WO2020050144A1 - Color conversion material, color conversion member, light source unit, display device, lighting device, color conversion substrate and ink - Google Patents

Color conversion material, color conversion member, light source unit, display device, lighting device, color conversion substrate and ink Download PDF

Info

Publication number
WO2020050144A1
WO2020050144A1 PCT/JP2019/034006 JP2019034006W WO2020050144A1 WO 2020050144 A1 WO2020050144 A1 WO 2020050144A1 JP 2019034006 W JP2019034006 W JP 2019034006W WO 2020050144 A1 WO2020050144 A1 WO 2020050144A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
color conversion
particulate
light
conversion material
Prior art date
Application number
PCT/JP2019/034006
Other languages
French (fr)
Japanese (ja)
Inventor
裕健 境野
泰宜 市橋
祐一 辻
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019549015A priority Critical patent/JP7380216B2/en
Priority to KR1020217004840A priority patent/KR20210055677A/en
Priority to CN201980055522.2A priority patent/CN112639542B/en
Publication of WO2020050144A1 publication Critical patent/WO2020050144A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/55Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Definitions

  • the present invention relates to a color conversion material, a color conversion member, a light source unit, a display, a lighting device, a color conversion substrate, and ink.
  • the application of the multi-color conversion technology based on the color conversion method to liquid crystal displays, organic EL displays, lighting devices, and the like has been actively studied.
  • the color conversion is to convert light emitted from a light emitter to light having a longer wavelength, for example, to convert blue light to green or red light.
  • the composition having the color conversion function (hereinafter, referred to as “color conversion composition”) is formed into a sheet and combined with, for example, a blue light source to extract three primary colors of blue, green, and red from the blue light source, ie, white light. Can be taken out.
  • a white light source combining such a blue light source and a sheet having a color conversion function (hereinafter, referred to as a “color conversion sheet”) is used as a backlight unit, and this backlight unit, a liquid crystal driving portion, and a color filter are combined.
  • a full-color display can be manufactured.
  • if there is no liquid crystal driving portion it can be used as it is as a white light source, and can be applied as a white light source such as LED lighting.
  • One of the problems with liquid crystal displays that use the color conversion method is to improve color reproducibility.
  • To improve the color reproducibility it is effective to narrow the half width of each of the blue, green, and red emission spectra of the backlight unit and increase the color purity of each of the blue, green, and red colors.
  • a technique using quantum dots made of inorganic semiconductor fine particles as a component of a color conversion composition has been proposed (for example, see Patent Document 1).
  • a technique has been proposed in which an organic light emitting material is used as a component of a color conversion composition instead of a quantum dot.
  • examples of techniques using an organic light emitting material as a component of a color conversion composition include those using a coumarin derivative (for example, see Patent Document 2), those using a rhodamine derivative (for example, see Patent Document 3), and pyromethene derivatives. (For example, see Patent Document 4).
  • a technique of adding a light stabilizer to prevent deterioration of an organic light emitting material and improve durability has been disclosed (for example, see Patent Document 5).
  • JP 2012-22028 A JP 2007-273440 A JP 2001-164245 A JP 2011-241160 A International Publication No. 2011/149028
  • the technology using quantum dots described in Document 1 certainly has narrow half-widths of green and red emission spectra, and improves color reproducibility.
  • the quantum dots were weak to heat, moisture and oxygen in the air, and had insufficient durability.
  • problems such as containing cadmium.
  • high definition such as 4K and 8K, high dynamic range (HDR), and high contrast by local dimming
  • the illuminance required for a backlight unit of a liquid crystal display is increasing, and the backlight unit by driving heat is used. Has become hot.
  • existing techniques such as the light stabilizer described in Patent Document 5 have an effect of improving durability, but are insufficient as techniques for improving durability at high temperatures.
  • a color conversion material using an organic light emitting material has a problem that durability is significantly deteriorated at a high temperature, and the existing technology has not been able to sufficiently solve this problem.
  • the problem to be solved by the present invention is to achieve both improved color reproducibility and durability in a color conversion material used for a liquid crystal display or LED lighting. It is to make them compatible.
  • an object of the present invention is to provide a color conversion material and a color conversion member having improved durability at high temperatures.
  • the present invention is a particulate color conversion material having a matrix resin and at least one luminescent material, wherein the luminescent material is represented by a general formula (1).
  • a particulate color conversion material containing X is CR 7 or N.
  • R 1 to R 9 may be the same or different and each may be hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, an alkylthio group, or an aryl group.
  • the color conversion material and the color conversion member using the same according to the present invention have both high color purity and durability, so that both color reproducibility and durability can be achieved.
  • FIG. 2 is a schematic sectional view illustrating an example of the color conversion member of the present invention.
  • FIG. 2 is a schematic sectional view illustrating an example of the color conversion member of the present invention.
  • FIG. 2 is a schematic sectional view illustrating an example of the color conversion member of the present invention.
  • 9 is an emission spectrum in Example 2 of the present invention.
  • the particulate color conversion material according to the embodiment of the present invention contains at least one kind of luminescent material.
  • the light-emitting material in the present invention refers to a material that emits light having a different wavelength from the light when the light is irradiated.
  • the organic light emitting material is an organic light emitting material.
  • the light-emitting material is a material exhibiting high emission quantum yield and high emission characteristics.
  • known light-emitting materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots are used as the light-emitting materials.
  • an organic luminescent material is preferable from the viewpoint of uniformity of dispersion, reduction of the amount of use, and reduction of environmental load.
  • organic light emitting material examples include the following.
  • a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, or indene, or a derivative thereof may be mentioned as a suitable organic light emitting material.
  • Suitable organic light-emitting materials include compounds having a heteroaryl ring such as pyrrolopyridine, derivatives thereof, and borane derivatives.
  • Suitable organic light-emitting materials include stilbene derivatives such as amino) stilbene, aromatic acetylene derivatives, tetraphenylbutadiene derivatives, aldazine derivatives, pyromethene derivatives, and diketopyrrolo [3,4-c] pyrrole derivatives.
  • coumarin derivatives such as coumarin 6, coumarin 7, coumarin 153
  • azole derivatives such as imidazole, thiazole, thiadiazole, carbazole, oxazole, oxadiazole, and triazole and metal complexes thereof
  • cyanine compounds such as indocyanine green, fluorescein, Xanthene-based compounds such as eosin and rhodamine, thioxanthene-based compounds, and the like are mentioned as suitable organic light-emitting materials.
  • Suitable organic light emitting materials include aromatic amine derivatives such as -di (3-methylphenyl) -4,4'-diphenyl-1,1'-diamine.
  • organic metal complex compounds such as iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re) are suitable for organic light emission.
  • Ir iridium
  • Ru ruthenium
  • Rh rhodium
  • Pd palladium
  • Pt platinum
  • Os osmium
  • Re rhenium
  • Re rhenium
  • the organic light emitting material in the present invention is not limited to those described above.
  • a compound having a coordination bond is preferable from the viewpoint of solubility and diversity of molecular structure.
  • a boron-containing compound such as a boron fluoride complex is also preferable in that the half width is small and light emission with high efficiency is possible.
  • a pyrromethene derivative can be suitably used because it gives a high fluorescence quantum yield and has good durability. More preferably, it is a compound represented by the general formula (1).
  • the particulate color conversion material according to the embodiment of the present invention preferably contains at least a compound represented by the general formula (1) as a light emitting material.
  • R 1 to R 9 may be the same or different and each may be hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, an alkylthio group, or an aryl group.
  • Ether arylthioether, aryl, heteroaryl, halogen, cyano, aldehyde, carbonyl, carboxyl, ester, carbamoyl, amino, nitro, silyl, siloxanyl, boryl, sulfo Group, a phosphine oxide group, and a condensed ring and an aliphatic ring formed between adjacent groups.
  • hydrogen may be deuterium.
  • a substituted or unsubstituted aryl group having 6 to 40 carbon atoms has 6 to 40 carbon atoms including the number of carbon atoms contained in the substituent substituted with the aryl group.
  • An aryl group The same applies to other substituents defining the number of carbon atoms.
  • Aryl ether, aryl thioether, aryl, heteroaryl, halogen, cyano, aldehyde, carbonyl, carboxyl, ester, carbamoyl, amino, nitro, silyl, siloxanyl, boryl , A sulfo group, and a phosphine oxide group are preferable, and specific substituents which are preferable in the description of each substituent are preferable. Further, these substituents may be further substituted by the above-mentioned substituents.
  • the alkyl group means, for example, a saturated aliphatic hydrocarbon such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group.
  • a saturated aliphatic hydrocarbon such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 20 and more preferably 1 to 8 from the viewpoint of availability and cost.
  • the cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, which may or may not have a substituent.
  • the number of carbon atoms in the alkyl group portion is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the heterocyclic group refers to, for example, an aliphatic ring having atoms other than carbon in the ring, such as a pyran ring, a piperidine ring, and a cyclic amide, which may or may not have a substituent. Good.
  • the carbon number of the heterocyclic group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • alkenyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent. .
  • the carbon number of the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the cycloalkenyl group refers to, for example, an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, and a cyclohexenyl group, which may have a substituent. It is not necessary to have.
  • Alkynyl group means, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the number of carbon atoms of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the alkoxy group refers to, for example, a functional group in which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, and a propoxy group.
  • the aliphatic hydrocarbon group has a substituent. May not be included.
  • the carbon number of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • An alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent.
  • the carbon number of the alkylthio group is not particularly limited, but is preferably in the range of 1 to 20.
  • An aryl ether group refers to, for example, a functional group in which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Is also good.
  • the carbon number of the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the arylthioether group is a group in which an oxygen atom of an ether bond of the arylether group is substituted with a sulfur atom.
  • the aromatic hydrocarbon group in the arylthioether group may or may not have a substituent.
  • the number of carbon atoms of the arylthioether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • a phenyl group a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an anthracenyl group, a pyrenyl group, a fluoranthenyl group, and a triphenylenyl group are preferred.
  • the aryl group may or may not have a substituent.
  • the carbon number of the aryl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less, and more preferably in the range of 6 or more and 30 or less.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group or an anthracenyl group, and a phenyl group, a biphenyl group Groups, terphenyl groups and naphthyl groups are more preferred. More preferred are phenyl, biphenyl and terphenyl, with phenyl being particularly preferred.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, or an anthracenyl group, and a phenyl group, a biphenyl group, A phenyl group and a naphthyl group are more preferred. Particularly preferred is a phenyl group.
  • Heteroaryl group for example, pyridyl group, furanyl group, thienyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, triazinyl group, naphthyridinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, Benzofuranyl, benzothienyl, indolyl, dibenzofuranyl, dibenzothienyl, carbazolyl, benzocarbazolyl, carbolinyl, indolocarbazolyl, benzofurcarbazolyl, benzothienocarbazolyl Group, dihydroindenocarbazolyl group, benzoquinolinyl group, acridinyl group, dibenzoacridinyl group, benzimidazolyl group, imid
  • Atoms other than carbon shows a cyclic aromatic group having a single or a plurality of rings.
  • naphthyridinyl means any of 1,5-naphthyridinyl, 1,6-naphthyridinyl, 1,7-naphthyridinyl, 1,8-naphthyridinyl, 2,6-naphthyridinyl, and 2,7-naphthyridinyl.
  • the heteroaryl group may or may not have a substituent. Although the carbon number of the heteroaryl group is not particularly limited, it is preferably in the range of 2 or more and 40 or less, more preferably 2 or more and 30 or less.
  • R 1 to R 9 are a substituted or unsubstituted heteroaryl group
  • examples of the heteroaryl group include pyridyl, furanyl, thienyl, quinolinyl, pyrimidyl, triazinyl, benzofuranyl, benzothienyl, and indolyl.
  • Group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, benzimidazolyl group, imidazopyridyl group, benzoxazolyl group, benzothiazolyl group, phenanthrolinyl group is preferred, and pyridyl group, furanyl group, thienyl group, quinolinyl group is preferred. More preferred. Particularly preferred is a pyridyl group.
  • heteroaryl group examples include pyridyl, furanyl, thienyl, quinolinyl, pyrimidyl, triazinyl, benzofuranyl, benzothienyl, indolyl, and dibenzoyl.
  • a furanyl group, a dibenzothienyl group, a carbazolyl group, a benzimidazolyl group, an imidazopyridyl group, a benzoxazolyl group, a benzothiazolyl group, and a phenanthrolinyl group are preferred, and a pyridyl group, a furanyl group, a thienyl group, and a quinolinyl group are more preferred. Particularly preferred is a pyridyl group.
  • Halogen indicates an atom selected from fluorine, chlorine, bromine and iodine.
  • the ester group is, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via an ester bond, and the substituent may be further substituted.
  • the carbon number of the ester group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • a methyl ester group such as a methoxycarbonyl group, an ethyl ester group such as an ethoxycarbonyl group, a propyl ester group such as a propoxycarbonyl group, a butyl ester group such as a butoxycarbonyl group, and an isopropyl group such as an isopropoxymethoxycarbonyl group.
  • Examples include an ester group, a hexyl ester group such as a hexyloxycarbonyl group, and a phenyl ester group such as a phenoxycarbonyl group.
  • the carbonyl group, carboxyl group, ester group, and carbamoyl group may or may not have a substituent.
  • Amino group is a substituted or unsubstituted amino group.
  • substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, and a branched alkyl group.
  • aryl group and the heteroaryl group a phenyl group, a naphthyl group, a pyridyl group, and a quinolinyl group are preferable. These substituents may be further substituted.
  • the carbon number is not particularly limited, but is preferably in the range of 2 to 50, more preferably 6 to 40, and particularly preferably 6 to 30.
  • the silyl group includes, for example, an alkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a propyldimethylsilyl group, a vinyldimethylsilyl group, a phenyldimethylsilyl group, a tert-butyldiphenylsilyl group, And an arylsilyl group such as a phenylsilyl group and a trinaphthylsilyl group. Substituents on silicon may be further substituted.
  • the carbon number of the silyl group is not particularly limited, but is preferably in the range of 1 to 30.
  • the siloxanyl group indicates, for example, a silicon compound group via an ether bond such as a trimethylsiloxanyl group. Substituents on silicon may be further substituted.
  • the boryl group is a substituted or unsubstituted boryl group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group, and a hydroxyl group. Among them, an aryl group and an aryl ether group are preferable.
  • the sulfo group is a substituted or unsubstituted sulfo group.
  • substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, and an alkoxy group.
  • a linear alkyl group and an aryl group are preferable.
  • R 10 R 11 is selected from the same group as R 1 to R 9 .
  • a condensed ring and an aliphatic ring formed between adjacent substituents are conjugated or non-conjugated when any two adjacent substituents (for example, R 1 and R 2 in the general formula (1)) are bonded to each other.
  • Such a constitutive element of the condensed ring and the aliphatic ring may include an element selected from nitrogen, oxygen, sulfur, phosphorus, and silicon, in addition to carbon. Further, these condensed ring and aliphatic ring may be further condensed with another ring.
  • the compound represented by the general formula (1) exhibits a high emission quantum yield and has a small half width of the emission spectrum, so that both efficient color conversion and high color purity can be achieved. Furthermore, the compound represented by the general formula (1) has various characteristics such as luminous efficiency, color purity, thermal stability, light stability and dispersibility by introducing an appropriate substituent at an appropriate position. And physical properties can be adjusted. For example, compared to the case where all of R 1 , R 3 , R 4 and R 6 are hydrogen, at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted alkyl group. An aryl group or a substituted or unsubstituted heteroaryl group shows better thermal stability and light stability.
  • the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group,
  • An alkyl group having 1 to 6 carbon atoms such as a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group is preferred.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group are preferable from the viewpoint of excellent thermal stability.
  • a sterically bulky tert-butyl group is more preferred as the alkyl group.
  • a methyl group is also preferably used as the alkyl group.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group or a naphthyl group, more preferably, A phenyl group and a biphenyl group. Particularly preferred is a phenyl group.
  • the heteroaryl group is preferably a pyridyl group, a quinolinyl group or a thienyl group, more preferably a pyridyl group.
  • Quinolinyl group Particularly preferred is a pyridyl group.
  • R 1 , R 3 , R 4 and R 6 are all the same or different and are each a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group, better thermal stability and It is preferable because it shows light stability.
  • all of R 1 , R 3 , R 4 and R 6 may be the same or different, and are more preferably a substituted or unsubstituted aryl group.
  • R 1 , R 3 , R 4 and R 6 may be the same or different, and in the case of a substituted or unsubstituted aryl group, for example, R 1 ⁇ R 4 , R 3 ⁇ R 6 , R It is preferable to introduce a plurality of types of substituents such as 1 ⁇ R 3 or R 4 ⁇ R 6 .
  • “ ⁇ ” indicates a group having a different structure.
  • R 1 ⁇ R 4 indicates that R 1 and R 4 are groups having different structures.
  • an aryl group substituted with an electron donating group is preferable.
  • the electron donating group is an atomic group that provides an electron to a substituted atomic group due to an induction effect or a resonance effect in organic electron theory.
  • Examples of the electron donating group include those having a negative value as a substituent constant ( ⁇ p (para)) according to the Hammett rule.
  • the substituent constant ( ⁇ p (para)) of the Hammett's rule can be quoted from Chemical Handbook Basic Edition, Revised 5th Edition (page II-380).
  • electron donating groups for example, an alkyl group (.sigma.p methyl group: -0.17) and alkoxy groups (.sigma.p methoxy groups: -0.27), .sigma.p amino group (-NH 2: - 0.66).
  • an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms is preferable, and a methyl group, an ethyl group, a tert-butyl group, and a methoxy group are more preferable. From the viewpoint of dispersibility, a tert-butyl group and a methoxy group are particularly preferred.
  • the substitution position of the substituent is not particularly limited, it is necessary to suppress the twist of the bond in order to enhance the photostability of the compound represented by the general formula (1). It is preferred to attach to the position or para.
  • an aryl group that mainly affects luminous efficiency an aryl group having a bulky substituent such as a tert-butyl group, an adamantyl group, and a methoxy group is preferable.
  • X it is preferable from the viewpoint of light stability is C-R 7.
  • the substituent R 7 has a great effect on the durability of the compound represented by the general formula (1), that is, the decrease over time in the emission intensity of the compound.
  • R 7 is hydrogen
  • the reactivity of this site is high, and this site easily reacts with moisture or oxygen in the air. This causes decomposition of the compound represented by the general formula (1).
  • R 7 is a substituent having a large degree of freedom of movement of a molecular chain such as an alkyl group, the reactivity certainly decreases, but the compounds aggregate over time in the color conversion material, As a result, the emission intensity is reduced due to concentration quenching.
  • R 7 is preferably a group that is rigid, has a small degree of freedom of movement, and hardly causes aggregation.
  • R 7 is preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. Preferably, it is either one.
  • R 7 is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, or a substituted or unsubstituted naphthyl group, and is preferably a substituted or unsubstituted naphthyl group.
  • R 7 is preferably a suitably bulky substituent.
  • R 7 is, it is possible to prevent aggregation of the molecules to have some bulkiness, as a result, emission efficiency and durability of the compound represented by the general formula (1) is further improved.
  • a more preferable example of such a bulky substituent includes a structure of R 7 represented by the following general formula (2).
  • r is hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, an alkylthio group, an arylether group, or an arylthioether.
  • aryl group aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group, sulfo group, phosphine oxide group Selected from the group consisting of k is an integer of 1 to 3. When k is 2 or more, r may be the same or different.
  • r is preferably a substituted or unsubstituted aryl group.
  • aryl groups particularly preferred are a phenyl group and a naphthyl group.
  • k in the general formula (2) is preferably 1 or 2, and more preferably 2 from the viewpoint of further preventing aggregation of molecules. Further, when k is 2 or more, it is preferable that at least one of r is substituted with an alkyl group.
  • the alkyl group in this case, a methyl group, an ethyl group, and a tert-butyl group are particularly preferable examples from the viewpoint of thermal stability.
  • r is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or a halogen.
  • a methyl group, an ethyl group, a tert-butyl group and a methoxy group are more preferred.
  • a tert-butyl group and a methoxy group are particularly preferred.
  • R 1 to R 7 is an electron withdrawing group.
  • R 1 to R 6 is an electron withdrawing group
  • R 7 is an electron withdrawing group
  • An electron-withdrawing group is also called an electron-accepting group, and is an atomic group that attracts electrons from a substituted atomic group due to an induction effect or a resonance effect in organic electron theory.
  • Examples of the electron withdrawing group include those having a positive value as a substituent constant ( ⁇ p (para)) according to the Hammett rule.
  • the substituent constant ( ⁇ p (para)) of the Hammett's rule can be quoted from Chemical Handbook Basic Edition, Revised 5th Edition (page II-380).
  • the phenyl group may have a positive value as described above, the electron-withdrawing group does not include the phenyl group in the present invention.
  • electron withdrawing groups include, for example, -F ( ⁇ p: +0.06), -Cl ( ⁇ p: +0.23), -Br ( ⁇ p: +0.23), -I ( ⁇ p: +0.18), —CO 2 R 12 ( ⁇ p: +0.45 when R 12 is an ethyl group), —CONH 2 ( ⁇ p: +0.38), —COR 12 ( ⁇ p: +0.49 when R 12 is a methyl group), ⁇ CF 3 ( ⁇ p: +0.50), - SO 2 R 12 ( ⁇ p: when R 12 is a methyl group +0.69), - NO 2 ( ⁇ p : +0.81) , and the like.
  • R 12 is each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atom atoms, a substituted or unsubstituted heterocyclic group.
  • Preferred electron withdrawing groups include fluorine, a fluorinated aryl group, a fluorinated heteroaryl group, a fluorinated alkyl group, a substituted or unsubstituted carbonyl group, a substituted or unsubstituted ester group, a substituted or unsubstituted amide group, Examples thereof include a substituted or unsubstituted sulfonyl group or a cyano group. This is because they are hardly chemically decomposed.
  • More preferred electron withdrawing groups include fluorinated alkyl groups, substituted or unsubstituted carbonyl groups, substituted or unsubstituted ester groups, and cyano groups. This is because these lead to the effect of preventing concentration quenching and improving the emission quantum yield. Particularly preferred electron withdrawing groups are substituted or unsubstituted ester groups.
  • R 2 and R 5 are preferably hydrogen, an alkyl group, or an aryl group from the viewpoint of thermal stability, and more preferably hydrogen from the viewpoint that a narrow half-value width is easily obtained in an emission spectrum.
  • At least one of R 2 and R 5 may be the same or different, and is preferably an electron-withdrawing group.
  • at least one of R 2 and R 5 may be the same or different, and a substituted or unsubstituted ester group can improve durability without reducing color purity.
  • both R 2 and R 5 may be the same or different, and it is particularly preferable that they are substituted or unsubstituted ester groups from the viewpoint of improving durability.
  • R 8 and R 9 are preferably an alkyl group, an aryl group, a heteroaryl group, fluorine, a fluorine-containing alkyl group, a fluorine-containing heteroaryl group or a fluorine-containing aryl group, and a cyano group.
  • R 8 and R 9 are more preferably fluorine, a fluorine-containing aryl group, or a cyano group because they are stable to excitation light and can obtain a higher fluorescence quantum yield.
  • the fluorine-containing aryl group is an aryl group containing fluorine, and examples thereof include a fluorophenyl group, a trifluoromethylphenyl group, and a pentafluorophenyl group.
  • the fluorine-containing heteroaryl group is a fluorine-containing heteroaryl group, and examples thereof include a fluoropyridyl group, a trifluoromethylpyridyl group, and a trifluoropyridyl group.
  • the fluorine-containing alkyl group is an alkyl group containing fluorine, and examples thereof include a trifluoromethyl group and a pentafluoroethyl group.
  • the stability of the compound represented by the general formula (1) to oxygen is further improved, and as a result, the durability of the compound can be further improved.
  • it is a cyano group.
  • it is preferable that at least one of R 8 and R 9 is a cyano group, because the electron density on the boron atom is further reduced.
  • R 8 and R 9 are also preferably fluorine from the viewpoint of obtaining a high fluorescence quantum yield and the ease of synthesis.
  • R 1 , R 3 , R 4 and R 6 may be the same or different, and the above-mentioned Ar-1 To Ar-6, wherein X is CR 7 and R 7 is a group represented by the general formula (2).
  • R 7 is more preferably a group represented by the general formula (2) in which r is contained as a tert-butyl group or a methoxy group, and represented by a general formula (2) in which r is contained as a methoxy group. It is particularly preferred that the group is
  • R 1 , R 3 , R 4 and R 6 may be the same or different, and may be substituted or unsubstituted.
  • An alkyl group, and R 2 and R 5 may be the same or different, each being a substituted or unsubstituted ester group, X is C—R 7 , and R 7 is a general formula
  • R 7 is particularly preferably a group represented by the general formula (2) in which r is contained as a substituted or unsubstituted phenyl group.
  • R 1 , R 3 , R 4 and R 6 may be the same or different, and the above-mentioned Ar-1 To R-6, and R 2 and R 5 may be the same or different, each being a substituted or unsubstituted ester group, X is CR 7 , and R 7 is Examples thereof include a group represented by the general formula (2).
  • R 7 is more preferably a group represented by the general formula (2) in which r is contained as a tert-butyl group or a methoxy group, and represented by a general formula (2) in which r is contained as a methoxy group. It is particularly preferred that the group is
  • the compound represented by the general formula (1) can be synthesized, for example, by the method described in Japanese Patent Application Laid-Open No. Hei 8-509471 or JP-A-2000-208262. That is, by reacting a pyromethene compound with a metal salt in the presence of a base, the intended pyrromethene-based metal complex can be obtained.
  • a method of generating a carbon-carbon bond by using a coupling reaction between a halogenated derivative and a boronic acid or a boronic esterified derivative may be mentioned.
  • the present invention is not limited to this.
  • an amino group or a carbazolyl group for example, a method of generating a carbon-nitrogen bond by using a coupling reaction between a halogenated derivative and an amine or a carbazole derivative under a metal catalyst such as palladium.
  • the present invention is not limited to this.
  • organic light-emitting materials other than the compound represented by the general formula (1) are shown below, but the present invention is not particularly limited thereto.
  • the particulate color conversion material according to the embodiment of the present invention includes a light-emitting material exhibiting light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm (hereinafter, referred to as “first light-emitting material”).
  • first light-emitting material a light-emitting material exhibiting light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm
  • green light emission light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm
  • the particulate color conversion material according to the embodiment of the present invention may include a light-emitting material which emits light whose peak wavelength is observed in a range of 580 nm to 750 nm (hereinafter, referred to as “second light-emitting material”).
  • second light-emitting material a light-emitting material which emits light whose peak wavelength is observed in a range of 580 nm to 750 nm
  • the emission observed in the region where the peak wavelength is 580 nm or more and 750 nm or less is referred to as “red emission”.
  • excitation light having a wavelength of 400 nm or more and 500 nm or less is preferable because the excitation energy is relatively small.
  • either the first light emitting material and / or the second light emitting material may be included, or both may be included. Further, only one kind of the first light emitting material may be used alone, or a plurality of kinds of the first light emitting materials may be used in combination. Similarly, only one kind of the second light emitting material may be used alone, or a plurality of kinds of second light emitting materials may be used in combination.
  • the particulate color conversion material according to the embodiment of the present invention includes a first light emitting material emitting green light and a second light emitting material emitting red light, and uses a blue LED having a sharp emission peak as blue light.
  • a sharp emission spectrum is shown in each of the blue, green, and red colors, and white light with good color purity can be obtained.
  • colors can be more vivid and a larger color gamut can be efficiently created.
  • the emission characteristics particularly in the green and red regions, are improved. A light source can be obtained.
  • Examples of the first light emitting material include coumarin derivatives such as coumarin 6, coumarin 7, and coumarin 153, cyanine derivatives such as indocyanine green, fluorescein derivatives such as fluorescein, fluorescein isothiocyanate, carboxyfluorescein diacetate, and phthalocyanine derivatives such as phthalocyanine green.
  • coumarin derivatives such as coumarin 6, coumarin 7, and coumarin 153
  • cyanine derivatives such as indocyanine green
  • fluorescein derivatives such as fluorescein, fluorescein isothiocyanate, carboxyfluorescein diacetate
  • phthalocyanine derivatives such as phthalocyanine green.
  • Perylene derivatives such as diisobutyl-4,10-dicyanoperylene-3,9-dicarboxylate, as well as pyromethene derivatives, stilbene derivatives, oxazine derivatives, naphthalimide derivatives, pyrazine derivatives, benzimidazole derivatives, benzoxazole derivatives, benzothiazole derivatives , Imidazopyridine derivatives, azole derivatives, compounds having fused aryl rings such as anthracene and derivatives thereof, aromatic amine derivatives, organic Metal complex compounds, and the like as preferred.
  • the first light emitting material is not particularly limited to these.
  • the pyrromethene derivative is a particularly suitable compound because it gives a high emission quantum yield and has good durability.
  • a compound represented by the general formula (1) is preferable because it emits light with high color purity.
  • Examples of the second light emitting material include cyanine derivatives such as 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, and rhodamine derivatives such as rhodamine B, rhodamine 6G, rhodamine 101, and sulfolhodamine 101.
  • cyanine derivatives such as 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran
  • rhodamine derivatives such as rhodamine B, rhodamine 6G, rhodamine 101, and sulfolhodamine 101.
  • Pyridine derivatives such as N, N-N'-bis (2,6-diisopropylphenyl) -1, 1-ethyl-2- (4- (p-dimethylaminophenyl) -1,3-butadienyl) -pyridinium-perchlorate
  • Derivatives such as, 6,7,12-tetraphenoxyperylene-3,4,9,10-bisdicarboximide, porphyrin derivatives, pyromethene derivatives, oxazine derivatives, pyrazine derivatives, naphthacene and dibenzodiindenoperylene, etc. Having a condensed aryl ring, derivatives thereof, and organometallic complexes Compounds and the like as preferred.
  • the second light emitting material is not particularly limited to these.
  • the pyrromethene derivative is a particularly suitable compound because it gives a high emission quantum yield and has good durability.
  • a compound represented by the general formula (1) is preferable because it emits light with high color purity.
  • the content of the luminescent material in the particulate color conversion material according to the embodiment of the present invention is the molar extinction coefficient of the compound, the emission quantum yield and the absorption intensity at the excitation wavelength, and the size of the color conversion material or color conversion member to be produced
  • the amount is 1.0 ⁇ 10 ⁇ 4 parts by mass to 30 parts by mass with respect to 100 parts by mass of the matrix resin, though it depends on the thickness, transmittance and the like.
  • the amount is more preferably 1.0 ⁇ 10 ⁇ 3 parts by mass to 10 parts by mass, and particularly preferably 5.0 ⁇ 10 ⁇ 3 parts by mass to 5 parts by mass.
  • a material having excellent moldability, transparency, heat resistance, and the like is suitably used as the matrix resin.
  • the matrix resin include, for example, a photocurable resist material having a reactive vinyl group such as an acrylic acid type, a methacrylic acid type, a polyvinyl cinnamate type, a ring rubber type, an epoxy resin, a silicone resin (silicone rubber, silicone Organopolysiloxane cured products such as gels (including crosslinked products), urea resins, fluorine resins, polycarbonate resins, acrylic resins, urethane resins, melamine resins, polyvinyl resins, polyamide resins, phenol resins, polyvinyl alcohol resins, polyvinyl butyral resins And polyester resins such as cellulose resins, aliphatic ester resins and aromatic ester resins, aliphatic polyolefin resins such as
  • an acrylic resin a copolymer resin containing an acrylate or methacrylate portion, a polyester resin, a cycloolefin resin, or an epoxy resin is used. Is preferred.
  • the glass transition temperature (Tg) of the matrix resin is not particularly limited, but is preferably from 30 ° C to 180 ° C.
  • Tg is 30 ° C. or higher, the molecular motion of the matrix resin due to the heat due to the incident light from the light source or the driving heat of the device is suppressed, and the change in the dispersion state of the light emitting material is suppressed, thereby preventing the deterioration of the durability. Can be.
  • Tg is 180 ° C. or lower, flexibility when formed into a sheet or the like can be ensured.
  • the Tg of the matrix resin is more preferably from 50 ° C to 170 ° C, further preferably from 70 ° C to 160 ° C, and particularly preferably from 90 ° C to 150 ° C.
  • the molecular weight of the matrix resin is not particularly limited depending on the type of the resin, but is preferably 3,000 to 1500,000. When the molecular weight is smaller than 3000, the resin becomes brittle, and the flexibility when molded becomes low. Further, when the molecular weight is larger than 1500000, there are problems that the viscosity at the time of molding becomes excessively large and the chemical stability of the resin itself is reduced.
  • the molecular weight of the matrix resin is more preferably 5,000 to 1,200,000, still more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 800,000.
  • the particulate color conversion material according to the embodiment of the present invention is, besides the light emitting material and the matrix resin, an antioxidant, a processing and heat stabilizer, a light resistance stabilizer such as an ultraviolet absorber, a plasticizer, and an epoxy compound. And the like. Curing agents such as amine, acid anhydride and imidazole, inorganic particles such as silica particles and silicone fine particles, and additives such as silane coupling agents can be contained.
  • antioxidants examples include, but are not particularly limited to, phenolic antioxidants.
  • the antioxidants may be used alone or in combination of two or more.
  • processing and heat stabilizers include, but are not particularly limited to, phosphorus-based stabilizers.
  • the stabilizers may be used alone or in combination.
  • the light resistance stabilizer include, for example, benzotriazoles, but are not particularly limited thereto. Further, the light resistance stabilizer may be used alone or in combination of two or more.
  • these additives do not inhibit light from a light source or light emission of a light-emitting material, it is preferable that these additives have a small absorption coefficient in the visible region.
  • the molar extinction coefficient ⁇ of these additives is preferably 200 or less, more preferably 100 or less, over the entire wavelength range of 400 nm to 800 nm. It is more preferably at most 80, particularly preferably at most 50.
  • the content of these additives depends on the molar extinction coefficient of the compound, the emission quantum yield and the absorption intensity at the excitation wavelength, and the color conversion material or color conversion to be produced. Although it depends on the size, thickness and transmittance of the member, it is preferably at least 1.0 ⁇ 10 ⁇ 3 parts by mass, more preferably at least 1.0 ⁇ 10 ⁇ 2 parts by mass, per 100 parts by mass of the matrix resin. More preferably, the content is more preferably 1.0 ⁇ 10 -1 part by mass or more. Further, the content of these additives is preferably 30 parts by mass or less, more preferably 15 parts by mass or less, and more preferably 10 parts by mass or less, based on 100 parts by mass of the matrix resin. More preferred.
  • the particulate color conversion material according to the embodiment of the present invention contains the compound represented by the general formula (1), it emits light with extremely high color purity. In addition, since it can be handled as a powder, it is easy to mix and use a plurality of types of particulate color conversion materials and finely adjust the wavelength conversion characteristics. For example, when white light is obtained by performing color conversion on a part of blue light, a green conversion material containing a light emitting material emitting green light and a red conversion material containing a light emitting material emitting red light are prepared. The white balance and color temperature of white light can be easily adjusted by adjusting the amount of mixing. Further, by controlling the particle diameter and shape of the color conversion material, the refractive index of the matrix resin, and the like, the color conversion characteristics can be adjusted, and functions other than the color conversion function can be provided. For example, a light scattering function can be exhibited.
  • each particle is individually independent, when highly active species such as radical species are generated by light irradiation at a high temperature condition, the high active species is entirely And the accelerated deterioration of the entire color conversion member can be suppressed.
  • the particulate color conversion material according to the embodiment of the present invention preferably has an average particle size of 0.010 ⁇ m or more and 100 ⁇ m or less, more preferably 0.010 ⁇ m or more and 30 ⁇ m or less, and 0.010 ⁇ m or more and 10 ⁇ m or less. Is more preferable.
  • the average particle size is obtained by observing the particle size distribution by microscopic observation or laser diffraction scattering method, but it is basically measured by microscopic observation. However, when the measurement result by the laser diffraction scattering method has a particle size of 1 ⁇ m or less, the particle size by the laser diffraction scattering method is adopted. In the case of microscopic observation, although not particularly limited, it can be obtained by measuring the particle size of about 100 isolated particles and calculating the average value.
  • the method for producing the particulate color conversion material according to the embodiment of the present invention is not particularly limited as long as the particulate color conversion material can be formed into particles containing a light emitting material and a matrix resin.
  • an interfacial polymerization method, a W / O-based in-liquid drying method, a Stover method, and a spray drying method, an in situ polymerization method, a phase separation method from an aqueous solution, a phase separation method from an organic solvent, a melting dispersion cooling method, and an airborne method It can be produced by a suspension coating method.
  • the particulate color conversion material according to the embodiment of the present invention may be used by itself. Further, from the viewpoint of further improving the applicability to the optical member, it is preferable to use a support containing a particulate color conversion material.
  • the support containing the particulate color conversion material according to the embodiment of the present invention can be used as a color conversion member.
  • the material of the support is not particularly limited, and known metals, resins, glass, ceramics, papers, and the like can be used. From the viewpoint of transparency and workability, the support is preferably made of resin. When the support is made of a resin, it is more preferable that the particulate color conversion material is dispersed in the support.
  • the term “dispersion” means that other substances are scattered in one phase, and the distribution may be uneven or uniform. However, when it is described that the particulate color conversion material is dispersed, a mode in which the particulate color conversion material is completely dissolved in the dispersion medium to form one uniform phase is excluded.
  • the support is made of a resin
  • the difference between the matrix resin of the particulate color conversion material and the resin forming the support has an SP value of 0.5 (cal / cm 3 ). It is preferably 0.5 or more.
  • the difference in SP value is 0.5 (cal / cm 3 ) 0.5 or more, the particulate color conversion material can be dispersed in the support without being dissolved.
  • the luminescent material is eluted also into the support, and the half width is reduced.
  • the difference between the SP values is more preferably 1.0 (cal / cm 3 ) 0.5 or more, still more preferably 1.5 (cal / cm 3 ) 0.5 or more, and 2.0 (cal / cm 3 ) 0.5 or more.
  • (Cal / cm 3 ) is particularly preferably 0.5 or more. If the difference in SP value is too large, the particles aggregate and cause quenching. Therefore, the upper limit is more preferably 4.0 (cal / cm 3 ) 0.5 or less, and more preferably 3.0 (cal / cm 3 ). cm 3 ) 0.5 or less, more preferably 2.5 (cal / cm 3 ) 0.5 or less.
  • the SP value of the matrix resin of the particulate color conversion material is preferably larger than the SP value of the resin forming the support.
  • Both the light emitting material emitting green light and the light emitting material emitting red light are preferably compounds represented by the general formula (1), since white light with high color reproducibility can be obtained. That is, as a preferred embodiment of the present invention, a first particulate color conversion material comprising a compound represented by the general formula (1) exhibiting light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm and a first matrix resin is provided.
  • a second particulate color conversion material comprising a compound represented by the general formula (1) exhibiting light emission having a peak wavelength of 580 nm or more and 750 nm or less, a second matrix resin, and a support containing them. Color conversion member.
  • a plurality of types of supports containing a particulate color conversion material are combined.
  • a support containing a particulate color conversion material emitting green light and a support containing a particulate color conversion material emitting red light can be used.
  • the method of combining a plurality of supports depends on the shape of the supports, and examples thereof include a method of arranging them on the same plane and a method of stacking.
  • the SP value which is a solubility parameter of the matrix resin
  • the emission peak wavelength of the organic light emitting material shifts to a longer wavelength side as compared with the matrix resin having a small SP value. Therefore, by dispersing the organic light emitting material in the matrix resin having the optimum SP value, it is possible to optimize the emission peak wavelength of the organic light emitting material.
  • the SP value of the first matrix resin is SP 1 (cal / cm 3 ) 0.5 and the SP value of the second matrix resin is SP 2 (cal / cm 3 ) 0.5
  • SP 1 ⁇ SP 2 there is.
  • the difference between the emission peak wavelengths of the green light and the red light in the first particulate color conversion material and the second particulate color conversion material is smaller than the case where the organic light emitting material is dispersed in the same matrix resin. As a result, the color gamut is expanded.
  • SP 2 ⁇ 10.0 it is preferable that SP 2 ⁇ 10.0.
  • the emission peak wavelength of red light in the second particulate color conversion material is further increased, and as a result, deep red light can be emitted from the second particulate color conversion material.
  • SP 2 ⁇ 10.2 is more preferable
  • SP 2 ⁇ 10.4 is more preferable
  • SP 2 ⁇ 10.6 is particularly preferable.
  • SP 1 ⁇ 10.0 when SP 1 ⁇ 10.0, the emission peak wavelength of green light in the first particulate color conversion material is prevented from becoming longer, and as a result, the first particulate color conversion material and the second particulate color are converted. This is preferable because the difference in emission peak wavelength between green light and red light in the conversion material increases. From the viewpoint of increasing the effect, SP 1 ⁇ 9.8 is more preferable, SP 1 ⁇ 9.7 is more preferable, and SP 1 ⁇ 9.6 is particularly preferable.
  • SP 1 is not particularly limited, a matrix resin satisfying SP 1 ⁇ 7.0 can be suitably used because the organic light emitting material has good dispersibility. From the viewpoint of increasing the effect, SP 1 ⁇ 7.4 is more preferable, SP 1 ⁇ 7.8 is more preferable, and SP 1 ⁇ 8.0 is particularly preferable.
  • the dissolution parameter (SP value) is generally used, Poly. Eng. Sci. , Vol. 14, No. 2, pp. 147-154 (1974) and the like, and are values calculated from the types and ratios of the monomers constituting the resin using the Fedors estimation method.
  • the same method can be used to calculate a mixture of a plurality of types of resins.
  • the SP value of polymethyl methacrylate is 9.9 (cal / cm 3 ) 0.5
  • the SP value of polyethylene terephthalate (PET) is 11.6 (cal / cm 3 ) 0.5
  • a bisphenol A epoxy resin Can be calculated as 10.9 (cal / cm 3 ) 0.5 .
  • Table 1 shows typical SP values of the resins.
  • the first matrix resin and the second matrix resin can be used in any combination, for example, from the resins shown in Table 1.
  • the support that can be used in the present invention includes, in addition to the particulate color conversion material and the light-emitting material, a light-resistant dye such as a light-absorbing dye, a light-absorbing pigment, an antioxidant, a processing and heat stabilizer, and an ultraviolet absorber.
  • a light-resistant dye such as a light-absorbing dye, a light-absorbing pigment, an antioxidant, a processing and heat stabilizer, and an ultraviolet absorber.
  • An additive such as a coupling agent can be contained.
  • the color conversion substrate according to the embodiment of the present invention has a configuration including at least the particulate color conversion material or the color conversion member of the present invention.
  • the color conversion substrate has a plurality of color conversion layers on a transparent substrate.
  • the color conversion layer preferably includes a red conversion layer and a green conversion layer.
  • the red conversion layer is formed of a phosphor material that absorbs at least blue light and emits red light.
  • the green color conversion layer is formed of a phosphor material that absorbs at least blue light and emits green light.
  • a partition may be formed, and the color conversion layer is preferably disposed between the partition (recess).
  • the particle size of 100 isolated particles was measured using ECLIPSE L200N (manufactured by Nikon Corporation), and the average value was calculated. The average particle size was 14 ⁇ m. The particle size was measured by selecting a portion having the largest diameter.
  • ECLIPSE L200N manufactured by Nikon Corporation
  • the particle size was measured by selecting a portion having the largest diameter.
  • 300 parts by mass of cyclohexane as a solvent was mixed with 100 parts by mass of this resin. did.
  • the mixture was stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to obtain a resin solution for a support.
  • Examples 2 and 3 A color conversion member was prepared and evaluated in the same manner as in Example 1 except that the matrix resin and the support resin shown in Table 2 were used. Table 2 shows the results.
  • Comparative Example 2 The color conversion composition prepared in Example 1 was applied on a slide glass plate using a bar coater, heated at 100 ° C. for 20 minutes, and dried to prepare a color conversion member.

Abstract

The present invention addresses the problem of achieving a good balance between improvement of color reproducibility and durability, especially a good balance between light emission with high color purity and durability with respect to a color conversion composition that is used for liquid crystal display devices or LED lighting devices, and with respect to a color conversion material that is used for liquid crystal display devices or LED lighting devices. A particulate color conversion material which contains a matrix resin and at least one light emitting material, and which is configured such that the light emitting material contains a compound represented by general formula (1).

Description

色変換材料、色変換部材、光源ユニット、ディスプレイ、照明装置、色変換基板およびインクColor conversion material, color conversion member, light source unit, display, lighting device, color conversion substrate and ink
 本発明は、色変換材料、色変換部材、光源ユニット、ディスプレイ、照明装置、色変換基板およびインクに関する。 The present invention relates to a color conversion material, a color conversion member, a light source unit, a display, a lighting device, a color conversion substrate, and ink.
 色変換方式によるマルチカラー化技術を、液晶ディスプレイや有機ELディスプレイ、照明装置等へ応用することが盛んに検討されている。色変換とは、発光体からの発光をより長波長な光へと変換することであり、例えば青色発光を緑色や赤色発光へと変換することを表す。 The application of the multi-color conversion technology based on the color conversion method to liquid crystal displays, organic EL displays, lighting devices, and the like has been actively studied. The color conversion is to convert light emitted from a light emitter to light having a longer wavelength, for example, to convert blue light to green or red light.
 この色変換機能を有する組成物(以下、「色変換組成物」という)をシート化し、例えば青色光源と組み合わせることにより、青色光源から、青、緑、赤色の3原色を取り出すこと、すなわち白色光を取り出すことが可能となる。このような青色光源と色変換機能を有するシート(以下、「色変換シート」という)とを組み合わせた白色光源をバックライトユニットとし、このバックライトユニットと、液晶駆動部分と、カラーフィルターとを組み合わせることで、フルカラーディスプレイの作製が可能になる。また、液晶駆動部分が無ければ、そのまま白色光源として用いることができ、例えばLED照明等の白色光源として応用できる。 The composition having the color conversion function (hereinafter, referred to as “color conversion composition”) is formed into a sheet and combined with, for example, a blue light source to extract three primary colors of blue, green, and red from the blue light source, ie, white light. Can be taken out. A white light source combining such a blue light source and a sheet having a color conversion function (hereinafter, referred to as a “color conversion sheet”) is used as a backlight unit, and this backlight unit, a liquid crystal driving portion, and a color filter are combined. Thus, a full-color display can be manufactured. In addition, if there is no liquid crystal driving portion, it can be used as it is as a white light source, and can be applied as a white light source such as LED lighting.
 色変換方式を利用する液晶ディスプレイの課題として、色再現性の向上が挙げられる。色再現性の向上には、バックライトユニットの青、緑、赤の各発光スペクトルの半値幅を狭くし、青、緑、赤各色の色純度を高めることが有効である。 One of the problems with liquid crystal displays that use the color conversion method is to improve color reproducibility. To improve the color reproducibility, it is effective to narrow the half width of each of the blue, green, and red emission spectra of the backlight unit and increase the color purity of each of the blue, green, and red colors.
 これを解決する手段として、無機半導体微粒子による量子ドットを色変換組成物の成分として用いる技術が提案されている(例えば、特許文献1参照)。
 また、量子ドットの代わりに有機物の発光材料を色変換組成物の成分として用いる技術も提案されている。有機発光材料を色変換組成物の成分として用いる技術の例としては、クマリン誘導体を用いたもの(例えば、特許文献2参照)、ローダミン誘導体を用いたもの(例えば、特許文献3参照)、ピロメテン誘導体を用いたもの(例えば、特許文献4参照)が開示されている。
 また、有機発光材料の劣化を防ぎ、耐久性を向上させるため、光安定化剤を添加する技術も開示されている(例えば、特許文献5参照)。
As a means for solving this problem, a technique using quantum dots made of inorganic semiconductor fine particles as a component of a color conversion composition has been proposed (for example, see Patent Document 1).
In addition, a technique has been proposed in which an organic light emitting material is used as a component of a color conversion composition instead of a quantum dot. Examples of techniques using an organic light emitting material as a component of a color conversion composition include those using a coumarin derivative (for example, see Patent Document 2), those using a rhodamine derivative (for example, see Patent Document 3), and pyromethene derivatives. (For example, see Patent Document 4).
Further, a technique of adding a light stabilizer to prevent deterioration of an organic light emitting material and improve durability has been disclosed (for example, see Patent Document 5).
特開2012-22028号公報JP 2012-22028 A 特開2007-273440号公報JP 2007-273440 A 特開2001-164245号公報JP 2001-164245 A 特開2011-241160号公報JP 2011-241160 A 国際公開第2011/149028号International Publication No. 2011/149028
 文献1に記載の量子ドットを用いる技術は、確かに、緑色、赤色の発光スペクトルの半値幅が狭く、色再現性は向上する。その反面、量子ドットは、熱、空気中の水分や酸素に弱く、耐久性が十分でなかった。また、カドミウムを含む等の課題もある。
 また、近年、4Kや8Kといった高精細化、ハイダイナミックレンジ(HDR)、およびローカルディミングによる高コントラスト化に伴い、液晶ディスプレイのバックライトユニットに求められる照度が高まっており、駆動熱によるバックライトユニットの高温化が生じている。しかし、特許文献5に記載されている光安定化剤のような既存の技術は、耐久性の向上効果はあるものの、高温下で耐久性を向上させる技術としては、不十分であった。特に、有機発光材料を用いた色変換材料は、高温下において耐久性が著しく悪くなるという課題があり、既存の技術では、未だこの課題を十分に解決できていなかった。
 本発明が解決しようとする課題は、液晶ディスプレイやLED照明に用いられる色変換材料において、色再現性の向上と耐久性とを両立させることであり、特に高色純度の発光と耐久性とを両立させることである。特に、高温下における耐久性を向上させた色変換材料および色変換部材の提供を目的とする。
The technology using quantum dots described in Document 1 certainly has narrow half-widths of green and red emission spectra, and improves color reproducibility. On the other hand, the quantum dots were weak to heat, moisture and oxygen in the air, and had insufficient durability. In addition, there are also problems such as containing cadmium.
In recent years, with high definition such as 4K and 8K, high dynamic range (HDR), and high contrast by local dimming, the illuminance required for a backlight unit of a liquid crystal display is increasing, and the backlight unit by driving heat is used. Has become hot. However, existing techniques such as the light stabilizer described in Patent Document 5 have an effect of improving durability, but are insufficient as techniques for improving durability at high temperatures. In particular, a color conversion material using an organic light emitting material has a problem that durability is significantly deteriorated at a high temperature, and the existing technology has not been able to sufficiently solve this problem.
The problem to be solved by the present invention is to achieve both improved color reproducibility and durability in a color conversion material used for a liquid crystal display or LED lighting. It is to make them compatible. In particular, an object of the present invention is to provide a color conversion material and a color conversion member having improved durability at high temperatures.
 上述した課題を解決し、目的を達成するために、本発明は、マトリクス樹脂および少なくとも1種の発光材料を有する粒子状色変換材料であって、前記発光材料が一般式(1)で表される化合物を含有する、粒子状色変換材料である。
Figure JPOXMLDOC01-appb-C000002
 XはC-RまたはNである。R~Rはそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基から選択され、当該選択された基は隣接置換基との間で縮合環または脂肪族環を形成してもよい。
In order to solve the above-described problems and achieve the object, the present invention is a particulate color conversion material having a matrix resin and at least one luminescent material, wherein the luminescent material is represented by a general formula (1). Is a particulate color conversion material containing
Figure JPOXMLDOC01-appb-C000002
X is CR 7 or N. R 1 to R 9 may be the same or different and each may be hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, an alkylthio group, or an aryl group. Ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group, It is selected from a phosphine oxide group, and the selected group may form a condensed ring or an aliphatic ring with an adjacent substituent.
 本発明に係る色変換材料およびこれを用いた色変換部材は、高色純度と耐久性とが両立されているため、色再現性と耐久性とを両立させることが可能となる。 The color conversion material and the color conversion member using the same according to the present invention have both high color purity and durability, so that both color reproducibility and durability can be achieved.
本発明の色変換部材の一例を示す模式断面図である。FIG. 2 is a schematic sectional view illustrating an example of the color conversion member of the present invention. 本発明の色変換部材の一例を示す模式断面図である。FIG. 2 is a schematic sectional view illustrating an example of the color conversion member of the present invention. 本発明の色変換部材の一例を示す模式断面図である。FIG. 2 is a schematic sectional view illustrating an example of the color conversion member of the present invention. 本発明の実施例2における発光スペクトルである。9 is an emission spectrum in Example 2 of the present invention.
 以下、本発明の実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。 Hereinafter, embodiments of the present invention will be specifically described, but the present invention is not limited to the following embodiments, and can be implemented with various changes depending on purposes and applications.
 <発光材料>
 本発明の実施の形態に係る粒子状色変換材料は、少なくとも1種の発光材料を含む。ここで、本発明における発光材料とは、何らかの光が照射されたときに、その光とは異なる波長の光を発する材料のことをいう。有機発光材料は、有機物の発光材料である。
 高効率な色変換を達成するためには、発光材料が発光量子収率の高い発光特性を示す材料であることが好ましい。一般に、発光材料としては、無機蛍光体、蛍光顔料、蛍光染料、量子ドット等の公知の発光材料が挙げられる。中でも、分散の均一性、使用量の低減、環境負荷の低減の観点からは、有機発光材料が好ましい。
<Light-emitting material>
The particulate color conversion material according to the embodiment of the present invention contains at least one kind of luminescent material. Here, the light-emitting material in the present invention refers to a material that emits light having a different wavelength from the light when the light is irradiated. The organic light emitting material is an organic light emitting material.
In order to achieve high-efficiency color conversion, it is preferable that the light-emitting material is a material exhibiting high emission quantum yield and high emission characteristics. In general, known light-emitting materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots are used as the light-emitting materials. Among them, an organic luminescent material is preferable from the viewpoint of uniformity of dispersion, reduction of the amount of use, and reduction of environmental load.
 有機発光材料としては、以下に示すもの等が挙げられる。例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデン等の縮合アリール環を有する化合物やその誘導体等が、好適な有機発光材料として挙げられる。また、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピリジン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン等のヘテロアリール環を有する化合物やその誘導体、ボラン誘導体等が、好適な有機発光材料として挙げられる。 Examples of the organic light emitting material include the following. For example, a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, or indene, or a derivative thereof may be mentioned as a suitable organic light emitting material. Furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9′-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine, pyrazine, naphthyridine, quinoxaline, Suitable organic light-emitting materials include compounds having a heteroaryl ring such as pyrrolopyridine, derivatives thereof, and borane derivatives.
 また、1,4-ジスチリルベンゼン、4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベン等のスチルベン誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体等が、好適な有機発光材料として挙げられる。また、クマリン6、クマリン7、クマリン153等のクマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾール等のアゾール誘導体およびその金属錯体、インドシアニングリーン等のシアニン系化合物、フルオレセイン、エオシン、ローダミン等のキサンテン系化合物やチオキサンテン系化合物等が、好適な有機発光材料として挙げられる。 Also, 1,4-distyrylbenzene, 4,4′-bis (2- (4-diphenylaminophenyl) ethenyl) biphenyl, 4,4′-bis (N- (stilben-4-yl) -N-phenyl Suitable organic light-emitting materials include stilbene derivatives such as amino) stilbene, aromatic acetylene derivatives, tetraphenylbutadiene derivatives, aldazine derivatives, pyromethene derivatives, and diketopyrrolo [3,4-c] pyrrole derivatives. In addition, coumarin derivatives such as coumarin 6, coumarin 7, coumarin 153, azole derivatives such as imidazole, thiazole, thiadiazole, carbazole, oxazole, oxadiazole, and triazole and metal complexes thereof, cyanine compounds such as indocyanine green, fluorescein, Xanthene-based compounds such as eosin and rhodamine, thioxanthene-based compounds, and the like are mentioned as suitable organic light-emitting materials.
 また、ポリフェニレン系化合物、ナフタルイミド誘導体、フタロシアニン誘導体およびその金属錯体、ポルフィリン誘導体およびその金属錯体、ナイルレッドやナイルブルー等のオキサジン系化合物、ヘリセン系化合物、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン等の芳香族アミン誘導体等が、好適な有機発光材料として挙げられる。また、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)等の有機金属錯体化合物等が、好適な有機発光材料として挙げられる。しかし、本発明における有機発光材料は、上述したものに限定されない。 Also, polyphenylene compounds, naphthalimide derivatives, phthalocyanine derivatives and metal complexes thereof, porphyrin derivatives and metal complexes thereof, oxazine compounds such as Nile Red and Nile Blue, helicene compounds, N, N′-diphenyl-N, N ′ Suitable organic light emitting materials include aromatic amine derivatives such as -di (3-methylphenyl) -4,4'-diphenyl-1,1'-diamine. In addition, organic metal complex compounds such as iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re) are suitable for organic light emission. As a material. However, the organic light emitting material in the present invention is not limited to those described above.
 有機発光材料は、蛍光発光材料であっても、リン光発光材料であってもよいが、高い色純度を達成するためには、蛍光発光材料が好ましい。これらの中でも、熱的安定性および光安定性が高いことから、縮合アリール環を有する化合物やその誘導体が好ましい。 The organic light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, but a fluorescent light emitting material is preferable in order to achieve high color purity. Among these, compounds having a condensed aryl ring and derivatives thereof are preferable because of high thermal stability and high light stability.
 また、有機発光材料としては、溶解性や分子構造の多様性の観点から、配位結合を有する化合物が好ましい。半値幅が小さく、高効率な発光が可能である点で、フッ化ホウ素錯体等のホウ素を含有する化合物も好ましい。 化合物 As the organic light emitting material, a compound having a coordination bond is preferable from the viewpoint of solubility and diversity of molecular structure. A boron-containing compound such as a boron fluoride complex is also preferable in that the half width is small and light emission with high efficiency is possible.
 これらの化合物の中でも、高い蛍光量子収率を与え、耐久性が良好である点で、ピロメテン誘導体が好適に用いることができる。より好ましくは、一般式(1)で表される化合物である。本発明の実施の形態に係る粒子状色変換材料において、発光材料として、少なくとも一般式(1)で表される化合物を含有することが好ましい。 中 で も Among these compounds, a pyrromethene derivative can be suitably used because it gives a high fluorescence quantum yield and has good durability. More preferably, it is a compound represented by the general formula (1). The particulate color conversion material according to the embodiment of the present invention preferably contains at least a compound represented by the general formula (1) as a light emitting material.
Figure JPOXMLDOC01-appb-C000003
 XはC-RまたはNである。R~Rはそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、スルホ基、ホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。
Figure JPOXMLDOC01-appb-C000003
X is CR 7 or N. R 1 to R 9 may be the same or different and each may be hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, an alkylthio group, or an aryl group. Ether, arylthioether, aryl, heteroaryl, halogen, cyano, aldehyde, carbonyl, carboxyl, ester, carbamoyl, amino, nitro, silyl, siloxanyl, boryl, sulfo Group, a phosphine oxide group, and a condensed ring and an aliphatic ring formed between adjacent groups.
 上記の全ての基において、水素は重水素であってもよい。このことは、以下に説明する化合物またはその部分構造においても同様である。また、以下の説明において、例えば、炭素数6~40の置換もしくは無置換のアリール基とは、アリール基に置換した置換基に含まれる炭素数も含めて全ての炭素数が6~40となるアリール基である。炭素数を規定している他の置換基も、これと同様である。 水 素 In all of the above groups, hydrogen may be deuterium. The same applies to the compounds described below and their partial structures. Further, in the following description, for example, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms has 6 to 40 carbon atoms including the number of carbon atoms contained in the substituent substituted with the aryl group. An aryl group. The same applies to other substituents defining the number of carbon atoms.
 また、上記の全ての基において、置換される場合における置換基としては、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、スルホ基、ホスフィンオキシド基が好ましく、さらには、各置換基の説明において好ましいとする具体的な置換基が好ましい。また、これらの置換基は、さらに上述の置換基により置換されていてもよい。 In all of the above groups, when substituted, the substituent includes an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, and an alkylthio group. , Aryl ether, aryl thioether, aryl, heteroaryl, halogen, cyano, aldehyde, carbonyl, carboxyl, ester, carbamoyl, amino, nitro, silyl, siloxanyl, boryl , A sulfo group, and a phosphine oxide group are preferable, and specific substituents which are preferable in the description of each substituent are preferable. Further, these substituents may be further substituted by the above-mentioned substituents.
 「置換もしくは無置換の」という場合における「無置換」とは、水素原子または重水素原子が置換したことを意味する。以下に説明する化合物またはその部分構造において、「置換もしくは無置換の」という場合についても、上記と同様である。 「" Unsubstituted "in the case of" substituted or unsubstituted "means that a hydrogen atom or a deuterium atom has been substituted. The same applies to the case of “substituted or unsubstituted” in the compounds described below or their partial structures.
 上記の全ての基のうち、アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等の飽和脂肪族炭化水素基を示し、これは、置換基を有していても有していなくてもよい。また、アルキル基の炭素数は、特に限定されないが、入手の容易性やコストの点から、好ましくは1以上20以下、より好ましくは1以上8以下の範囲である。 Among all the above groups, the alkyl group means, for example, a saturated aliphatic hydrocarbon such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert-butyl group. Represents a group, which may or may not have a substituent. The number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 20 and more preferably 1 to 8 from the viewpoint of availability and cost.
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基等の飽和脂環式炭化水素基を示し、これは、置換基を有していても有していなくてもよい。アルキル基部分の炭素数は、特に限定されないが、好ましくは、3以上20以下の範囲である。 The cycloalkyl group refers to, for example, a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, which may or may not have a substituent. . The number of carbon atoms in the alkyl group portion is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミド等の炭素以外の原子を環内に有する脂肪族環を示し、これは、置換基を有していても有していなくてもよい。複素環基の炭素数は、特に限定されないが、好ましくは、2以上20以下の範囲である。 The heterocyclic group refers to, for example, an aliphatic ring having atoms other than carbon in the ring, such as a pyran ring, a piperidine ring, and a cyclic amide, which may or may not have a substituent. Good. The carbon number of the heterocyclic group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基等の二重結合を含む不飽和脂肪族炭化水素基を示し、これは、置換基を有していても有していなくてもよい。アルケニル基の炭素数は、特に限定されないが、好ましくは、2以上20以下の範囲である。 An alkenyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent. . The carbon number of the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基等の二重結合を含む不飽和脂環式炭化水素基を示し、これは、置換基を有していても有していなくてもよい。 The cycloalkenyl group refers to, for example, an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, and a cyclohexenyl group, which may have a substituent. It is not necessary to have.
 アルキニル基とは、例えば、エチニル基等の三重結合を含む不飽和脂肪族炭化水素基を示し、これは、置換基を有していても有していなくてもよい。アルキニル基の炭素数は、特に限定されないが、好ましくは、2以上20以下の範囲である。 Alkynyl group means, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent. The number of carbon atoms of the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基等のエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は、置換基を有していても有していなくてもよい。アルコキシ基の炭素数は、特に限定されないが、好ましくは、1以上20以下の範囲である。 The alkoxy group refers to, for example, a functional group in which an aliphatic hydrocarbon group is bonded via an ether bond such as a methoxy group, an ethoxy group, and a propoxy group.The aliphatic hydrocarbon group has a substituent. May not be included. The carbon number of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は、置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は、特に限定されないが、好ましくは、1以上20以下の範囲である。 An alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent. The carbon number of the alkylthio group is not particularly limited, but is preferably in the range of 1 to 20.
 アリールエーテル基とは、例えば、フェノキシ基等、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は、置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は、特に限定されないが、好ましくは、6以上40以下の範囲である。 An aryl ether group refers to, for example, a functional group in which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Is also good. The carbon number of the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールチオエーテル基における芳香族炭化水素基は、置換基を有していても有していなくてもよい。アリールチオエーテル基の炭素数は、特に限定されないが、好ましくは、6以上40以下の範囲である。 The arylthioether group is a group in which an oxygen atom of an ether bond of the arylether group is substituted with a sulfur atom. The aromatic hydrocarbon group in the arylthioether group may or may not have a substituent. The number of carbon atoms of the arylthioether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリール基とは、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フェナントリル基、アントラセニル基、ベンゾフェナントリル基、ベンゾアントラセニル基、クリセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、ベンゾフルオランテニル基、ジベンゾアントラセニル基、ペリレニル基、ヘリセニル基等の芳香族炭化水素基を示す。中でも、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基が好ましい。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は、特に限定されないが、好ましくは6以上40以下、より好ましくは6以上30以下の範囲である。 The aryl group includes, for example, phenyl, biphenyl, terphenyl, naphthyl, fluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthryl, anthracenyl, benzophenanthryl, benzoanthracene And an aromatic hydrocarbon group such as a phenyl group, a chrysenyl group, a pyrenyl group, a fluoranthenyl group, a triphenylenyl group, a benzofluoranthenyl group, a dibenzoanthracenyl group, a perylenyl group, and a helicenyl group. Among them, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an anthracenyl group, a pyrenyl group, a fluoranthenyl group, and a triphenylenyl group are preferred. The aryl group may or may not have a substituent. The carbon number of the aryl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less, and more preferably in the range of 6 or more and 30 or less.
 R~Rが置換もしくは無置換のアリール基である場合、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましく、フェニル基、ビフェニル基、ターフェニル基、ナフチル基がより好ましい。さらに好ましくは、フェニル基、ビフェニル基、ターフェニル基であり、フェニル基が特に好ましい。 When R 1 to R 9 are a substituted or unsubstituted aryl group, the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group or an anthracenyl group, and a phenyl group, a biphenyl group Groups, terphenyl groups and naphthyl groups are more preferred. More preferred are phenyl, biphenyl and terphenyl, with phenyl being particularly preferred.
 それぞれの置換基がさらにアリール基で置換される場合、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましく、フェニル基、ビフェニル基、ターフェニル基、ナフチル基がより好ましい。特に好ましくは、フェニル基である。 When each substituent is further substituted with an aryl group, the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, or an anthracenyl group, and a phenyl group, a biphenyl group, A phenyl group and a naphthyl group are more preferred. Particularly preferred is a phenyl group.
 ヘテロアリール基とは、例えば、ピリジル基、フラニル基、チエニル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ピリダジニル基、トリアジニル基、ナフチリジニル基、シンノリニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ベンゾカルバゾリル基、カルボリニル基、インドロカルバゾリル基、ベンゾフロカルバゾリル基、ベンゾチエノカルバゾリル基、ジヒドロインデノカルバゾリル基、ベンゾキノリニル基、アクリジニル基、ジベンゾアクリジニル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基等の、炭素以外の原子を一個または複数個環内に有する環状芳香族基を示す。ただし、ナフチリジニル基とは、1,5-ナフチリジニル基、1,6-ナフチリジニル基、1,7-ナフチリジニル基、1,8-ナフチリジニル基、2,6-ナフチリジニル基、2,7-ナフチリジニル基のいずれかを示す。ヘテロアリール基は、置換基を有していても有していなくてもよい。ヘテロアリール基の炭素数は、特に限定されないが、好ましくは、2以上40以下、より好ましくは2以上30以下の範囲である。 Heteroaryl group, for example, pyridyl group, furanyl group, thienyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, triazinyl group, naphthyridinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, Benzofuranyl, benzothienyl, indolyl, dibenzofuranyl, dibenzothienyl, carbazolyl, benzocarbazolyl, carbolinyl, indolocarbazolyl, benzofurcarbazolyl, benzothienocarbazolyl Group, dihydroindenocarbazolyl group, benzoquinolinyl group, acridinyl group, dibenzoacridinyl group, benzimidazolyl group, imidazopyridyl group, benzoxazolyl group, benzothiazolyl group, phenanthrolinyl group, etc. Atoms other than carbon shows a cyclic aromatic group having a single or a plurality of rings. However, naphthyridinyl means any of 1,5-naphthyridinyl, 1,6-naphthyridinyl, 1,7-naphthyridinyl, 1,8-naphthyridinyl, 2,6-naphthyridinyl, and 2,7-naphthyridinyl. Indicates The heteroaryl group may or may not have a substituent. Although the carbon number of the heteroaryl group is not particularly limited, it is preferably in the range of 2 or more and 40 or less, more preferably 2 or more and 30 or less.
 R~Rが置換もしくは無置換のヘテロアリール基である場合、ヘテロアリール基としては、ピリジル基、フラニル基、チエニル基、キノリニル基、ピリミジル基、トリアジニル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基が好ましく、ピリジル基、フラニル基、チエニル基、キノリニル基がより好ましい。特に好ましくは、ピリジル基である。 When R 1 to R 9 are a substituted or unsubstituted heteroaryl group, examples of the heteroaryl group include pyridyl, furanyl, thienyl, quinolinyl, pyrimidyl, triazinyl, benzofuranyl, benzothienyl, and indolyl. Group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, benzimidazolyl group, imidazopyridyl group, benzoxazolyl group, benzothiazolyl group, phenanthrolinyl group is preferred, and pyridyl group, furanyl group, thienyl group, quinolinyl group is preferred. More preferred. Particularly preferred is a pyridyl group.
 それぞれの置換基がさらにヘテロアリール基で置換される場合、ヘテロアリール基としては、ピリジル基、フラニル基、チエニル基、キノリニル基、ピリミジル基、トリアジニル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基が好ましく、ピリジル基、フラニル基、チエニル基、キノリニル基がより好ましい。特に好ましくは、ピリジル基である。 When each substituent is further substituted with a heteroaryl group, examples of the heteroaryl group include pyridyl, furanyl, thienyl, quinolinyl, pyrimidyl, triazinyl, benzofuranyl, benzothienyl, indolyl, and dibenzoyl. A furanyl group, a dibenzothienyl group, a carbazolyl group, a benzimidazolyl group, an imidazopyridyl group, a benzoxazolyl group, a benzothiazolyl group, and a phenanthrolinyl group are preferred, and a pyridyl group, a furanyl group, a thienyl group, and a quinolinyl group are more preferred. Particularly preferred is a pyridyl group.
 ハロゲンとは、フッ素、塩素、臭素およびヨウ素から選ばれる原子を示す。 Halogen indicates an atom selected from fluorine, chlorine, bromine and iodine.
 エステル基とは、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基などがエステル結合を介して結合した官能基を示し、この置換基はさらに置換されていてもよい。エステル基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。より具体的には、メトキシカルボニル基などのメチルエステル基、エトキシカルボニル基などのエチルエステル基、プロポキシカルボニル基などのプロピルエステル基、ブトキシカルボニル基などのブチルエステル基、イソプロポキシメトキシカルボニル基などのイソプロピルエステル基、ヘキシロキシカルボニル基などのヘキシルエステル基、フェノキシカルボニル基などのフェニルエステル基などが挙げられる。また、カルボニル基、カルボキシル基、エステル基、カルバモイル基は、置換基を有していても有していなくてもよい。 The ester group is, for example, a functional group in which an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like are bonded via an ester bond, and the substituent may be further substituted. The carbon number of the ester group is not particularly limited, but is preferably in the range of 1 or more and 20 or less. More specifically, a methyl ester group such as a methoxycarbonyl group, an ethyl ester group such as an ethoxycarbonyl group, a propyl ester group such as a propoxycarbonyl group, a butyl ester group such as a butoxycarbonyl group, and an isopropyl group such as an isopropoxymethoxycarbonyl group. Examples include an ester group, a hexyl ester group such as a hexyloxycarbonyl group, and a phenyl ester group such as a phenoxycarbonyl group. Further, the carbonyl group, carboxyl group, ester group, and carbamoyl group may or may not have a substituent.
 アミノ基とは、置換もしくは無置換のアミノ基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基等が挙げられる。アリール基、ヘテロアリール基としては、フェニル基、ナフチル基、ピリジル基、キノリニル基が好ましい。これら置換基は、さらに置換されてもよい。炭素数は、特に限定されないが、好ましくは、2以上50以下、より好ましくは6以上40以下、特に好ましくは6以上30以下の範囲である。 Amino group is a substituted or unsubstituted amino group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, and a branched alkyl group. As the aryl group and the heteroaryl group, a phenyl group, a naphthyl group, a pyridyl group, and a quinolinyl group are preferable. These substituents may be further substituted. The carbon number is not particularly limited, but is preferably in the range of 2 to 50, more preferably 6 to 40, and particularly preferably 6 to 30.
 シリル基とは、例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、プロピルジメチルシリル基、ビニルジメチルシリル基等のアルキルシリル基や、フェニルジメチルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、トリナフチルシリル基等のアリールシリル基を示す。ケイ素上の置換基は、さらに置換されてもよい。シリル基の炭素数は、特に限定されないが、好ましくは、1以上30以下の範囲である。 The silyl group includes, for example, an alkylsilyl group such as a trimethylsilyl group, a triethylsilyl group, a tert-butyldimethylsilyl group, a propyldimethylsilyl group, a vinyldimethylsilyl group, a phenyldimethylsilyl group, a tert-butyldiphenylsilyl group, And an arylsilyl group such as a phenylsilyl group and a trinaphthylsilyl group. Substituents on silicon may be further substituted. The carbon number of the silyl group is not particularly limited, but is preferably in the range of 1 to 30.
 シロキサニル基とは、例えば、トリメチルシロキサニル基等のエーテル結合を介したケイ素化合物基を示す。ケイ素上の置換基は、さらに置換されてもよい。
 また、ボリル基とは、置換もしくは無置換のボリル基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基、アリールエーテル基、アルコキシ基、ヒドロキシル基等が挙げられる。中でも、アリール基、アリールエーテル基が好ましい。
The siloxanyl group indicates, for example, a silicon compound group via an ether bond such as a trimethylsiloxanyl group. Substituents on silicon may be further substituted.
The boryl group is a substituted or unsubstituted boryl group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group, and a hydroxyl group. Among them, an aryl group and an aryl ether group are preferable.
 スルホ基とは、置換もしくは無置換のスルホ基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基、アリールエーテル基、アルコキシ基等が挙げられる。中でも、直鎖アルキル基、アリール基が好ましい。
 ホスフィンオキシド基とは、-P(=O)R1011で表される基である。R1011は、R~Rと同様の群から選ばれる。
The sulfo group is a substituted or unsubstituted sulfo group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, and an alkoxy group. Especially, a linear alkyl group and an aryl group are preferable.
A phosphine oxide group is a group represented by —P (= O) R 10 R 11 . R 10 R 11 is selected from the same group as R 1 to R 9 .
 隣接置換基との間に形成される縮合環および脂肪族環とは、任意の隣接する2置換基(例えば一般式(1)のRとR)が互いに結合して、共役または非共役の環状骨格を形成することをいう。このような縮合環および脂肪族環の構成元素としては、炭素以外にも、窒素、酸素、硫黄、リンおよびケイ素から選ばれる元素を含んでいてもよい。また、これらの縮合環および脂肪族環は、さらに別の環と縮合してもよい。 A condensed ring and an aliphatic ring formed between adjacent substituents are conjugated or non-conjugated when any two adjacent substituents (for example, R 1 and R 2 in the general formula (1)) are bonded to each other. To form a cyclic skeleton. Such a constitutive element of the condensed ring and the aliphatic ring may include an element selected from nitrogen, oxygen, sulfur, phosphorus, and silicon, in addition to carbon. Further, these condensed ring and aliphatic ring may be further condensed with another ring.
 一般式(1)で表される化合物は、高い発光量子収率を示し、かつ、発光スペクトルの半値幅が小さいため、効率的な色変換と高い色純度との双方を達成することができる。さらに、一般式(1)で表される化合物は、適切な置換基を適切な位置に導入することで、発光効率、色純度、熱的安定性、光安定性および分散性等の様々な特性や物性を調整することができる。例えば、R、R、RおよびRが全て水素である場合に比べ、R、R、RおよびRの少なくとも1つが置換もしくは無置換のアルキル基や置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基である場合の方が、より良い熱的安定性および光安定性を示す。 The compound represented by the general formula (1) exhibits a high emission quantum yield and has a small half width of the emission spectrum, so that both efficient color conversion and high color purity can be achieved. Furthermore, the compound represented by the general formula (1) has various characteristics such as luminous efficiency, color purity, thermal stability, light stability and dispersibility by introducing an appropriate substituent at an appropriate position. And physical properties can be adjusted. For example, compared to the case where all of R 1 , R 3 , R 4 and R 6 are hydrogen, at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted alkyl group. An aryl group or a substituted or unsubstituted heteroaryl group shows better thermal stability and light stability.
 R、R、RおよびRの少なくとも1つが置換もしくは無置換のアルキル基である場合、アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基といった炭素数1~6のアルキル基が好ましい。さらに、このアルキル基としては、熱的安定性に優れるという観点から、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が好ましい。また、濃度消光を防ぎ、発光量子収率を向上させるという観点では、このアルキル基として、立体的にかさ高いtert-ブチル基がより好ましい。また、合成の容易さ、原料入手の容易さという観点から、このアルキル基として、メチル基も好ましく用いられる。 When at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted alkyl group, the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, An alkyl group having 1 to 6 carbon atoms such as a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group is preferred. Further, as the alkyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group are preferable from the viewpoint of excellent thermal stability. From the viewpoint of preventing concentration quenching and improving the emission quantum yield, a sterically bulky tert-butyl group is more preferred as the alkyl group. From the viewpoint of ease of synthesis and availability of raw materials, a methyl group is also preferably used as the alkyl group.
 R、R、RおよびRの少なくとも1つが置換もしくは無置換のアリール基である場合、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基が好ましく、さらに好ましくは、フェニル基、ビフェニル基である。特に好ましくは、フェニル基である。 When at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted aryl group, the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group or a naphthyl group, more preferably, A phenyl group and a biphenyl group. Particularly preferred is a phenyl group.
 R、R、RおよびRの少なくとも1つが置換もしくは無置換のヘテロアリール基である場合、ヘテロアリール基としては、ピリジル基、キノリニル基、チエニル基が好ましく、さらに好ましくは、ピリジル基、キノリニル基である。特に好ましくは、ピリジル基である。 When at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted heteroaryl group, the heteroaryl group is preferably a pyridyl group, a quinolinyl group or a thienyl group, more preferably a pyridyl group. Quinolinyl group. Particularly preferred is a pyridyl group.
 R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基である場合、マトリクス樹脂や溶媒への溶解性が良好なため、好ましい。この場合、アルキル基としては、合成の容易さ、原料入手の容易さという観点から、メチル基が好ましい。 R 1 , R 3 , R 4 and R 6 may all be the same or different, and are preferably a substituted or unsubstituted alkyl group because of good solubility in a matrix resin and a solvent. In this case, the alkyl group is preferably a methyl group from the viewpoint of ease of synthesis and availability of raw materials.
 R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基である場合、より良い熱的安定性および光安定性を示すため、好ましい。この場合、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基であることがより好ましい。 When R 1 , R 3 , R 4 and R 6 are all the same or different and are each a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group, better thermal stability and It is preferable because it shows light stability. In this case, all of R 1 , R 3 , R 4 and R 6 may be the same or different, and are more preferably a substituted or unsubstituted aryl group.
 複数の性質を向上させる置換基もあるが、全てにおいて十分な性能を示す置換基は限られている。特に、高発光効率と高色純度との両立が難しい。そのため、一般式(1)で表される化合物に対して複数種類の置換基を導入することで、発光特性や色純度等にバランスの取れた化合物を得ることが可能である。 置換 Some substituents improve multiple properties, but those that exhibit sufficient performance in all are limited. In particular, it is difficult to achieve both high luminous efficiency and high color purity. Therefore, by introducing a plurality of types of substituents into the compound represented by the general formula (1), it is possible to obtain a compound that is balanced in light emission characteristics, color purity, and the like.
 特に、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基の場合、例えば、R≠R、R≠R、R≠RまたはR≠R等のように、複数種類の置換基を導入することが好ましい。ここで「≠」は、異なる構造の基であることを示す。例えば、R≠Rは、R1とR4とが異なる構造の基であることを示す。上記のように複数種類の置換基を導入することにより、色純度に影響を与えるアリール基と発光効率に影響を与えるアリール基とを同時に導入することができるため、細やかな調節が可能となる。 In particular, all of R 1 , R 3 , R 4 and R 6 may be the same or different, and in the case of a substituted or unsubstituted aryl group, for example, R 1 ≠ R 4 , R 3 ≠ R 6 , R It is preferable to introduce a plurality of types of substituents such as 1 ≠ R 3 or R 4 ≠ R 6 . Here, “≠” indicates a group having a different structure. For example, R 1 ≠ R 4 indicates that R 1 and R 4 are groups having different structures. By introducing a plurality of types of substituents as described above, an aryl group that affects color purity and an aryl group that affects luminous efficiency can be simultaneously introduced, so that fine adjustment can be performed.
 中でも、R≠RまたはR≠Rであることが、発光効率と色純度をバランスよく向上させるという観点から、好ましい。この場合、一般式(1)で表される化合物に対して、色純度に影響を与えるアリール基を両側のピロール環にそれぞれ1つ以上導入し、それ以外の位置に発光効率に影響を与えるアリール基を導入することができるため、これら両方の性質を最大限に向上させることができる。また、R≠RまたはR≠Rである場合、耐熱性と色純度との双方を向上させるという観点から、R=RおよびR=Rであることがより好ましい。 Among them, it is preferable that R 1 ≠ R 3 or R 4 ≠ R 6 from the viewpoint of improving the luminous efficiency and the color purity in a well-balanced manner. In this case, for the compound represented by the general formula (1), one or more aryl groups that affect color purity are introduced into the pyrrole rings on both sides, and aryl groups that affect luminous efficiency at other positions. Since a group can be introduced, both properties can be maximized. When R 1 ≠ R 3 or R 4 ≠ R 6 , it is more preferable that R 1 RR 6 and R 3 RR 4 from the viewpoint of improving both heat resistance and color purity.
 主に色純度に影響を与えるアリール基としては、電子供与性基で置換されたアリール基が好ましい。電子供与性基とは、有機電子論において、誘起効果や共鳴効果により、置換した原子団に、電子を供与する原子団である。電子供与性基としては、ハメット則の置換基定数(σp(パラ))として、負の値をとるものが挙げられる。ハメット則の置換基定数(σp(パラ))は、化学便覧基礎編改訂5版(II-380頁)から引用することができる。 ア リ ー ル As the aryl group that mainly affects color purity, an aryl group substituted with an electron donating group is preferable. The electron donating group is an atomic group that provides an electron to a substituted atomic group due to an induction effect or a resonance effect in organic electron theory. Examples of the electron donating group include those having a negative value as a substituent constant (σp (para)) according to the Hammett rule. The substituent constant (σp (para)) of the Hammett's rule can be quoted from Chemical Handbook Basic Edition, Revised 5th Edition (page II-380).
 電子供与性基の具体例としては、例えば、アルキル基(メチル基のσp:-0.17)やアルコキシ基(メトキシ基のσp:-0.27)、アミノ基(―NHのσp:-0.66)等が挙げられる。特に、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基が好ましく、メチル基、エチル基、tert-ブチル基、メトキシ基がより好ましい。分散性の観点からは、tert-ブチル基、メトキシ基が特に好ましく、これらを上記の電子供与性基とした場合、一般式(1)で表される化合物において、分子同士の凝集による消光を防ぐことができる。置換基の置換位置は、特に限定されないが、一般式(1)で表される化合物の光安定性を高めるには結合のねじれを抑える必要があるため、ピロメテン骨格との結合位置に対してメタ位またはパラ位に結合させることが好ましい。一方、主に発光効率に影響を与えるアリール基としては、tert-ブチル基、アダマンチル基、メトキシ基等のかさ高い置換基を有するアリール基が好ましい。 Specific examples of electron donating groups, for example, an alkyl group (.sigma.p methyl group: -0.17) and alkoxy groups (.sigma.p methoxy groups: -0.27), .sigma.p amino group (-NH 2: - 0.66). Particularly, an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms is preferable, and a methyl group, an ethyl group, a tert-butyl group, and a methoxy group are more preferable. From the viewpoint of dispersibility, a tert-butyl group and a methoxy group are particularly preferred. When these are used as the above-mentioned electron donating group, quenching due to aggregation of molecules in the compound represented by the general formula (1) is prevented. be able to. Although the substitution position of the substituent is not particularly limited, it is necessary to suppress the twist of the bond in order to enhance the photostability of the compound represented by the general formula (1). It is preferred to attach to the position or para. On the other hand, as an aryl group that mainly affects luminous efficiency, an aryl group having a bulky substituent such as a tert-butyl group, an adamantyl group, and a methoxy group is preferable.
 R、R、RおよびRが、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基である場合、R、R、RおよびRは、それぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基であることが好ましい。このとき、R、R、RおよびRは、それぞれ以下のAr-1~Ar-6から選ばれることがより好ましい。 R 1 , R 3 , R 4 and R 6 may be the same or different, and when each is a substituted or unsubstituted aryl group, R 1 , R 3 , R 4 and R 6 are the same or different. And it is preferably a substituted or unsubstituted phenyl group. At this time, R 1 , R 3 , R 4 and R 6 are more preferably selected from the following Ar-1 to Ar-6, respectively.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)において、Xは、C-Rであることが、光安定性の観点から好ましい。XがC-Rであるとき、一般式(1)で表される化合物の耐久性、すなわち、この化合物の発光強度の経時的な低下には、置換基Rが大きく影響する。具体的には、Rが水素である場合、この部位の反応性が高いため、この部位と空気中の水分や酸素とが容易に反応してしまう。このことは、一般式(1)で表される化合物の分解を引き起こす。また、Rが例えばアルキル基のような分子鎖の運動の自由度が大きい置換基である場合は、確かに反応性は低下するが、色変換材料中で化合物同士が経時的に凝集し、結果的に濃度消光による発光強度の低下を招く。したがって、Rは、剛直で、かつ運動の自由度が小さく凝集を引き起こしにくい基であることが好ましく、具体的には、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基のいずれかであることが好ましい。 In the general formula (1), X, it is preferable from the viewpoint of light stability is C-R 7. When X is C—R 7 , the substituent R 7 has a great effect on the durability of the compound represented by the general formula (1), that is, the decrease over time in the emission intensity of the compound. Specifically, when R 7 is hydrogen, the reactivity of this site is high, and this site easily reacts with moisture or oxygen in the air. This causes decomposition of the compound represented by the general formula (1). Further, when R 7 is a substituent having a large degree of freedom of movement of a molecular chain such as an alkyl group, the reactivity certainly decreases, but the compounds aggregate over time in the color conversion material, As a result, the emission intensity is reduced due to concentration quenching. Therefore, R 7 is preferably a group that is rigid, has a small degree of freedom of movement, and hardly causes aggregation. Specifically, R 7 is preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. Preferably, it is either one.
 より高い蛍光量子収率を与え、より熱分解しづらい点、また光安定性の観点から、XがC-Rであり、Rが置換もしくは無置換のアリール基であることが好ましい。アリール基としては、発光波長を損なわないという観点から、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましい。 It is preferable that X is CR 7 and R 7 is a substituted or unsubstituted aryl group from the viewpoints of giving a higher fluorescence quantum yield, harder thermal decomposition, and light stability. As the aryl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, and an anthracenyl group are preferable from the viewpoint of not impairing the emission wavelength.
 さらに、一般式(1)で表される化合物の光安定性を高めるには、Rとピロメテン骨格の炭素-炭素結合のねじれを適度に抑える必要がある。何故ならば、過度にねじれが大きいと、励起光に対する反応性が高まる等、光安定性が低下するからである。このような観点から、Rとしては、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のナフチル基が好ましく、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基であることがより好ましい。特に好ましくは、置換もしくは無置換のフェニル基である。 Furthermore, in order to enhance the photostability of the compound represented by the general formula (1), it is necessary to appropriately suppress the twist of the carbon-carbon bond between R 7 and the pyromethene skeleton. This is because if the twist is excessively large, the photostability decreases, for example, the reactivity to the excitation light increases. From such a viewpoint, R 7 is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, or a substituted or unsubstituted naphthyl group, and is preferably a substituted or unsubstituted naphthyl group. Is more preferably a phenyl group, a substituted or unsubstituted biphenyl group, or a substituted or unsubstituted terphenyl group. Particularly preferred is a substituted or unsubstituted phenyl group.
 また、Rは、適度にかさ高い置換基であることが好ましい。Rが、ある程度のかさ高さを有することで分子の凝集を防ぐことができ、その結果、一般式(1)で表される化合物の発光効率や耐久性がより向上する。 Also, R 7 is preferably a suitably bulky substituent. R 7 is, it is possible to prevent aggregation of the molecules to have some bulkiness, as a result, emission efficiency and durability of the compound represented by the general formula (1) is further improved.
 このようなかさ高い置換基のさらに好ましい例としては、下記一般式(2)で表されるRの構造が挙げられる。
Figure JPOXMLDOC01-appb-C000005
A more preferable example of such a bulky substituent includes a structure of R 7 represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000005
 一般式(2)において、rは、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、スルホ基、ホスフィンオキシド基からなる群より選ばれる。kは1~3の整数である。kが2以上である場合、rはそれぞれ同じでも異なっても良い。 In the general formula (2), r is hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, an alkylthio group, an arylether group, or an arylthioether. Group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group, sulfo group, phosphine oxide group Selected from the group consisting of k is an integer of 1 to 3. When k is 2 or more, r may be the same or different.
 より高い発光量子収率を与えることができるという観点から、rは、置換もしくは無置換のアリール基であることが好ましい。このアリール基の中でも、特に、フェニル基、ナフチル基が好ましい例として挙げられる。rがアリール基である場合、一般式(2)のkは、1もしくは2であることが好ましく、中でも、分子の凝集をより防ぐという観点から2であることがより好ましい。さらに、kが2以上である場合、rの少なくとも1つは、アルキル基で置換されていることが好ましい。この場合のアルキル基としては、熱的安定性の観点から、メチル基、エチル基およびtert-ブチル基が特に好ましい例として挙げられる。 R From the viewpoint that a higher emission quantum yield can be obtained, r is preferably a substituted or unsubstituted aryl group. Of these aryl groups, particularly preferred are a phenyl group and a naphthyl group. When r is an aryl group, k in the general formula (2) is preferably 1 or 2, and more preferably 2 from the viewpoint of further preventing aggregation of molecules. Further, when k is 2 or more, it is preferable that at least one of r is substituted with an alkyl group. As the alkyl group in this case, a methyl group, an ethyl group, and a tert-butyl group are particularly preferable examples from the viewpoint of thermal stability.
 また、蛍光波長や吸収波長を制御したり、溶媒との相溶性を高めたりするという観点から、rは、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基またはハロゲンであることが好ましく、メチル基、エチル基、tert-ブチル基、メトキシ基がより好ましい。分散性の観点からは、tert-ブチル基、メトキシ基が特に好ましい。rがtert-ブチル基またはメトキシ基であることは、分子同士の凝集による消光を防ぐことについて、より有効である。 Further, from the viewpoint of controlling the fluorescence wavelength or absorption wavelength or increasing the compatibility with the solvent, r is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or a halogen. , A methyl group, an ethyl group, a tert-butyl group and a methoxy group are more preferred. From the viewpoint of dispersibility, a tert-butyl group and a methoxy group are particularly preferred. When r is a tert-butyl group or a methoxy group, it is more effective in preventing quenching due to aggregation of molecules.
 また、一般式(1)で表される化合物の別の態様として、R~Rのうち少なくとも1つが電子求引基であることが好ましい。特に、(1)R~Rのうち少なくとも1つが電子求引基であること、(2)Rが電子求引基であること、または(3)R~Rのうち少なくとも1つが電子求引基であり、かつ、Rが電子求引基であること、が好ましい。このように上記化合物のピロメテン骨格に電子求引基を導入することで、ピロメテン骨格の電子密度を大幅に下げることができる。これにより、上記化合物の酸素に対する安定性がより向上し、その結果、上記化合物の耐久性をより向上させることができる。 In another embodiment of the compound represented by the general formula (1), it is preferable that at least one of R 1 to R 7 is an electron withdrawing group. In particular, (1) at least one of R 1 to R 6 is an electron withdrawing group, (2) R 7 is an electron withdrawing group, or (3) at least one of R 1 to R 6 It is preferred that one is an electron withdrawing group and that R 7 is an electron withdrawing group. As described above, by introducing an electron withdrawing group into the pyrromethene skeleton of the compound, the electron density of the pyrromethene skeleton can be significantly reduced. Thereby, the stability of the compound to oxygen is further improved, and as a result, the durability of the compound can be further improved.
 電子求引基とは、電子受容性基とも呼称し、有機電子論において、誘起効果や共鳴効果により、置換した原子団から、電子を引き付ける原子団である。電子求引基としては、ハメット則の置換基定数(σp(パラ))として、正の値をとるものが挙げられる。ハメット則の置換基定数(σp(パラ))は、化学便覧基礎編改訂5版(II-380頁)から引用することができる。なお、フェニル基も、上記のような正の値をとる例もあるが、本発明において、電子求引基にフェニル基は含まれない。 An electron-withdrawing group is also called an electron-accepting group, and is an atomic group that attracts electrons from a substituted atomic group due to an induction effect or a resonance effect in organic electron theory. Examples of the electron withdrawing group include those having a positive value as a substituent constant (σp (para)) according to the Hammett rule. The substituent constant (σp (para)) of the Hammett's rule can be quoted from Chemical Handbook Basic Edition, Revised 5th Edition (page II-380). Although the phenyl group may have a positive value as described above, the electron-withdrawing group does not include the phenyl group in the present invention.
 電子求引基の例として、例えば、-F(σp:+0.06)、-Cl(σp:+0.23)、-Br(σp:+0.23)、-I(σp:+0.18)、-CO12(σp:R12がエチル基の時+0.45)、-CONH(σp:+0.38)、-COR12(σp:R12がメチル基の時+0.49)、-CF(σp:+0.50)、-SO12(σp:R12がメチル基の時+0.69)、-NO(σp:+0.81)等が挙げられる。R12は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のシクロアルキル基を表す。これら各基の具体例としては、上記と同様の例が挙げられる。 Examples of electron withdrawing groups include, for example, -F (σp: +0.06), -Cl (σp: +0.23), -Br (σp: +0.23), -I (σp: +0.18), —CO 2 R 12 (σp: +0.45 when R 12 is an ethyl group), —CONH 2 (σp: +0.38), —COR 12 (σp: +0.49 when R 12 is a methyl group), − CF 3 (σp: +0.50), - SO 2 R 12 (σp: when R 12 is a methyl group +0.69), - NO 2 (σp : +0.81) , and the like. R 12 is each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atom atoms, a substituted or unsubstituted heterocyclic group. Represents a substituted alkyl group having 1 to 30 carbon atoms and a substituted or unsubstituted cycloalkyl group having 1 to 30 carbon atoms. Specific examples of these groups include the same examples as described above.
 好ましい電子求引基としては、フッ素、含フッ素アリール基、含フッ素ヘテロアリール基、含フッ素アルキル基、置換もしくは無置換のカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のアミド基、置換もしくは無置換のスルホニル基またはシアノ基が挙げられる。何故なら、これらは、化学的に分解しにくいからである。 Preferred electron withdrawing groups include fluorine, a fluorinated aryl group, a fluorinated heteroaryl group, a fluorinated alkyl group, a substituted or unsubstituted carbonyl group, a substituted or unsubstituted ester group, a substituted or unsubstituted amide group, Examples thereof include a substituted or unsubstituted sulfonyl group or a cyano group. This is because they are hardly chemically decomposed.
 より好ましい電子求引基としては、含フッ素アルキル基、置換もしくは無置換のカルボニル基、置換もしくは無置換のエステル基またはシアノ基が挙げられる。何故なら、これらは、濃度消光を防ぎ、発光量子収率を向上させる効果につながるからである。特に好ましい電子求引基は、置換もしくは無置換のエステル基である。 More preferred electron withdrawing groups include fluorinated alkyl groups, substituted or unsubstituted carbonyl groups, substituted or unsubstituted ester groups, and cyano groups. This is because these lead to the effect of preventing concentration quenching and improving the emission quantum yield. Particularly preferred electron withdrawing groups are substituted or unsubstituted ester groups.
 RおよびRは、熱的安定性の観点から、水素、アルキル基、アリール基のいずれかであることが好ましく、発光スペクトルにおいて狭い半値幅を得やすいという観点から、水素がより好ましい。 R 2 and R 5 are preferably hydrogen, an alkyl group, or an aryl group from the viewpoint of thermal stability, and more preferably hydrogen from the viewpoint that a narrow half-value width is easily obtained in an emission spectrum.
 また、耐久性を向上させる観点から、RおよびRの少なくとも一方が、それぞれ同じでも異なっていてもよく、電子求引基であることも好ましい。中でも、RおよびRの少なくとも一方が、それぞれ同じでも異なっていてもよく、置換もしくは無置換のエステル基であることが、色純度を落とすことなく、耐久性を向上させることができるため、好ましい。特に、RおよびRが共に、それぞれ同じでも異なっていてもよく、置換もしくは無置換のエステル基であることが、耐久性の向上の観点から、特に好ましい。 From the viewpoint of improving durability, at least one of R 2 and R 5 may be the same or different, and is preferably an electron-withdrawing group. Among them, at least one of R 2 and R 5 may be the same or different, and a substituted or unsubstituted ester group can improve durability without reducing color purity. preferable. In particular, both R 2 and R 5 may be the same or different, and it is particularly preferable that they are substituted or unsubstituted ester groups from the viewpoint of improving durability.
 RおよびRは、アルキル基、アリール基、ヘテロアリール基、フッ素、含フッ素アルキル基、含フッ素ヘテロアリール基または含フッ素アリール基、シアノ基が好ましい。特に、励起光に対して安定でより高い蛍光量子収率が得られることから、RおよびRは、フッ素、含フッ素アリール基またはシアノ基であることがより好ましい。 R 8 and R 9 are preferably an alkyl group, an aryl group, a heteroaryl group, fluorine, a fluorine-containing alkyl group, a fluorine-containing heteroaryl group or a fluorine-containing aryl group, and a cyano group. In particular, R 8 and R 9 are more preferably fluorine, a fluorine-containing aryl group, or a cyano group because they are stable to excitation light and can obtain a higher fluorescence quantum yield.
 ここで、含フッ素アリール基とは、フッ素を含むアリール基であり、例えば、フルオロフェニル基、トリフルオロメチルフェニル基およびペンタフルオロフェニル基等が挙げられる。含フッ素ヘテロアリール基とは、フッ素を含むヘテロアリール基であり、例えば、フルオロピリジル基、トリフルオロメチルピリジル基およびトリフルオロピリジル基等が挙げられる。含フッ素アルキル基とは、フッ素を含むアルキル基であり、例えば、トリフルオロメチル基やペンタフルオロエチル基等が挙げられる。 Here, the fluorine-containing aryl group is an aryl group containing fluorine, and examples thereof include a fluorophenyl group, a trifluoromethylphenyl group, and a pentafluorophenyl group. The fluorine-containing heteroaryl group is a fluorine-containing heteroaryl group, and examples thereof include a fluoropyridyl group, a trifluoromethylpyridyl group, and a trifluoropyridyl group. The fluorine-containing alkyl group is an alkyl group containing fluorine, and examples thereof include a trifluoromethyl group and a pentafluoroethyl group.
 ホウ素原子上の電子密度を下げることにより、一般式(1)で表される化合物の酸素に対する安定性がより向上し、その結果、上記化合物の耐久性をより向上させることができるため、フッ素またはシアノ基であることがより好ましい。特に、RおよびRの少なくとも一方がシアノ基である場合、ホウ素原子上の電子密度がより下がるため、好ましい。一方、高い蛍光量子収率が得られる点、および合成の容易さから、RおよびRは、フッ素であることも好ましい。 By lowering the electron density on the boron atom, the stability of the compound represented by the general formula (1) to oxygen is further improved, and as a result, the durability of the compound can be further improved. More preferably, it is a cyano group. In particular, it is preferable that at least one of R 8 and R 9 is a cyano group, because the electron density on the boron atom is further reduced. On the other hand, R 8 and R 9 are also preferably fluorine from the viewpoint of obtaining a high fluorescence quantum yield and the ease of synthesis.
 一般式(1)で表される化合物の好ましい例の1つとして、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基であって、さらに、XがC-Rであり、Rが、一般式(2)で表される基である場合が挙げられる。この場合、Rは、rが置換もしくは無置換のフェニル基として含まれる一般式(2)で表される基であることが特に好ましい。 As one of preferred examples of the compound represented by the general formula (1), all of R 1 , R 3 , R 4 and R 6 may be the same or different and each is a substituted or unsubstituted alkyl group. Further, there is a case where X is C—R 7 and R 7 is a group represented by the general formula (2). In this case, R 7 is particularly preferably a group represented by the general formula (2) in which r is contained as a substituted or unsubstituted phenyl group.
 また、一般式(1)で表される化合物の好ましい例の別の1つとして、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、上述のAr-1~Ar-6から選ばれ、さらに、XがC-Rであり、Rが、一般式(2)で表される基である場合が挙げられる。この場合、Rは、rがtert-ブチル基、メトキシ基として含まれる一般式(2)で表される基であることがより好ましく、rがメトキシ基として含まれる一般式(2)で表される基であることが特に好ましい。 As another preferable example of the compound represented by the general formula (1), all of R 1 , R 3 , R 4 and R 6 may be the same or different, and the above-mentioned Ar-1 To Ar-6, wherein X is CR 7 and R 7 is a group represented by the general formula (2). In this case, R 7 is more preferably a group represented by the general formula (2) in which r is contained as a tert-butyl group or a methoxy group, and represented by a general formula (2) in which r is contained as a methoxy group. It is particularly preferred that the group is
 また、一般式(1)で表される化合物の好ましい例の別の1つとして、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基であって、かつ、RおよびRがそれぞれ同じでも異なっていてもよく、置換もしくは無置換のエステル基であり、さらに、XがC-Rであり、Rが、一般式(2)で表される基である場合が挙げられる。この場合、Rは、rが置換もしくは無置換のフェニル基として含まれる一般式(2)で表される基であることが特に好ましい。 Further, as another preferable example of the compound represented by the general formula (1), all of R 1 , R 3 , R 4 and R 6 may be the same or different, and may be substituted or unsubstituted. An alkyl group, and R 2 and R 5 may be the same or different, each being a substituted or unsubstituted ester group, X is C—R 7 , and R 7 is a general formula The case represented by (2) is exemplified. In this case, R 7 is particularly preferably a group represented by the general formula (2) in which r is contained as a substituted or unsubstituted phenyl group.
 また、一般式(1)で表される化合物の好ましい例の別の1つとして、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、上述のAr-1~Ar-6から選ばれ、かつ、RおよびRがそれぞれ同じでも異なっていてもよく、置換もしくは無置換のエステル基であり、さらに、XがC-Rであり、Rが、一般式(2)で表される基である場合が挙げられる。この場合、Rは、rがtert-ブチル基、メトキシ基として含まれる一般式(2)で表される基であることがより好ましく、rがメトキシ基として含まれる一般式(2)で表される基であることが特に好ましい。 As another preferable example of the compound represented by the general formula (1), all of R 1 , R 3 , R 4 and R 6 may be the same or different, and the above-mentioned Ar-1 To R-6, and R 2 and R 5 may be the same or different, each being a substituted or unsubstituted ester group, X is CR 7 , and R 7 is Examples thereof include a group represented by the general formula (2). In this case, R 7 is more preferably a group represented by the general formula (2) in which r is contained as a tert-butyl group or a methoxy group, and represented by a general formula (2) in which r is contained as a methoxy group. It is particularly preferred that the group is
 一般式(1)で表される化合物の一例を以下に示すが、この化合物は、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000006
Examples of the compound represented by the general formula (1) are shown below, but the compound is not limited thereto.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 一般式(1)で表される化合物は、例えば、特表平8-509471号公報や特開2000-208262号公報に記載の方法で合成することができる。すなわち、ピロメテン化合物と金属塩とを塩基共存下で反応させることにより、目的とするピロメテン系金属錯体が得られる。 化合物 The compound represented by the general formula (1) can be synthesized, for example, by the method described in Japanese Patent Application Laid-Open No. Hei 8-509471 or JP-A-2000-208262. That is, by reacting a pyromethene compound with a metal salt in the presence of a base, the intended pyrromethene-based metal complex can be obtained.
 また、ピロメテン-フッ化ホウ素錯体の合成については、J.Org.Chem.,vol.64,No.21,pp.7813-7819(1999)、Angew.Chem.,Int.Ed.Engl.,vol.36,pp.1333-1335(1997)等に記載されている方法を参考にして、一般式(1)で表される化合物を合成することができる。例えば、下記一般式(3)で表される化合物と一般式(4)で表される化合物とをオキシ塩化リン存在下、1,2-ジクロロエタン中で加熱した後、下記一般式(5)で表される化合物をトリエチルアミン存在下、1,2-ジクロロエタン中で反応させ、これにより、一般式(1)で表される化合物を得る方法が挙げられる。しかし、本発明は、これに限定されるものではない。ここで、R~Rは、上記説明と同様である。Jは、ハロゲンを表す。 The synthesis of a pyrromethene-boron fluoride complex is described in J. Am. Org. Chem. , Vol. 64, no. 21 pp. 7813-7819 (1999), Angew. Chem. , Int. Ed. Engl. , Vol. 36, pp. The compound represented by the general formula (1) can be synthesized with reference to the method described in 1333-1335 (1997) and the like. For example, after heating a compound represented by the following general formula (3) and a compound represented by the general formula (4) in 1,2-dichloroethane in the presence of phosphorus oxychloride, A method of reacting the compound represented by 1,2-dichloroethane in the presence of triethylamine to obtain a compound represented by the general formula (1) is mentioned. However, the present invention is not limited to this. Here, R 1 to R 9 are the same as described above. J represents a halogen.
Figure JPOXMLDOC01-appb-C000026
 さらに、アリール基やヘテロアリール基の導入の際は、ハロゲン化誘導体とボロン酸あるいはボロン酸エステル化誘導体とのカップリング反応を用いて炭素-炭素結合を生成する方法が挙げられるが、本発明は、これに限定されるものではない。同様に、アミノ基やカルバゾリル基の導入の際にも、例えば、パラジウム等の金属触媒下でのハロゲン化誘導体とアミンあるいはカルバゾール誘導体とのカップリング反応を用いて炭素-窒素結合を生成する方法が挙げられるが、本発明は、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
Furthermore, when an aryl group or a heteroaryl group is introduced, a method of generating a carbon-carbon bond by using a coupling reaction between a halogenated derivative and a boronic acid or a boronic esterified derivative may be mentioned. However, the present invention is not limited to this. Similarly, when an amino group or a carbazolyl group is introduced, for example, a method of generating a carbon-nitrogen bond by using a coupling reaction between a halogenated derivative and an amine or a carbazole derivative under a metal catalyst such as palladium. However, the present invention is not limited to this.
 本発明の実施の形態に係る粒子状色変換材料は、一般式(1)で表される化合物以外に、必要に応じてその他の化合物を適宜含有することができる。例えば、励起光から一般式(1)で表される化合物へのエネルギー移動効率を更に高めるために、ルブレン等のアシストドーパントを含有してもよい。また、一般式(1)で表される化合物の発光色以外の発光色を加味したい場合は、所望の有機発光材料、例えば、クマリン系色素、ローダミン系色素等の有機発光材料を添加することができる。その他、これらの有機発光材料以外でも、無機蛍光体、蛍光顔料、蛍光染料、量子ドット等の公知の発光材料を組み合わせて添加することも可能である。 粒子 The particulate color conversion material according to the embodiment of the present invention can appropriately contain other compounds as necessary in addition to the compound represented by the general formula (1). For example, an assist dopant such as rubrene may be contained in order to further increase the energy transfer efficiency from the excitation light to the compound represented by the general formula (1). When it is desired to add a luminescent color other than the luminescent color of the compound represented by the general formula (1), a desired organic luminescent material, for example, an organic luminescent material such as a coumarin dye or a rhodamine dye may be added. it can. In addition to these organic light-emitting materials, known light-emitting materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots can be added in combination.
 以下に、一般式(1)で表される化合物以外の有機発光材料の一例を以下に示すが、本発明は、特にこれらに限定されるものではない。 Examples of organic light-emitting materials other than the compound represented by the general formula (1) are shown below, but the present invention is not particularly limited thereto.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 本発明の実施の形態に係る粒子状色変換材料は、ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する発光材料(以下「第1発光材料」という)、を含むことが好ましい。以後、ピーク波長が500nm以上580nm未満の領域に観測される発光を「緑色の発光」という。 粒子 It is preferable that the particulate color conversion material according to the embodiment of the present invention includes a light-emitting material exhibiting light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm (hereinafter, referred to as “first light-emitting material”). Hereinafter, light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm is referred to as “green light emission”.
 また、本発明の実施の形態に係る粒子状色変換材料は、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する発光材料(以下「第2発光材料」という)、を含むことが好ましい。以後、ピーク波長が580nm以上750nm以下の領域に観測される発光を「赤色の発光」という。 Further, the particulate color conversion material according to the embodiment of the present invention may include a light-emitting material which emits light whose peak wavelength is observed in a range of 580 nm to 750 nm (hereinafter, referred to as “second light-emitting material”). preferable. Hereinafter, the emission observed in the region where the peak wavelength is 580 nm or more and 750 nm or less is referred to as “red emission”.
 一般に、励起光は、そのエネルギーが大きいほど、材料の分解を引き起こしやすい。しかし、波長400nm以上500nm以下の範囲の励起光は、比較的励起エネルギーが小さいため、好ましい。波長400nm以上500nm以下の範囲の励起光を用いることで、色変換材料中の発光材料の分解を引き起こすことなく、色純度の良好な発光が得られる。 Generally, the greater the energy of the excitation light, the more easily the material is decomposed. However, excitation light having a wavelength of 400 nm or more and 500 nm or less is preferable because the excitation energy is relatively small. By using the excitation light having a wavelength of 400 nm or more and 500 nm or less, light emission with good color purity can be obtained without causing decomposition of the light emitting material in the color conversion material.
 本発明の実施の形態に係る粒子状色変換材料において、第1発光材料および/または第2発光材料はいずれか一方だけ含まれていてもよく、両方が含まれてもよい。また、第1発光材料は1種類だけ単独で使用してもよく、複数種の第1発光材料を併用してもよい。同様に、第2発光材料は1種類だけ単独で使用してもよく、複数種の第2発光材料を併用してもよい。 粒子 In the particulate color conversion material according to the embodiment of the present invention, either the first light emitting material and / or the second light emitting material may be included, or both may be included. Further, only one kind of the first light emitting material may be used alone, or a plurality of kinds of the first light emitting materials may be used in combination. Similarly, only one kind of the second light emitting material may be used alone, or a plurality of kinds of second light emitting materials may be used in combination.
 波長400nm以上500nm以下の範囲の励起光の一部は、本発明の実施の形態に係る粒子状色変換材料を一部透過するため、それ自体を青色の発光として利用することができる。そのため、本発明の実施の形態に係る粒子状色変換材料が緑色の発光を示す第1発光材料と赤色の発光を示す第2発光材料とを含み、青色光として発光ピークが鋭い青色LEDを使用した場合、青・緑・赤の各色において鋭い形状の発光スペクトルを示し、色純度の良い白色光を得ることができる。その結果、特にディスプレイにおいては、色彩が一層鮮やかであり且つより大きな色域を効率的に作ることができる。また、照明用途においては、現在主流となっている青色LEDと黄色蛍光体とを組み合わせた白色LEDに比べ、特に緑色領域および赤色領域の発光特性が改善されるため、演色性が向上した好ましい白色光源を得ることができる。 (4) Part of the excitation light having a wavelength of 400 nm or more and 500 nm or less partially passes through the particulate color conversion material according to the embodiment of the present invention, and thus can itself be used as blue light emission. Therefore, the particulate color conversion material according to the embodiment of the present invention includes a first light emitting material emitting green light and a second light emitting material emitting red light, and uses a blue LED having a sharp emission peak as blue light. In this case, a sharp emission spectrum is shown in each of the blue, green, and red colors, and white light with good color purity can be obtained. As a result, particularly in a display, colors can be more vivid and a larger color gamut can be efficiently created. Further, in lighting applications, compared to a white LED combining a mainstream blue LED and a yellow phosphor, the emission characteristics, particularly in the green and red regions, are improved. A light source can be obtained.
 第1発光材料としては、クマリン6、クマリン7、クマリン153等のクマリン誘導体、インドシアニングリーン等のシアニン誘導体、フルオレセイン、フルオレセインイソチオシアネート、カルボキシフルオレセインジアセテート等のフルオレセイン誘導体、フタロシアニングリーン等のフタロシアニン誘導体、ジイソブチル-4,10-ジシアノペリレン-3,9-ジカルボキシレート等のペリレン誘導体、他にピロメテン誘導体、スチルベン誘導体、オキサジン誘導体、ナフタルイミド誘導体、ピラジン誘導体、ベンゾイミダゾール誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、イミダゾピリジン誘導体、アゾール誘導体、アントラセン等の縮合アリール環を有する化合物やその誘導体、芳香族アミン誘導体、有機金属錯体化合物等が好適なものとして挙げられる。しかし、第1発光材料は、特にこれらに限定されるものではない。 Examples of the first light emitting material include coumarin derivatives such as coumarin 6, coumarin 7, and coumarin 153, cyanine derivatives such as indocyanine green, fluorescein derivatives such as fluorescein, fluorescein isothiocyanate, carboxyfluorescein diacetate, and phthalocyanine derivatives such as phthalocyanine green. Perylene derivatives such as diisobutyl-4,10-dicyanoperylene-3,9-dicarboxylate, as well as pyromethene derivatives, stilbene derivatives, oxazine derivatives, naphthalimide derivatives, pyrazine derivatives, benzimidazole derivatives, benzoxazole derivatives, benzothiazole derivatives , Imidazopyridine derivatives, azole derivatives, compounds having fused aryl rings such as anthracene and derivatives thereof, aromatic amine derivatives, organic Metal complex compounds, and the like as preferred. However, the first light emitting material is not particularly limited to these.
 これらの化合物の中でも、ピロメテン誘導体は、高い発光量子収率を与え、耐久性が良好なので、特に好適な化合物である。ピロメテン誘導体としては、例えば、一般式(1)で表される化合物が、色純度の高い発光を示すことから、好ましい。 中 で も Among these compounds, the pyrromethene derivative is a particularly suitable compound because it gives a high emission quantum yield and has good durability. As the pyrromethene derivative, for example, a compound represented by the general formula (1) is preferable because it emits light with high color purity.
 第2発光材料としては、4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピラン等のシアニン誘導体、ローダミンB、ローダミン6G、ローダミン101、スルホローダミン101等のローダミン誘導体、1-エチル-2-(4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル)-ピリジニウム-パークロレート等のピリジン誘導体、N,N’-ビス(2,6-ジイソプロピルフェニル)-1,6,7,12-テトラフェノキシペリレン-3,4,9,10-ビスジカルボイミド等のペリレン誘導体、他にポルフィリン誘導体、ピロメテン誘導体、オキサジン誘導体、ピラジン誘導体、ナフタセンやジベンゾジインデノペリレン等の縮合アリール環を有する化合物やその誘導体、有機金属錯体化合物等が好適なものとして挙げられる。しかし、第2発光材料は、特にこれらに限定されるものではない。 Examples of the second light emitting material include cyanine derivatives such as 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, and rhodamine derivatives such as rhodamine B, rhodamine 6G, rhodamine 101, and sulfolhodamine 101. Pyridine derivatives such as N, N-N'-bis (2,6-diisopropylphenyl) -1, 1-ethyl-2- (4- (p-dimethylaminophenyl) -1,3-butadienyl) -pyridinium-perchlorate Derivatives such as, 6,7,12-tetraphenoxyperylene-3,4,9,10-bisdicarboximide, porphyrin derivatives, pyromethene derivatives, oxazine derivatives, pyrazine derivatives, naphthacene and dibenzodiindenoperylene, etc. Having a condensed aryl ring, derivatives thereof, and organometallic complexes Compounds and the like as preferred. However, the second light emitting material is not particularly limited to these.
 これらの化合物の中でも、ピロメテン誘導体は、高い発光量子収率を与え、耐久性が良好なので、特に好適な化合物である。ピロメテン誘導体としては、例えば、一般式(1)で表される化合物が、色純度の高い発光を示すことから、好ましい。 中 で も Among these compounds, the pyrromethene derivative is a particularly suitable compound because it gives a high emission quantum yield and has good durability. As the pyrromethene derivative, for example, a compound represented by the general formula (1) is preferable because it emits light with high color purity.
 本発明の実施の形態に係る粒子状色変換材料における発光材料の含有量は、化合物のモル吸光係数、発光量子収率および励起波長における吸収強度、ならびに作製する色変換材料や色変換部材のサイズや厚み、透過率にもよるが、通常はマトリクス樹脂の100質量部に対して、1.0×10-4質量部~30質量部である。中でも、1.0×10-3質量部~10質量部であることがさらに好ましく、5.0×10-3質量部~5質量部であることが特に好ましい。 The content of the luminescent material in the particulate color conversion material according to the embodiment of the present invention is the molar extinction coefficient of the compound, the emission quantum yield and the absorption intensity at the excitation wavelength, and the size of the color conversion material or color conversion member to be produced Usually, the amount is 1.0 × 10 −4 parts by mass to 30 parts by mass with respect to 100 parts by mass of the matrix resin, though it depends on the thickness, transmittance and the like. Among them, the amount is more preferably 1.0 × 10 −3 parts by mass to 10 parts by mass, and particularly preferably 5.0 × 10 −3 parts by mass to 5 parts by mass.
 また色変換材料に、緑色の発光を呈する第1発光材料と、赤色の発光を呈する第2発光材料とを両方含有する場合、緑色の発光の一部が赤色の発光に変換されることから、第1発光材料の含有量wと、第2発光材料の含有量wが、w≧wの関係であることが好ましい。また、含有量wと含有量wとの比率は、w:w=1000:1~1:1であり、500:1~2:1であることがさらに好ましく、200:1~3:1であることが特に好ましい。ただし、含有量wおよび含有量wは、マトリクス樹脂の質量に対する質量パーセントである。 When the color conversion material contains both a first light emitting material that emits green light and a second light emitting material that emits red light, a part of the green light is converted to red light. the content of w 1 of the first light-emitting material, the content w 2 of the second light-emitting material is preferably a relationship of w 1w 2. The ratio between the content w 1 and the content w 2 is w 1 : w 2 = 1000: 1 to 1: 1, preferably 500: 1 to 2: 1, and more preferably 200: 1 to 2: 1. A ratio of 3: 1 is particularly preferred. However, the content of w 1 and the content w 2 is the weight percent of the mass of the matrix resin.
 <マトリクス樹脂>
 本発明の実施の形態に係る粒子状色変換材料において、マトリクス樹脂は、成形加工性、透明性、耐熱性等に優れる材料が好適に用いられる。マトリクス樹脂の例としては、例えば、アクリル酸系、メタクリル酸系、ポリケイ皮酸ビニル系、環ゴム系等の反応性ビニル基を有する光硬化型レジスト材料、エポキシ樹脂、シリコーン樹脂(シリコーンゴム、シリコーンゲル等のオルガノポリシロキサン硬化物(架橋物)を含む)、ウレア樹脂、フッ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ウレタン樹脂、メラミン樹脂、ポリビニル樹脂、ポリアミド樹脂、フェノール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、セルロース樹脂、脂肪族エステル樹脂および芳香族エステル樹脂等のポリエステル樹脂、シクロオレフィン樹脂等の脂肪族ポリオレフィン樹脂、芳香族ポリオレフィン樹脂等の公知のものが挙げられる。また、マトリクス樹脂としては、これらの樹脂の混合物や共重合体を用いても構わない。これらの樹脂を適宜設計することで、本発明の実施の形態に係る粒子状色変換材料に有用なマトリクス樹脂が得られる。
<Matrix resin>
In the particulate color conversion material according to the embodiment of the present invention, a material having excellent moldability, transparency, heat resistance, and the like is suitably used as the matrix resin. Examples of the matrix resin include, for example, a photocurable resist material having a reactive vinyl group such as an acrylic acid type, a methacrylic acid type, a polyvinyl cinnamate type, a ring rubber type, an epoxy resin, a silicone resin (silicone rubber, silicone Organopolysiloxane cured products such as gels (including crosslinked products), urea resins, fluorine resins, polycarbonate resins, acrylic resins, urethane resins, melamine resins, polyvinyl resins, polyamide resins, phenol resins, polyvinyl alcohol resins, polyvinyl butyral resins And polyester resins such as cellulose resins, aliphatic ester resins and aromatic ester resins, aliphatic polyolefin resins such as cycloolefin resins, and aromatic polyolefin resins. As the matrix resin, a mixture or a copolymer of these resins may be used. By appropriately designing these resins, a matrix resin useful for the particulate color conversion material according to the embodiment of the present invention can be obtained.
 これらの樹脂の中でも、透明性および有機発光材料の分散性の観点から、アクリル樹脂、アクリル酸エステルまたはメタクリル酸エステル部位を含む共重合樹脂、ポリエステル樹脂、シクロオレフィン樹脂、エポキシ樹脂のいずれかであることが好ましい。 Among these resins, from the viewpoint of transparency and dispersibility of the organic light-emitting material, an acrylic resin, a copolymer resin containing an acrylate or methacrylate portion, a polyester resin, a cycloolefin resin, or an epoxy resin is used. Is preferred.
 マトリクス樹脂のガラス転移温度(Tg)は、特に限定されるものではないが、30℃以上180℃以下であることが好ましい。Tgが30℃以上の場合、光源からの入射光による熱や機器の駆動熱によるマトリクス樹脂の分子運動が抑制され、発光材料の分散状態の変化が抑制されることで耐久性の悪化を防ぐことができる。また、Tgが180℃以下の場合、シート等に成形した場合の可撓性が確保できる。マトリクス樹脂のTgは、より好ましくは50℃以上170℃以下であり、さらに好ましくは70℃以上160℃以下であり、特に好ましくは、90℃以上150℃以下である。 ガ ラ ス The glass transition temperature (Tg) of the matrix resin is not particularly limited, but is preferably from 30 ° C to 180 ° C. When Tg is 30 ° C. or higher, the molecular motion of the matrix resin due to the heat due to the incident light from the light source or the driving heat of the device is suppressed, and the change in the dispersion state of the light emitting material is suppressed, thereby preventing the deterioration of the durability. Can be. When Tg is 180 ° C. or lower, flexibility when formed into a sheet or the like can be ensured. The Tg of the matrix resin is more preferably from 50 ° C to 170 ° C, further preferably from 70 ° C to 160 ° C, and particularly preferably from 90 ° C to 150 ° C.
 マトリクス樹脂の分子量は、樹脂の種類にもより、特に限定されるものではないが、3000以上1500000以下であることが好ましい。分子量が3000よりも小さい場合、樹脂が脆くなり、成形した場合の可撓性が低くなる。また、分子量が1500000よりも大きい場合、成形時の粘度が過度に大きくなることや、樹脂自体の化学的安定性が低下するといった問題がある。マトリクス樹脂の分子量は、より好ましくは5000以上1200000以下であり、さらに好ましくは7000以上1000000以下であり、特に好ましくは、10000以上800000以下である。 分子 The molecular weight of the matrix resin is not particularly limited depending on the type of the resin, but is preferably 3,000 to 1500,000. When the molecular weight is smaller than 3000, the resin becomes brittle, and the flexibility when molded becomes low. Further, when the molecular weight is larger than 1500000, there are problems that the viscosity at the time of molding becomes excessively large and the chemical stability of the resin itself is reduced. The molecular weight of the matrix resin is more preferably 5,000 to 1,200,000, still more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 800,000.
 本発明の実施の形態に係る粒子状色変換材料は、マトリクス樹脂および一般式(1)で表される化合物を含有する発光材料を有する粒子状色変換材料である。具体的には、マトリクス樹脂中に少なくとも1種の発光材料が含有された粒子状色変換材料である。 粒子 The particulate color conversion material according to the embodiment of the present invention is a particulate color conversion material having a light emitting material containing a matrix resin and a compound represented by the general formula (1). Specifically, it is a particulate color conversion material in which at least one kind of luminescent material is contained in a matrix resin.
 <添加剤>
 本発明の実施の形態に係る粒子状色変換材料は、発光材料およびマトリクス樹脂以外に、酸化防止剤、加工および熱安定化剤、紫外線吸収剤等の耐光性安定化剤、可塑剤、エポキシ化合物等の架橋剤、アミン、酸無水物、イミダゾール等の硬化剤、シリカ粒子やシリコーン微粒子等の無機粒子およびシランカップリング剤等、の添加剤を含有することができる。
<Additives>
The particulate color conversion material according to the embodiment of the present invention is, besides the light emitting material and the matrix resin, an antioxidant, a processing and heat stabilizer, a light resistance stabilizer such as an ultraviolet absorber, a plasticizer, and an epoxy compound. And the like. Curing agents such as amine, acid anhydride and imidazole, inorganic particles such as silica particles and silicone fine particles, and additives such as silane coupling agents can be contained.
 酸化防止剤としては、例えば、フェノール系酸化防止剤を挙げることができるが、特にこれらに限定されるものではない。また、酸化防止剤は、単独で使用してもよく、複数併用してもよい。
 加工および熱安定化剤としては、例えば、リン系安定化剤を挙げることができるが、特にこれらに限定されるものではない。また、安定化剤は、単独で使用してもよく、複数併用してもよい。
 耐光性安定化剤としては、例えば、ベンゾトリアゾール類を挙げることができるが、特にこれらに限定されるものではない。また、耐光性安定化剤は、単独で使用してもよく、複数併用してもよい。
Examples of the antioxidant include, but are not particularly limited to, phenolic antioxidants. The antioxidants may be used alone or in combination of two or more.
Examples of the processing and heat stabilizers include, but are not particularly limited to, phosphorus-based stabilizers. The stabilizers may be used alone or in combination.
Examples of the light resistance stabilizer include, for example, benzotriazoles, but are not particularly limited thereto. Further, the light resistance stabilizer may be used alone or in combination of two or more.
 これらの添加剤は、光源からの光や発光材料の発光を阻害しないという観点から、可視域での吸光係数が小さいことが好ましい。具体的には、波長400nm以上800nm以下の波長域全域で、これらの添加剤のモル吸光係数εは、200以下であることが好ましく、100以下であることがより好ましい。さらに好ましくは80以下であり、50以下であることが特に好ましい。 From the viewpoint that these additives do not inhibit light from a light source or light emission of a light-emitting material, it is preferable that these additives have a small absorption coefficient in the visible region. Specifically, the molar extinction coefficient ε of these additives is preferably 200 or less, more preferably 100 or less, over the entire wavelength range of 400 nm to 800 nm. It is more preferably at most 80, particularly preferably at most 50.
 また、耐光性安定化剤としては、一重項酸素クエンチャーとしての役割を持つ化合物も好適に用いることができる。一重項酸素クエンチャーは、酸素分子が光のエネルギーにより活性化してできた一重項酸素をトラップして不活性化する材料である。色変換材料中に一重項酸素クエンチャーが共存することで、発光材料が一重項酸素により劣化することを防ぐことができる。
 一重項酸素クエンチャーとしての役割を持つ化合物としては、例えば、特定の、3級アミンおよび金属塩を挙げることができるが、特にこれらに限定されるものではない。また、これらの化合物(耐光性安定化剤)は、単独で使用してもよく、複数併用してもよい。
 また、耐光性安定化剤としては、ラジカルクエンチャーとしての役割を持つ化合物も好適に用いることができる。中でも、ヒンダードアミン系化合物が好適な例として挙げられる。
 本発明の実施の形態に係る粒子状色変換材料において、これらの添加剤の含有量は、化合物のモル吸光係数、発光量子収率および励起波長における吸収強度、ならびに作製する色変換材料や色変換部材のサイズや厚み、透過率にもよるが、マトリクス樹脂の100質量部に対して、1.0×10-3質量部以上であることが好ましく、1.0×10-2質量部以上であることがより好ましく、1.0×10-1質量部以上であることがさらに好ましい。また、これらの添加剤の含有量は、マトリクス樹脂の100質量部に対して、30質量部以下であることが好ましく、15質量部以下であることがより好ましく、10質量部以下であることがさらに好ましい。
Further, as the light fastness stabilizer, a compound having a role as a singlet oxygen quencher can also be suitably used. The singlet oxygen quencher is a material that traps and inactivates singlet oxygen generated by activation of oxygen molecules by light energy. The coexistence of the singlet oxygen quencher in the color conversion material can prevent the light-emitting material from being deteriorated by singlet oxygen.
Examples of the compound serving as a singlet oxygen quencher include, but are not limited to, specific tertiary amines and metal salts. Further, these compounds (lightfastness stabilizer) may be used alone or in combination of two or more.
Further, as the light fastness stabilizer, a compound having a role as a radical quencher can also be suitably used. Especially, a hindered amine compound is mentioned as a suitable example.
In the particulate color conversion material according to the embodiment of the present invention, the content of these additives depends on the molar extinction coefficient of the compound, the emission quantum yield and the absorption intensity at the excitation wavelength, and the color conversion material or color conversion to be produced. Although it depends on the size, thickness and transmittance of the member, it is preferably at least 1.0 × 10 −3 parts by mass, more preferably at least 1.0 × 10 −2 parts by mass, per 100 parts by mass of the matrix resin. More preferably, the content is more preferably 1.0 × 10 -1 part by mass or more. Further, the content of these additives is preferably 30 parts by mass or less, more preferably 15 parts by mass or less, and more preferably 10 parts by mass or less, based on 100 parts by mass of the matrix resin. More preferred.
 <粒子状色変換材料>
 本発明の実施の形態に係る粒子状色変換材料は、一般式(1)で表される化合物を含有するため、非常に色純度の高い発光を示す。
 また、粉体として扱えるため、複数種類の粒子状色変換材料を混合して使用し、精緻な波長変換特性の調整を行うことが容易となる。例えば、青色光の一部を色変換して白色光を得る場合、緑色の発光を示す発光材料を含有する緑色変換材料と赤色の発光を示す発光材料を含有する赤色変換材料をそれぞれ用意し、それらの混合量を調整することで、白色光のホワイトバランスや色温度を容易に調整することができる。
 さらに、色変換材料の粒子径や形状、マトリクス樹脂の屈折率などの制御によって、色変換特性を調整することや、色変換機能以外の機能を付与することも可能である。例えば、光散乱機能を発現させることが可能である。
<Particulate color conversion material>
Since the particulate color conversion material according to the embodiment of the present invention contains the compound represented by the general formula (1), it emits light with extremely high color purity.
In addition, since it can be handled as a powder, it is easy to mix and use a plurality of types of particulate color conversion materials and finely adjust the wavelength conversion characteristics. For example, when white light is obtained by performing color conversion on a part of blue light, a green conversion material containing a light emitting material emitting green light and a red conversion material containing a light emitting material emitting red light are prepared. The white balance and color temperature of white light can be easily adjusted by adjusting the amount of mixing.
Further, by controlling the particle diameter and shape of the color conversion material, the refractive index of the matrix resin, and the like, the color conversion characteristics can be adjusted, and functions other than the color conversion function can be provided. For example, a light scattering function can be exhibited.
 本発明の実施の形態に係る粒子状色変換材料は、各粒子は個々に独立しているため、高温条件での光照射によりラジカル種などの高活性種が発生した際、高活性種が全体に伝播することを抑制し、色変換部材全体の加速的な劣化を抑制することができる。 In the particulate color conversion material according to the embodiment of the present invention, since each particle is individually independent, when highly active species such as radical species are generated by light irradiation at a high temperature condition, the high active species is entirely And the accelerated deterioration of the entire color conversion member can be suppressed.
 本発明の実施の形態に係る粒子状色変換材料は、平均粒径が0.010μm以上100μm以下であることが好ましく、0.010μm以上30μm以下であることがより好ましく、0.010μm以上10μm以下であることがさらに好ましい。平均粒径は、顕微鏡観察やレーザー回折散乱法により粒度分布を測定して得られるものであるが、原則顕微鏡観察により測定するものとする。ただし、レーザー回折散乱法による測定結果が1μm以下の粒径の場合、レーザー回折散乱法による粒径を採用する。また、顕微鏡観察の場合、特に限定されないが、孤立粒子100個程度の粒径を測定し、その平均値を算出して求めることができる。 The particulate color conversion material according to the embodiment of the present invention preferably has an average particle size of 0.010 μm or more and 100 μm or less, more preferably 0.010 μm or more and 30 μm or less, and 0.010 μm or more and 10 μm or less. Is more preferable. The average particle size is obtained by observing the particle size distribution by microscopic observation or laser diffraction scattering method, but it is basically measured by microscopic observation. However, when the measurement result by the laser diffraction scattering method has a particle size of 1 μm or less, the particle size by the laser diffraction scattering method is adopted. In the case of microscopic observation, although not particularly limited, it can be obtained by measuring the particle size of about 100 isolated particles and calculating the average value.
 <粒子状色変換材料の作製方法>
 本発明の実施の形態に係る粒子状色変換材料の作製方法は、発光材料およびマトリクス樹脂を含んだ粒子状に成形できれば、特に限定されない。例えば、界面重合法、W/O系液中乾燥法、ストーバー法、及びスプレードライ法、in Situ重合法、水溶液からの相分離法、有機溶媒からの相分離法、融解分散冷却法、気中懸濁被覆法により作製することができる。
 中でも、前述した発光材料、マトリクス樹脂、溶媒等の材料を所定量混合して作製した組成物を、スプレードライ法により乾燥させることで粒子状に成形する方法が、簡便な方法として挙げられる。
<Method for producing particulate color conversion material>
The method for producing the particulate color conversion material according to the embodiment of the present invention is not particularly limited as long as the particulate color conversion material can be formed into particles containing a light emitting material and a matrix resin. For example, an interfacial polymerization method, a W / O-based in-liquid drying method, a Stover method, and a spray drying method, an in situ polymerization method, a phase separation method from an aqueous solution, a phase separation method from an organic solvent, a melting dispersion cooling method, and an airborne method It can be produced by a suspension coating method.
Above all, as a simple method, a method in which a composition prepared by mixing predetermined amounts of the above-described materials such as the light-emitting material, the matrix resin, and the solvent, and then dried by a spray-drying method to form particles is used.
 使用する溶媒としては、例えば、水、2-プロパノール、エタノール、トルエン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ヘキサン、シクロヘキサン、テトラヒドロフラン、アセトン、テルピネオール、テキサノール、1,2-ジメトキシエタン、メチルセルソルブ、エチルセルソルブ、ブチルカルビトール、ブチルカルビトールアセテート、1-メトキシ-2-プロパノール、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、これらの溶媒を2種類以上混合して使用することも可能である。これらの溶媒の中で、トルエンやメチルエチルケトン、酢酸メチル、酢酸エチル、テトラヒドロフランは、乾燥後の残存溶媒が少ない点で好適に用いられる。 As the solvent to be used, for example, water, 2-propanol, ethanol, toluene, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, hexane, cyclohexane, tetrahydrofuran, acetone, terpineol, texanol, 1,2-dimethoxyethane, methylcellosolve, ethylcellosolve, butyl carbitol, butyl carbitol acetate, 1-methoxy-2-propanol, propylene glycol monomethyl ether acetate, etc., and a mixture of two or more of these solvents It is also possible to use it. Among these solvents, toluene, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran are preferably used because the residual solvent after drying is small.
 <支持体>
 本発明の実施の形態に係る粒子状色変換材料は、それ自体のみで使用してもよい。また、光学部材への適用性をより高める観点から、粒子状色変換材料を含有させた支持体を用いることが好ましい。本発明の実施の形態に係る粒子状色変換材料を含有する支持体は、色変換部材として用いることができる。
<Support>
The particulate color conversion material according to the embodiment of the present invention may be used by itself. Further, from the viewpoint of further improving the applicability to the optical member, it is preferable to use a support containing a particulate color conversion material. The support containing the particulate color conversion material according to the embodiment of the present invention can be used as a color conversion member.
 支持体の材質としては、特に制限無く公知の金属、樹脂、ガラス、セラミック、紙等を使用することができるが、透明性や加工成形性の観点から、支持体は樹脂からなることが好ましい。支持体が樹脂からなる場合、粒子状色変換材料が支持体に分散していることがより好ましい。本発明において、分散とは、一つの相をなす物質の中に、他の物質が散在することをいい、その分布は偏りがあってもよく、均一であってもよい。ただし、粒子状色変換材料を分散させると記載した場合、分散媒に完全に溶解して均一な1つの相を形成する態様を除く。本発明に係る粒子状色変換材料が支持体に分散されているか否かを確認するために、肉眼での観察、顕微鏡観察、発光分光法測定および屈折率測定などの方法を適宜用いることができる。好ましい樹脂としては、上述のマトリクス樹脂で例示した樹脂が、支持体として好適に用いることができる。 材質 The material of the support is not particularly limited, and known metals, resins, glass, ceramics, papers, and the like can be used. From the viewpoint of transparency and workability, the support is preferably made of resin. When the support is made of a resin, it is more preferable that the particulate color conversion material is dispersed in the support. In the present invention, the term “dispersion” means that other substances are scattered in one phase, and the distribution may be uneven or uniform. However, when it is described that the particulate color conversion material is dispersed, a mode in which the particulate color conversion material is completely dissolved in the dispersion medium to form one uniform phase is excluded. In order to confirm whether or not the particulate color conversion material according to the present invention is dispersed in the support, methods such as visual observation, microscopic observation, emission spectroscopy measurement, and refractive index measurement can be used as appropriate. . As the preferable resin, the resin exemplified as the matrix resin described above can be suitably used as the support.
 支持体が樹脂からなる場合、マトリクス樹脂と異なる樹脂を使用することが好ましく、粒子状色変換材料のマトリクス樹脂と支持体を形成する樹脂のSP値の差が0.5(cal/cm0.5以上であることが好ましい。SP値の差が0.5(cal/cm0.5以上であることで、粒子状色変換材料を溶解することなく、支持体中に分散させることができる。粒子状色変換材料が支持体を構成する樹脂中に溶解してしまう場合、支持体にも発光材料が溶出し半値幅が低減してしまう。前記SP値の差は、1.0(cal/cm0.5以上であることがより好ましく、1.5(cal/cm0.5以上であることがさらに好ましく、2.0(cal/cm0.5以上であることが特に好ましい。また、SP値の差が大きすぎると粒子同士が凝集し消光原因となるため、上限値は4.0(cal/cm0.5以下であることがより好ましく、3.0(cal/cm0.5以下であることがさらに好ましく、2.5(cal/cm0.5以下であることが特に好ましい。
 支持体が樹脂からなる場合、粒子状色変換材料のマトリクス樹脂のSP値は支持体を形成する樹脂のSP値より大きいことが好ましい。
When the support is made of a resin, it is preferable to use a resin different from the matrix resin, and the difference between the matrix resin of the particulate color conversion material and the resin forming the support has an SP value of 0.5 (cal / cm 3 ). It is preferably 0.5 or more. When the difference in SP value is 0.5 (cal / cm 3 ) 0.5 or more, the particulate color conversion material can be dispersed in the support without being dissolved. When the particulate color conversion material is dissolved in the resin constituting the support, the luminescent material is eluted also into the support, and the half width is reduced. The difference between the SP values is more preferably 1.0 (cal / cm 3 ) 0.5 or more, still more preferably 1.5 (cal / cm 3 ) 0.5 or more, and 2.0 (cal / cm 3 ) 0.5 or more. (Cal / cm 3 ) is particularly preferably 0.5 or more. If the difference in SP value is too large, the particles aggregate and cause quenching. Therefore, the upper limit is more preferably 4.0 (cal / cm 3 ) 0.5 or less, and more preferably 3.0 (cal / cm 3 ). cm 3 ) 0.5 or less, more preferably 2.5 (cal / cm 3 ) 0.5 or less.
When the support is made of a resin, the SP value of the matrix resin of the particulate color conversion material is preferably larger than the SP value of the resin forming the support.
 支持体の形状としては、特に限定されるものではないが、粒状、塊状、シート状などが挙げられる。また、型に充填された形式も挙げられる。中でも、後述の光源ユニットへの適用性をより高める観点で、シート状であることが好ましい。
 一方、LED光源との一体化や、パターニングされた部材との一体化の観点からは、型に充填する手法も好ましい。
 支持体中に含まれる粒子状色変換材料は、1種類であっても、複数種類であってもよい。
The shape of the support is not particularly limited, and examples thereof include a granular shape, a massive shape, and a sheet shape. In addition, a form filled in a mold is also included. Above all, from the viewpoint of further improving the applicability to a light source unit described later, the sheet is preferably used.
On the other hand, from the viewpoint of integration with the LED light source and integration with the patterned member, a method of filling the mold is also preferable.
The particulate color conversion material contained in the support may be one type or a plurality of types.
 本発明の実施の形態に係る色変換部材の1つの態様として、緑色の発光を示す発光材料を含有する粒子状色変換材料と、赤色の発光を示す発光材料を含有する粒子状色変換材料の少なくとも2種類を同一の支持体中に含むことが好ましい。これにより、青色光の一部を色変換して白色光を得ることができる。 As one mode of the color conversion member according to the embodiment of the present invention, a particulate color conversion material containing a luminescent material emitting green light and a particulate color conversion material containing a luminescent material emitting red light are provided. It is preferable to include at least two types in the same support. Thus, white light can be obtained by converting a part of the blue light.
 これらの緑色の発光を示す発光材料と赤色の発光を示す発光材料としては、ともに一般式(1)で表される化合物であることが、色再現性の高い白色光を得られるため、好ましい。すなわち、本発明の好ましい態様として、ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する一般式(1)で表される化合物と第1マトリクス樹脂からなる第1粒子状色変換材料と、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する一般式(1)で表される化合物と第2マトリクス樹脂からなる第2粒子状色変換材料と、それらを含有する支持体からなる色変換部材が挙げられる。 と も に Both the light emitting material emitting green light and the light emitting material emitting red light are preferably compounds represented by the general formula (1), since white light with high color reproducibility can be obtained. That is, as a preferred embodiment of the present invention, a first particulate color conversion material comprising a compound represented by the general formula (1) exhibiting light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm and a first matrix resin is provided. A second particulate color conversion material comprising a compound represented by the general formula (1) exhibiting light emission having a peak wavelength of 580 nm or more and 750 nm or less, a second matrix resin, and a support containing them. Color conversion member.
 本発明の実施の形態に係る色変換部材の別の態様として、粒子状色変換材料を含有する支持体を複数種類組み合わせたものであることも好ましい。例えば、緑色の発光を示す粒子状色変換材料を含有する支持体と、赤色の発光を示す粒子状色変換材料を含有する支持体を組み合わせることが挙げられる。中でも、第1粒子状色変換材料を有する第1支持体と、第2粒子状色変換材料を有する第2支持体を組み合わせることが好ましい。複数の支持体の組み合わせ方は、支持体の形状にもよるが、同一平面上に並べる方法や、積層させる方法が挙げられる。 と し て As another mode of the color conversion member according to the embodiment of the present invention, it is also preferable that a plurality of types of supports containing a particulate color conversion material are combined. For example, a support containing a particulate color conversion material emitting green light and a support containing a particulate color conversion material emitting red light can be used. Above all, it is preferable to combine the first support having the first particulate color conversion material with the second support having the second particulate color conversion material. The method of combining a plurality of supports depends on the shape of the supports, and examples thereof include a method of arranging them on the same plane and a method of stacking.
 第1粒子状色変換材料および第2粒子状色変換材料のそれぞれにおける有機発光材料とマトリクス樹脂との組み合わせを最適化することで、有機発光材料の発光ピーク波長を望ましい波長にシフトし、色域を拡大することができる。そのため、第1マトリクス樹脂と第2マトリクス樹脂が異なることが好ましい。なお、2つのマトリクス樹脂が異なるとは、樹脂の種類および/または組成が異なることをいう。 By optimizing the combination of the organic light emitting material and the matrix resin in each of the first particulate color converting material and the second particulate color converting material, the emission peak wavelength of the organic light emitting material is shifted to a desired wavelength, and the color gamut is changed. Can be expanded. Therefore, it is preferable that the first matrix resin is different from the second matrix resin. The difference between the two matrix resins means that the types and / or compositions of the resins are different.
 また、マトリクス樹脂の溶解パラメータであるSP値と、有機発光材料の発光ピーク波長とには強い関係がある。SP値が大きいマトリクス樹脂中では、マトリクス樹脂と有機発光材料との間の相互作用により、有機発光材料の励起状態が安定化される。そのため、SP値が小さいマトリクス樹脂中と比較して、この有機発光材料の発光ピーク波長は、長波長側にシフトする。したがって、有機発光材料を最適なSP値を持つマトリクス樹脂中に分散させることで、有機発光材料の発光ピーク波長の最適化が可能である。 Further, there is a strong relationship between the SP value, which is a solubility parameter of the matrix resin, and the emission peak wavelength of the organic light emitting material. In a matrix resin having a large SP value, the excited state of the organic light emitting material is stabilized by the interaction between the matrix resin and the organic light emitting material. Therefore, the emission peak wavelength of this organic light emitting material shifts to a longer wavelength side as compared with the matrix resin having a small SP value. Therefore, by dispersing the organic light emitting material in the matrix resin having the optimum SP value, it is possible to optimize the emission peak wavelength of the organic light emitting material.
 第1マトリクス樹脂のSP値をSP(cal/cm0.5とし、第2マトリクス樹脂のSP値をSP(cal/cm0.5とするとき、SP≦SPであることが好ましい。この場合、第1粒子状色変換材料および第2粒子状色変換材料における緑色光と赤色光との発光ピーク波長の差が、同一のマトリクス樹脂中に有機発光材料を分散させた場合と比較して大きくなり、その結果、色域が拡大する。 When the SP value of the first matrix resin is SP 1 (cal / cm 3 ) 0.5 and the SP value of the second matrix resin is SP 2 (cal / cm 3 ) 0.5 , SP 1 ≦ SP 2 Preferably, there is. In this case, the difference between the emission peak wavelengths of the green light and the red light in the first particulate color conversion material and the second particulate color conversion material is smaller than the case where the organic light emitting material is dispersed in the same matrix resin. As a result, the color gamut is expanded.
 中でも、SP≧10.0であることが好ましい。この場合、第2粒子状色変換材料における赤色光の発光ピーク波長がより大きく長波長化し、その結果、第2粒子状色変換材料からは、深い赤色の光を発光することができる。その効果をより大きくするという観点から、より好ましくは、SP≧10.2であり、さらに好ましくはSP≧10.4であり、特に好ましくはSP≧10.6である。 Especially, it is preferable that SP 2 ≧ 10.0. In this case, the emission peak wavelength of red light in the second particulate color conversion material is further increased, and as a result, deep red light can be emitted from the second particulate color conversion material. From the viewpoint of increasing the effect, SP 2 ≧ 10.2 is more preferable, SP 2 ≧ 10.4 is more preferable, and SP 2 ≧ 10.6 is particularly preferable.
 SPの上限値は特に限定されないが、SP≦15.0であるマトリクス樹脂は、有機発光材料の分散性がよいため、好適に用いることができる。その効果をより大きくするという観点から、より好ましくはSP≦14.0であり、さらに好ましくはSP≦13.0であり、特に好ましくはSP≦12.0である。 The upper limit of the SP 2 is not particularly limited, the matrix resin is a SP 2 ≦ 15.0, since good dispersibility of the organic light emitting material can be preferably used. From the viewpoint of increasing the effect, SP 2 ≦ 14.0 is more preferable, SP 2 ≦ 13.0 is more preferable, and SP 2 ≦ 12.0 is particularly preferable.
 また、SP≦10.0である場合、第1粒子状色変換材料における緑色光の発光ピーク波長の長波長化が抑制され、その結果、第1粒子状色変換材料および第2粒子状色変換材料における緑色光と赤色光との発光ピーク波長の差が大きくなるため、好ましい。その効果をより大きくするという観点から、より好ましくは、SP≦9.8であり、さらに好ましくはSP≦9.7であり、特に好ましくはSP≦9.6である。 Further, when SP 1 ≦ 10.0, the emission peak wavelength of green light in the first particulate color conversion material is prevented from becoming longer, and as a result, the first particulate color conversion material and the second particulate color are converted. This is preferable because the difference in emission peak wavelength between green light and red light in the conversion material increases. From the viewpoint of increasing the effect, SP 1 ≦ 9.8 is more preferable, SP 1 ≦ 9.7 is more preferable, and SP 1 ≦ 9.6 is particularly preferable.
 SPの下限値は特に限定されないが、SP≧7.0であるマトリクス樹脂は、有機発光材料の分散性がよいため、好適に用いることができる。その効果をより大きくするという観点から、より好ましくはSP≧7.4であり、さらに好ましくはSP≧7.8であり、特に好ましくはSP≧8.0である。 Although the lower limit of SP 1 is not particularly limited, a matrix resin satisfying SP 1 ≧ 7.0 can be suitably used because the organic light emitting material has good dispersibility. From the viewpoint of increasing the effect, SP 1 ≧ 7.4 is more preferable, SP 1 ≧ 7.8 is more preferable, and SP 1 ≧ 8.0 is particularly preferable.
 ここで、溶解パラメータ(SP値)は、一般的に用いられている、Poly.Eng.Sci.,vol.14,No.2,pp.147-154(1974)等に記載のFedorsの推算法を用い、樹脂を構成するモノマーの種類と比率から算出される値である。複数種類の樹脂の混合物に関しても、同様の方法により算出できる。例えば、ポリメタクリル酸メチルのSP値は9.9(cal/cm0.5、ポリエチレンテレフタレート(PET)のSP値は11.6(cal/cm0.5、ビスフェノールA系エポキシ樹脂のSP値は10.9(cal/cm0.5とそれぞれ算出できる。
 樹脂の代表的なSP値を表1に示す。第1マトリクス樹脂および第2マトリクス樹脂は、例えば表1に示すような樹脂の中から任意に組み合わせて用いることができる。
Here, the dissolution parameter (SP value) is generally used, Poly. Eng. Sci. , Vol. 14, No. 2, pp. 147-154 (1974) and the like, and are values calculated from the types and ratios of the monomers constituting the resin using the Fedors estimation method. The same method can be used to calculate a mixture of a plurality of types of resins. For example, the SP value of polymethyl methacrylate is 9.9 (cal / cm 3 ) 0.5 , the SP value of polyethylene terephthalate (PET) is 11.6 (cal / cm 3 ) 0.5 , and a bisphenol A epoxy resin Can be calculated as 10.9 (cal / cm 3 ) 0.5 .
Table 1 shows typical SP values of the resins. The first matrix resin and the second matrix resin can be used in any combination, for example, from the resins shown in Table 1.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 本発明の実施の形態に係る色変換部材の別の態様として、本発明の支持体が、本発明に係る粒子状色変換材料以外に、少なくとも1種の発光材料を含有することも好ましい。中でも、色純度の観点から、支持体が少なくとも1種の有機発光材料を含有することが、より好ましく、支持体が少なくとも一般式(1)で表される化合物を含有することが、さらに好ましい。 As another aspect of the color conversion member according to the embodiment of the present invention, it is preferable that the support of the present invention contains at least one luminescent material in addition to the particulate color conversion material according to the present invention. Among them, from the viewpoint of color purity, it is more preferable that the support contains at least one kind of organic light emitting material, and it is more preferable that the support contains at least the compound represented by the general formula (1).
 本発明に使用することができる支持体は、粒子状色変換材料や発光材料以外に、光吸収色素や光吸収顔料、酸化防止剤、加工および熱安定化剤、紫外線吸収剤等の耐光性安定化剤、分散剤やレベリング剤、可塑剤、エポキシ化合物等の架橋剤、アミン、酸無水物、イミダゾール等の硬化剤、接着補助剤、酸化チタン粒子やジルコニア粒子、シリカ粒子等の無機粒子およびシランカップリング剤等、の添加剤を含有することができる。 The support that can be used in the present invention includes, in addition to the particulate color conversion material and the light-emitting material, a light-resistant dye such as a light-absorbing dye, a light-absorbing pigment, an antioxidant, a processing and heat stabilizer, and an ultraviolet absorber. Agents, dispersants and leveling agents, plasticizers, crosslinking agents such as epoxy compounds, curing agents such as amines, acid anhydrides, imidazoles, adhesion aids, inorganic particles such as titanium oxide particles, zirconia particles, silica particles, and silane. An additive such as a coupling agent can be contained.
 本発明の実施の形態に係る色変換部材の代表的な構造例として、例えば、図1~図3に示すものが挙げられる。図1~図3は、本発明の実施の形態に係る色変換部材の一例を示す模式断面図である。図1に示すように、本実施の形態の一例である色変換部材1は、支持体3の内部に粒子状色変換材料2が分散した構造である。また、図2に示すように、本実施の形態の一例である色変換部材1Aは、支持体3の内部に粒子状色変換材料2aおよび粒子状色変換材料2bが分散した構造である。さらに、図3に示すように、本実施の形態の一例である色変換部材1Bは、内部に粒子状色変換材料2aが分散した支持体3aと、内部に粒子状色変換材料2bが分散した支持体3bが積層した構造である。さらにまた、本発明の実施の形態に係る色変換部材は、図1~図3の支持体3、3a、または3bの内部に、他の発光材料が含まれる構造であってもよく、他の発光材料が支持体3、3a、または3b中に分散されていることが好ましい。色変換部材1、1A、1Bに添加される発光材料は、一般式(1)で表される化合物であることが好ましい。 代表 A typical example of the structure of the color conversion member according to the embodiment of the present invention includes those shown in FIGS. 1 to 3 are schematic cross-sectional views illustrating an example of a color conversion member according to an embodiment of the present invention. As shown in FIG. 1, a color conversion member 1 according to an example of the present embodiment has a structure in which a particulate color conversion material 2 is dispersed inside a support 3. Further, as shown in FIG. 2, the color conversion member 1A as an example of the present embodiment has a structure in which a particulate color conversion material 2a and a particulate color conversion material 2b are dispersed inside a support 3. Further, as shown in FIG. 3, the color conversion member 1B as an example of the present embodiment has a support 3a in which the particulate color conversion material 2a is dispersed, and a particulate color conversion material 2b dispersed therein. This is a structure in which the supports 3b are stacked. Further, the color conversion member according to the embodiment of the present invention may have a structure in which another light emitting material is included in the inside of the support 3, 3a, or 3b in FIGS. Preferably, the luminescent material is dispersed in the support 3, 3a or 3b. The luminescent material added to the color conversion members 1, 1A, 1B is preferably a compound represented by the general formula (1).
 <色変換部材の作製方法>
 本発明の実施の形態に係る色変換部材の作製方法は、本発明の粒子状色変換材料を含んだ支持体を所望の形状に成形できれば、特に限定されない。例えば、本発明に係る粒子状色変換材料と支持体として使用する樹脂と溶剤とを混合し、組成物を作製したのち、基材上に塗布し、乾燥することで、シート状に成形する方法が挙げられる。また、本発明に係る粒子状色変換材料と支持体となる樹脂とを加熱しながら混錬し、押し出し機を用いて成形する方法も挙げられる。
<Method for producing color conversion member>
The method for producing the color conversion member according to the embodiment of the present invention is not particularly limited as long as the support containing the particulate color conversion material of the present invention can be formed into a desired shape. For example, a method of mixing a particulate color conversion material according to the present invention, a resin used as a support, and a solvent, preparing a composition, applying the composition on a substrate, and drying the composition to form a sheet. Is mentioned. Further, there is also a method of kneading while heating the particulate color conversion material according to the present invention and a resin as a support, and molding the mixture using an extruder.
 <色変換基板>
 本発明の実施の形態に係る色変換基板は、少なくとも本発明の粒子状色変換材料または色変換部材を備える構成である。色変換基板は、透明基板上に、複数の色変換層を備えるものである。本発明において、色変換層は、赤色変換層と緑色変換層とを含むことが好ましい。赤色変換層は少なくとも青色光を吸収して赤色光を発する蛍光体材料によって形成されている。緑色変換層は少なくとも青色光を吸収して緑色光を発する蛍光体材料によって形成されている。また、隔壁が形成されていてもよく、色変換層は、隔壁と隔壁の間(凹部)に配置されていることが好ましい。透明基板側から励起光を入射させ、透明基板と反対の側から視認してもよいし、色変換層側から励起光を入射させ、透明基板側から視認してもよい。色変換層の量子収率は、ピーク波長が440~460nmの青色光を色変換基板に照射したとき、通常は0.5以上、好ましくは0.7以上、より好ましくは0.8以上、さらに好ましくは0.9以上である。
<Color conversion board>
The color conversion substrate according to the embodiment of the present invention has a configuration including at least the particulate color conversion material or the color conversion member of the present invention. The color conversion substrate has a plurality of color conversion layers on a transparent substrate. In the present invention, the color conversion layer preferably includes a red conversion layer and a green conversion layer. The red conversion layer is formed of a phosphor material that absorbs at least blue light and emits red light. The green color conversion layer is formed of a phosphor material that absorbs at least blue light and emits green light. Further, a partition may be formed, and the color conversion layer is preferably disposed between the partition (recess). Excitation light may be made incident from the transparent substrate side and viewed from the side opposite to the transparent substrate, or excitation light may be made incident from the color conversion layer side and viewed from the transparent substrate side. When the color conversion substrate is irradiated with blue light having a peak wavelength of 440 to 460 nm, the quantum yield of the color conversion layer is usually 0.5 or more, preferably 0.7 or more, more preferably 0.8 or more. Preferably it is 0.9 or more.
 <インク> 
 本発明の実施の形態に係るインクは、少なくとも本発明の粒子状色変換材料または色変換部材を含んだ液体、ジェル、固体の状態で、文字の記載や表面への色付けのために用いられるものである。本発明の実施の形態に係るインクは、本発明の粒子状色変換材料または色変換部材を用いることで、高色純度の発光と耐久性とを両立することができるため、特に、セキュリティ印刷用途のための蛍光インクとして好ましく用いることができる。
<Ink>
The ink according to the embodiment of the present invention is a liquid, gel, or solid containing at least the particulate color conversion material or color conversion member of the present invention, which is used for writing characters and coloring the surface. It is. The ink according to the embodiment of the present invention can achieve both high-color purity light emission and durability by using the particulate color conversion material or the color conversion member of the present invention. Can be preferably used as a fluorescent ink.
 <励起光>
 励起光の種類は、本発明に用いられる有機発光材料が吸収可能な波長領域に発光を示すものであれば、いずれの励起光でも用いることができる。例えば、熱陰極管や冷陰極管、無機エレクトロルミネッセンス(EL)素子等の蛍光性光源、有機EL素子光源、LED光源、白熱光源、あるいは太陽光等、いずれの光源からの励起光でも利用可能である。中でも、LED光源からの励起光が好適である。ディスプレイや照明用途では、青色光の色純度を高められる点で、400nm以上500nm以下の波長範囲の励起光を持つ青色LED光源からの励起光が、さらに好適である。
<Excitation light>
Any kind of excitation light can be used as long as it emits light in a wavelength region that can be absorbed by the organic light-emitting material used in the present invention. For example, excitation light from any light source such as a fluorescent light source such as a hot cathode tube, a cold cathode tube, an inorganic electroluminescence (EL) device, an organic EL device light source, an LED light source, an incandescent light source, or sunlight can be used. is there. Above all, excitation light from an LED light source is preferable. In displays and lighting applications, excitation light from a blue LED light source having excitation light in a wavelength range of 400 nm or more and 500 nm or less is more preferable because the color purity of blue light can be increased.
 励起光の極大発光波長としては、430nm以上500nm以下であることが、励起エネルギーがより小さくなり、有機発光材料の劣化を抑止できるため、より好ましく、440nm以上500nm以下であることがさらに好ましい。特に好ましくは450nm以上500nm以下である。また、励起光の極大発光波長としては、励起光と緑色光との発光スペクトルの重なりを小さくし、色再現性を向上させることができるため、480nm以下であることがより好ましく、470nm以下であることがさらに好ましい。
 励起光は、1種類の発光ピークを持つものでもよく、2種類以上の発光ピークを持つものでもよいが、色純度を高めるためには、1種類の発光ピークを持つものが好ましい。また、発光ピークの種類の異なる複数の励起光源を任意に組み合わせて使用することも可能である。
The maximum emission wavelength of the excitation light is more preferably 430 nm or more and 500 nm or less, because the excitation energy is further reduced and deterioration of the organic light emitting material can be suppressed, and further preferably 440 nm or more and 500 nm or less. Particularly preferably, it is 450 nm or more and 500 nm or less. Further, the maximum emission wavelength of the excitation light is more preferably 480 nm or less, because the overlap of the emission spectra of the excitation light and the green light can be reduced and color reproducibility can be improved. Is more preferable.
The excitation light may have one type of emission peak or two or more types of emission peaks, but preferably has one type of emission peak in order to increase color purity. Further, a plurality of excitation light sources having different types of emission peaks can be arbitrarily combined and used.
 <光源ユニット>
 本発明の実施の形態に係る光源ユニットは、少なくとも光源および本発明の粒子状色変換材料または色変換部材を備える構成である。光源と粒子状色変換材料や色変換部材との配置方法については特に限定されず、光源と粒子状色変換材料や色変換部材とを密着させた構成を取ってもよいし、光源と粒子状色変換材料や色変換部材とを離したリモートフォスファー形式を取ってもよい。また、光源ユニットは、色純度を高める目的で、さらにカラーフィルターを備える構成を取ってもよい。
<Light source unit>
The light source unit according to the embodiment of the present invention is configured to include at least the light source and the particulate color conversion material or the color conversion member of the present invention. The method of arranging the light source and the particulate color conversion material or the color conversion member is not particularly limited, and a configuration in which the light source and the particulate color conversion material or the color conversion member are in close contact with each other, or the light source and the particulate A remote phosphor type in which a color conversion material or a color conversion member is separated may be used. Further, the light source unit may be configured to further include a color filter in order to increase color purity.
 前述の通り、波長400nm以上500nm以下の範囲の励起光は、比較的小さい励起エネルギーであり、一般式(1)で表される化合物等の発光物質の分解を防止できる。したがって、光源ユニットが備える光源は、波長400nm以上500nm以下の範囲に極大発光を有する発光ダイオードであることが好ましい。さらに、この光源は、波長430nm以上480nm以下の範囲に極大発光を有することが好ましく、波長450nm以上470nm以下の範囲に極大発光を有することが、さらに好ましい。本発明における光源ユニットは、ディスプレイ、照明、インテリア、標識、看板等の用途に使用できるが、特にディスプレイや照明用途に好適に用いられる。 As described above, the excitation light having a wavelength of 400 nm or more and 500 nm or less has relatively small excitation energy, and can prevent the decomposition of a luminescent material such as the compound represented by the general formula (1). Therefore, it is preferable that the light source included in the light source unit is a light emitting diode that emits maximum light in a wavelength range of 400 nm to 500 nm. Further, this light source preferably has a maximum emission in a wavelength range of 430 nm to 480 nm, and more preferably has a maximum emission in a wavelength range of 450 nm to 470 nm. The light source unit according to the present invention can be used for applications such as displays, lighting, interiors, signs, and signboards, but is particularly suitably used for displays and lighting.
 <ディスプレイ、照明装置>
 本発明の実施の形態に係るディスプレイは、少なくとも、光源および粒子状色変換材料または色変換部材を含む光源ユニットを備える。例えば、液晶ディスプレイ等のディスプレイには、バックライトユニットとして、上述の光源ユニットが用いられる。
 また、本発明の実施の形態に係る照明装置は、少なくとも、光源および粒子状色変換材料または色変換部材を含む光源ユニットを備える。例えば、この照明装置は、光源としての青色LED光源と、この青色LED光源からの青色光をこれよりも長波長の光に変換する粒子状色変換材料または色変換部材とを組み合わせて、白色光を発光するように構成される。
<Display, lighting device>
A display according to an embodiment of the present invention includes at least a light source unit including a light source and a particulate color conversion material or a color conversion member. For example, in a display such as a liquid crystal display, the above-described light source unit is used as a backlight unit.
Further, the lighting device according to the embodiment of the present invention includes at least a light source unit including a light source and a particulate color conversion material or a color conversion member. For example, this lighting device combines a blue LED light source as a light source, and a particulate color conversion material or a color conversion member that converts blue light from the blue LED light source into light having a longer wavelength than the light source. Is configured to emit light.
 以下、実施例をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 下記の実施例および比較例において、化合物G-1、R-1は以下に示す化合物である。なお、化合物G-1、R-1は、公知の手法を用いて合成して使用した。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
In the following Examples and Comparative Examples, Compounds G-1 and R-1 are the compounds shown below. Compounds G-1 and R-1 were synthesized and used by a known method.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 本発明の色変換部材等の色変換特性、光耐久性に関する評価方法を下記に示す。
 <色変換特性の測定>
 色変換特性の測定では、発光ピーク波長457nmの青色LED素子を搭載した面状発光装置に各色変換部材およびプリズムシートを載せた状態で、この面状発光装置に30mAの電流を流して、この青色LED素子を点灯させ、分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて、発光スペクトル、色度および輝度を測定した。
The method for evaluating the color conversion characteristics and light durability of the color conversion member and the like of the present invention will be described below.
<Measurement of color conversion characteristics>
In the measurement of the color conversion characteristics, a current of 30 mA was passed through the surface light emitting device in a state where each color conversion member and the prism sheet were mounted on the surface light emitting device equipped with a blue LED element having an emission peak wavelength of 457 nm. The LED element was turned on, and the emission spectrum, chromaticity, and luminance were measured using a spectral radiance meter (CS-1000, manufactured by Konica Minolta).
 <色域の算出>
 上記色変換特性の測定によって得られた発光スペクトルと、カラーフィルターの透過率のスペクトルデータとから、カラーフィルターにより色純度を向上させた場合の(u’,v’)色空間における色域を算出した。また、算出された(u’,v’)色空間における色域の面積は、BT.2020規格の色域面積を100%とした場合の割合により、以下の基準で評価した。この(u’,v’)色空間における色域の面積の評価結果として、「A」は、上記の割合が91%以上であることを示す。「B」は、上記の割合が86%以上90%以下であることを示す。「C」は、上記の割合が81%以上85%以下であることを示す。「D」は、上記の割合が80%以下であることを示す。この評価結果において、上記の割合が高いほど、色域が広く、色変換部材の色再現性が良好である。
<Calculation of color gamut>
The color gamut in the (u ′, v ′) color space when the color purity is improved by the color filter is calculated from the emission spectrum obtained by the measurement of the color conversion characteristics and the spectral data of the transmittance of the color filter. did. The area of the calculated color gamut in the (u ′, v ′) color space is BT. The evaluation was made based on the following criteria based on the ratio when the color gamut area of the 2020 standard was 100%. As the evaluation result of the area of the color gamut in the (u ′, v ′) color space, “A” indicates that the above ratio is 91% or more. “B” indicates that the ratio is 86% or more and 90% or less. "C" indicates that the ratio is 81% or more and 85% or less. "D" indicates that the above ratio is 80% or less. In this evaluation result, the higher the above ratio, the wider the color gamut and the better the color reproducibility of the color conversion member.
 <光耐久性のテスト>
 光耐久性のテストでは、発光ピーク波長447nmの青色LED素子を搭載した面状発光装置に各色変換部材およびプリズムシートを載せた状態で、この面状発光装置に100mAの電流を流して、この青色LED素子を点灯させ、分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて初期輝度を測定した。その後、オーブンを用いて50℃、27%RHの環境下で青色LED素子からの光を連続照射し、輝度が一定量低下するまでの時間を観測することで、光耐久性を評価した。ただし、輝度の測定は、色変換部材および面状発光装置を前述のオーブンの外に出し、室温まで降温させた状態で測定した。
<Light durability test>
In the light durability test, a current of 100 mA was passed through the surface light emitting device with the respective color conversion members and the prism sheet mounted on the surface light emitting device equipped with a blue LED element having an emission peak wavelength of 447 nm. The LED element was turned on, and the initial luminance was measured using a spectroradiometer (CS-1000, manufactured by Konica Minolta). Thereafter, the light durability was evaluated by continuously irradiating light from the blue LED element under an environment of 50 ° C. and 27% RH using an oven, and observing a time until the luminance decreased by a certain amount. However, the luminance was measured with the color conversion member and the planar light emitting device taken out of the above-mentioned oven and cooled to room temperature.
 実施例1
 まず、マトリクス樹脂としてアクリル樹脂T1(SP値=9.8(cal/cm0.5)を用い、このマトリクス樹脂の100質量部に対して、化合物G-1を0.3質量部、溶剤としてトルエンを400質量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用いて300rpmで30分間撹拌・脱泡し、色変換組成物を得た。この色変換組成物をスプレードライ法で乾燥させることにより、粒子状色変換材料を作製した。ECLIPSE L200N(株式会社ニコン製)を用い、孤立粒子100個の粒径を測定して、その平均値を算出したところ、平均粒径は14μmだった。粒径は、最も直径が大きくなる部分を選択して測定した。
 次に、水添SEBS共重合体樹脂T2(SP値=8.5(cal/cm0.5)を用い、この樹脂の100質量部に対して、溶剤としてシクロヘキサンを300質量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用いて300rpmで30分間撹拌・脱泡し、支持体用樹脂液を得た。
Example 1
First, an acrylic resin T1 (SP value = 9.8 (cal / cm 3 ) 0.5 ) was used as a matrix resin, and 0.3 part by mass of a compound G-1 was added to 100 parts by mass of the matrix resin. 400 parts by mass of toluene was mixed as a solvent. The mixture was stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to obtain a color conversion composition. The color conversion composition was dried by a spray drying method to prepare a particulate color conversion material. The particle size of 100 isolated particles was measured using ECLIPSE L200N (manufactured by Nikon Corporation), and the average value was calculated. The average particle size was 14 μm. The particle size was measured by selecting a portion having the largest diameter.
Next, using hydrogenated SEBS copolymer resin T2 (SP value = 8.5 (cal / cm 3 ) 0.5 ), 300 parts by mass of cyclohexane as a solvent was mixed with 100 parts by mass of this resin. did. The mixture was stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to obtain a resin solution for a support.
 最後に、粒子状色変換材料と支持体用樹脂液を混合し、撹拌することで、色変換材料分散液を作製した。この色変換材料分散液を、バーコーターを用いて、スライドガラス板上に塗布し、100℃で20分加熱、乾燥して、色変換部材を作製した。
 作製した色変換部材を用いて青色LED光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長528nm、ピーク波長における発光スペクトルの半値幅33nmの高色純度緑色発光が得られた。また、上記の方法にしたがい、50℃、27%RHの環境下で青色LED素子からの光を連続照射したところ、輝度が10%低下するまでの時間は120時間であった。結果を表2に示す。
Finally, the particulate color conversion material and the resin solution for a support were mixed and stirred to prepare a color conversion material dispersion. This color conversion material dispersion was applied onto a slide glass plate using a bar coater, heated at 100 ° C. for 20 minutes, and dried to prepare a color conversion member.
When the blue LED light was color-converted using the produced color conversion member, when only the emission region of the green light was extracted, high-purity green light emission having a peak wavelength of 528 nm and a half-value width of the emission spectrum at the peak wavelength of 33 nm was obtained. Was. Further, according to the above method, when the light from the blue LED element was continuously irradiated in an environment of 50 ° C. and 27% RH, the time required for the luminance to decrease by 10% was 120 hours. Table 2 shows the results.
 実施例2~3
 表2記載のマトリクス樹脂および支持体樹脂を用いた以外は、実施例1と同様にして色変換部材を作製して評価した。結果を表2に示す。
Examples 2 and 3
A color conversion member was prepared and evaluated in the same manner as in Example 1 except that the matrix resin and the support resin shown in Table 2 were used. Table 2 shows the results.
 比較例1
 発光材料としてCoumarine6(シグマアルドリッチ社製)を用いた以外は、実施例1と同様にして色変換部材を作製して評価した。ただし、発光材料の混合量は、実施例1のG-1と同じ物質量になるように調整した。結果を表2に示す。
Comparative Example 1
A color conversion member was prepared and evaluated in the same manner as in Example 1, except that Coumarine 6 (manufactured by Sigma-Aldrich) was used as the light emitting material. However, the mixing amount of the light emitting material was adjusted so as to have the same substance amount as G-1 in Example 1. Table 2 shows the results.
 比較例2
 実施例1で作製した色変換組成物を、バーコーターを用いて、スライドガラス板上に塗布し、100℃で20分加熱、乾燥して、色変換部材を作製した。
Comparative Example 2
The color conversion composition prepared in Example 1 was applied on a slide glass plate using a bar coater, heated at 100 ° C. for 20 minutes, and dried to prepare a color conversion member.
 実施例4
 まず、マトリクス樹脂としてアクリル樹脂T1(SP値=9.8(cal/cm0.5)を用い、このマトリクス樹脂の100質量部に対して、化合物G-1を0.3質量部、溶剤としてトルエンを400質量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用いて300rpmで30分間撹拌・脱泡し、色変換組成物を得た。この色変換組成物をスプレードライ法で乾燥させることにより、第1粒子状色変換材料を作製した。
 同様に、マトリクス樹脂としてポリエステル樹脂T11(SP値=10.7(cal/cm0.5)を用い、マトリクス樹脂の100質量部に対して、化合物R-1を0.1質量部、溶剤としてトルエンを400質量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用いて300rpmで30分間撹拌・脱泡し、色変換組成物を得た。この色変換組成物をスプレードライ法で乾燥させることにより、第2粒子状色変換材料を作製した。
Example 4
First, an acrylic resin T1 (SP value = 9.8 (cal / cm 3 ) 0.5 ) was used as a matrix resin, and 0.3 part by mass of a compound G-1 was added to 100 parts by mass of the matrix resin. 400 parts by mass of toluene was mixed as a solvent. The mixture was stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to obtain a color conversion composition. The color conversion composition was dried by a spray drying method to prepare a first particulate color conversion material.
Similarly, a polyester resin T11 (SP value = 10.7 (cal / cm 3 ) 0.5 ) was used as the matrix resin, and 0.1 part by mass of the compound R-1 was added to 100 parts by mass of the matrix resin. 400 parts by mass of toluene was mixed as a solvent. The mixture was stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to obtain a color conversion composition. The color conversion composition was dried by a spray drying method to prepare a second particulate color conversion material.
 次に、水添SEBS共重合体樹脂T2(SP値=8.5(cal/cm0.5)を用い、この樹脂の100質量部に対して、溶剤としてシクロヘキサンを300質量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用いて300rpmで30分間撹拌・脱泡し、支持体用樹脂液を得た。
 最後に、第1粒子状色変換材料と第2粒子状色変換材料と支持体用樹脂液を混合し、撹拌することで、色変換分散液を作製した。この色変換分散液を、バーコーターを用いて、スライドガラス板上に塗布し、100℃で20分加熱、乾燥して、色変換部材を作製した。
 作製した色変換部材を用いて青色LED光を色変換させたところ、発光スペクトルは図4に示す通りとなり、白色光が得られた。緑色光の発光領域のみを抜粋すると、ピーク波長527nm、ピーク波長における発光スペクトルの半値幅27nmの高色純度緑色発光が得られた。また、赤色光の発光領域のみを抜粋すると、ピーク波長641nm、ピーク波長における発光スペクトルの半値幅49nmの高色純度赤色発光が得られた。(u’,v’)色空間における色域の面積は、BT.2020規格の色域面積に対して96%であった。結果を表3に示す。表3において、「色域面積」は、(u’,v’)色空間における色域の面積である。また、「色域面積」欄の「A」~「D」は、この色域の面積の評価結果を示すものである。
Next, using hydrogenated SEBS copolymer resin T2 (SP value = 8.5 (cal / cm 3 ) 0.5 ), 300 parts by mass of cyclohexane as a solvent was mixed with 100 parts by mass of this resin. did. The mixture was stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to obtain a resin solution for a support.
Finally, the first particulate color conversion material, the second particulate color conversion material, and the resin liquid for a support were mixed and stirred to prepare a color conversion dispersion. This color conversion dispersion was applied on a slide glass plate using a bar coater, heated at 100 ° C. for 20 minutes, and dried to prepare a color conversion member.
When the blue LED light was color-converted using the prepared color conversion member, the emission spectrum was as shown in FIG. 4, and white light was obtained. When only the green light emission region was extracted, high-purity green light emission having a peak wavelength of 527 nm and a half-value width of the emission spectrum at the peak wavelength of 27 nm was obtained. When only the emission region of red light was extracted, high-purity red emission having a peak wavelength of 641 nm and a half width of the emission spectrum at the peak wavelength of 49 nm was obtained. The area of the color gamut in the (u ′, v ′) color space is BT. It was 96% of the color gamut area of the 2020 standard. Table 3 shows the results. In Table 3, “color gamut area” is the area of the color gamut in the (u ′, v ′) color space. “A” to “D” in the “color gamut area” column show evaluation results of the area of the color gamut.
 実施例5
 第2粒子状色変換材料のマトリクス樹脂として、アクリル樹脂T1(SP値=9.8(cal/cm0.5)を用いた以外は、実施例2と同様にして色変換部材を作製して評価した。結果を表3に示す。
Example 5
A color conversion member was produced in the same manner as in Example 2, except that an acrylic resin T1 (SP value = 9.8 (cal / cm 3 ) 0.5 ) was used as the matrix resin of the second particulate color conversion material. Was evaluated. Table 3 shows the results.
 実施例6
 第1粒子状色変換材料のマトリクス樹脂として、ポリエステル樹脂T11(SP値=10.7(cal/cm0.5)を用い、第2粒子状色変換材料のマトリクス樹脂として、アクリル樹脂T1(SP値=9.8(cal/cm0.5)を用いた以外は、実施例4と同様にして色変換部材を作製して評価した。結果を表3に示す。
Example 6
A polyester resin T11 (SP value = 10.7 (cal / cm 3 ) 0.5 ) was used as a matrix resin of the first particulate color conversion material, and an acrylic resin T1 was used as a matrix resin of the second particulate color conversion material. A color conversion member was prepared and evaluated in the same manner as in Example 4, except that (SP value = 9.8 (cal / cm 3 ) 0.5 ) was used. Table 3 shows the results.
 比較例3
 第1粒子状色変換材料の発光材料としてCoumarine6(シグマアルドリッチ社製)を用い、実施例3のG-1と同じ物質量になるように調整して混合し、第2粒子状色変換材料の発光材料としてLumogen F Red305(BASF社製)を用い、実施例3のR-1と同じ物質量になるように調整して混合した以外は、実施例5と同様にして色変換部材を作製して評価した。結果を表3に示す。
Comparative Example 3
Coumaline 6 (manufactured by Sigma-Aldrich) was used as the light emitting material of the first particulate color conversion material, and was adjusted so as to have the same substance amount as G-1 in Example 3 and mixed. A color conversion member was produced in the same manner as in Example 5, except that Lumogen F Red 305 (manufactured by BASF) was used as a light emitting material, and the mixture was adjusted so as to have the same substance amount as R-1 in Example 3. Was evaluated. Table 3 shows the results.
 実施例7
 マトリクス樹脂としてアクリル樹脂T1(SP値=9.8(cal/cm0.5)を用い、このマトリクス樹脂の100質量部に対して、化合物G-1を0.3質量部、化合物R-1を0.017質量部、溶剤としてトルエンを400質量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用いて300rpmで30分間撹拌・脱泡し、色変換組成物を得た。この色変換組成物をスプレードライ法で乾燥させることにより、粒子状色変換材料を作製した。
 次に、水添SEBS共重合体樹脂T2(SP値=8.5(cal/cm0.5)を用い、この樹脂の100質量部に対して、溶剤としてシクロヘキサンを300質量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用いて300rpmで30分間撹拌・脱泡し、支持体用樹脂液を得た。
 最後に、粒子状色変換材料と支持体用樹脂液を混合し、撹拌することで、色変換材料分散液を作製した。この色変換材料分散液を、バーコーターを用いて、スライドガラス板上に塗布し、100℃で20分加熱、乾燥して、色変換部材を作製した。実施例4と同様に評価した結果を表3に示す。
Example 7
Acrylic resin T1 (SP value = 9.8 (cal / cm 3 ) 0.5 ) was used as a matrix resin, and 0.3 parts by weight of compound G-1 and 0.3 parts by weight of compound R were added to 100 parts by weight of this matrix resin. 0.011 parts by mass of -1 and 400 parts by mass of toluene as a solvent were mixed. The mixture was stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to obtain a color conversion composition. The color conversion composition was dried by a spray drying method to prepare a particulate color conversion material.
Next, using hydrogenated SEBS copolymer resin T2 (SP value = 8.5 (cal / cm 3 ) 0.5 ), 300 parts by mass of cyclohexane as a solvent was mixed with 100 parts by mass of this resin. did. The mixture was stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to obtain a resin solution for a support.
Finally, the particulate color conversion material and the resin solution for a support were mixed and stirred to prepare a color conversion material dispersion. This color conversion material dispersion was applied onto a slide glass plate using a bar coater, heated at 100 ° C. for 20 minutes, and dried to prepare a color conversion member. Table 3 shows the results of the evaluation performed in the same manner as in Example 4.
 実施例8
 まず、マトリクス樹脂としてポリエステル樹脂T12(SP値=10.9(cal/cm0.5)を用い、このマトリクス樹脂の100質量部に対して、化合物R-1を0.1質量部、溶剤としてメチルエチルケトンを400質量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用いて300rpmで30分間撹拌・脱泡し、色変換組成物を得た。この色変換組成物をスプレードライ法で乾燥させることにより、粒子状色変換材料を作製した。
 次に、アクリル樹脂T2(SP値=9.9(cal/cm0.5)を用い、この樹脂の100質量部に対して、化合物G-1を0.3質量部、溶剤として酢酸エチルを200質量部、1-メトキシ-2-プロパノールを200質量部、を混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用いて300rpmで30分間撹拌・脱泡し、支持体用樹脂液を得た。
Example 8
First, a polyester resin T12 (SP value = 10.9 (cal / cm 3 ) 0.5 ) was used as the matrix resin, and 0.1 part by mass of the compound R-1 was added to 100 parts by mass of the matrix resin. 400 parts by mass of methyl ethyl ketone was mixed as a solvent. The mixture was stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to obtain a color conversion composition. The color conversion composition was dried by a spray drying method to prepare a particulate color conversion material.
Next, using an acrylic resin T2 (SP value = 9.9 (cal / cm 3 ) 0.5 ), 0.3 parts by mass of the compound G-1 was used with respect to 100 parts by mass of the resin, and acetic acid was used as a solvent. 200 parts by mass of ethyl and 200 parts by mass of 1-methoxy-2-propanol were mixed. The mixture was stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries) to obtain a resin solution for a support.
 最後に、粒子状色変換材料と支持体用樹脂液を混合し、撹拌することで、色変換材料分散液を作製した。この色変換材料分散液を、バーコーターを用いて、スライドガラス板上に塗布し、100℃で20分加熱、乾燥して、色変換部材を作製した。
 作製した色変換部材を用いて青色LED光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長529nm、ピーク波長における発光スペクトルの半値幅29nmの高色純度緑色発光が得られた。また、赤色光の発光領域のみを抜粋すると、ピーク波長641nm、ピーク波長における発光スペクトルの半値幅48nmの高色純度赤色発光が得られた。(u’,v’)色空間における色域の面積は、BT.2020規格の色域面積に対して94%であった。結果を表4に示す。表4において、「色域面積」は、(u’,v’)色空間における色域の面積である。また、「色域面積」欄の「A」~「D」は、この色域の面積の評価結果を示すものである。
Finally, the particulate color conversion material and the resin solution for a support were mixed and stirred to prepare a color conversion material dispersion. This color conversion material dispersion was applied onto a slide glass plate using a bar coater, heated at 100 ° C. for 20 minutes, and dried to prepare a color conversion member.
When the blue LED light was color-converted using the prepared color conversion member, when only the emission region of green light was extracted, high-purity green light emission with a peak wavelength of 529 nm and a half-width of the emission spectrum at the peak wavelength of 29 nm was obtained. Was. When only the emission region of red light was extracted, high-purity red emission having a peak wavelength of 641 nm and a half width of the emission spectrum at the peak wavelength of 48 nm was obtained. The area of the color gamut in the (u ′, v ′) color space is BT. It was 94% of the gamut area of the 2020 standard. Table 4 shows the results. In Table 4, “color gamut area” is the area of the color gamut in the (u ′, v ′) color space. “A” to “D” in the “color gamut area” column show evaluation results of the area of the color gamut.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
1、1A、1B 色変換部材
2、2a、2b 粒子状色変換材料
3、3a、3b 支持体
1, 1A, 1B Color conversion member 2, 2a, 2b Particulate color conversion material 3, 3a, 3b Support

Claims (19)

  1.  マトリクス樹脂および少なくとも1種の発光材料を有する粒子状色変換材料であって、前記発光材料が一般式(1)で表される化合物を含有する、粒子状色変換材料。
    Figure JPOXMLDOC01-appb-C000001
    (XはC-RまたはNである。R~Rはそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基から選択され、当該選択された基は隣接置換基との間で縮合環または脂肪族環を形成してもよい。)
    A particulate color conversion material having a matrix resin and at least one kind of luminescent material, wherein the luminescent material contains a compound represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (X is C—R 7 or N. R 1 to R 9 may be the same or different and each is hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, Hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, It is selected from a nitro group, a silyl group, a siloxanyl group, a boryl group, and a phosphine oxide group, and the selected group may form a condensed ring or an aliphatic ring with an adjacent substituent.)
  2.  ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する第1発光材料、および/またはピーク波長が580nm以上750nm以下の領域に観測される発光を呈する第2発光材料の少なくとも一方を含有する、請求項1に記載の粒子状色変換材料。 It contains at least one of a first light emitting material exhibiting light emission observed in a region having a peak wavelength of 500 nm or more and less than 580 nm and / or a second light emitting material exhibiting light emission observed in a region having a peak wavelength of 580 nm or more and 750 nm or less. The particulate color conversion material according to claim 1.
  3.  平均粒径が0.010μm以上100μm以下である、請求項1または2に記載の粒子状色変換材料。 The particulate color conversion material according to claim 1 or 2, wherein the average particle size is 0.010 µm or more and 100 µm or less.
  4.  前記マトリクス樹脂がアクリル樹脂、アクリル酸エステルまたはメタクリル酸エステル部位を含む共重合樹脂、ポリエステル樹脂、シクロオレフィン樹脂、エポキシ樹脂のいずれかである、請求項1~3のいずれかに記載の粒子状色変換材料。 4. The particulate color according to claim 1, wherein the matrix resin is an acrylic resin, a copolymer resin containing an acrylate or methacrylate ester site, a polyester resin, a cycloolefin resin, or an epoxy resin. Conversion material.
  5.  請求項1~4のいずれかに記載の粒子状色変換材料を含有する支持体を備える、色変換部材。 (5) A color conversion member comprising a support containing the particulate color conversion material according to any one of (1) to (4).
  6.  前記支持体の形状がシート状である、請求項5に記載の色変換部材。 The color conversion member according to claim 5, wherein the support has a sheet shape.
  7.  前記支持体が樹脂からなる、請求項5または6に記載の色変換部材。 7. The color conversion member according to claim 5, wherein the support is made of a resin.
  8.  前記マトリクス樹脂と前記支持体を形成する樹脂のSP値の差が0.5(cal/cm0.5以上である、請求項7に記載の色変換部材。 The difference between the SP value of the resin forming the matrix resin and the support is that 0.5 (cal / cm 3) 0.5 or more, the color conversion member according to claim 7.
  9.  前記粒子状色変換材料が、
     ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する一般式(1)で表される化合物と第1マトリクス樹脂からなる第1粒子状色変換材料と、
     ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する一般式(1)で表される化合物と第2マトリクス樹脂からなる第2粒子状色変換材料とを含む、請求項5~8のいずれかに記載の色変換部材。
    The particulate color conversion material,
    A first particulate color conversion material comprising a compound represented by the general formula (1) exhibiting light emission having a peak wavelength of 500 nm or more and less than 580 nm, and a first matrix resin;
    9. The composition according to claim 5, comprising a compound represented by the general formula (1) exhibiting light emission having a peak wavelength of 580 nm or more and 750 nm or less, and a second particulate color conversion material comprising a second matrix resin. The color conversion member according to any one of the above.
  10.  前記第1マトリクス樹脂と第2マトリクス樹脂が異なる、請求項9に記載の色変換部材。 The color conversion member according to claim 9, wherein the first matrix resin and the second matrix resin are different.
  11.  前記第1マトリクス樹脂および第2マトリクス樹脂のSP値をそれぞれSP(cal/cm0.5およびSP(cal/cm0.5とするとき、SP≦SPである、請求項9または10に記載の色変換部材。 When the SP values of the first matrix resin and the second matrix resin are respectively SP 1 (cal / cm 3 ) 0.5 and SP 2 (cal / cm 3 ) 0.5 , SP 1 ≦ SP 2 The color conversion member according to claim 9.
  12.  前記支持体が、請求項1~4のいずれかに記載の粒子状色変換材料および少なくとも1種の発光材料を含有する、請求項5~11のいずれかに記載の色変換部材。 色 The color conversion member according to any one of claims 5 to 11, wherein the support comprises the particulate color conversion material according to any one of claims 1 to 4 and at least one luminescent material.
  13.  前記発光材料が、少なくとも一般式(1)で表される化合物を含有する、請求項12に記載の色変換部材。 The color conversion member according to claim 12, wherein the light emitting material contains at least a compound represented by the general formula (1).
  14.  光源と、請求項1~4のいずれかに記載の粒子状色変換材料または請求項5~11のいずれかに記載の色変換部材、を備える、光源ユニット。 光源 A light source unit comprising a light source and the particulate color conversion material according to any one of claims 1 to 4 or the color conversion member according to any one of claims 5 to 11.
  15.  前記光源が、波長400nm以上500nm以下の範囲に極大発光を有する発光ダイオードである、請求項14に記載の光源ユニット。 The light source unit according to claim 14, wherein the light source is a light emitting diode having a maximum light emission in a wavelength range of 400 nm or more and 500 nm or less.
  16.  請求項14または15に記載の光源ユニットを備える、ディスプレイ。 A display comprising the light source unit according to claim 14.
  17.  請求項14または15に記載の光源ユニットを備える、照明装置。 An illumination device comprising the light source unit according to claim 14.
  18.  請求項1~4のいずれか一つに記載の粒子状色変換材料、または請求項5~13のいずれか一つに記載の色変換部材を含有する、色変換基板。 (4) A color conversion substrate comprising the particulate color conversion material according to any one of (1) to (4) or the color conversion member according to any one of (5) to (13).
  19.  請求項1~4のいずれか一つに記載の粒子状色変換材料、または請求項5~13のいずれか一つに記載の色変換部材を含有する、インク。 イ ン ク An ink containing the particulate color conversion material according to any one of claims 1 to 4 or the color conversion member according to any one of claims 5 to 13.
PCT/JP2019/034006 2018-09-06 2019-08-29 Color conversion material, color conversion member, light source unit, display device, lighting device, color conversion substrate and ink WO2020050144A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019549015A JP7380216B2 (en) 2018-09-06 2019-08-29 Color conversion materials, light source units, displays, lighting devices, color conversion substrates, and inks
KR1020217004840A KR20210055677A (en) 2018-09-06 2019-08-29 Color conversion material, color conversion member, light source unit, display, lighting device, color conversion substrate and ink
CN201980055522.2A CN112639542B (en) 2018-09-06 2019-08-29 Color conversion material, color conversion member, light source unit, display, illumination device, color conversion substrate, and ink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018166657 2018-09-06
JP2018-166657 2018-09-06

Publications (1)

Publication Number Publication Date
WO2020050144A1 true WO2020050144A1 (en) 2020-03-12

Family

ID=69721652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034006 WO2020050144A1 (en) 2018-09-06 2019-08-29 Color conversion material, color conversion member, light source unit, display device, lighting device, color conversion substrate and ink

Country Status (5)

Country Link
JP (1) JP7380216B2 (en)
KR (1) KR20210055677A (en)
CN (1) CN112639542B (en)
TW (1) TWI808253B (en)
WO (1) WO2020050144A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120515A1 (en) * 2021-12-21 2023-06-29 積水化学工業株式会社 Inkjet composition for forming partition wall, led module, method for manufacturing led module, and inkjet composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212554A (en) * 1998-11-20 2000-08-02 Idemitsu Kosan Co Ltd Fluorescence conversion medium and display device using the same
JP2013064031A (en) * 2011-09-15 2013-04-11 Hitachi Chemical Co Ltd Spherical phosphor, wavelength conversion filter, and color conversion light-emitting device using the same
JP2017027839A (en) * 2015-07-24 2017-02-02 株式会社ジャパンディスプレイ Lighting apparatus and display
JP2017040730A (en) * 2015-08-19 2017-02-23 東レ株式会社 Barrier film for light wavelength conversion member
WO2017164155A1 (en) * 2016-03-25 2017-09-28 東レ株式会社 Light source unit, lamination member, and display and illumination device in which same is used
JP2018506625A (en) * 2015-12-23 2018-03-08 アファンタマ アクチェンゲゼルシャフト Light emitting parts
JP2018119971A (en) * 2013-03-08 2018-08-02 コニカミノルタ株式会社 Resin particles for fluorescent labeling

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1143159C (en) * 1995-11-29 2004-03-24 三洋电机株式会社 Display and method of producing the display
JP4005749B2 (en) 1999-12-13 2007-11-14 出光興産株式会社 Color conversion film and organic electroluminescence device
JP5221859B2 (en) 2006-03-09 2013-06-26 株式会社Adeka Film comprising coumarin compound, color conversion layer containing coumarin compound and matrix, color conversion filter containing the color conversion layer, complementary color layer, complementary color filter and multicolor light emitting device
JP2011241160A (en) 2010-05-17 2011-12-01 Yamamoto Chem Inc Color conversion material, composition including the material, color conversion optical part using the composition, and light-emitting element using the color conversion optical part
CN102905513A (en) 2010-05-28 2013-01-30 旭硝子株式会社 Wavelength conversion film
JP2012022028A (en) 2010-07-12 2012-02-02 Ns Materials Kk Liquid crystal display
WO2017057287A1 (en) * 2015-09-29 2017-04-06 東レ株式会社 Color conversion film, and light source unit, display, and illumination device including same
JP6737010B2 (en) * 2016-07-01 2020-08-05 東レ株式会社 Color conversion sheet, light source unit including the same, display and illumination

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212554A (en) * 1998-11-20 2000-08-02 Idemitsu Kosan Co Ltd Fluorescence conversion medium and display device using the same
JP2013064031A (en) * 2011-09-15 2013-04-11 Hitachi Chemical Co Ltd Spherical phosphor, wavelength conversion filter, and color conversion light-emitting device using the same
JP2018119971A (en) * 2013-03-08 2018-08-02 コニカミノルタ株式会社 Resin particles for fluorescent labeling
JP2017027839A (en) * 2015-07-24 2017-02-02 株式会社ジャパンディスプレイ Lighting apparatus and display
JP2017040730A (en) * 2015-08-19 2017-02-23 東レ株式会社 Barrier film for light wavelength conversion member
JP2018506625A (en) * 2015-12-23 2018-03-08 アファンタマ アクチェンゲゼルシャフト Light emitting parts
WO2017164155A1 (en) * 2016-03-25 2017-09-28 東レ株式会社 Light source unit, lamination member, and display and illumination device in which same is used

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120515A1 (en) * 2021-12-21 2023-06-29 積水化学工業株式会社 Inkjet composition for forming partition wall, led module, method for manufacturing led module, and inkjet composition

Also Published As

Publication number Publication date
JP7380216B2 (en) 2023-11-15
KR20210055677A (en) 2021-05-17
TW202020107A (en) 2020-06-01
JPWO2020050144A1 (en) 2021-08-26
TWI808253B (en) 2023-07-11
CN112639542B (en) 2023-06-20
CN112639542A (en) 2021-04-09

Similar Documents

Publication Publication Date Title
CN107614659B (en) Pyrromethene boron complex, color conversion composition, color conversion film, and light source unit, display, and lighting device comprising same
KR102344621B1 (en) Color conversion composition, color conversion film, and backlight unit, display and lighting comprising same
JP6380653B2 (en) Color conversion sheet, light source unit including the same, display and lighting device
JP6939787B2 (en) Color conversion sheet, light source unit including it, display and lighting equipment
JP6690721B2 (en) Color conversion composition, color conversion film and light source unit, display and illumination including the same
JP7290047B2 (en) Color conversion composition, color conversion sheet, and light source unit, display and lighting device containing the same
WO2022070877A1 (en) Color conversion sheet and light source unit including same, display, and lighting device
JP6737010B2 (en) Color conversion sheet, light source unit including the same, display and illumination
WO2020050144A1 (en) Color conversion material, color conversion member, light source unit, display device, lighting device, color conversion substrate and ink
JP2019219512A (en) Color conversion composition, color conversion sheet, and light source unit, display and illumination device including the same
WO2017104581A1 (en) Color conversion composition, color conversion film, and light source unit, display and lighting system containing same
JP7163773B2 (en) Color conversion composition, color conversion sheet, and light source unit, display and lighting device containing the same
JP2021076790A (en) Color conversion film, light source unit including the same, display, and illumination device
WO2022255173A1 (en) Color conversion composition, color conversion sheet, light source unit including same, display, and lighting device
WO2024024590A1 (en) Particulate color conversion material, color conversion member, and light source unit, display, lighting device, and color conversion substrate including same
WO2024057867A1 (en) Color conversion composition, color conversion sheet, light source unit, display device and lighting device
WO2024075649A1 (en) Pyrromethene boron complex, color conversion composition, color conversion sheet, color conversion substrate, light source unit, display device, and lighting device
JPWO2019216200A1 (en) Color conversion composition, color conversion sheet, light source unit, display and lighting equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019549015

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856670

Country of ref document: EP

Kind code of ref document: A1