转至少两个不同的成像角度,以使所述成像器 根据每一种能量级的X射线生成的X射线图像中均存在至少两个分别对应不同的成像角度的X射线图像;
    所述预设X射线为所述至少两个能量级的X射线或所述目标能量级的X射线。
  17. 根据权利要求14所述放疗设备的控制装置,其特征在于,
    当所述放疗设备用于所述病患治疗前时,所述位置偏差包括摆位误差;所述处理模块在获取所述位置偏差后,还用于根据所述位置偏差控制所述放疗设备调整所述病患的位置;
    当所述放疗设备用于所述病患治疗中时,所述位置偏差包括所述待治疗部位中肿瘤的位置偏差;所述处理模块在获取所述位置偏置后,还用于在确定所述肿瘤的位置偏差不等于零时,根据所述目标X射线图像进行偏差校正。
  18. 根据权利要求14所述放疗设备的控制装置,其特征在于,所述配准模块具体用于:
    对所述控制模块获取的所述目标X射线图像中不同的目标X射线图像进行处理;
    将处理后的目标X射线图像和所述存储模块预存的基准图像进行配准。
  19. 一种如权利要求1-8任一项所述的放疗设备的控制装置,其特征在于,包括:存储器、处理器、总线和通信接口;所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接;当所述放疗设备的控制装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述放疗设备的控制装置执行如权利要求9-13任一项所述的放疗设备的控制方法。
PCT/CN2018/105843 2018-09-14 2018-09-14 一种放疗设备及其控制方法和装置 WO2020051915A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880006254.0A CN111194183B (zh) 2018-09-14 2018-09-14 一种放疗设备及其控制方法和装置
PCT/CN2018/105843 WO2020051915A1 (zh) 2018-09-14 2018-09-14 一种放疗设备及其控制方法和装置
US17/152,421 US20210162237A1 (en) 2018-09-14 2021-01-19 Radiotherapy apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105843 WO2020051915A1 (zh) 2018-09-14 2018-09-14 一种放疗设备及其控制方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/152,421 Continuation US20210162237A1 (en) 2018-09-14 2021-01-19 Radiotherapy apparatus and control method thereof

Publications (1)

Publication Number Publication Date
WO2020051915A1 true WO2020051915A1 (zh) 2020-03-19

Family

ID=69777405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105843 WO2020051915A1 (zh) 2018-09-14 2018-09-14 一种放疗设备及其控制方法和装置

Country Status (3)

Country Link
US (1) US20210162237A1 (zh)
CN (1) CN111194183B (zh)
WO (1) WO2020051915A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888919B2 (en) * 2001-11-02 2005-05-03 Varian Medical Systems, Inc. Radiotherapy apparatus equipped with an articulable gantry for positioning an imaging unit
CN1694647A (zh) * 2002-10-05 2005-11-09 瓦里安医疗系统技术有限公司 应用于放射治疗的成像设备
CN101927065A (zh) * 2009-01-16 2010-12-29 北卡罗来纳大学查珀尔希尔分校 用于癌症治疗和研究的紧凑型微束放疗系统及方法
CN102049106A (zh) * 2010-12-14 2011-05-11 张岩 分次放射治疗间放疗系统的精确影像定位系统及方法
CN102764136A (zh) * 2011-05-02 2012-11-07 通用电气公司 用于应用双能量成像的方法和装置
CN103913779A (zh) * 2012-12-31 2014-07-09 清华大学 多能ct成像系统以及成像方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100316259A1 (en) * 2009-06-16 2010-12-16 Wu Liu Using a moving imaging system to monitor anatomical position as a function of time
US8565377B2 (en) * 2011-03-07 2013-10-22 Dalhousie University Methods and apparatus for imaging in conjunction with radiotherapy
CN104605882B (zh) * 2015-01-23 2017-10-27 上海联影医疗科技有限公司 放射治疗系统中的图像获取方法、装置及放射治疗系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888919B2 (en) * 2001-11-02 2005-05-03 Varian Medical Systems, Inc. Radiotherapy apparatus equipped with an articulable gantry for positioning an imaging unit
CN1694647A (zh) * 2002-10-05 2005-11-09 瓦里安医疗系统技术有限公司 应用于放射治疗的成像设备
CN101927065A (zh) * 2009-01-16 2010-12-29 北卡罗来纳大学查珀尔希尔分校 用于癌症治疗和研究的紧凑型微束放疗系统及方法
CN102049106A (zh) * 2010-12-14 2011-05-11 张岩 分次放射治疗间放疗系统的精确影像定位系统及方法
CN102764136A (zh) * 2011-05-02 2012-11-07 通用电气公司 用于应用双能量成像的方法和装置
CN103913779A (zh) * 2012-12-31 2014-07-09 清华大学 多能ct成像系统以及成像方法

Also Published As

Publication number Publication date
CN111194183A (zh) 2020-05-22
CN111194183B (zh) 2022-02-18
US20210162237A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP7422756B2 (ja) 以前の画像を使用して画像を改善するコンピュータ断層撮影システムおよび方法
US8873710B2 (en) Multi-source radiation system and method for interwoven radiotherapy and imaging
US6914959B2 (en) Combined radiation therapy and imaging system and method
US7848488B2 (en) Radiation systems having tiltable gantry
KR20090079986A (ko) 멀티 방사선 발생 장치를 이용한 방사선 촬영 제어 장치
US20060067468A1 (en) Radiotherapy systems
US20120307973A1 (en) Radiotherapy system
JP2015066275A (ja) 医用画像処理装置、治療システム及び医用画像処理方法
JP2009189461A (ja) 患者位置決め装置及びその方法
JP2009148494A (ja) 放射線治療用線量分布測定装置及び放射線治療用線量分布測定プログラム
CN103028195A (zh) 用于辐射治疗计划的组合成像模式
Parsons et al. An investigation of kV CBCT image quality and dose reduction for volume‐of‐interest imaging using dynamic collimation
JP6310118B2 (ja) 画像処理装置、治療システム及び画像処理方法
US7912176B2 (en) Dose-sparing tomographic imaging
WO2020051915A1 (zh) 一种放疗设备及其控制方法和装置
JPS5976A (ja) 放射線治療用高エネルギct
US20220152424A1 (en) Radiation therapy apparatus and radiation therapy method
US20070195936A1 (en) Multi-leaf collimator based field size clipping for automatic adaptation to allowed image area
US20210295542A1 (en) Method, radiotherapy device, and computer-readable storage medium for image registration
Parsons et al. Volume of interest CBCT and tube current modulation for image guidance using dynamic kV collimation
Yuan et al. A Monte Carlo model and its commissioning for the Leksell Gamma Knife Perfexion radiosurgery system
WO2002013907A1 (en) Radiotherapy simulation apparatus
Souleyman et al. Impact of acquisition protocols on accuracy of dose calculation based on xvi cone beam computed tomography
CN110430921A (zh) 治疗装置及治疗头的控制方法
Ravindran Dose optimisation during imaging in radiotherapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933147

Country of ref document: EP

Kind code of ref document: A1