WO2020050628A1 - Novel immunotoxin production method - Google Patents

Novel immunotoxin production method Download PDF

Info

Publication number
WO2020050628A1
WO2020050628A1 PCT/KR2019/011411 KR2019011411W WO2020050628A1 WO 2020050628 A1 WO2020050628 A1 WO 2020050628A1 KR 2019011411 W KR2019011411 W KR 2019011411W WO 2020050628 A1 WO2020050628 A1 WO 2020050628A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
immunotoxin
cancer
trastuzumab
cysteine
Prior art date
Application number
PCT/KR2019/011411
Other languages
French (fr)
Korean (ko)
Inventor
유태현
이유미
이병성
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of WO2020050628A1 publication Critical patent/WO2020050628A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • A61K47/6817Toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a method for preparing an immunotoxin and a composition for treating cancer using the same, and more specifically, an immunotoxin characterized in that position-specific binding of an immunoglobulin variant substituted with cysteine to PE24 introduced with a non-natural amino acid is performed. It relates to a manufacturing method, an immunotoxin produced by the above manufacturing method, and a composition for treating cancer.
  • Antibodies are an essential part of the body's defense system. Antibodies present on the surface of B-lymphocytes identify and attack harmful substances such as viruses, bacteria and fungi. They are antigen-specific and consist of two identical heavy chains and two identical light chains. Both heavy and light chains have variable regions and constant regions. The N-terminal, called the variable region (V H , V L ), is responsible for antigen specificity, and the constant region comprises three domains (C H1 , C H2 , C H3 ) of the heavy chain and one domain (C L ) of the light chain. Includes. There are two structural parts of the antigen-binding fragment (Fab) and the constant fragment (Fc) (Fig. 1).
  • Fab antigen-binding fragment
  • Fc constant fragment
  • Fab includes V H and V L , can recognize antigens and neutralize pathogens, and the Fc region consists of 2 CH 2 and 2 CH 3 domains.
  • the heavy and light chains are linked by disulfide (-SS-) bonds and held together by non-covalent interactions.
  • -SS- disulfide
  • Antibodies cannot destroy antigens alone, but can block target antigens or kill cells through an immune system such as complement, phagocytes or NK cells (Wang, W., et al., Journal of pharmaceutical sciences, 2007 96 (1): p. 1-26).
  • Hybridoma cells can be made by fusing B cells and malignant tumor cells with a chemical compound, and these hybridoma cells can be permanently cultured to make only specific antibodies.
  • this technique can produce high-purity antibodies with high specificity and affinity, the clinical success of mouse monoclonal antibodies has been limited. This is because there is a problem of high immunogenicity derived from a non-human species (mouse or rat).
  • genetic engineering has been developed for chimeric, humanized and human antibodies.
  • Chimeric antibodies are composed of murine variable regions and human constant regions (Morrison, SL, et al., Proceedings of the National Academy of Sciences, 1984. 81 (21): p. 6851-6855).
  • Humanized antibodies are generated by transplanting mouse complementarity-determining regions (CDRs) into human variable and constant regions (Jones, PT, et al., Nature, 1986. 321 (6069): p. 522-525 ).
  • Fully human antibodies can be produced using phage display technology and transgenic mice. Phage display is an in vitro screening technique that uses bacteriophage to link proteins (Gram, H., et al., Journal of immunological methods, 1993. 161 (2): p. 169-176).
  • ADCs Antibody-drug conjugates
  • DAR drug-to-antibody
  • lysine which is solvent-accessible, or cysteine with reduced cross-chain disulfide bonds. Because of human IgG containing about 100 lysine residues, lysine chemical binding results in 0 to 8 conjugated molecules per antibody. Thus, a number of different ADC species can be produced (Wang, L., et al., Protein science, 2005. 14 (9): p. 2436-2446). Cysteine chemical bonding is achieved through reduction of the disulfide bonds between the four chains, thus making the eight free thiol groups the linker-drug attachment site. Therefore, each of the conjugates produced by the two methods is composed of both unconjugated and overloaded forms.
  • drug-binding species are hindered by unconjugated antibodies, reducing therapeutic activity.
  • drug-binding species (DAR> 4) have antibody aggregation, low stability, and rapid kidney clearance (Sun, MM, et al., Bioconjugate chemistry, 2005. 16 (5): p. 1282-1290).
  • toxins were developed by conjugation or fusion to target-specific binding molecules such as antibodies. Initially, toxins without the target-binding domain or variants thereof were chemically bound to IgG using lysine chemistry, but the product was heterogeneous, which was a serious obstacle to development as a therapeutic agent. To overcome the limitations, toxin variants were expressed by fusion to antibody fragments in E. coli . However, it had the disadvantages of short half-life because of its small size and no Fc domain.
  • Immunotoxins include monoclonal antibodies or ligands for target specificity and potent toxins for cell killing effects.
  • an enzyme that induces cytotoxicity in cells is used as an immunotoxin (Blythman, HE, et al., Nature, 1981. 290 (5802): p. 145-146).
  • the original cellular binding domain of the toxin is replaced by the scFv or Fab of the monoclonal antibody to reduce nonspecific binding to normal cells.
  • Recombinant DNA technology provides genetically fused immunotoxins, which show similar cytotoxicity and improved allogeneic products (Pastan, I., et al., Nature Reviews Cancer, 2006. 6 (7): p. 559-565; Alewine, C., R. Hassan, and I. Pastan, The oncologist, 2015. 20 (2): p. 176-185). Since the first successful in vivo immunotoxin study in 1981, several clinical studies of immunotoxins have been conducted. However, there are side effects such as vascular leak syndrome, immunogenicity and hepatotoxicity (Kreitman, RJ, et al., Journal of Clinical Oncology, 2012. 30 (15): p. 1822 -1828), efforts are being made to overcome these limitations.
  • Immunotoxins have been developed for targeted cancer treatment. These chimeric proteins, consisting of a targeting moiety of a monoclonal antibody or ligand that binds to a cancer cell surface receptor, and powerful proteins such as bacteria and plant-derived toxins, have demonstrated a strong ability to kill cancer cells. Chemical conjugation or fusion protein methods have been studied as a means to obtain immunotoxins, but most chemical binding methods produce heterogeneous products, and fused forms of immunotoxins are full-length. ) It has been reported only for antibody fragments rather than antibodies.
  • the present inventors tried to develop an immunotoxin to which a full-length antibody and a toxin are site-specifically coupled, in order to develop an effective immunotoxin for the treatment of cancer, using immunoglobulins and site-specific mutagenesis
  • THIOMAB technology reactive cysteine in monoclonal antibody to produce homogeneous ADC (THIOMAB technology) and the method of introducing non-natural amino acids into proteins derived from Pseudomonas exotoxin A
  • the conjugates produced are homologous ( homogeneous) product, maintaining antigen specificity, confirming that it exhibits cytotoxic activity against cancer cell lines, and completed the present invention.
  • An object of the present invention is to provide a method for producing an immunotoxin to which an immunoglobulin and a toxin are site-specifically bound.
  • Another object of the present invention is to provide a composition for the treatment of cancer comprising the immunotoxin produced by the above production method and the same.
  • the present invention comprises the steps of (a) reducing and re-oxidizing an immunoglobulin variant in which a part of amino acid residues are substituted with cysteine, and then linking with a linker; And (b) provides a method for producing an immunotoxin (immunotoxin) comprising the step of generating an immunotoxin by conjugating the protein PE24 in which the linker-linked immunoglobulin variant and the unnatural amino acid are introduced.
  • the present invention also provides an immunotoxin (immunotoxin) conjugated with a protein PE24 in which an unnatural amino acid is introduced via a linker through an immunoglobulin variant in which a part of amino acid residues is substituted with cysteine.
  • immunotoxin immunotoxin conjugated with a protein PE24 in which an unnatural amino acid is introduced via a linker through an immunoglobulin variant in which a part of amino acid residues is substituted with cysteine.
  • the present invention also provides a composition for the treatment of cancer comprising the immunotoxin.
  • the present invention also provides a method of treating cancer comprising administering the immunotoxin.
  • the present invention also provides the use of said immunotoxin for the treatment of cancer.
  • the present invention also provides the use of said immunotoxin for the manufacture of a medicament for the treatment of cancer.
  • 1 is a schematic diagram of position-specific binding using a linker between PE24 containing an unnatural amino acid and an immunoglobulin variant in which a part of amino acid residues are substituted with cysteine.
  • Figure 2 shows the SDS-PAGE analysis of the immunoglobulin variant screening substituted with cysteine, all data was observed after the reduction and reoxidation process.
  • Lane 1 is Intact Trastuzumab, Q416C, N418C, etc. correspond to the variants described in the Examples.
  • FIG. 3 shows the modified Pseudomonas Exotoxin A (PE24) structure.
  • Figure 4 shows the SDS-PAGE and Western blot analysis for the PE24 expression test.
  • WC is 1% SDS treatment and 95 ° C boiling, then the whole cell lysates
  • Sol is B-PER treatment soluble fraction
  • Ins represents soluble fraction from soluble fraction pellets
  • Peri is periplasmic fraction
  • Sph is spheroplast (periplasmic fraction upper layer) After removing the liquid, it means lysed pellets obtained by using 1% SDS and boiling at 95 °C.
  • FIG. 5A is PE24 purified from E. coli cultured through a periplasmic fraction
  • FIG. 5B is PE24 repurified after thrombin treatment.
  • Lanes 1 to 5 represent elution fractions (Lane 1 *: PE24 after thrombin treatment.
  • Lane 2 * column flow through fraction from Lane 3 * to Lane 5 * was eluted with lysis buffer).
  • FIG. 8 is a SDS-PAGE result showing the conjugation of the Trastuzumab variant with PE24-AzF. Analysis of SDS-PAGE was performed under reduced, reoxidized and non-reduced conditions for PE24 conjugated trastuzumab.
  • Figure 9 shows SDS-PAGE analysis of purified Trastuzumab-PE24 conjugate.
  • Figure 9a is the size exclusion chromatography results, the 21 to 25 fractions were additionally purified by anion exchange chromatography (left), and each fraction was analyzed through SDS-PAGE (right).
  • Figure 9b is anion exchange chromatography results, 21 to 25 fractions of size exclusion chromatography were further purified using anion exchange chromatography (left), and the fraction of each peak was analyzed by SDS-PAGE (right).
  • FIG. 10 is a graph showing evaluation of Her2 / neu binding affinity by indirect ELISA.
  • the 96 well plate was coated with Her2 / neu antigen, and the detection antibody protein L-HRP conjugate was used at a ratio of 1: 500. After the TMB solution treatment, the absorbance signal was measured at 450 nm with a plate reader.
  • MDA-MB-231 Her2 negative
  • MDA-MB-453 Her2 positive cells were incubated with Trastuzumab or Trastuzumab-PE24 for 30 minutes at 4 ° C.
  • Figure 12 shows the binding of trastuzumab-PE24 conjugates to the following Fc receptors measured by ELISA: (a) hC1q, (b) FcRn at pH 6.0, (c) FcRn at pH 7.4, (d) FcrRI, (e) FcrRIIa (H), (f) FcrRIIa (R), (g) FcrRIIb, (h) FcrRIIIa (F), (i) FcrRIIIa (V).
  • hC1q is complement component 1q;
  • FcRn is a neonatal Fc receptor (neonatal Fc receptor);
  • FcrRI is Fc gamma receptor I (Fc gamma receptor I);
  • FcrRIIa (H) is an Fc gamma receptor IIa (H134);
  • FcrRIIa (R) is an Fc gamma receptor IIa (R134);
  • FcrRIIb Fc gamma receptor IIb;
  • FcrRIIIa (F) includes Fc gamma receptor IIIa (F158);
  • FcrRIIIa (V) is Fc gamma receptor IIIa (V158).
  • Figure 14 shows Western blot analysis for ADP-ribosylation activity at each concentration of the conjugate (Lane 1: Wheat embryo extract containing NAD-biotin without PE24, Lane 2: NAD-biotin and PE24 at each concentration) Wheat germ extract, wheat embryo extract containing lane 3: NAD-biotin and Trastuzumab-PE24 conjugate at each concentration.All western blot data were measured by streptavidin-HRP).
  • a and b are Her2 / neu positive cell lines, and c are Her2 / neu negative cell lines. Cytotoxicity was measured by WST-8 assay according to the manufacturer's instructions.
  • Figure 17 shows Western blot analysis for protein inhibition of the Trastuzumab-PE24 conjugate
  • HCC1954 is a Her2 / neu positive cell line
  • MDA-MB-231 is a Her2 / neu negative cell line
  • Lane 1 protein untreated 4 mM AHA
  • Lane 2 protein untreated 4 mM AHA and 100 ⁇ g / ml cycloheximide
  • Lane 3 0.1 nM intact Trastuzumab and 4 mM AHA
  • Lane 4 0.1 nM intact PE24 and 4 mM AHA
  • Lane 5 0.1 nM Trastuzumab-PE24 conjugate and 4 mM AHA.
  • All Western blot data were measured by streptavidin-HRP).
  • Western blot results for GAPDH were used to confirm the amount of protein loading used in the data.
  • Figure 18 shows the conjugation and purification of Cetuximab-HC-N418C and PE24-AzF. It proceeded according to the method of conjugation and purification using trastuzumab.
  • Figure 18a was performed under non-reducing conditions by SDS-PAGE analysis of the reduction and oxidation results of cetuximab.
  • FIG. 18B shows the results of conjugation and size exclusion chromatography (left), and fractions 14 to 23 were analyzed through SDS-PAGE (right).
  • Figure 18c is anion exchange chromatography results, 15 to 19 fractions of size exclusion chromatography were further purified by anion exchange chromatography (left), and analyzed by SDS-PAGE (right). Among them, 6 to 16 fractions are isolated in the form of a single PE24 conjugated to the cetuximab antibody.
  • ADCs Antibody-drug conjugates
  • THIOMAB THIOMAB technology that produces ADCs with fixed stoichiometry by introducing engineered cysteines into the heavy or light chain of the antibody.
  • Immunotoxins are another anti-cancer strategy consisting of targeting moieties such as antibodies of the ligand and cytotoxic toxin proteins.
  • First- and second-generation immunotoxins have had limited use as therapeutic agents because they produce heterogeneous products due to uncontrollable chemical binding.
  • the third generation immunotoxin was developed in E. coli through a fusion protein method. The product showed less heterogeneity than the previous method, but the expression of fused full-length IgG and PE was unsuccessful. As a result, only PE fused with a small antibody fragment was expressed, and showed a short half-life.
  • the object of the present invention is to develop a position-specific binding method for full-length IgG and protein.
  • Antibody-protein conjugation strategies have been proposed based on THIOMAB technology and the method of introducing non-natural amino acids into proteins.
  • biochemical properties and cytotoxicity were evaluated in various cancer cell lines. The results show that the method according to the invention can be applied to the production of various antibody-protein conjugates.
  • the present invention in one aspect, (a) reducing and re-oxidizing an immunoglobulin variant in which a part of the amino acid residue is substituted with cysteine, and then linking with a linker; And (b) conjugating a protein PE24 in which the linker-linked immunoglobulin variant and unnatural amino acid are introduced to generate an immunotoxin.
  • the linker-linked immunoglobulin variant and the non-natural amino acid-introduced protein PE24 may be site-specifically bound by a click reaction.
  • a conjugate in which trastuzumab or cetuximab containing a cysteine mutation and PE24 containing a non-natural amino acid was site-specifically conjugated through a maleimide-PEG-DBCO Linker was prepared.
  • the alkyne group contained in the linker and the azide group contained in the non-natural amino acid are reacted under a conventional click reaction system (Formula 1) to specifically bind trastuzumab or cetuximab with PE24 do.
  • the conjugate exhibited antigen binding affinity and ADP-ribosylation activity similar to Trastuzumab and PE24, respectively, which consisted of a chemical reaction for cysteine manipulation of IgG, binding and binding of non-natural amino acids to PE This means that the binding method does not affect the properties of the conjugated molecule.
  • immunoglobulins is a plasma protein containing an antibody, and there are five types of immunoglobulin (Ig) M, IgD, IgG, IgA and IgE, respectively, heavy chain constant region genes ⁇ , ⁇ , ⁇ , ⁇ , ⁇ .
  • IgG immunoglobulin
  • IgG is mainly used.
  • IgG1, IgG2, IgG3, and IgG4 isotypes of IgG1, IgG2, IgG3, and IgG4, and each structure and functional property are different.
  • IgG forms a very stable structure (molecular weight, 150 kDa) in the shape of a Y made of two heavy chain (50 kDa) proteins and two light chain (25 kDa) proteins.
  • the light chain and heavy chain of an antibody are divided into a variable region having a different amino acid sequence for each antibody and a constant region having the same amino acid sequence.
  • C H1 , H (hinge) In the heavy chain constant region, C H2 , C H3 domain is present. Each domain is composed of two ⁇ -sheets, and intramolecular disulfide bonds are connected between them.
  • the “antibody” refers to an immunoprotein that binds to an antigen and interferes with the action of the antigen or removes the antigen.
  • the concept includes both a polyclonal antibody and a monoclonal antibody, preferably a monoclonal antibody, and may have an intact whole antibody form.
  • the immunoglobulin variant may be characterized in that it is a full-length monoclonal IgG, and may be characterized as being an IgG type monoclonal antibody, but is not limited thereto.
  • the method for producing an immunotoxin according to the present invention includes substituting a part of the amino acid residues of immunoglobulins with cysteine.
  • the immunoglobulin variant is the 61st, 91st, 273th, 303th, 305th amino acids of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 18;
  • the heavy and light chain amino acid sequences of the immunoglobulin variants are shown in Table 1 below.
  • amino acids in bold in Table 1 correspond to residues that can be substituted with cysteine, and the underlined portions indicate hinge regions.
  • the second, 272, 302, and 304 amino acid residues correspond to HC-G174, HC-N204, HC-N386, Q416, and HC-N418, respectively, when represented by the Kabat numbering system, SEQ ID NO: 20
  • the 91th and 93th amino acid residues of the light chain constant region amino acid sequence represented by are LC-T197 and LC-Q199.
  • the trastzumab or cetuximab variant is a heavy chain (HC) -Q416, HC-N418, HC-N386, HC-N204, HC-G174, LC (light chain)- Any amino acid selected from the group consisting of T197 and LC-Q199 was substituted with cysteine.
  • the amino acid residue number of the trastuzumab or cetuximab variant is according to the Kabat numbering system commonly used in the art (Kabat et al., In “of Proteins of Immunological Interest” 5th Ed., US EU Index number as in Department of Health and Human Services, NIH Publication No. 91-3242, 1991).
  • cysteine substitutions were introduced using THIOMAB technology to produce homologous ADCs by introducing reactive cysteines into monoclonal antibodies using site-directed mutagenesis (Junutula , JR, et al., Nature biotechnology, 2008. 26 (8): p. 925-932).
  • the THIOMAB technology has been proposed as a solution to the heterogeneity problem.
  • Engineered cysteine residues can be paired with other natural cysteines or glutathiones formed during the fermentation process, reducing activity.
  • a phage display-based ELISA called PHESELECTOR was developed.
  • trastuzumab-Fab hu4D5Fab was used to construct an unpaired cysteine residue with high activity that does not interfere with antigen binding, and cannot interact with antigen binding.
  • THIOMAB anti-MUC16 THIOMAB-drug conjugate in which alanine residues of the heavy chain were substituted with cysteine residues
  • HC-A114C cysteine residues
  • This method produced a position-specifically coupled ADC (DAR ⁇ 2) compared to the existing anti-MUC16 antibody (DAR ⁇ 3.5), and showed similar anti-tumor activity in in vitro and in vivo studies.
  • THIOMAB-drug conjugates TDCs
  • THIOMAB technology can be used to generate homozygotes with improved therapeutic index and pharmacodynamics compared to conventional ADCs (Junutula, JR, et al., Nature biotechnology, 2008. 26 (8) : p. 925-932; Junutula, JR, et al., Clinical Cancer Research, 2010. 16 (19): p. 4769-4778).
  • the cysteine substitution may be characterized by occurring through a PCR reaction using a primer
  • the primer may be characterized by being represented by any one or more sequences selected from the group consisting of SEQ ID NOs: 1 to 16. have.
  • the method for preparing an immunotoxin according to the present invention includes the step of reducing and reoxidizing an immunoglobulin substituted with cysteine and then binding it with a linker.
  • the reduction may be characterized in that it is made by using tris (2-carboxyethyl) phosphine (TCEP) as a reducing agent.
  • TCEP tris (2-carboxyethyl) phosphine
  • the re-oxidation may be characterized by using dihydroascorbic acid (dhAA) as an oxidizing agent, but is not limited thereto.
  • the linker may be characterized in that it is a maleimide (maleimide) -PEG-DBCO linker.
  • a maleimide-PEG-DBCO using a maleimide-PEG-DBCO, a secondary functional linker containing maleimide and DBCO groups, a Trastuzumab or Cetuximab variant with N418C mutation and a PE24 protein having an azide group Site-specific binding.
  • the method for preparing an immunotoxin according to the present invention includes the step of generating an immunotoxin by conjugating a protein PE24 in which an unnatural amino acid is introduced with the linker-linked immunoglobulin variant.
  • the PE24 may be characterized by deimmunized Pseudomonas Exotoxin A.
  • toxins such as diphtheria toxin (diphtheria toxin), gel Ronin (gelonin), Pseudomonas exotoxin (Pseudomonas exotoxin (PE)) were studied in order to produce immunotoxins.
  • diphtheria toxin diphtheria toxin
  • gel Ronin gelonin
  • Pseudomonas exotoxin Pseudomonas exotoxin (PE)
  • Pseudomonas exotoxin an immunotoxin based on Pseudomonas exotoxin A
  • VLS vascular leak syndrome
  • Pseudomonas aeruginosa is a gram-negative bacterium, and is widely recognized as a human pathogen.
  • Pseudomonas Exotoxin A is the most toxic protein that catalyzes the inactivation of eukaryotic elongation factor 2 (eEF-2) through ADP-ribosylation (Domenighini, M. and R. Rappuoli, Molecular microbiology, 1996 21 (4): p. 667-674).
  • eEF-2 is an essential material for protein synthesis. Therefore, Pseudomonas Exotoxin A induces cell death through protein synthesis inhibition (Hafkemeyer, P., et al., Human gene therapy, 1999. 10 (6): p. 923-934).
  • the PE24 is Pseudomonas Exotoxin ( Pseudomonas Exotoxin)
  • a domain Ia is deleted
  • domain II excluding the purin-cleavable motif is deleted
  • 7 mutations may include a domain III of a toxin, and additionally His 6 tags and a thrombin cleavage site were introduced.
  • PE is expressed as a single 638 amino acid (69 kDa) polypeptide and becomes 613 amino acids (66 kDa) by removing 25 N-terminal amino acids during secretion.
  • PE has three major structural domains (Wedekind, JE, et al., Journal of molecular biology, 2001. 314 (4): p. 823-837 ).
  • PE belongs to the AB toxin family consisting of a receptor binding domain (B subunit) and a cytotoxic active domain (A subunit) (Odumosu, O., et al., Toxins, 2010. 2 (7): p. 1612- 1645).
  • Domain Ia (aa 1-252) is a B subunit responsible for receptor binding. Domain II (aa 253-364) with six consecutive ⁇ -helices is involved in translocation through the cell membrane. Domain III is a catalytic subunit that plays an important role in ADP-ribosyltransferase activity. The function of domain Ib (aa 365-404) is unknown, but part of domain Ib (aa 395-404) is required for catalytic activity of domain III (Kihara, A. and I. Pastan, Bioconjugate chemistry, May 5, 1994) (6): p. 532-538).
  • the toxin's C-terminal lysine (aa 613) is cleaved by the host's carboxypeptidase to generate a REDL sequence capable of binding to the Golgi's KDEL receptor.
  • the toxin domain Ia binds to the cell surface receptor LRP1
  • PE is internalized through clathrin-coated pits.
  • the PE molecule undergoes proteolysis in the furin-cleavable motif of domain II (RHRQPRG, aa 274-280 corresponds to the furin cleavage site) (Ref ogata et al, 1992).
  • Decomposition produces two PE fragments, a 28 kDa (B subunit) N-terminal fragment and a 37 kDa C-terminal fragment (A subunit) (Ogata, M., et al., Journal of Biological Chemistry, 1992. 267 (35): p. 25396-25401). Even after furin cleavage, the two fragments are joined due to the disulfide bonds of C-265 and C-287 surrounding the furin cleavage site. Protein disulfide isomerase (PDI) reduces disulfide bonds, resulting in a 37 kDa PE fragment containing a REDL sequence (aa 609-612) that binds to the KDEL receptor and is transported to the ER in a retrograde manner.
  • PDI Protein disulfide isomerase
  • the 37 kDa fragment reaches the cytoplasm through the ER-related proteolytic pathway (ERAD) and catalyzes ADP ribosylation for eEF-2 which induces protein synthesis inhibition and ultimately cell death (Michalska, M. and P. Wolf, Frontiers in microbiology, 2015. 6).
  • EEF ER-related proteolytic pathway
  • exotoxin A Unlike natural exotoxin A, exotoxin A, developed as an immunotoxin, binds to antibodies or ligands, enabling target-specific binding. Several types of immunotoxins have been developed, but they all kill cancer cells through mechanisms similar to natural toxins. Therefore, it can be used for various cancer treatments.
  • the cell recognition domain of the toxin is replaced by a variable fragment of an antibody in which heavy (VH) and light (VL) chains are linked by peptide linkers or stabilized by disulfide-linked Fv (Shapira, A. and I. Benhar, Toxins, 2010. 2 (11): p. 2519-2583).
  • PE40 (aa 253-613) with domain Ia removed (Kondo, T., et al., Journal of Biological Chemistry, 1988. 263 (19): p. 9470-9475) and additionally domain Ib portion (365- 380) -removed PE38 (aa 253-334 and 381-613) (Theuer, CP, et al., Cancer research, 1993. 53 (2): p. 340-347) was developed for immunotoxin construction.
  • there are various types of PE38-based immunotoxins some of which are undergoing clinical studies (Mazor, R., M. Onda, and I. Pastan, Immunological reviews, 2016. 270 (1): p. 152-164 ).
  • the non-natural amino acid may be characterized as being para-azidophenylalanine (p-azidophenylalanine), but is not limited thereto.
  • UAG, UGA, UAA and AGGA codons belong to the stop codon and quadruplet codon, respectively (O'donoghue, P., et al., FEBS letters, 2012. 586 (21): p. 3931-3937).
  • Another factor is an orthogonal aminoacyl-tRNA synthetase (aaRS) / tRNA pair derived from another species to avoid confusion with endogenous tRNA, aminoacyl tRNA synthetase and amino acids in the host organism. Derived from Methanococcus jannaschil ( Mj ) The pair was used to introduce a non-natural amino acid into the TAG stop codon in E. coli (Wang, L. and PG Schultz, Chemistry & biology, 2001. 8 (9): p. 883-890).
  • Various non-natural amino acids can be site-specifically linked through this technique, which can be applied to various fields such as ADC.
  • the immunoglobulin may be characterized as Trastuzumab or Cetuximab, but is not limited thereto.
  • Herceptin is a brand name of “Trastuzumab”, a monoclonal antibody targeted to the HER2 / neu receptor and used to treat breast cancer.
  • Herceptin and Trastuzumab have the same meaning. Is used.
  • the trastuzumab can be used alone or in combination with other chemotherapy drugs.
  • cetuximab is an epidermal growth factor receptor (EGFR) inhibitor, and is used in the treatment of metastatic colorectal cancer, metastatic non-small cell lung cancer, and head and neck cancer (mouse / human). It is a monoclonal antibody.
  • EGFR epidermal growth factor receptor
  • the present invention relates to an immunotoxin in which an immunoglobulin variant in which a part of amino acid residues is substituted with cysteine is conjugated with a protein PE24 in which unnatural amino acid is introduced via a linker.
  • the immunoglobulin variant is the 61st, 91st, 273th, 303th, 305th amino acids of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 18;
  • the trastzumab or cetuximab variant is a heavy chain (HC) -Q416, HC-N418, HC-N386, HC-N204, HC-G174, LC (light chain)- Any amino acid selected from the group consisting of T197 and LC-Q199 was substituted with cysteine.
  • the linker may be characterized in that it is a maleimide (maleimide) -PEG-DBCO linker.
  • the PE24 may be characterized in that it is deimmunized Pseudomonas Exotoxin A.
  • the domain Ia is deleted from Pseudomonas Exotoxin A, and the domain II is deleted except for the purin-cleavable motif, and 7 mutations (R427A, R456A, D463A, R467A, R490A, R505A, and R538A), including domain III of the toxin, and may further be characterized by introduction of His 6 tags and a thrombin cleavage site.
  • the immunoglobulin may be characterized by being trastuzumab or cetuximab.
  • the present invention relates to a composition for treating cancer comprising the immunotoxin.
  • the present invention relates to a method for treating cancer, characterized in that the immunotoxin is administered to a patient in need of treatment.
  • the present invention relates to the use of said immunotoxin for the treatment of cancer.
  • the present invention relates to the use of said immunotoxin for the manufacture of a medicament for the treatment of cancer.
  • the cancer is, for example, lung cancer, peritoneal cancer, colon cancer, biliary tract tumor, nasopharyngeal cancer, larynx cancer, bronchial cancer, oral cancer, osteosarcoma, gallbladder cancer, kidney cancer, leukemia, bladder cancer, melanoma, brain cancer, glioma, brain tumor, skin cancer, pancreatic cancer, breast cancer , Liver cancer, bone marrow cancer, esophageal cancer, colorectal cancer, stomach cancer, cervical cancer, prostate cancer, ovarian cancer, non-small cell lung cancer, head and neck cancer and rectal cancer may be any one or more selected from the group, more preferably breast cancer, colon cancer, arsenic Cell lung cancer or head and neck cancer.
  • composition for treating cancer of the present invention may further include a pharmaceutically acceptable carrier, and may be formulated together with the carrier.
  • pharmaceutically acceptable carrier refers to a carrier or diluent that does not stimulate the organism and does not inhibit the biological activity and properties of the administered compound.
  • a pharmaceutical carrier that is acceptable in a composition formulated as a liquid solution, as a sterile and biocompatible material, saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary.
  • diluents such as aqueous solutions, suspensions, emulsions, pills, capsules, granules or tablets.
  • composition for treating cancer of the present invention can be applied to any formulation containing it as an active ingredient, and can be prepared as an oral or parenteral formulation.
  • the pharmaceutical formulations of the present invention are oral, rectal, nasal, topical (including cheek and sublingual), subcutaneous, vaginal or parenteral; intramuscular and subcutaneous. And intravenous), or forms suitable for administration by inhalation or insufflation.
  • Formulations for oral administration comprising the composition of the present invention as an active ingredient include, for example, tablets, troches, lozenges, water-soluble or oily suspensions, preparation powders or granules, emulsions, hard or soft capsules, syrups or elixirs. Can be formulated.
  • formulations such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose or gelatin, excipients such as dicalcium phosphate, disintegrants such as corn starch or sweet potato starch, and stearic acid masne It may contain a lubricant such as calcium, calcium stearate, sodium stearyl fumarate, or polyethylene glycol wax, and in the case of capsule formulations, it may further contain a liquid carrier such as fatty oil in addition to the above-mentioned substances.
  • a lubricant such as calcium, calcium stearate, sodium stearyl fumarate, or polyethylene glycol wax
  • a liquid carrier such as fatty oil in addition to the above-mentioned substances.
  • Formulations for parenteral administration comprising the composition of the present invention as an active ingredient include subcutaneous injections, intravenous injections, intramuscular injections, injectable forms, suppository injection methods, or sprays, such as aerosols that enable inhalation through a respiratory system. It can be formulated as.
  • the composition of the present invention may be prepared as a solution or suspension by mixing in water with a stabilizer or a buffer, and formulated for unit administration of ampoules or vials.
  • a composition for rectal administration such as a suppository or enema containing a conventional suppository base such as cocoa butter or other glycerides.
  • When formulated for spraying such as aerosols, propellants and the like can be combined with additives to disperse the concentrated dispersion or wet powder.
  • composition for treating cancer of the present invention may be injected into a patient's body according to a doctor's prescription or according to a well-known method well known in the art, and a single dose is a disease to be treated, the severity of the disease, and a route of administration. , It can be determined by taking into account several related factors such as the patient's weight, age and gender.
  • the mutation of the antibody heavy chain was introduced using a two-step overlap PCR method, and pcDNA 3.1 (+) containing the Trastuzumab gene was used as a template.
  • the nucleotide sequences of the primers used in the production of cysteine variants are shown in Table 2 (Primer Af: Primer of Trastuzumab gene 5'-end part / Primer Br: Primer of Trastuzumab gene 3'-end part / Primer 1 to 7: cysteine substitution Primer for).
  • the restriction enzyme sites used are NotI and BamHI. Primers A and B are generally used for all production, others were used to make cysteine variants as described in Table 2.
  • the method of changing heavy chain Asparagine 418 to cysteine is as follows: First, PCR reaction was performed using primers Af, primers 1-r, primers Br and primers 1-f, and fragments 1 and 2 were generated. . The two fragments were annealed and used directly for PCR amplification with primers A-f and B-r. The assembled product containing the cysteine mutation was cloned into pcDNA 3.1 (+) using NotI and BamHI. Other cysteine variants are produced as described above.
  • amino acid residue number of an antibody herein is in accordance with the Kabat numbering system commonly used in the art (Kabat et al., In “of Proteins of Immunological Interest” 5th Ed., US Department of Health and EU Index number as in Human Services, NIH Publication No. 91-3242, 1991).
  • Antibodies were generated by transient transfection of expression vectors in HEK293F cells.
  • HEK293F cells were cultured in Gibco FreeStyle TM 293 Expression Medium (Thermo Fisher Scientific) to prepare at 1 ⁇ 10 6 cells / ml.
  • Plasmid DNA was mixed in OptiPro-SFM (Thermo Fisher Scientific) with 7.5 ⁇ g / ml polyethylene imine so that the final concentration of each of the heavy and light chains was 1.25 ⁇ g / ml. After 15 minutes of incubation, the mixture was added to the cultured cells, and the cells were cultured for 7 days. The supernatant was obtained by centrifugation and filtration to remove impurities.
  • Antibodies were purified with protein A agarose resin (Repligen) as recommended by the manufacturer, and dialyzed against PBS (pH 7.4) through a PD-10 desalting column (GE healthcare).
  • THIOMAB technology developed to develop ADCs through engineered Cys residues, is used to bind IgG and proteins in a position-specific manner.
  • 7 positions of Trastuzumab for the introduction of Cys residues (Q416, N418, N386, N204 G174 in the heavy chain and T197, Q199 in the light chain) were selected and human embryonic kidney cells 293 Freestyle (HEK293F) was used to express 7 engineered Trastuzumab constructs (HC-Q416C, HC-N418C, HC-N386C, HC-N204C, HC-G174C, LC-T197C, LC-Q199C of HC and LC).
  • the highest production yield was HC-N418C (60 mg / L) (Table 3).
  • Cys residue of the introduced IgG is known to be modified by cysteine or glutathione.
  • each antibody was partially reduced using TCEP, and then re-oxidized using dehydro-ascorbic acid (dhAA).
  • dhAA dehydro-ascorbic acid
  • HC-Q416C, N418C and N386C showed reoxidation yields similar to wild-type Trastuzumab ( Figure 2), and the number of thiol groups per antibody was close to the ideal value of 2 (Table 4).
  • the deimmunized exotoxin 24kDa (PE24) gene was synthesized (bioneer Inc.) and PE24 was cloned into the NdeI and NotI sites of pET21a for modified PE expression.
  • the modified PE coding DNA produced a plasmid with the OmpA secretion signal sequence for the periplasmic fraction at the N-terminus of the construct.
  • the PE24 domain containing the azido group responds to amber codon (TAG) using an orthogonal pair of tRNA (CUA) and tyrosyl-tRNA synthetase derived from Methanococcus jannaschii , and azidophenylalanine (AzF) ).
  • TAG amber codon
  • CUA orthogonal pair of tRNA
  • AzF tyrosyl-tRNA synthetase derived from Methanococcus jannaschii
  • AzF azidophenylalanine
  • the modified PE24 protein is expressed in BL21 cells transformed with three plasmids for the expression of MjAzidophenylalanyl-tRNA synthetase (AzFRs) -MjtRNA orthogonal pair, EcProRS, PE24 protein.
  • AzFRs MjAzidophenylalanyl-tRNA synthetase
  • EcProRS PE24 protein
  • Cells were harvested by centrifugation at 9,300 ⁇ g 4 ° C. for 15 minutes for purification. The harvested cell pellet was resuspended using 0.75M sucrose / 0.1M Tris-HCl (pH 8.0), 10 ⁇ l of lysozyme (50 mg / ml) was added and incubated at 4 ° C. for 15 minutes. After 15 minutes of incubation with 1 mM EDTA, 0.5 M MgCl 2 was added and incubated for 10 minutes.
  • Cells were then recovered by centrifugation (9300 g, 15 min, 4 ° C.), and the supernatant was diluted with 2 ⁇ lysis buffer (50 mM sodium phosphate, 300 mM sodium chloride, 20 mM imidazole, pH 7.4). After incubation with Ni-NTA resin (Qiagen) for 1 hour, the supernatant was loaded into a gravity-flow column, and the column was washed with washing buffer (50 mM sodium phosphate, 300 mM sodium chloride, 40 mM imidazole, pH 7.4), and elution buffer.
  • 2 lysis buffer 50 mM sodium phosphate, 300 mM sodium chloride, 20 mM imidazole, pH 7.4
  • Ni-NTA resin Qiagen
  • thrombin treatment was performed to remove his-tags.
  • the final protein was eluted with lysis buffer using Ni-NTA affinity chromatography.
  • the expression test of modified PE24 in E. coli was performed to determine whether the protein was expressed in periplasm. SDS-PAGE and Western blot results show that the modified PE24 was almost expressed in periplasm (Fig. 4).
  • the first purification of PE24 from cultured E. coli pellets was performed using Ni-NTA affinity chromatography, showing a soluble protein with a production yield of 6 mg / L.
  • the second tablet to remove His 6 tags through thrombin treatment corresponds to an 80% yield with a yield of 4.8 mg / L (FIG. 5).
  • reoxidation buffer 50 mM Tris-HCl, 150 mM NaCl, pH 7.5
  • Reoxidation was performed by adding an oxidizing agent.
  • Cross-chain disulfide bonds were detected through non-reducing SDS-PAGE, and reactivity of the free thiol group was determined through 4-PDS analysis.
  • More than 40-fold maleimide-PEG-DBCO linker (1100 ⁇ M) (Click chemistry Tools) reacted with reoxidized antibody containing reactive cysteine in 25 ° C. PBS (pH 7.4) for 2 hours.
  • the antibody (5 mg / ml) and PE24 (more than 4 times the antibody concentration) were conjugated by reacting at 4 ° C. for 4 hours.
  • the reoxidized HC-N418C was reacted with a DBCO-PEG4-maleimide linker, and then coupled with PE24 through a strain-promoted click reaction between DBCO and azide group.
  • HC-N418 has two binding sites, mainly a single conjugate was formed, and a smaller amount of the double conjugate was observed (lane 5 in FIG. 7). Binding of IgG to PE24 was only detected in the heavy chain where the N418C modification was located, indicating the position-specificity of the binding (lane 8 in FIG. 7).
  • HC-Q416C, HC-N418C, HC-N386C, LCT197C or LC-Q199C trastuzumab variants with PE24-AzF was evaluated.
  • HC-Q416C and HC-N418C variants showed higher conjugation yields than other variants (FIG. 8).
  • Trastuzumab HC-N418C was added to PE24-AzF according to the method described in Example 5 above with a slight modification of the extended time (4 to 16 hours) for the reaction between the two protein molecules to improve yield. Bonded.
  • a two-step purification method consisting of size exclusion and anion exchange chromatography was used to separate the trastuzumab-PE24 conjugate. Unconjugated PE24 and high molecular weight aggregates were removed by size exclusion chromatography and trastuzumab-PE24 was separated according to the number of PEs in the complex using anion exchange chromatography (FIG. 9).
  • trastuzumab-PE24 conjugate was purified by size exclusion chromatography and anion exchange chromatography using Superdex 200 column and Mono-Q column (GE Healthcare).
  • the Superdex 200 column was equilibrated with a running buffer (10mM phosphate, 1M NaCl, pH 7.4).
  • Trastuzumab-PE24 conjugate was injected into the column and eluted with a running buffer to remove unreacted PE24-AzF.
  • trastuzumab-PE24 conjugate and unconjugated trastuzumab were diluted with 50 ml dilution buffer (10 mM phosphate, pH 7.4) and loaded onto a Mono-Q column equilibrated with buffer A (20 mM phosphate, pH 7.0).
  • Trastuzumab-PE24 was eluted with a gradient of Buffer A and Buffer B (20mM phosphate, 1M NaCl, pH 7.0); 10% to 15% buffer B for trastuzumab conjugated with a single PE24; 15% to 20% buffer B for trastuzumab conjugated with two PE24; 20% to 25% Buffer B for 3 PE24 conjugated trastuzumab.
  • Example 7 Evaluation of antigen binding affinity to ErbB2 of Trastuzumab-PE24 conjugate using ELISA
  • Trastuzumab and Trastuzumab-PE24 were compared using the ELISA method.
  • ErbB2 binding by Trastuzumab wildtype, HER N418C-PE24 (1), HER N418C-PE24 (2) was evaluated by indirect ELISA.
  • Microtiter plates were coated with ErbB2 antigen overnight at 4 ° C., coating buffer (PBS pH 7.4, 0.02% sodium azide). After washing, the plates were incubated for 1 hour in blocking buffer (4% skim milk in PBS, pH 7.4) and replaced with 100 ⁇ l diluted samples per well.
  • the concentration range of trastuzumab wild type, HER N418C-PE24 (1) and HER N418C-PE24 (2) was 0-100 nM. After the primary incubation with the sample for 1 hour, the unreacted antibody was removed and washed 3 times with 100 ⁇ l wash buffer (Tris buffed saline with 0.1% Tween 20).
  • the final buffer was replaced with 100 ⁇ L per well with L-HRP conjugate protein diluted 1/500 in blocking buffer, and the plate was incubated for 1 hour at room temperature. Each well was washed 3 times with 100 ⁇ l wash buffer. HRP activity was detected with the TMB substrate kit according to the manufacturer's instructions. Briefly, 100 ⁇ l of the bound TMB substrate and H2O2 solution were added to each well and incubated at room temperature for 90 seconds. To stop the reaction, 20 ⁇ l H 2 SO 4 was added, and the absorbance of each well was measured at 450 nm.
  • Trastuzumab-PE24 The apparent binding affinity of Trastuzumab-PE24 was similar to Trastuzumab (FIG. 10 and Table 5), indicating that binding to PE24 has minimal effect on antibody antigen binding. Since the N418 position located in the CH3 domain is far from the antigen binding site, it is expected that it will not easily interfere with antigen binding. Thus, the retained binding affinity of Trastuzumab-PE24 suggests that the binding strategy used in the present invention does not disturb the structure of Trastuzumab.
  • MDA-MB-231 or MDM-MB-453 cells (4 ⁇ 10 4 ) into RPMI 1640 medium containing 10% FBS and 1% penicillin / streptomycin on a coverslip (Marienfeld) in a 24-well plate. , was grown for 24 hours at 37 ° C. in 5% CO 2 atmosphere.
  • To bind cells cells were treated with 200 mM of Trastuzumab or Trastuzumab-PE24 for 30 minutes at 4 ° C., or incubated for additional 4 hours at 37 ° C. to induce the cell's endocytosis pathway.
  • Trastuzumab or Trastuzumab-PE24 was coated at 0.05 ° C. Na 2 CO 3 pH 9.6 to coat wells of 96-well plates at 4 ° C. overnight. The coated wells were incubated with PBSB at 25 ° C for 1 hour.
  • C1q and FcrRI-His6 were purchased from Abcam and R & D Systems, respectively.
  • FcRn-GST, FcrIIa (H) -GST, FcrIIa (V) -GST, FcrIIb-GST, FcrIIIa (F) -GST and FcrIIIa (V) -GST were prepared.
  • anti-His-HRP conjugate (Sigma-Aldrich) was added to the wells of FcrRI-His6, and anti-GST-HRP conjugate (GE Healthcare) was FcRn-GST, FcrIIa (H) -GST, FcrIIa (V) -GST, FcrIIb-GST, FcrIIIa (F) -GST and FcrIIIa (V) -GST were added, and anti-C1q-HRP conjugate (Sigma-Aldrich) was added to C1q. The plate was incubated at 25 ° C for 1 hour. After washing the wells three times with PBST, TMB substrate was added to each well, and absorbance was measured at 450 nm.
  • the Trastuzumab-PE24 conjugate was shown to interact with the Fc receptor similar to Trastuzumab ( Figure 12 and Table 5). This interaction plays an important role in regulating serum IgG concentration and immune response to pathogens, and thus, can provide additional biological functions to full-length IgG based immunotoxins compared to recombinant immunotoxins with antibody fragments.
  • the conjugation site of HC-N418C is located near the C-terminus of the heavy chain away from the site of interaction with the antigen and Fc receptor.
  • the cytotoxicity of PE24 was based on ADP-ribosylation of EF2 (FIG. 13), and the enzyme activities of PE24 and Trastuzumab-PE24 were compared.
  • EF2-rich wheat germ extract and PE24 or Trastuzumab-PE24 at various concentrations (0.01 nM, 0.1 nM, 1 nM, 10 nM and 50 nM) were incubated with Biotinylated NAD +, and the reaction mixture was analyzed by Western blot method (FIG. 14).
  • the ADP-ribosylation activity of the conjugate was determined by measuring the migration of ADP-ribose from Biotinylated NAD + to EF-2 by Zhang and Snyder's method.
  • PE24 and immunotoxin were diluted to the concentrations indicated in 20 mM Tris-HCl (pH 7.4), 1 mM EDTA, 1 mM DTT, and incubated with wheat embryo extract in the presence of 50 nM biotinylated NAD + for 1 hour at 37 ° C.
  • the reaction was terminated with 5x sodium dodecyl sulfate (SDS) gel loading buffer. Protein was isolated from SDS- 12% (w / v) polyacrylamide gel.
  • Biotinylated EF-2 was detected by Western blotting using a streptavidin-horseradish peroxidase (HRP) conjugate. Western blot images were analyzed using the ChemiDoc XRS system.
  • the Trastuzumab-PE24 conjugate showed activity similar to PE24 (FIG. 14);
  • the molecular weight of EF2 is 95 kDa.
  • Example 11 Viability of cells in vitro in various breast cancer cell lines
  • the cytotoxicity of Trastuzumab-PE24 was evaluated in three breast cancer cell lines (HCC1954, MDA-MB-453, MDA-MB-231).
  • the cytotoxic activity of the conjugate was evaluated using a Cell Counting Kit-8 WST-8 assay (Dojindo Molecular Technologies Inc.,).
  • a Cell Counting Kit-8 WST-8 assay (Dojindo Molecular Technologies Inc.,).
  • breast cancer cell lines were inoculated into 96-well plates at 5.0 x 103 cells / well and cultured for 24 hours. Cells were treated with conjugates of various concentrations and then incubated at 37 ° C for 72 hours. WST-8 analytical reagent was added, 96-well plates were incubated at 37 ° C., and absorbance was measured at 450 nm.
  • HCC1954 and MDA-MB-453 are Her2 / neu positive cell lines
  • MDA-MB-231 are Her2 / neu negative cell lines.
  • Each breast cancer cell line was treated with Trastuzumab, PE24 or Trastuzumab-PE24 conjugates in a concentration range of 6.4 pM to 100 nM for 72 hours, and cell viability was measured.
  • cytotoxicity of Trastuzumab-PE24 was clearly observed between 6.4 pM and 100 nM (Fig. 15 (a) and Fig. 15 (b)), which is RG7787. It is similar to the previously reported value measured using.
  • Her2 / neu negative cell line (MDA-MB-231) did not show sensitivity to Trastuzumab-PE24 up to 100 nM (Fig. 15 (c)). This means that the conjugate does not affect Her2 / neu negative cell viability, and the specificity of Trastuzumab is maintained in the conjugate.
  • the mechanism of action of cytotoxicity of PE24 is the inhibition of protein synthesis by ADP-ribosylation of EF2.
  • bio-orthogonal noncanonical amino acid tagging including tagging of proteins using orthogonal reaction between azide and alkyne groups
  • AHA azidohomoalanine
  • HCC1954 and MDA-MB-231 cells were inoculated into 24-well plates at 5 x 10 4 cells / well and cultured for 24 hours.
  • Trastuzumab, PE24 and Trastuzumab-PE24 conjugates at 1 nM concentration were treated at 37 ° C. for 20 hours.
  • Cells were washed and incubated for 30 min at 37 ° C. in RPMI 1640 medium without methionine.
  • 4 mM azidohomoalanine (AHA) (click chemistry tools) and cycloheximide (Sigma Aldrich) were added to each well and incubated at 37 ° C. for 2 hours.
  • AHA azidohomoalanine
  • cycloheximide Sigma Aldrich
  • Cells were washed in cold PBS-MC (1 mM Magnesium chloride and 0.1 mM calcium chloride) to protect the membrane integrity. Cell pellets were obtained by centrifugation (2000 g, 4 ° C., 10 min.) And dissolved by vortexing after adding 1% (w / v) SDS in PBS. The sample was boiled at 95 ° C for 10 minutes and then centrifuged (14000 RPM, 4 ° C, 10 minutes) to obtain a supernatant. To detect protein synthesis inhibition, a click reaction was performed for 1 hour in the dark.
  • Biotinylated cell lysates were detected by Western blotting using a streptavidin-horseradish peroxidase (HRP) conjugate. Proteins with AHA were labeled with Biotin-alkyne and Western blot images were analyzed using the ChemiDoc XRS system.
  • HRP horseradish peroxidase
  • the negative control (lanes 3 and 4 in FIG. 17) and the positive control (lane 2 in FIG. 17) using a protein synthesis inhibitor of cycloheximide are the results performed in the same manner as previously reported in the HCC1954 and MDA-MB-231 cell lines.
  • Trastuzumab-PE24 conjugate inhibited protein synthesis in Her2 / neu positive cell line (lane 5 in FIG. 17 HCC1954), but activity was significantly lower in Her2 / neu negative cell line (lane 5 in FIG. 17 MDA-MB-231). When considered in conjunction with cell viability data, these results indicate that Trastuzumab-PE24 inhibits protein synthesis and results in cell death.
  • cetuximab-HC-N418 was produced and purified after conjugation with PE24.
  • the conjugation and two-step purification methods described in Example 6 above were used. After reduction, it was confirmed that the internalized disulfide bond of cetuximab was recovered through an oxidation process (FIG. 18A). After conjugation with PE24, only 15 to 19 fractions of the conjugate were purified by size exclusion chromatography (FIG. 18B), which was then purified by anion exchange chromatography to separate and purified according to the number of conjugated PE24 (FIG. 18C). Similar to trastuzumab, conjugates of 6 to 16 fractions conjugated with a single PE24 were also purified when Cetuximab antibody was used.
  • the technique of introducing reactive cysteine into a monoclonal antibody using a site-directed mutagenesis and a method of introducing a non-natural amino acid into a protein, the antigen binding and toxin of the antibody Since it does not affect biochemical properties such as catalytic activity, and can produce allogeneic immunotoxins that are cytotoxic to cancer cell lines, various antibody-protein conjugates can be prepared and also applied as a therapeutic agent for cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to an immunotoxin production method and a cancer treatment composition using same, and more specifically, to an immunotoxin production method, an immunotoxin produced thereby and a cancer treatment composition, the immunotoxin production method comprising the site-specific binding of an immunoglobulin variant substituted by cysteine, to PE24 having an unnatural amino acid inserted therein. According to the present invention, by means of a technique for introducing reactive cysteine in a monoclonal antibody using site-directed mutagenesis, and a method for inserting an unnatural amino acid in a protein, biochemical properties, such as antigen binding by an antibody and catalyst activation by a toxin, are not affected, and an allogeneic immunotoxin exhibiting cytotoxicity to a cancer cell line may be produced, and thus the present invention may enable the production of various antibody-protein conjugates and may be applied for a cancer therapeutic agent.

Description

신규 면역독소 제조방법New immunotoxin manufacturing method
본 발명은 면역독소 제조방법 및 이를 이용한 암 치료용 조성물에 관한 것으로, 더욱 자세하게는 시스테인으로 치환된 면역글로불린 변이체와 비천연 아미노산이 도입된 PE24를 위치-특이적으로 결합시키는 것을 특징으로 하는 면역독소 제조방법, 상기 제조방법에 의해 제조된 면역독소 및 암 치료용 조성물에 관한 것이다.The present invention relates to a method for preparing an immunotoxin and a composition for treating cancer using the same, and more specifically, an immunotoxin characterized in that position-specific binding of an immunoglobulin variant substituted with cysteine to PE24 introduced with a non-natural amino acid is performed. It relates to a manufacturing method, an immunotoxin produced by the above manufacturing method, and a composition for treating cancer.
항체(antibody)는 인체의 방어 시스템의 필수적인 부분이다. B-림프구(B-lymphocyte) 표면에 존재하는 항체는 바이러스, 박테리아, 곰팡이와 같은 유해 물질을 확인하고 공격한다. 이들은 항원-특이적이며 2개의 동일한 중쇄 및 2개의 동일한 경쇄로 구성된다. 중쇄와 경쇄 모두 가변영역(variable region) 및 불변영역(constant region)을 갖는다. 가변영역(VH, VL)이라 불리는 N-말단이 항원 특이성을 담당하고, 불변영역은 중쇄의 3개의 도메인(CH1, CH2, CH3)과 경쇄의 1개의 도메인(CL)을 포함한다. 항원 결합 단편(Fab) 및 불변 단편(Fc)의 두 가지 구조 부분이 있다(도 1). Fab은 VH 및 VL을 포함하며, 항원을 인식하고 병원체를 중화할 수 있고, Fc 영역은 2개의 CH2와 2개의 CH3 도메인으로 구성된다. 중쇄 및 경쇄는 이황화(-S-S-) 결합에 의해 연결되고 비공유 상호작용에 의해 함께 유지된다. 면역글로불린(immunoglobulins)에는 IgG, IgA, IgD, IgM 및 IgE의 5가지 종류가 있으며, 특정 기능에 적합한 특유의 성질을 갖게 하는 구조적 차이가 있다. 이 중 IgG는 치료제에 주로 적용된다. 항체는 항원을 단독으로 파괴할 수는 없지만, 보체, 식세포 또는 NK 세포와 같은 면역계를 통해 표적 항원을 차단하거나 세포를 사멸시킬 수 있다(Wang, W., et al., Journal of pharmaceutical sciences, 2007. 96(1): p. 1-26).Antibodies are an essential part of the body's defense system. Antibodies present on the surface of B-lymphocytes identify and attack harmful substances such as viruses, bacteria and fungi. They are antigen-specific and consist of two identical heavy chains and two identical light chains. Both heavy and light chains have variable regions and constant regions. The N-terminal, called the variable region (V H , V L ), is responsible for antigen specificity, and the constant region comprises three domains (C H1 , C H2 , C H3 ) of the heavy chain and one domain (C L ) of the light chain. Includes. There are two structural parts of the antigen-binding fragment (Fab) and the constant fragment (Fc) (Fig. 1). Fab includes V H and V L , can recognize antigens and neutralize pathogens, and the Fc region consists of 2 CH 2 and 2 CH 3 domains. The heavy and light chains are linked by disulfide (-SS-) bonds and held together by non-covalent interactions. There are five types of immunoglobulins (IgG, IgA, IgD, IgM, and IgE), and there are structural differences that have specific properties suitable for specific functions. Of these, IgG is mainly applied to therapeutic agents. Antibodies cannot destroy antigens alone, but can block target antigens or kill cells through an immune system such as complement, phagocytes or NK cells (Wang, W., et al., Journal of pharmaceutical sciences, 2007 96 (1): p. 1-26).
1975년 하이브리도마 세포로부터 단일클론 항체를 만드는 기술이 개발되었다(Kohler, G. and C. Milstein, Nature, 1975. 256(5517): p. 495-497.). 하이브리도마 세포는 B 세포와 악성 종양 세포를 화학적 화합물과 융합시켜 만들 수 있으며, 이러한 하이브리도마 세포는 영구적으로 배양되어 특정 항체만을 만들 수 있다. 이 기술로 높은 특이성과 친화도를 갖는 고순도 항체를 생산할 수 있지만, 마우스 단일클론 항체의 임상적 성공은 제한적이었다. 비인간 종(마우스 또는 래트)에서 유래되어 높은 면역원성(immunogenicity)의 문제가 있기 때문이다. 비인간 항체와 관련된 문제를 극복하기 위해, 키메릭(chimeric), 인간화(humanized) 및 인간(human) 항체에 관한 유전공학이 발달하였다. 키메릭 항체는 쥐 가변영역 및 인간 불변영역으로 구성되어있다(Morrison, S.L., et al., Proceedings of the National Academy of Sciences, 1984. 81(21): p. 6851-6855). 인간화된 항체는 마우스 상보성 결정영역(complementarity-determining regions; CDRs)을 인간 가변 및 불변 영역에 이식함으로써 생성된다(Jones, P.T., et al., Nature, 1986. 321(6069): p. 522-525). 완전 인간 항체는 파지 디스플레이 기술과 형질전환 마우스를 이용하여 생산할 수 있다. 파지 디스플레이(phage display)는 단백질을 연결하기 위해 박테리오파지를 사용하는 in vitro 스크리닝 기술이다(Gram, H., et al., Journal of immunological methods, 1993. 161(2): p. 169-176). 현재 많은 단일클론 항체가 치료 약물로 승인되었으며, 단일클론 항체에 기초한 치료제가 높은 특이성, 선택성 및 긴 반감기를 갖지만, 많은 암은 단일클론 항체 단독으로 치료하는 것에 내성이 있다(Villamor, N., E. Montserrat, and D. Colomer. Seminars in oncology. 2003 Aug;30(4):424-33). 또한, 단백질의 크기가 커서 고형종양에 침투하기 어렵다. 이러한 한계를 극복하기 위해서 다양한 전략, 예를 들어, 숙주 반응의 변형, 종양 세포를 직접 표적, 세포독성 물질을 전달하는 등의 다양한 전략이 개발되어왔다(Ray, P. and R.R. White, Pharmaceuticals, 2010. 3(6): p. 1761-1778).In 1975, a technique for making monoclonal antibodies from hybridoma cells was developed (Kohler, G. and C. Milstein, Nature, 1975. 256 (5517): p. 495-497.). Hybridoma cells can be made by fusing B cells and malignant tumor cells with a chemical compound, and these hybridoma cells can be permanently cultured to make only specific antibodies. Although this technique can produce high-purity antibodies with high specificity and affinity, the clinical success of mouse monoclonal antibodies has been limited. This is because there is a problem of high immunogenicity derived from a non-human species (mouse or rat). To overcome the problems associated with non-human antibodies, genetic engineering has been developed for chimeric, humanized and human antibodies. Chimeric antibodies are composed of murine variable regions and human constant regions (Morrison, SL, et al., Proceedings of the National Academy of Sciences, 1984. 81 (21): p. 6851-6855). Humanized antibodies are generated by transplanting mouse complementarity-determining regions (CDRs) into human variable and constant regions (Jones, PT, et al., Nature, 1986. 321 (6069): p. 522-525 ). Fully human antibodies can be produced using phage display technology and transgenic mice. Phage display is an in vitro screening technique that uses bacteriophage to link proteins (Gram, H., et al., Journal of immunological methods, 1993. 161 (2): p. 169-176). Many monoclonal antibodies are currently approved as therapeutic drugs, and therapeutics based on monoclonal antibodies have high specificity, selectivity, and long half-life, but many cancers are resistant to treatment with monoclonal antibodies alone (Villamor, N., E. Montserrat, and D. Colomer. Seminars in oncology. 2003 Aug; 30 (4): 424-33). In addition, the large protein size makes it difficult to penetrate solid tumors. To overcome these limitations, various strategies have been developed, for example, modification of host responses, direct targeting of tumor cells, and delivery of cytotoxic substances (Ray, P. and RR White, Pharmaceuticals, 2010). 3 (6): p. 1761-1778).
항체-약물 접합체(Antibody-drug conjugates; ADC)는 정상 세포는 남겨두고 암세포만 죽일 수 있는 이상적인 표적 치료법 중 하나로, 항체가 세포독성 약물과 결합하여 암세포로 전달된다(Alley, S.C., N.M. Okeley, and P.D. Senter, Current opinion in chemical biology, 2010. 14(4): p. 529-537). ADC의 개발이 계속되어 왔으나, ADC 분자의 동종성(homogeneity) 문제가 있다. 이전에 연구된 ADC들은 0 내지 8의 약물 대 항체(DAR) 비율을 가지고 있어, 약물동태(pharmacokinetics)와 in vivo 성능이 서로 달랐다(Hamblett, K.J., et al., Clinical cancer research, 2004. 10(20): p. 7063-7070). ADC를 생산하기 위한 통상적인 결합 방법은 용매가 접근 가능한 라이신(lysine) 또는 사슬 간 이황화 결합이 감소된 시스테인(cysteine)을 사용한다. 약 100개의 라이신 잔기를 포함하는 인간 IgG 때문에, 라이신 화학 결합은 항체 당 0 내지 8개의 접합된 분자를 발생시킨다. 따라서, 다수의 상이한 ADC 종들이 생성 될 수 있다(Wang, L., et al., Protein science, 2005. 14(9): p. 2436-2446). 시스테인 화학적 결합은 4개의 사슬 간 이황화 결합의 환원을 통해 이루어지므로, 8개의 자유 티올(thiol) 기를 링커-약물의 부착 위치로 만든다. 따라서 두 가지 방법으로 생성된 각 접합체는 모두 비접합(unconjugated) 및 과결합(overloaded) 형태로 구성된다. 항원 결합에서 약물-결합 종은 비접합 항체에 의해 방해를 받아 치료 활성이 감소한다. 반면 약물-과결합 종(DAR> 4)은 항체 응집, 낮은 안정성, 빠른 신장 청소율을 가진다(Sun, M.M., et al., Bioconjugate chemistry, 2005. 16(5): p. 1282-1290).Antibody-drug conjugates (ADCs) are one of the ideal targeted therapies that can kill cancer cells without leaving normal cells. Antibodies are combined with cytotoxic drugs and delivered to cancer cells (Alley, SC, NM Okeley, and PD Senter, Current opinion in chemical biology, 2010. 14 (4): p. 529-537). ADC development has been continued, but there is a homogeneity problem of the ADC molecule. Previously studied ADCs had a drug-to-antibody (DAR) ratio of 0 to 8, so pharmacokinetics and in vivo performance were different (Hamblett, KJ, et al., Clinical cancer research, 2004. 10 ( 20): p. 7063-7070). Conventional binding methods for producing ADCs use lysine, which is solvent-accessible, or cysteine with reduced cross-chain disulfide bonds. Because of human IgG containing about 100 lysine residues, lysine chemical binding results in 0 to 8 conjugated molecules per antibody. Thus, a number of different ADC species can be produced (Wang, L., et al., Protein science, 2005. 14 (9): p. 2436-2446). Cysteine chemical bonding is achieved through reduction of the disulfide bonds between the four chains, thus making the eight free thiol groups the linker-drug attachment site. Therefore, each of the conjugates produced by the two methods is composed of both unconjugated and overloaded forms. In antigen binding, drug-binding species are hindered by unconjugated antibodies, reducing therapeutic activity. On the other hand, drug-binding species (DAR> 4) have antibody aggregation, low stability, and rapid kidney clearance (Sun, MM, et al., Bioconjugate chemistry, 2005. 16 (5): p. 1282-1290).
가장 일반적인 생물학적 과정 중 하나인 단백질 합성을 표적으로 할 수 있기 때문에 독소(toxin)는 항체와 같은 타겟-특이적 결합 분자에 접합되거나 융합되어 개발되었다. 초기에 타겟-결합 도메인이 없는 독소 또는 그 변이체는 lysine chemistry를 이용하여 IgG에 화학적으로 결합되었지만, 생성물은 이질적(heterogeneous)이었고, 이는 치료제로서 개발하는 데 심각한 장애물이었다. 한계를 극복하기 위해, 독소 변이체는 E. coli에서 항체 단편에 융합되어 발현되었다. 그러나, 이는 크기가 작고 Fc 도메인이 없기 때문에 짧은 반감기와 같은 단점을 가지고 있었다.Because it can target protein synthesis, one of the most common biological processes, toxins were developed by conjugation or fusion to target-specific binding molecules such as antibodies. Initially, toxins without the target-binding domain or variants thereof were chemically bound to IgG using lysine chemistry, but the product was heterogeneous, which was a serious obstacle to development as a therapeutic agent. To overcome the limitations, toxin variants were expressed by fusion to antibody fragments in E. coli . However, it had the disadvantages of short half-life because of its small size and no Fc domain.
1980년대 초, 많은 연구자들이 면역독소(immunotoxin) 생성을 위해 다양한 식물 및 리신(ricin), 디프테리아 독소(diphtheria toxin), 슈도모나스 외독소(Pseudomonas exotoxin)와 같은 여러 박테리아로부터 단백질 독소에 대한 연구를 수행했다. 면역독소는 표적 특이성을 위한 단일클론 항체 또는 리간드 및 세포 살상 효과를 위한 강력한 독소를 포함한다. 일반적으로 세포 내부에서 세포독성을 유발하는 효소가 독소로서 면역독소에 사용된다(Blythman, H.E., et al., Nature, 1981. 290(5802): p. 145-146). 대부분의 경우 독소의 본래 세포 결합 도메인이 단일클론 항체의 scFv 또는 Fab으로 대체되어 정상 세포와의 비특이적 결합을 감소시킨다. 재조합 DNA 기술이 유전학적으로 융합된 면역독소를 제공하며, 이는 유사한 세포독성 및 개선된 동종성 생성물을 보여준다(Pastan, I., et al., Nature Reviews Cancer, 2006. 6(7): p. 559-565; Alewine, C., R. Hassan, and I. Pastan, The oncologist, 2015. 20(2): p. 176-185). 1981년 최초의 성공적인 in vivo 면역독소 연구 이래로 면역독소에 대한 여러 임상 연구가 수행되었다. 그러나 혈관 누출 증후군(vascular leak syndrome), 면역원성(immunogenicity) 및 간 독성(hepatotoxicity)과 같은 부작용이 있으며(Kreitman, R.J., et al., Journal of Clinical Oncology, 2012. 30(15): p. 1822-1828), 이러한 한계를 극복하기 위한 노력이 시도되고 있다.In the early 1980s, many researchers studied protein toxins from a variety of bacteria, such as various plants and ricin, diphtheria toxin, and Pseudomonas exotoxin, to produce immunotoxins. Immunotoxins include monoclonal antibodies or ligands for target specificity and potent toxins for cell killing effects. In general, an enzyme that induces cytotoxicity in cells is used as an immunotoxin (Blythman, HE, et al., Nature, 1981. 290 (5802): p. 145-146). In most cases, the original cellular binding domain of the toxin is replaced by the scFv or Fab of the monoclonal antibody to reduce nonspecific binding to normal cells. Recombinant DNA technology provides genetically fused immunotoxins, which show similar cytotoxicity and improved allogeneic products (Pastan, I., et al., Nature Reviews Cancer, 2006. 6 (7): p. 559-565; Alewine, C., R. Hassan, and I. Pastan, The oncologist, 2015. 20 (2): p. 176-185). Since the first successful in vivo immunotoxin study in 1981, several clinical studies of immunotoxins have been conducted. However, there are side effects such as vascular leak syndrome, immunogenicity and hepatotoxicity (Kreitman, RJ, et al., Journal of Clinical Oncology, 2012. 30 (15): p. 1822 -1828), efforts are being made to overcome these limitations.
표적 암 치료를 위해 면역독소들이 개발되었다. 암세포 표면 수용체에 결합하는 단일클론 항체 또는 리간드의 표적화 부분(targeting moiety) 및 박테리아, 식물 유래 독소와 같은 강력한 단백질로 구성된 이들 키메릭 단백질은 암세포를 죽이는 강력한 능력을 보여주었다. 화학적 결합(conjugation) 또는 융합(fusion) 단백질 방법은 면역독소를 수득하는 수단으로서 연구되었으나, 대부분의 화학적 결합 방법은 이질적(heterogeneous) 생산물을 만들어 내고, 면역독소의 융합된 형태는 전장(full-length) 항체보다 항체 단편(fragment)에 대해서만 보고되었다.Immunotoxins have been developed for targeted cancer treatment. These chimeric proteins, consisting of a targeting moiety of a monoclonal antibody or ligand that binds to a cancer cell surface receptor, and powerful proteins such as bacteria and plant-derived toxins, have demonstrated a strong ability to kill cancer cells. Chemical conjugation or fusion protein methods have been studied as a means to obtain immunotoxins, but most chemical binding methods produce heterogeneous products, and fused forms of immunotoxins are full-length. ) It has been reported only for antibody fragments rather than antibodies.
이에, 본 발명자들은 암 치료에 효과적인 면역독소 개발을 위하여, 전장 항체 및 독소가 위치-특이적으로 결합된 면역독소를 개발하고자 예의 노력한 결과, 면역글로불린(immunoglobulin)과 위치-특이적 돌연변이 유발을 이용하여 반응성 시스테인을 단일클론항체에 도입함으로써 생성되는 동종성 ADC를 생산하는 기술(THIOMAB 기술) 및 비천연 아미노산을 Pseudomonas exotoxin A로부터 유래된 단백질에 도입하는 방법을 이용하여 결합시켜 생성된 접합체가 동종(homogeneous) 생성물이며, 항원 특이성을 유지하고, 암 세포주에 대한 세포독성 활성을 나타내는 것을 확인하고, 본 발명을 완성하였다.Accordingly, the present inventors tried to develop an immunotoxin to which a full-length antibody and a toxin are site-specifically coupled, in order to develop an effective immunotoxin for the treatment of cancer, using immunoglobulins and site-specific mutagenesis By using reactive cysteine in monoclonal antibody to produce homogeneous ADC (THIOMAB technology) and the method of introducing non-natural amino acids into proteins derived from Pseudomonas exotoxin A, the conjugates produced are homologous ( homogeneous) product, maintaining antigen specificity, confirming that it exhibits cytotoxic activity against cancer cell lines, and completed the present invention.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The above information described in this background section is only for improving the understanding of the background of the present invention, and thus does not include information that forms prior art already known to those of ordinary skill in the art. It may not.
발명의 요약Summary of the invention
본 발명의 목적은 면역글로불린 및 독소가 위치-특이적으로 결합된 면역독소의 제조방법을 제공하는 데 있다.An object of the present invention is to provide a method for producing an immunotoxin to which an immunoglobulin and a toxin are site-specifically bound.
본 발명의 다른 목적은 상기 제조방법에 의해 제조된 면역독소 및 이를 포함하는 암 치료용 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition for the treatment of cancer comprising the immunotoxin produced by the above production method and the same.
상기 목적을 달성하기 위하여, 본 발명은 (a) 아미노산 잔기 일부가 시스테인으로 치환된 면역글로불린(immunoglobulin) 변이체를 환원 및 재산화시킨 후 링커(linker)와 결합시키는 단계; 및 (b) 상기 링커가 결합된 면역글로불린 변이체와 비천연 아미노산(unnatural amino acid)이 도입된 단백질 PE24를 접합시켜 면역독소를 생성하는 단계를 포함하는 면역독소(immunotoxin)의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (a) reducing and re-oxidizing an immunoglobulin variant in which a part of amino acid residues are substituted with cysteine, and then linking with a linker; And (b) provides a method for producing an immunotoxin (immunotoxin) comprising the step of generating an immunotoxin by conjugating the protein PE24 in which the linker-linked immunoglobulin variant and the unnatural amino acid are introduced.
본 발명은 또한, 아미노산 잔기 일부가 시스테인으로 치환된 면역글로불린(immunoglobulin) 변이체가 링커를 매개로 비천연 아미노산(unnatural amino acid)이 도입된 단백질 PE24과 접합된 면역독소(immunotoxin)를 제공한다.The present invention also provides an immunotoxin (immunotoxin) conjugated with a protein PE24 in which an unnatural amino acid is introduced via a linker through an immunoglobulin variant in which a part of amino acid residues is substituted with cysteine.
본 발명은 또한, 상기 면역독소를 포함하는 암 치료용 조성물을 제공한다.The present invention also provides a composition for the treatment of cancer comprising the immunotoxin.
본 발명은 또한, 상기 면역독소를 투여하는 단계를 포함하는 암 치료방법을 제공한다.The present invention also provides a method of treating cancer comprising administering the immunotoxin.
본 발명은 또한, 암 치료를 위한 상기 면역독소의 용도를 제공한다.The present invention also provides the use of said immunotoxin for the treatment of cancer.
본 발명은 또한, 암 치료용 약제 제조를 위한 상기 면역독소의 사용을 제공한다.The present invention also provides the use of said immunotoxin for the manufacture of a medicament for the treatment of cancer.
도 1은 아미노산 잔기 일부가 시스테인으로 치환된 면역글로불린 변이체와, 비천연 아미노산을 포함한 PE24를 링커를 이용해 위치-특이적인 결합에 대한 모식도이다.1 is a schematic diagram of position-specific binding using a linker between PE24 containing an unnatural amino acid and an immunoglobulin variant in which a part of amino acid residues are substituted with cysteine.
도 2는 시스테인으로 치환된 면역글로불린 변이체 screening의 SDS-PAGE 분석을 나타낸 것으로, 모든 데이터는 환원 및 재산화 과정 후에 관찰되었다. Lane 1은 Intact Trastuzumab이며, Q416C, N418C 등은 실시예에 기재된 변이체에 상응한다.Figure 2 shows the SDS-PAGE analysis of the immunoglobulin variant screening substituted with cysteine, all data was observed after the reduction and reoxidation process. Lane 1 is Intact Trastuzumab, Q416C, N418C, etc. correspond to the variants described in the Examples.
도 3은 변형된 Pseudomonas Exotoxin A(PE24) 구조를 나타낸 것이다.Figure 3 shows the modified Pseudomonas Exotoxin A (PE24) structure.
도 4는 PE24 발현 테스트에 대한 SDS-PAGE 및 Western blot 분석을 나타낸 것이다. W.C는 1% SDS 처리 및 95℃ boiling 후 전체 cell lysates을, Sol은 B-PER 처리 soluble fraction을, Ins는 soluble fraction pellets으로부터의 Insoluble fraction을 나타내며, Peri는 periplasmic fraction, Sph는 spheroplast(periplasmic fraction 상층액을 제거한 후 1 % SDS 이용 및 95℃ boiling에 의해 얻은 lysed pellets)를 의미한다.Figure 4 shows the SDS-PAGE and Western blot analysis for the PE24 expression test. WC is 1% SDS treatment and 95 ° C boiling, then the whole cell lysates, Sol is B-PER treatment soluble fraction, Ins represents soluble fraction from soluble fraction pellets, Peri is periplasmic fraction, Sph is spheroplast (periplasmic fraction upper layer) After removing the liquid, it means lysed pellets obtained by using 1% SDS and boiling at 95 ℃.
도 5는 정제된 PE24의 SDS-PAGE 분석을 나타낸 것이다. 도 5A는 periplasmic fraction을 통해 배양된 E.coli에서 정제된 PE24이며, 도 5B는 트롬빈 처리 후 재정제된 PE24이다. Lane 1 내지 5는 elution fraction을 나타낸다(Lane 1*: PE24 after thrombin treatment. Lane 2*: column flow through fraction from Lane 3* to Lane 5* was eluted with lysis buffer).Figure 5 shows the SDS-PAGE analysis of purified PE24. FIG. 5A is PE24 purified from E. coli cultured through a periplasmic fraction, and FIG. 5B is PE24 repurified after thrombin treatment. Lanes 1 to 5 represent elution fractions (Lane 1 *: PE24 after thrombin treatment. Lane 2 *: column flow through fraction from Lane 3 * to Lane 5 * was eluted with lysis buffer).
도 6은 항체-단백질 접합 과정의 개요를 나타낸 것이다.6 shows an overview of the antibody-protein conjugation process.
도 7은 Trastuzumab-PE24 결합의 SDS-PAGE 분석을 나타낸 것이다. 비환원 및 환원 조건에서 SDS-PAGE 분석을 수행하였다(Lane 1: intact Trastuzumab N418C variant, Lane 2: fold TECP를 이용한 환원된 항체, Lane 3: dhAA를 이용한 재산화된 항체, Lane 4: intact PE24, Lane 5: Trastuzumab N418C 및 PE24 접합체 혼합물, Lane 6, 7, 8: 각각 Lane 1, 4, 5의 환원 조건).7 shows SDS-PAGE analysis of Trastuzumab-PE24 binding. SDS-PAGE analysis was performed under non-reducing and reducing conditions (Lane 1: intact Trastuzumab N418C variant, reduced antibody using Lane 2: fold TECP, re-oxidized antibody using Lane 3: dhAA, Lane 4: intact PE24, Lane 5: Trastuzumab N418C and PE24 conjugate mixture, Lane 6, 7, 8: reducing conditions of Lane 1, 4, 5, respectively).
도 8은 Trastuzumab 변이체와 PE24-AzF의 접합을 나타낸 SDS-PAGE 결과이다. SDS-PAGE의 분석은 환원, 재산화 및 PE24 접합 트라스투주맙에 대한 비환원 조건에서 수행되었다.8 is a SDS-PAGE result showing the conjugation of the Trastuzumab variant with PE24-AzF. Analysis of SDS-PAGE was performed under reduced, reoxidized and non-reduced conditions for PE24 conjugated trastuzumab.
도 9는 정제된 Trastuzumab-PE24 접합체의 SDS-PAGE 분석을 나타낸 것이다. 도 9a는 크기 배제 크로마토그래피 결과로, 21 내지 25분획은 추가적으로 음이온 교환 크로마토그래피를 통해 정제되었으며(좌측), 각 분획은 SDS-PAGE를 통해 분석되었다(우측). 도 9b는 음이온 교환 크로마토그래피 결과로, 크기 배제 크로마토그래피의 21 내지 25분획을 음이온 교환 크로마토그래피를 이용하여 추가로 정제하고(좌측), 각 피크의 분획을 SDS-PAGE로 분석하였다(우측).9 shows SDS-PAGE analysis of purified Trastuzumab-PE24 conjugate. Figure 9a is the size exclusion chromatography results, the 21 to 25 fractions were additionally purified by anion exchange chromatography (left), and each fraction was analyzed through SDS-PAGE (right). Figure 9b is anion exchange chromatography results, 21 to 25 fractions of size exclusion chromatography were further purified using anion exchange chromatography (left), and the fraction of each peak was analyzed by SDS-PAGE (right).
도 10은 간접 ELISA에 의한 Her2/neu 결합 친화도 평가를 나타낸 그래프이다. 96 well plate를 Her2/neu 항원으로 코팅하고, 검출 항체 단백질 L-HRP 접합체를 1:500 비율로 사용하였다. TMB 용액 처리 후 플레이트 판독기로 450nm에서 흡광도 신호를 측정하였다.10 is a graph showing evaluation of Her2 / neu binding affinity by indirect ELISA. The 96 well plate was coated with Her2 / neu antigen, and the detection antibody protein L-HRP conjugate was used at a ratio of 1: 500. After the TMB solution treatment, the absorbance signal was measured at 450 nm with a plate reader.
도 11은 Her2 양성 세포에 대한 트라스투주맙(a) 및 트라스투주맙-PE24(b)의 결합 및 흡수를 나타낸 것이다. MDA-MB-231(Her2 음성) 또는 MDA-MB-453(Her2 양성) 세포를 4℃에서 30분 동안 트라스투주맙 또는 트라스투주맙-PE24와 함께 배양하였다. 세포 endocytosis 경로를 유도하기 위해, MDA-MB-453 세포는 37℃에서 4시간 더 배양되었다(최하단). 세포를 항-인간 항체-Alexa 488 및 Hoechst로 염색하고 공초점 형광 현미경을 이용하여 이미지를 얻었다.11 shows the binding and uptake of trastuzumab (a) and trastuzumab-PE24 (b) to Her2 positive cells. MDA-MB-231 (Her2 negative) or MDA-MB-453 (Her2 positive) cells were incubated with Trastuzumab or Trastuzumab-PE24 for 30 minutes at 4 ° C. To induce the cell endocytosis pathway, MDA-MB-453 cells were incubated for another 4 hours at 37 ° C (bottom). Cells were stained with anti-human antibody-Alexa 488 and Hoechst and images were obtained using a confocal fluorescence microscope.
도 12는 ELISA에 의해 측정된 하기의 Fc 수용체에 대한 트라스투주맙-PE24 접합체의 결합을 나타낸 것이다: (a) hC1q, (b) FcRn at pH 6.0, (c) FcRn at pH 7.4, (d) FcrRI, (e) FcrRIIa(H), (f) FcrRIIa(R), (g) FcrRIIb, (h) FcrRIIIa(F), (i) FcrRIIIa(V). hC1q는 보체 성분 1q; FcRn은 신생아 Fc 수용체(neonatal Fc receptor); FcrRI는 Fc 감마 수용체I(Fc gamma receptor I); FcrRIIa(H)는 Fc 감마 수용체 IIa(H134); FcrRIIa(R)는 Fc 감마 수용체 IIa(R134); FcrRIIb: Fc 감마 수용체 IIb; FcrRIIIa(F)는 Fc 감마 수용체 IIIa(F158); FcrRIIIa(V)는 Fc 감마 수용체 IIIa(V158)이다.Figure 12 shows the binding of trastuzumab-PE24 conjugates to the following Fc receptors measured by ELISA: (a) hC1q, (b) FcRn at pH 6.0, (c) FcRn at pH 7.4, (d) FcrRI, (e) FcrRIIa (H), (f) FcrRIIa (R), (g) FcrRIIb, (h) FcrRIIIa (F), (i) FcrRIIIa (V). hC1q is complement component 1q; FcRn is a neonatal Fc receptor (neonatal Fc receptor); FcrRI is Fc gamma receptor I (Fc gamma receptor I); FcrRIIa (H) is an Fc gamma receptor IIa (H134); FcrRIIa (R) is an Fc gamma receptor IIa (R134); FcrRIIb: Fc gamma receptor IIb; FcrRIIIa (F) includes Fc gamma receptor IIIa (F158); FcrRIIIa (V) is Fc gamma receptor IIIa (V158).
도 13은 ADP-ribosylation assay의 scheme을 나타낸 것이다.13 shows the scheme of the ADP-ribosylation assay.
도 14는 각 농도의 접합체에서의 ADP-ribosylation 활성에 대한 Western blot 분석을 나타낸 것이다(Lane 1: PE24 없이 NAD-biotin을 함유하는 밀 배아 추출물, 각 농도의 Lane 2: NAD-biotin 및 PE24를 함유하는 밀 배아 추출물, 각 농도의 Lane 3: NAD-biotin 및 Trastuzumab-PE24 접합체를 함유하는 밀 배아 추출물. 모든 western blot 데이터는 streptavidin-HRP에 의해 측정되었다).Figure 14 shows Western blot analysis for ADP-ribosylation activity at each concentration of the conjugate (Lane 1: Wheat embryo extract containing NAD-biotin without PE24, Lane 2: NAD-biotin and PE24 at each concentration) Wheat germ extract, wheat embryo extract containing lane 3: NAD-biotin and Trastuzumab-PE24 conjugate at each concentration.All western blot data were measured by streptavidin-HRP).
도 15는 유방암 세포주의 세포 생존력을 나타낸 그래프이다. a 및 b는 Her2/neu 양성 세포주이고, c는 Her2/neu 음성 세포주이다. 세포독성은 제조사의 지침에 따라 WST-8 분석법으로 측정하였다.15 is a graph showing the cell viability of a breast cancer cell line. a and b are Her2 / neu positive cell lines, and c are Her2 / neu negative cell lines. Cytotoxicity was measured by WST-8 assay according to the manufacturer's instructions.
도 16은 BONCAT의 도식 구조를 나타낸 것이다.16 shows the schematic structure of BONCAT.
도 17은 Trastuzumab-PE24 접합체의 단백질 억제에 대한 Western blot 분석을 나타낸 것으로, HCC1954는 Her2/neu 양성 세포주이고, MDA-MB-231는 Her2/neu 음성 세포주이다(Lane 1: 단백질 미처리된 4mM AHA, Lane 2: 단백질 미처리된 4mM AHA 및 100μg/ml cycloheximide, Lane 3: 0.1nM intact Trastuzumab 및 4mM AHA, Lane 4: 0.1nM intact PE24 및 4mM AHA, Lane 5: 0.1nM Trastuzumab-PE24 접합체 및 4mM AHA. 모든 western blot 데이터는 streptavidin-HRP에 의해 측정되었다). 데이터에 사용된 단백질 loading 양을 확인하기 위해, GAPDH에 대한 western blot 결과를 이용하였다.Figure 17 shows Western blot analysis for protein inhibition of the Trastuzumab-PE24 conjugate, HCC1954 is a Her2 / neu positive cell line, and MDA-MB-231 is a Her2 / neu negative cell line (Lane 1: protein untreated 4 mM AHA, Lane 2: protein untreated 4 mM AHA and 100 μg / ml cycloheximide, Lane 3: 0.1 nM intact Trastuzumab and 4 mM AHA, Lane 4: 0.1 nM intact PE24 and 4 mM AHA, Lane 5: 0.1 nM Trastuzumab-PE24 conjugate and 4 mM AHA.All Western blot data were measured by streptavidin-HRP). Western blot results for GAPDH were used to confirm the amount of protein loading used in the data.
도 18은 Cetuximab-HC-N418C와 PE24-AzF의 접합과 정제를 나타낸 것이다. Trastuzumab을 이용한 접합 및 정제 방법대로 진행하였다. 도 18a는 cetuximab의 환원과 산화 결과에 대한 SDS-PAGE 분석으로 비환원 조건에서 수행되었다. 도 18b는 접합 및 크기 배제 크로마토그래피 결과로(좌측), 14 내지 23 분획은 SDS-PAGE를 통해 분석되었다(우측). 도 18c는 음이온 교환 크로마토그리피 결과로, 크기 배제 크로마토그래피의 15 내지 19 분획은 추가적으로 음이온 교환 크로마토그래피로 정제하였고(좌측), 이를 SDS-PAGE를 통해 분석하였다(우측). 이 중에서, 6 내지 16 분획은 cetuximab 항체에 단일 PE24가 접합된 형태로 분리된다.Figure 18 shows the conjugation and purification of Cetuximab-HC-N418C and PE24-AzF. It proceeded according to the method of conjugation and purification using trastuzumab. Figure 18a was performed under non-reducing conditions by SDS-PAGE analysis of the reduction and oxidation results of cetuximab. FIG. 18B shows the results of conjugation and size exclusion chromatography (left), and fractions 14 to 23 were analyzed through SDS-PAGE (right). Figure 18c is anion exchange chromatography results, 15 to 19 fractions of size exclusion chromatography were further purified by anion exchange chromatography (left), and analyzed by SDS-PAGE (right). Among them, 6 to 16 fractions are isolated in the form of a single PE24 conjugated to the cetuximab antibody.
발명의 상세한 설명 및 바람직한 구현예Detailed description of the invention and preferred embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. In general, the nomenclature used herein is well known in the art and commonly used.
항체-약물 접합체(ADC)는 수십 년 동안 개발되었지만 이질적 생성물을 생성했다. 이질성(heterogeneity)은 ADC의 치료제로서의 사용을 제한했다. 이 문제를 해결하기 위해 다양한 결합 화학 방법이 개발되었다. 동종(homogeneous) ADC를 생성하려는 시도는 항체의 중쇄 또는 경쇄에 조작된 시스테인을 도입함으로써 고정된 화학양론(stoichiometry)을 갖는 ADC를 생산하는 THIOMAB 기술을 만들어 냈다.Antibody-drug conjugates (ADCs) have been developed for decades, but have produced heterogeneous products. Heterogeneity limited the use of ADCs as therapeutic agents. Various binding chemistry methods have been developed to solve this problem. Attempts to generate homogeneous ADCs have created THIOMAB technology that produces ADCs with fixed stoichiometry by introducing engineered cysteines into the heavy or light chain of the antibody.
면역독소는 리간드의 항체 및 세포독성 독소 단백질과 같은 표적화 부분으로 구성된 또 다른 항암 전략이다. 1 세대 및 2 세대 면역독소는 통제할 수 없는 화학적 결합으로 인해 이질적 생성물을 만들어내므로 치료제로의 사용이 제한되었다. 이러한 문제를 해결하기 위해 3 세대 면역독소는 대장균에서 융합 단백질 방식을 통해 개발되었다. 생성물은 이전의 방법보다 덜 이질성을 보였으나, 융합된 전장 IgG와 PE의 발현이 성공적이지 못했다. 결과적으로 작은 크기의 항체 단편이 융합된 PE만이 발현되었으며, 짧은 반감기를 나타냈다.Immunotoxins are another anti-cancer strategy consisting of targeting moieties such as antibodies of the ligand and cytotoxic toxin proteins. First- and second-generation immunotoxins have had limited use as therapeutic agents because they produce heterogeneous products due to uncontrollable chemical binding. To solve this problem, the third generation immunotoxin was developed in E. coli through a fusion protein method. The product showed less heterogeneity than the previous method, but the expression of fused full-length IgG and PE was unsuccessful. As a result, only PE fused with a small antibody fragment was expressed, and showed a short half-life.
본 발명의 목적은 전장 IgG와 단백질에 대한 위치-특이적 결합 방법을 개발하는 데 있다. THIOMAB 기술과 단백질에 비천연 아미노산을 도입하는 방법을 기초로 한 항체와 단백질의 접합 전략이 제안되었다. 그리고 다양한 암 세포주에서 생화학적 특성과 세포독성을 평가하였다. 그 결과 다양한 항체-단백질 접합체를 제조하는 데 본 발명에 따른 방법이 적용될 수 있음을 보여준다.The object of the present invention is to develop a position-specific binding method for full-length IgG and protein. Antibody-protein conjugation strategies have been proposed based on THIOMAB technology and the method of introducing non-natural amino acids into proteins. In addition, biochemical properties and cytotoxicity were evaluated in various cancer cell lines. The results show that the method according to the invention can be applied to the production of various antibody-protein conjugates.
따라서, 본 발명은 일 관점에서, (a) 아미노산 잔기 일부가 시스테인으로 치환된 면역글로불린(immunoglobulin) 변이체를 환원 및 재산화시킨 후 링커(linker)와 결합시키는 단계; 및 (b) 상기 링커가 결합된 면역글로불린 변이체와 비천연 아미노산(unnatural amino acid)이 도입된 단백질 PE24를 접합시켜 면역독소를 생성하는 단계를 포함하는 면역독소(immunotoxin)의 제조방법에 관한 것이다.Accordingly, the present invention, in one aspect, (a) reducing and re-oxidizing an immunoglobulin variant in which a part of the amino acid residue is substituted with cysteine, and then linking with a linker; And (b) conjugating a protein PE24 in which the linker-linked immunoglobulin variant and unnatural amino acid are introduced to generate an immunotoxin.
본 발명에 있어서, 상기 링커가 결합된 면역글로불린 변이체와 비천연 아미노산이 도입된 단백질 PE24가 클릭 반응(Click reaction)에 의해 위치-특이적(site-specific)으로 결합되는 것을 특징으로 할 수 있다.In the present invention, the linker-linked immunoglobulin variant and the non-natural amino acid-introduced protein PE24 may be site-specifically bound by a click reaction.
본 발명의 일 실시예에서, 시스테인 변이를 포함하는 트라스투주맙 또는 세툭시맙과 비천연 아미노산을 포함하는 PE24를 maleimide-PEG-DBCO Linker를 통해 위치-특이적으로 결합시킨 접합체를 제조하였다. 상기 링커에 포함된 알킨(Alkyne)기와 비천연 아미노산에 포함된 아자이드(Azide)기가 통상적인 클릭 반응 시스템(화학식 1) 하에서 반응하여 위치-특이적으로 트라스투주맙 또는 세툭시맙과 PE24가 접합된다.In one embodiment of the present invention, a conjugate in which trastuzumab or cetuximab containing a cysteine mutation and PE24 containing a non-natural amino acid was site-specifically conjugated through a maleimide-PEG-DBCO Linker was prepared. The alkyne group contained in the linker and the azide group contained in the non-natural amino acid are reacted under a conventional click reaction system (Formula 1) to specifically bind trastuzumab or cetuximab with PE24 do.
[화학식 1][Formula 1]
Figure PCTKR2019011411-appb-I000001
Figure PCTKR2019011411-appb-I000001
본 발명의 일 실시예에서, 접합체는 각각 Trastuzumab 및 PE24와 유사한 항원 결합 친화도 및 ADP-ribosylation 활성을 나타내었으며, 이는 IgG의 시스테인 조작, 비천연 아미노산의 PE로의 결합 및 결합을 위한 화학 반응으로 구성된 결합 방법이 접합된 분자의 특성에 영향을 미치지 않는다는 것을 의미한다.In one embodiment of the present invention, the conjugate exhibited antigen binding affinity and ADP-ribosylation activity similar to Trastuzumab and PE24, respectively, which consisted of a chemical reaction for cysteine manipulation of IgG, binding and binding of non-natural amino acids to PE This means that the binding method does not affect the properties of the conjugated molecule.
본 명세서에서 용어 “면역글로불린(immunoglobulins)”이란 항체를 포함한 혈장 단백으로서, immunoglobulin(Ig)M, IgD, IgG, IgA 및 IgE의 5종류가 있으며, 각각 중쇄 불변영역 유전자 μ, δ, γ, α, ε으로부터 만들어진 중쇄를 포함한다. 항체 기술에서는 주로 IgG가 사용되는데 IgG1, IgG2, IgG3, IgG4의 4종류의 isotype이 있으며, 각각의 구조 및 기능적 특성은 다르다.As used herein, the term “immunoglobulins” is a plasma protein containing an antibody, and there are five types of immunoglobulin (Ig) M, IgD, IgG, IgA and IgE, respectively, heavy chain constant region genes μ, δ, γ, α , ε. In antibody technology, IgG is mainly used. There are four isotypes of IgG1, IgG2, IgG3, and IgG4, and each structure and functional property are different.
IgG는 중쇄(heavy chain, 50 kDa) 단백질 2개와 경쇄(light chain, 25 kDa) 단백질 2개로 만들어진 Y자 모양의 매우 안정된 구조(분자량, 150 kDa)를 형성하고 있다. 항체의 경쇄와 중쇄는 아미노산 서열이 항체들마다 서로 다른 가변영역(variable region)과 아미노산 서열이 같은 불변영역(constant region)으로 나뉘어져 있으며, 중쇄 불변영역에는 CH1, H(hinge), CH2, CH3 도메인이 존재한다. 각 도메인은 두 개의 β-sheet로 구성되어 있고 이들 사이에 intramolecular disulfide bond가 연결되어 있다. 중쇄와 경쇄의 가변영역 두 개가 합쳐져 항원 결합 부위(antigen binding site)가 형성되며, 이 부위는 Y자 모양의 양 팔에 각각 한 개씩 존재하는데 이러한 항원과 결합할 수 있는 부분을 Fab(antibody binding fragment)이라 하고, 항원과 결합하지 못하는 부분을 Fc(crystalizable fragment)라고 한다. Fab과 Fc은 유연한 hinge region으로 연결되어 있다.IgG forms a very stable structure (molecular weight, 150 kDa) in the shape of a Y made of two heavy chain (50 kDa) proteins and two light chain (25 kDa) proteins. The light chain and heavy chain of an antibody are divided into a variable region having a different amino acid sequence for each antibody and a constant region having the same amino acid sequence. In the heavy chain constant region, C H1 , H (hinge), C H2 , C H3 domain is present. Each domain is composed of two β-sheets, and intramolecular disulfide bonds are connected between them. Two variable regions of the heavy chain and the light chain are combined to form an antigen binding site, and each of these sites is present in each of the Y-shaped arms, and Fab (antibody binding fragment) is a part capable of binding to these antigens. ), And the portion that cannot bind to the antigen is called an Fc (crystalizable fragment). Fab and Fc are linked by flexible hinge regions.
상기 “항체”는 항원(antigen)과 결합하여 항원의 작용을 방해하거나, 항원을 제거하는 면역단백질을 의미한다. 다클론 항체(polyclonal antibody) 및 단클론 항체(단일클론 항체, monoclonal antibody)를 모두 포함하는 개념으로, 바람직하게는 단일클론 항체이며, 온전한 전체 항체(whole antibody) 형태를 가질 수 있다.The “antibody” refers to an immunoprotein that binds to an antigen and interferes with the action of the antigen or removes the antigen. The concept includes both a polyclonal antibody and a monoclonal antibody, preferably a monoclonal antibody, and may have an intact whole antibody form.
본 발명에 있어서, 상기 면역글로불린 변이체는 전장(full-length) 단일클론 IgG인 것을 특징으로 할 수 있으며, 바람직하게는 IgG 타입의 단일클론항체인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the immunoglobulin variant may be characterized in that it is a full-length monoclonal IgG, and may be characterized as being an IgG type monoclonal antibody, but is not limited thereto.
본 발명에 따른 면역독소의 제조방법은 면역글로불린(immunoglobulin)의 아미노산 잔기 일부를 시스테인(cysteine)으로 치환하는 것을 포함한다.The method for producing an immunotoxin according to the present invention includes substituting a part of the amino acid residues of immunoglobulins with cysteine.
본 발명에 있어서, 상기 면역글로불린 변이체는 서열번호 18로 표시되는 중쇄 불변영역 아미노산 서열의 61번째, 91번째, 273번째, 303번째, 305번째 아미노산; 서열번호 22로 표시되는 중쇄 불변영역 아미노산 서열의 61번째, 91번째, 272번째, 302번째, 304번째 아미노산; 및 서열번호 20으로 표시되는 경쇄 불변영역 아미노산 서열의 91번째, 93번째 아미노산;으로 구성된 군에서 선택되는 어느 하나의 아미노산이 시스테인으로 치환된 것을 특징으로 할 수 있다.In the present invention, the immunoglobulin variant is the 61st, 91st, 273th, 303th, 305th amino acids of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 18; The amino acids 61, 91, 272, 302, and 304 of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 22; And a light chain constant region amino acid sequence represented by SEQ ID NO: 20, 91 th, 93 th amino acids; any amino acid selected from the group consisting of cysteine may be substituted.
상기 면역글로불린 변이체의 중쇄 및 경쇄 아미노산 서열을 하기 표 1에 나타내었다.The heavy and light chain amino acid sequences of the immunoglobulin variants are shown in Table 1 below.
Figure PCTKR2019011411-appb-T000001
Figure PCTKR2019011411-appb-T000001
Figure PCTKR2019011411-appb-I000002
Figure PCTKR2019011411-appb-I000002
상기 표 1에서 굵은 글씨로 표시한 아미노산은 시스테인으로 치환될 수 있는 잔기에 해당하며, 밑줄로 표시한 부분은 hinge region을 의미한다.The amino acids in bold in Table 1 correspond to residues that can be substituted with cysteine, and the underlined portions indicate hinge regions.
본 발명에 있어서, 상기 서열번호 18로 표시되는 중쇄 불변영역 아미노산 서열의 61번째, 91번째, 273번째, 303번째, 305번째 아미노산 또는 서열번호 22로 표시되는 중쇄 불변영역 아미노산 서열의 61번째, 91번째, 272번째, 302번째, 304번째 아미노산 잔기는 카바트 넘버링 시스템(Kabat numbering system)으로 나타내면, 각각 HC-G174, HC-N204, HC-N386, Q416, HC-N418에 해당하며, 서열번호 20으로 표시되는 경쇄 불변영역 아미노산 서열의 91번째, 93번째 아미노산 잔기는 LC-T197, LC-Q199에 해당한다.In the present invention, the 61st, 91st, 273th, 303th, 305th amino acids of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 18 or the 61st, 91th of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 22 The second, 272, 302, and 304 amino acid residues correspond to HC-G174, HC-N204, HC-N386, Q416, and HC-N418, respectively, when represented by the Kabat numbering system, SEQ ID NO: 20 The 91th and 93th amino acid residues of the light chain constant region amino acid sequence represented by are LC-T197 and LC-Q199.
본 발명의 일 실시예에서, 트라스트주맙 또는 세툭시맙 변이체는 HC(Heavy chain; 중쇄)-Q416, HC-N418, HC-N386, HC-N204, HC-G174, LC(Light chain; 경쇄)-T197 및 LC-Q199로 구성된 군에서 선택되는 어느 하나의 아미노산이 시스테인으로 치환되었다. 상기 트라스트주맙 또는 세툭시맙 변이체의 아미노산 잔기 번호는 당업계에서 통상적으로 사용되는 카바트 넘버링 시스템(Kabat numbering system)에 따른다(Kabat et al., in “of Proteins of Immunological Interest”5th Ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991에서와 같은 EU 지수번호).In one embodiment of the invention, the trastzumab or cetuximab variant is a heavy chain (HC) -Q416, HC-N418, HC-N386, HC-N204, HC-G174, LC (light chain)- Any amino acid selected from the group consisting of T197 and LC-Q199 was substituted with cysteine. The amino acid residue number of the trastuzumab or cetuximab variant is according to the Kabat numbering system commonly used in the art (Kabat et al., In “of Proteins of Immunological Interest” 5th Ed., US EU Index number as in Department of Health and Human Services, NIH Publication No. 91-3242, 1991).
본 발명의 일 실시예에서, 시스테인 치환은 위치-특이적 돌연변이 유발(site-directed mutagenesis)을 이용하여 반응성 시스테인을 단일클론 항체에 도입함으로써 동종성 ADC를 생산하는 THIOMAB 기술을 이용하여 도입시켰다(Junutula, J.R., et al., Nature biotechnology, 2008. 26(8): p. 925-932).In one embodiment of the invention, cysteine substitutions were introduced using THIOMAB technology to produce homologous ADCs by introducing reactive cysteines into monoclonal antibodies using site-directed mutagenesis (Junutula , JR, et al., Nature biotechnology, 2008. 26 (8): p. 925-932).
상기 THIOMAB 기술은 이질성(heterogeneity) 문제에 대한 해결책으로 제안되었다. 조작된 시스테인 잔기는 발효 과정 중에 형성된 다른 천연 시스테인 또는 글루타티온(glutathione)과 쌍을 이룰 수 있어, 활성을 감소시킬 수 있다. 이를 위해 PHESELECTOR라 불리는 파지 디스플레이 기반 ELISA가 개발되었다. 모델 시스템으로 trastuzumab-Fab(hu4D5Fab)을 사용하여 항원 결합을 방해하지 않는 높은 활성을 갖는 unpaired된 시스테인 잔기를 제작하였으며, 항원 결합과 상호작용할 수 없다. 전장 항체에 이 시스템을 적용시키기 위해, 중쇄의 알라닌 잔기가 시스테인 잔기로 치환된(HC-A114C) 항-MUC16 THIOMAB-약물 접합체를 사용하여 원래의 항-MUC16 항체와 항원 결합을 비교하였다. 항-MUC16 mAb와 vcMMAE를 포함한 THIOMAB은 사슬 간 이황화 결합의 환원과 재산화에 의해 생성되었으며, 이 과정은 결합을 위해 두 개의 자유 티올 그룹을 만들었다. 이어서, 이들 자유 티올과 링커의 maleimide 기와의 반응이 수행되었다. 이 방법은 기존의 항-MUC16 항체(DAR ~3.5)와 비교하여 위치-특이적으로 결합된 ADC(DAR ~2)를 만들었고, in vitroin vivo 연구에서 유사한 항 종양 활성을 보였다. Rat와 cynomolgus monkey에서 수행된 동물 모델 연구에서 THIOMAB-drug conjugates(TDCs)는 기존 ADC보다 더 큰 치료 지수를 보였다. 이러한 결과는 THIOMAB 기술이 기존 ADC에 비해 향상된 치료 지수 및 약력(pharmacodynamics)을 갖춘 동종 접합체를 생성하는 데 사용될 수 있음을 의미한다(Junutula, J.R., et al., Nature biotechnology, 2008. 26(8): p. 925-932; Junutula, J.R., et al., Clinical Cancer Research, 2010. 16(19): p. 4769-4778).The THIOMAB technology has been proposed as a solution to the heterogeneity problem. Engineered cysteine residues can be paired with other natural cysteines or glutathiones formed during the fermentation process, reducing activity. To this end, a phage display-based ELISA called PHESELECTOR was developed. As a model system, trastuzumab-Fab (hu4D5Fab) was used to construct an unpaired cysteine residue with high activity that does not interfere with antigen binding, and cannot interact with antigen binding. To apply this system to full-length antibodies, antigen binding was compared to the original anti-MUC16 antibody using an anti-MUC16 THIOMAB-drug conjugate in which alanine residues of the heavy chain were substituted with cysteine residues (HC-A114C). THIOMAB, including anti-MUC16 mAb and vcMMAE, was produced by reduction and reoxidation of interchain disulfide bonds, which created two free thiol groups for binding. Subsequently, the reaction of these free thiols with the maleimide group of the linker was carried out. This method produced a position-specifically coupled ADC (DAR ~ 2) compared to the existing anti-MUC16 antibody (DAR ~ 3.5), and showed similar anti-tumor activity in in vitro and in vivo studies. In animal model studies conducted in rats and cynomolgus monkeys, THIOMAB-drug conjugates (TDCs) showed a greater therapeutic index than conventional ADCs. These results suggest that THIOMAB technology can be used to generate homozygotes with improved therapeutic index and pharmacodynamics compared to conventional ADCs (Junutula, JR, et al., Nature biotechnology, 2008. 26 (8) : p. 925-932; Junutula, JR, et al., Clinical Cancer Research, 2010. 16 (19): p. 4769-4778).
본 발명에 있어서, 상기 시스테인 치환은 프라이머를 이용한 PCR 반응을 통해 일어나는 것을 특징으로 할 수 있으며, 상기 프라이머는 서열번호 1 내지 16으로 구성된 군에서 선택되는 어느 하나 이상의 서열로 표시되는 것을 특징으로 할 수 있다.In the present invention, the cysteine substitution may be characterized by occurring through a PCR reaction using a primer, and the primer may be characterized by being represented by any one or more sequences selected from the group consisting of SEQ ID NOs: 1 to 16. have.
본 발명에 따른 면역독소의 제조방법은 시스테인으로 치환된 면역글로불린을 환원 및 재산화시킨 후 링커(linker)와 결합시키는 단계를 포함한다.The method for preparing an immunotoxin according to the present invention includes the step of reducing and reoxidizing an immunoglobulin substituted with cysteine and then binding it with a linker.
본 발명에 있어서, 상기 환원은 환원제로서 트리스(2-카복시에틸)포스핀(Tris(2-carboxyethyl)phosphine; TCEP)을 사용하여 이루어지는 것을 특징으로 할 수 있다. 또한, 상기 재산화는 산화제로서 디하이드로아스코르빈산(Dehydroascorbic acid; dhAA)을 사용하여 이루어지는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the reduction may be characterized in that it is made by using tris (2-carboxyethyl) phosphine (TCEP) as a reducing agent. In addition, the re-oxidation may be characterized by using dihydroascorbic acid (dhAA) as an oxidizing agent, but is not limited thereto.
본 발명에 있어서, 상기 링커는 말레이미드(maleimide)-PEG-DBCO 링커인 것을 특징으로 할 수 있다. 본 발명의 일 실시예에서, maleimide 및 DBCO 기를 함유하는 이차 작용성 링커(bi-functional linker)인 maleimide-PEG-DBCO를 이용하여, N418C 돌연변이를 갖는 Trastuzumab 또는 Cetuximab 변이체와 azide group을 갖는 PE24 단백질을 위치-특이적으로 결합시켰다.In the present invention, the linker may be characterized in that it is a maleimide (maleimide) -PEG-DBCO linker. In one embodiment of the present invention, using a maleimide-PEG-DBCO, a secondary functional linker containing maleimide and DBCO groups, a Trastuzumab or Cetuximab variant with N418C mutation and a PE24 protein having an azide group Site-specific binding.
본 발명에 따른 면역독소의 제조방법은 상기 링커가 결합된 면역글로불린 변이체와 비천연 아미노산(unnatural amino acid)이 도입된 단백질 PE24를 접합시켜 면역독소를 생성하는 단계를 포함한다.The method for preparing an immunotoxin according to the present invention includes the step of generating an immunotoxin by conjugating a protein PE24 in which an unnatural amino acid is introduced with the linker-linked immunoglobulin variant.
본 발명에 있어서, 상기 PE24는 탈면역화된(deimmunized) 슈도모나스 외독소(Pseudomonas Exotoxin) A인 것을 특징으로 할 수 있다.In the present invention, the PE24 may be characterized by deimmunized Pseudomonas Exotoxin A.
디프테리아 독소(diphtheria toxin), 젤로닌(gelonin), 슈도모나스 외독소(Pseudomonas exotoxin(PE))와 같은 다양한 독소가 면역독소를 생산하기 위해 연구되었다. 그 중 하나인 Pseudomonas exotoxin A에 기초한 면역독소가 항암제 개발을 위해 활발히 연구되었다. Pseudomonas exotoxin A 기반의 면역독소는 부작용으로 경미한 혈관 누출 증후군(VLS)만 보고되었기 때문에, PE-기반 면역독소는 ricin과 같은 다른 면역독소와 달리 임상 개발에 유리하다.A variety of toxins such as diphtheria toxin (diphtheria toxin), gel Ronin (gelonin), Pseudomonas exotoxin (Pseudomonas exotoxin (PE)) were studied in order to produce immunotoxins. One of them, an immunotoxin based on Pseudomonas exotoxin A, has been actively studied for the development of anticancer drugs. Since Pseudomonas exotoxin A-based immunotoxin has only been reported as a minor vascular leak syndrome (VLS) as a side effect, PE-based immunotoxin is advantageous for clinical development unlike other immunotoxins such as ricin.
Pseudomonas aeruginosa는 그람 음성균으로, 인간 병원균으로 널리 퍼져있다. Pseudomonas Exotoxin A는 ADP-ribosylation을 통한 진핵세포 신장 인자 2(eukaryotic elongation factor 2; eEF-2)의 불활성화를 촉매하는 가장 독성이 강한 단백질이다(Domenighini, M. and R. Rappuoli, Molecular microbiology, 1996. 21(4): p. 667-674). eEF-2는 단백질 합성 과정에 필수적인 물질이다. 따라서, Pseudomonas Exotoxin A는 단백질 합성 저해를 통한 세포 사멸을 유도한다(Hafkemeyer, P., et al., Human gene therapy, 1999. 10(6): p. 923-934). Pseudomonas aeruginosa is a gram-negative bacterium, and is widely recognized as a human pathogen. Pseudomonas Exotoxin A is the most toxic protein that catalyzes the inactivation of eukaryotic elongation factor 2 (eEF-2) through ADP-ribosylation (Domenighini, M. and R. Rappuoli, Molecular microbiology, 1996 21 (4): p. 667-674). eEF-2 is an essential material for protein synthesis. Therefore, Pseudomonas Exotoxin A induces cell death through protein synthesis inhibition (Hafkemeyer, P., et al., Human gene therapy, 1999. 10 (6): p. 923-934).
본 발명에 있어서, 상기 PE24는 슈도모나스 외독소(Pseudomonas Exotoxin) A에서 도메인 Ⅰa가 결실되고, 퓨린 절단 부위(furin-cleavable motif)를 제외한 도메인 Ⅱ가 결실되며, 7개의 돌연변이(R427A, R456A, D463A, R467A, R490A, R505A 및 R538A)를 포함하는 독소의 도메인 Ⅲ를 포함하고, 추가로 His 6 tags 및 트롬빈(Thrombin) 절단 부위가 도입된 것을 특징으로 할 수 있다.In the present invention, the PE24 is Pseudomonas Exotoxin ( Pseudomonas Exotoxin) A domain Ia is deleted, domain II excluding the purin-cleavable motif is deleted, 7 mutations (R427A, R456A, D463A, R467A , R490A, R505A and R538A) may include a domain III of a toxin, and additionally His 6 tags and a thrombin cleavage site were introduced.
PE는 단일 638개의 아미노산(69 kDa) 폴리펩티드로 발현되며, 분비 과정에서 N-말단 25개의 아미노산을 제거함으로써 613개의 아미노산(66 kDa)으로 된다. X-선 결정학(X-ray crystallography) 연구에 따르면, PE는 3개의 주요 구조 도메인을 갖고 있다(Wedekind, J.E., et al., Journal of molecular biology, 2001. 314(4): p. 823-837). 또한, PE는 수용체 결합 도메인(B subunit)과 세포독성 활성 도메인(A subunit)으로 구성된 AB 독소 계열에 속한다(Odumosu, O., et al., Toxins, 2010. 2(7): p. 1612-1645). 도메인 Ⅰa(aa 1-252)는 수용체 결합을 담당하는 B subunit이다. 6개의 연속 α-나선을 갖는 도메인 Ⅱ(aa 253-364)는 세포막을 통한 전좌(translocation)에 관여한다. 도메인 Ⅲ는 ADP-ribosyltransferase 활성에서 중요한 역할을 하는 촉매 subunit이다. 도메인 Ⅰb(aa 365-404)의 기능은 알려져 있지 않지만, 도메인 Ⅰb의 일부(aa 395-404)는 도메인 Ⅲ의 촉매 활성에 필요하다(Kihara, A. and I. Pastan, Bioconjugate chemistry, 1994. 5(6): p. 532-538).PE is expressed as a single 638 amino acid (69 kDa) polypeptide and becomes 613 amino acids (66 kDa) by removing 25 N-terminal amino acids during secretion. According to X-ray crystallography studies, PE has three major structural domains (Wedekind, JE, et al., Journal of molecular biology, 2001. 314 (4): p. 823-837 ). In addition, PE belongs to the AB toxin family consisting of a receptor binding domain (B subunit) and a cytotoxic active domain (A subunit) (Odumosu, O., et al., Toxins, 2010. 2 (7): p. 1612- 1645). Domain Ia (aa 1-252) is a B subunit responsible for receptor binding. Domain II (aa 253-364) with six consecutive α-helices is involved in translocation through the cell membrane. Domain III is a catalytic subunit that plays an important role in ADP-ribosyltransferase activity. The function of domain Ib (aa 365-404) is unknown, but part of domain Ib (aa 395-404) is required for catalytic activity of domain III (Kihara, A. and I. Pastan, Bioconjugate chemistry, May 5, 1994) (6): p. 532-538).
PE가 분비되면, 독소의 C-말단 라이신(aa 613)은 숙주의 carboxypeptidase에 의해 절단되어 골지체의 KDEL 수용체에 결합할 수 있는 REDL 서열을 생성한다. 독소의 도메인 Ⅰa가 세포 표면 수용체인 LRP1에 결합한 후, PE는 clathrin-coated pits를 통해 내재화된다. PE 분자는 도메인 Ⅱ의 furin-cleavable motif(aa 274-280인 RHRQPRG가 furin 절단 부위에 해당함)에서 단백질 분해 과정을 거친다(Ref ogata et al, 1992). 분해에 의해 2개의 PE 단편, 28 kDa(B subunit) N-말단 단편과 37 kDa C-말단 단편(A subunit)을 생성한다(Ogata, M., et al., Journal of Biological Chemistry, 1992. 267(35): p. 25396-25401). furin 절단이 일어난 후에도 furin 절단 부위를 둘러싼 C-265와 C-287의 이황화 결합으로 인해 두 개의 단편이 연결된다. 단백질 이황화 이성질화 효소(Protein disulfide isomerase; PDI)는 이황화 결합을 감소시켜, KDEL 수용체에 결합하고 역행 방식으로 ER에 수송되는 REDL 서열(aa 609-612)을 함유한 37 kDa PE 단편을 생성한다. 최종적으로, 37 kDa 단편은 ER-관련 단백질 분해 경로(ERAD)를 통해 세포질에 도달하고, 단백질 합성 저해 및 궁극적으로는 세포 사멸을 유도하는 eEF-2에 대한 ADP ribosylation을 촉매한다(Michalska, M. and P. Wolf, Frontiers in microbiology, 2015. 6).When PE is secreted, the toxin's C-terminal lysine (aa 613) is cleaved by the host's carboxypeptidase to generate a REDL sequence capable of binding to the Golgi's KDEL receptor. After the toxin domain Ia binds to the cell surface receptor LRP1, PE is internalized through clathrin-coated pits. The PE molecule undergoes proteolysis in the furin-cleavable motif of domain II (RHRQPRG, aa 274-280 corresponds to the furin cleavage site) (Ref ogata et al, 1992). Decomposition produces two PE fragments, a 28 kDa (B subunit) N-terminal fragment and a 37 kDa C-terminal fragment (A subunit) (Ogata, M., et al., Journal of Biological Chemistry, 1992. 267 (35): p. 25396-25401). Even after furin cleavage, the two fragments are joined due to the disulfide bonds of C-265 and C-287 surrounding the furin cleavage site. Protein disulfide isomerase (PDI) reduces disulfide bonds, resulting in a 37 kDa PE fragment containing a REDL sequence (aa 609-612) that binds to the KDEL receptor and is transported to the ER in a retrograde manner. Finally, the 37 kDa fragment reaches the cytoplasm through the ER-related proteolytic pathway (ERAD) and catalyzes ADP ribosylation for eEF-2 which induces protein synthesis inhibition and ultimately cell death (Michalska, M. and P. Wolf, Frontiers in microbiology, 2015. 6).
천연 exotoxin A와 달리 면역독소로 개발된 exotoxin A는 항체 또는 리간드에 결합하므로 표적 특이적 결합이 가능하다. 여러 종류의 면역독소가 개발되었으나, 모두 천연 독소와 유사한 작용 메커니즘을 통해 암세포를 죽인다. 따라서 다양한 암 치료에 사용될 수 있다.Unlike natural exotoxin A, exotoxin A, developed as an immunotoxin, binds to antibodies or ligands, enabling target-specific binding. Several types of immunotoxins have been developed, but they all kill cancer cells through mechanisms similar to natural toxins. Therefore, it can be used for various cancer treatments.
자연 그대로의 PE가 전장 항체 또는 수용체 리간드에 화학적으로 결합된 초기 연구(1 세대 면역독소라고도 함)는 정상 세포에 대한 비특이적인 살상의 한계에 도달했다. 독소로부터 세포 결합 도메인을 제거함으로써 독소의 도메인 Ⅰa가 항체의 가변 단편(Fv)으로 대체된 2 세대 면역독소는 동물에 더 잘 적용되는 것으로 나타났다. 그러나, 이들은 또한 첫 번째 면역독소와 같이 화학적 결합에 의해 생산되기 때문에 이질적 생성물이 생성되어 치료적 응용이 제한된다. 재조합 DNA 기술은 3 세대 면역독소를 생산하기 위해 도입되었다. 독소의 세포 인식 도메인은 중쇄(VH) 및 경쇄(VL)가 펩티드 링커로 연결되거나 이황화 결합된 Fv에 의해 안정화되는 항체의 가변 단편으로 대체된다(Shapira, A. and I. Benhar, Toxins, 2010. 2(11): p. 2519-2583).Initial studies (also called first-generation immunotoxins) in which native PE was chemically bound to full-length antibodies or receptor ligands have reached the limit of non-specific killing of normal cells. It has been shown that by removing the cell-binding domain from the toxin, the second generation immunotoxin in which the toxin's domain Ia has been replaced with a variable fragment of the antibody (Fv) is more applicable to animals. However, since they are also produced by chemical bonding, such as the first immunotoxin, heterogeneous products are produced, thereby limiting therapeutic applications. Recombinant DNA technology has been introduced to produce third generation immunotoxins. The cell recognition domain of the toxin is replaced by a variable fragment of an antibody in which heavy (VH) and light (VL) chains are linked by peptide linkers or stabilized by disulfide-linked Fv (Shapira, A. and I. Benhar, Toxins, 2010. 2 (11): p. 2519-2583).
한편, 도메인 Ⅰa가 제거된 PE40(aa 253-613)(Kondo, T., et al., Journal of Biological Chemistry, 1988. 263(19): p. 9470-9475) 및 추가적으로 도메인 Ⅰb 부분(365-380)이 제거된 PE38(aa 253-334 및 381-613)(Theuer, C.P., et al., Cancer research, 1993. 53(2): p. 340-347)은 면역독소 구축을 위해 개발되었다. 특히 PE38 기반 면역독소는 다양한 종류가 있으며, 그 중 일부는 임상 연구가 진행 중이다(Mazor, R., M. Onda, and I. Pastan, Immunological reviews, 2016. 270(1): p. 152-164). 그러나 혈관 누출 증후군과 같은 용량-제한 독성 및 부작용으로 인해 치료 효과가 제한된다(Kreitman, R.J., et al., Journal of Clinical Oncology, 2000. 18(8): p. 1622-1636). 세포질에 도달하는 과정에서 일어날 수 있는 리소좀 분해를 피하기 위해서, 독소의 활성에 중요한 furin 절단 서열 RHRQPRGWEQ를 제외한 대부분의 도메인 Ⅱ를 제거한 결과, 손상되지 않은 PE38과 유사한 세포독성을 보였다(Weldon, J.E., et al., Blood, 2009. 113(16): p. 3792-3800). 임상 연구에 따르면 PE가 박테리아 유래 독소이기 때문에 PE38 기반 면역독소로 치료받은 환자의 92%가 첫 번째 사이클 후 중화 항체를 생성했다(Powell, D.J., et al., The Journal of Immunology, 2007. 179(7): p. 4919-4928). 최근 Roche와 미국 국립 보건원(NIH)은 RG7787이라는 항-mesothelin 면역독소를 개발했다(Hollevoet, K., et al., Molecular cancer therapeutics, 2014. 13(8): p. 2040-2049.). 탈면역화된 면역독소는 인간화된 Fab과 B 세포 및 T 세포 에피토프가 제거된 독소로 구성되며, 동물 모델에서 항 종양 활성이 입증되었다. RG7787은 현재 LMB-100으로 불리며, 악성중피종(malignant mesothelioma)의 치료를 위해 1 상 연구가 진행되고 있다.On the other hand, PE40 (aa 253-613) with domain Ia removed (Kondo, T., et al., Journal of Biological Chemistry, 1988. 263 (19): p. 9470-9475) and additionally domain Ib portion (365- 380) -removed PE38 (aa 253-334 and 381-613) (Theuer, CP, et al., Cancer research, 1993. 53 (2): p. 340-347) was developed for immunotoxin construction. In particular, there are various types of PE38-based immunotoxins, some of which are undergoing clinical studies (Mazor, R., M. Onda, and I. Pastan, Immunological reviews, 2016. 270 (1): p. 152-164 ). However, treatment effects are limited due to dose-limiting toxicity and side effects such as vascular leakage syndrome (Kreitman, R.J., et al., Journal of Clinical Oncology, 2000. 18 (8): p. 1622-1636). In order to avoid lysosomal degradation that may occur in the process of reaching the cytoplasm, most of the domain II except the furin cleavage sequence RHRQPRGWEQ, which is important for toxin activity, was removed, and showed cytotoxicity similar to that of intact PE38 (Weldon, JE, et. al., Blood, 2009. 113 (16): p. 3792-3800). Clinical studies show that since PE is a bacterial derived toxin, 92% of patients treated with PE38-based immunotoxins produce neutralizing antibodies after the first cycle (Powell, DJ, et al., The Journal of Immunology, 2007. 179 ( 7): p. 4919-4928). Recently, Roche and the National Institutes of Health (NIH) have developed an anti-mesothelin immunotoxin called RG7787 (Hollevoet, K., et al., Molecular cancer therapeutics, 2014. 13 (8): p. 2040-2049.). De-immunized immunotoxins consist of humanized Fabs and toxins with B cell and T cell epitopes removed, and anti-tumor activity has been demonstrated in animal models. RG7787 is currently called LMB-100, and a phase 1 study is under way to treat malignant mesothelioma.
본 발명에 있어서, 상기 비천연 아미노산은 파라아지도페닐알라닌(p-azidophenylalanine)인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the non-natural amino acid may be characterized as being para-azidophenylalanine (p-azidophenylalanine), but is not limited thereto.
자연계에는 20개의 아미노산이 있으며, 생물학적 과정에 필요한 단백질 빌딩 블록으로 기능한다. 반대로, 측쇄에 검출 프로브 또는 화학 반응성과 같은 특별한 특성을 갖는 비천연 아미노산(Unnatural acid; UAA)이 있다(Liu, C.C. and P.G. Schultz, Annual review of biochemistry, 2010. 79: p. 413-444). 예를 들면, azide 또는 알킬기를 포함하는 단백질은 click reaction을 통해 다른 분자와 결합될 수 있고(Jewett, J.C. and C.R. Bertozzi, Chemical Society Reviews, 2010. 39(4): p. 1272-1279), 벤조페논기를 포함하는 단백질은 다른 분자와의 광-교차 결합에 사용될 수 있다(Hino, N., et al., Nature methods, 2005. 2(3): p. 201-206). 수많은 비천연 아미노산이 개발되었으며, 50개 이상의 UAA가 여러 분야에서 단백질에 도입되었다(Wals, K. and H. Ovaa, Frontiers in chemistry, 2014. 2). 다른 물질에 접합될 수 있는 기능은 ADC에 적용될 수 있으며(Axup, J.Y., et al., Proceedings of the National Academy of Sciences, 2012. 109(40): p. 16101-16106), 프로브 특성을 갖는 비천연 아미노산은 바이오센서용 진단 시약에 적용될 수 있다(Lee, H.S., et al., Journal of the American Chemical Society, 2009. 131(7): p. 2481-2483). 또한, 비천연 아미노산의 도입을 통해 단백질의 안정성이 증가될 수 있다(Kwik, W., K. Ang, and G. Chen, Journal of Inorganic and Nuclear Chemistry, 1980. 42(2): p. 303-313).There are 20 amino acids in nature, and they function as protein building blocks for biological processes. Conversely, there are unnatural amino acids (UAA) with special properties such as detection probes or chemical reactivity in the side chain (Liu, C.C. and P.G. Schultz, Annual review of biochemistry, 2010. 79: p. 413-444). For example, a protein containing an azide or alkyl group can be combined with other molecules through a click reaction (Jewett, JC and CR Bertozzi, Chemical Society Reviews, 2010. 39 (4): p. 1272-1279), and benzo Proteins comprising a phenone group can be used for photo-crosslinking with other molecules (Hino, N., et al., Nature methods, 2005. 2 (3): p. 201-206). Numerous non-natural amino acids have been developed, and more than 50 UAAs have been introduced into proteins in several fields (Wals, K. and H. Ovaa, Frontiers in chemistry, 2014. 2). The ability to be conjugated to other materials can be applied to ADCs (Axup, JY, et al., Proceedings of the National Academy of Sciences, 2012. 109 (40): p. 16101-16106), and has a probe property ratio Natural amino acids can be applied to diagnostic reagents for biosensors (Lee, HS, et al., Journal of the American Chemical Society, 2009. 131 (7): p. 2481-2483). In addition, protein stability may be increased through the introduction of non-natural amino acids (Kwik, W., K. Ang, and G. Chen, Journal of Inorganic and Nuclear Chemistry, 1980. 42 (2): p. 303- 313).
비천연 아미노산을 포함하는 단백질을 생산하기 위해 E. coli, 효모 및 포유류 세포주를 통한 생산 시스템이 개발되었다. 비천연 아미노산을 단백질에 위치-특이적으로 결합시키기 위해서는 두 가지 인자가 필요하다. 독특한 코돈은 정지 또는 quadruplet 코돈이며(Anderson, J.C., et al., Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(20): p. 7566-7571), 보통 천연 아미노산을 코딩하지 않는다(Chen, G.-F.T. and M. Inouye, Nucleic acids research, 1990. 18(6): p. 1465-1473). UAG, UGA, UAA 및 AGGA 코돈은 각각 정지 코돈 및 quadruplet 코돈에 속한다(O'donoghue, P., et al., FEBS letters, 2012. 586(21): p. 3931-3937). 또 다른 요소는 숙주 생물에서 endogenous tRNA, aminoacyl tRNA synthetase 및 아미노산과의 혼선을 피하기 위해 다른 종으로부터 유래된 orthogonal aminoacyl-tRNA synthetase(aaRS)/tRNA 쌍이다. Methanococcus jannaschil(Mj)에서 유래된
Figure PCTKR2019011411-appb-I000003
쌍은 대장균에서 TAG 정지 코돈에 비천연 아미노산을 도입하기 위해 사용되었다(Wang, L. and P.G. Schultz, Chemistry & biology, 2001. 8(9): p. 883-890). 다양한 비천연 아미노산은 이 기술을 통해 위치-특이적으로 결합될 수 있으며, 이는 ADC와 같은 다양한 분야에 적용될 수 있다.
Production systems through E. coli , yeast and mammalian cell lines have been developed to produce proteins containing non-natural amino acids. Two factors are required to position-specifically bind a non-natural amino acid to a protein. The unique codon is a stop or quadruplet codon (Anderson, JC, et al., Proceedings of the National Academy of Sciences of the United States of America, 2004. 101 (20): p. 7566-7571), usually encoding a natural amino acid (Chen, G.-FT and M. Inouye, Nucleic acids research, 1990. 18 (6): p. 1465-1473). UAG, UGA, UAA and AGGA codons belong to the stop codon and quadruplet codon, respectively (O'donoghue, P., et al., FEBS letters, 2012. 586 (21): p. 3931-3937). Another factor is an orthogonal aminoacyl-tRNA synthetase (aaRS) / tRNA pair derived from another species to avoid confusion with endogenous tRNA, aminoacyl tRNA synthetase and amino acids in the host organism. Derived from Methanococcus jannaschil ( Mj )
Figure PCTKR2019011411-appb-I000003
The pair was used to introduce a non-natural amino acid into the TAG stop codon in E. coli (Wang, L. and PG Schultz, Chemistry & biology, 2001. 8 (9): p. 883-890). Various non-natural amino acids can be site-specifically linked through this technique, which can be applied to various fields such as ADC.
본 발명에 있어서, 상기 면역글로불린은 트라스투주맙(Trastuzumab) 또는 세툭시맙(Cetuximab)인 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the immunoglobulin may be characterized as Trastuzumab or Cetuximab, but is not limited thereto.
본 발명에서 허셉틴(Herceptin)은 HER2/neu 수용체를 타겟으로 하고 유방암 치료에 사용되는 단일클론 항체인 “트라스투주맙(Trastuzumab)”의 브랜드명으로, 본 발명에서 허셉틴과 트라스투주맙은 동일한 의미로 사용된다. 본 발명에 있어서, 상기 트라스투주맙은 단독으로 또는 다른 화학 요법 약물과 함께 사용될 수 있다.In the present invention, Herceptin is a brand name of “Trastuzumab”, a monoclonal antibody targeted to the HER2 / neu receptor and used to treat breast cancer. In the present invention, Herceptin and Trastuzumab have the same meaning. Is used. In the present invention, the trastuzumab can be used alone or in combination with other chemotherapy drugs.
본 발명에서 “세툭시맙(Cetuximab)”은 표피성장인자수용체(epidermal growth factor receptor, EGFR) 억제제로, 전이성 대장암, 전이성 비소세포폐암 및 두경부암의 치료에 사용되는 키메릭(mouse/human) 단일클론 항체이다.In the present invention, “cetuximab” is an epidermal growth factor receptor (EGFR) inhibitor, and is used in the treatment of metastatic colorectal cancer, metastatic non-small cell lung cancer, and head and neck cancer (mouse / human). It is a monoclonal antibody.
본 발명은 다른 관점에서, 아미노산 잔기 일부가 시스테인으로 치환된 면역글로불린(immunoglobulin) 변이체가 링커를 매개로 비천연 아미노산(unnatural amino acid)이 도입된 단백질 PE24과 접합되어 있는 면역독소(immunotoxin)에 관한 것이다.In another aspect, the present invention relates to an immunotoxin in which an immunoglobulin variant in which a part of amino acid residues is substituted with cysteine is conjugated with a protein PE24 in which unnatural amino acid is introduced via a linker. will be.
본 발명에 있어서, 상기 면역글로불린 변이체는 서열번호 18로 표시되는 중쇄 불변영역 아미노산 서열의 61번째, 91번째, 273번째, 303번째, 305번째 아미노산; 서열번호 22로 표시되는 중쇄 불변영역 아미노산 서열의 61번째, 91번째, 272번째, 302번째, 304번째 아미노산; 및 서열번호 20으로 표시되는 경쇄 불변영역 아미노산 서열의 91번째, 93번째 아미노산;으로 구성된 군에서 선택되는 어느 하나의 아미노산이 시스테인으로 치환된 것을 특징으로 할 수 있다.In the present invention, the immunoglobulin variant is the 61st, 91st, 273th, 303th, 305th amino acids of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 18; The amino acids 61, 91, 272, 302, and 304 of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 22; And a light chain constant region amino acid sequence represented by SEQ ID NO: 20, 91 th, 93 th amino acids; any amino acid selected from the group consisting of cysteine may be substituted.
본 발명의 일 실시예에서, 트라스트주맙 또는 세툭시맙 변이체는 HC(Heavy chain; 중쇄)-Q416, HC-N418, HC-N386, HC-N204, HC-G174, LC(Light chain; 경쇄)-T197 및 LC-Q199로 구성된 군에서 선택되는 어느 하나의 아미노산이 시스테인으로 치환되었다.In one embodiment of the invention, the trastzumab or cetuximab variant is a heavy chain (HC) -Q416, HC-N418, HC-N386, HC-N204, HC-G174, LC (light chain)- Any amino acid selected from the group consisting of T197 and LC-Q199 was substituted with cysteine.
본 발명에 있어서, 상기 링커는 말레이미드(maleimide)-PEG-DBCO 링커인 것을 특징으로 할 수 있다.In the present invention, the linker may be characterized in that it is a maleimide (maleimide) -PEG-DBCO linker.
본 발명에 있어서, 상기 PE24는 탈면역화된(deimmunized) 슈도모나스 외독소(Pseudomonas Exotoxin) A인 것을 특징으로 할 수 있다.In the present invention, the PE24 may be characterized in that it is deimmunized Pseudomonas Exotoxin A.
상기 PE24는 슈도모나스 외독소(Pseudomonas Exotoxin) A에서 도메인 Ⅰa가 결실되고, 퓨린 절단 부위(furin-cleavable motif)를 제외한 도메인 Ⅱ가 결실되며, 7개의 돌연변이(R427A, R456A, D463A, R467A, R490A, R505A 및 R538A)를 포함하는 독소의 도메인 Ⅲ를 포함하고, 추가로 His 6 tags 및 트롬빈(Thrombin) 절단 부위가 도입된 것을 특징으로 할 수 있다.In the PE24, the domain Ia is deleted from Pseudomonas Exotoxin A, and the domain II is deleted except for the purin-cleavable motif, and 7 mutations (R427A, R456A, D463A, R467A, R490A, R505A, and R538A), including domain III of the toxin, and may further be characterized by introduction of His 6 tags and a thrombin cleavage site.
본 발명에 있어서, 상기 면역글로불린은 트라스투주맙(Trastuzumab) 또는 세툭시맙(Cetuximab)인 것을 특징으로 할 수 있다.In the present invention, the immunoglobulin may be characterized by being trastuzumab or cetuximab.
본 발명은 또 다른 관점에서, 상기 면역독소를 포함하는 암 치료용 조성물에 관한 것이다.In another aspect, the present invention relates to a composition for treating cancer comprising the immunotoxin.
본 발명은 또 다른 관점에서, 상기 면역독소를 치료가 필요한 환자에게 투여하는 것을 특징으로 하는 암 치료방법에 관한 것이다.In another aspect, the present invention relates to a method for treating cancer, characterized in that the immunotoxin is administered to a patient in need of treatment.
본 발명은 또 다른 관점에서, 암 치료를 위한 상기 면역독소의 용도에 관한 것이다.In another aspect, the present invention relates to the use of said immunotoxin for the treatment of cancer.
본 발명은 또 다른 관점에서, 암 치료용 약제 제조를 위한 상기 면역독소의 사용에 관한 것이다.In another aspect, the present invention relates to the use of said immunotoxin for the manufacture of a medicament for the treatment of cancer.
상기 암은 예컨대 폐암, 복막암, 결장암, 담도 종양, 비인두암, 후두암, 기관지암, 구강암, 골육종, 담낭암, 신장암, 백혈병, 방광암, 흑색종, 뇌암, 신경 교종, 뇌종양, 피부암, 췌장암, 유방암, 간암, 골수암, 식도암, 대장암, 위암, 자궁경부암, 전립선암, 난소암, 비소세포폐암, 두경부암 및 직장암으로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있으며, 보다 바람직하게는 유방암, 대장암, 비소세포폐암 또는 두경부암일 수 있다.The cancer is, for example, lung cancer, peritoneal cancer, colon cancer, biliary tract tumor, nasopharyngeal cancer, larynx cancer, bronchial cancer, oral cancer, osteosarcoma, gallbladder cancer, kidney cancer, leukemia, bladder cancer, melanoma, brain cancer, glioma, brain tumor, skin cancer, pancreatic cancer, breast cancer , Liver cancer, bone marrow cancer, esophageal cancer, colorectal cancer, stomach cancer, cervical cancer, prostate cancer, ovarian cancer, non-small cell lung cancer, head and neck cancer and rectal cancer may be any one or more selected from the group, more preferably breast cancer, colon cancer, arsenic Cell lung cancer or head and neck cancer.
본 발명의 암 치료용 조성물은 약학적으로 허용 가능한 담체를 추가로 포함할 수 있으며, 담체와 함께 제제화 될 수 있다.The composition for treating cancer of the present invention may further include a pharmaceutically acceptable carrier, and may be formulated together with the carrier.
본 발명에서 용어, “약학적으로 허용 가능한 담체”란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다.The term "pharmaceutically acceptable carrier" in the present invention refers to a carrier or diluent that does not stimulate the organism and does not inhibit the biological activity and properties of the administered compound. As a pharmaceutical carrier that is acceptable in a composition formulated as a liquid solution, as a sterile and biocompatible material, saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary. In addition, diluents, dispersants, surfactants, binders, and lubricants may be additionally added to formulate into injectable formulations such as aqueous solutions, suspensions, emulsions, pills, capsules, granules or tablets.
본 발명의 상기 암 치료용 조성물은 이를 유효성분으로 포함하는 어떠한 제형으로도 적용가능하며, 경구용 또는 비경구용 제형으로 제조할 수 있다. 본 발명의 약학적 제형은 구강(oral), 직장(rectal), 비강(nasal), 국소(topical; 볼 및 혀 밑을 포함), 피하, 질(vaginal) 또는 비경구(parenteral; 근육내, 피하 및 정맥내를 포함) 투여에 적당한 것 또는 흡입(inhalation) 또는 주입(insufflation)에 의한 투여에 적당한 형태를 포함한다.The composition for treating cancer of the present invention can be applied to any formulation containing it as an active ingredient, and can be prepared as an oral or parenteral formulation. The pharmaceutical formulations of the present invention are oral, rectal, nasal, topical (including cheek and sublingual), subcutaneous, vaginal or parenteral; intramuscular and subcutaneous. And intravenous), or forms suitable for administration by inhalation or insufflation.
본 발명의 조성물을 유효성분으로 포함하는 경구 투여용 제형으로는, 예를 들어 정제, 트로키제, 로렌지, 수용 성 또는 유성현탁액, 조제분말 또는 과립, 에멀젼, 하드 또는 소프트 캡슐, 시럽 또는 엘릭시르제로 제제화할 수 있다. 정제 및 캡슐 등의 제형으로 제제화하기 위해, 락토오스, 사카로오스, 솔비톨, 만니톨, 전분, 아밀로펙틴, 셀룰로오스 또는 젤라틴과 같은 결합제, 디칼슘 포스페이트와 같은 부형제, 옥수수 전분 또는 고구마 전분과 같은 붕괴제, 스테아르산 마스네슘, 스테아르산 칼슘, 스테아릴푸마르산 나트륨 또는 폴리에틸렌글리콜 왁스와 같은 윤활유를 포함할 수 있으며, 캡슐제형의 경우 상기 언급한 물질 외에도 지방유와 같은 액체 담체를 더 함유할 수 있다.Formulations for oral administration comprising the composition of the present invention as an active ingredient include, for example, tablets, troches, lozenges, water-soluble or oily suspensions, preparation powders or granules, emulsions, hard or soft capsules, syrups or elixirs. Can be formulated. For formulation into tablets and capsules, formulations such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose or gelatin, excipients such as dicalcium phosphate, disintegrants such as corn starch or sweet potato starch, and stearic acid masne It may contain a lubricant such as calcium, calcium stearate, sodium stearyl fumarate, or polyethylene glycol wax, and in the case of capsule formulations, it may further contain a liquid carrier such as fatty oil in addition to the above-mentioned substances.
본 발명의 조성물을 유효성분으로 포함하는 비경구 투여용 제형으로는, 피하주사, 정맥주사 또는 근육내 주사 등의 주사용 형태, 좌제 주입방식 또는 호흡기를 통하여 흡입이 가능하도록 하는 에어로졸제 등 스프레이용으로 제제화할 수 있다. 주사용 제형으로 제제화하기 위해서는 본 발명의 조성물을 안정제 또는 완충제와 함께 물에서 혼합하여 용액 또는 현탁액으로 제조하고, 이를 앰플 또는 바이알의 단위 투여용으로 제제화할 수 있다. 좌제로 주입하기 위해서는, 코코아버터 또는 다른 글리세라이드 등 통상의 좌약 베이스를 포함하는 좌약 또는 관장제와 같은 직장투여용 조성물로 제제화할 수 있다. 에어로졸제 등의 스프레이용으로 제형화하는 경우, 수분산된 농축물 또는 습윤 분말이 분산되도록 추진제 등이 첨가제와 함께 배합될 수 있다.Formulations for parenteral administration comprising the composition of the present invention as an active ingredient include subcutaneous injections, intravenous injections, intramuscular injections, injectable forms, suppository injection methods, or sprays, such as aerosols that enable inhalation through a respiratory system. It can be formulated as. In order to formulate an injectable formulation, the composition of the present invention may be prepared as a solution or suspension by mixing in water with a stabilizer or a buffer, and formulated for unit administration of ampoules or vials. To inject into a suppository, it can be formulated into a composition for rectal administration such as a suppository or enema containing a conventional suppository base such as cocoa butter or other glycerides. When formulated for spraying, such as aerosols, propellants and the like can be combined with additives to disperse the concentrated dispersion or wet powder.
본 발명의 암 치료용 조성물은 의사의 처방에 따라, 또는 당 분야에 널리 알려진 공지의 방법에 따라 환자의 생체내로 주입될 수 있으며, 1회 투여량은 치료하고자 하는 질환, 질환의 중증도, 투여 경로, 환자의 체중, 연령 및 성별 등의 여러 관련 인자를 고려하여 결정될 수 있다.The composition for treating cancer of the present invention may be injected into a patient's body according to a doctor's prescription or according to a well-known method well known in the art, and a single dose is a disease to be treated, the severity of the disease, and a route of administration. , It can be determined by taking into account several related factors such as the patient's weight, age and gender.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.
실시예 1: 세포주(Cell lines) 준비Example 1: Cell line preparation
10% FBS, 2mM L-glutamine, 100 U/mL Penicillin-Streptomycin을 포함하는 RPMI-1640(Hyclone, Europe Ltd.)에서 유방암 세포주인 HCC1954, MDA-MB-453 및 MDA-MB-231(생물자원센터 Korean Collection for Type Cultures, KCTC)를 배양하였다. 세포들을 37℃에서 5% CO2를 포함한 humidified atmosphere에서 성장시켰다. 항체 생산을 위해 HEK293F cells을 37℃에서 8% CO2를 포함한 humidified atmosphere에서 유지시키고, Gibco FreeStyle™ 293 Expression Medium(Thermo Fisher Scientific)에서 성장시켰다.Breast cancer cell lines HCC1954, MDA-MB-453, and MDA-MB-231 (RPC) from RPMI-1640 (Hyclone, Europe Ltd.) containing 10% FBS, 2 mM L-glutamine, and 100 U / mL Penicillin-Streptomycin Korean Collection for Type Cultures (KCTC). Cells were grown at 37 ° C. in a humidified atmosphere containing 5% CO 2 . For antibody production, HEK293F cells were maintained in a humidified atmosphere containing 8% CO 2 at 37 ° C. and grown in Gibco FreeStyle ™ 293 Expression Medium (Thermo Fisher Scientific).
실시예 2: 시스테인 변이체(아미노산 잔기 일부가 시스테인으로 치환된 면역글로불린 변이체) 제작Example 2: Construction of cysteine variants (immunoglobulin variants in which amino acid residues are partially substituted with cysteine)
실시예 2-1: 시스테인 변이체 제작Example 2-1: Cysteine variant production
항체 중쇄의 돌연변이는 two-step overlap PCR 방법을 이용하여 도입되었으며, Trastuzumab 유전자를 포함하는 pcDNA 3.1(+)을 주형으로 사용하였다. 시스테인 변이체 제작에 사용된 프라이머의 뉴클레오타이드 서열을 표 2에 나타내었다(Primer A-f: Trastuzumab 유전자 5’-end 부분의 프라이머 / Primer B-r: Trastuzumab 유전자 3’-end 부분의 프라이머 / Primer 1~7: cysteine 치환을 위한 프라이머). 사용된 제한효소 부위는 NotI 및 BamHI이다. 프라이머 A와 B는 일반적으로 모든 생산에 사용되며, 다른 것들은 표 2에 기재된 바와 같이 시스테인 변이체(cysteine variants)를 만드는 데 사용되었다. 예를 들어, 중쇄 Asparagine 418을 시스테인으로 변경하는 방법은 다음과 같다: 먼저 프라이머 A-f, 프라이머 1-r, 프라이머 B-r 및 프라이머 1-f를 사용하여 PCR 반응을 수행하였으며, 단편 1 및 2를 생성시켰다. 2개의 단편을 어닐링시키고 프라이머 A-f 및 B-r과 함께 PCR 증폭에 직접 사용하였다. 시스테인 돌연변이를 포함하는 조립된 산물을 NotI 및 BamHI를 사용하여 pcDNA 3.1(+)에 클로닝 하였다. 다른 시스테인 변이체는 상기 기재된 바와 같이 생산된다.The mutation of the antibody heavy chain was introduced using a two-step overlap PCR method, and pcDNA 3.1 (+) containing the Trastuzumab gene was used as a template. The nucleotide sequences of the primers used in the production of cysteine variants are shown in Table 2 (Primer Af: Primer of Trastuzumab gene 5'-end part / Primer Br: Primer of Trastuzumab gene 3'-end part / Primer 1 to 7: cysteine substitution Primer for). The restriction enzyme sites used are NotI and BamHI. Primers A and B are generally used for all production, others were used to make cysteine variants as described in Table 2. For example, the method of changing heavy chain Asparagine 418 to cysteine is as follows: First, PCR reaction was performed using primers Af, primers 1-r, primers Br and primers 1-f, and fragments 1 and 2 were generated. . The two fragments were annealed and used directly for PCR amplification with primers A-f and B-r. The assembled product containing the cysteine mutation was cloned into pcDNA 3.1 (+) using NotI and BamHI. Other cysteine variants are produced as described above.
Figure PCTKR2019011411-appb-T000002
Figure PCTKR2019011411-appb-T000002
본 명세서에서 항체의 아미노산 잔기 번호는 당업계에서 통상적으로 사용되는 카바트 넘버링 시스템(Kabat numbering system)에 따른다(Kabat et al., in “of Proteins of Immunological Interest”5th Ed., U.S. Department of Health and Human Services, NIH Publication No. 91-3242, 1991에서와 같은 EU 지수번호).The amino acid residue number of an antibody herein is in accordance with the Kabat numbering system commonly used in the art (Kabat et al., In “of Proteins of Immunological Interest” 5th Ed., US Department of Health and EU Index number as in Human Services, NIH Publication No. 91-3242, 1991).
실시예 2-2: Trastuzumab 시스테인 변이체의 생산 및 정제Example 2-2: Production and purification of Trastuzumab cysteine variants
HEK293F 세포에서 발현 벡터의 일시적인 형질주입(transfection)에 의해 항체를 생성하였다. HEK293F 세포를 Gibco FreeStyle™ 293 Expression Medium(Thermo Fisher Scientific)에서 배양하여 1x106 cell/ml로 준비하였다. 플라스미드 DNA를 OptiPro-SFM(Thermo Fisher Scientific)에서 7.5μg/ml 폴리에틸렌 이민과 함께 중쇄 및 경쇄 각각의 최종 농도가 1.25μg/ml가 되도록 혼합하였다. 15분 배양 후 배양된 세포에 혼합물을 첨가하고, 7일 간 세포를 배양하였다. 불순물 제거를 위해 원심분리 및 여과를 이용하여 상등액을 수득하였다. 제조사에서 권장하는 대로 항체를 protein A agarose resin(Repligen)으로 정제하고 PD-10 desalting column을 통해 PBS(pH 7.4)로 투석하였다(GE healthcare).Antibodies were generated by transient transfection of expression vectors in HEK293F cells. HEK293F cells were cultured in Gibco FreeStyle ™ 293 Expression Medium (Thermo Fisher Scientific) to prepare at 1 × 10 6 cells / ml. Plasmid DNA was mixed in OptiPro-SFM (Thermo Fisher Scientific) with 7.5 μg / ml polyethylene imine so that the final concentration of each of the heavy and light chains was 1.25 μg / ml. After 15 minutes of incubation, the mixture was added to the cultured cells, and the cells were cultured for 7 days. The supernatant was obtained by centrifugation and filtration to remove impurities. Antibodies were purified with protein A agarose resin (Repligen) as recommended by the manufacturer, and dialyzed against PBS (pH 7.4) through a PD-10 desalting column (GE healthcare).
조작된 Cys 잔기를 통해 ADC를 개발하기 위해 개발된 THIOMAB 기술은 위치-특이적 방식으로 IgG와 단백질을 결합시키는 데 사용된다. US 2015059771에 기초하여, Cys 잔기 도입을 위한 Trastuzumab의 7개 위치(중쇄의 Q416, N418, N386, N204 G174 및 경쇄의 T197, Q199)를 선택하였고, 인간 배아 신장 세포(Human embryonic kidney cells) 293 Freestyle(HEK293F)를 이용하여 7개의 조작된 Trastuzumab constructs(HC 및 LC의 HC-Q416C, HC-N418C, HC-N386C, HC-N204C, HC-G174C, LC-T197C, LC-Q199C)를 발현시켰다. 가장 높은 생산 수율을 갖는 것은 HC-N418C(60mg/L)이었다(표 3).THIOMAB technology, developed to develop ADCs through engineered Cys residues, is used to bind IgG and proteins in a position-specific manner. Based on US 2015059771, 7 positions of Trastuzumab for the introduction of Cys residues (Q416, N418, N386, N204 G174 in the heavy chain and T197, Q199 in the light chain) were selected and human embryonic kidney cells 293 Freestyle (HEK293F) was used to express 7 engineered Trastuzumab constructs (HC-Q416C, HC-N418C, HC-N386C, HC-N204C, HC-G174C, LC-T197C, LC-Q199C of HC and LC). The highest production yield was HC-N418C (60 mg / L) (Table 3).
Figure PCTKR2019011411-appb-T000003
Figure PCTKR2019011411-appb-T000003
실시예 2-3: Trastuzumab에 도입된 시스테인(cysteine) 위치 스크리닝Example 2-3: Cysteine position screening introduced into Trastuzumab
도입된 IgG의 Cys 잔기는 시스테인 또는 글루타티온(glutathione)에 의해 변형되는 것으로 알려져 있다. 변형된 Cys 잔기의 blocking groups을 제거하고 접합 반응을 위한 thiol group을 생성하기 위해, TCEP를 사용하여 각 항체를 부분적으로 환원시킨 다음, dehydro-ascorbic acid(dhAA)를 사용하여 재산화시켰다. HC-Q416C, N418C 및 N386C는 야생형 Trastuzumab과 유사한 재산화 수율을 나타내었고(도 2), 항체 당 thiol group의 수는 이상적 값인 2에 가까웠다(표 4). 나머지 4개의 Trastuzumab 변이체(HC-N204C, HC-G174C, LC-197C, 및 LC-Q199C)는 덜 효율적으로 재산화되었으며, 이는 이전에 보고된 결과와 다르다(Junutula, J.R., et al., Nature biotechnology, 2008. 26(8): p. 925-932) HC-N418C는 HC-Q416C 및 HC-386C보다 생산 수율이 높았으며, HC-N418C 변이체를 PE24와의 접합체로 선택하였다.Cys residue of the introduced IgG is known to be modified by cysteine or glutathione. To remove blocking groups of modified Cys residues and to create thiol groups for conjugation reactions, each antibody was partially reduced using TCEP, and then re-oxidized using dehydro-ascorbic acid (dhAA). HC-Q416C, N418C and N386C showed reoxidation yields similar to wild-type Trastuzumab (Figure 2), and the number of thiol groups per antibody was close to the ideal value of 2 (Table 4). The remaining four Trastuzumab variants (HC-N204C, HC-G174C, LC-197C, and LC-Q199C) were recalculated less efficiently, which differs from previously reported results (Junutula, JR, et al., Nature biotechnology , 2008. 26 (8): p. 925-932) HC-N418C had higher production yield than HC-Q416C and HC-386C, and the HC-N418C variant was selected as a conjugate with PE24.
Figure PCTKR2019011411-appb-T000004
Figure PCTKR2019011411-appb-T000004
실시예 3: 탈면역화된 Pseudomonas Exotoxin A(PE24) 발현용 플라스미드 제작Example 3: Preparation of a plasmid for expression of deimmunized Pseudomonas Exotoxin A (PE24)
탈면역화된(deimmunized) Pseudomonas exotoxin A의 경우, 도메인 Ⅱ furin 절단 부위(aa 274-284)를 제외하고 원래의 PE 도메인 I 및 도메인 Ⅱ가 결실되었다. 7개의 돌연변이(R427, R456, D463, R467, R490, R505, R538)를 포함하는 독소의 도메인 Ⅲ는 NIH에 의해 개발되었다(2014, DOI: 10.1158/1535-7163). Ni-NTA를 사용하는 affinity chromatography를 위한 His 6 tag과 His 6 tag 제거를 위한 Thrombin 절단 부위가 구성물에 도입된다(도 3). 탈면역화된 exotoxin 24kDa(PE24) 유전자를 합성하고(bioneer Inc.), 변형된 PE 발현을 위해 pET21a의 NdeI 및 NotI 부위에 PE24를 클로닝하였다. 결과적으로 변형된 PE 코딩 DNA가 구성물의 N-말단에서 periplasmic fraction을 위한 OmpA 분비 시그널 서열을 갖는 플라스미드를 생성하였다.In the case of deimmunized Pseudomonas exotoxin A, the original PE domain I and domain II were deleted except for the domain II furin cleavage site (aa 274-284). The domain III of the toxin containing seven mutations (R427, R456, D463, R467, R490, R505, R538) was developed by NIH (2014, DOI: 10.1158 / 1535-7163). His 6 tag for affinity chromatography using Ni-NTA and Thrombin cleavage site for His 6 tag removal are introduced into the construct (Fig. 3). The deimmunized exotoxin 24kDa (PE24) gene was synthesized (bioneer Inc.) and PE24 was cloned into the NdeI and NotI sites of pET21a for modified PE expression. As a result, the modified PE coding DNA produced a plasmid with the OmpA secretion signal sequence for the periplasmic fraction at the N-terminus of the construct.
실시예 4: PE24의 발현 및 정제Example 4: Expression and purification of PE24
아지도 그룹(azido group)을 포함하는 PE24 도메인은 Methanococcus jannaschii로부터 유래된 tRNA(CUA)및 tyrosyl-tRNA synthetase의 orthogonal pair를 사용하여 앰버 코돈(amber codon, TAG)에 반응하여, 아지도페닐알라닌(AzF)을 도입함으로써 제조되었다. PE24의 C-말단 서열은 endocytosis 후, 소포체(endoplasmic reticulum)로 독소를 유도함으로써, PE24의 세포질로의 전이에 있어 중요하다. 따라서, 반응 부분(reactive moiety)은 유연한 링커를 지닌 N-말단에 설치되었다. 니켈 고정화 수지를 사용하여 페리플라즘 분획의 재조합 단백질을 정제하고 트롬빈 반응으로 His6 정제 태그를 제거하였다. 생성된 단백질을 PE24-AzF로 명명하였다.The PE24 domain containing the azido group responds to amber codon (TAG) using an orthogonal pair of tRNA (CUA) and tyrosyl-tRNA synthetase derived from Methanococcus jannaschii , and azidophenylalanine (AzF) ). The C-terminal sequence of PE24 is important in the metastasis of PE24 to the cytoplasm by inducing toxins into the endoplasmic reticulum after endocytosis. Therefore, the reactive moiety was installed at the N-terminus with a flexible linker. The recombinant protein of the periplasm fraction was purified using a nickel immobilized resin and the His6 purification tag was removed by thrombin reaction. The resulting protein was named PE24-AzF.
변형된 PE24 단백질은 MjAzidophenylalanyl-tRNA synthetase (AzFRs)-MjtRNA 직교 쌍, EcProRS, PE24 단백질 발현을 위한 3개의 플라스미드로 형질 전환된 BL21 cells에서 발현된다. 세포를 37℃ 2XYT 배지에서 O.D 600이 0.5가 될 때까지 성장시킨 후, 0.2% L-arabinose 및 50nM anhydrotetracycline을 각각 첨가하여 MjAzFRS와 EcProRS의 발현을 유도 하였다. O.D 600 1.0에서, 0.2mM IPTG 및 1mM p-azidophenylalanine을 첨가하여 PE24 단백질을 발현시킨 후 하룻밤 동안 25℃에서 배양하였다. 정제를 위해 9,300 ×g 4℃에서 15분간 원심분리하여 세포를 수확하였다. 수확된 세포 펠릿을 0.75M sucrose/0.1M Tris-HCl(pH 8.0)을 사용하여 재현탁시키고, 리소자임(50mg/ml) 10㎕를 첨가한 후 4℃에서 15분 동안 배양하였다. 1mM EDTA와 함께 15분간 배양 후, 0.5M MgCl2를 첨가하고 10분 동안 배양하였다. 그 다음 세포를 원심분리(9300g, 15min, 4℃)하여 회수하고, 상등액을 2x 용해 완충액(50mM sodium phosphate, 300mM sodium chloride, 20mM imidazole, pH 7.4)으로 희석시켰다. 1시간 동안 Ni-NTA resin(Qiagen)으로 배양한 후, 상등액을 gravity-flow column에 로딩하고, 컬럼을 세척 완충액(50mM sodium phosphate, 300mM sodium chloride, 40mM imidazole, pH 7.4)으로 세척하고, 용출 완충액(50mM sodium phosphate, 300mM sodium chloride, 300mM imidazole, pH 7.4)으로 용출시킨 다음, his-tags를 제거하기 위해 트롬빈(thrombin) 처리를 수행하였다. 최종 단백질은 Ni-NTA affinity chromatography를 사용하여 용해 완충액으로 용출되었다.The modified PE24 protein is expressed in BL21 cells transformed with three plasmids for the expression of MjAzidophenylalanyl-tRNA synthetase (AzFRs) -MjtRNA orthogonal pair, EcProRS, PE24 protein. After growing the cells in 2XYT medium at 37 ° C. until OD 600 became 0.5, the expression of MjAzFRS and EcProRS was induced by adding 0.2% L-arabinose and 50nM anhydrotetracycline, respectively. At OD 600 1.0, 0.2 mM IPTG and 1 mM p-azidophenylalanine were added to express the PE24 protein, followed by incubation at 25 ° C overnight. Cells were harvested by centrifugation at 9,300 × g 4 ° C. for 15 minutes for purification. The harvested cell pellet was resuspended using 0.75M sucrose / 0.1M Tris-HCl (pH 8.0), 10 μl of lysozyme (50 mg / ml) was added and incubated at 4 ° C. for 15 minutes. After 15 minutes of incubation with 1 mM EDTA, 0.5 M MgCl 2 was added and incubated for 10 minutes. Cells were then recovered by centrifugation (9300 g, 15 min, 4 ° C.), and the supernatant was diluted with 2 × lysis buffer (50 mM sodium phosphate, 300 mM sodium chloride, 20 mM imidazole, pH 7.4). After incubation with Ni-NTA resin (Qiagen) for 1 hour, the supernatant was loaded into a gravity-flow column, and the column was washed with washing buffer (50 mM sodium phosphate, 300 mM sodium chloride, 40 mM imidazole, pH 7.4), and elution buffer. After eluting with (50 mM sodium phosphate, 300 mM sodium chloride, 300 mM imidazole, pH 7.4), thrombin treatment was performed to remove his-tags. The final protein was eluted with lysis buffer using Ni-NTA affinity chromatography.
E. coli에서 변형된 PE24의 발현 테스트는 periplasm에서 단백질이 발현되었는지 여부를 결정하기 위해 수행되었다. SDS-PAGE와 Western blot 결과는 변형된 PE24가 periplasm에서 거의 발현되었음을 나타낸다(도 4). 배양된 E. coli pellets으로부터 PE24의 첫 번째 정제는 Ni-NTA affinity chromatography를 사용하여 수행되었으며, 생산 수율 6mg/L의 가용성 단백질을 보여 주었다. 트롬빈 처리를 통해 His 6 tags를 제거하는 두 번째 정제는 수율 4.8mg/L로 80% 수율에 해당한다(도 5).The expression test of modified PE24 in E. coli was performed to determine whether the protein was expressed in periplasm. SDS-PAGE and Western blot results show that the modified PE24 was almost expressed in periplasm (Fig. 4). The first purification of PE24 from cultured E. coli pellets was performed using Ni-NTA affinity chromatography, showing a soluble protein with a production yield of 6 mg / L. The second tablet to remove His 6 tags through thrombin treatment corresponds to an 80% yield with a yield of 4.8 mg / L (FIG. 5).
실시예 5: Trastuzumab 시스테인 변이체와 PE24의 접합Example 5: Conjugation of Trastuzumab cysteine variant with PE24
모든 단계는 Amicon® Ultra-4 10K Centrifugal Filter device(Millipore)와 버퍼 교환을 포함한다. 도 6에 Trastuzumab-N418C와 PE24의 결합을 위한 도식을 나타내었다. 25℃ 3시간 동안 환원 완충액(2mM EDTA, 50mM Tris-HCl pH 7.5)에서 100배(2750μM) 몰 초과의 환원제 tris(2-carboxyethyl)phosphine (TCEP)로 항체를 제거하고, 이어서 정용여과(diafiltration)에 의해 과량의 TCEP를 제거한다. 항체의 사슬 간 이황화 결합을 회복시키기 위해 재산화 완충액(50mM Tris-HCl, 150mM NaCl, pH 7.5)에서 25℃에서 3시간 동안 Dehydroascorbic acid(dhAA) (Sigma-Aldrich)와 같은 25배(172.5μM) 산화제를 첨가하여 재산화를 수행하였다. 비환원성 SDS-PAGE를 통해 사슬 간 이황화 결합을 검출하였고, 4-PDS 분석을 통해 free thiol group의 반응성을 결정하였다. 40배 초과의 maleimide-PEG-DBCO linker(1100μM)(Click chemistry Tools)는 2시간 동안 25℃ PBS(pH 7.4)에서 반응성 시스테인을 함유하는 재산화된 항체와 반응하였다. 4℃에서 4시간 동안 반응시켜 항체(5mg/ml)와 PE24(항체 농도의 4배 초과)를 접합시켰다. 재산화된 HC-N418C를 DBCO-PEG4-maleimide linker와 반응시킨 후, DBCO와 azide group 간의 strain-promoted click reaction을 통해 PE24와 결합시켰다.All steps included buffer exchange with Amicon® Ultra-4 10K Centrifugal Filter device (Millipore). 6 shows a schematic for the combination of Trastuzumab-N418C and PE24. The antibody was removed with a reducing agent tris (2-carboxyethyl) phosphine (TCEP) greater than 100 times (2750 μM) molar in reducing buffer (2 mM EDTA, 50 mM Tris-HCl pH 7.5) for 3 hours at 25 ° C., followed by diafiltration. Remove excess TCEP by. 25 times (172.5 μM), such as Dehydroascorbic acid (dhAA) (Sigma-Aldrich), for 3 hours at 25 ° C. in reoxidation buffer (50 mM Tris-HCl, 150 mM NaCl, pH 7.5) to restore the interchain disulfide bonds of the antibody. Reoxidation was performed by adding an oxidizing agent. Cross-chain disulfide bonds were detected through non-reducing SDS-PAGE, and reactivity of the free thiol group was determined through 4-PDS analysis. More than 40-fold maleimide-PEG-DBCO linker (1100 μM) (Click chemistry Tools) reacted with reoxidized antibody containing reactive cysteine in 25 ° C. PBS (pH 7.4) for 2 hours. The antibody (5 mg / ml) and PE24 (more than 4 times the antibody concentration) were conjugated by reacting at 4 ° C. for 4 hours. The reoxidized HC-N418C was reacted with a DBCO-PEG4-maleimide linker, and then coupled with PE24 through a strain-promoted click reaction between DBCO and azide group.
HC-N418가 2개의 결합 부위를 가지고 있음에도 불구하고 주로 단일 결합체가 형성되었으며, 보다 적은 양의 이중 결합체가 관찰되었다(도 7의 Lane 5). IgG의 PE24와의 결합은 N418C 변형이 위치한 중쇄에서만 검출되었으며, 이는 결합의 위치-특이성을 의미한다(도 7의 Lane 8).Although HC-N418 has two binding sites, mainly a single conjugate was formed, and a smaller amount of the double conjugate was observed (lane 5 in FIG. 7). Binding of IgG to PE24 was only detected in the heavy chain where the N418C modification was located, indicating the position-specificity of the binding (lane 8 in FIG. 7).
참고로, HC-Q416C, HC-N418C, HC-N386C, LCT197C 또는 LC-Q199C 트라스투주맙 변이체와 PE24-AzF의 접합 효율을 평가했다. HC-Q416C 및 HC-N418C 변이체는 다른 변이체보다 높은 접합 수율을 보였다(도 8).For reference, the conjugation efficiency of HC-Q416C, HC-N418C, HC-N386C, LCT197C or LC-Q199C trastuzumab variants with PE24-AzF was evaluated. HC-Q416C and HC-N418C variants showed higher conjugation yields than other variants (FIG. 8).
실시예 6: Trastuzumab-PE24 접합체의 정제Example 6: Purification of Trastuzumab-PE24 conjugate
트라스투주맙 HC-N418C는 수율을 향상시키기 위해 2개의 단백질 분자 사이의 반응에 대한 연장된 시간(4시간에서 16시간)의 약간의 변형으로 상기 실시예 5에 기재한 방법에 따라 PE24-AzF에 접합하였다. 트라스투주맙-PE24 접합체를 분리하기 위해 크기 배제 및 음이온 교환 크로마토그래피(size exclusion and anion exchange chromatography)로 구성된 2-스텝 정제방법을 사용하였다. 접합되지 않은 PE24와 고분자량 응집체를 크기 배제 크로마토그래피로 제거하고 음이온 교환 크로마토그래피를 사용하여 복합체의 PE의 수에 따라 트라스투주맙-PE24를 분리하였다(도 9).Trastuzumab HC-N418C was added to PE24-AzF according to the method described in Example 5 above with a slight modification of the extended time (4 to 16 hours) for the reaction between the two protein molecules to improve yield. Bonded. A two-step purification method consisting of size exclusion and anion exchange chromatography was used to separate the trastuzumab-PE24 conjugate. Unconjugated PE24 and high molecular weight aggregates were removed by size exclusion chromatography and trastuzumab-PE24 was separated according to the number of PEs in the complex using anion exchange chromatography (FIG. 9).
구체적으로, 트라스투주맙-PE24 접합체를 Superdex 200 컬럼 및 Mono-Q 컬럼(GE Healthcare)을 사용하여 크기 배제 크로마토그래피 및 음이온 교환 크로마토그래피로 정제하였다. Superdex 200 컬럼을 러닝 버퍼(10mM phosphate, 1M NaCl, pH 7.4)로 평형화시켰다. 트라스투주맙-PE24 접합체를 상기 컬럼에 주입하고 러닝 버퍼로 용출하여 미반응 PE24-AzF를 제거하였다. 트라스투주맙-PE24 접합체 및 미접합 트라스투주맙을 50ml 희석 버퍼(10mM phosphate, pH 7.4)로 희석하고 버퍼 A(20mM phosphate, pH 7.0)로 평형화된 Mono-Q 컬럼에 로딩하였다. 트라스투주맙-PE24는 버퍼 A 및 버퍼 B(20mM phosphate, 1M NaCl, pH 7.0)의 구배로 용출하였다; 단일 PE24가 접합된 트라스투주맙에 대해 10% 내지 15%의 버퍼 B; 2개의 PE24가 접합된 트라스투주맙에 대해 15% 내지 20%의 버퍼 B; 3개의 PE24가 접합된 트라스투주맙에 대해 20% 내지 25%의 버퍼 B.Specifically, trastuzumab-PE24 conjugate was purified by size exclusion chromatography and anion exchange chromatography using Superdex 200 column and Mono-Q column (GE Healthcare). The Superdex 200 column was equilibrated with a running buffer (10mM phosphate, 1M NaCl, pH 7.4). Trastuzumab-PE24 conjugate was injected into the column and eluted with a running buffer to remove unreacted PE24-AzF. Trastuzumab-PE24 conjugate and unconjugated trastuzumab were diluted with 50 ml dilution buffer (10 mM phosphate, pH 7.4) and loaded onto a Mono-Q column equilibrated with buffer A (20 mM phosphate, pH 7.0). Trastuzumab-PE24 was eluted with a gradient of Buffer A and Buffer B (20mM phosphate, 1M NaCl, pH 7.0); 10% to 15% buffer B for trastuzumab conjugated with a single PE24; 15% to 20% buffer B for trastuzumab conjugated with two PE24; 20% to 25% Buffer B for 3 PE24 conjugated trastuzumab.
하기와 같은 이유에 따라, 추가적으로 특성화하기 위해 단일 접합 형태(monoconjugated form)를 사용하였다: 1) 단일 접합 형태는 이중 접합 형태보다 더 높은 수율을 보임, 2) PE의 높은 세포독성으로 인해 항체당 독소 1분자로도 충분히 면역독소(immunotoxin)를 개발할 수 있음. 그러나, 접합 반응에 대한 PE 대 IgG의 비율을 증가시키면, 이중 접합 형태의 수율이 높아질 수 있을 것으로 예상되었다. 환원 조건에서 단일 접합 형태의 SDS-PAGE 결과는 PE24의 분자량만큼 HC 밴드만이 이동한 것으로 나타났으며(도 9b), 이는 PE24-AzF가 위치 특이적인 방법으로 HC-N418C 부위에 접합하였다는 것을 의미한다.For the following reasons, a monoconjugated form was used for further characterization: 1) The single conjugated form showed higher yield than the double conjugated form, 2) Toxin per antibody due to the high cytotoxicity of PE Even one molecule is enough to develop an immunotoxin. However, increasing the ratio of PE to IgG to the conjugation reaction was expected to increase the yield of the double conjugation form. SDS-PAGE results of single conjugation under reduced conditions showed that only the HC band shifted by the molecular weight of PE24 (FIG. 9b), indicating that PE24-AzF was conjugated to the HC-N418C site in a position-specific manner. it means.
실시예 7: ELISA를 이용한 Trastuzumab-PE24 접합체의 ErbB2에 대한 항원 결합 친화도(antigen binding affinity) 평가Example 7: Evaluation of antigen binding affinity to ErbB2 of Trastuzumab-PE24 conjugate using ELISA
Trastuzumab과 Trastuzumab-PE24의 ErbB2에 대한 결합을 ELISA 방법을 이용하여 비교하였다. 트라스투주맙야생형(Trastuzumab wildtype), HER N418C-PE24(1), HER N418C-PE24(2)에 의한 ErbB2 결합을 간접적 ELISA로 평가하였다.The binding of Trastuzumab and Trastuzumab-PE24 to ErbB2 was compared using the ELISA method. ErbB2 binding by Trastuzumab wildtype, HER N418C-PE24 (1), HER N418C-PE24 (2) was evaluated by indirect ELISA.
Microtiter plates는 4℃, 코팅 완충액(PBS pH 7.4, 0.02% sodium azide)에서 밤새 ErbB2 항원으로 코팅되었다. 세척 후, 플레이트를 블로킹 완충액(4% skim milk in PBS, pH 7.4)에서 1시간 동안 배양하고 웰 당 100㎕ 희석된 샘플로 대체 하였다. 트라스투주맙 야생형, HER N418C-PE24(1) 및 HER N418C-PE24(2)의 농도 범위는 0-100nM이었다. 1시간 동안 샘플과의 1차 배양 후, 반응하지 않은 항체를 제거하고 100㎕ 세척 완충액(Tris buffed saline with 0.1% Tween 20)으로 3회 세척 하였다. 최종 완충액을 블로킹 완충액에서 1/500으로 희석한 L-HRP 접합체 단백질로 웰 당 100㎕로 대체하고, 플레이트를 실온에서 1시간 동안 배양하였다. 각 웰을 100㎕ 세척 완충액으로 3회 세척 하였다. HRP 활성은 제조사의 지시에 따라 TMB 기질 키트로 검출하였다. 간단히 결합된 TMB 기질 및 H2O2 용액 100㎕를 각각의 웰에 첨가하고 실온에서 90초 동안 배양하였다. 반응을 멈추기 위해 20㎕ H2SO4를 첨가하고, 각 웰의 흡광도를 450nm에서 측정하였다.Microtiter plates were coated with ErbB2 antigen overnight at 4 ° C., coating buffer (PBS pH 7.4, 0.02% sodium azide). After washing, the plates were incubated for 1 hour in blocking buffer (4% skim milk in PBS, pH 7.4) and replaced with 100 μl diluted samples per well. The concentration range of trastuzumab wild type, HER N418C-PE24 (1) and HER N418C-PE24 (2) was 0-100 nM. After the primary incubation with the sample for 1 hour, the unreacted antibody was removed and washed 3 times with 100 μl wash buffer (Tris buffed saline with 0.1% Tween 20). The final buffer was replaced with 100 μL per well with L-HRP conjugate protein diluted 1/500 in blocking buffer, and the plate was incubated for 1 hour at room temperature. Each well was washed 3 times with 100 μl wash buffer. HRP activity was detected with the TMB substrate kit according to the manufacturer's instructions. Briefly, 100 μl of the bound TMB substrate and H2O2 solution were added to each well and incubated at room temperature for 90 seconds. To stop the reaction, 20 μl H 2 SO 4 was added, and the absorbance of each well was measured at 450 nm.
Trastuzumab-PE24의 겉보기 결합 친화도는 Trastuzumab과 유사하였는데(도 10 및 표 5), 이는 PE24와의 결합이 항체의 항원 결합성에 최소한으로 영향을 미친다는 것을 나타낸다. CH3 도메인에 위치한 N418 위치는 항원 결합 부위로부터 멀리 떨어져 있으므로, 쉽게 항원 결합을 방해하지 못할 것으로 예상된다. 따라서, Trastuzumab-PE24의 유지된 결합 친화도는 본 발명에서 사용된 결합 전략이 Trastuzumab의 구조를 교란시키지 않는다는 것을 시사한다. The apparent binding affinity of Trastuzumab-PE24 was similar to Trastuzumab (FIG. 10 and Table 5), indicating that binding to PE24 has minimal effect on antibody antigen binding. Since the N418 position located in the CH3 domain is far from the antigen binding site, it is expected that it will not easily interfere with antigen binding. Thus, the retained binding affinity of Trastuzumab-PE24 suggests that the binding strategy used in the present invention does not disturb the structure of Trastuzumab.
실시예 8: 접합체의 수용체 매개 엔도사이토시스(endocytosis) 확인Example 8: Confirmation of receptor-mediated endocytosis of the conjugate
24-웰 플레이트에서 커버슬립(Marienfeld) 위의 10% FBS 및 1% 페니실린/스트렙토마이신을 함유하는 RPMI 1640 배지에 MDA-MB-231 또는 MDM-MB-453 세포(4×104)를 접종하고, 5% CO2 대기의 37℃에서 24시간 동안 성장시켰다. 세포에 결합시키기 위해 세포에 200mM의 트라스투주맙 또는 Trastuzumab-PE24를 4℃에서 30분 동안 처리하거나, 세포의 엔도사이토시스 경로를 유도하기 위해 37℃에서 4시간 동안 추가적으로 배양되었다. 세포를 PBS로 세척하고, 4% p-포름알데히드로 10분간 고정시키고, PBS로 세척하고, 0.1%(w/v) 사포닌(saponin), 0.1%(w/v) 소듐 아자이드(sodium azide) 및 1%(w/v) bovine serum albumin(BSA)을 함유하는 PBS로 10분간 투과화(permeabilized)시켰다. 세포를 PBS로 세척하고, 1%(w/v) BSA로 1시간 동안 차단한 다음, 항-인간 IgG 항체-Alexa 488(Thermo Fisher Scientific)에 1시간 동안 노출시켰다. 세포 핵을 Hoechst(Thermo Fisher Scientific)로 10분 동안 염색하였다. 배양 및 염색은 상온에서 수행되었다. 상기 염색된 세포를 63x objective(Carl Zeiss)가 장착된 LSM710 공초점 현미경을 통해 검사하였다. 이미지는 ZEN 소프트웨어(Carl Zeiss)를 사용하여 분석하였다.Inoculate MDA-MB-231 or MDM-MB-453 cells (4 × 10 4 ) into RPMI 1640 medium containing 10% FBS and 1% penicillin / streptomycin on a coverslip (Marienfeld) in a 24-well plate. , Was grown for 24 hours at 37 ° C. in 5% CO 2 atmosphere. To bind cells, cells were treated with 200 mM of Trastuzumab or Trastuzumab-PE24 for 30 minutes at 4 ° C., or incubated for additional 4 hours at 37 ° C. to induce the cell's endocytosis pathway. Cells were washed with PBS, fixed with 4% p-formaldehyde for 10 minutes, washed with PBS, 0.1% (w / v) saponin, 0.1% (w / v) sodium azide And permeabilized with PBS containing 1% (w / v) bovine serum albumin (BSA) for 10 minutes. Cells were washed with PBS, blocked with 1% (w / v) BSA for 1 hour, and then exposed to anti-human IgG antibody-Alexa 488 (Thermo Fisher Scientific) for 1 hour. Cell nuclei were stained with Hoechst (Thermo Fisher Scientific) for 10 minutes. Culture and staining were performed at room temperature. The stained cells were examined through a LSM710 confocal microscope equipped with a 63x objective (Carl Zeiss). Images were analyzed using ZEN software (Carl Zeiss).
분석 결과, 트라스투주맙에의 PE24의 접합은 PE 기반 면역 독소가 표적 세포에 작용하는 첫 번째 단계인 수용체 매개 엔도사이토시스에 영향을 미치지 않는 것으로 나타났다(도 11). Trastuzumab-PE24 접합체는 트라스투주맙과 동일한 Her2-양성 MDA-MB-453 세포에만 결합하였다(도 11의 2번째 열). 37℃에서의 세포의 추가적인 배양은 트라스투주맙 및 Trastuzumab-PE24를 모두 내재화 시킨다(도 11의 3열).As a result of the analysis, it was found that conjugation of PE24 to trastuzumab did not affect receptor-mediated endocytosis, the first step in which PE-based immune toxins act on target cells (FIG. 11). The Trastuzumab-PE24 conjugate bound only to Her2-positive MDA-MB-453 cells identical to Trastuzumab (second row in FIG. 11). Further incubation of the cells at 37 ° C. internalized both Trastuzumab and Trastuzumab-PE24 (column 3 in FIG. 11).
실시예 9: Fc 수용체와의 상호작용에의 영향 확인Example 9: Confirmation of the effect on the interaction with the Fc receptor
Fc 관련 수용체 결합 분석을 위해, 4μg/ml의 트라스투주맙 또는 Trastuzumab-PE24를 0.05M의 Na2CO3 pH 9.6에서 사용하여 4℃에서 밤새 96-웰 플레이트의 웰을 코팅하였다. 코팅된 웰을 PBSB로 25℃에서 1시간 동안 배양하였다. C1q 및 FcrRI-His6은 각각 Abcam 및 R&D Systems에서 구매하였다. 이전에 알려진 바와 같은 방법으로, FcRn-GST, FcrIIa(H)-GST, FcrIIa(V)-GST, FcrIIb-GST, FcrIIIa(F)-GST 및 FcrIIIa(V)-GST를 제조하였다. 웰을 PBST로 3회 세척한 후, 항-His-HRP 접합체(Sigma-Aldrich)를 FcrRI-His6의 웰에 첨가하고, 항-GST-HRP 접합체(GE Healthcare)를 FcRn-GST, FcrIIa(H)-GST, FcrIIa(V)-GST, FcrIIb-GST, FcrIIIa(F)-GST 및 FcrIIIa(V)-GST에 첨가하고, 항-C1q-HRP 접합체(Sigma-Aldrich)를 C1q에 첨가하였다. 상기 플레이트를 25℃에서 1시간 동안 배양하였다. 웰을 PBST로 3회 세척한 후, TMB 기질을 각 웰에 첨가하고, 450nm에서 흡광도를 측정하였다.For Fc-related receptor binding assays, 4 μg / ml of Trastuzumab or Trastuzumab-PE24 was coated at 0.05 ° C. Na 2 CO 3 pH 9.6 to coat wells of 96-well plates at 4 ° C. overnight. The coated wells were incubated with PBSB at 25 ° C for 1 hour. C1q and FcrRI-His6 were purchased from Abcam and R & D Systems, respectively. As previously known, FcRn-GST, FcrIIa (H) -GST, FcrIIa (V) -GST, FcrIIb-GST, FcrIIIa (F) -GST and FcrIIIa (V) -GST were prepared. After washing the wells three times with PBST, anti-His-HRP conjugate (Sigma-Aldrich) was added to the wells of FcrRI-His6, and anti-GST-HRP conjugate (GE Healthcare) was FcRn-GST, FcrIIa (H) -GST, FcrIIa (V) -GST, FcrIIb-GST, FcrIIIa (F) -GST and FcrIIIa (V) -GST were added, and anti-C1q-HRP conjugate (Sigma-Aldrich) was added to C1q. The plate was incubated at 25 ° C for 1 hour. After washing the wells three times with PBST, TMB substrate was added to each well, and absorbance was measured at 450 nm.
분석 결과, Trastuzumab-PE24 접합체는 트라스투주맙과 유사하게 Fc 수용체와 상호작용하는 것으로 나타났다(도 12 및 표 5). 상기 상호작용은 혈청의 IgG 농도 및 병원균에 대한 면역 반응을 조절하는데 중요한 역할을 하며, 따라서, 항체 단편을 가진 재조합 면역독소와 비교하여 전장 IgG에 기초한 면역독소에 추가적인 생물학적 기능을 제공할 수 있다. HC-N418C의 접합 위치는 항원 및 Fc 수용체와의 상호작용 위치로부터 떨어진 중쇄의 C-말단 근처에 위치한다. 이러한 결과는 IgG 및 PE24를 접합시키는데 사용된 접합 위치의 부위 특이적 변형 및 선택이 본래의 기능을 방해하지 않음을 나타낸다.As a result of the analysis, the Trastuzumab-PE24 conjugate was shown to interact with the Fc receptor similar to Trastuzumab (Figure 12 and Table 5). This interaction plays an important role in regulating serum IgG concentration and immune response to pathogens, and thus, can provide additional biological functions to full-length IgG based immunotoxins compared to recombinant immunotoxins with antibody fragments. The conjugation site of HC-N418C is located near the C-terminus of the heavy chain away from the site of interaction with the antigen and Fc receptor. These results indicate that site-specific modification and selection of the conjugation site used to conjugate IgG and PE24 does not interfere with the original function.
Figure PCTKR2019011411-appb-T000005
Figure PCTKR2019011411-appb-T000005
실시예 10: ADP-ribosylation assayExample 10: ADP-ribosylation assay
PE24의 세포독성은 EF2의 ADP-ribosylation에 기초하였으며(도 13), PE24 및 Trastuzumab-PE24의 효소 활성을 비교하였다. EF2가 풍부한 밀 배아 추출물과 다양한 농도(0.01nM, 0.1nM, 1nM, 10nM 및 50nM)의 PE24 또는 Trastuzumab-PE24를 Biotinylated NAD+와 함께 배양하고, 반응 혼합물을 Western blot 방법으로 분석하였다(도 14).The cytotoxicity of PE24 was based on ADP-ribosylation of EF2 (FIG. 13), and the enzyme activities of PE24 and Trastuzumab-PE24 were compared. EF2-rich wheat germ extract and PE24 or Trastuzumab-PE24 at various concentrations (0.01 nM, 0.1 nM, 1 nM, 10 nM and 50 nM) were incubated with Biotinylated NAD +, and the reaction mixture was analyzed by Western blot method (FIG. 14).
결합체의 ADP-ribosylation 활성은 Zhang and Snyder의 방법에 의해 Biotinylated NAD+에서 EF-2로의 ADP-ribose의 이동을 측정함으로써 결정되었다. PE24와 면역독소를 20mM Tris-HCl(pH 7.4), 1mM EDTA, 1mM DTT에서 지시된 농도로 희석시키고, 37℃ 1시간 동안 50nM biotinylated NAD+의 존재 하에 밀 배아 추출물과 함께 배양하였다. 5x sodium dodecyl sulfate(SDS) gel loading buffer로 반응을 종결시켰다. 단백질은 SDS- 12%(w/v) polyacrylamide gel에서 분리된다. Biotinylated EF-2는 streptavidin-horseradish peroxidase(HRP) conjugate를 사용하여 Western blotting으로 검출하였다. ChemiDoc XRS system을 이용하여 웨스턴 블랏 이미지를 분석하였다.The ADP-ribosylation activity of the conjugate was determined by measuring the migration of ADP-ribose from Biotinylated NAD + to EF-2 by Zhang and Snyder's method. PE24 and immunotoxin were diluted to the concentrations indicated in 20 mM Tris-HCl (pH 7.4), 1 mM EDTA, 1 mM DTT, and incubated with wheat embryo extract in the presence of 50 nM biotinylated NAD + for 1 hour at 37 ° C. The reaction was terminated with 5x sodium dodecyl sulfate (SDS) gel loading buffer. Protein was isolated from SDS- 12% (w / v) polyacrylamide gel. Biotinylated EF-2 was detected by Western blotting using a streptavidin-horseradish peroxidase (HRP) conjugate. Western blot images were analyzed using the ChemiDoc XRS system.
Trastuzumab-PE24 접합체는 PE24와 유사한 활성을 나타냈으며(도 14); EF2의 분자량은 95 kDa이다. 이러한 결과는 Trastuzumab과의 결합이 PE24의 기능에 최소한으로 영향을 미친다는 것을 시사한다. 항원 결합(도 10) 및 EF2의 ADP-ribosylation(도 14)에 관한 결과는 본 발명에서 개발된 결합 전략이 결합된 분자, Trastuzumab 및 PE24의 기능에 영향을 미치지 않는다는 것을 나타낸다.The Trastuzumab-PE24 conjugate showed activity similar to PE24 (FIG. 14); The molecular weight of EF2 is 95 kDa. These results suggest that binding with Trastuzumab minimally affects the function of PE24. Results regarding antigen binding (FIG. 10) and ADP-ribosylation of EF2 (FIG. 14) indicate that the binding strategy developed in the present invention does not affect the function of the bound molecule, Trastuzumab and PE24.
실시예 11: 다양한 유방암 세포주에서 in vitro 세포 생존력Example 11: Viability of cells in vitro in various breast cancer cell lines
3개의 유방암 세포주(HCC1954, MDA-MB-453, MDA-MB-231)에서 Trastuzumab-PE24의 세포독성을 평가하였다. Cell Counting Kit-8 WST-8 assay(Dojindo Molecular Technologies Inc.,)를 사용하여 접합체의 세포독성 활성을 평가하였다. 세포독성 분석을 위해 유방암 세포주를 96-well plates에 5.0 x 103 cells/well로 접종하고 24시간 동안 배양하였다. 세포를 다양한 농도의 접합체로 처리한 후 37℃에서 72시간 동안 배양하였다. WST-8 분석 시약을 첨가하고 96-well plates를 37℃에서 배양하고 450nm에서 흡광도를 측정하였다.The cytotoxicity of Trastuzumab-PE24 was evaluated in three breast cancer cell lines (HCC1954, MDA-MB-453, MDA-MB-231). The cytotoxic activity of the conjugate was evaluated using a Cell Counting Kit-8 WST-8 assay (Dojindo Molecular Technologies Inc.,). For cytotoxicity analysis, breast cancer cell lines were inoculated into 96-well plates at 5.0 x 103 cells / well and cultured for 24 hours. Cells were treated with conjugates of various concentrations and then incubated at 37 ° C for 72 hours. WST-8 analytical reagent was added, 96-well plates were incubated at 37 ° C., and absorbance was measured at 450 nm.
HCC1954 및 MDA-MB-453은 Her2/neu 양성 세포주이며, MDA-MB-231은 Her2/neu 음성 세포주이다. 각각의 유방암 세포주를 6.4pM 내지 100nM의 농도 범위의 Trastuzumab, PE24 또는 Trastuzumab-PE24 접합체로 72시간 동안 처리하고, 세포 생존력을 측정하였다. 2개의 Her2/neu 양성 세포주(HCC1954 및 MDA-MB-453)에서는 6.4pM 내지 100nM 사이에서 Trastuzumab-PE24의 세포독성이 명확하게 관찰되었으며(도 15(a) 및 도 15(b)), 이는 RG7787을 이용하여 측정된 기존에 보고된 값과 유사하다. 반면, Her2/neu 음성 세포주(MDA-MB-231)에서는 Trastuzumab-PE24에 대해 최대 100nM까지 민감도를 나타내지 않았다(도 15(c)). 이는 접합체가 Her2/neu 음성 세포 생존력에 영향을 미치지 않으며, Trastuzumab의 특이성이 접합체에서 유지되는 것을 의미한다.HCC1954 and MDA-MB-453 are Her2 / neu positive cell lines, and MDA-MB-231 are Her2 / neu negative cell lines. Each breast cancer cell line was treated with Trastuzumab, PE24 or Trastuzumab-PE24 conjugates in a concentration range of 6.4 pM to 100 nM for 72 hours, and cell viability was measured. In two Her2 / neu positive cell lines (HCC1954 and MDA-MB-453), cytotoxicity of Trastuzumab-PE24 was clearly observed between 6.4 pM and 100 nM (Fig. 15 (a) and Fig. 15 (b)), which is RG7787. It is similar to the previously reported value measured using. On the other hand, Her2 / neu negative cell line (MDA-MB-231) did not show sensitivity to Trastuzumab-PE24 up to 100 nM (Fig. 15 (c)). This means that the conjugate does not affect Her2 / neu negative cell viability, and the specificity of Trastuzumab is maintained in the conjugate.
실시예 12: 단백질 합성 저해 분석Example 12: Protein synthesis inhibition assay
PE24의 세포독성 작용 기작은 EF2의 ADP-ribosylation에 의한 단백질 합성 억제이다. Trastuzumab-PE24에 의한 단백질 합성 저해를 분석하기 위해, 합성 단백질의 메티오닌 위치에 azidohomoalanine(AHA)을 도입하고 azide와 alkyne group 사이의 orthogonal reaction을 이용하는 단백질의 태깅을 포함하는 bio-orthogonal noncanonical amino acid tagging(BONCAT) 방법을 사용하였다(Dieterich, D.C., et al., Proceedings of the National Academy of Sciences, 2006. 103(25): p. 9482-9487)(도 16).The mechanism of action of cytotoxicity of PE24 is the inhibition of protein synthesis by ADP-ribosylation of EF2. To analyze protein synthesis inhibition by trastuzumab-PE24, bio-orthogonal noncanonical amino acid tagging (including tagging of proteins using orthogonal reaction between azide and alkyne groups) by introducing azidohomoalanine (AHA) at the methionine position of the synthetic protein BONCAT) method was used (Dieterich, DC, et al., Proceedings of the National Academy of Sciences, 2006. 103 (25): p. 9482-9487) (Fig. 16).
HCC1954 및 MDA-MB-231 세포를 24-well plates에 5 x 104cells/well로 접종하고 24시간 동안 배양하였다. 1nM 농도의 Trastuzumab, PE24 및 Trastuzumab-PE24 접합체를 37℃에서 20시간 동안 처리하였다. 세포를 세척하고 methionine이 없는 RPMI 1640 배지에서 37℃에서 30분 동안 배양하였다. 새로 합성된 단백질을 표지하기 위해, 4mM azidohomoalanine(AHA) (click chemistry tools)와 cycloheximide (Sigma Aldrich)를 각 웰에 넣고 37℃에서 2시간 동안 배양하였다. membrane integrity을 보호하기 위해 냉각 PBS-MC(1mM Magnesium chloride 및 0.1mM calcium chloride)에서 세포를 세척하였다. 원심분리(2000g, 4℃, 10분)에 의해 cell pellets을 수득하고, 1%(w/v) SDS in PBS를 첨가 후 vortexing하여 용해시켰다. 샘플을 95℃에서 10분간 boiling한 후 원심분리(14000RPM, 4℃, 10분)하여 상층액을 수득하였다. 단백질 합성 억제를 검출하기 위해, 암실에서 1시간 동안 click reaction을 수행하였다. Biotinylated cell lysates는 streptavidin-horseradish peroxidase (HRP) conjugate를 사용하여 Western blotting으로 검출하였다. AHA가 있는 단백질은 Biotin-alkyne으로 표지되었으며, ChemiDoc XRS system을 사용하여 웨스턴 블랏 이미지를 분석하였다.HCC1954 and MDA-MB-231 cells were inoculated into 24-well plates at 5 x 10 4 cells / well and cultured for 24 hours. Trastuzumab, PE24 and Trastuzumab-PE24 conjugates at 1 nM concentration were treated at 37 ° C. for 20 hours. Cells were washed and incubated for 30 min at 37 ° C. in RPMI 1640 medium without methionine. To label the newly synthesized protein, 4 mM azidohomoalanine (AHA) (click chemistry tools) and cycloheximide (Sigma Aldrich) were added to each well and incubated at 37 ° C. for 2 hours. Cells were washed in cold PBS-MC (1 mM Magnesium chloride and 0.1 mM calcium chloride) to protect the membrane integrity. Cell pellets were obtained by centrifugation (2000 g, 4 ° C., 10 min.) And dissolved by vortexing after adding 1% (w / v) SDS in PBS. The sample was boiled at 95 ° C for 10 minutes and then centrifuged (14000 RPM, 4 ° C, 10 minutes) to obtain a supernatant. To detect protein synthesis inhibition, a click reaction was performed for 1 hour in the dark. Biotinylated cell lysates were detected by Western blotting using a streptavidin-horseradish peroxidase (HRP) conjugate. Proteins with AHA were labeled with Biotin-alkyne and Western blot images were analyzed using the ChemiDoc XRS system.
음성 대조군(도 17의 Lane 3 및 4)과 cycloheximide의 단백질 합성 저해제를 사용한 양성 대조군(도 17의 Lane 2)은 HCC1954 및 MDA-MB-231 세포주에서 기존에 보고된 바와 같은 방법으로 수행된 결과이다(Hollevoet, K., et al., Molecular cancer therapeutics, 2014. 13(8): p. 2040-2049; Dieterich, D.C., et al., Proceedings of the National Academy of Sciences, 2006. 103(25): p. 9482-9487).The negative control ( lanes 3 and 4 in FIG. 17) and the positive control (lane 2 in FIG. 17) using a protein synthesis inhibitor of cycloheximide are the results performed in the same manner as previously reported in the HCC1954 and MDA-MB-231 cell lines. (Hollevoet, K., et al., Molecular cancer therapeutics, 2014. 13 (8): p. 2040-2049; Dieterich, DC, et al., Proceedings of the National Academy of Sciences, 2006. 103 (25): p. 9482-9487).
Trastuzumab-PE24 접합체는 Her2/neu 양성 세포주에서 단백질 합성을 억제하였지만(도 17 HCC1954의 Lane 5), 활성은 Her2/neu 음성 세포주에서 현저히 낮았다(도 17 MDA-MB-231의 Lane 5). 세포 생존력 데이터와 함께 고려할 때, 이러한 결과는 Trastuzumab-PE24가 단백질 합성을 억제하고 세포 사멸을 초래한다는 것을 의미한다.Trastuzumab-PE24 conjugate inhibited protein synthesis in Her2 / neu positive cell line (lane 5 in FIG. 17 HCC1954), but activity was significantly lower in Her2 / neu negative cell line (lane 5 in FIG. 17 MDA-MB-231). When considered in conjunction with cell viability data, these results indicate that Trastuzumab-PE24 inhibits protein synthesis and results in cell death.
실시예 13: Cetuximab-PE24 접합 및 접합체의 정제Example 13: Cetuximab-PE24 conjugation and purification of conjugates
Trastuzumab 외에도 다른 항체를 이용하여 같은 방법으로 PE24를 접합할 수 있음을 확인하기 위해, cetuximab-HC-N418를 제작하고 PE24와 접합 후 정제하였다. 상기 실시예 6에 기재된 접합 및 2-스텝 정제 방법을 사용하였다. 환원 후 산화 과정을 거쳐 cetuximab의 내제된 disulfide bond가 회복됨을 확인하였다(도 18a). PE24와 접합 후, 크기 배제 크로마토그래피를 통해 15 내지 19 분획의 접합체만을 정제하였고(도 18b), 이를 다시 음이온 교환 크로마토그래피를 통해 정제하여 접합된 PE24의 수에 따라 분리 정제하였다(도 18c). Cetuximab 항체를 이용하였을 때에도 trastuzumab과 마찬가지로, 단일 PE24가 접합된 6 내지 16 분획의 접합체를 정제할 수 있었다.To confirm that PE24 can be conjugated in the same manner using other antibodies in addition to trastuzumab, cetuximab-HC-N418 was produced and purified after conjugation with PE24. The conjugation and two-step purification methods described in Example 6 above were used. After reduction, it was confirmed that the internalized disulfide bond of cetuximab was recovered through an oxidation process (FIG. 18A). After conjugation with PE24, only 15 to 19 fractions of the conjugate were purified by size exclusion chromatography (FIG. 18B), which was then purified by anion exchange chromatography to separate and purified according to the number of conjugated PE24 (FIG. 18C). Similar to trastuzumab, conjugates of 6 to 16 fractions conjugated with a single PE24 were also purified when Cetuximab antibody was used.
본 발명에 따르면, 위치-특이적 돌연변이 유발(site-directed mutagenesis)을 이용하여 반응성 시스테인을 단일클론 항체에 도입하는 기술 및 비천연 아미노산을 단백질에 도입하는 방법에 의하여, 항체의 항원 결합 및 독소의 촉매 활성과 같은 생화학적 특성에 영향을 미치지 않으며, 암 세포주에 대한 세포독성이 있는 동종성 면역독소를 제조할 수 있으므로, 다양한 항체-단백질 접합체를 제조하고 암 치료제로도 응용될 수 있다.According to the present invention, the technique of introducing reactive cysteine into a monoclonal antibody using a site-directed mutagenesis and a method of introducing a non-natural amino acid into a protein, the antigen binding and toxin of the antibody Since it does not affect biochemical properties such as catalytic activity, and can produce allogeneic immunotoxins that are cytotoxic to cancer cell lines, various antibody-protein conjugates can be prepared and also applied as a therapeutic agent for cancer.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since specific parts of the present invention have been described in detail above, it will be apparent to those skilled in the art that this specific technique is only a preferred embodiment, and the scope of the present invention is not limited thereby. will be. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
전자파일 첨부하였음.Electronic file attached.

Claims (21)

  1. 다음 단계를 포함하는 면역독소(immunotoxin)의 제조방법:Method of preparing an immunotoxin (immunotoxin) comprising the following steps:
    (a) 아미노산 잔기 일부가 시스테인으로 치환된 면역글로불린(immunoglobulin) 변이체를 환원 및 재산화시킨 후 링커(linker)와 결합시키는 단계; 및(a) reducing and reoxidizing an immunoglobulin variant in which some of the amino acid residues are substituted with cysteine, and then binding with a linker; And
    (b) 상기 링커가 결합된 면역글로불린 변이체와 비천연 아미노산(unnatural amino acid)이 도입된 단백질 PE24를 접합시켜 면역독소를 생성하는 단계.(b) conjugating the linker-linked immunoglobulin variant with a protein PE24 introduced with unnatural amino acid to generate an immunotoxin.
  2. 제1항에 있어서, 상기 링커가 결합된 면역글로불린 변이체와 비천연 아미노산이 도입된 단백질 PE24가 클릭 반응(Click reaction)에 의해 위치-특이적(site-specific)으로 결합되는 것을 특징으로 하는 면역독소의 제조방법.The immunotoxin according to claim 1, wherein the linker-linked immunoglobulin variant and the non-natural amino acid-introduced protein PE24 are linked site-specific by a click reaction. Method of manufacturing.
  3. 제1항에 있어서, 상기 면역글로불린 변이체는 전장(full-length) 단일클론 IgG인 것을 특징으로 하는 면역독소의 제조방법.The method of claim 1, wherein the immunoglobulin variant is full-length monoclonal IgG.
  4. 제1항에 있어서, 상기 면역글로불린 변이체는 서열번호 18로 표시되는 중쇄 불변영역 아미노산 서열의 61번째, 91번째, 273번째, 303번째, 305번째 아미노산; 서열번호 22로 표시되는 중쇄 불변영역 아미노산 서열의 61번째, 91번째, 272번째, 302번째, 304번째 아미노산; 및 서열번호 20으로 표시되는 경쇄 불변영역 아미노산 서열의 91번째, 93번째 아미노산;으로 구성된 군에서 선택되는 어느 하나의 아미노산이 시스테인으로 치환된 것을 특징으로 하는 면역독소의 제조방법.According to claim 1, wherein the immunoglobulin variant is the 61, 91, 273, 303, 305 amino acids of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 18; The amino acids 61, 91, 272, 302, and 304 of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 22; And a light chain constant region amino acid sequence represented by SEQ ID NO: 20, 91th, 93th amino acids; any one amino acid selected from the group consisting of cysteine is substituted.
  5. 제1항에 있어서, 상기 시스테인 치환은 프라이머를 이용한 PCR 반응을 통해 수행하는 것을 특징으로 하는 면역독소의 제조방법.The method of claim 1, wherein the cysteine substitution is performed through a PCR reaction using a primer.
  6. 제5항에 있어서, 상기 프라이머는 서열번호 1 내지 16으로 구성된 군에서 선택되는 어느 하나 이상의 서열로 표시되는 것을 특징으로 하는 면역독소의 제조방법.[7] The method of claim 5, wherein the primer is represented by any one or more sequences selected from the group consisting of SEQ ID NO: 1 to 16.
  7. 제1항에 있어서, 상기 환원은 트리스(2-카복시에틸)포스핀(Tris(2-carboxyethyl)phosphine; TCEP)을 사용하여 이루어지는 것을 특징으로 하는 면역독소의 제조방법.The method of claim 1, wherein the reduction is made by using tris (2-carboxyethyl) phosphine (Tris (2-carboxyethyl) phosphine; TCEP).
  8. 제1항에 있어서, 상기 재산화는 디하이드로아스코르빈산(Dehydroascorbic acid; dhAA)을 사용하여 이루어지는 것을 특징으로 하는 면역독소의 제조방법.The method according to claim 1, wherein the re-oxidation is performed using dehydroascorbic acid (dhAA).
  9. 제1항에 있어서, 상기 링커는 말레이미드(maleimide)-PEG-DBCO 링커인 것을 특징으로 하는 면역독소의 제조방법.The method according to claim 1, wherein the linker is a maleimide-PEG-DBCO linker.
  10. 제1항에 있어서, 상기 PE24는 탈면역화된(deimmunized) 슈도모나스 외독소(Pseudomonas Exotoxin) A인 것을 특징으로 하는 면역독소의 제조방법.The method of claim 1, wherein the PE24 is deimmunized Pseudomonas Exotoxin A.
  11. 제10항에 있어서, 상기 PE24는 슈도모나스 외독소(Pseudomonas Exotoxin) A에서 도메인 Ⅰa가 결실되고, 퓨린 절단 부위(furin-cleavable motif)를 제외한 도메인 Ⅱ가 결실되며, 7개의 돌연변이(R427A, R456A, D463A, R467A, R490A, R505A 및 R538A)를 포함하는 독소의 도메인 Ⅲ를 포함하고, 추가로 His 6 tags 및 트롬빈(Thrombin) 절단 부위가 도입된 것을 특징으로 하는 면역독소의 제조방법.The method of claim 10, wherein the PE24 is Pseudomonas Exotoxin ( Pseudomonas Exotoxin) A domain Ia is deleted, except for the purine cleavage site (furin-cleavable motif) domain II is deleted, seven mutations (R427A, R456A, D463A, R467A, R490A, R505A and R538A) comprises a domain III of a toxin, and further comprising His 6 tags and a thrombin cleavage site.
  12. 제1항에 있어서, 상기 비천연 아미노산은 파라아지도페닐알라닌(p-azidophenylalanine)인 것을 특징으로 하는 면역독소의 제조방법.The method of claim 1, wherein the non-natural amino acid is para-azidophenylalanine (p-azidophenylalanine).
  13. 제1항에 있어서, 상기 면역글로불린은 트라스투주맙(Trastuzumab) 또는 세툭시맙(Cetuximab)인 것을 특징으로 하는 면역독소의 제조방법.The method of claim 1, wherein the immunoglobulin is Trastuzumab or Cetuximab.
  14. 아미노산 잔기 일부가 시스테인으로 치환된 면역글로불린(immunoglobulin) 변이체가 링커를 매개로 비천연 아미노산(unnatural amino acid)이 도입된 단백질 PE24과 접합되어 있는 면역독소(immunotoxin).Immunoglobulin variants in which some of the amino acid residues are substituted with cysteine are immunotoxins that are conjugated with protein PE24 into which unnatural amino acids are introduced via a linker.
  15. 제14항에 있어서, 상기 면역글로불린 변이체는 서열번호 18로 표시되는 중쇄 불변영역 아미노산 서열의 61번째, 91번째, 273번째, 303번째, 305번째 아미노산; 서열번호 22로 표시되는 중쇄 불변영역 아미노산 서열의 61번째, 91번째, 272번째, 302번째, 304번째 아미노산; 및 서열번호 20으로 표시되는 경쇄 불변영역 아미노산 서열의 91번째, 93번째 아미노산;으로 구성된 군에서 선택되는 어느 하나의 아미노산이 시스테인으로 치환된 것을 특징으로 하는 면역독소.15. The method of claim 14, wherein the immunoglobulin variant is 61, 91, 273, 303, 305 amino acids of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 18; The amino acids 61, 91, 272, 302, and 304 of the heavy chain constant region amino acid sequence represented by SEQ ID NO: 22; And a light chain constant region amino acid sequence represented by SEQ ID NO: 20, 91th, 93th amino acids; any one amino acid selected from the group consisting of cysteine is substituted.
  16. 제14항에 있어서, 상기 링커는 말레이미드(maleimide)-PEG-DBCO 링커인 것을 특징으로 하는 면역독소.15. The immunotoxin of claim 14, wherein the linker is a maleimide-PEG-DBCO linker.
  17. 제14항에 있어서, 상기 PE24는 탈면역화된(deimmunized) 슈도모나스 외독소(Pseudomonas Exotoxin) A인 것을 특징으로 하는 면역독소.15. The immunotoxin of claim 14, wherein the PE24 is deimmunized Pseudomonas Exotoxin A.
  18. 제17항에 있어서, 상기 PE24는 슈도모나스 외독소(Pseudomonas Exotoxin) A에서 도메인 Ⅰa가 결실되고, 퓨린 절단 부위(furin-cleavable motif)를 제외한 도메인 Ⅱ가 결실되며, 7개의 돌연변이(R427A, R456A, D463A, R467A, R490A, R505A 및 R538A)를 포함하는 독소의 도메인 Ⅲ를 포함하고, 추가로 His 6 tags 및 트롬빈(Thrombin) 절단 부위가 도입된 것을 특징으로 하는 면역독소.The method of claim 17, wherein the PE24 is Pseudomonas Exotoxin ( Pseudomonas Exotoxin) domain Ia is deleted, domain II except for the purine cleavage site (furin-cleavable motif) is deleted, 7 mutations (R427A, R456A, D463A, R467A, R490A, R505A and R538A) comprising a domain III of a toxin, further characterized by the introduction of His 6 tags and Thrombin cleavage site.
  19. 제14항에 있어서, 상기 면역글로불린은 트라스투주맙(Trastuzumab) 또는 세툭시맙(Cetuximab)인 것을 특징으로 하는 면역독소.15. The method of claim 14, The immunoglobulin is Trastuzumab (Trastuzumab) or cetuximab (Cetuximab), characterized in that the immunotoxin.
  20. 제14항 내지 제19항에 따른 면역독소를 포함하는 암 치료용 조성물.A composition for the treatment of cancer comprising the immunotoxin according to claims 14 to 19.
  21. 제20항에 있어서, 상기 암은 유방암, 대장암, 비소세포폐암 또는 두경부암인 것을 특징으로 하는 암 치료용 조성물.21. The composition of claim 20, wherein the cancer is breast cancer, colorectal cancer, non-small cell lung cancer or head and neck cancer.
PCT/KR2019/011411 2018-09-07 2019-09-04 Novel immunotoxin production method WO2020050628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180107079 2018-09-07
KR10-2018-0107079 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020050628A1 true WO2020050628A1 (en) 2020-03-12

Family

ID=69721678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011411 WO2020050628A1 (en) 2018-09-07 2019-09-04 Novel immunotoxin production method

Country Status (2)

Country Link
KR (1) KR102353086B1 (en)
WO (1) WO2020050628A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093376A (en) * 2022-04-19 2022-09-23 北京大学 Double/multiple functional unnatural amino acid, conjugate and application thereof
WO2023071987A1 (en) * 2021-10-25 2023-05-04 三生国健药业(上海)股份有限公司 Anti-her2 immunotoxin molecule and preparation method therefor and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696237A (en) * 1986-09-24 1997-12-09 The United States Of America As Represented By The Department Of Health And Human Services Recombinant antibody-toxin fusion protein
WO2009089461A1 (en) * 2008-01-10 2009-07-16 Genentech, Inc. Plexind1 agonists and their use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065151B (en) * 2004-09-23 2014-12-10 健泰科生物技术公司 Cysteine engineered antibodies and conjugates
KR102001821B1 (en) * 2016-04-06 2019-07-19 (주)알테오젠 Antibody-Drug Conjugate Comprising Antibody Variant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696237A (en) * 1986-09-24 1997-12-09 The United States Of America As Represented By The Department Of Health And Human Services Recombinant antibody-toxin fusion protein
WO2009089461A1 (en) * 2008-01-10 2009-07-16 Genentech, Inc. Plexind1 agonists and their use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FITZGERALD, D. J. P: "Construction of immunotoxins using Pseudomonas exotoxin A.", METHODS IN ENZYMOLOGY, vol. 151, 1987, pages 139 - 145 *
KAPLAN, G. ET AL.: "Improving the in vivo efficacy of an anti-tac ( CD 25) immunotoxin by Pseudomonas exotoxin A domain II engineering", MOLECULAR CANCER THERAPEUTICS, vol. 17, no. 7, July 2018 (2018-07-01), pages 1486 - 1493, XP055692696 *
LEE, B. S. ET AL.: "Construction of an immunotoxin via site-specific conjugation of anti-Her2 IgG and engineered Pseudomonas exotoxin A.", JOURNAL OF BIOLOGICAL ENGINEERING, vol. 13, no. 56, 21 June 2019 (2019-06-21), pages 1 - 13, XP055692700 *
PARK, J. ET AL.: "Peptide-directed photocrosslinking for site-specific conjugation of IgG", BIOCONJUGATE CHEMISTRY, 4 September 2018 (2018-09-04), pages 1 - 13, XP055673872 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071987A1 (en) * 2021-10-25 2023-05-04 三生国健药业(上海)股份有限公司 Anti-her2 immunotoxin molecule and preparation method therefor and application thereof
CN115093376A (en) * 2022-04-19 2022-09-23 北京大学 Double/multiple functional unnatural amino acid, conjugate and application thereof

Also Published As

Publication number Publication date
KR102353086B1 (en) 2022-01-20
KR20200028835A (en) 2020-03-17

Similar Documents

Publication Publication Date Title
US6147203A (en) Recombinant disulfide-stabilized polypeptide fragments having binding specificity
KR102342934B1 (en) Antibody-drug conjugates and immunotoxins
WO2021115497A2 (en) Protein-drug conjugate and site-specific conjugating method
WO2017052241A1 (en) Novel anti-mesothelin antibody and composition comprising the same
US20230146591A1 (en) Binding molecules to cd38 and pd-l1
WO2022104692A1 (en) Engineered antibody, antibody-drug conjugate, and use thereof
EP2970508A2 (en) Charge-engineered antibodies or compositions of penetration-enhanced targeting proteins and methods of use
AU2238292A (en) Microbially-produced antibody fragments and their conjugates
AU3612293A (en) Biosynthetic binding protein for cancer marker
CN114901694A (en) anti-TROP 2 antibodies, antibody-drug conjugates, and uses thereof
WO2020050628A1 (en) Novel immunotoxin production method
WO2021107566A1 (en) Antibody against c-kit and use thereof
JPH09509043A (en) A novel ribosome-inactivating protein isolated from the plant Bryonia dioica
WO2021154046A1 (en) Ph-sensitive fc variant
WO2013176516A1 (en) Antibody-drug conjugate prepared by using transglutaminase and use thereof
JP7440516B2 (en) Truncated multivalent multimer
Xiang et al. Genetic engineering of a recombinant fusion possessing anti-tumor F (ab′) 2 and tumor necrosis factor
WO2023043123A1 (en) Glycosylated fc variants with improved selective binding affinity to fcγriiia
WO2019107962A2 (en) Method for conjugating antibody and physiologically active substance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856949

Country of ref document: EP

Kind code of ref document: A1