WO2013176516A1 - Antibody-drug conjugate prepared by using transglutaminase and use thereof - Google Patents

Antibody-drug conjugate prepared by using transglutaminase and use thereof Download PDF

Info

Publication number
WO2013176516A1
WO2013176516A1 PCT/KR2013/004571 KR2013004571W WO2013176516A1 WO 2013176516 A1 WO2013176516 A1 WO 2013176516A1 KR 2013004571 W KR2013004571 W KR 2013004571W WO 2013176516 A1 WO2013176516 A1 WO 2013176516A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
glutamine
drug
seq
mutated
Prior art date
Application number
PCT/KR2013/004571
Other languages
French (fr)
Korean (ko)
Inventor
고민지
송대해
김영민
문경덕
박상경
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120154955A external-priority patent/KR20130132236A/en
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Publication of WO2013176516A1 publication Critical patent/WO2013176516A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner

Definitions

  • the present invention comprises reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase, Method for producing, the antibody-drug conjugate prepared by the method, the antibody-drug conjugate, wherein the mutated antibody comprising glutamine and the drug comprising a free amine group are connected by an isopeptide bond, the antibody-drug conjugate
  • the present invention relates to a mutated antibody in which a peptide including glutamine and an antibody are linked.
  • Antibody-drug conjugates combine cytotoxic drugs with antibodies, and use them to enhance existing anticancer effects and apply them to cancer cells resistant to existing antibodies. Research is active. Antibody-drug conjugates currently entering the market or in clinical or research phases use chemical binding to multiple sites of lysine or cysteine in a native antibody using chemical binding to the antibody. have. Antibody-drug conjugates through these classical chemical methods are difficult to regulate in their formation and have the problem of producing heterogeneous immunomixes with different properties (KJ Hamblett et al. Clin. Cancer Res. 2004, 10). , 7063-7070).
  • cysteine-inserted antibodies are used to bind two cytotoxic substances to a desired position, but the thiol residues of artificially inserted cysteines are reactive. Since it has to be activated to have, there is a problem to follow a multi-step conjugation process that must go through the reduction and oxidation of the antibody.
  • the method is used to modify the antibody by undergoing an oxidation-reduction reaction, and thus has a weak point in the tertiary structure or function of the antibody.
  • Such weakness often results from non-specification of the antibody and incomplete reaction between accessible lysine / cysteine residues or amine groups of the antibody, often resulting in incomplete or undefined products. do.
  • Transglutaminase is an enzyme that catalyzes the acyl transfer reaction between the gamma-carboxamide group of glutamine (Q) residues and the primary epsilon amino group of lysine.
  • the bond formed through the above reaction is called an isopeptide bond, and this bond is known as a fairly stable bond such as being resistant to protease. Because of this stability, transglutaminase is generally used to link structural components of cells.
  • the recognition of glutamine residues by transglutaminase is quite stringent, and is known to recognize glutamine groups, mainly in the fluid part of proteins (Angelo Fontana et al, Advanced Drug Delivery Reviews 2008. 60. 13-28).
  • PEGylation polyethylene glycolation
  • hGH human growth hormone
  • hC-GSF human granulocyte colony stimulating factor
  • EPO erythropoietin
  • a site-specific or selective PEGylation is performed using a transglutaminase reaction instead of the problem of the chemical method by redox.
  • the pegylation reaction through transglutaminase is one in which a transglutaminase recognizes one or more glutamine groups inside a protein and connects an amino group to PEG as an amine donor substrate (Anna Mero). et al. Journal of Controlled Release . 2011. 154 27-34, Carlo Maullu et al. FEBS Journal . 2009. 276. 6741-6750, US Registered Publication No. 6995245).
  • transglutaminase is also used to bind lipids to proteins.
  • Conventional chemical reactions or EPL-mediated or saltase-mediated enzymatic reactions have been used to bind lipids to proteins, but the above methods have a long reaction time and low yields.
  • the formation of protein-lipid conjugates using transglutaminase showed more than 95% binding yield and reduced time compared to the conventional method (Hiroki Abe et al. Chem. Eur. J. 2011, 17, 14004- 14008).
  • glycosylation such as glycosylation of antibodies
  • glycosylation of antibodies is known to affect the function and pharmacokinetics of the effector of the antibody, and thus altering the sugar chain structure inside the antibody has a problem affecting the function of the antibody. Therefore, there is still an unknown field of constructing the linkage between the antibody and the drug using transglutaminase without impairing the sugar chain structure required for the in vivo function of the antibody.
  • an antibody-drug is prepared by artificially inserting a glutamine residue at a site to produce a mutated antibody, and reacting a drug having a free amine group in the presence of a transglutaminase to specifically bind the drug to a specific glutamine residue.
  • the present invention has been completed by preparing the binder.
  • One object of the present invention comprises the step of reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase It provides a method for producing a drug conjugate.
  • Another object of the present invention to provide a pharmaceutical composition for treating cancer comprising the antibody-drug conjugate.
  • Another object of the present invention is to provide a polynucleotide encoding the mutated antibody, an expression vector comprising the polynucleotide, and a transformant into which the expression vector is introduced.
  • the antibody-drug conjugate according to the present invention has a high homogeneity as a conjugate in which a drug containing a free amine group is specifically linked to a mutated antibody including glutamine, and has a chemical reaction compared to a form in which a drug and an antibody are chemically bound. Less pass has the advantage that less deformed form is produced.
  • FIG. 1 is a representative schematic diagram showing an antibody-drug conjugate in which a modified monoclonal antibody is combined with a drug.
  • Q represents glutamine.
  • FIG. 2 shows an SDS-PAGE result of reacting mPEGamine (1KDa) with glutamine-containing IgG in the presence of transglutaminase (TGase), followed by electrophoresis and coomassie blue staining. to be.
  • (A) shows the result of the reaction with the native IgG antibody (anti-Her2 antibody) without introducing glutamine (lane 1), and the result of the reaction between the native IgG antibody (anti-Her2 antibody) without introducing glutamine and mPEGamine.
  • (Lane 2) the result of having reacted the natural IgG antibody (anti-Her2 antibody) and mPEG amine which did not introduce glutamine in the presence of TGase (lane 3).
  • Figure 2 (B) is the result of the reaction between T-KM1 and mPEGamine modified to include glutamine (lane 4), the result of the reaction with T-KM1 and TGase (lane 5), the reaction with T-KM1, mPEGamine and TGase The result (lane 6) is shown.
  • PEG is attached to the heavy chain (HC, Heavy chain) of the antibody in lane 6, it can be seen that the band is present in a higher position than the lanes 4 and 5.
  • Figure 2 (C) shows the result of the reaction between T-KM2 and mPEGamine modified to include glutamine (lane 7), the result of the reaction of T-KM2 and TGase (lane 8), the reaction of T-KM2, mPEGamine and TGase SDS- showing results (lane 9), the reaction between T-KM3 and mPEGamine (lane 10), the reaction between T-KM3 and TGase (lane 11), and the reaction with T-KM3, mPEGamine and TGase (lane 12). PAGE results.
  • Figure 2 (D) is the result of the reaction of T-KM4 and TGase modified antibody containing glutamine (lane 13), the result of the reaction between T-KM4 and mPEGamine (lane 14), the reaction of T-KM4, mPEGamine and TGase SDS- showing results (lane 15), T-KM10 and TGase (lane 16), T-KM10 and mPEGamine (lane 17), and T-KM10, mPEGamine and TGase (lane 18). PAGE results.
  • HC means heavy chain of antibody
  • TGase means transglutaminase
  • HC-PEG (1K) shows PEG bound to heavy chain of antibody.
  • Figure 3 is a graph of the antibody-drug conjugates analyzed by high performance liquid chromatography (HPLC). This was analyzed using the HIC (hydrophobicity interaction column). As shown in (B), the drug-binding form (Antibody), the drug-binding form (Ab-MMAF (1)), and the drug-binding form The morphology (Ab-MMAF (2)) is shown separated by different peaks.
  • (A) is a HPLC analysis of the antibody alone, and was used as a control to distinguish the form in which the drug is not bound when analyzing the prepared antibody-drug conjugate.
  • T-KM1-MMAF, T-KM2-MMAF, and T-KM3-MMAF are antibody-drug conjugates in which MMAF, a cytotoxic drug, is bound to T-KM1, T-KM2, and T-KM3 using glutaminase, respectively. to be.
  • Figure 5 shows the results of the efficacy test of the antibody-drug conjugate of the present invention in xenograft mice using JIMT-1 cell line.
  • the invention comprises the step of reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase, Provided are methods for preparing antibody-drug conjugates.
  • a method for preparing an antibody-drug conjugate of the present invention comprises reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase, for example (a) comprising glutamine Introducing the expression vector of the mutated antibody into a host cell to obtain a mutated antibody; And (b) reacting the mutated antibody obtained in step (a) in the presence of a drug containing a free amine group with a transglutaminase.
  • transglutaminase refers to an enzyme that forms a covalent bond between a free amine group and a carboxamide group of glutamine.
  • the transglutaminase may refer to an enzyme that forms a covalent bond between introduced glutamine of a mutated antibody and an amine group of a drug including a free amine group, using the transglutaminase. To form a bond between the mutated antibody comprising glutamine and the drug comprising a free amine group, thereby forming an antibody-drug conjugate.
  • transglutaminase when the transglutaminase forms a covalent bond between the carboxamide of glutamine and the epsilon amine group of lysine, an isopeptide bond may be formed through an acyl transfer reaction.
  • the transglutaminase is not limited to any protein that can catalyze the covalent bond between the gamma-carboxamide of glutamine and the free amine group present in the mutated antibody of the present invention. It may be derived from a living organism. In one embodiment of the present invention, the transglutaminase derived from bacteria was used.
  • the term “antibody-drug conjugate (ADC)” refers to a conjugate to which a mutated antibody is linked to a drug, and may also be referred to as an immunoconjugate.
  • the antibody-drug conjugate may be a conjugate obtained by reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase.
  • the antibody-drug conjugate includes a conjugated form in which a mutated antibody including glutamine and a drug including a free amine group are linked through isopeptide bonds.
  • the conjugate of the present invention including the isopeptide bond is stable in the bloodstream and prevents the drug from being separated from the antibody, thereby prodruging the prodrug until reaching the target. To minimize the impact on normal tissues.
  • the antibody-drug conjugate binds the drug to an antibody capable of recognizing and binding an antigen present in a specific cell such as cancer cell
  • the drug can be delivered to a specific cell to which the antibody binds.
  • the antibody-drug conjugate can be used to treat a disease such as cancer.
  • the antibody of the antibody-drug conjugate is a therapeutic antibody, and may exhibit a synergistic effect compared to the case of using a therapeutic antibody and a drug in terms of therapeutic effect.
  • the antibody-drug conjugate may be a conjugate obtained by reacting a mutant antibody in which glutamine is introduced into the antibody and a drug including a free amine group in the presence of a transglutaminase. Reacting the introduced mutated antibody and mPEGamine in the presence of transglutaminase to mcMMAF containing a mutant antibody and lysine residues in which glutamine is introduced into an antibody of the IgG form or a glucosine in the presence of transglutaminase And the like obtained by the binder, but is not limited thereto.
  • the antibody-drug conjugate may refer to a form in which the drug is site-specifically bound to a specific site of the mutated antibody.
  • the antibody-drug conjugate by introducing a glutamine that specifically reacts with the transglutaminase to the antibody, it is possible to specifically bind the drug.
  • the antibody-drug conjugate of the present invention can be prepared in a form in which the drug is bound in a form that does not affect the antigen-binding ability of the antibody, a disease using the antibody-drug conjugate in which the binding ability of the antibody to the antigen is important It can be useful for the treatment of
  • An example of the form of the conjugate obtained by reacting a mutant antibody in which glutamine is introduced into the antibody and a drug containing a free amine group in the presence of transglutaminase is shown in the schematic diagram of FIG. 1.
  • antibody refers to a protein molecule that acts as a receptor for an antigen that specifically recognizes an antigen, including an immunoglobulin molecule that is immunologically reactive with a specific antigen.
  • Polyclonal antibodies monoclonal It includes all antibodies, whole antibodies and antibody fragments.
  • the total antibody is a structure having two full length light chains and two full length heavy chains, each of which is linked by a heavy chain and a disulfide bond.
  • the total antibody includes IgA, IgD, IgE, IgM and IgG, and IgG is a subtype, including IgG1, IgG2, IgG3 and IgG4.
  • the antibody fragment refers to a fragment having an antigen binding function, and includes Fab, Fab 'F (ab') 2 and Fv.
  • the Fab has one antigen binding site in a structure having a variable region of the light and heavy chains, a constant region of the light chain and a first constant region of the heavy chain (CH 1 ).
  • F (ab ') 2 antibodies are produced by disulfide bonds of cysteine residues in the hinge region of Fab'.
  • Fv (variable fragment) means a minimum antibody fragment having only the heavy chain variable region and light chain variable region.
  • Double-chain Fv is a disulfide bond, the heavy chain variable region and the light chain variable region is linked, and short-chain Fv (scFv) is generally covalently linked to the variable region of the heavy chain and the light chain through a peptide linker.
  • Such antibody fragments can be obtained using proteolytic enzymes (e.g., the entire antibody can be restricted to papain and Fab is obtained, and pepsin can yield F (ab ') 2 fragment). Can be produced through genetic recombination techniques.
  • the antibody also includes wild type antibodies, antibody fragments and genetically modified forms in which specific amino acids such as lysine (K) of the antibody or antibody fragment are removed, in particular, Lysine removed at the C or N terminus of the heavy or light chain of an IgG antibody. If the last lysine present at the C terminus of the heavy chain of the full-length antibody is not removed, the binding between the antibody heavy chains may appear preferentially rather than the binding with the drug. Preparation of the antibody; It is preferred for the preparation of antibody-drug conjugates using the prepared mutated antibodies. Such removal of lysine can be removed using conventional techniques in the art in view of the type and sequence of the antibody or antibody fragment to be used and considering the site to which the antibody and the drug are bound.
  • K lysine
  • the term “mutated antibody comprising glutamine” refers to an antibody that has been mutated to include glutamine, for example, the substitution or addition of glutamine (Q) to the antibody or glutamine. It includes a form attached to the peptide containing.
  • the mutated antibody may be a form in which a peptide including glutamine is attached to the full length antibody or antibody fragment, but is not limited thereto.
  • the mutated antibody in the form of the substitution of glutamine may be prepared by substituting residues not involved in glycosylation, such as glycosylation, and the mutated antibody binds the drug without removing the sugar chain structure of the antibody. There is an advantage to this.
  • the form in which the glutamine-containing peptide is linked to the antibody may be genetically engineered, and may be preferably in the form linked to the C or N terminal of the heavy or light chain of the antibody, more preferably the heavy chain of the antibody. Or a form linked to the C terminus of the light chain, and more preferably a form linked to the C terminus of the heavy chain of the antibody.
  • the mutated antibody comprising glutamine may be used as a substrate of transglutaminase.
  • the mutated antibody comprising glutamine of the present invention is not a form in which the amino acid involved in glycosylation is substituted with glutamine, but additionally inserts or substitutes glutamine without significantly affecting glycosylation. Or a form prepared by attaching a peptide containing glutamine, but is not limited thereto.
  • mutated antibody that introduces a specific glutamine that can react with transglutaminase at the terminal of the antibody, rather than a mutated antibody substituted with glutamine amino acids involved in glycosylation, Binding with lysine containing drug in the presence of transglutaminase.
  • Such mutated antibodies have the advantage of being able to specifically bind to the drug with little effect on glycosylation, such as glycosylation of the antibody.
  • a vector comprising a polynucleotide encoding a light chain by preparing an expression vector comprising a polynucleotide encoding a polypeptide comprising a polypeptide comprising a glutamine linked to the C terminal of the heavy chain of the IgG antibody
  • an expression vector comprising a polynucleotide encoding a polypeptide comprising a polypeptide comprising a glutamine linked to the C terminal of the heavy chain of the IgG antibody
  • a mutated antibody in which a peptide including glutamine was linked to the C terminus of the IgG antibody was prepared (Examples 1 and 2).
  • peptide including glutamine refers to a peptide containing one or more glutamine, and for the purposes of the present invention, a peptide comprising glutamine which can be linked to lysine by transglutaminase. Ramen noodles are included without limitation.
  • the peptide containing glutamine may be, for example, a peptide having an amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5, but is not limited thereto.
  • Glutamine in the peptide may be present at various positions, and the peptide may comprise one or more glutamine.
  • Transglutaminase is known to recognize glutamine located in a fluid moiety in a protein (Angelo Fontana et al. Advanced Drug Delivery Reviews 2008. 60. 13-28), where the fluid moiety in the protein is chain fluid. Flexibility is part of a large protein that does not have a fixed tertiary structure or includes partially unfolded parts. Therefore, the peptide containing glutamine may be included in the peptide containing glutamine, regardless of the number of amino acids, provided that the glutamine is located in a fluid part rather than a fixed tertiary structure.
  • a representative glutamine-containing peptide consisting of eight amino acids, glutamine is located at the terminal GGGSLLQG (SEQ ID NO: 1), consisting of four amino acids LLQG (SEQ ID NO: 2), consisting of 11 amino acids and glutamine GGGGSLAQSHA (SEQ ID NO: 3) located in the middle, GQGGGSLASHA (SEQ ID NO: 4) located in front of glutamine, and NNDSTEYGLFQINNGI (SEQ ID NO: 5) consisting of 16 amino acids, have glutamine in various lengths and in various positions. Since it was confirmed that the peptide may be included in the peptide containing glutamine of the present invention, it is obvious that the peptide may be included in the peptide of the present invention regardless of the position of the glutamine or the length of the peptide.
  • the peptide containing glutamine means a peptide containing glutamine that can react with transglutaminase.
  • Carboxamide of glutamine present in the peptide may be linked to an amine group by transglutaminase.
  • the glutamine may be linked to a molecule having a free amine group by a transglutaminase at any position of the peptide such as the terminal or the middle of the peptide.
  • glutamine located in the middle or the end of the peptide is linked to mPEGamine by transglutaminase, it was confirmed that the efficacy as an antibody-drug conjugate (Fig. 2 to 5).
  • the term "drug containing a free amine group” refers to a drug having an amine group capable of reacting with a transglutaminase, and more preferably a mutated antibody comprising glutamine. It means a drug comprising an amine group that can be linked in the presence of a transglutaminase, for example mPEGamine, wherein the peptide containing glutamine can be linked in the presence of a transglutaminase and a mutated antibody in the form linked to the antibody Or a drug such as mcMMAF (maleimidocaproyl-monomethylauristatin F) prepared to include lysine, but is not limited thereto.
  • mcMMAF maleimidocaproyl-monomethylauristatin F
  • the drug containing the free amine group may be originally having an amine group, but may be synthetically or genetically engineered in a form having a free amine group capable of reacting with a transglutaminase. It can be produced by a method of synthesizing a drug to include an epsilon amine group or lysine.
  • a method for synthesizing a drug to include lysine various methods used in the art may be used, for example, using a bond between a maleimide group and a thiol group of cysteine, that is, a thioether bond, Drugs containing maleimide groups and peptides containing cysteine and lysine residues can be linked to each other to synthesize drugs containing lysine.
  • a peptide having a sequence of KGEGRGSGC SEQ ID NO: 6
  • free amine group refers to a functional group that can be linked to a carboxamide of glutamine and an acyl transfer reaction by a transglutaminase, for example, lysine (K).
  • Epsilon amine ( ⁇ -amine) present in, but is not limited thereto.
  • the term "drug” can bind to an antibody of the invention to increase the therapeutic efficiency of the therapeutic antibody itself, increase the half-life of the antibody in the blood, or reach a location targeted by the antibody, Means a substance that can be used for the treatment of diseases by killing the cancer in the target, and the like is not particularly limited, but may preferably be a cytotoxic drug, a toxin or a stabilizer.
  • the term "cytotoxic drug” may mean a drug that can be used for the treatment of a disease.
  • the cytotoxic drug may be a drug that can be combined with a mutated antibody in the presence of a transglutaminase, and may mean a drug that can be used for the treatment of a disease of an individual.
  • the cytotoxic drug is not limited thereto, but may preferably be a microtubulin structure forming inhibitor, a meiosis inhibitor, a topoisomerase inhibitor, or a DNA intercalator.
  • maytansinoid mayurisin, auristatin, dolastatin, calicheamicin, pyrrolobenzodiazepines, doxorubicin, duocamycin ), Carboplatin (paraplatin), cisplatin, cisplatin, cyclophosphamide, ifosfamide, nidran, nitrogen mustard (mecloethamine hydrochloride) nitrogen mustar (mechlorethamine HCL), bleomycin, mitomycin C, cytarabine, flurouracil, gemcitabine, trimetrexate metrexate, methotrexate, etoposide, vinpoline, vinblastine, vinorelbine, alimta, altretamine, procarbazine, It may be taxol, taxotere, topotecan or irinotecan.
  • the term "toxin” refers to a drug having a toxicity produced by an organism, and for the purpose of the present invention, the toxin binds to a mutated antibody and may be used to treat an individual's disease. Can mean.
  • the toxin may be, but is not limited to, extracellular or phytotoxic.
  • the term "stabilizer” refers to a drug capable of binding to a protein to increase the half-life of the protein in vivo, and preferably a half-life of the antibody or mutated antibody to bind to the antibody or the mutated antibody. It means a drug that can be increased, and more preferably may mean polyethylene glycol (PEG, Polyethylene glycol) or hyaluronic acid.
  • the stabilizer may be in the form of an amine (amine) to react with the transglutaminase, for example mPEGamine.
  • a mutated antibody connecting a peptide consisting of 4 to 16 amino acids including glutamine at the C-terminus of the heavy chain of the IgG antibody which has a free amine group in the presence of transglutaminase Reaction with mPEGamine or mcMMAF produced antibody-drug conjugates in which mPEGamine or mcMMAF was linked to IgG antibodies (Examples 1-5).
  • the present invention provides an antibody-drug conjugate prepared by the above method.
  • the present invention provides antibody-drug conjugates wherein the mutated antibody comprising glutamine and the drug comprising free amine groups are linked by isopeptide bonds.
  • the drug containing the mutated antibody and the free amine group are as described above.
  • isopeptide bond refers to a peptide formed between an amine group ( ⁇ -amine group) of a lysine side chain and a carboxyl group ( ⁇ or ⁇ -carboxyl group or carboxamide) of a glutamine or asparagine side chain. It means a bond, preferably a peptide bond formed between the amine group of the lysine side chain and the carboxyl group of glutamine.
  • the isopeptide bond may refer to a bond formed by transglutaminase.
  • the isopeptide bond is a stable bond having resistance to protease, which is stable to blood flow even in the blood of an individual, thereby maintaining a stable form of antibody-drug connection.
  • the antibody-drug conjugate may be a conjugate in a form in which a mutated antibody and a drug including a free amine group are linked through isopeptide bonds, and preferably a free amine that can be used for preventing or treating a disease.
  • the drug including the group may be a conjugate of a mutated antibody and a form linked through isopeptide, but is not limited thereto.
  • the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the antibody-drug conjugate.
  • the antibodies, drugs and conjugates are as described above.
  • prevention means any action that inhibits or delays the onset of cancer by administration of the composition.
  • treatment means any action that improves or advantageously changes the symptoms of the cancer disease by administration of the composition.
  • cancer may refer to a cancer which can be selectively killed using the antibody-drug conjugate of the present invention, and the cancer treatable using the antibody-drug conjugate may be included without limitation.
  • skin, digestive, urinary, genital, respiratory, circulatory, brain or nervous system cancers specifically lung cancer, non-small cell lung cancer, colon cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, uterine cancer, ovarian cancer, Rectal cancer, stomach cancer, anal muscle cancer, colon cancer, breast cancer, fallopian tube cancer, endometrial cancer, cervical cancer, vaginal cancer, vulvar cancer, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine gland cancer, thyroid cancer, parathyroid cancer, adrenal cancer , Soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute leukemia, lymphocyte lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal
  • the antibody-drug conjugates of the present invention may be in the form of a site-specific binding of a cytotoxic agent, toxin or stabilizer used for the treatment of cancer to a mutated antibody for use in the treatment of cancer, which is the antigen of the original antibody. Drugs may be added to increase the efficacy of the drug more effectively without affecting cognition.
  • the mutated antibody of the present invention includes a form that has little effect on glycosylation, such as glycosylation, which plays an important role in the effector function and pharmacokinetics of the antibody, thereby binding the drug to the mutated antibody. In the case of using the antibody-drug conjugates for the treatment of cancer, there is an advantage that the effect can be further increased compared to the use of existing drugs or antibodies alone.
  • the pharmaceutical composition for treating cancer of the present invention may further include a pharmaceutically acceptable carrier, and may be formulated with the carrier.
  • a carrier or diluent that does not inhibit the biological activity and properties of the administered compound is sterile and biocompatible, which include saline, sterile water, Ringer's solution, buffered saline, albumin injectable solutions, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary.
  • Diluents, dispersants, surfactants, binders and lubricants may also be added in addition to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
  • composition of the present invention can be applied in any dosage form comprising it as an active ingredient, and can be prepared in an oral or parenteral dosage form.
  • Formulations for oral administration comprising the composition of the present invention as an active ingredient include, for example, tablets, troches, lozenges, water-soluble or oily suspensions, prepared powders or granules, emulsions, hard or soft capsules, syrups or elixirs can do.
  • lactose For formulation into tablets and capsules, lactose, saccharose, sorbitol, mannitol, starch, amylopectin, binders such as cellulose or gelatin, excipients such as dicalcium phosphate, disintegrating agents such as corn starch or sweet potato starch, stearic acid masne It may include a lubricating oil such as calcium, calcium stearate, sodium stearyl fumarate or polyethylene glycol wax, and in the case of a capsule, it may further contain a liquid carrier such as fatty oil in addition to the above-mentioned materials.
  • a lubricating oil such as calcium, calcium stearate, sodium stearyl fumarate or polyethylene glycol wax
  • a liquid carrier such as fatty oil in addition to the above-mentioned materials.
  • compositions of this invention As a dosage form for parenteral administration containing the composition of this invention as an active ingredient, it can be formulated in the form of injection, such as subcutaneous injection, intravenous injection, or intramuscular injection.
  • injection such as subcutaneous injection, intravenous injection, or intramuscular injection.
  • the compositions of the present invention may be mixed in water with stabilizers or buffers to prepare solutions or suspensions, which may be formulated for unit administration of ampoules or vials.
  • the pharmaceutical composition is administered in a pharmaceutically effective amount.
  • the term "administration” means introducing a pharmaceutical composition of the present invention to an individual in any suitable manner, and the route of administration of the composition is administered via various routes, oral or parenteral, as long as the target tissue can be reached. Specifically, it may be administered in a conventional manner via the oral, rectal, topical, intravenous, intraperitoneal, intramuscular, intraarterial, transdermal, nasal, inhalation, intraocular or intradermal routes.
  • the term "pharmaceutically effective amount” means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level is determined by the type and severity, age, sex, and cancer of the individual. It may be determined according to the type, activity of the drug, sensitivity to the drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrently used drugs, and other factors well known in the medical field.
  • the compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents and may be administered sequentially or simultaneously with conventional therapeutic agents. And single or multiple administrations. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, and can be easily determined by those skilled in the art.
  • the antibody-drug conjugate is prepared by binding a mcMMAF drug containing lysine to a variant of the anti-HER2 antibody in the presence of a transglutaminase.
  • the antibody-drug conjugates showed an excellent anti-proliferative effect by specifically binding to the HER2 antigen in breast cancer cell lines expressing HER2 (Example 6).
  • the tumor suppression effect was significantly superior to that of the anti-HER2 antibody trastuzumab. (Example 7).
  • the present invention provides a mutated antibody to which a peptide comprising glutamine and an antibody are linked.
  • Peptides and antibodies comprising the glutamine are as described above.
  • the mutated antibody may refer to a peptide containing glutamine and a protein in a form in which the antibody is linked.
  • the mutated antibody may refer to a protein in which the peptide including glutamine is fused to the C or N terminus of the heavy or light chain of the antibody.
  • the peptide containing glutamine may mean a protein fused to the C terminal of the heavy chain of the antibody, but is not limited thereto.
  • the present invention provides a polynucleotide encoding the mutated antibody, an expression vector comprising the polynucleotide, and a transformant into which the expression vector is introduced.
  • Expression vectors comprising polynucleotides encoding the mutated antibodies provided herein are not particularly limited thereto, but may include mammalian cells (eg, human, monkey, rabbit, rat, hamster, mouse cells, etc.), plant cells, and the like. Can be a vector capable of replicating and / or expressing the polynucleotide in eukaryotic or prokaryotic cells, including yeast cells, insect cells or bacterial cells (e.g., E.
  • coli preferably in the host cell It may be a vector operably linked to an appropriate promoter for expression of the polynucleotide, and may comprise a vector comprising at least one selection marker, more preferably phage, plasmid, cosmid, mini-chromosome, virus, retroviral vector It may be a form in which the polynucleotide is introduced.
  • the expression vector including the polynucleotide encoding the mutated antibody includes both an expression vector comprising a polynucleotide encoding the heavy or light chain of the mutated antibody or a polynucleotide encoding the heavy or light chain of the mutated antibody, respectively. It may be an expression vector.
  • the transformant introduced with the expression vector provided by the present invention is not particularly limited thereto, but the bacterial cells such as E. coli, Streptomyces, Salmonella typhimurium transformed by introducing the expression vector; Yeast cells; Fungal cells such as Pchia pastoris; Insect cells such as Drozophila and Spodoptera Sf9 cells; Animal cells such as CHO, COS, NSO, 293T, bow melanoma cells; Or plant cells. According to one embodiment of the present invention, CHO-S cells were used as host cells.
  • introduction refers to a method of delivering a vector comprising a polynucleotide encoding the mutated antibody to a host cell.
  • introductions include calcium phosphate-DNA coprecipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroshock, microinjection, liposome fusion, lipofectamine and protoplast fusion. It can be carried out by various methods known in the art.
  • transduction refers to the delivery of a target product into cells using viral particles by means of infection.
  • the vector can be introduced into the host cell by gene bombardment or the like. Introduction in the present invention can be used interchangeably with transformation.
  • the present invention provides a method of treating cancer using the antibody-drug conjugate.
  • the method may be a method of treating cancer comprising administering a pharmaceutical composition comprising an antibody-drug conjugate, or a pharmaceutically acceptable carrier, to a subject having or suspected of having the cancer.
  • Carriers, cancers and administrations that can be used are the same as described above.
  • Such individuals include mammals, birds, and the like, including cattle, pigs, sheep, chickens, dogs, humans, and the like, and include, without limitation, individuals whose cancer is treated by administration of the composition of the present invention.
  • the composition may be administered in a single or multiple doses in a pharmaceutically effective amount.
  • the composition may be administered in the form of a liquid, powder, aerosol, capsule, enteric skin tablets or capsules or suppositories.
  • Routes of administration include, but are not limited to, intraperitoneal, intravenous, intramuscular, subcutaneous, endothelial, oral, topical, nasal, pulmonary, rectal, and the like.
  • the oral composition upon oral administration, since the peptide is digested, the oral composition must be formulated to coat the active agent or to protect it from degradation in the stomach.
  • the pharmaceutical composition may be administered by any device in which the active agent may migrate to the target cell.
  • a pharmaceutical composition comprising the antibody-drug conjugate of the present invention is administered in a pharmaceutically effective amount.
  • the pharmaceutically effective amount is as described above.
  • an anti-Her2 antibody was used as a representative antibody.
  • GGGSLLQG (SEQ ID NO: 1), LLQG (SEQ ID NO: 2), GGGGSLAQSHA (SEQ ID NO: 3), GQGGGSLASHA (SEQ ID NO: 1), a peptide containing glutamine, subtracted from the end of the C terminus of the heavy chain amino acid sequence of the anti-Her2 antibody. 4), or the amino acid sequence of the NNDSTEYGLFQINNGI (SEQ ID NO: 5) was linked to modify the amino acid sequence.
  • the antibody having a heavy chain containing GGGSLLQG (SEQ ID NO: 1) is T-KM1
  • the antibody having a heavy chain containing LLQG (SEQ ID NO: 2) is T-KM2
  • has a heavy chain comprising GGGGSLAQSHA (SEQ ID NO: 3)
  • the antibody was named T-KM3
  • the antibody having a heavy chain containing GQGGGSLASHA (SEQ ID NO: 4)
  • the antibody having a heavy chain containing NNDSTEYGLFQINNGI (SEQ ID NO: 5) was named T-KM4.
  • an expression vector comprising a polynucleotide encoding the modified heavy chain, to which the peptide containing glutamine was linked, was prepared.
  • the template DNA was used as a vector expressing the heavy chain portion of the anti-Her2 antibody.
  • the forward primer used to prepare the vector expressing the heavy chain of T-KM1 is represented by SEQ ID NO: 7 and the reverse primer is represented by SEQ ID NO: 8 (Table 1), and used to prepare the vector expressing the heavy chain of T-KM2.
  • the forward primer is represented by SEQ ID NO: 7 and the reverse primer is represented by SEQ ID NO: 9 (Table 2).
  • PCR was performed using the primers shown in Table 3 below.
  • a vector expressing the heavy chain portion of the anti-Her2 antibody was used as the template DNA.
  • the forward primer is represented by SEQ ID NO: 7
  • the reverse primer is represented by SEQ ID NO: 10.
  • the fragments amplified by PCR were cut into BsrG I, Not I and then inserted into a vector expressing an anti-Her2 heavy chain portion cut into BsrG I and Not I.
  • the vector prepared by the above method was named TG3.
  • PCR was performed again using the TG3 vector as template DNA.
  • the forward primer used is shown in SEQ ID NO: 7, and the reverse primer is shown in SEQ ID NO: 11.
  • the TG3 vector was cut back into BsrG I and BamH I, and then the PCR product obtained from the TG3 vector as a template was cut into BsrG I and BamH I and inserted.
  • a vector capable of expressing the heavy chain of T-KM3 was prepared.
  • PCR was performed using a vector expressing the heavy chain portion of the anti-Her2 antibody as template DNA.
  • the forward primer used to prepare the vector expressing the heavy chain of T-KM4 is represented by SEQ ID NO: 7 and the reverse primer is represented by SEQ ID NO: 12 (Table 4), and used to prepare the vector expressing the heavy chain of T-KM10.
  • the forward primer is represented by SEQ ID NO: 7 and the reverse primer is represented by SEQ ID NO: 13 (Table 5).
  • T-KM4 Heavy Chain Expression Vectors name order SEQ ID NO: BsrGI-201A for CCC AGG TGT ACA CCC TGC CC SEQ ID NO: 7 T-KM4 rev TCG AGC GGC CGC TCA GAT GCC GTT GTT GAT CTG GAA CAG GCC GTA CTC GGT GGA GTC GTT GTT GCC GGG GGA CAG GGA CAG SEQ ID NO: 12
  • Vectors expressing the light chain of the anti-Her2 antibody were used as is, without modification, in common for all three antibody productions.
  • Vectors expressing the heavy chain and the vector expressing the light chain of each of the T-KM1, T-KM2, T-KM3, T-KM4 and T-KM10 antibodies were transduced into CHO-S cells using PEI (Polyethylenimine) )
  • PEI Polyethylenimine
  • anti-Her2 native antibody containing no glutamine was used, and the vector expressing the heavy chain of the native antibody and the vector expressing the light chain were transduced into CHO-S cells using PEI.
  • the cells were cultured for 4 days, and then expressed recombinant T-KM1, T-KM2, T-KM3, T-KM4, T-KM10, and anti-Her2 native antibodies were recombinant protein-A Sepharose column (Hitrap MabSelect Sure). , 5 mL, GE healthcare).
  • a free amine group as the substrate.
  • Transglutaminase reaction was performed using mPEGamine (mexoxy PEG-NH 2 ) having a group). It is known that the amine groups of mPEGamine can bind to glutamine residues through the transglutaminase reaction mechanism (Anna Mero et al. Journal of Controlled Release . 2011. 154 27-34, Carlo Maullu et al. FEBS Journal .2009). 276. 6741-6750), mPEGamine was used as the substrate.
  • the light and heavy chains of the antibody appear separated around 50KDa and 25KDa, respectively.
  • mPEGamine (1K) binds to the heavy or light chain of the antibody, Since the band is raised in the band position, by checking the above phenomenon it can be confirmed the reactivity of the mutated antibody of the present invention with transglutaminase.
  • the light chain did not show a change in the band position, indicating that only the heavy chain artificially introduced with glutamine specifically forms a bond with mPEGamine (FIGS. 2 (B), (C) and (D)). .
  • cytotoxic drug conjugates using the transglutaminase reaction first a cytotoxic drug comprising lysine or a lysine derivative was synthesized.
  • mcMMAF maleimidocaproyl-monomethyl auristatin F
  • KGEGRGSGC SEQ ID NO: 6
  • cysteine binding the peptides of mcMMAF and SEQ ID NO: 6 were linked to each other to synthesize a drug including a free amine group.
  • T-KM1, 2 or 3 which is a mutated antibody comprising glutamine; Microbial transglutaminase (zedira, Germany); And the cytotoxic drugs prepared in Example 4.
  • the mixture was incubated at 37 ° C. for 6 hours, and the mixture was analyzed by HPLC (high performance liquid chromatography) to confirm the degree of drug binding to the antibody, and specifically analyzed using a Butyl NRP (4.6 * 35, TSKgel) column. Is shown in FIG. 3.
  • Figure 3A is an analysis of the antibody alone by HPLC, shows the experimental results of the control group to distinguish the form that the drug is not bound in the antibody-drug conjugate analysis prepared in the present invention
  • Figure 3B is the mutated antibody The results of analyzing the antibody mixture in which the drug was reacted in the presence of transglutaminase are shown.
  • the mutated antibody and drug of the present invention showed the result of forming an antibody-drug conjugate in the presence of transglutaminase.
  • it shows a form in which a drug is bound to an antibody (denoted as Ab-MMAF (1)) and a form in which two drugs are bound (denoted as Ab-MMAF (2)). It was suggested that can be measured.
  • an anti-proliferation assay was performed using BT474, MCF7 and JIMT-1 cell lines as follows.
  • each cell was cultured to suspend BT474 cells at 1 ⁇ 10 5 cells / ml, MCF7 and JIMT-1 cells at 2 ⁇ 10 4 cells / ml, and 100 ⁇ l were loaded into each well of a 96 well plate. Then, after 3 hours of incubation in a cell incubator, 100 ⁇ l of antibodies or antibody-drug conjugates of various concentration sections were added per well and incubated for 5 days in the cell incubator.
  • the antibody used at this time was an anti-Her2 antibody, and the antibody-drug conjugate was drug (MMAF) to T-KM1, T-KM2 or T-KM3, which was bound using transglutaminase by the method described in the above example. It was a combined form.
  • MMAF drug
  • Alamar Blue (Invitrogen, USA) was treated with 25 ⁇ l in each well, and then wrapped in foil and treated for 6 hours in a cell incubator, and fluorescence intensity was measured at 530 nm using Spectramax Geminix. The fluorescence value thus measured indicates the extent of cell growth. The percentage of living cells based on the fluorescence value is shown in FIG. 4.
  • T-KM1-MMAF, T-KM2-MMAF, and T-KM3-MMAF which are representative antibody-drug conjugates of the present invention. All three showed cell growth rates of 65-70% (FIG. 4B).
  • MCF-7 cell line with low Her2 expression used as a negative control was inhibited in cell growth when treated with anti-Her2 antibody as well as T-KM1-MMAF, T-KM2-MMAF, and T-KM3-MMAF, which are representative conjugates of the present invention. Ineffective results were shown (FIG. 4C).
  • the results indicate that the representative conjugates of the present invention T-KM1-MMAF, T-KM2-MMAF, T-KM3-MMAF specifically binds to the antigen and causes cytotoxicity, which is the transglue of the present invention. It is suggested that the antibody-drug conjugates (T-KM1-MMAF, T-KM2-MMAF, T-KM3-MMAF) prepared by using minaminase exhibit their efficacy by specifically binding to the antigen.
  • an antibody-drug conjugate was prepared by the method described in Example 5. Specifically, mutated antibodies comprising glutamine, microbial transglutaminase (zedira, Germany), and cytotoxic drugs were mixed, and these were recombinant recombinant protein-A Sepharose columns (Hitrap MabSelect Sure, 5 mL, GE healthcare). Purification yielded antibody-drug conjugates and small amounts of antibody.
  • Balb / C nu / nu mice were intraperitoneally administered 7 cells of JIMT-1 cell line 1 ⁇ 10 per mouse, and vehicle, anti-Her2 antibody (Trastuzumab, 5mg / kg) or the present invention at the time of tumor size 200mm 2 or more T-KM1-MMAF (5 mg / kg) and T-KM3-MMAF (5 mg / kg), which are antibody-drug conjugates, were administered intravenously twice a week. Then, tumor size was measured twice a week, the results are shown in FIG.

Abstract

The present invention relates to: a method for preparing an antibody-drug conjugate, comprising the step of reacting a mutated antibody comprising glutamine and a drug containing a free amine group in the presence of transglutaminase; an antibody-drug conjugate prepared by the method; an antibody-drug conjugate in which a mutated antibody comprising glutamine and a drug containing a free amine group are connected through an isopeptide bond; a composition for preventing or treating cancer, containing the antibody-drug conjugate; a method for treating cancer by using the antibody-drug conjugate; and a mutated antibody in which a peptide comprising glutamine and an antibody are connected.

Description

트랜스글루타미나아제를 이용하여 제조한 항체-약물 결합체 및 이의 용도Antibody-Drug Conjugates Prepared Using Transglutaminase and Uses thereof
본 발명은 글루타민(glutamine)을 포함하는 변이된 항체와 자유 아민기(free amine group)를 포함하는 약물을 트랜스글루타미나아제(transglutaminase)의 존재하에 반응시키는 단계를 포함하는, 항체-약물 결합체의 제조 방법, 상기 방법으로 제조된 항체-약물 결합체, 글루타민을 포함하는 변이된 항체와 자유 아민기를 포함하는 약물이 이소펩타이드 결합(isopeptide bond)으로 연결된, 항체-약물 결합체, 상기 항체-약물 결합체를 포함하는 암의 예방 또는 치료용 조성물, 상기 항체-약물 결합체를 이용하여 암을 치료하는 방법 및; 글루타민을 포함하는 펩타이드 및 항체가 연결된 변이된 항체에 관한 것이다. The present invention comprises reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase, Method for producing, the antibody-drug conjugate prepared by the method, the antibody-drug conjugate, wherein the mutated antibody comprising glutamine and the drug comprising a free amine group are connected by an isopeptide bond, the antibody-drug conjugate A composition for preventing or treating cancer, a method of treating cancer using the antibody-drug conjugate; The present invention relates to a mutated antibody in which a peptide including glutamine and an antibody are linked.
항체의 의약품적 효능은 세포 독성 물질이나 방사성 물질의 결합을 통해 증대될 수 있다. 항체-약물 결합체(Antibody-drug conjugate, ADC)는 항체에 세포 독성 약물을 결합시킨 것으로, 항체-약물 결합체를 이용하여 기존 항암 효과를 증대시키는 한편, 기존 항체에 저항력이 있는 암 세포에 적용시키기 위하여 연구가 활발히 이루어지고 있다. 현재 시장에 진입하거나 임상 또는 연구 단계에 있는 항체-약물 결합체는 천연형 항체 내의 라이신(lysine)이나 시스테인(cysteine)의 다수 부위에 화학적인 결합 방법을 이용하여 항체에 약물을 결합시키는 방법을 이용하고 있다. 이런 고전적인 화학적 방법을 통한 항체-약물 결합체의 경우, 그 형성에 있어서 조절이 어려우며, 각기 다른 특성을 보유한 이질성 면역혼합체가 생성된다는 문제점을 지닌다(K. J. Hamblett et al. Clin. Cancer Res. 2004, 10, 7063-7070).The pharmaceutical efficacy of the antibody can be enhanced through the binding of cytotoxic or radioactive substances. Antibody-drug conjugates (ADCs) combine cytotoxic drugs with antibodies, and use them to enhance existing anticancer effects and apply them to cancer cells resistant to existing antibodies. Research is active. Antibody-drug conjugates currently entering the market or in clinical or research phases use chemical binding to multiple sites of lysine or cysteine in a native antibody using chemical binding to the antibody. have. Antibody-drug conjugates through these classical chemical methods are difficult to regulate in their formation and have the problem of producing heterogeneous immunomixes with different properties (KJ Hamblett et al. Clin. Cancer Res. 2004, 10). , 7063-7070).
이에 대해 위치특이적으로 약물을 결합시켜 동질성을 높인 면역혼합체를 제조하기 위하여 많은 노력이 있었으며, 이러한 노력 끝에 제넨텍(Genentech)사에서는 항체의 중쇄 또는 경쇄에 항체의 특정 아미노산을 시스테인으로 치환한 형태를 개발하였다(미국등록특허 제7521541호, Junutula JR et al. Nat Biotechnol. 2008. 26(8):925-32, Ben-Quan Shen et al. Nat Biotechnol. 2012, 30(2):184-9). 제넨텍사에서 개발한 면역혼합체의 경우, 2개의 시스테인이 삽입된 항체를 이용하여 2개의 세포독성물질을 원하는 위치에 결합시켜 동질성을 가지지만, 인위적으로 삽입한 시스테인의 티올(thiol) 잔기가 반응성을 가지도록 활성화시켜야하므로, 항체의 환원과정과 산화과정을 거쳐야 하는 다단계 접합 공정을 따라야 하는 문제점이 있다.To this end, much effort has been made to prepare immunocomplexes having high homogeneity by binding drugs in a specific position, and at the end of this effort, Genentech Co., Ltd. has replaced a specific amino acid of the antibody with a cysteine in the heavy or light chain of the antibody. (US Patent No. 7521541, Junutula JR et al. Nat Biotechnol. 2008. 26 (8): 925-32, Ben-Quan Shen et al. Nat Biotechnol. 2012, 30 (2): 184-9) . In the case of an immunomixture developed by Genentech, two cysteine-inserted antibodies are used to bind two cytotoxic substances to a desired position, but the thiol residues of artificially inserted cysteines are reactive. Since it has to be activated to have, there is a problem to follow a multi-step conjugation process that must go through the reduction and oxidation of the antibody.
상기와 같이 화학적 방법을 이용하여 약물을 항체에 접합시킬 경우, 산화-환원 반응을 거침으로 인해 항체를 변형하는 방법이 되어 항체의 3차 구조나 기능면에서 약점을 가지게 된다. 상기와 같은 약점은 종종 항체의 비구별 및 항체의 접근가능한 라이신(lysine)/시스테인(cysteine) 잔기 또는 아민 그룹(amine group)간의 불완전한 반응 등으로 나타나며, 불완전하거나 또는 정의되지 않은 생산물을 종종 생산하기도 한다. 이러한 점에서, 항체의 성질 변화가 적으면서도 위치 특이적인 방식으로 변형할 수 있는 방법이 필요하다.When the drug is conjugated to the antibody using a chemical method as described above, the method is used to modify the antibody by undergoing an oxidation-reduction reaction, and thus has a weak point in the tertiary structure or function of the antibody. Such weakness often results from non-specification of the antibody and incomplete reaction between accessible lysine / cysteine residues or amine groups of the antibody, often resulting in incomplete or undefined products. do. In this regard, there is a need for a method capable of modifying in a location-specific manner with little change in the properties of the antibody.
트랜스글루타미나아제(transglutaminase, TGase)는 글루타민(glutamine, Q) 잔기의 감마-카르복사미드 그룹과 라이신의 일차 입실론 아미노 그룹 간의 아실 트랜스퍼 반응을 촉매하는 효소이다. 상기와 같은 반응을 통해 형성된 결합을 이소펩타이드 결합(isopeptide bond)이라고 하고, 이 결합은 프로테아제에 대해 내성을 가지는 등 상당히 안정한 결합으로 알려져 있다. 이러한 안정성때문에 트랜스글루타미나아제는 일반적으로 세포의 구조 성분을 연결시키는 데 사용된다. 트랜스글루타미나아제에 의한 글루타민 잔기의 인식은 상당히 엄격하며, 주로 단백질 내의 유동적인 부분에 있는 글루타민기를 인식하는 것으로 알려져 있다(Angelo Fontana et al, Advanced Drug Delivery Reviews 2008. 60. 13-28).Transglutaminase (TGase) is an enzyme that catalyzes the acyl transfer reaction between the gamma-carboxamide group of glutamine (Q) residues and the primary epsilon amino group of lysine. The bond formed through the above reaction is called an isopeptide bond, and this bond is known as a fairly stable bond such as being resistant to protease. Because of this stability, transglutaminase is generally used to link structural components of cells. The recognition of glutamine residues by transglutaminase is quite stringent, and is known to recognize glutamine groups, mainly in the fluid part of proteins (Angelo Fontana et al, Advanced Drug Delivery Reviews 2008. 60. 13-28).
최근 체내 생활성 기간을 증대시키기 위하여 인간성장호르몬(hGH), 인간과립구콜로니자극인자(hC-GSF), 에리트로포이에틴(EPO) 등의 치료 단백질에 폴리에틸렌 글리콜화(페길화, PEGylation)를 시도하고 있다. 이와 같은 방법을 사용하기 위하여, 산화-환원에 의한 화학적 방법의 문제점을 대신하여 트랜스글루타미나아제 반응을 이용하여 위치 특이적 또는 선택적인 페길화를 진행하고 있다. 이러한 트랜스글루타미나아제를 통한 페길화 반응은 단백질 내부의 1개 이상의 글루타민기를 트랜스글루타미나아제가 인식하고 PEG에 아미노 그룹을 연결한 것을 아민 주개 기질로 하여 단백질과 PEG를 결합시키는 것이다(Anna Mero et al. Journal of Controlled Release. 2011. 154 27-34, Carlo Maullu et al. FEBS Journal. 2009. 276. 6741-6750, 미국등록공보 제6995245호). In recent years, we have attempted polyethylene glycolation (PEGylation, PEGylation) on therapeutic proteins such as human growth hormone (hGH), human granulocyte colony stimulating factor (hC-GSF), and erythropoietin (EPO) to increase the life span of the body. have. In order to use such a method, a site-specific or selective PEGylation is performed using a transglutaminase reaction instead of the problem of the chemical method by redox. The pegylation reaction through transglutaminase is one in which a transglutaminase recognizes one or more glutamine groups inside a protein and connects an amino group to PEG as an amine donor substrate (Anna Mero). et al. Journal of Controlled Release . 2011. 154 27-34, Carlo Maullu et al. FEBS Journal . 2009. 276. 6741-6750, US Registered Publication No. 6995245).
단백질과 PEG와의 결합 외에도 단백질에 지질을 결합하기 위한 방법으로도 트랜스글루타미나아제를 이용하고 있다. 단백질에 지질을 결합시키기 위하여 기존에는 알려진 화학적 반응이나, EPL 매개나 솔타아제(sortase) 매개 효소 반응을 이용하였으나, 상기와 같은 방법들은 반응시간이 길고 수율이 떨어지는 문제점을 가지고 있다. 그러나 트랜스글루타미나아제를 이용한 단백질-지질 결합체의 형성은 95% 이상의 결합 수율을 보였으며 기존의 방법에 비하여 시간을 단축시켰다(Hiroki Abe et al. Chem. Eur. J. 2011, 17, 14004-14008).In addition to binding proteins and PEG, transglutaminase is also used to bind lipids to proteins. Conventional chemical reactions or EPL-mediated or saltase-mediated enzymatic reactions have been used to bind lipids to proteins, but the above methods have a long reaction time and low yields. However, the formation of protein-lipid conjugates using transglutaminase showed more than 95% binding yield and reduced time compared to the conventional method (Hiroki Abe et al. Chem. Eur. J. 2011, 17, 14004- 14008).
PEG 또는 지질을 호르몬과 같은 단백질에 트랜스글루타미나아제를 이용하여 연결시키기 위한 시도는 많이 있었으나, 항체에 있어서는 트랜스글루타미나아제를 적용하기에 어려운 점이 있었다. 한 예로, 천연형 chCE7 항체와 리툭시맵(Rituximab)에는 많은 글루타민 잔기가 이미 존재하고 있음에도 불구하고, 박테리아 트랜스글루타미나아제를 이용하여 반응시켰을 때, 어떤 아민 주개 기질에 의해서도 변형이 일어나지 않았다. 이때, 항체 내부 글리코실화(glycosylation)를 제거하는 효소를 처리하는 경우 트랜스글루타미나아제에 의한 반응이 일어나는 결과에 비추어볼 때, 항체에 적용하는 데 있어서는 항체의 글리코실화 등이 트랜스글루타미나아제 반응을 일으키지않는 것에 관여하는 것으로 보인다(Simone Jeger et al. Angew. Chem. Int. Ed. 2010, 49, 9995-9997). 그러나, 항체의 글리코실화와 같은 당화는 항체의 이펙터로서의 기능 및 약동학에 있어서 영향을 미치는 것으로 알려져 있으며, 따라서 상기와 같이 항체 내부의 당쇄 구조를 변경시키면 항체의 기능에 영향을 미치는 문제점을 가지게 된다. 따라서 항체의 생체 내에서의 기능에 요구되는 당쇄 구조를 손상시키지 않으면서도 항체와 약물을 트랜스글루타미나아제를 이용하여 연결시키는 구성에 대해서는 여전히 미지의 분야이다. There have been many attempts to link PEG or lipids to proteins such as hormones using transglutaminase, but it has been difficult to apply transglutaminase to antibodies. In one example, despite the presence of many glutamine residues in the native chCE7 antibody and Rituximab, no modification was caused by any amine donor substrate when reacted with bacterial transglutaminase. At this time, in the light of the result of reaction by transglutaminase when the enzyme is processed to remove the glycosylation inside the antibody, the glycosylation of the antibody is applied to the transglutaminase in the application to the antibody. It appears to be involved in not causing a reaction (Simone Jeger et al. Angew. Chem. Int. Ed. 2010, 49, 9995-9997). However, glycosylation, such as glycosylation of antibodies, is known to affect the function and pharmacokinetics of the effector of the antibody, and thus altering the sugar chain structure inside the antibody has a problem affecting the function of the antibody. Therefore, there is still an unknown field of constructing the linkage between the antibody and the drug using transglutaminase without impairing the sugar chain structure required for the in vivo function of the antibody.
이러한 배경하에 본 발명자들은 항체의 당쇄 구조를 변경시키지 않고도, 트랜스글루타미나아제를 이용하여 약물을 항체에 연결시킨 결합체를 제조할 수 있는 방법을 개발하기 위하여 예의 노력한 결과, 항체에서 구조적으로 노출된 부위에 인위적으로 글루타민 잔기를 삽입하여 변이된 항체를 제조하고, 이에 자유 아민기를 가지는 약물을 트랜스글루타미나아제의 존재하에 반응시켜, 특정 글루타민 잔기의 위치에 특이적으로 약물을 결합시키는 항체-약물 결합체를 제조함으로써 본 발명을 완성하였다. Against this background, the present inventors have made intensive efforts to develop a method for preparing a conjugate in which a drug is linked to an antibody using transglutaminase without altering the sugar chain structure of the antibody. An antibody-drug is prepared by artificially inserting a glutamine residue at a site to produce a mutated antibody, and reacting a drug having a free amine group in the presence of a transglutaminase to specifically bind the drug to a specific glutamine residue. The present invention has been completed by preparing the binder.
본 발명의 하나의 목적은 글루타민(glutamine)을 포함하는 변이된 항체와 자유 아민기(free amine group)를 포함하는 약물을 트랜스글루타미나아제(transglutaminase)의 존재하에 반응시키는 단계를 포함하는, 항체-약물 결합체의 제조 방법을 제공하는 것이다.One object of the present invention comprises the step of reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase It provides a method for producing a drug conjugate.
본 발명의 또 하나의 목적은 상기 방법으로 제조된 항체-약물 결합체를 제공하는 것이다.It is another object of the present invention to provide an antibody-drug conjugate prepared by the above method.
본 발명의 또 하나의 목적은 글루타민을 포함하는 변이된 항체와 자유 아민기를 포함하는 약물이 이소펩타이드 결합(isopeptide bond)으로 연결된, 항체-약물 결합체를 제공하는 것이다.It is another object of the present invention to provide an antibody-drug conjugate in which a mutated antibody comprising glutamine and a drug comprising a free amine group are connected by an isopeptide bond.
본 발명의 또 하나의 목적은 상기 항체-약물 결합체를 포함하는 암 치료용 약학적 조성물을 제공하는 것이다.Another object of the present invention to provide a pharmaceutical composition for treating cancer comprising the antibody-drug conjugate.
본 발명의 또 하나의 목적은 글루타민을 포함하는 펩타이드 및 항체가 연결된 변이된 항체를 제공하는 것이다.It is another object of the present invention to provide a mutated antibody in which a peptide including glutamine and an antibody are linked.
본 발명의 또 하나의 목적은 상기 변이된 항체를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터 및 상기 발현 벡터가 도입된 형질전환체를 제공하는 것이다. Another object of the present invention is to provide a polynucleotide encoding the mutated antibody, an expression vector comprising the polynucleotide, and a transformant into which the expression vector is introduced.
본 발명의 또 하나의 목적은 상기 항체-약물 결합체를 이용하여 암을 치료하는 방법을 제공하는 것이다. It is another object of the present invention to provide a method of treating cancer using the antibody-drug conjugate.
본 발명에 따른 항체-약물 결합체는 자유 아민기를 포함하는 약물이 글루타민을 포함하는 변이된 항체에 위치특이적으로 결합된 결합체로서 동질성이 높으며, 화학적으로 약물과 항체를 결합시킨 형태에 비하여 화학적 반응을 적게 거치므로 변형된 형태가 적게 생산되는 이점을 지닌다.The antibody-drug conjugate according to the present invention has a high homogeneity as a conjugate in which a drug containing a free amine group is specifically linked to a mutated antibody including glutamine, and has a chemical reaction compared to a form in which a drug and an antibody are chemically bound. Less pass has the advantage that less deformed form is produced.
도 1은, 변형된 단일 클론 항체와 약물을 결합시킨 항체-약물 결합체를 나타내는 대표적인 모식도이다. 여기서 Q는 글루타민을 나타내는 것이다. 1 is a representative schematic diagram showing an antibody-drug conjugate in which a modified monoclonal antibody is combined with a drug. Where Q represents glutamine.
도 2는, 글루타민을 포함하는 IgG 항체에 mPEGamine(1KDa)을 트랜스글루타미나아제(transglutaminase, TGase) 존재 하에서 반응시킨 후, 이를 전기영동하여 쿠마시 블루 염색(coomassie blue staining)한 SDS-PAGE 결과이다. 도 2에서 (A)는 글루타민을 도입하지 않은 천연형 IgG 항체(항-Her2 항체)와의 반응 결과(레인 1), 글루타민을 도입하지 않은 천연형 IgG 항체(항-Her2 항체)와 mPEGamine 간의 반응결과(레인 2), 글루타민을 도입하지 않은 천연형 IgG 항체(항-Her2 항체), mPEG amine을 TGase의 존재하에 반응시킨 결과(레인 3)를 나타내는 것이다. 도 2의 (B)는 글루타민을 포함하도록 변형된 항체인 T-KM1과 mPEGamine간의 반응결과(레인 4), T-KM1과 TGase와의 반응 결과(레인 5), T-KM1, mPEGamine 및 TGase와의 반응 결과(레인 6)를 나타낸다. 레인 6에서 항체의 중쇄(HC, Heavy chain)에 PEG가 부착되어, 밴드가 레인 4 및 5에 비하여 높은 위치에 존재함을 알 수 있다. 도 2의 (C)는 글루타민을 포함하도록 변형된 항체인 T-KM2과 mPEGamine간의 반응결과(레인 7), T-KM2과 TGase와의 반응 결과(레인 8), T-KM2, mPEGamine 및 TGase와의 반응 결과(레인 9), T-KM3과 mPEGamine간의 반응결과(레인 10), T-KM3과 TGase와의 반응 결과(레인 11), T-KM3, mPEGamine 및 TGase와의 반응 결과(레인 12)를 나타낸 SDS-PAGE 결과이다. 도 2의 (D)는 글루타민을 포함하도록 변형된 항체인 T-KM4와 TGase와의 반응 결과(레인 13), T-KM4와 mPEGamine간의 반응결과(레인 14), T-KM4, mPEGamine 및 TGase와의 반응 결과(레인 15), T-KM10과 TGase와의 반응 결과(레인 16), T-KM10과 mPEGamine간의 반응결과(레인 17), T-KM10, mPEGamine 및 TGase와의 반응 결과(레인 18)를 나타낸 SDS-PAGE 결과이다. 상기 도에서 HC는 항체의 중쇄(Heavy chain), LC는 경쇄(light chain), TGase는 트랜스글루타미나아제를 의미하며, HC-PEG(1K)는 항체의 중쇄에 PEG가 결합된 것을 나타낸다. FIG. 2 shows an SDS-PAGE result of reacting mPEGamine (1KDa) with glutamine-containing IgG in the presence of transglutaminase (TGase), followed by electrophoresis and coomassie blue staining. to be. In FIG. 2, (A) shows the result of the reaction with the native IgG antibody (anti-Her2 antibody) without introducing glutamine (lane 1), and the result of the reaction between the native IgG antibody (anti-Her2 antibody) without introducing glutamine and mPEGamine. (Lane 2), the result of having reacted the natural IgG antibody (anti-Her2 antibody) and mPEG amine which did not introduce glutamine in the presence of TGase (lane 3). Figure 2 (B) is the result of the reaction between T-KM1 and mPEGamine modified to include glutamine (lane 4), the result of the reaction with T-KM1 and TGase (lane 5), the reaction with T-KM1, mPEGamine and TGase The result (lane 6) is shown. PEG is attached to the heavy chain (HC, Heavy chain) of the antibody in lane 6, it can be seen that the band is present in a higher position than the lanes 4 and 5. Figure 2 (C) shows the result of the reaction between T-KM2 and mPEGamine modified to include glutamine (lane 7), the result of the reaction of T-KM2 and TGase (lane 8), the reaction of T-KM2, mPEGamine and TGase SDS- showing results (lane 9), the reaction between T-KM3 and mPEGamine (lane 10), the reaction between T-KM3 and TGase (lane 11), and the reaction with T-KM3, mPEGamine and TGase (lane 12). PAGE results. Figure 2 (D) is the result of the reaction of T-KM4 and TGase modified antibody containing glutamine (lane 13), the result of the reaction between T-KM4 and mPEGamine (lane 14), the reaction of T-KM4, mPEGamine and TGase SDS- showing results (lane 15), T-KM10 and TGase (lane 16), T-KM10 and mPEGamine (lane 17), and T-KM10, mPEGamine and TGase (lane 18). PAGE results. In the figure, HC means heavy chain of antibody, LC light chain, TGase means transglutaminase, and HC-PEG (1K) shows PEG bound to heavy chain of antibody.
도 3은, 제조한 항체-약물 결합체를 HPLC(high performance liquid chromatography)로 분석한 그래프이다. 이는 HIC(hydrophobicity interaction column)을 이용하여 분석한 것으로, (B)에서 보는 바와 같이 약물이 결합하지 않은 형태(Antibody), 약물이 하나 결합한 형태(Ab-MMAF (1)), 약물이 두 개 결합한 형태(Ab-MMAF (2))가 각기 다른 피크로 분리되어 나타났다. (A)는 항체 단독을 HPLC 분석한 것으로, 제조한 항체-약물 결합체를 분석할 때 약물이 결합하지 않은 형태를 구분하기 위하여 대조군으로 사용한 것이다.Figure 3 is a graph of the antibody-drug conjugates analyzed by high performance liquid chromatography (HPLC). This was analyzed using the HIC (hydrophobicity interaction column). As shown in (B), the drug-binding form (Antibody), the drug-binding form (Ab-MMAF (1)), and the drug-binding form The morphology (Ab-MMAF (2)) is shown separated by different peaks. (A) is a HPLC analysis of the antibody alone, and was used as a control to distinguish the form in which the drug is not bound when analyzing the prepared antibody-drug conjugate.
도 4A 내지 C는, 항 세포증식 실험법(anti-proliferation assay)을 수행한 것으로, 유방암 세포주에 항체-약물 결합체를 처리하여 살아있는 세포를 퍼센트로 나타낸 그래프이다. (A)는 BT474 세포주, (B)는 JIMT-1 세포주, (C)는 MCF7 세포주에서 항-HER2 항체 또는 본 발명의 대표적인 항체-약물 결합체를 처리한 결과를 나타낸 것이다. T-KM1-MMAF, T-KM2-MMAF, T-KM3-MMAF는 글루타미나아제를 이용하여 T-KM1, T-KM2, T-KM3에 세포 독성 약물인 MMAF를 각각 결합시킨 항체-약물 결합체이다. 4A to C show anti-proliferation assays and show graphs showing the percentage of living cells treated with antibody-drug conjugates to breast cancer cell lines. (A) is a BT474 cell line, (B) is a JIMT-1 cell line, (C) is a result of treating an anti-HER2 antibody or a representative antibody-drug conjugate of the present invention in MCF7 cell line. T-KM1-MMAF, T-KM2-MMAF, and T-KM3-MMAF are antibody-drug conjugates in which MMAF, a cytotoxic drug, is bound to T-KM1, T-KM2, and T-KM3 using glutaminase, respectively. to be.
도 5는, JIMT-1 세포주를 이용하여 이종이식 마우스에서 본 발명의 항체-약물 결합체의 효능시험을 수행한 결과를 나타낸 것이다.Figure 5 shows the results of the efficacy test of the antibody-drug conjugate of the present invention in xenograft mice using JIMT-1 cell line.
하나의 양태로서, 본 발명은 글루타민(glutamine)을 포함하는 변이된 항체와 자유 아민기(free amine group)를 포함하는 약물을 트랜스글루타미나아제(transglutaminase)의 존재하에 반응시키는 단계를 포함하는, 항체-약물 결합체의 제조 방법을 제공한다.In one embodiment, the invention comprises the step of reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase, Provided are methods for preparing antibody-drug conjugates.
본 발명의 항체-약물 결합체의 제조 방법은 글루타민을 포함하는 변이된 항체와 자유 아민기를 포함하는 약물을 트랜스글루타미나아제의 존재하에 반응시키는 단계를 포함하며, 그 예로 (a) 글루타민을 포함하는 변이된 항체의 발현 벡터를 숙주세포에 도입하여 변이된 항체를 수득하는 단계; 및 (b) 상기 (a) 단계에서 수득한 변이된 항체를 자유 아민기를 포함하는 약물과 트랜스글루타미나아제의 존재하에 반응시키는 단계를 포함하여 제조할 수 있다. A method for preparing an antibody-drug conjugate of the present invention comprises reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase, for example (a) comprising glutamine Introducing the expression vector of the mutated antibody into a host cell to obtain a mutated antibody; And (b) reacting the mutated antibody obtained in step (a) in the presence of a drug containing a free amine group with a transglutaminase.
본 발명에서 용어, "트랜스글루타미나아제(transglutaminase, TGase)"는 자유 아민기와 글루타민의 카복사아마이드(carboxamide)기 간에 공유결합을 형성하는 효소를 의미한다. 본 발명의 목적상 상기 트랜스글루타미나아제는 변이된 항체의 도입된 글루타민과 자유 아민기를 포함하는 약물의 아민기 간에 공유결합을 형성시키는 효소를 의미할 수 있으며, 상기 트랜스글루타미나아제를 이용하여 글루타민을 포함하는 변이된 항체와 자유 아민기를 포함하는 약물 간에 결합을 형성시켜, 항체-약물 결합체를 형성시킬 수 있다. 또한, 상기 트랜스글루타미나아제가 글루타민의 카복사아마이드와 라이신의 입실론 아민기 간에 공유결합을 형성하는 경우에는 아실 트랜스퍼 반응을 통하여 이소펩타이드 결합(isopeptide bond)을 형성할 수 있다. 상기 트랜스글루타미나아제에는 본 발명의 변이된 항체에 존재하는 글루타민의 감마-카복사아마이드와 자유 아민기 간에 공유결합을 촉매시킬 수 있는 단백질이라면 그 유래에 제한되지 않으며, 원핵생물, 세균 또는 포유생물로부터 유래한 것일 수 있다. 본 발명의 일 실시예에서는 박테리아에서 유래한 트랜스글루타미나아제를 이용하였다.As used herein, the term "transglutaminase (TGase)" refers to an enzyme that forms a covalent bond between a free amine group and a carboxamide group of glutamine. For the purpose of the present invention, the transglutaminase may refer to an enzyme that forms a covalent bond between introduced glutamine of a mutated antibody and an amine group of a drug including a free amine group, using the transglutaminase. To form a bond between the mutated antibody comprising glutamine and the drug comprising a free amine group, thereby forming an antibody-drug conjugate. In addition, when the transglutaminase forms a covalent bond between the carboxamide of glutamine and the epsilon amine group of lysine, an isopeptide bond may be formed through an acyl transfer reaction. The transglutaminase is not limited to any protein that can catalyze the covalent bond between the gamma-carboxamide of glutamine and the free amine group present in the mutated antibody of the present invention. It may be derived from a living organism. In one embodiment of the present invention, the transglutaminase derived from bacteria was used.
본 발명에서 용어, "항체-약물 결합체(antibody-drug conjugate, ADC)"는 변이된 항체와 약물이 연결된 결합체를 의미하며, 면역접합체(immunoconjugate)로도 불릴 수 있다. 본 발명의 목적상 상기 항체-약물 결합체는 글루타민을 포함하는 변이된 항체와 자유 아민기을 포함하는 약물을 트랜스글루타미나아제의 존재하에 반응시켜 얻은 결합체일 수 있다. 상기 항체-약물 결합체에는 글루타민을 포함하는 변이된 항체와 자유 아민기를 포함하는 약물이 이소펩타이드 결합를 통하여 연결된 결합체 형태를 포함한다. 상기 이소펩타이드 결합은 프로테아제에 의해서도 쉽게 분해되지 않는 안정한 결합이므로, 이소펩타이드 결합을 포함하는 본 발명의 결합체는 혈류에 안정하여 약물이 항체에서 분리되는 것을 막아 타겟에 도착할 때까지 프로드럭(prodrug) 상태로 유지시켜 정상적인 조직에 영향을 최소화할 수 있다.As used herein, the term “antibody-drug conjugate (ADC)” refers to a conjugate to which a mutated antibody is linked to a drug, and may also be referred to as an immunoconjugate. For the purposes of the present invention, the antibody-drug conjugate may be a conjugate obtained by reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase. The antibody-drug conjugate includes a conjugated form in which a mutated antibody including glutamine and a drug including a free amine group are linked through isopeptide bonds. Since the isopeptide bond is a stable bond that is not easily degraded even by a protease, the conjugate of the present invention including the isopeptide bond is stable in the bloodstream and prevents the drug from being separated from the antibody, thereby prodruging the prodrug until reaching the target. To minimize the impact on normal tissues.
상기 항체-약물 결합체는 암 세포와 같은 특정 세포에 존재하는 항원을 인지하여 결합할 수 있는 항체에 약물을 결합함으로써, 항체가 결합하는 특정 세포에 약물을 전달시킬 수 있으므로, 이를 질병의 치료에 이용할 수 있다. 따라서, 상기 항체-약물 결합체가 암과 같은 특정 질병의 치료에 사용할 수 있는 약물과 그 질병에 특이적인 항원을 인지하는 항체가 결합한 형태인 경우, 암과 같은 질병의 치료에 이용될 수 있다. 바람직하게는 상기 항체-약물 결합체의 항체는 치료용 항체로서, 치료 효과 면에서 치료용 항체와 약물을 각각 사용하는 경우에 비하여 시너지 효과를 보일 수 있다.Since the antibody-drug conjugate binds the drug to an antibody capable of recognizing and binding an antigen present in a specific cell such as cancer cell, the drug can be delivered to a specific cell to which the antibody binds. Can be. Therefore, when the antibody-drug conjugate is in the form of a combination of a drug that can be used to treat a specific disease such as cancer and an antibody that recognizes an antigen specific to the disease, the antibody-drug conjugate can be used to treat a disease such as cancer. Preferably, the antibody of the antibody-drug conjugate is a therapeutic antibody, and may exhibit a synergistic effect compared to the case of using a therapeutic antibody and a drug in terms of therapeutic effect.
또한, 상기 항체-약물 결합체는 항체에 글루타민을 도입한 변이된 항체와 자유 아민기를 포함하는 약물을 트랜스글루타미나아제의 존재하에 반응시켜 얻은 결합체일 수 있으며, 그 예로 IgG 형태의 항체에 글루타민을 도입한 변이된 항체와 mPEGamine을 트랜스글루타미나아제의 존재하에 반응시켜 얻은 결합체 또는 IgG 형태의 항체에 글루타민을 도입한 변이된 항체와 라이신 잔기를 포함하는 mcMMAF를 트랜스글루타미나아제의 존재하에 반응시켜 얻은 결합체 등이 있으나, 이에 제한되지 않는다. In addition, the antibody-drug conjugate may be a conjugate obtained by reacting a mutant antibody in which glutamine is introduced into the antibody and a drug including a free amine group in the presence of a transglutaminase. Reacting the introduced mutated antibody and mPEGamine in the presence of transglutaminase to mcMMAF containing a mutant antibody and lysine residues in which glutamine is introduced into an antibody of the IgG form or a glucosine in the presence of transglutaminase And the like obtained by the binder, but is not limited thereto.
특히, 상기 항체-약물 결합체는 약물을 변이된 항체의 특정 부위에 위치특이적으로 결합시킨 형태를 의미할 수 있다. 본 발명에서는 항체에 트랜스글루타미나아제와 특이적으로 반응하는 글루타민을 도입함을 통하여, 위치특이적으로 약물을 결합시킬 수 있다. 따라서, 본 발명의 항체-약물 결합체는 항체의 항원 결합력에 영향을 미치지 않는 형태로 약물이 결합된 형태로 제조될 수 있으므로, 항체의 항원에 대한 결합력이 중요하게 작용하는 항체-약물 결합체를 이용한 질병의 치료에 유용하게 사용할 수 있다. 항체에 글루타민을 도입한 변이된 항체와 자유 아민기를 포함하는 약물을 트랜스글루타미나아제의 존재하에 반응시켜 얻을 수 있는 결합체의 형태의 예를 도 1에 모식도로 나타내었다. In particular, the antibody-drug conjugate may refer to a form in which the drug is site-specifically bound to a specific site of the mutated antibody. In the present invention, by introducing a glutamine that specifically reacts with the transglutaminase to the antibody, it is possible to specifically bind the drug. Therefore, since the antibody-drug conjugate of the present invention can be prepared in a form in which the drug is bound in a form that does not affect the antigen-binding ability of the antibody, a disease using the antibody-drug conjugate in which the binding ability of the antibody to the antigen is important It can be useful for the treatment of An example of the form of the conjugate obtained by reacting a mutant antibody in which glutamine is introduced into the antibody and a drug containing a free amine group in the presence of transglutaminase is shown in the schematic diagram of FIG. 1.
본 발명에서 용어, "항체"는 면역학적으로 특정 항원과 반응성을 가지는 면역글로불린 분자를 포함하는, 항원을 특이적으로 인식하는 항원의 수용체 역할을 하는 단백질 분자를 의미하며, 다클론항체, 단일클론항체, 전체(whole) 항체 및 항체 단편을 모두 포함한다. 전체 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 구조이며, 각각의 경쇄는 중쇄와 다이설파이드 결합으로 연결되어 있다. 상기 전체 항체는 IgA, IgD, IgE, IgM 및 IgG를 포함하며, IgG는 아형(subtype)으로, IgG1, IgG2, IgG3 및 IgG4를 포함한다. 상기 항체 단편은 항원 결합 기능을 보유하고 있는 단편을 의미하며, Fab, Fab' F(ab')2 및 Fv 등을 포함한다. 상기 Fab는 경쇄 및 중쇄의 가변영역과 경쇄의 불변 영역 및 중쇄의 첫 번째 불변 영역(CH1)을 가지는 구조로 1개의 항원 결합 부위를 가진다. Fab'는 중쇄 CH1 도메인의 C 말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge region)을 가진다는 점에서 Fab와 차이가 있다. F(ab')2 항체는 Fab'의 힌지 영역의 시스테인 잔기가 디설파이드 결합을 이루면서 생성된다. Fv(variable fragment)는 중쇄 가변부위 및 경쇄 가변부위만을 가지고 있는 최소의 항체조각을 의미한다. 이중쇄Fv(dsFv)는 디설파이드 결합으로 중쇄 가변부위와 경쇄 가변부위가 연결되어 있고 단쇄 Fv(scFv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변 영역과 경쇄의 가변 영역이 공유 결합으로 연결되어 있다. 이러한 항체 단편은 단백질 가수분해 효소를 이용해서 얻을 수 있고(예를 들어, 전체 항체를 파파인으로 제한 절단하며 Fab를 얻을 수 있고 펩신으로 절단하면 F(ab')2 단편을 얻을 수 있다), 바람직하게는 유전자 재조합 기술을 통하여 제작할 수 있다. 본 발명의 목적상 상기 항체는 천연형(wild type) 항체, 항체 단편 및 상기 항체 또는 항체 단편의 라이신(lysine, K)과 같은 특정 아미노산이 제거된 유전공학적으로 변형된 형태도 포함하며, 특히, IgG 항체의 중쇄 또는 경쇄의 C 또는 N 말단에 위치한 라이신이 제거된 형태를 포함한다. 상기 전장 항체의 중쇄의 C 말단에 존재하는 마지막 라이신이 제거되지 않는 경우 약물과의 결합보다는 항체 중쇄 간의 결합이 우선적으로 나타날 수 있으므로, 항체의 중쇄의 C 말단에 존재하는 라이신을 제거하는 것이 변이된 항체의 제조 및; 제조된 변이된 항체를 이용한 항체-약물 결합체의 제조에 바람직하다. 이와 같은 라이신의 제거는 사용하는 항체 또는 항체 단편의 종류 및 그 서열을 확인하고 항체와 약물이 결합될 부위를 고려하여 당업계의 통상적인 기술을 이용하여 제거될 수 있다.As used herein, the term “antibody” refers to a protein molecule that acts as a receptor for an antigen that specifically recognizes an antigen, including an immunoglobulin molecule that is immunologically reactive with a specific antigen. Polyclonal antibodies, monoclonal It includes all antibodies, whole antibodies and antibody fragments. The total antibody is a structure having two full length light chains and two full length heavy chains, each of which is linked by a heavy chain and a disulfide bond. The total antibody includes IgA, IgD, IgE, IgM and IgG, and IgG is a subtype, including IgG1, IgG2, IgG3 and IgG4. The antibody fragment refers to a fragment having an antigen binding function, and includes Fab, Fab 'F (ab') 2 and Fv. The Fab has one antigen binding site in a structure having a variable region of the light and heavy chains, a constant region of the light chain and a first constant region of the heavy chain (CH 1 ). Fab 'differs from Fab in that it has a hinge region comprising at least one cysteine residue at the C terminus of the heavy chain CH 1 domain. F (ab ') 2 antibodies are produced by disulfide bonds of cysteine residues in the hinge region of Fab'. Fv (variable fragment) means a minimum antibody fragment having only the heavy chain variable region and light chain variable region. Double-chain Fv (dsFv) is a disulfide bond, the heavy chain variable region and the light chain variable region is linked, and short-chain Fv (scFv) is generally covalently linked to the variable region of the heavy chain and the light chain through a peptide linker. Such antibody fragments can be obtained using proteolytic enzymes (e.g., the entire antibody can be restricted to papain and Fab is obtained, and pepsin can yield F (ab ') 2 fragment). Can be produced through genetic recombination techniques. For the purposes of the present invention, the antibody also includes wild type antibodies, antibody fragments and genetically modified forms in which specific amino acids such as lysine (K) of the antibody or antibody fragment are removed, in particular, Lysine removed at the C or N terminus of the heavy or light chain of an IgG antibody. If the last lysine present at the C terminus of the heavy chain of the full-length antibody is not removed, the binding between the antibody heavy chains may appear preferentially rather than the binding with the drug. Preparation of the antibody; It is preferred for the preparation of antibody-drug conjugates using the prepared mutated antibodies. Such removal of lysine can be removed using conventional techniques in the art in view of the type and sequence of the antibody or antibody fragment to be used and considering the site to which the antibody and the drug are bound.
본 발명에서 용어, "글루타민(glutamine)을 포함하는 변이된 항체"는 글루타민을 포함하도록 변이시킨 항체를 말하며, 그 예로 항체에 글루타민(glutamine, Q)을 치환(substitution) 또는 삽입(addition)하거나 글루타민을 포함하는 펩타이드를 부착시킨 형태를 포함한다. 상기 변이된 항체는, 바람직하게는 전장항체 또는 항체 단편에 글루타민을 포함하는 펩타이드를 부착시킨 형태일 수 있으나, 이에 제한되지 않는다. 또한, 상기 글루타민을 치환시킨 형태의 변이된 항체는 글리코실화와 같은 당화에 관여하지 않은 잔기를 치환하여 제조된 것일 수 있으며, 이와 같은 변이된 항체는 항체의 당쇄 구조를 제거하지 않으면서도 약물을 결합시킬 수 있는 이점이 있다. 또한, 상기 글루타민을 포함하는 펩타이드를 항체에 연결하는 형태는 유전공학적으로 제작할 수 있으며, 바람직하게는 항체의 중쇄 또는 경쇄의 C 또는 N 말단에 연결시킨 형태일 수 있으며, 더욱 바람직하게는 항체의 중쇄 또는 경쇄의 C 말단에 연결시킨 형태일 수 있으며, 더욱더 바람직하게는 항체의 중쇄의 C 말단에 연결된 형태일 수 있다. 본 발명의 목적상 상기 글루타민을 포함하는 변이된 항체는 트랜스글루타미나아제의 기질로서 이용될 수 있다. 또한, 본 발명의 글루타민을 포함하는 변이된 항체는 바람직하게는 글리코실화(glycosylation)에 관여하는 아미노산을 글루타민으로 치환한 형태가 아닌, 글리코실화에 영향을 크게 미치지 않으면서 글루타민을 추가로 삽입 또는 치환하거나 글루타민을 포함하는 펩타이드를 부착하여 제조한 형태이나, 이에 제한되지 않는다. As used herein, the term “mutated antibody comprising glutamine” refers to an antibody that has been mutated to include glutamine, for example, the substitution or addition of glutamine (Q) to the antibody or glutamine. It includes a form attached to the peptide containing. The mutated antibody may be a form in which a peptide including glutamine is attached to the full length antibody or antibody fragment, but is not limited thereto. In addition, the mutated antibody in the form of the substitution of glutamine may be prepared by substituting residues not involved in glycosylation, such as glycosylation, and the mutated antibody binds the drug without removing the sugar chain structure of the antibody. There is an advantage to this. In addition, the form in which the glutamine-containing peptide is linked to the antibody may be genetically engineered, and may be preferably in the form linked to the C or N terminal of the heavy or light chain of the antibody, more preferably the heavy chain of the antibody. Or a form linked to the C terminus of the light chain, and more preferably a form linked to the C terminus of the heavy chain of the antibody. For the purposes of the present invention, the mutated antibody comprising glutamine may be used as a substrate of transglutaminase. In addition, the mutated antibody comprising glutamine of the present invention is not a form in which the amino acid involved in glycosylation is substituted with glutamine, but additionally inserts or substitutes glutamine without significantly affecting glycosylation. Or a form prepared by attaching a peptide containing glutamine, but is not limited thereto.
본 발명의 일 실시예에서는 글리코실화에 관여하는 아미노산을 글루타민으로 치환시킨 변이된 항체가 아닌, 항체 말단에 트랜스글루타미나아제와 반응할 수 있는 특정 글루타민을 도입한 변이된 항체를 제조하여, 이를 트랜스글루타미나아제의 존재 하에서 라이신을 포함하는 약물과 결합시켰다. 이와 같은 변이된 항체는 항체의 글리코실화와 같은 당화에는 거의 영향을 미치지 않으면서도 약물과 특이적으로 결합될 수 있는 이점을 지닌다. 본 발명의 일 실시예에서는, 글루타민을 포함하는 펩타이드를 IgG 항체의 중쇄의 C 말단에 연결한 폴리펩타이드를 코딩하는 폴리뉴클레오티드를 포함하는 발현벡터를 제작하여, 경쇄를 코딩하는 폴리뉴클레오티드를 포함하는 벡터와 함께 CHO-S 세포에 형질도입하여 이를 발현시킴으로써, IgG 항체의 C 말단에 글루타민을 포함하는 펩타이드가 연결된 변이된 항체를 제작하였다(실시예 1 및 2).In one embodiment of the present invention to prepare a mutated antibody that introduces a specific glutamine that can react with transglutaminase at the terminal of the antibody, rather than a mutated antibody substituted with glutamine amino acids involved in glycosylation, Binding with lysine containing drug in the presence of transglutaminase. Such mutated antibodies have the advantage of being able to specifically bind to the drug with little effect on glycosylation, such as glycosylation of the antibody. In one embodiment of the present invention, a vector comprising a polynucleotide encoding a light chain by preparing an expression vector comprising a polynucleotide encoding a polypeptide comprising a polypeptide comprising a glutamine linked to the C terminal of the heavy chain of the IgG antibody By transducing the CHO-S cells and expressing the same, a mutated antibody in which a peptide including glutamine was linked to the C terminus of the IgG antibody was prepared (Examples 1 and 2).
본 발명에서 용어, "글루타민(glutamine)을 포함하는 펩타이드"는 글루타민을 1개 이상 포함하는 펩타이드를 의미하며, 본 발명의 목적상 트랜스글루타미나아제에 의하여 라이신과 연결될 수 있는 글루타민을 포함하는 펩타이드라면 제한없이 포함된다. 상기 글루타민을 포함하는 펩타이드는 그 예로 서열번호 1, 서열번호 2, 서열번호 3, 서열번호 4 또는 서열번호 5로 표시되는 아미노산 서열을 가지는 펩타이드일 수 있으나, 이에 제한되지 않는다. 상기 펩타이드 내의 글루타민은 다양한 위치에서 존재할 수 있으며, 상기 펩타이드는 1개 이상의 글루타민을 포함할 수 있다. 트랜스글루타미나아제는 단백질 내의 유동적인 부분에 위치한 글루타민을 인지하는 것으로 알려져 있으며(Angelo Fontana et al. Advanced Drug Delivery Reviews 2008. 60. 13-28), 상기 단백질 내의 유동적인 부분은 체인 유동성(chain flexibility)이 큰 단백질 내의 일부분으로서, 고정된 3차 구조를 가지지 않거나 또는 부분적인 언폴딩(unfolding)된 부분을 포함한다. 따라서 상기 글루타민을 포함하는 펩타이드는 글루타민이 고정된 3차 구조가 아닌 유동적인 부분에 위치한 것이라면, 아미노산 개수에 상관없이 상기 글루타민을 포함하는 펩타이드에 포함될 수 있다. 본 발명에서는 대표적인 글루타민을 포함하는 펩타이드로서, 8개의 아미노산으로 구성되고, 글루타민이 말단 부위에 위치한 GGGSLLQG(서열번호 1), 4개의 아미노산으로 구성된 LLQG(서열번호 2), 11개의 아미노산으로 구성되고 글루타민이 중간 부분에 위치한 GGGGSLAQSHA(서열번호 3), 글루타민이 앞쪽에 위치한 GQGGGSLASHA(서열번호 4) 및 16개의 아미노산으로 구성된 NNDSTEYGLFQINNGI(서열번호 5)로 표시되는 펩타이드를 통하여 다양한 길이와 다양한 위치의 글루타민을 가진 펩타이드가 본 발명의 글루타민을 포함하는 펩타이드에 포함될 수 있음을 확인하였으므로, 글루타민의 위치 또는 펩타이드의 길이에 관계없이 본 발명의 펩타이드에 포함될 수 있음은 자명하다. As used herein, the term "peptide including glutamine" refers to a peptide containing one or more glutamine, and for the purposes of the present invention, a peptide comprising glutamine which can be linked to lysine by transglutaminase. Ramen noodles are included without limitation. The peptide containing glutamine may be, for example, a peptide having an amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5, but is not limited thereto. Glutamine in the peptide may be present at various positions, and the peptide may comprise one or more glutamine. Transglutaminase is known to recognize glutamine located in a fluid moiety in a protein (Angelo Fontana et al. Advanced Drug Delivery Reviews 2008. 60. 13-28), where the fluid moiety in the protein is chain fluid. Flexibility is part of a large protein that does not have a fixed tertiary structure or includes partially unfolded parts. Therefore, the peptide containing glutamine may be included in the peptide containing glutamine, regardless of the number of amino acids, provided that the glutamine is located in a fluid part rather than a fixed tertiary structure. In the present invention, a representative glutamine-containing peptide, consisting of eight amino acids, glutamine is located at the terminal GGGSLLQG (SEQ ID NO: 1), consisting of four amino acids LLQG (SEQ ID NO: 2), consisting of 11 amino acids and glutamine GGGGSLAQSHA (SEQ ID NO: 3) located in the middle, GQGGGSLASHA (SEQ ID NO: 4) located in front of glutamine, and NNDSTEYGLFQINNGI (SEQ ID NO: 5) consisting of 16 amino acids, have glutamine in various lengths and in various positions. Since it was confirmed that the peptide may be included in the peptide containing glutamine of the present invention, it is obvious that the peptide may be included in the peptide of the present invention regardless of the position of the glutamine or the length of the peptide.
본 발명의 목적상 상기 글루타민을 포함하는 펩타이드는 트랜스글루타미나아제와 반응할 수 있는 글루타민을 포함하는 펩타이드를 의미한다. 상기 펩타이드에 존재하는 글루타민의 카복사아마이드(carboxamide)는 트랜스글루타미나아제에 의하여 아민(amine)기와 연결될 수 있다. 또한, 상기 글루타민은 펩타이드의 말단 또는 중간 등 펩타이드의 어느 위치에 존재하더라도 트랜스글루타미나아제에 의해 자유 아민기를 지닌 분자와 연결될 수 있다. 본 발명의 일 실시예에서는 펩타이드의 중간 또는 끝부분에 위치하는 글루타민이 트랜스글루타미나아제에 의하여 mPEGamine과 연결되며, 항체-약물 결합체로서 효능을 나타냄을 확인하였다(도 2 내지 5).For the purpose of the present invention, the peptide containing glutamine means a peptide containing glutamine that can react with transglutaminase. Carboxamide of glutamine present in the peptide may be linked to an amine group by transglutaminase. In addition, the glutamine may be linked to a molecule having a free amine group by a transglutaminase at any position of the peptide such as the terminal or the middle of the peptide. In one embodiment of the present invention, glutamine located in the middle or the end of the peptide is linked to mPEGamine by transglutaminase, it was confirmed that the efficacy as an antibody-drug conjugate (Fig. 2 to 5).
본 발명에서 용어, "자유 아민기(free amine group)를 포함하는 약물"은 트랜스글루타미나아제와 반응할 수 있는 아민기를 지닌 약물을 의미하며, 보다 바람직하게는 글루타민을 포함하는 변이된 항체와 트랜스글루타미나아제의 존재하에 연결될 수 있는 아민기를 포함하는 약물을 의미하며, 그 예로 글루타민을 포함하는 펩타이드가 항체에 연결된 형태의 변이된 항체와 트랜스글루타미나아제의 존재하에 연결될 수 있는, mPEGamine 또는 라이신을 포함하도록 제조된 mcMMAF(maleimidocaproyl-monomethylauristatin F)과 같은 약물을 들 수 있으나, 이에 제한되지 않는다.As used herein, the term "drug containing a free amine group" refers to a drug having an amine group capable of reacting with a transglutaminase, and more preferably a mutated antibody comprising glutamine. It means a drug comprising an amine group that can be linked in the presence of a transglutaminase, for example mPEGamine, wherein the peptide containing glutamine can be linked in the presence of a transglutaminase and a mutated antibody in the form linked to the antibody Or a drug such as mcMMAF (maleimidocaproyl-monomethylauristatin F) prepared to include lysine, but is not limited thereto.
본 발명의 목적상 상기 자유 아민기를 포함하는 약물은 본래 아민기를 지니는 것일 수도 있지만, 트랜스글루타미나아제와 반응할 수 있는 자유 아민기를 갖는 형태로 합성 또는 유전공학적으로 제작되는 것일 수 있으며, 그 예로 입실론 아민기 또는 라이신을 포함하도록 약물을 합성하는 방법으로 제작할 수 있다. 라이신을 포함하도록 약물을 합성하는 방법은 당업계에 사용되는 여러 방법이 이용될 수 있으며, 그 예로 말레이미드 기와 시스테인의 티올기(thiol group) 간의 결합, 즉 티오에테르(thioether) 결합을 이용하여, 말레이미드 기를 가진 약물과, 시스테인 및 라이신 잔기를 포함하는 펩타이드를 서로 연결시켜, 라이신을 포함하는 약물을 합성할 수 있다. 본 발명의 일 실시예에서는 mcMMAF에 라이신을 포함하도록 하기 위하여, KGEGRGSGC(서열번호 6)의 서열을 가지는 펩타이드를 mcMMAF에 연결시켜, 자유 아민기를 포함하는 약물을 제조하였다. For the purposes of the present invention, the drug containing the free amine group may be originally having an amine group, but may be synthetically or genetically engineered in a form having a free amine group capable of reacting with a transglutaminase. It can be produced by a method of synthesizing a drug to include an epsilon amine group or lysine. As a method for synthesizing a drug to include lysine, various methods used in the art may be used, for example, using a bond between a maleimide group and a thiol group of cysteine, that is, a thioether bond, Drugs containing maleimide groups and peptides containing cysteine and lysine residues can be linked to each other to synthesize drugs containing lysine. In an embodiment of the present invention, in order to include lysine in mcMMAF, a peptide having a sequence of KGEGRGSGC (SEQ ID NO: 6) was linked to mcMMAF to prepare a drug including a free amine group.
본 발명에서 용어, "자유 아민기(free amine group)"는 트랜스글루타미나아제에 의해서 글루타민의 카복사아마이드와 아실 트랜스퍼 반응을 통하여 연결될 수 있는 작용기를 의미하며, 그 예로 라이신(lysine, K)에 존재하는 입실론 아민(ε-amine)이 있으나, 이에 제한되지 않는다.As used herein, the term "free amine group" refers to a functional group that can be linked to a carboxamide of glutamine and an acyl transfer reaction by a transglutaminase, for example, lysine (K). Epsilon amine (ε-amine) present in, but is not limited thereto.
본 발명에서 용어, "약물"은 본 발명의 항체에 결합하여 치료 항체 자체의 치료 효율을 증가시킬 수 있거나, 항체의 혈중 내의 반감기를 증가시킬 수 있거나, 항체가 표적으로 하는 위치에 도달하여, 상기 표적 내의 암 등을 사멸시켜서 질병의 치료에 사용할 수 있는 물질을 의미하며, 특별히 그 종류는 제한되지 않으나, 바람직하게는 세포독성약물(cytotoxic drug), 독소(toxin) 또는 안정화제일 수 있다. As used herein, the term "drug" can bind to an antibody of the invention to increase the therapeutic efficiency of the therapeutic antibody itself, increase the half-life of the antibody in the blood, or reach a location targeted by the antibody, Means a substance that can be used for the treatment of diseases by killing the cancer in the target, and the like is not particularly limited, but may preferably be a cytotoxic drug, a toxin or a stabilizer.
본 발명에서 용어, "세포독성약물"은 질병의 치료에 사용될 수 있는 약물을 의미할 수 있다. 본 발명의 목적상 상기 세포독성약물은 트랜스글루타미나아제의 존재하에서 변이된 항체와 결합될 수 있는 약물일 수 있으며, 개체의 질병의 치료에 이용될 수 있는 약물을 의미할 수 있다. 상기 세포독성약물은 이에 제한되지는 않으나, 바람직하게는 마이크로튜불린(microtubulin) 구조 형성 억제제, 유사분열(meiosis) 억제제, 토포아이소머라아제(topoisomerase) 억제제 또는 DNA 인터컬레이터(intercalator)일 수 있으며, 그 예로 메이탄시노이드(maytansinoid), 오리스타틴(auristatin), 돌라스타틴(dolastatin), 칼리케아미신(calicheamicin), 피롤로벤조디아제피네스(pyrrolobenzodiazepines), 독소루비신(doxorubicin), 듀오카마이신(duocamycin), 카보플라틴(파라플라틴)[Carboplatin(paraplatin)], 시스플라틴(cisplatin), 시클로포스파미드(cyclophosphamide), 이포스파미드(ifosfamide), 니드란(nidran), 질소머스타드(메클로에타민 염산염)[nitrogen mustar(mechlorethamine HCL)], 블레오마이신(bleomycin), 미토마이신 C(mitomycin C), 시타라빈(cytarabine), 플루로우라실(flurouracil), 젬시타빈(gemcitabine), 트리메트렉세이트(trimetrexate), 메토크렉세이트(methotrexate), 에토포시드(etoposide), 빈블라스틴(vinblastine), 비노렐빈(vinorelbine), 알림타(alimta), 알트레타민(altretamine), 프로카바진(procarbazine), 탁솔(taxol), 탁소텔(taxotere), 토포테칸(topotecan) 또는 이리노테칸(irinotecan)일 수 있다.As used herein, the term "cytotoxic drug" may mean a drug that can be used for the treatment of a disease. For the purposes of the present invention, the cytotoxic drug may be a drug that can be combined with a mutated antibody in the presence of a transglutaminase, and may mean a drug that can be used for the treatment of a disease of an individual. The cytotoxic drug is not limited thereto, but may preferably be a microtubulin structure forming inhibitor, a meiosis inhibitor, a topoisomerase inhibitor, or a DNA intercalator. For example, maytansinoid, mayurisin, auristatin, dolastatin, calicheamicin, pyrrolobenzodiazepines, doxorubicin, duocamycin ), Carboplatin (paraplatin), cisplatin, cisplatin, cyclophosphamide, ifosfamide, nidran, nitrogen mustard (mecloethamine hydrochloride) nitrogen mustar (mechlorethamine HCL), bleomycin, mitomycin C, cytarabine, flurouracil, gemcitabine, trimetrexate metrexate, methotrexate, etoposide, vinpoline, vinblastine, vinorelbine, alimta, altretamine, procarbazine, It may be taxol, taxotere, topotecan or irinotecan.
본 발명에서 용어, "독소(toxin)"는 생물체가 만들어내는 독성을 가지는 약물을 의미하며, 본 발명의 목적상 상기 독소는 변이된 항체와 결합하여 개체의 질병의 치료에 이용될 수 있는 독소를 의미할 수 있다. 상기 독소는 이에 제한되지는 않으나, 균체외 독소 또는 식물독소일 수 있다.As used herein, the term "toxin" refers to a drug having a toxicity produced by an organism, and for the purpose of the present invention, the toxin binds to a mutated antibody and may be used to treat an individual's disease. Can mean. The toxin may be, but is not limited to, extracellular or phytotoxic.
본 발명에서 용어, "안정화제"는 단백질에 결합하여 단백질의 생체 내 반감기를 증대시킬 수 있는 약물을 의미하며, 바람직하게는 항체 또는 변이된 항체에 결합하여 항체 또는 변이된 항체의 생체 내 반감기를 증대시킬 수 있는 약물을 의미하며, 더욱 바람직하게는 폴리에틸렌글리콜(PEG, Polyethylene glycol) 또는 히알루론산을 의미할 수 있다. 상기 안정화제는 트랜스글루타미나아제와 반응할 수 있도록 아민(amine)기를 지닌 형태일 수 있으며, 그 예로 mPEGamine일 수 있다. As used herein, the term "stabilizer" refers to a drug capable of binding to a protein to increase the half-life of the protein in vivo, and preferably a half-life of the antibody or mutated antibody to bind to the antibody or the mutated antibody. It means a drug that can be increased, and more preferably may mean polyethylene glycol (PEG, Polyethylene glycol) or hyaluronic acid. The stabilizer may be in the form of an amine (amine) to react with the transglutaminase, for example mPEGamine.
본 발명의 일 실시예에서는 IgG 항체의 중쇄의 C 말단에 글루타민을 포함하는 4 내지 16개의 아미노산으로 구성된 펩타이드를 연결한 변이된 항체를 제작하여, 이를 트랜스글루타미나아제의 존재하에 자유 아민기를 지닌 mPEGamine 또는 mcMMAF와 반응시켜, IgG 항체에 mPEGamine 또는 mcMMAF이 연결된 항체-약물 결합체를 제조하였다(실시예 1 내지 5).In one embodiment of the present invention to prepare a mutated antibody connecting a peptide consisting of 4 to 16 amino acids including glutamine at the C-terminus of the heavy chain of the IgG antibody, which has a free amine group in the presence of transglutaminase Reaction with mPEGamine or mcMMAF produced antibody-drug conjugates in which mPEGamine or mcMMAF was linked to IgG antibodies (Examples 1-5).
또 다른 양태로서, 본 발명은 상기 방법으로 제조된 항체-약물 결합체를 제공한다. In another aspect, the present invention provides an antibody-drug conjugate prepared by the above method.
상기 방법 및 항체-약물 결합체는 상기에서 설명한 바와 같다. The method and antibody-drug conjugate are as described above.
또 다른 양태로서, 본 발명은 글루타민을 포함하는 변이된 항체와 자유 아민기를 포함하는 약물이 이소펩타이드 결합으로 연결된, 항체-약물 결합체를 제공한다.In another aspect, the present invention provides antibody-drug conjugates wherein the mutated antibody comprising glutamine and the drug comprising free amine groups are linked by isopeptide bonds.
상기 변이된 항체와 자유 아민기를 포함하는 약물에 대해서는 상기에서 설명한 바와 같다. The drug containing the mutated antibody and the free amine group are as described above.
본 발명에서 용어, "이소펩타이드 결합(isopeptide bond)"은 라이신 곁사슬의 아민기(ε-아민기)와 글루타민이나 아스파라긴 곁사슬의 카르복실기(γ또는 β-카르복실기, 또는 카복사아마이드) 사이에 형성되는 펩티드결합을 의미하며, 바람직하게는 라이신 곁사슬의 아민기와 글루타민의 카르복실기 사이에 형성되는 펩티드 결합을 의미할 수 있다. 본 발명의 목적상 상기 이소펩타이드 결합은 트랜스글루타미나아제에 의해 형성된 결합을 의미할 수 있다. 상기 이소펩타이드 결합은 프로테아제에 대한 내성을 가지는 안정한 결합으로, 개체의 혈액 내에서도 혈류에 안정하여 항체와 약물이 연결된 형태를 안정하게 유지시킬 수 있다. As used herein, the term “isopeptide bond” refers to a peptide formed between an amine group (ε-amine group) of a lysine side chain and a carboxyl group (γ or β-carboxyl group or carboxamide) of a glutamine or asparagine side chain. It means a bond, preferably a peptide bond formed between the amine group of the lysine side chain and the carboxyl group of glutamine. For the purposes of the present invention, the isopeptide bond may refer to a bond formed by transglutaminase. The isopeptide bond is a stable bond having resistance to protease, which is stable to blood flow even in the blood of an individual, thereby maintaining a stable form of antibody-drug connection.
본 발명의 목적상 상기 항체-약물 결합체는 변이된 항체와 자유 아민기를 포함하는 약물이 이소펩타이드 결합을 통해 연결된 형태의 결합체일 수 있으며, 바람직하게는 질병의 예방 또는 치료에 이용될 수 있는 자유 아민기를 포함하는 약물이 변이된 항체와 이소펩타이드 결합을 통하여 연결된 형태의 결합체일 수 있으나, 이에 제한되지 않는다.For the purposes of the present invention, the antibody-drug conjugate may be a conjugate in a form in which a mutated antibody and a drug including a free amine group are linked through isopeptide bonds, and preferably a free amine that can be used for preventing or treating a disease. The drug including the group may be a conjugate of a mutated antibody and a form linked through isopeptide, but is not limited thereto.
또 다른 양태로서, 본 발명은 상기 항체-약물 결합체를 포함하는 암의 예방 또는 치료용 약학적 조성물을 제공한다.In another aspect, the present invention provides a pharmaceutical composition for preventing or treating cancer comprising the antibody-drug conjugate.
상기 항체, 약물 및 결합체에 대해서는 상기에서 설명한 바와 같다.The antibodies, drugs and conjugates are as described above.
본 발명에서 용어, "예방"이란 상기 조성물의 투여에 의해 암의 발병을 억제하거나 지연시키는 모든 행위를 의미한다. 또한, 상기 "치료"란 상기 조성물의 투여로 상기 암 질환의 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다. As used herein, the term "prevention" means any action that inhibits or delays the onset of cancer by administration of the composition. In addition, the "treatment" means any action that improves or advantageously changes the symptoms of the cancer disease by administration of the composition.
본 발명에서 용어, "암"은 본 발명의 항체-약물 결합체를 이용하여 선택적으로 사멸시킬 수 있는 암을 의미할 수 있으며, 상기 항체-약물 결합체를 이용하여 치료 가능한 암은 제한 없이 이에 포함될 수 있으며, 그 예로 피부, 소화기, 비뇨기, 생식기, 호흡기, 순환기, 뇌 또는 신경계의 암이 있으며, 구체적으로 폐암, 비소세포성 폐암, 결장암, 골암, 췌장암, 피부암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 위암, 항문부근암, 결장암, 유방암, 나팔관암, 자궁내막암, 자궁경부암, 질암, 음문암, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반암종, 중추신경계(central nervous system, CNS) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 또는 뇌하수체 선종일 수 있다. 본 발명의 항체-약물 결합체는 암의 치료에 이용되는 세포독성물질, 독소 또는 안정화제를 암의 치료에 사용할 수 있는 변이된 항체에 위치특이적으로 결합시킨 형태일 수 있으며, 이는 본래 항체의 항원인지에 영향을 주지 않으면서도 약물을 더하여 의약품적 효능을 보다 효과적으로 상승시킨 것일 수 있다. 또한, 본 발명의 변이된 항체는 항체의 효과기(effector) 기능 및 약동학에 중요한 역할을 하는 글리코실화(glycosylation)와 같은 당화에 영향을 거의 주지 않는 형태를 포함하므로, 상기 변이된 항체에 약물을 결합시킨 항체-약물 결합체를 암 치료에 사용하는 경우, 기존 약물 또는 항체 단독으로 사용하는 것에 비하여 그 효과를 훨씬 더 증대시킬 수 있는 이점이 있다. As used herein, the term "cancer" may refer to a cancer which can be selectively killed using the antibody-drug conjugate of the present invention, and the cancer treatable using the antibody-drug conjugate may be included without limitation. For example, skin, digestive, urinary, genital, respiratory, circulatory, brain or nervous system cancers, specifically lung cancer, non-small cell lung cancer, colon cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, uterine cancer, ovarian cancer, Rectal cancer, stomach cancer, anal muscle cancer, colon cancer, breast cancer, fallopian tube cancer, endometrial cancer, cervical cancer, vaginal cancer, vulvar cancer, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine gland cancer, thyroid cancer, parathyroid cancer, adrenal cancer , Soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute leukemia, lymphocyte lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) Tumor, primary central nervous system lymphoma, spinal cord tumor, brain stem glioma or pituitary adenoma. The antibody-drug conjugates of the present invention may be in the form of a site-specific binding of a cytotoxic agent, toxin or stabilizer used for the treatment of cancer to a mutated antibody for use in the treatment of cancer, which is the antigen of the original antibody. Drugs may be added to increase the efficacy of the drug more effectively without affecting cognition. In addition, the mutated antibody of the present invention includes a form that has little effect on glycosylation, such as glycosylation, which plays an important role in the effector function and pharmacokinetics of the antibody, thereby binding the drug to the mutated antibody. In the case of using the antibody-drug conjugates for the treatment of cancer, there is an advantage that the effect can be further increased compared to the use of existing drugs or antibodies alone.
본 발명의 암 치료용 약학적 조성물은 약학적으로 허용가능한 담체를 추가로 포함할 수 있으며, 담체와 함께 제제화될 수 있다.The pharmaceutical composition for treating cancer of the present invention may further include a pharmaceutically acceptable carrier, and may be formulated with the carrier.
본 발명에서 용어, "약학적으로 허용가능한 담체"란 생물체를 자극하지 않고As used herein, the term "pharmaceutically acceptable carrier" does not stimulate an organism
투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. A carrier or diluent that does not inhibit the biological activity and properties of the administered compound. Acceptable pharmaceutical carriers in compositions formulated as liquid solutions are sterile and biocompatible, which include saline, sterile water, Ringer's solution, buffered saline, albumin injectable solutions, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary. Diluents, dispersants, surfactants, binders and lubricants may also be added in addition to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
본 발명의 약학적 조성물은 이를 유효성분으로 포함하는 어떠한 제형으로도 적용가능하며, 경구용 또는 비경구용 제형으로 제조할 수 있다. 본 발명의 조성물을 유효성분으로 포함하는 경구 투여용 제형으로는, 예를 들어 정제, 트로키제, 로렌지, 수용성 또는 유성현탁액, 조제분말 또는 과립, 에멀젼, 하드 또는 소프트 캡슐, 시럽 또는 엘릭시르제로제제화할 수 있다. 정제 및 캡슐 등의 제형으로 제제화하기 위해, 락토오스, 사카로오스, 솔비톨, 만니톨, 전분, 아밀로펙틴, 셀룰로오스 또는 젤라틴과 같은 결합제, 디칼슘 포스페이트와 같은 부형제, 옥수수 전분 또는 고구마 전분과 같은 붕괴제, 스테아르산 마스네슘, 스테아르산 칼슘, 스테아릴푸마르산 나트륨 또는 폴리에틸렌글리콜 왁스와 같은 윤활유를 포함할 수 있으며, 캡슐제형의 경우 상기 언급한물질 외에도 지방유와 같은 액체 담체를 더 함유할 수 있다. 본 발명의 조성물을 효성분으로 포함하는 비경구 투여용 제형으로는, 피하주사, 정맥주사 또는 근육내 주사 등의 주사용 형태로 제제화할 수 있다. 주사용 제형으로 제제화하기 위해서는 본 발명의 조성물을 안정제 또는 완충제와 함께 물에서 혼합하여 용액 또는 현탁액으로 제조하고, 이를 앰플 또는 바이알의 단위 투여용으로 제제화할 수 있다.The pharmaceutical composition of the present invention can be applied in any dosage form comprising it as an active ingredient, and can be prepared in an oral or parenteral dosage form. Formulations for oral administration comprising the composition of the present invention as an active ingredient include, for example, tablets, troches, lozenges, water-soluble or oily suspensions, prepared powders or granules, emulsions, hard or soft capsules, syrups or elixirs can do. For formulation into tablets and capsules, lactose, saccharose, sorbitol, mannitol, starch, amylopectin, binders such as cellulose or gelatin, excipients such as dicalcium phosphate, disintegrating agents such as corn starch or sweet potato starch, stearic acid masne It may include a lubricating oil such as calcium, calcium stearate, sodium stearyl fumarate or polyethylene glycol wax, and in the case of a capsule, it may further contain a liquid carrier such as fatty oil in addition to the above-mentioned materials. As a dosage form for parenteral administration containing the composition of this invention as an active ingredient, it can be formulated in the form of injection, such as subcutaneous injection, intravenous injection, or intramuscular injection. To formulate injectable formulations, the compositions of the present invention may be mixed in water with stabilizers or buffers to prepare solutions or suspensions, which may be formulated for unit administration of ampoules or vials.
상기 약학적 조성물은 약학적으로 유효한 양으로 투여한다. The pharmaceutical composition is administered in a pharmaceutically effective amount.
본 발명에서 용어, "투여"란 어떠한 적절한 방법으로 개체에게 본 발명의 약학적 조성물을 도입하는 것을 의미하며, 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통하여 투여될 수 있으며, 구체적으로, 구강, 직장, 국소, 정맥 내, 복강 내, 근육 내, 동맥 내, 경피, 비측 내, 흡입, 안구 내 또는 피 내 경로를 통해 통상적인 방식으로 투여될 수 있다. As used herein, the term "administration" means introducing a pharmaceutical composition of the present invention to an individual in any suitable manner, and the route of administration of the composition is administered via various routes, oral or parenteral, as long as the target tissue can be reached. Specifically, it may be administered in a conventional manner via the oral, rectal, topical, intravenous, intraperitoneal, intramuscular, intraarterial, transdermal, nasal, inhalation, intraocular or intradermal routes.
본 발명에서 용어, "약학적으로 유효한 양"이란 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 암의 종류, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다. 그리고 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다.As used herein, the term "pharmaceutically effective amount" means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level is determined by the type and severity, age, sex, and cancer of the individual. It may be determined according to the type, activity of the drug, sensitivity to the drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrently used drugs, and other factors well known in the medical field. The compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents and may be administered sequentially or simultaneously with conventional therapeutic agents. And single or multiple administrations. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, and can be easily determined by those skilled in the art.
본 발명의 일 실시예에서는 항-HER2 항체에 글루타민을 포함하는 펩타이드를 연결시킨, 항-HER2 항체의 변이체에 라이신을 포함하는 mcMMAF 약물을 트랜스글루타미나아제의 존재하에 결합시켜 항체-약물 결합체를 제조하였고(실시예 1, 2, 4 및 5), 상기 항체-약물 결합체가 HER2를 고발현하는 유방암 세포주에서 HER2 항원에 특이적으로 결합함으로써 우수한 항-증식 효과를 나타냄을 확인하였고(실시예6), 허셉틴 저항성이며, HER2를 고발현하는 JIMT-1 세포를 이식한 이식이종마우스를 이용하여 그 효과를 확인한 결과, 항-HER2 항체인 트라스투주맙에 비하여 현저히 우수한 종양 억제 효과를 나타냄을 확인하였다(실시예 7).In one embodiment of the present invention, the antibody-drug conjugate is prepared by binding a mcMMAF drug containing lysine to a variant of the anti-HER2 antibody in the presence of a transglutaminase. (Examples 1, 2, 4, and 5), and the antibody-drug conjugates showed an excellent anti-proliferative effect by specifically binding to the HER2 antigen in breast cancer cell lines expressing HER2 (Example 6). As a result of using a transplanted xenograft mouse transplanted with JIMT-1 cells expressing Herceptin and expressing HER2, the tumor suppression effect was significantly superior to that of the anti-HER2 antibody trastuzumab. (Example 7).
또 다른 양태로서, 본 발명은 글루타민을 포함하는 펩타이드 및 항체가 연결된 변이된 항체를 제공한다.In another aspect, the present invention provides a mutated antibody to which a peptide comprising glutamine and an antibody are linked.
상기 글루타민을 포함하는 펩타이드 및 항체에 대해서는 상기에서 설명한 바와 같다. Peptides and antibodies comprising the glutamine are as described above.
상기 변이된 항체는 글루타민을 포함하는 펩타이드 및 항체가 연결된 형태의 단백질을 의미할 수 있으며, 바람직하게는 글루타민을 포함하는 펩타이드가 항체의 중쇄 또는 경쇄의 C 또는 N 말단에 융합된 단백질을 의미할 수 있으며, 더욱 바람직하게는 글루타민을 포함하는 펩타이드가 항체의 중쇄의 C 말단에 융합된 단백질을 의미할 수 있으나, 이에 제한되지 않는다.The mutated antibody may refer to a peptide containing glutamine and a protein in a form in which the antibody is linked. Preferably, the mutated antibody may refer to a protein in which the peptide including glutamine is fused to the C or N terminus of the heavy or light chain of the antibody. And, more preferably, the peptide containing glutamine may mean a protein fused to the C terminal of the heavy chain of the antibody, but is not limited thereto.
또 다른 양태로서, 본 발명은 상기 변이된 항체를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터 및 상기 발현 벡터가 도입된 형질전환체를 제공한다. In another aspect, the present invention provides a polynucleotide encoding the mutated antibody, an expression vector comprising the polynucleotide, and a transformant into which the expression vector is introduced.
본 발명에서 제공하는 상기 변이된 항체를 코딩하는 폴리뉴클레오티드를 포함하는 발현 벡터는 특별히 이에 제한되지 않으나, 포유류 세포(예를 들어, 사람, 원숭이, 토끼, 래트, 햄스터, 마우스 세포 등), 식물 세포, 효모 세포, 곤충 세포 또는 박테리아 세포(예를 들어, 대장균 등)를 포함하는 진핵 또는 원핵세포에서 상기 폴리뉴클레오티드를 복제 및/또는 발현할 수 있는 벡터가 될 수 있고, 바람직하게는 숙주세포에서 상기 폴리뉴클레오티드가 발현될 수 있도록 적절한 프로모터에 작동가능하도록 연결되며, 적어도 하나의 선별마커를 포함하는 벡터가 될 수 있으며, 보다 바람직하게는 파아지, 플라스미드, 코스미드, 미니-염색체, 바이러스, 레트로바이러스 벡터 등에 상기 폴리뉴클레오티드가 도입된 형태가 될 수 있다.Expression vectors comprising polynucleotides encoding the mutated antibodies provided herein are not particularly limited thereto, but may include mammalian cells (eg, human, monkey, rabbit, rat, hamster, mouse cells, etc.), plant cells, and the like. Can be a vector capable of replicating and / or expressing the polynucleotide in eukaryotic or prokaryotic cells, including yeast cells, insect cells or bacterial cells (e.g., E. coli, etc.), preferably in the host cell It may be a vector operably linked to an appropriate promoter for expression of the polynucleotide, and may comprise a vector comprising at least one selection marker, more preferably phage, plasmid, cosmid, mini-chromosome, virus, retroviral vector It may be a form in which the polynucleotide is introduced.
상기 변이된 항체를 코딩하는 폴리뉴클레오티드를 포함하는 발현 벡터는 변이된 항체의 중쇄 또는 경쇄를 코딩하는 폴리뉴클레오티드를 각각 포함하는 발현벡터 또는 변이된 항체의 중쇄 또는 경쇄를 코딩하는 폴리뉴클레오티드를 모두 포함하는 발현벡터일 수 있다. The expression vector including the polynucleotide encoding the mutated antibody includes both an expression vector comprising a polynucleotide encoding the heavy or light chain of the mutated antibody or a polynucleotide encoding the heavy or light chain of the mutated antibody, respectively. It may be an expression vector.
본 발명에서 제공하는 상기 발현벡터가 도입된 형질전환체는 특별히 이에 제한되지 않으나, 상기 발현벡터가 도입되어 형질전환된 대장균, 스트렙토미세스, 살모넬라 티피뮤리움 등의 박테리아 세포; 효모 세포; 피치아 파스토리스 등의 균류 세포; 드로조필라, 스포도프테라 Sf9 세포 등의 곤충 세포; CHO, COS, NSO, 293T, 보우 멜라노마 세포 등의 동물 세포; 또는 식물 세포가 될 수 있다. 본 발명의 일 실시예에 따르면 CHO-S 세포를 숙주세포로 이용하였다.The transformant introduced with the expression vector provided by the present invention is not particularly limited thereto, but the bacterial cells such as E. coli, Streptomyces, Salmonella typhimurium transformed by introducing the expression vector; Yeast cells; Fungal cells such as Pchia pastoris; Insect cells such as Drozophila and Spodoptera Sf9 cells; Animal cells such as CHO, COS, NSO, 293T, bow melanoma cells; Or plant cells. According to one embodiment of the present invention, CHO-S cells were used as host cells.
본 발명에서 용어, "도입"은 상기 변이된 항체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포에 전달하는 방법을 의미한다. 이와 같은 도입은 칼슘 포스페이트-DNA 공침전법, DEAE-덱스트란-매개 트랜스펙션법, 폴리브렌-매개 형질감염법, 전기충격법, 미세주사법, 리포좀 융합법, 리포펙타민 및 원형질체 융합법 등의 당 분야에 공지된 여러 방법에 의해 수행될 수 있다. 또한, 형질도입은 감염(infection)을 수단으로 하여 바이러스 입자를 사용하여 목적물을 세포 내로 전달시키는 것을 의미한다. 아울러, 유전자 밤바드먼트 등에 의해 벡터를 숙주세포 내로 도입할 수 있다. 본 발명에서 도입은 형질전환과 혼용되어 사용될 수 있다.As used herein, the term "introduction" refers to a method of delivering a vector comprising a polynucleotide encoding the mutated antibody to a host cell. Such introductions include calcium phosphate-DNA coprecipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroshock, microinjection, liposome fusion, lipofectamine and protoplast fusion. It can be carried out by various methods known in the art. In addition, transduction refers to the delivery of a target product into cells using viral particles by means of infection. In addition, the vector can be introduced into the host cell by gene bombardment or the like. Introduction in the present invention can be used interchangeably with transformation.
또 다른 양태로서, 본 발명은 상기 항체-약물 결합체를 이용하여 암을 치료하는 방법을 제공한다. In another aspect, the present invention provides a method of treating cancer using the antibody-drug conjugate.
구체적으로, 상기 방법은 항체-약물 결합체, 또는 약학적으로 허용 가능한 담체를 추가로 포함하는 약학적 조성물을 암이 발병되거나 발병 의심이 있는 개체에 투여하는 단계를 포함하는 암을 치료하는 방법일 수 있으며, 사용될 수 있는 담체, 암 및 투여는 상기에서 설명한 바와 동일하다. Specifically, the method may be a method of treating cancer comprising administering a pharmaceutical composition comprising an antibody-drug conjugate, or a pharmaceutically acceptable carrier, to a subject having or suspected of having the cancer. Carriers, cancers and administrations that can be used are the same as described above.
상기 개체는 소, 돼지, 양, 닭, 개, 인간 등을 포함하는 포유동물, 조류 등을 포함하며, 본 발명의 상기 조성물의 투여에 의해 암이 치료되는 개체는 제한없이 포함된다.Such individuals include mammals, birds, and the like, including cattle, pigs, sheep, chickens, dogs, humans, and the like, and include, without limitation, individuals whose cancer is treated by administration of the composition of the present invention.
이때, 상기 조성물은 약학적으로 유효한 양으로 단일 또는 다중 투여될 수 있다. 이때, 조성물은 액제, 산제, 에어로졸, 캡슐제, 장용피 정제 또는 캡슐제 또는 좌제의 형태로 투여할 수 있다. 투여 경로는 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 내 투여, 내피 투여, 경구 투여, 국소 투여, 비 내 투여, 폐 내 투여, 직장 내 투여 등을 포함하지만, 이에 제한되지는 않는다. 그러나 경구 투여시, 펩타이드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 되어야 한다. 또한, 제약 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.In this case, the composition may be administered in a single or multiple doses in a pharmaceutically effective amount. In this case, the composition may be administered in the form of a liquid, powder, aerosol, capsule, enteric skin tablets or capsules or suppositories. Routes of administration include, but are not limited to, intraperitoneal, intravenous, intramuscular, subcutaneous, endothelial, oral, topical, nasal, pulmonary, rectal, and the like. However, upon oral administration, since the peptide is digested, the oral composition must be formulated to coat the active agent or to protect it from degradation in the stomach. In addition, the pharmaceutical composition may be administered by any device in which the active agent may migrate to the target cell.
본 발명의 상기 항체-약물 결합체를 포함하는 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 상기 약학적으로 유효한 양에 대해서는 상기에서 설명한 바와 같다. A pharmaceutical composition comprising the antibody-drug conjugate of the present invention is administered in a pharmaceutically effective amount. The pharmaceutically effective amount is as described above.
이하, 본 발명을 하기 실시예에서 보다 구체적으로 설명한다. 그러나 이들 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 이들에 의해 본 발명이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail in the following Examples. However, these examples are only for aiding the understanding of the present invention, and the present invention is not limited thereto.
실시예 1: 글루타민(glutamine)을 포함하는 변이된 항-Her2 항체의 발현 벡터 제조Example 1 Preparation of Expression Vectors of Mutated Anti-Her2 Antibodies Containing Glutamine
트랜스글루타미나아제와 반응할 수 있는 글루타민을 포함하는 변이된 항체를 제조하기 위하여, 대표적인 항체로서 항-Her2 항체를 이용하였다. In order to prepare a mutated antibody comprising glutamine capable of reacting with transglutaminase, an anti-Her2 antibody was used as a representative antibody.
항-Her2 항체의 중쇄 아미노산 서열의 C 말단 마지막에 존재하는 라이신을 빼고, 글루타민을 포함하는 펩타이드인 GGGSLLQG(서열번호 1), LLQG(서열번호 2), GGGGSLAQSHA(서열번호 3), GQGGGSLASHA(서열번호 4), 또는 NNDSTEYGLFQINNGI(서열번호 5)의 아미노산 서열을 연결시켜 아미노산 서열을 변형하였다. GGGSLLQG(서열번호 1)를 포함하는 중쇄를 가지는 항체를 T-KM1으로, LLQG(서열번호 2)를 포함하는 중쇄를 가지는 항체를 T-KM2로, GGGGSLAQSHA(서열번호 3)를 포함하는 중쇄를 가지는 항체를 T-KM3으로, GQGGGSLASHA(서열번호 4)를 포함하는 중쇄를 가지는 항체를 T-KM10으로, NNDSTEYGLFQINNGI(서열번호 5)를 포함하는 중쇄를 가지는 항체를 T-KM4로 명명하였다.GGGSLLQG (SEQ ID NO: 1), LLQG (SEQ ID NO: 2), GGGGSLAQSHA (SEQ ID NO: 3), GQGGGSLASHA (SEQ ID NO: 1), a peptide containing glutamine, subtracted from the end of the C terminus of the heavy chain amino acid sequence of the anti-Her2 antibody. 4), or the amino acid sequence of the NNDSTEYGLFQINNGI (SEQ ID NO: 5) was linked to modify the amino acid sequence. The antibody having a heavy chain containing GGGSLLQG (SEQ ID NO: 1) is T-KM1, the antibody having a heavy chain containing LLQG (SEQ ID NO: 2) is T-KM2, and has a heavy chain comprising GGGGSLAQSHA (SEQ ID NO: 3) The antibody was named T-KM3, the antibody having a heavy chain containing GQGGGSLASHA (SEQ ID NO: 4) was named T-KM10, and the antibody having a heavy chain containing NNDSTEYGLFQINNGI (SEQ ID NO: 5) was named T-KM4.
그 다음, 상기의 글루타민을 포함하는 펩타이드가 연결된, 변형된 중쇄를 코딩하는 폴리뉴클레오티드를 포함하는 발현 벡터를 제작하였다. Next, an expression vector comprising a polynucleotide encoding the modified heavy chain, to which the peptide containing glutamine was linked, was prepared.
PCR을 수행하기 위해 하기와 같은 프라이머를 주문제작하여 사용하였다. 이때, 주형 DNA는 항-Her2 항체의 중쇄 부분을 발현하는 벡터를 사용하였다. T-KM1의 중쇄를 발현하는 벡터를 제조하기 위해 사용한 정방향 프라이머는 서열번호 7로, 역방향 프라이머는 서열번호 8로 표시하였으며(표 1), T-KM2의 중쇄를 발현하는 벡터를 제조하기 위해 사용한 정방향 프라이머는 서열번호 7로, 역방향 프라이머는 서열번호 9로 표시하였다(표 2). PCR을 통하여 증폭된 단편을 BsrGI 및 NotI으로 자른 후, BsrGI 및 NotI으로 자른 항-Her2 항체 중쇄 부분 발현벡터에 삽입하였다. To carry out the PCR, the following primers were used to order. At this time, the template DNA was used as a vector expressing the heavy chain portion of the anti-Her2 antibody. The forward primer used to prepare the vector expressing the heavy chain of T-KM1 is represented by SEQ ID NO: 7 and the reverse primer is represented by SEQ ID NO: 8 (Table 1), and used to prepare the vector expressing the heavy chain of T-KM2. The forward primer is represented by SEQ ID NO: 7 and the reverse primer is represented by SEQ ID NO: 9 (Table 2). After cutting the fragment amplified by PCR with BsrG I and Not I, wherein cutting the BsrG I and Not I and inserted in -Her2 antibody heavy chain expression vector portion.
표 1
T-KM1 중쇄 발현 벡터 제조를 위해 필요한 프라이머 이름 및 그 서열
이름 서열 서열번호
BsrGI-201A for CCC AGG TGT ACA CCC TGC CC 서열번호 7
No K TG1 rev CGA GCG GCC GCT CAG CCC TGC AGC AGG GAG CCG CCG CCG CCG GGG GAC AGG GAC AG 서열번호 8
Table 1
Primer Names and Sequences for the Preparation of T-KM1 Heavy Chain Expression Vectors
name order SEQ ID NO:
BsrGI-201A for CCC AGG TGT ACA CCC TGC CC SEQ ID NO: 7
No K TG1 rev CGA GCG GCC GCT CAG CCC TGC AGC AGG GAG CCG CCG CCG CCG GGG GAC AGG GAC AG SEQ ID NO: 8
표 2
T-KM2 중쇄 발현 벡터 제조를 위해 필요한 프라이머 이름 및 그 서열
이름 서열 서열번호
BsrGI-201A for CCC AGG TGT ACA CCC TGC CC 서열번호 7
No K LLQG rev CGA GCG GCC GCT CAG CCC TGC AGC AGG CCG GGG GAC AGG GAC AG 서열번호 9
TABLE 2
Primer Names and Sequences for the Preparation of T-KM2 Heavy Chain Expression Vectors
name order SEQ ID NO:
BsrGI-201A for CCC AGG TGT ACA CCC TGC CC SEQ ID NO: 7
No K LLQG rev CGA GCG GCC GCT CAG CCC TGC AGC AGG CCG GGG GAC AGG GAC AG SEQ ID NO: 9
T-KM3의 중쇄를 발현하는 벡터 제조를 위하여, 하기 표 3에 표시한 프라이머를 사용하여 PCR을 수행하였다. 이때, 주형 DNA로는 항-Her2 항체의 중쇄 부분을 발현하는 벡터를 사용하였다. 정방향 프라이머는 서열번호 7로, 역방향 프라이머는 서열번호 10으로 표시하였다. PCR을 통하여 증폭된 단편을 BsrGI, NotI으로 자른후, 이를 BsrGI 및 NotI으로 자른 항-Her2 중쇄 부분을 발현하는 벡터에 삽입하였다. 상기와 같은 방법으로 제조된 벡터를 TG3로 명명하였다. To prepare a vector expressing the heavy chain of T-KM3, PCR was performed using the primers shown in Table 3 below. At this time, a vector expressing the heavy chain portion of the anti-Her2 antibody was used as the template DNA. The forward primer is represented by SEQ ID NO: 7 and the reverse primer is represented by SEQ ID NO: 10. The fragments amplified by PCR were cut into BsrG I, Not I and then inserted into a vector expressing an anti-Her2 heavy chain portion cut into BsrG I and Not I. The vector prepared by the above method was named TG3.
TG3 벡터를 주형 DNA로 하여 다시 PCR을 수행하였다. 사용한 정방향 프라이머는 서열번호 7로, 역방향 프라이머는 서열번호 11으로 표시하였다. TG3 벡터를 BsrGI 및 BamHI으로 다시 자른 후, TG3 벡터를 주형으로 하여 얻은 PCR 생산물을 BsrGI, BamHI으로 잘라 삽입하였다. 이렇게 하여 T-KM3의 중쇄를 발현할 수 있는 벡터를 제작하였다. PCR was performed again using the TG3 vector as template DNA. The forward primer used is shown in SEQ ID NO: 7, and the reverse primer is shown in SEQ ID NO: 11. The TG3 vector was cut back into BsrG I and BamH I, and then the PCR product obtained from the TG3 vector as a template was cut into BsrG I and BamH I and inserted. Thus, a vector capable of expressing the heavy chain of T-KM3 was prepared.
표 3
T-KM3 중쇄 발현 벡터 제조를 위해 필요한 프라이머 이름 및 그 서열
이름 서열 서열번호
BsrGI-201A for CCC AGG TGT ACA CCC TGC CC 서열번호 7
TG-QSHA_rev TTT GCG GCC GCT CAG GCG TGG GAC TGG GCC AGG GAT CCG CCG CCG CCC TTG CCG GGG GAC AGG GA 서열번호 10
No K BamHI rev TTT GGA TCC GCC GCC GCC GCC GGG GGA CAG GGA CAG 서열번호 11
TABLE 3
Primer Names and Sequences for the Preparation of T-KM3 Heavy Chain Expression Vectors
name order SEQ ID NO:
BsrGI-201A for CCC AGG TGT ACA CCC TGC CC SEQ ID NO: 7
TG-QSHA_rev TTT GCG GCC GCT CAG GCG TGG GAC TGG GCC AGG GAT CCG CCG CCG CCC TTG CCG GGG GAC AGG GA SEQ ID NO: 10
No K BamHI rev TTT GGA TCC GCC GCC GCC GCC GGG GGA CAG GGA CAG SEQ ID NO: 11
또한, T-KM4 및 T-KM10의 중쇄를 발현하는 벡터를 제조하기 위하여, 주형 DNA로 항-Her2 항체의 중쇄 부분을 발현하는 벡터를 사용하여 PCR을 수행하였다. In addition, to prepare vectors expressing the heavy chains of T-KM4 and T-KM10, PCR was performed using a vector expressing the heavy chain portion of the anti-Her2 antibody as template DNA.
T-KM4의 중쇄를 발현하는 벡터를 제조하기 위해 사용한 정방향 프라이머는 서열번호 7로, 역방향 프라이머는 서열번호 12로 표시하였으며(표 4), T-KM10의 중쇄를 발현하는 벡터를 제조하기 위해 사용한 정방향 프라이머는 서열번호 7로, 역방향 프라이머는 서열번호 13으로 표시하였다(표 5). PCR을 통하여 증폭된 단편을 BsrGI 및 NotI으로 자른 후, BsrGI 및 NotI으로 자른 항-Her2 항체 중쇄 부분 발현벡터에 삽입하였다. The forward primer used to prepare the vector expressing the heavy chain of T-KM4 is represented by SEQ ID NO: 7 and the reverse primer is represented by SEQ ID NO: 12 (Table 4), and used to prepare the vector expressing the heavy chain of T-KM10. The forward primer is represented by SEQ ID NO: 7 and the reverse primer is represented by SEQ ID NO: 13 (Table 5). After cutting the fragment amplified by PCR with BsrG I and Not I, wherein cutting the BsrG I and Not I and inserted in -Her2 antibody heavy chain expression vector portion.
표 4
T-KM4 중쇄 발현 벡터 제조를 위해 필요한 프라이머 이름 및 그 서열
이름 서열 서열번호
BsrGI-201A for CCC AGG TGT ACA CCC TGC CC 서열번호 7
T-KM4 rev TCG AGC GGC CGC TCA GAT GCC GTT GTT GAT CTG GAA CAG GCC GTA CTC GGT GGA GTC GTT GTT GCC GGG GGA CAG GGA CAG 서열번호 12
Table 4
Primer Names and Sequences for the Preparation of T-KM4 Heavy Chain Expression Vectors
name order SEQ ID NO:
BsrGI-201A for CCC AGG TGT ACA CCC TGC CC SEQ ID NO: 7
T-KM4 rev TCG AGC GGC CGC TCA GAT GCC GTT GTT GAT CTG GAA CAG GCC GTA CTC GGT GGA GTC GTT GTT GCC GGG GGA CAG GGA CAG SEQ ID NO: 12
표 5
T-KM10 중쇄 발현 벡터 제조를 위해 필요한 프라이머 이름 및 그 서열
이름 서열 서열번호
BsrGI-201A for CCC AGG TGT ACA CCC TGC CC 서열번호 7
T-KM10 rev AAA GCG GCC GCT CAG GCG TGG GAG GCC AGG GAT CCG CCG CCC TGG CCG CCG GGG GAC AGG GAC AG 서열번호 13
Table 5
Primer Names and Sequences for the Preparation of T-KM10 Heavy Chain Expression Vectors
name order SEQ ID NO:
BsrGI-201A for CCC AGG TGT ACA CCC TGC CC SEQ ID NO: 7
T-KM10 rev AAA GCG GCC GCT CAG GCG TGG GAG GCC AGG GAT CCG CCG CCC TGG CCG CCG GGG GAC AGG GAC AG SEQ ID NO: 13
항-Her2 항체의 경쇄를 발현하는 벡터는 변형 없이 그대로, 3종의 항체 생산 모두에 공통으로 사용하였다. Vectors expressing the light chain of the anti-Her2 antibody were used as is, without modification, in common for all three antibody productions.
실시예 2: 글루타민(glutamine)을 포함하는 변이된 항-Her2 항체 및 항-Her2 천연형 항체의 제조Example 2: Preparation of Mutated Anti-Her2 Antibodies and Anti-Her2 Native Antibodies Containing Glutamine
T-KM1, T-KM2, T-KM3, T-KM4 및 T-KM10 항체 각각의 중쇄를 발현하는 벡터 및 경쇄를 발현하는 벡터를 CHO-S 세포에 PEI(Polyethylenimine)를 이용하여 형질도입(transfection)하였다. 이에 대한 대조군으로 글루타민을 포함하지 않은 항-Her2 천연형 항체를 사용하여, 상기 천연형 항체의 중쇄를 발현하는 벡터 및 경쇄를 발현하는 벡터를 CHO-S 세포에 PEI를 이용하여 형질도입하였다. 형질도입 후, 4일간 배양한 다음, 발현된 T-KM1, T-KM2, T-KM3, T-KM4, T-KM10 및 항-Her2 천연형 항체를 재조합 프로틴-A 세파로즈 컬럼(Hitrap MabSelect Sure, 5 mL, GE healthcare)으로 정제하여 제조하였다. Vectors expressing the heavy chain and the vector expressing the light chain of each of the T-KM1, T-KM2, T-KM3, T-KM4 and T-KM10 antibodies were transduced into CHO-S cells using PEI (Polyethylenimine) ) As a control for this, anti-Her2 native antibody containing no glutamine was used, and the vector expressing the heavy chain of the native antibody and the vector expressing the light chain were transduced into CHO-S cells using PEI. After transduction, the cells were cultured for 4 days, and then expressed recombinant T-KM1, T-KM2, T-KM3, T-KM4, T-KM10, and anti-Her2 native antibodies were recombinant protein-A Sepharose column (Hitrap MabSelect Sure). , 5 mL, GE healthcare).
실시예 3: 트랜스글루타미나아제(Transglutaminase) 반응을 이용한 변이된 항-Her2 항체-PEG 결합체의 제조Example 3: Preparation of Mutated Anti-Her2 Antibody-PEG Conjugates Using Transglutaminase Reaction
상기 실시예에서 제작한 본 발명의 글루타민(glutamine)을 포함하는 변이된 항체들이 실제로 트랜스글루타미나아제 반응 기작을 통하여 기질과 결합할 수 있는지를 확인하기 위하여, 우선 기질로서 자유 아민기(free amine group)를 가지는 mPEGamine(mexoxy PEG-NH2)을 사용하여 트랜스글루타미나아제 반응을 진행하였다. 트랜스글루타미나아제 반응 기작을 통해 mPEGamine의 아민기가 글루타민 잔기에 결합할 수 있음은 알려져 있으므로(Anna Mero et al. Journal of Controlled Release. 2011. 154 27-34, Carlo Maullu et al. FEBS Journal. 2009. 276. 6741-6750), 기질로서 mPEGamine을 사용하였다.In order to check whether the mutated antibodies comprising the glutamine of the present invention prepared in the above examples can actually bind to the substrate through the transglutaminase reaction mechanism, first, a free amine group as the substrate. Transglutaminase reaction was performed using mPEGamine (mexoxy PEG-NH 2 ) having a group). It is known that the amine groups of mPEGamine can bind to glutamine residues through the transglutaminase reaction mechanism (Anna Mero et al. Journal of Controlled Release . 2011. 154 27-34, Carlo Maullu et al. FEBS Journal .2009). 276. 6741-6750), mPEGamine was used as the substrate.
글루타민을 포함하지 않은 항-Her2 천연형 항체, T-KM1, T-KM2 또는 T-KM3 항체를 1mg/mL, 기질 mPEGamine(Laysan Bio, 미국) 400μM, 미생물 트랜스글루타미나아제(zedira, 독일) 1U/mL이 되도록 PBS(phosphate buffered saline, pH8.0)에 혼합하였다. 이 혼합물을 37℃에서 3시간 동안 배양하였다. 이렇게 배양한 물질을 환원 조건으로 4 내지 12 퍼센트 Nu-PAGE(인비트로젠, 미국) 젤에 로딩하였다. 상기 젤은 코마시 블루 염색법(coomassie blue staining)으로 염색한 다음, 결과를 확인하였다. 또한, T-KM4 또는 T-KM10 항체를 이용하여 상기와 같은 실험을 동일하게 수행하였다.1 mg / mL anti-Her2 native antibody, T-KM1, T-KM2 or T-KM3 antibody without glutamine, substrate mPEGamine (Laysan Bio, USA) 400 μM, microbial transglutaminase (zedira, Germany) It was mixed in PBS (phosphate buffered saline, pH 8.0) to 1U / mL. This mixture was incubated at 37 ° C. for 3 hours. The material so cultured was loaded on 4-12 percent Nu-PAGE (Invitrogen, USA) gel under reducing conditions. The gel was stained with Coomassie blue staining, and then the results were confirmed. In addition, the same experiment as above was performed using T-KM4 or T-KM10 antibody.
환원 조건으로 젤에 항체를 로딩한 경우, 항체의 경쇄와 중쇄가 각 50KDa 과 25KDa 근처에서 분리되어 나타나게 되며, mPEGamine(1K)가 항체의 중쇄 또는 경쇄에 결합하게 되면 중쇄 및 경쇄의 본래의 젤 상의 밴드 위치에서 밴드가 위로 올라가게 되므로, 상기와 같은 현상을 확인함으로써 본 발명의 변이된 항체의 트랜스글루타미나아제와의 반응성을 확인할 수 있다.When the antibody is loaded in the gel under reducing conditions, the light and heavy chains of the antibody appear separated around 50KDa and 25KDa, respectively. When mPEGamine (1K) binds to the heavy or light chain of the antibody, Since the band is raised in the band position, by checking the above phenomenon it can be confirmed the reactivity of the mutated antibody of the present invention with transglutaminase.
그 결과, 먼저 글루타민을 포함하지 않은 항-Her2 천연형 항체의 경우, 항-Her2 천연형 항체, mPEGamine 및 트랜스글루타미나아제를 모두 넣어준 경우에도 중쇄 및 경쇄의 밴드의 위치가 변하지 않았으므로, 항-Her2 천연형 항체의 경우, PEG와 결합하지 않았음을 나타내었다(도 2 (A)의 3번 레인).As a result, in the case of anti-Her2 native antibody without glutamine, even when all of the anti-Her2 native antibody, mPEGamine and transglutaminase were added, the positions of the bands of the heavy and light chains did not change. In the case of anti-Her2 native antibody, it did not bind to PEG (lane 3 in FIG. 2 (A)).
천연형 항체에 글루타민을 포함하는 펩타이드를 연결한 변이된 항체 T-KM1, T-KM2, T-KM3, T-KM4 및 T-KM10의 경우, 항체 중쇄의 말단에 글루타민을 포함하고 있으므로, mPEGamine과 트랜스글루타미나아제를 모두 넣어 반응을 진행시켰을 때 항체 중쇄의 밴드의 위치가 올라간 결과를 보여주었다(도 2 (B), (C) 및 (D)의 6, 9, 12, 15 및 18번 레인). 이는 PEG가 항체의 중쇄에 결합하여 분자량이 증가했음을 나타내는 것이다.In the case of the mutated antibodies T-KM1, T-KM2, T-KM3, T-KM4, and T-KM10, in which a peptide containing glutamine is linked to a natural antibody, glutamine is contained at the terminal of the antibody heavy chain, When the reaction proceeded with all the transglutaminase, the band position of the antibody heavy chain was shown to be increased (Nos. 6, 9, 12, 15 and 18 of FIGS. 2 (B), (C) and (D)). lane). This indicates that PEG has increased molecular weight by binding to the heavy chain of the antibody.
또한, 경쇄의 경우 밴드 위치에 변화를 나타내지 않아, 글루타민을 인위적으로 도입한 중쇄의 경우에만 mPEGamine과 결합을 특이적으로 형성함을 나타내었다(도 2 (B), (C) 및 (D)). In addition, the light chain did not show a change in the band position, indicating that only the heavy chain artificially introduced with glutamine specifically forms a bond with mPEGamine (FIGS. 2 (B), (C) and (D)). .
이러한 결과는 트랜스글루타미나아제를 이용하여, 인위적으로 도입된 글루타민을 가지는 항체와 라이신의 입실론 아민기와 유사한 아민기를 포함하는 기질인 mPEG Amine을 서로 효과적으로 결합시킬 수 있음을 보여주는 것이다.  These results show that, using transglutaminase, an antibody having artificially introduced glutamine and mPEG Amine, a substrate containing an amine group similar to the epsilon amine group of lysine, can be effectively bound to each other.
실시예 4: 세포 독성 약물의 합성Example 4: Synthesis of Cytotoxic Drugs
트랜스글루타미나아제 반응을 이용하여 항체-세포 독성 약물 결합체를 제조하기 위하여, 우선 라이신 또는 라이신 유도체를 포함하는 세포 독성 약물을 합성하였다. To prepare antibody-cytotoxic drug conjugates using the transglutaminase reaction, first a cytotoxic drug comprising lysine or a lysine derivative was synthesized.
이에 대표적인 세포 독성 약물로서, mcMMAF(maleimidocaproyl-monomethyl auristatin F)을 사용하여, mcMMAF에 라이신을 포함하도록 하기 위하여 KGEGRGSGC(서열번호 6)과 연결시켰으며, 구체적으로 mcMMAF의 말레이미드 기(Maleimide group)와 시스테인(cysteine) 간의 결합을 이용하여 mcMMAF 및 서열번호 6의 펩타이드를 서로 연결시켜, 자유 아민기를 포함하는 약물을 합성하였다. As a representative cytotoxic drug, mcMMAF (maleimidocaproyl-monomethyl auristatin F) was used to connect lysine to KGEGRGSGC (SEQ ID NO: 6) to include lysine in mcMMAF, specifically, the maleimide group of mcMMAF (Maleimide group) and By using cysteine binding, the peptides of mcMMAF and SEQ ID NO: 6 were linked to each other to synthesize a drug including a free amine group.
실시예 5: 트랜스글루타미나아제 반응을 이용한 항체-세포독성약물의 결합체의 제조Example 5 Preparation of an Antibody-Cytotoxic Drug Conjugate Using a Transglutaminase Reaction
글루타민을 포함하는 변이된 항체인 T-KM1, 2 또는 3; 미생물 트랜스글루타미나아제(zedira, 독일); 및 실시예 4에서 제조한 세포 독성 약물을 혼합하였다. 이 혼합물을 37℃에서 6시간 배양하였고, 이 혼합물을 HPLC(high performance liquid chromatography)로 항체에 약물이 결합한 정도를 확인하였으며, 구체적으로 Butyl NRP(4.6*35, TSKgel) 컬럼으로 분석하였고, 그 결과를 도 3에 나타내었다.T-KM1, 2 or 3, which is a mutated antibody comprising glutamine; Microbial transglutaminase (zedira, Germany); And the cytotoxic drugs prepared in Example 4. The mixture was incubated at 37 ° C. for 6 hours, and the mixture was analyzed by HPLC (high performance liquid chromatography) to confirm the degree of drug binding to the antibody, and specifically analyzed using a Butyl NRP (4.6 * 35, TSKgel) column. Is shown in FIG. 3.
도 3 A는 항체 단독을 HPLC로 분석한 것으로서, 본 발명에서 제조된 항체-약물 결합체 분석시 약물이 결합하지 않은 형태를 구분하기 위한 대조군의 실험 결과를 나타내는 것이며, 도 3 B는 상기 변이된 항체와 약물을 트랜스글루타미나아제 존재하에 반응시킨 항체 혼합물을 분석한 결과를 나타낸 것이다.Figure 3A is an analysis of the antibody alone by HPLC, shows the experimental results of the control group to distinguish the form that the drug is not bound in the antibody-drug conjugate analysis prepared in the present invention, Figure 3B is the mutated antibody The results of analyzing the antibody mixture in which the drug was reacted in the presence of transglutaminase are shown.
따라서, 도 3에 나타난 바와 같이, 본 발명의 변이된 항체와 약물은 트랜스글루타미나아제 존재하에 항체-약물 결합체를 형성한 결과를 나타내었다. 또한, 항체에 약물이 하나 결합한 형태(Ab-MMAF(1)으로 표기)와 두 개 결합한 형태(Ab-MMAF(2)로 표기)를 나타내어, 이 분석 방법을 통하여 항체-약물 결합체의 약물 결합 개수를 측정할 수 있음을 시사하였다.Thus, as shown in Figure 3, the mutated antibody and drug of the present invention showed the result of forming an antibody-drug conjugate in the presence of transglutaminase. In addition, it shows a form in which a drug is bound to an antibody (denoted as Ab-MMAF (1)) and a form in which two drugs are bound (denoted as Ab-MMAF (2)). It was suggested that can be measured.
실시예 6: 항체-세포독성약물 결합체의 항-증식(anti-proliferation) 분석법Example 6: Anti-proliferation assay of antibody-cytotoxic drug conjugates
제조한 항체-세포독성약물 결합체의 인 비트로(in vitro) 효능을 확인하기 위하여, BT474, MCF7 및 JIMT-1 세포주를 이용하여 항-증식 어세이(anti-proliferation assay)를 하기와 같이 수행하였다.In order to confirm the in vitro efficacy of the prepared antibody-cytotoxic drug conjugate, an anti-proliferation assay was performed using BT474, MCF7 and JIMT-1 cell lines as follows.
구체적으로, 각 세포를 배양하여 BT474 세포는 1x105세포/㎖, MCF7 및 JIMT-1 세포는 2x104세포/㎖로 현탁하여 96 웰 플레이트의 각 웰에 100㎕씩 로딩하였다. 그 다음, 세포 배양기에서 3시간 배양 후, 웰당 다양한 농도 구간의 항체 또는 항체-약물 결합체를 각각 100㎕씩 넣고 세포 배양기에서 5일간 배양하였다. 이때 사용한 항체는 항-Her2 항체였고, 항체-약물 결합체는 상기 실시예에 개시한 방법으로 트랜스글루타미나아제를 이용하여 결합시킨, T-KM1, T-KM2 또는 T-KM3에 약물 (MMAF)를 결합시킨 형태였다. 알라마 블루(인비트로젠, 미국)를 각 웰에 25㎕씩 처리한 다음, 호일에 싸서 세포 배양기에 6시간 처리하였고, 스펙트라맥스 제미닉스를 이용하여 530nm에서 형광강도를 측정하였다. 이렇게 측정한 형광 값은 세포 생장 정도를 나타내는 것으로, 이 형광 값을 바탕으로 하여 살아있는 세포의 퍼센트를 도 4에 나타내었다.Specifically, each cell was cultured to suspend BT474 cells at 1 × 10 5 cells / ml, MCF7 and JIMT-1 cells at 2 × 10 4 cells / ml, and 100 μl were loaded into each well of a 96 well plate. Then, after 3 hours of incubation in a cell incubator, 100 μl of antibodies or antibody-drug conjugates of various concentration sections were added per well and incubated for 5 days in the cell incubator. The antibody used at this time was an anti-Her2 antibody, and the antibody-drug conjugate was drug (MMAF) to T-KM1, T-KM2 or T-KM3, which was bound using transglutaminase by the method described in the above example. It was a combined form. Alamar Blue (Invitrogen, USA) was treated with 25 μl in each well, and then wrapped in foil and treated for 6 hours in a cell incubator, and fluorescence intensity was measured at 530 nm using Spectramax Geminix. The fluorescence value thus measured indicates the extent of cell growth. The percentage of living cells based on the fluorescence value is shown in FIG. 4.
그 결과, 도 4에 나타난 바와 같이, Her2가 고발현되어 있는 BT474 세포주에서 항-Her2 항체(Trastuzumab)를 1㎍/㎖로 처리하였을 때 65% 이상의 세포가 생장하고 있는 결과를 나타낸 것에 반하여, 본 발명의 항체-약물 결합체인 T-KM1-MMAF, T-KM2-MMAF, T-KM3-MMAF를 처리한 경우에는 세포의 생장이 현저하게 저하되어 약 20%의 생장율을 나타내었다(도 4 (A)). 또한, Her2가 고발현되지만 허셉틴 저항성을 가진 세포주로 알려진 JIMT-1 세포주에 항-HER2 항체 또는 본 발명의 항-HER2 항체-약물 결합체를 처리하여 세포 생장율을 확인하였고, 그 결과 항-Her2 항체를 처리하였을 때 세포의 증식 억제 없이 세포가 정상적으로 생장하고 있지만, 본 발명의 대표적인 항체-약물 결합체인 T-KM1-MMAF, T-KM2-MMAF 및 T-KM3-MMAF의 세 가지 결합체를 각각 처리한 경우 3 가지 모두 65 내지 70%의 세포 생장율을 나타내었다(도 4(B)). 음성 대조군으로 사용한 Her2 발현이 낮은 MCF-7 세포주에서는 항 Her2 항체뿐 아니라 본 발명의 대표적인 결합체인 T-KM1-MMAF, T-KM2-MMAF, T-KM3-MMAF를 처리한 경우 모두 세포 생장에 억제 효과가 없는 결과를 나타내었다(도 4 (C)). As a result, as shown in FIG. 4, when the anti-Her2 antibody (Trastuzumab) was treated at 1 μg / ml in the BT474 cell line in which Her2 was highly expressed, 65% or more of the cells were grown. Treatment with T-KM1-MMAF, T-KM2-MMAF, and T-KM3-MMAF, the antibody-drug conjugates of the invention, resulted in a marked decrease in cell growth (Figure 4 (A )). In addition, JIMT-1 cell line known as Herceptin resistant cell line expressing Her2 was treated with anti-HER2 antibody or anti-HER2 antibody-drug conjugate of the present invention to confirm cell growth rate. As a result, anti-Her2 antibody was identified. When the cells grow normally without inhibiting the proliferation of the cells, the three antibody conjugates of T-KM1-MMAF, T-KM2-MMAF, and T-KM3-MMAF, which are representative antibody-drug conjugates of the present invention, are respectively treated. All three showed cell growth rates of 65-70% (FIG. 4B). MCF-7 cell line with low Her2 expression used as a negative control was inhibited in cell growth when treated with anti-Her2 antibody as well as T-KM1-MMAF, T-KM2-MMAF, and T-KM3-MMAF, which are representative conjugates of the present invention. Ineffective results were shown (FIG. 4C).
즉, 상기 결과는 본 발명의 대표적인 결합체인 T-KM1-MMAF, T-KM2-MMAF, T-KM3-MMAF가 항원에 특이적으로 결합하여 세포 독성을 일으키는 것을 나타내는 것으로, 이는 본 발명의 트랜스글루타미나아제를 이용하여 제조한 항체-약물 결합체(T-KM1-MMAF, T-KM2-MMAF, T-KM3-MMAF)가 항원에 특이적으로 결합함으로써 그 효능을 나타내고 있음을 시사하는 것이다.That is, the results indicate that the representative conjugates of the present invention T-KM1-MMAF, T-KM2-MMAF, T-KM3-MMAF specifically binds to the antigen and causes cytotoxicity, which is the transglue of the present invention. It is suggested that the antibody-drug conjugates (T-KM1-MMAF, T-KM2-MMAF, T-KM3-MMAF) prepared by using minaminase exhibit their efficacy by specifically binding to the antigen.
실시예 7 : 항체-약물 결합체를 이용한 동물 효력 시험Example 7: Animal efficacy test using antibody-drug conjugate
트랜스글루타미나아제를 이용하여 제조한 본 발명의 항체-약물 결합체의 in vivo 효능을 확인하기 위하여 JIMT-1 세포주를 이식한 이식 이종마우스 시험을 하기와 같이 수행하였다.In order to confirm the in vivo efficacy of the antibody-drug conjugate of the present invention prepared using transglutaminase, a transplanted heterologous mouse test in which a JIMT-1 cell line was transplanted was performed as follows.
먼저, 이를 위하여 실시예 5에 개시한 방법으로 항체-약물 결합체를 제조하였다. 구체적으로, 글루타민을 포함하는 변이된 항체, 미생물 트랜스글루타미나아제(zedira, 독일) 및 세포 독성 약물을 혼합하였고, 이를 재조합 프로틴-A 세파로즈 컬럼(Hitrap MabSelect Sure, 5 mL, GE healthcare)으로 정제하여 항체-약물 결합체 및 소량의 항체를 수득하였다.First, for this purpose, an antibody-drug conjugate was prepared by the method described in Example 5. Specifically, mutated antibodies comprising glutamine, microbial transglutaminase (zedira, Germany), and cytotoxic drugs were mixed, and these were recombinant recombinant protein-A Sepharose columns (Hitrap MabSelect Sure, 5 mL, GE healthcare). Purification yielded antibody-drug conjugates and small amounts of antibody.
Balb/C nu/nu 마우스에 한 마리당 JIMT-1 세포주 1X107개의 세포를 복강 투여하였고, 종양크기가 200mm2 이상인 시점에 비히클(Vehicle), 항-Her2 항체 (Trastuzumab, 5mg/kg) 또는 본 발명의 항체-약물 결합체인 T-KM1-MMAF(5mg/kg), T-KM3-MMAF(5mg/kg)를 주 2회 정맥 투여하였다. 그 다음, 주 2회씩 종양 크기를 측정하였고, 그 결과를 도 5에 나타내었다.Balb / C nu / nu mice were intraperitoneally administered 7 cells of JIMT-1 cell line 1 × 10 per mouse, and vehicle, anti-Her2 antibody (Trastuzumab, 5mg / kg) or the present invention at the time of tumor size 200mm 2 or more T-KM1-MMAF (5 mg / kg) and T-KM3-MMAF (5 mg / kg), which are antibody-drug conjugates, were administered intravenously twice a week. Then, tumor size was measured twice a week, the results are shown in FIG.
그 결과, 도 5에 나타난 바와 같이, 비히클(vehicle) 및 항-Her2 항체를 처리한 경우에는 허셉틴 저항성을 가진 JIMT-1 세포가 이식되어 생긴 종양이 계속적으로 생장하는 결과를 나타낸 반면, 본 발명의 결합체인 T-KM3-MMAF를 처리한 군은 처리시점과 비교하여 현저하게 종양의 크기가 줄어든 결과를 나타내었다. T-KM1-MMAF를 처리한 군 또한 종양의 생장이 억제된 결과를 나타내었다.As a result, as shown in Figure 5, when treated with a vehicle (vehicle) and anti-Her2 antibody, while tumors resulting from the implantation of Herceptin-resistant JIMT-1 cells showed a continuous growth, The group treated with the conjugate T-KM3-MMAF showed a markedly reduced tumor size compared to the time of treatment. The group treated with T-KM1-MMAF also showed suppressed tumor growth.
상기와 같은 결과는 단순한 항체 그 자체보다, 약물이 결합된 형태인 본 발명의 트랜스글루타미나아제를 이용한 제조 방법으로 제조된 항체-약물 결합체가 우수한 인 비보 효능을 지님을 시사하는 결과이다.The above results suggest that the antibody-drug conjugate produced by the production method using the transglutaminase of the present invention in a drug-bound form than the simple antibody itself has excellent in vivo efficacy.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, the embodiments described above are to be understood in all respects as illustrative and not restrictive. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the following claims and equivalent concepts rather than the detailed description are included in the scope of the present invention.

Claims (26)

  1. 글루타민(glutamine)을 포함하는 변이된 항체와 자유 아민기(free amine group)를 포함하는 약물을 트랜스글루타미나아제(transglutaminase)의 존재하에 반응시키는 단계를 포함하는, 항체-약물 결합체의 제조 방법.A method for producing an antibody-drug conjugate, comprising reacting a mutated antibody comprising glutamine and a drug comprising a free amine group in the presence of transglutaminase.
  2. 제1항에 있어서, 상기 항체는 IgG, Fv, Fab, Fab' 및 F(ab')2으로 이루어진 군으로부터 선택되는 형태인 것인 방법.The method of claim 1, wherein the antibody is in a form selected from the group consisting of IgG, Fv, Fab, Fab 'and F (ab') 2 .
  3. 제1항에 있어서, 상기 항체는 중쇄 또는 경쇄의 C 말단의 라이신(lysine) 아미노산이 제거된 것인 방법. The method of claim 1, wherein the antibody is free of lysine amino acids at the C terminus of the heavy or light chain.
  4. 제1항에 있어서, 상기 글루타민(glutamine)을 포함하는 변이된 항체는 항체에 글루타민(glutamine)이 치환(substitution) 또는 삽입(addition)되거나, 항체와 글루타민(glutamine)을 포함하는 펩타이드가 연결된 형태인 것인 방법.According to claim 1, wherein the mutated antibody containing glutamine (glutamine) is in the form of the substitution (substitution) or addition (glustitution) of the glutamine (glutamine) to the antibody, or the antibody and glutamine (glutamine) linked peptide form How.
  5. 제4항에 있어서, 상기 글루타민(glutamine)을 포함하는 펩타이드는 고정된 3차 구조가 아닌 유동적인 부분에 글루타민(glutamine)이 위치한 것을 특징으로 하는 것인 방법.The method of claim 4, wherein the glutamine-containing peptide is characterized in that glutamine is located in a fluid part rather than a fixed tertiary structure.
  6. 제4항에 있어서, 상기 글루타민(glutamine)을 포함하는 펩타이드는 서열번호 1, 서열번호 2, 서열번호 3, 서열번호 4 또는 서열번호 5로 표시되는 아미노산 서열을 포함하는 것인 방법.The method of claim 4, wherein the glutamine-containing peptide comprises an amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5.
  7. 제4항에 있어서, 상기 글루타민(glutamine)을 포함하는 펩타이드는 항체의 중쇄 또는 경쇄의 C 또는 N 말단에 연결된 것인 방법.The method of claim 4, wherein the glutamine-containing peptide is linked to the C or N terminus of the heavy or light chain of the antibody.
  8. 제1항에 있어서, 상기 자유 아민기(free amine group)를 포함하는 약물은 세포독성 약물(cytotoxic drug), 독소(toxin) 및 안정화제로 이루어진 군으로부터 선택되는 것인 방법.The method of claim 1, wherein the drug comprising the free amine group is selected from the group consisting of cytotoxic drugs, toxins, and stabilizers.
  9. 제8항에 있어서, 상기 세포독성 약물(cytotoxic drug)은 마이크로튜불린(microtubulin) 구조 형성 억제제, 유사분열(meiosis) 억제제, 토포아이소머라아제(topoisomerase) 억제제 및 DNA 인터컬레이터(DNA intercalators)로 이루어진 군으로부터 선택되는 것인 방법.The method of claim 8, wherein the cytotoxic drug is a microtubulin structure formation inhibitor, a meiosis inhibitor, a topoisomerase inhibitor, and a DNA intercalators. And selected from the group consisting of:
  10. 제8항에 있어서, 상기 세포독성 약물(cytotoxic drug)은 메이탄시노이드(maytansinoid), 오리스타틴(auristatin), 돌라스타틴(dolastatin), 칼리케아미신(calicheamicin), 피롤로벤조디아제피네스(pyrrolobenzodiazepines), 독소루비신 (doxorubicin), 듀오카마이신(duocamycin), 카보플라틴(파라플라틴)[Carboplatin(paraplatin)], 시스플라틴(cisplatin), 시클로포스파미드(cyclophosphamide), 이포스파미드(ifosfamide), 니드란(nidran), 질소머스타드(메클로에타민 염산염)[nitrogen mustar(mechlorethamine HCL)], 블레오마이신(bleomycin), 미토마이신 C(mitomycin C), 시타라빈(cytarabine), 플루로우라실(flurouracil), 젬시타빈(gemcitabine), 트리메트렉세이트(trimetrexate), 메토크렉세이트(methotrexate), 에토포시드(etoposide), 빈블라스틴(vinblastine), 비노렐빈(vinorelbine), 알림타(alimta), 알트레타민(altretamine), 프로카바진(procarbazine), 탁솔(taxol), 탁소텔(taxotere), 토포테칸(topotecan) 및 이리노테칸(irinotecan)으로 이루어진 군으로부터 선택되는 것인 방법.According to claim 8, wherein the cytotoxic drug (maytosinoid) (maytansinoid), orstatin (auristatin), dolastatin (dolastatin), calicheamicin (calicheamicin), pyrrolobenzodiazepines (pyrrolobenzodiazepines) ), Doxorubicin, duocamycin, carboplatin (paraplatin), cisplatin, cyclophosphamide, ifosfamide, need Nidran, nitrogen mustard (mecloethamine hydrochloride) [nitrogen mustar (mechlorethamine HCL)], bleomycin, mitomycin C, cytarabine, flurouracil, gemcis Gemcitabine, trimetrexate, methotrexate, etoposide, vinblastine, vinorelbine, alimta, altretamine ( altretamine, procarbazine, taxol, tax Tel (taxotere), topotecan method is selected from the group consisting of (topotecan), and irinotecan (irinotecan).
  11. 제8항에 있어서, 상기 독소(toxin)는 균체외 독소 또는 식물독소인 방법.The method of claim 8, wherein the toxin is extracellular or plant toxin.
  12. 제8항에 있어서, 상기 안정화제는 폴리에틸렌글리콜(PEG) 또는 히알루론산인 것인 방법.The method of claim 8, wherein the stabilizer is polyethylene glycol (PEG) or hyaluronic acid.
  13. 제1항에 있어서, 상기 자유 아민기(free amine group)를 포함하는 약물은 입실론 아민기 또는 라이신을 포함하도록 제조된 것인 방법.The method of claim 1, wherein the drug comprising the free amine group is prepared to include an epsilon amine group or lysine.
  14. 제13항에 있어서, 상기 자유 아민기를 포함하는 약물은 약물의 말레이미드(maleimide)기와 시스테인(cysteine)을 포함하는 펩타이드 간의 티오에테르(thioether) 결합으로 제조된 것인 방법.The method of claim 13, wherein the drug comprising the free amine group is prepared by thioether linkage between the maleimide group of the drug and a peptide comprising cysteine.
  15. 제13항에 있어서, 상기 자유 아민기를 포함하는 약물은 서열번호 6의 아미노산 서열을 포함하는 펩타이드가 결합된 형태인 것인 방법.The method of claim 13, wherein the drug including the free amine group is in a form in which a peptide comprising the amino acid sequence of SEQ ID NO: 6 is bound.
  16. 글루타민(glutamine)을 포함하는 변이된 항체와 자유 아민기(free amine group)를 포함하는 약물이 이소펩타이드 결합(isopeptide bond)으로 연결된, 항체-약물 결합체.An antibody-drug conjugate, in which a mutated antibody comprising glutamine and a drug comprising a free amine group are connected by an isopeptide bond.
  17. 제16항에 있어서, 상기 글루타민(glutamine)을 포함하는 변이된 항체는 항체에 글루타민(glutamine)이 치환(substitution) 또는 삽입(addition)되거나, 항체와 글루타민(glutamine)을 포함하는 펩타이드가 연결된 형태인 것인 항체-약물 결합체.The method of claim 16, wherein the mutated antibody containing glutamine (glutamine) is in the form of the substitution (substitution) or addition (glustitution) of the glutamine (glutamine) to the antibody, or a form in which the antibody and glutamine (glutamine) linked peptides are linked Antibody-drug conjugate.
  18. 제17항에 있어서, 상기 글루타민(glutamine)을 포함하는 펩타이드는 고정된 3차 구조가 아닌 유동적인 부분에 글루타민(glutamine)이 위치한 것을 특징으로 하는 것인 항체-약물 결합체.18. The antibody-drug conjugate of claim 17, wherein the glutamine-containing peptide is located at a part of the fluid that is not a fixed tertiary structure.
  19. 제17항에 있어서, 상기 글루타민(glutamine)을 포함하는 펩타이드는 서열번호 1, 서열번호 2, 서열번호 3, 서열번호 4 또는 서열번호 5로 표시되는 아미노산 서열을 포함하는 것인 항체-약물 결합체.The antibody-drug conjugate of claim 17, wherein the peptide comprising glutamine comprises an amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5. 18.
  20. 제16항에 있어서, 상기 자유 아민기(free amine group)를 포함하는 약물은 세포독성 약물(cytotoxic drug), 독소(toxin) 및 안정화제로 이루어지는 군으로부터 선택되는 것인 항체-약물 결합체.The antibody-drug conjugate of claim 16, wherein the drug comprising the free amine group is selected from the group consisting of cytotoxic drugs, toxins, and stabilizers.
  21. 제16항 내지 제20항 중 어느 한 항의 항체-약물 결합체를 포함하는 암의 예방 또는 치료용 약학적 조성물. A pharmaceutical composition for preventing or treating cancer, comprising the antibody-drug conjugate of any one of claims 16 to 20.
  22. 글루타민(glutamine)을 포함하는 펩타이드 및 항체가 연결된, 변이된 항체. A mutated antibody to which a peptide comprising glutamine and an antibody are linked.
  23. 제22항에 있어서, 상기 글루타민(glutamine)을 포함하는 펩타이드는 서열번호 1, 서열번호 2, 서열번호 3, 서열번호 4 또는 서열번호 5로 표시되는 아미노산 서열을 포함하는 것인, 변이된 항체.The mutated antibody of claim 22, wherein the peptide comprising glutamine comprises an amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, or SEQ ID NO: 5. 24.
  24. 제22항에 있어서, 상기 항체는 IgG, Fv, Fab, Fab' 및 F(ab')2으로 이루어진 군으로부터 선택되는 형태인 것인, 변이된 항체.The mutated antibody of claim 22, wherein the antibody is in a form selected from the group consisting of IgG, Fv, Fab, Fab 'and F (ab') 2 .
  25. 제22항에 있어서, 상기 항체는 중쇄 또는 경쇄의 C 말단에 위치한 라이신(lysine)이 제거된 것인, 변이된 항체.The mutated antibody of claim 22, wherein the antibody is free of lysine located at the C terminus of the heavy or light chain.
  26. 제16항 내지 제20항 중 어느 한 항의 항체-약물 결합체를 암 의심 개체에 투여하는 단계를 포함하는, 암을 치료하는 방법.A method of treating cancer, comprising administering the antibody-drug conjugate of any one of claims 16 to 20 to a suspicious individual.
PCT/KR2013/004571 2012-05-24 2013-05-24 Antibody-drug conjugate prepared by using transglutaminase and use thereof WO2013176516A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120055644 2012-05-24
KR10-2012-0055644 2012-05-24
KR10-2012-0154955 2012-12-27
KR1020120154955A KR20130132236A (en) 2012-05-24 2012-12-27 Antibody-drug conjugate formed through transglutaminase and use thereof

Publications (1)

Publication Number Publication Date
WO2013176516A1 true WO2013176516A1 (en) 2013-11-28

Family

ID=49624123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004571 WO2013176516A1 (en) 2012-05-24 2013-05-24 Antibody-drug conjugate prepared by using transglutaminase and use thereof

Country Status (1)

Country Link
WO (1) WO2013176516A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941431B2 (en) 2016-06-10 2021-03-09 Eisai R&D Management Co., Ltd. Lysine conjugated immunoglobulins
US11135304B2 (en) 2015-12-18 2021-10-05 Eisai R&D Management Co., Ltd. C-terminal lysine conjugated immunoglobulins
US11786603B2 (en) 2016-02-26 2023-10-17 Regeneron Pharmaceuticals, Inc. Optimized transglutaminase site-specific antibody conjugation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHNEIDER ET AL.: "Monoclonal antibody production in semi-continuous serum- and protein-free culture: Effect of glutamine concentration and culture conditions on cell growth and antibody secretion", JOURNAL OF IMMUNOLOGICAL METH SDS, vol. 129, no. ISSUE, 25 May 1990 (1990-05-25), pages 251 - 268 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11135304B2 (en) 2015-12-18 2021-10-05 Eisai R&D Management Co., Ltd. C-terminal lysine conjugated immunoglobulins
US11786603B2 (en) 2016-02-26 2023-10-17 Regeneron Pharmaceuticals, Inc. Optimized transglutaminase site-specific antibody conjugation
US10941431B2 (en) 2016-06-10 2021-03-09 Eisai R&D Management Co., Ltd. Lysine conjugated immunoglobulins
US11753669B2 (en) 2016-06-10 2023-09-12 Eisai R&D Management Co., Ltd. Lysine conjugated immunoglobulins

Similar Documents

Publication Publication Date Title
KR102455175B1 (en) Amanithin Conjugate
CN104379168B (en) Drug conjugates, coupling method, and application thereof
US8741291B2 (en) Multifunctional antibody conjugates
CN109810198B (en) Site-specific GLP-2 conjugates utilizing immunoglobulin fragments
AU2019272250B2 (en) Anti-mesothelin antibody and antibody-drug conjugate thereof
AU2018271751B2 (en) Anti-human interleukin-2 antibodies and uses thereof
CN104244718A (en) Antibody-drug conjugates and related compounds, compositions, and methods
US20230102207A1 (en) Antibody-drug conjugates and their use in therapy
US20190201541A1 (en) Anti-cd22 antibody-maytansine conjugates, combinations, and methods of use thereof
CN106999606B (en) Antibody drug conjugates
US20210061916A1 (en) Anti-prlr antibody-drug conjugates (adc) and uses thereof
KR20160113623A (en) Antibody-drug conjugates and immunotoxins
US20230144142A1 (en) Anti-cd56 antibody-drug conjugates and their use in therapy
WO2013176516A1 (en) Antibody-drug conjugate prepared by using transglutaminase and use thereof
US11951173B2 (en) Tetravalent antibody-drug conjugates and use thereof
JP2023510349A (en) Site-directed antibody-drug conjugates with peptide-containing linkers
JP2020532523A (en) Anti-EGFR antibody drug conjugate (ADC) and its use
US20230277676A1 (en) Camptothecine antibody-drug conjugates and methods of use thereof
WO2018124851A1 (en) Pharmaceutical composition for preventing or treating cancer, containing antibody specifically binding to l1cam protein and pyrimidine analog and/or platin-based anticancer drug
KR20130132236A (en) Antibody-drug conjugate formed through transglutaminase and use thereof
WO2024063624A1 (en) Antibody-drug conjugate comprising drug and antibody specifically binding to grp94 or antigen-binding fragment thereof
KR20130138608A (en) Site-specific antibody-cytotoxin conjugate and use thereof
CA3230737A1 (en) Pharmaceutical composition for cancer treatment and/or prevention

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793344

Country of ref document: EP

Kind code of ref document: A1