WO2024024590A1 - Particulate color conversion material, color conversion member, and light source unit, display, lighting device, and color conversion substrate including same - Google Patents

Particulate color conversion material, color conversion member, and light source unit, display, lighting device, and color conversion substrate including same Download PDF

Info

Publication number
WO2024024590A1
WO2024024590A1 PCT/JP2023/026418 JP2023026418W WO2024024590A1 WO 2024024590 A1 WO2024024590 A1 WO 2024024590A1 JP 2023026418 W JP2023026418 W JP 2023026418W WO 2024024590 A1 WO2024024590 A1 WO 2024024590A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
color conversion
ring
Prior art date
Application number
PCT/JP2023/026418
Other languages
French (fr)
Japanese (ja)
Inventor
裕健 境野
菜々子 泉
愛美 早朝
泰宜 市橋
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024024590A1 publication Critical patent/WO2024024590A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a particulate color conversion material, a color conversion member, and a light source unit, display, lighting device, and color conversion substrate including the same.
  • Color conversion refers to converting light emitted from a light emitter into light with a longer wavelength, and includes, for example, converting blue light into green or red light.
  • color conversion composition By forming a composition having this color conversion function (hereinafter referred to as "color conversion composition") into a sheet and combining it with, for example, a blue light source, the three primary colors of blue, green, and red can be extracted from the blue light source, that is, white light. It becomes possible to take out.
  • a white light source that combines such a blue light source and a sheet with a color conversion function (hereinafter referred to as "color conversion sheet”) is used as a light source unit such as a backlight unit, and this light source unit, a liquid crystal drive part, and a color filter are used as a light source unit such as a backlight unit. By combining these, it becomes possible to create a full-color display. Further, a white light source that is a combination of a blue light source and a color conversion sheet can be used as it is as a white light source (illumination device) such as LED lighting.
  • Improving color reproducibility is an issue for liquid crystal displays that use color conversion methods.
  • it is effective to narrow the half-widths of the blue, green, and red emission spectra of the light source unit and increase the color purity of each of the blue, green, and red colors.
  • a technique has been proposed in which quantum dots made of inorganic semiconductor fine particles are used as a component of a color conversion composition (for example, see Patent Document 1).
  • an organic luminescent material with less concern about toxic elements such as cadmium is used as a component of the color conversion composition.
  • techniques using organic luminescent materials as components of color conversion compositions include those using coumarin derivatives (see, for example, Patent Document 2), those using rhodamine derivatives (see, for example, Patent Document 3), and those using pyrromethene derivatives. (for example, see Patent Document 4) has been disclosed. Further, as an example of a technique for preventing deterioration of an organic light-emitting material and improving durability, a technique of adding a light stabilizer has also been disclosed (see, for example, Patent Document 5).
  • quantum dots In the technology using quantum dots described in Patent Document 1, the half-value widths of green and red emission spectra are certainly narrow, and color reproducibility is improved. On the other hand, quantum dots are sensitive to heat, moisture and oxygen in the air, and lack sufficient durability. In addition, quantum dots also have problems such as containing cadmium.
  • the illuminance required for the light source unit of a liquid crystal display has increased with the advancement of high definition such as 4K and 8K, high dynamic range (HDR), and high contrast due to local dimming. For this reason, the temperature of the light source unit increases due to drive heat.
  • high definition such as 4K and 8K
  • HDR high dynamic range
  • the problem to be solved by the present invention is to improve color reproducibility and durability in color conversion materials used in light source units such as backlight units, displays such as liquid crystal displays, and lighting devices such as LED lighting. In particular, it is important to improve durability under high temperatures.
  • the present invention has the configuration described in any one of [1] to [19] below.
  • the particulate color conversion material according to the present invention is [1] a particulate color conversion material comprising a matrix resin and at least one kind of luminescent material, wherein the at least one kind of luminescent material has a half-width of 50 nm. It is characterized in that it contains an organic light-emitting material that emits delayed fluorescence as described below.
  • the particulate color conversion material according to the present invention is characterized in that the organic light-emitting material is a compound containing a partial structure represented by general formula (1). It is characterized by
  • B is a boron atom
  • N is a nitrogen atom
  • C is a carbon atom
  • n is an integer from 0 to 2.
  • the general formula The partial structure represented by (1) shows a direct bond structure between B and N.
  • the particulate color conversion material according to the present invention is a compound in which the organic light-emitting material includes two or more partial structures represented by the general formula (1). It is characterized by:
  • the particulate color conversion material according to the present invention is characterized in that the organic light-emitting material has the general formula (2) or the general formula ( It is characterized by containing the compound represented by 3).
  • ring Za, ring Zb and ring Zc each independently represent a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms. It is a heteroaryl ring having 6 to 30 ring carbon atoms.
  • Z 1 and Z 2 are each independently an oxygen atom, NRa (a nitrogen atom having a substituent Ra), or a sulfur atom.
  • Z 1 is NRa
  • the substituent Ra may be combined with ring Za or ring Zb to form a ring.
  • the substituent Ra may be combined with ring Za or ring Zc to form a ring.
  • E 1 and E 2 each independently represent a BRa (a boron atom having a substituent Ra).
  • PRa phosphorous atom having a substituent Ra
  • SiRa 2 silicon atom having two substituents Ra
  • C O (carbonyl group)
  • PRa phosphorous atom having a substituent Ra
  • SiRa 2 silicon atom having two substituents Ra
  • C O (carbonyl group)
  • the substituent Ra may be combined with ring Za or ring Zb to form a ring.
  • E 2 is BRa, PRa, SiRa 2 , P
  • the substituent Ra may be bonded with ring Za or ring Zc to form a ring.
  • Each substituent Ra independently represents hydrogen , substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstit
  • E in the general formula (2) is a boron atom, and E 1 and It is characterized in that E 2 is BRa.
  • the color conversion member according to the present invention is characterized in that it comprises a support containing the particulate color conversion material according to [6] any one of [1] to [5] above.
  • the color conversion member according to the present invention is a first light emitting material in which the color conversion member emits light whose peak wavelength is observed in a region of 500 nm or more and less than 580 nm. and a first matrix resin, and a second particulate color consisting of a second light-emitting material and a second matrix resin that emits light whose peak wavelength is observed in a region of 580 nm or more and 750 nm or less. and a conversion material.
  • the color conversion member according to the present invention is characterized in that the first light-emitting material includes at least an organic light-emitting material that emits delayed fluorescence with a half-width of 50 nm or less. It is characterized by
  • the color conversion member according to the present invention is characterized in that the second luminescent material contains at least a compound represented by general formula (4). It is characterized by
  • R 1 ⁇ R 9 may each be independently substituted.
  • the substituents for each of R 1 ⁇ R 9 include hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or Unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group , thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or un
  • the color conversion member according to the present invention is the invention according to any one of [6] to [9] above, wherein the support is one of any one of [1] to [5] above. It is characterized by containing the particulate color conversion material described in 1. and at least one kind of luminescent material.
  • the color conversion member according to the present invention is characterized in that the at least one kind of luminescent material is a compound containing a partial structure represented by general formula (1), a compound containing a partial structure represented by general formula (1), It is characterized by containing at least one of the compound represented by (2) and the compound represented by general formula (3).
  • B is a boron atom
  • N is a nitrogen atom
  • C is a carbon atom
  • n is an integer from 0 to 2.
  • the general formula The partial structure represented by (1) shows a direct bond structure between B and N.
  • ring Za, ring Zb and ring Zc each independently represent a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms. It is a heteroaryl ring having 6 to 30 ring carbon atoms.
  • Z 1 and Z 2 are each independently an oxygen atom, NRa (a nitrogen atom having a substituent Ra), or a sulfur atom.
  • Z 1 is NRa
  • the substituent Ra may be combined with ring Za or ring Zb to form a ring.
  • the substituent Ra may be combined with ring Za or ring Zc to form a ring.
  • E 1 and E 2 each independently represent a BRa (a boron atom having a substituent Ra).
  • PRa phosphorous atom having a substituent Ra
  • SiRa 2 silicon atom having two substituents Ra
  • C O (carbonyl group)
  • PRa phosphorous atom having a substituent Ra
  • SiRa 2 silicon atom having two substituents Ra
  • C O (carbonyl group)
  • the substituent Ra may be combined with ring Za or ring Zb to form a ring.
  • E 2 is BRa, PRa, SiRa 2 , P
  • the substituent Ra may be bonded with ring Za or ring Zc to form a ring.
  • Each substituent Ra independently represents hydrogen , substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstit
  • the color conversion member according to the present invention is characterized in that the at least one kind of luminescent material contains at least a compound represented by general formula (4).
  • R 1 ⁇ R 9 may each be independently substituted.
  • the substituents for each of R 1 ⁇ R 9 include hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or Unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group , thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or un
  • the color conversion member according to the present invention is characterized in that the support has an oxygen permeability of 1.0 cc/m 2 ⁇ day ⁇ It is characterized by being less than ATM.
  • the color conversion member according to the present invention is provided with an oxygen barrier layer on at least a part of the surface of the support. It is characterized by having.
  • the light source unit according to the present invention includes [15] a light source, and the particulate color conversion material according to any one of [1] to [5] above or any one of [6] to [14] above. It is characterized by comprising the color conversion member described in .
  • the light source unit according to the present invention is characterized in that in the invention described in [15] above, the light source is a light emitting diode having maximum emission in a wavelength range of 400 nm or more and 500 nm or less.
  • the display according to the present invention is characterized by comprising the light source unit described in [15] or [16] above.
  • the lighting device according to the present invention is characterized by comprising the light source unit described in [15] or [16] above.
  • the particulate color conversion material according to the present invention and the color conversion member using the same have both high color purity of light emission and high durability, so that both improved color reproducibility and improved durability can be achieved. This has the effect of making it possible.
  • FIG. 1 is a schematic cross-sectional view showing a first example of a color conversion member according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a second example of the color conversion member according to the embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a third example of the color conversion member according to the embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a fourth example of the color conversion member according to the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a fifth example of the color conversion member according to the embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a sixth example of the color conversion member according to the embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a seventh example of the color conversion member according to the embodiment of the present invention.
  • a particulate color conversion material according to an embodiment of the present invention is a particulate color conversion material having a matrix resin and at least one luminescent material. It is the material.
  • the particulate color conversion material of the present invention is a particulate color conversion material containing at least one kind of luminescent material in a matrix resin.
  • at least one type of luminescent material contained in the matrix resin includes an organic luminescent material that emits delayed fluorescence with a half-width of 50 nm or less. That is, the particulate color conversion material of the present invention has at least the organic light emitting material in the matrix resin. Note that details of the luminescent material included in the particulate color conversion material of the present invention will be described later.
  • a color conversion member according to an embodiment of the present invention includes a support containing the particulate color conversion material. That is, the color conversion member of the present invention includes the particulate color conversion material of the present invention and a support containing the particulate color conversion material.
  • FIG. 1 is a schematic cross-sectional view showing a first example of a color conversion member according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a second example of the color conversion member according to the embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a third example of the color conversion member according to the embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a fourth example of the color conversion member according to the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a fifth example of the color conversion member according to the embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a sixth example of the color conversion member according to the embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a seventh example of the color conversion member according to the embodiment of the present invention.
  • the color conversion member 1A of the first example includes a particulate color conversion material 2a and a support 3a containing the particulate color conversion material 2a. As shown in FIG. 1, particulate color conversion material 2a is dispersed inside the support 3a.
  • the particulate color conversion material 2a is an example of the particulate color conversion material of the present invention, and includes at least one kind of luminescent material contained in a matrix resin.
  • the color conversion member 1A has a single layer structure in which one type of particulate color conversion material 2a is contained in a dispersed state in a single layer support 3a.
  • the color conversion member 1B of the second example includes two types of particulate color conversion materials 2a and 2b, a support body 3a containing the two types of particulate color conversion materials 2a and 2b, Equipped with.
  • particulate color conversion material 2a and particulate color conversion material 2b are respectively dispersed inside the support 3a.
  • Both the particulate color conversion material 2a and the particulate color conversion material 2b contain at least one type of luminescent material in a matrix resin.
  • the particulate color conversion material 2a and the particulate color conversion material 2b have different light emission characteristics (color conversion characteristics), such as different emission colors.
  • the color conversion member 1B has a single layer structure in which two types of particulate color conversion material 2a and particulate color conversion material 2b are contained in a dispersed state in a single layer support 3a. are doing.
  • the color conversion member 1C of the third example includes two types of particulate color conversion materials 2a and 2b, and a two-layer support containing each of the two types of particulate color conversion materials 2a and 2b. It includes bodies 3a and 3b. Among these two layers of supports 3a and 3b, one type of particulate color conversion material 2a is dispersed inside one support 3a, and another type of particles is dispersed inside the other support 3b. The color changing material 2b is dispersed therein. Note that these particulate color conversion material 2a and particulate color conversion material 2b are the same as the color conversion member 1B of the second example described above. In the structural example shown in FIG.
  • the color conversion member 1C includes a single layer support 3a containing a particulate color conversion material 2a in a dispersed state, and a particulate color conversion material different from the particulate color conversion material 2a. It has a laminated structure in which a single-layer support 3b containing 2b in a dispersed state is laminated.
  • the color conversion member 1D of the fourth example includes one type of particulate color conversion material 2a, a support body 3a containing the one type of particulate color conversion material 2a, and this support body 3a. an oxygen barrier layer 11 covering at least a portion of the surface of the oxygen barrier layer 11 .
  • the oxygen barrier layer 11 is a layer having oxygen barrier properties.
  • the oxygen barrier layer 11 covers both end surfaces in the thickness direction of the support 3a containing the particulate color conversion material 2a (the upper and lower surfaces of the support 3a in FIG. 4). It is formed. Note that the particulate color conversion material 2a and support body 3a shown in FIG. 4 are the same as the color conversion member 1A (see FIG.
  • the color conversion member 1D is attached to both end faces in the thickness direction of the support 3a containing the particulate color conversion material 2a, similarly to the color conversion member 1A of the first example shown in FIG. It has a laminated structure in which oxygen barrier layers 11 are laminated.
  • the color conversion member 1E of the fifth example includes two types of particulate color conversion materials 2a and 2b, a support body 3a containing the two types of particulate color conversion materials 2a and 2b, An oxygen barrier layer 11 covering at least a portion of the surface of the support 3a is provided.
  • the oxygen barrier layer 11 is formed on both end surfaces in the thickness direction of a support 3a containing two types of particulate color conversion materials 2a and 2b (in FIG. 5, the upper and lower surfaces of the support 3a). ) is formed to cover the Note that the particulate color conversion materials 2a, 2b and the support 3a shown in FIG. 5 are the same as the color conversion member 1B of the second example described above (see FIG.
  • the color conversion member 1E includes both ends in the thickness direction of a support 3a containing particulate color conversion materials 2a and 2b, similar to the color conversion member 1B of the second example shown in FIG. It has a laminated structure in which an oxygen barrier layer 11 is laminated on the surface.
  • the color conversion member 1F of the sixth example includes two types of particulate color conversion materials 2a and 2b, and a two-layer support containing each of the two types of particulate color conversion materials 2a and 2b.
  • the oxygen barrier layer 11 covers at least a portion of each surface of these two layers of supports 3a and 3b.
  • the oxygen barrier layer 11 is formed between one end surface in the thickness direction of the support 3a containing the particulate color conversion material 2a (the upper surface of the support 3a in FIG. 6) and the particulate color conversion material 2a. It is formed so as to cover one end surface in the thickness direction of the support 3b containing the material 2b (the lower surface of the support 3b in FIG. 6).
  • the color conversion member 1F is a laminate in which oxygen barrier layers 11 are laminated on both end faces in the thickness direction of the laminate, similar to the color conversion member 1C of the third example shown in FIG. It has a structure.
  • the color conversion member 1G of the seventh example includes one type of particulate color conversion material 2a, a support 3a containing the one type of particulate color conversion material 2a, and a support 3a containing the one type of particulate color conversion material 2a.
  • an oxygen barrier layer 11 covering the entire surface of the device.
  • the oxygen barrier layer 11 is formed on both end surfaces in the thickness direction of the support 3a containing the particulate color conversion material 2a (in FIG. 7, the upper and lower surfaces of the support 3a), and It is formed so as to cover the entire side surface (each end surface in the direction perpendicular to the thickness direction) of the body 3a.
  • the particulate color conversion material 2a and the support 3a shown in FIG. 7 are the same as the color conversion member 1A (see FIG. 1) of the first example described above.
  • the color conversion member 1G has an oxygen barrier layer 11 on the entire surface of the support 3a containing the particulate color conversion material 2a, similar to the color conversion member 1A of the first example shown in FIG. It has a laminated structure.
  • the color conversion member of the present invention is not limited to those illustrated in FIGS. 1 to 7 described above.
  • the color conversion member of the present invention may contain three or more types of particulate color conversion materials inside a single layer support, or may include inside at least one layer of a multilayer support. It may contain two or more types of particulate color conversion materials, or it may have a laminated structure in which three or more layers of supports containing one or more types of particulate color conversion materials are laminated.
  • the color conversion member of the present invention has a plurality of layers of supports (for example, supports 3a and 3b) between two oxygen barrier layers 11, like the color conversion member 1F of the sixth example shown in FIG.
  • the color conversion member of the present invention includes a support containing one or more particulate color conversion materials (for example, supports 3a and 3b illustrated in FIGS. 1 to 7). may have a structure that further includes a different luminescent material. In this case, the luminescent material is preferably contained in a dispersed state inside the support.
  • each layer of the laminated structure of the color conversion member of the present invention may be provided with an adhesive layer or an adhesive layer.
  • a particulate color conversion material has at least one type of luminescent material (for example, an organic luminescent material) in a matrix resin.
  • the luminescent material in the present invention refers to a material that, when irradiated with some kind of light, emits light of a wavelength different from the wavelength of that light.
  • the luminescent material exhibits luminescent properties with high quantum yield.
  • examples of the luminescent material include known luminescent materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots.
  • at least an organic luminescent material is used as one or more luminescent materials included in the particulate color conversion material from the viewpoint of uniformity of dispersion, reduction in usage amount, and reduction in environmental load.
  • the particulate color conversion material according to the embodiment of the present invention contains at least an organic light-emitting material in the matrix resin, and thus exhibits light emission with high color purity.
  • particulate color conversion materials include organic light-emitting materials that emit delayed fluorescence.
  • organic light emitting materials that emit delayed fluorescence are explained on pages 87 to 103 of "Cutting Edge Organic EL" (edited by Chinaya Adachi and Hiroshi Fujimoto, published by CMC Publishing).
  • TADF thermally activated delayed fluorescence
  • FIG. 5 of the document the mechanism of generation of delayed fluorescence is explained. Emission of delayed fluorescence can be confirmed by transient PL (Photo Luminescence) measurement.
  • organic light-emitting materials that transition from a triplet excited state to a singlet excited state and emit fluorescence are referred to as "organic light-emitting materials that emit fluorescence by transitioning from a triplet excited state to a singlet excited state with high efficiency".
  • organic light-emitting materials that emit fluorescence by transitioning from a triplet excited state to a singlet excited state with high efficiency are referred to as "organic light-emitting materials that emit fluorescence by transitioning from a triplet excited state to a singlet excited state with high efficiency.
  • Light-emitting material Furthermore, hereinafter, the "organic light emitting material that emits delayed fluorescence” may be abbreviated as “delayed fluorescence material”.
  • organic light-emitting materials in the triplet excited state usually have high reactivity. Furthermore, when the organic luminescent material is a luminescent material other than a delayed fluorescent material, the lifetime of the organic luminescent material in the triplet excited state is long. Therefore, organic light-emitting materials in a triplet excited state tend to react with surrounding molecules. For example, in the presence of oxygen, oxygen, which has high reactivity and high mobility, becomes a receiver of energy from the organic light-emitting material in the triplet excited state, producing singlet oxygen, which causes oxidative deterioration of the organic light-emitting material. It causes On the other hand, in the absence of oxygen, molecules surrounding the organic light-emitting material can become recipients of the energy.
  • the organic light-emitting material in the triplet excited state is a delayed fluorescent material
  • the triplet excited state delayed fluorescent material is quickly converted to the singlet excited state delayed fluorescent material.
  • the reaction between the delayed fluorescent material in the triplet excited state and the surrounding molecules is difficult to proceed, so the delayed fluorescent material is unlikely to deteriorate due to this reaction, and the delayed fluorescent material exhibits excellent durability.
  • the rate constant of this inverse intersystem crossing is preferably 1.0 ⁇ 10 2 s ⁇ 1 or more.
  • the HOMO Highest Occupied Molecular Orbital
  • the LUMO Large Unoccupied Molecular Orbital
  • the electron donor skeleton and the electron acceptor skeleton may be bonded directly or may be bonded via a linking group.
  • the linking group preferably has a skeleton containing an aromatic hydrocarbon.
  • Examples of the electron donor skeleton include a skeleton having an amine nitrogen atom.
  • a skeleton containing diarylamine or triarylamine preferred are a skeleton containing carbazole, a skeleton containing benzocarbazole, a skeleton containing indolocarbazole, a skeleton containing phenoxazine, and a skeleton containing phenothiazine.
  • skeletons containing carbazole skeletons containing benzocarbazole, skeletons containing indolocarbazole, and skeletons containing phenoxazine are more preferred, and skeletons containing carbazole and skeletons containing phenoxazine are even more preferred.
  • examples of the electron-accepting skeleton usually include a skeleton containing a substituent having electron-withdrawing properties (i.e., an electron-withdrawing group).
  • An electron-withdrawing group is also called an electron-accepting group, and in organic electron theory, it is an atomic group that attracts electrons from a substituted atomic group through an induction effect or a resonance effect.
  • Examples of the electron-withdrawing group include those having a positive value as the Hammett's substituent constant ( ⁇ p (para)).
  • the substituent constant ( ⁇ p (para)) of Hammett's rule can be quoted from the Chemical Handbook, Basic Edition, Revised 5th Edition (page II-380).
  • Examples of electron-withdrawing groups include -F ( ⁇ p: +0.20), -Cl ( ⁇ p: +0.28), -Br ( ⁇ p: +0.30), -I ( ⁇ p: +0.30), -CO 2 R 12 ( ⁇ p: +0.45 when R 12 is an ethyl group), -CONH 2 ( ⁇ p: +0.38), -COR 12 ( ⁇ p: +0.49 when R 12 is a methyl group), - Examples include CF 3 ( ⁇ p: +0.51), -SO 2 R 12 ( ⁇ p: +0.69 when R 12 is a methyl group), and -NO 2 ( ⁇ p: +0.81).
  • R 12 is each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms; Represents a substituted alkyl group having 1 to 30 carbon atoms or a substituted or unsubstituted cycloalkyl group having 1 to 30 carbon atoms. Specific examples of each of these groups include the same examples as the substituents in the compound represented by general formula (2) or general formula (3) described below.
  • skeletons containing electron-withdrawing groups skeletons containing heteroaryl groups having a partial structure in which carbon atoms and nitrogen atoms are bonded with double bonds, skeletons containing fluorinated substituents, skeletons containing cyano groups, A skeleton containing a carbonyl group, a skeleton containing a sulfoxide or disulfoxide, a skeleton containing a phosphine oxide group, etc. are preferred.
  • skeletons containing heteroaryl groups with partial structures in which carbon atoms and nitrogen atoms are bonded by double bonds are suitable for delayed fluorescent materials. More preferred from the viewpoint of stability.
  • skeletons containing a heteroaryl group having a partial structure in which a carbon atom and a nitrogen atom are bonded with a double bond specific examples thereof include pyridine, pyrimidine, pyrazine, triazine, quinoline, quinoxaline, quinazoline, or phenanthroline. Skeletons are preferred. Among these, skeletons containing pyrimidine, triazine, quinoxaline, or quinazoline are more preferred, and skeletons containing triazine are even more preferred.
  • skeletons containing fluorinated substituents skeletons containing fluorinated aryl groups or fluoroalkyl groups are more preferred.
  • the skeleton containing a fluorinated aryl group is preferably a fluorinated benzene ring, and specifically, a skeleton containing fluorobenzene, difluorobenzene, trifluorobenzene, tetrafluorobenzene or pentafluorobenzene is more preferable.
  • a skeleton containing a fluoroalkyl group a skeleton containing a benzene ring substituted with a trifluoromethyl group is preferable, and among these, a skeleton containing mono(trifluoromethyl)benzene or bis(trifluoromethyl)benzene is more preferable. .
  • skeletons having a cyano group skeletons having a cyano group
  • skeletons containing cyanobenzene, dicyanobenzene, and tricyanobenzene are more preferred.
  • a compound containing a partial structure represented by the following general formula (1) is preferable.
  • B is a boron atom
  • N is a nitrogen atom
  • C is a carbon atom
  • n is an integer from 0 to 2.
  • the partial structure represented by general formula (1) represents a direct bond structure between B and N.
  • a nitrogen atom having an electron donor property and a boron atom having an electron acceptor property are arranged close to each other in the molecule.
  • Such a delayed fluorescent material is a compound that can separate the HOMO orbital and the LUMO orbital due to the multiple resonance effect.
  • the energy level of the singlet excited state and the energy level of the triplet excited state of the delayed fluorescent material can be brought closer to each other. This makes it easier to emit delayed fluorescence.
  • the delayed fluorescent material contains two or more substructures represented by the general formula (1) in the molecule.
  • it is a compound.
  • the delayed fluorescent material when the ⁇ -conjugated system is expanded, reverse intersystem crossing occurs more efficiently from the triplet excited state to the singlet excited state. For this reason, it is preferable that the ⁇ -conjugated system of the delayed fluorescent material is expanded. From such a viewpoint, the delayed fluorescent material preferably contains a compound represented by the following general formula (2) or general formula (3).
  • ring Za, ring Zb and ring Zc each independently represent a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring. It is a heteroaryl ring having 6 to 30 carbon atoms.
  • Z 1 and Z 2 are each independently an oxygen atom, NRa (a nitrogen atom having a substituent Ra), or a sulfur atom.
  • NRa a nitrogen atom having a substituent Ra
  • the substituent Ra may be combined with ring Za or ring Zb to form a ring.
  • Z 2 is NRa
  • the substituent Ra may be combined with ring Za or ring Zc to form a ring.
  • E 1 and E 2 each independently represent BRa (a boron atom having a substituent Ra), PRa (a phosphorus atom having a substituent Ra), and SiRa 2 (a phosphorus atom having two substituents Ra).
  • the above substituents Ra each independently represent hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, or a substituted or unsubstituted cycloalkyl group.
  • Substituted heterocyclic group substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or unsubstituted carbonyl group, substituted or unsubstituted carboxyl group, substituted or unsubstituted oxy Carbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted amide group, sulfonyl group, substituted or unsubstituted s
  • the compound represented by this general formula (2) or general formula (3) preferably contains two or more partial structures represented by the above-mentioned general formula (1) in the molecule.
  • hydrogen may be deuterium.
  • a substituted or unsubstituted aryl group having 6 to 40 carbon atoms refers to an aryl group having 6 to 40 carbon atoms, including the number of carbon atoms contained in the substituents substituted on the aryl group. It is. The same applies to other substituents defining the number of carbon atoms.
  • substituted means that a hydrogen atom or a deuterium atom is substituted.
  • substituted or unsubstituted means that a hydrogen atom or a deuterium atom is substituted.
  • substituted or unsubstituted is the same as above.
  • substituents when substituted include alkyl groups, cycloalkyl groups, heterocyclic groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, hydroxyl groups, and thiol groups.
  • the alkyl group refers to a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group; It may or may not have a group.
  • additional substituents when substituted and examples thereof include alkyl groups, halogens, aryl groups, heteroaryl groups, and the like, and this point is also common to the following description.
  • the number of carbon atoms in the alkyl group is not particularly limited, but from the viewpoint of availability and cost, it is preferably in the range of 1 to 20, more preferably 1 to 8.
  • a cycloalkyl group refers to a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, or an adamantyl group, which may or may not have a substituent.
  • the number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • a heterocyclic group refers to an aliphatic ring having an atom other than carbon in the ring, such as a pyran ring, a piperidine ring, or a cyclic amide, whether or not it has a substituent. good.
  • the number of carbon atoms in the heterocyclic group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond, such as a vinyl group, allyl group, butadienyl group, and may or may not have a substituent. .
  • the number of carbon atoms in the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • a cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond, such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, even if it has a substituent. It is not necessary to have it.
  • the number of carbon atoms in the cycloalkenyl group is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the alkynyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the number of carbon atoms in the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • An alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded via an ether bond, such as a methoxy group, an ethoxy group, or a propoxy group, and this aliphatic hydrocarbon group has a substituent. It is not necessary to have either.
  • the number of carbon atoms in the alkoxy group is not particularly limited, but is preferably in the range of 1 to 20.
  • An alkylthio group is an alkoxy group in which the oxygen atom of the ether bond is replaced with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent.
  • the number of carbon atoms in the alkylthio group is not particularly limited, but is preferably in the range of 1 to 20.
  • the aryl ether group refers to a functional group such as a phenoxy group to which an aromatic hydrocarbon group is bonded via an ether bond, and the aromatic hydrocarbon group may have a substituent or not. Good too.
  • the number of carbon atoms in the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • An arylthioether group is an aryl ether group in which the oxygen atom of the ether bond is replaced with a sulfur atom.
  • the aromatic hydrocarbon group in the arylthioether group may or may not have a substituent.
  • the number of carbon atoms in the arylthioether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • Aryl groups include, for example, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, phenanthryl group, anthracenyl group, benzophenanthryl group, and benzanthracetyl group.
  • aromatic hydrocarbon groups such as nyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzaanthracenyl group, perylenyl group, and helicenyl group.
  • phenyl group biphenyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, pyrenyl group, fluoranthenyl group, and triphenylenyl group are preferable.
  • the aryl group may or may not have a substituent.
  • the number of carbon atoms in the aryl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less, more preferably 6 or more and 30 or less.
  • aryl group a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, and an anthracenyl group are preferable, and a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group are more preferable. More preferred are phenyl, biphenyl, and terphenyl, with phenyl being particularly preferred.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, or an anthracenyl group; More preferred are phenyl group and naphthyl group. Particularly preferred is a phenyl group.
  • heteroaryl groups include pyridyl group, furanyl group, thienyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, triazinyl group, naphthyridinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, Benzofuranyl group, benzothienyl group, indolyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzofurocarbazolyl group, benzothienocarbazolyl Atoms other than carbon, such as groups, dihydroindenocarbazolyl groups, benzoquinolinyl groups, acridinyl groups, dibenzaacrimoni
  • the naphthyridinyl group refers to any of the following: 1,5-naphthyridinyl group, 1,6-naphthyridinyl group, 1,7-naphthyridinyl group, 1,8-naphthyridinyl group, 2,6-naphthyridinyl group, 2,7-naphthyridinyl group. Show that.
  • a heteroaryl group may or may not have a substituent.
  • the number of carbon atoms in the heteroaryl group is not particularly limited, but is preferably in the range of 2 or more and 40 or less, more preferably 2 or more and 30 or less.
  • heteroaryl group examples include a pyridyl group, a furanyl group, a thienyl group, a quinolinyl group, a pyrimidyl group, a triazinyl group, a benzofuranyl group, a benzothienyl group, an indolyl group, a dibenzofuranyl group, a dibenzothienyl group, a carbazolyl group, and a benzimidazolyl group.
  • imidazopyridyl group, benzoxazolyl group, benzothiazolyl group, and phenanthrolinyl group are preferable, and pyridyl group, furanyl group, thienyl group, and quinolinyl group are more preferable. Particularly preferred is a pyridyl group.
  • heteroaryl group examples include pyridyl group, furanyl group, thienyl group, quinolinyl group, pyrimidyl group, triazinyl group, benzofuranyl group, benzothienyl group, indolyl group, dibenzo A furanyl group, a dibenzothienyl group, a carbazolyl group, a benzimidazolyl group, an imidazopyridyl group, a benzoxazolyl group, a benzothiazolyl group, and a phenanthrolinyl group are preferred, and a pyridyl group, a furanyl group, a thienyl group, and a quinolinyl group are more preferred. Particularly preferred is a pyridyl group.
  • Halogen refers to an atom selected from fluorine, chlorine, bromine, and iodine.
  • the carbonyl group, carboxyl group, oxycarbonyl group, and carbamoyl group may or may not have a substituent.
  • substituents include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and these substituents may be further substituted.
  • the amino group is a substituted or unsubstituted amino group.
  • substituents in the case of substitution include an aryl group, a heteroaryl group, a straight-chain alkyl group, and a branched alkyl group.
  • aryl group and heteroaryl group phenyl group, naphthyl group, pyridyl group, and quinolinyl group are preferable. These substituents may be further substituted.
  • the number of carbon atoms is not particularly limited, but is preferably in the range of 2 or more and 50 or less, more preferably 6 or more and 40 or less, particularly preferably 6 or more and 30 or less.
  • Silyl groups include, for example, alkylsilyl groups such as trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, propyldimethylsilyl group, and vinyldimethylsilyl group, phenyldimethylsilyl group, tert-butyldiphenylsilyl group, and trimethylsilyl group.
  • alkylsilyl groups such as trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, propyldimethylsilyl group, and vinyldimethylsilyl group, phenyldimethylsilyl group, tert-butyldiphenylsilyl group, and trimethylsilyl group.
  • arylsilyl group such as a phenylsilyl group or a trinaphthylsilyl group.
  • Substituents on silicon
  • the siloxanyl group refers to a silicon compound group via an ether bond, such as a trimethylsiloxanyl group. Substituents on silicon may be further substituted.
  • the boryl group is a substituted or unsubstituted boryl group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a straight-chain alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group, and a hydroxyl group. Among these, aryl groups and aryl ether groups are preferred.
  • R 10 R 11 of the phosphine oxide group is selected from the same group as the above-mentioned substituents.
  • Examples of the substituted or unsubstituted aryl ring having 6 to 30 carbon atoms in Ring Za, Ring Zb, and Ring Zc include aromatic hydrocarbon rings such as a benzene ring, a naphthalene ring, a phenanthrene ring, a chrysene ring, an anthracene ring, and a pyrene ring. can be mentioned. Among these, a benzene ring is preferred from the viewpoint of ensuring solubility.
  • Examples of the heteroaryl ring having 6 to 30 carbon atoms include aromatic heteroaryl ring structures such as a pyridine ring, a quinoline ring, and a phenanthroline ring. Among these, a pyridine ring is preferred from the viewpoint of raw material availability and synthesis difficulty.
  • the substituent Ra is preferably a group having 6 to 40 carbon atoms including the substituents.
  • the substituent Ra is more preferably a substituted or unsubstituted aryl group.
  • the substituted or unsubstituted aryl group include a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted phenanthrenyl group, etc. can be mentioned. Among these, substituted or unsubstituted phenyl groups are more preferred.
  • the substituent Ra is preferably a group having 6 to 40 carbon atoms including the substituents.
  • the substituent Ra is more preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group.
  • Z 1 and Z 2 in general formula (2) are preferably an oxygen atom or NRa. This is because the ⁇ -conjugated system of the compound represented by general formula (2) expands efficiently, and reverse intersystem crossing occurs more efficiently from the triplet excited state to the singlet excited state, further improving durability. This is because it can be done.
  • E in general formula (2) is preferably a boron atom
  • E 1 and E 2 in general formula (3) are preferably BRa. This is because the ⁇ -conjugated system of the compound represented by general formula (2) or general formula (3) expands efficiently, and reverse intersystem crossing occurs more efficiently from the triplet excited state to the singlet excited state. This is because the durability can be further improved.
  • the ring Za, the ring Zb, and the ring Zc are benzene rings. This is because the ⁇ -conjugated system of the compound represented by general formula (2) or general formula (3) expands efficiently, and reverse intersystem crossing occurs more efficiently from the triplet excited state to the singlet excited state. This is because the durability can be further improved.
  • the compound represented by the general formula (2) or the general formula (3) is described, for example, in the literature Adv. Mater. , 2016, 28, 2777-2781, by optimally arranging the electron donating amine nitrogen atom and the electron acceptor boron atom, the HOMO orbital and LUMO orbital can be separated by the multiple resonance effect. It is a molecule that can be separated. From the viewpoint of clearly separating the HOMO orbital and the LUMO orbital and bringing the singlet excited state and triplet excited state closer together to facilitate the emission of delayed fluorescence, in general formula (2), E is an electron acceptor.
  • NRa is preferably a boron atom with strong electron donor properties, and Z 1 and Z 2 are both groups with strong electron donor properties.
  • the emission spectrum of the compound represented by general formula (2) or general formula (3) is sharper than that of a compound in which an electron donor skeleton and an electron acceptor skeleton are combined, due to the multiple resonance effect of the compound. Become. Therefore, when the delayed fluorescent material is a compound represented by the general formula (2) or the general formula (3), light emission with high color purity can be obtained. That is, the compound represented by the general formula (2) or the general formula (3) is advantageous in improving the color gamut of a display, and is therefore preferable as a delayed fluorescent material.
  • the compound represented by the general formula (2) or the general formula (3) mainly has a ring Za or a ring around the E atom in the general formula (2) or the general formula (3) where the LUMO orbital is localized.
  • E atom is an atom of E in general formula (2), and is each atom of E 1 and E 2 in general formula (3).
  • the substituent Ra of the general formula (2) or the general formula (3) forms a structure bonded to at least one ring of the ring Za, the ring Zb, and the ring Zc.
  • substituent Ra is bonded to at least one ring of ring Za, ring Zb, and ring Zc, so that E in general formula (2) and E 1 and E 2 in general formula This is because it is expected that the protective effect will be further enhanced and the effect of suppressing the decrease in fluorescence quantum yield will be further improved.
  • the emission wavelength of the delayed fluorescent material is not particularly limited, but in order to extract the three primary colors of blue, green, and red from a blue light source, the delayed fluorescent material has a green or red emission wavelength when excited with blue light. It is preferable that there be. That is, the delayed fluorescent material exhibits luminescence observed in a region with a peak wavelength of 500 nm or more and less than 580 nm by using excitation light with a wavelength of 400 nm or more and 500 nm or less, or when excitation light with a wavelength of 400 nm or more and 500 nm or less is observed. It is preferable to use light to emit light whose peak wavelength is observed in a region of 580 nm or more and 750 nm or less.
  • the emission spectra of blue, green, and red have small overlap.
  • the lower limit of the peak wavelength of light emission when the light emitting material according to the embodiment of the present invention emits green light is more preferably 510 nm or more, and even more preferably 515 nm or more.
  • the wavelength is particularly preferably 520 nm or more.
  • the upper limit of the peak wavelength of light emission when the light emitting material according to the embodiment of the present invention emits green light is more preferably 550 nm or less, and even more preferably 540 nm or less.
  • the wavelength is particularly preferably 535 nm or less.
  • the light emission observed in a region with a peak wavelength of 500 nm or more and less than 580 nm as green light emission the light emission observed in a region with a peak wavelength of 580 nm or more is used as red light emission.
  • the overlap between the emission spectra of green light and red light is reduced and color reproducibility is improved, which is preferable.
  • the lower limit of the peak wavelength of light emission is more preferably 620 nm or more, and even more preferably 630 nm or more.
  • the wavelength is particularly preferably 635 nm or more.
  • the upper limit of the peak wavelength of red light may be 750 nm or less, which is near the upper limit of the visible range, but 700 nm or less is more preferable because visibility increases.
  • the upper limit of the peak wavelength when the luminescent material according to the embodiment of the present invention emits red light is more preferably 680 nm or less, particularly preferably 660 nm or less.
  • the peak wavelength of the green light is preferably 500 nm or more and less than 580 nm, more preferably 510 nm or more and 550 nm or less, and 515 nm or more and 540 nm or less. It is more preferably the following, and particularly preferably 520 nm or more and 530 nm or less.
  • the peak wavelength of the red light is preferably 580 nm or more and 750 nm or less, more preferably 620 nm or more and 700 nm or less, even more preferably 630 nm or more and 680 nm or less, and particularly preferably 635 nm or more and 660 nm or less. preferable.
  • half-width of emission spectrum Preferably small.
  • a small half-width of each emission spectrum of green light and red light is effective for improving color reproducibility.
  • the half width of the emission spectrum of green light is preferably 50 nm or less, more preferably 40 nm or less, even more preferably 30 nm or less, and particularly preferably 25 nm or less.
  • the half width of the emission spectrum of red light is preferably 80 nm or less, more preferably 60 nm or less, even more preferably 50 nm or less, and particularly preferably 40 nm or less.
  • the delayed fluorescent material included in the particulate color conversion material according to the embodiment of the present invention emits delayed fluorescence with a half width of 50 nm or less, and therefore can achieve high color reproducibility.
  • "Emits delayed fluorescence with a half-value width of 50 nm or less” means that the half-value width of the emission spectrum of the delayed fluorescent material is 50 nm or less.
  • the half width of the emission spectrum of the delayed fluorescent material in the present invention is more preferably 40 nm or less, even more preferably 30 nm or less, and particularly preferably 25 nm or less.
  • the shape of the emission spectrum of the delayed fluorescent material in the present invention is not particularly limited.
  • the emission spectrum of the delayed fluorescent material in the present invention has a single peak because it allows efficient use of excitation energy and increases color purity.
  • a single peak refers to a state in which there is no peak having an intensity of 5% or more of the strongest peak in a certain wavelength region.
  • organic light-emitting materials that emit green light (hereinafter sometimes abbreviated as green light-emitting materials) are inherently more prone to deterioration than organic light-emitting materials that emit red light.
  • organic light-emitting materials that emit delayed fluorescence especially delayed fluorescence materials containing compounds represented by general formula (2) or general formula (3), achieve both high color purity of light emission and high durability. can be done.
  • At least the green light emitting material (first light emitting material) among the one or more types of light emitting materials contained in the particulate color conversion material should emit delayed fluorescence.
  • it is an organic luminescent material. That is, the delayed fluorescent material preferably emits light whose peak wavelength is observed in a region of 500 nm or more and less than 580 nm by using excitation light with a wavelength of 400 nm or more and 500 nm or less.
  • the particulate color conversion material according to the embodiment of the present invention includes, as at least one luminescent material contained in the matrix resin, in addition to the delayed fluorescent material described above, a material other than an organic luminescent material that emits delayed fluorescence. It can have a luminescent material (or other luminescent material).
  • the other luminescent materials include inorganic phosphors, fluorescent pigments, fluorescent dyes, quantum dots, and organic luminescent materials that do not emit delayed fluorescence.
  • the other luminescent material may contain two or more of these.
  • the other luminescent material is preferably a material that exhibits luminescent properties with high quantum yield. Specifically, quantum dots and organic light-emitting materials that do not emit delayed fluorescence are preferred, and organic light-emitting materials that do not emit delayed fluorescence are particularly preferred.
  • Suitable organic light-emitting materials that do not emit delayed fluorescence include, for example, compounds having a fused aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, and indene, and derivatives thereof. It is mentioned as.
  • stilbene derivatives include 1,4-distyrylbenzene, 4,4'-bis(2-(4-diphenylaminophenyl)ethenyl)biphenyl, 4,4'-bis(N-(stilben-4-yl) )-N-phenylamino)stilbene and the like.
  • coumarin derivatives include coumarin 6, coumarin 7, coumarin 153, and the like.
  • Suitable organic light-emitting materials that do not emit delayed fluorescence include azole derivatives such as imidazole, thiazole, thiadiazole, carbazole, oxazole, oxadiazole, and triazole, and metal complexes thereof.
  • cyanine compounds include indocyanine green and the like.
  • xanthene compounds and thioxanthene compounds include fluorescein, eosin, rhodamine, and the like.
  • oxazine compounds include Nile Red and Nile Blue.
  • aromatic amine derivatives include N,N'-diphenyl-N,N'-di(3-methylphenyl)-4,4'-diphenyl-1,1'-diamine.
  • organometallic complex compound include iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re).
  • organic light-emitting material as described above is shown below, but the organic light-emitting material is not particularly limited to these.
  • an organic light-emitting material that does not emit delayed fluorescence one containing a partial structure represented by the above-mentioned general formula (1) is also preferable from the viewpoint of obtaining light emission with high color purity.
  • the above-mentioned organic light-emitting material that does not emit delayed fluorescence may be a fluorescent material or a phosphorescent material, but in order to achieve high color purity, it is preferably a fluorescent material.
  • pyrromethene derivatives can be preferably used because they provide a high fluorescence quantum yield and have better chromaticity durability.
  • boron complexes of pyrromethene are preferred.
  • Preferred examples of the boron complex of pyrromethene include compounds represented by the general formula (4) described below.
  • the particulate color conversion material according to the embodiment of the present invention may further contain an assist dopant such as rubrene in order to increase the efficiency of energy transfer from excitation light to the delayed fluorescent material.
  • an assist dopant such as rubrene
  • the content of the luminescent material in the particulate color conversion material of the present invention is determined by the molar extinction coefficient of the compound, the emission quantum yield, the absorption intensity at the excitation wavelength, and the size and thickness of the particulate color conversion material or color conversion member to be produced. Although it depends on the transmittance, it is usually preferably 1.0 x 10 -4 parts by weight or more and 30 parts by weight or less per 100 parts by weight of the matrix resin. Further, the content of the luminescent material is more preferably 1.0 x 10 -3 parts by weight or more and 10 parts by weight or less, particularly preferably 5.0 x 10 -3 parts by weight or more and 5 parts by weight or less. preferable.
  • a particulate color conversion material includes a matrix resin containing at least one type of luminescent material described above.
  • a material having excellent moldability, transparency, heat resistance, etc. is preferably used as the matrix resin.
  • matrix resins include photocurable resist materials having reactive vinyl groups such as acrylic acid, methacrylic acid, polyvinyl cinnamate, and ring rubber, epoxy resins, and silicone resins.
  • urea resin fluororesin, polycarbonate resin, acrylic resin, urethane resin, melamine resin, polyvinyl resin, polyamide resin, phenol resin, polyvinyl alcohol resin,
  • Known resins include cellulose resin, aliphatic ester resin, aromatic ester resin, aliphatic polyolefin resin, and aromatic polyolefin resin.
  • the matrix resin a mixture or copolymer of these resins may be used. By appropriately designing these resins, a matrix resin useful for the particulate color conversion material of the color conversion member of the present invention can be obtained.
  • the above matrix resins include acrylic resins, copolymer resins containing acrylic ester or methacrylic ester moieties, polyester resins, cycloolefin resins, and epoxy resins. , silicone resin.
  • a thermosetting resin or a photocurable resin can be suitably used as the matrix resin.
  • the glass transition temperature (Tg) of the matrix resin is not particularly limited, but is preferably 30° C. or higher and 180° C. or lower.
  • Tg of the matrix resin is 30°C or higher, the molecular movement of the matrix resin due to the heat from the incident light from the light source or the driving heat of the equipment is suppressed, and thereby the change in the dispersion state of the luminescent material in the matrix resin is suppressed. Since this is suppressed, deterioration of the durability of the particulate color conversion material can be prevented.
  • the Tg of the matrix resin is 180° C. or less, the flexibility of the matrix resin when molded into a sheet or the like can be ensured.
  • the Tg of the matrix resin is more preferably 50°C or more and 170°C or less, still more preferably 70°C or more and 160°C or less, particularly preferably 90°C or more and 150°C or less.
  • the molecular weight of the matrix resin is not particularly limited as it depends on the type of resin used, but it is preferably 3,000 or more and 1,500,000 or less. When the molecular weight is smaller than 3000, the matrix resin becomes brittle and the flexibility of the matrix resin when molded becomes low. Furthermore, if the molecular weight is greater than 1,500,000, there are problems such as the viscosity of the matrix resin during molding becoming excessively large and the chemical stability of the matrix resin itself decreasing.
  • the molecular weight of the matrix resin is more preferably 5,000 or more and 1,200,000 or less, still more preferably 7,000 or more and 1,000,000 or less, particularly preferably 10,000 or more and 800,000 or less.
  • the particulate color conversion material according to the embodiment of the present invention may contain additives as other components in addition to the above-mentioned at least one luminescent material and matrix resin.
  • additives include light stabilizers, antioxidants, processing and heat stabilizers, light resistance stabilizers such as ultraviolet absorbers, plasticizers, crosslinking agents such as epoxy compounds, amines, acid anhydrides, Examples include curing agents such as imidazole, inorganic particles such as silica particles and silicone fine particles, and silane coupling agents.
  • Examples of the light stabilizer include tertiary amines, catechol derivatives, Ni, Sc, V, Mn, Fe, Co, Cu, Y, Zr, Mo, Ag, and at least one type of transition selected from the group consisting of lanthanoids.
  • Examples include complexes containing metals and salts with organic acids, but are not particularly limited. Further, these light stabilizers may be used alone or in combination.
  • antioxidants examples include phenolic antioxidants such as 2,6-di-tert-butyl-p-cresol and 2,6-di-tert-butyl-4-ethylphenol. It is not particularly limited to these. Further, these antioxidants may be used alone or in combination.
  • processing and thermal stabilizers include, but are not limited to, phosphorus stabilizers such as tributyl phosphite, tricyclohexyl phosphite, triethyl phosphine, and diphenylbutyl phosphine. Further, these stabilizers may be used alone or in combination.
  • light resistance stabilizers examples include 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H- Examples include benzotriazoles such as benzotriazole, but are not particularly limited thereto. Further, these light resistance stabilizers may be used alone or in combination.
  • inorganic particles having a refractive index of 1.7 or more and 2.8 or less are preferable.
  • examples of the inorganic particles include titania, zirconia, alumina, ceria, tin oxide, indium oxide, iron oxide, zinc oxide, aluminum nitride, aluminum, tin, titanium or zirconium sulfide, titanium or zirconium hydroxide, etc. can be mentioned.
  • the content of these additives is determined based on the molar absorption coefficient of the compound, the emission quantum yield, and the absorption intensity at the excitation wavelength, as well as the particulate color conversion material to be produced and the content of these additives. Although it depends on the size, thickness, and transmittance of the color conversion member, it is preferably 1.0 x 10 -3 parts by weight or more, and 1.0 x 10 -2 parts by weight based on 100 parts by weight of the matrix resin. The amount is more preferably at least 1.0 ⁇ 10 ⁇ 1 parts by weight, particularly preferably at least 1.0 ⁇ 10 ⁇ 1 parts by weight. Further, the content of these additives is preferably 30 parts by weight or less, more preferably 15 parts by weight or less, and preferably 10 parts by weight or less with respect to 100 parts by weight of the matrix resin. Particularly preferred.
  • the particulate color conversion material of the present invention is a particulate color conversion material containing at least one type of luminescent material in a matrix resin, and can be handled as a powder. Therefore, by mixing and using a plurality of types of particulate color conversion materials, it is easy to precisely adjust wavelength conversion characteristics. For example, when color converting a part of blue light to obtain white light, the particulate color conversion material contains a green conversion material containing a luminescent material that emits green light and a luminescent material that emits red light. The white balance and color temperature of white light can be easily adjusted by preparing a red color converting material and adjusting the amount of mixture thereof.
  • the color conversion characteristics of the particulate color conversion material can be adjusted, and functions other than the color conversion function can be added to the particulate color conversion material. It is also possible to give. For example, it is possible to develop a light scattering function.
  • each particle of the color conversion material is individually independent. Therefore, when highly active species such as radicals are generated in a particle group of particulate color conversion material or a color conversion member using particulate color conversion material due to light irradiation under high temperature conditions, highly active species such as radicals are generated. Propagation to the entire particle group is suppressed. Thereby, accelerated deterioration of the particle group of the particulate color conversion material or the entire color conversion member using the particulate color conversion material can be suppressed.
  • the particulate color conversion material of the present invention at least the above-mentioned delayed fluorescent material is used as one or more types of luminescent material contained in the matrix resin. Therefore, it is possible to further improve the durability of the particulate color conversion material and the color conversion member using the same, and to achieve high color purity and high durability of the particulate color conversion material and the color conversion member using the same. It is possible to achieve both.
  • particulate color conversion materials and color conversion members using them have more interfaces than continuous phase materials such as films, so the number of excitations of the luminescent material tends to increase due to reflection at the interfaces. .
  • delayed fluorescent materials can quickly convert the triplet excited state to the singlet excited state, so they do not deteriorate easily even if the number of excitations increases due to reflection at the interface, making them an excellent material. It can show durability.
  • the average particle size of the particulate color conversion material of the present invention is preferably 0.0010 ⁇ m or more and 100 ⁇ m or less, more preferably 0.010 ⁇ m or more and 30 ⁇ m or less, and especially 0.010 ⁇ m or more and 10 ⁇ m or less. preferable.
  • the average particle diameter of the particulate color conversion material is obtained by measuring the particle size distribution by microscopic observation or laser diffraction scattering method, but in principle, it is obtained from the measurement results of the particle size distribution by microscopic observation.
  • the particle size determined by the laser diffraction scattering method is used as the average particle size of the particulate color conversion material.
  • the particle size of about 100 isolated particles among the powder of the particulate color conversion material is measured, and the average value thereof is calculated. , the average particle size of the particulate color conversion material can be determined.
  • the shape of the particulate color conversion material of the present invention is not particularly limited, and may be spherical, for example, as in the particulate color conversion materials 2a and 2b shown in FIGS. 1 to 7 above. , or may have a shape other than a spherical shape, such as an ellipsoidal shape.
  • the shape of the particulate color conversion material of the present invention is preferably a shape with high sphericity.
  • the high sphericity of the particulate color conversion material makes it possible to reduce optical loss due to undesired light scattering on the surface of the particles of the particulate color conversion material and multiple reflections inside the particles. Furthermore, it is possible to suppress accelerated deterioration of a luminescent material (for example, an organic luminescent material in a particulate color conversion material) due to multiple excitation.
  • a luminescent material for example, an organic luminescent material in a particulate color conversion material
  • the method for producing the particulate color conversion material according to the embodiment of the present invention is not particularly limited as long as it is a method that can mold a matrix resin containing at least one type of luminescent material into particles.
  • particulate color conversion materials can be produced by interfacial polymerization, W/O drying in liquid, Stover method, spray drying, in situ polymerization, phase separation from aqueous solutions, phase separation from organic solvents, and melting. It can be produced by methods such as a dispersion cooling method and an air suspension coating method.
  • a method of forming particles into particles by drying a composition prepared by mixing predetermined amounts of materials such as the above-mentioned luminescent material, matrix resin, and solvent using a spray drying method is a simple method for producing particulate color conversion materials. This can be mentioned as a manufacturing method. From the viewpoint that the shape of the obtained particles approaches a perfect sphere, a composition prepared by mixing predetermined amounts of materials such as the luminescent material, matrix resin, and organic solvent described above is made into a W/O emulsion, and then a W/O emulsion is formed.
  • a preferred method for producing a particulate color conversion material is a polymerization method, in particular, a method in which the particulate color conversion material is formed into particles by polymerization by an emulsion polymerization method in which a W/O emulsion is reacted using a surfactant.
  • the particulate color conversion material is produced by a W/O-based in-liquid drying method
  • either the W/O emulsion state of the above composition or the fine particle state during or after the removal of the organic solvent from the above composition can also be cited as a suitable method for producing the particulate color conversion material.
  • Examples of the solvent include water, 2-propanol, ethanol, toluene, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, hexane, cyclohexane, tetrahydrofuran, acetone, terpineol, texanol, 1,
  • Examples include 2-dimethoxyethane, methyl cellosolve, ethyl cellosolve, butyl carbitol, butyl carbitol acetate, 1-methoxy-2-propanol, propylene glycol monomethyl ether acetate, and the like.
  • solvents it is also possible to use a mixture of two or more of these solvents.
  • these solvents toluene, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran are preferably used because they leave little solvent remaining after drying.
  • the particulate color conversion material of the invention may be used as such (ie in the form of particles). Further, from the viewpoint of further enhancing applicability to optical members, the particulate color conversion material of the present invention is preferably used in a state in which it is contained in a support.
  • a support containing the particulate color conversion material of the present invention can be used as a color conversion member of the present invention, for example, as shown in FIGS. 1 to 7.
  • the support As the material of the support, known metals, resins, glass, ceramics, paper, etc. can be used without particular limitations, but from the viewpoint of transparency and processability, it is preferable that the support is made of resin. .
  • the support is made of resin, it is more preferable that the particulate color conversion material is dispersed in the support.
  • dispersion refers to the scattering of other substances in a substance forming one phase, and the distribution may be biased or uniform.
  • the particulate color conversion material is dispersed, this excludes an embodiment in which it is completely dissolved in a dispersion medium to form one uniform phase.
  • resins suitable for the support include the resins exemplified in the above-mentioned matrix resins.
  • the difference in SP value between the matrix resin of the particulate color conversion material and the resin forming the support is preferably 0.5 (cal/cm 3 ) or more.
  • the difference in SP value is 0.5 (cal/cm 3 ) or more, the particulate color conversion material can be dispersed in the support without being dissolved.
  • the difference in SP value is more preferably 1.0 (cal/cm 3 ) 0.5 or more, more preferably 1.5 (cal/cm 3 ) 0.5 or more, and 2.0 (cal/cm 3 ) 3 ) It is particularly preferable that it is 0.5 or more.
  • the difference in SP value is too large, particles will aggregate with each other, causing quenching.
  • the upper limit of the difference in SP values is more preferably 4.0 (cal/cm 3 ) 0.5 or less, even more preferably 3.0 (cal/cm 3 ) 0.5 or less, 2.5 (cal/cm 3 ) 0.5 or less is particularly preferable.
  • the SP value of the matrix resin of the particulate color conversion material is preferably larger than the SP value of the resin forming the support.
  • the nature of the support is not particularly limited, but includes liquid, gel, and solid states.
  • the shape of the support is not particularly limited, but examples include granules, blocks, and sheets. Further, the shape of the support includes a type filled in a mold. Among these, from the viewpoint of further increasing applicability to a light source unit described below, the shape of the support is preferably a sheet.
  • a method of filling a mold is also preferable as a method of forming the support.
  • the number of particulate color conversion materials contained in the support as described above may be one or more types.
  • the color conversion member of the present invention includes a particulate color conversion material (hereinafter referred to as a first particulate color conversion material) containing a first luminescent material (green luminescent material) that emits green light; It is preferable that the same support contains at least two types of particulate color conversion material (hereinafter referred to as second particulate color conversion material) containing a second light emitting material (red light emitting material) that emits light of . Thereby, the color conversion member of the present invention can convert a part of blue light into white light.
  • a particulate color conversion material hereinafter referred to as a first particulate color conversion material
  • second particulate color conversion material contains at least two types of particulate color conversion material (hereinafter referred to as second particulate color conversion material) containing a second light emitting material (red light emitting material) that emits light of .
  • the color conversion member of the present invention includes the above-described particulate color conversion material and a support, and the particulate color conversion material includes a first light emission whose peak wavelength is observed in a region of 500 nm or more and less than 580 nm.
  • a first particulate color conversion material made of a material and a first matrix resin, and a second particulate color conversion material made of a second matrix resin and a second luminescent material that emits light whose peak wavelength is observed in a region of 580 nm or more and 750 nm or less.
  • a color converting material is preferably contained in the above-mentioned support.
  • the first luminescent material of the first particulate color conversion material includes at least an organic luminescent material (delayed fluorescent material) that emits delayed fluorescence with a half width of 50 nm or less.
  • the durability of the color conversion member can be improved by using the green light-emitting material that passes through an excited state with high energy (i.e., the first light-emitting material) containing the delayed fluorescent material or being the delayed fluorescent material itself. Further improvements can be made.
  • the second luminescent material of the second particulate color conversion material is a compound containing a partial structure represented by the above-mentioned general formula (1), a compound represented by the general formula (2), and a compound represented by the general formula (1). It is preferable to contain at least one of the compounds represented by (3).
  • the second luminescent material of the second particulate color conversion material contains at least a compound represented by the general formula (4) described below, from the viewpoint of obtaining luminescence with high color purity. .
  • the color conversion member of the present invention includes a support containing a first particulate color conversion material that emits green light, a support containing a second particulate color conversion material that emits red light, Examples include those made by combining the following. That is, as a preferred embodiment of the present invention, the first support has a first particulate color conversion material consisting of a first luminescent material and a first matrix resin that exhibits luminescence observed in a region with a peak wavelength of 500 nm or more and less than 580 nm.
  • a second support having a second particulate color conversion material made of a second luminescent material and a second matrix resin that exhibits luminescence observed in a region with a peak wavelength of 580 nm or more and 750 nm or less.
  • Methods for combining multiple types of supports include a method of arranging them on the same plane, a method of stacking them, etc., depending on the shape of each support to be combined.
  • first light-emitting materials and second light-emitting materials are not particularly limited, and include known light-emitting materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots.
  • organic light-emitting materials are preferable as the first light-emitting material and the second light-emitting material because white light with high color reproducibility can be obtained.
  • the emission peak wavelength of the organic luminescent material is shifted to a desired wavelength
  • Color gamut can be expanded. That is, the first matrix resin of the first particulate color conversion material and the second matrix resin of the second particulate color conversion material may be the same resin or different resins. Note that the two matrix resins being different from each other means that the compositions of the resins are different.
  • the SP value which is the solubility parameter of the matrix resin
  • the emission peak wavelength of the organic light-emitting material shifts to the longer wavelength side. Therefore, by dispersing the organic light-emitting material in a matrix resin having an optimal SP value, it is possible to optimize the emission peak wavelength of the organic light-emitting material.
  • the SP value of the first matrix resin is SP A (cal/cm 3 ) 0.5 and the SP value of the second matrix resin is SP B (cal/cm 3 ) 0.5
  • SP A ⁇ SP B. is preferred.
  • the difference in the emission peak wavelengths of green light and red light in the first particulate color conversion material and the second particulate color conversion material is greater than that in the case where the organic light emitting material is dispersed in the same matrix resin. As a result, the color gamut is expanded.
  • SP B ⁇ 9.5.
  • SP B is not particularly limited, a matrix resin in which SP B ⁇ 15.0 has good dispersibility of the organic light emitting material, and therefore can be suitably used. From the viewpoint of increasing the effect, it is more preferable that SP B ⁇ 14.0, still more preferably SP B ⁇ 13.0, particularly preferably SP B ⁇ 12.0.
  • SP A when SP A ⁇ 11.0, the emission peak wavelength of green light in the first particulate color conversion material is suppressed from becoming longer, and as a result, the first particulate color conversion material and the second particulate color The difference in the emission peak wavelengths of green light and red light in the conversion material increases. Therefore, it is preferable that SP A ⁇ 11.0. From the viewpoint of increasing the effect, it is more preferable that SP A ⁇ 10.5, and even more preferably that SP A ⁇ 10.0.
  • SP A is not particularly limited, a matrix resin in which SP A ⁇ 7.0 has good dispersibility of the organic light-emitting material, and thus can be suitably used. From the viewpoint of increasing the effect, it is more preferable that SP A ⁇ 7.4, still more preferably SP A ⁇ 7.8, particularly preferably SP A ⁇ 8.0.
  • the solubility parameter is determined by the generally used Fedors estimation method described in Poly.Eng.Sci., vol. 14, No. 2, pp. 147-154 (1974), etc. This is a value calculated from the types and ratios of monomers constituting the resin.
  • the SP value can also be calculated using a similar method for a mixture of multiple types of resins.
  • the SP value of polymethyl methacrylate can be calculated as 9.9 (cal/cm 3 ) 0.5
  • the SP value of polyethylene terephthalate (PET) can be calculated as 11.6 (cal/cm 3 ) 0.5
  • the SP value of polymethyl methacrylate (PET) can be calculated as 11.6 (cal/cm 3 ) 0.5
  • the SP value of the epoxy resin can be calculated as 10.9 (cal/cm 3 ) 0.5 .
  • Typical SP values of the resins are shown in Table 1.
  • the above-described first matrix resin and second matrix resin can be used in any combination from among the resins shown in Table 1, for example.
  • the support of the color conversion member preferably contains at least one type of luminescent material in addition to the particulate color conversion material of the present invention.
  • the support of the color conversion member contains at least one kind of organic light-emitting material, such as a compound containing a partial structure represented by the above-mentioned general formula (1), a general formula It is particularly preferable to contain at least one of the compound represented by (2) and the compound represented by general formula (3).
  • the support of the color conversion member contains at least a compound represented by general formula (4) as one of the above-mentioned light-emitting materials.
  • R 1 to R 9 may be the same or different, and include hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, an alkylthio group, Aryl ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group , a phosphine oxide group, and a fused ring and an aliphatic ring formed between adjacent substituents.
  • R 1 to R 9 may each be independently substituted. The substituents for each of R 1 to R 9 are selected from
  • X in general formula (4) is preferably CR 7 .
  • X in general formula (4) is CR 7 and R 7 is substituted or unsubstituted. An aryl group is preferred.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, or an anthracenyl group, and a substituted or unsubstituted phenyl group is more preferable. preferable.
  • R 8 and R 9 are preferably fluorine, a fluorine-containing alkyl group, a fluorine-containing heteroaryl group, a fluorine-containing aryl group, or a cyano group.
  • R 8 and R 9 are preferably fluorine or cyano groups, since they are stable to excitation light and a higher fluorescence quantum yield can be obtained.
  • R 1 , R 3 , R 4 and R 6 may be the same or different, and are substituted or unsubstituted phenyl groups;
  • Further examples include the case where X is CR 7 and R 7 is a substituted or unsubstituted phenyl group.
  • R 1 , R 3 , R 4 and R 6 may be the same or different, and are substituted or unsubstituted alkyl groups;
  • R 1 , R 3 , R 4 and R 6 may be the same or different, and are substituted or unsubstituted alkyl groups;
  • Further examples include the case where X is CR 7 and R 7 is a substituted or unsubstituted phenyl group.
  • R 2 and R 5 may be the same or different, and are particularly preferably substituted or unsubstituted ester groups.
  • the set may be a ring structure of any one of the following general formulas (5A) to (5D).
  • Each ring structure represented by each of the general formulas (5A) to (5D) has a double bond. Therefore, by introducing any one of the ring structures into the above compound, the conjugation can be expanded and the wavelength of the emitted light can be increased.
  • R 2 and R 3 are ring structures represented by the general formula (5D), Ar in the general formula (5D) is a substituted or unsubstituted benzene ring, and the general formula (5D) R 101 and R 102 in the formula may be the same or different and are a substituted or unsubstituted alkyl group or a substituted or unsubstituted phenyl group, X is CR 7 , and R 7 is a substituted or A preferred example is an unsubstituted phenyl group.
  • Ar in the general formula (5D) is a substituted or unsubstituted benzene ring
  • R 101 and R 102 in the formula may be the same or different and are a substituted or unsubstituted alkyl group or a substituted or unsubstituted phenyl group
  • X is CR 7
  • R 7 is a substituted or
  • a preferred example is an unsubstituted phenyl group.
  • R 4 and R 6 may be the same or different, and are preferably substituted or unsubstituted phenyl groups. Further, it is also preferable that R 101 and R 102 in general formula (5D) form a ring.
  • R 101 , R 102 and R 201 to R 204 have the same meanings as R 1 to R 7 in general formula (4) described above.
  • the support of the color conversion member preferably has oxygen barrier properties.
  • Oxygen barrier properties refer to characteristics of low oxygen permeability.
  • the oxygen permeability of the support is preferably 1.0 cc/m 2 ⁇ day ⁇ atm or less, more preferably 0.5 cc/m 2 ⁇ day ⁇ atm or less, and 0.5 cc/m 2 ⁇ day ⁇ atm or less. It is particularly preferable that it is 1 cc/m 2 ⁇ day ⁇ atm or less.
  • the oxygen permeability was measured using a flat test piece with a uniform film thickness, unless otherwise specified, under the conditions of a temperature of 20°C and a humidity of 0% RH. This value is measured using a measuring device (model name: "OXTRAN” (registered trademark) ("OXTRAN” 2/20)) based on the electrolytic sensor method described in JIS K7126-2 (2006). .
  • the reaction between the highly reactive organic light-emitting material in the triplet excited state and surrounding molecules can be a factor in the deterioration of the organic light-emitting material.
  • the organic light-emitting material in the triplet excited state is a delayed fluorescent material
  • the delayed fluorescent material in the triplet excited state can be quickly converted to the delayed fluorescent material in the singlet excited state. Therefore, in the absence of oxygen, delayed fluorescent materials can exhibit significantly greater durability than conventional organic light emitting materials (organic light emitting materials that do not emit delayed fluorescence).
  • the color conversion member has an oxygen barrier layer (that is, an oxygen barrier layer) on at least a portion of the surface of the support, as shown in FIGS. 4 to 7, for example. It is also preferable to have When the permeation of oxygen into the support is blocked by an oxygen barrier layer, delayed fluorescent materials can exhibit significantly greater durability than conventional organic light-emitting materials, as described above.
  • an oxygen barrier layer that is, an oxygen barrier layer
  • the oxygen permeability of the oxygen barrier layer is preferably 2.0 cc/m 2 ⁇ day ⁇ atm or less, more preferably 1.0 cc/m 2 ⁇ day ⁇ atm or less, It is more preferably 0.5 cc/m 2 ⁇ day ⁇ atm or less, and particularly preferably 0.1 cc/m 2 ⁇ day ⁇ atm or less.
  • examples of the oxygen barrier layer include a glass layer, an inorganic oxide layer, an inorganic nitride layer, a resin layer, and the like.
  • the inorganic oxide constituting the oxygen barrier layer from the viewpoint of cost, silicon oxide and aluminum oxide are preferable, and among them, aluminum oxide can be particularly preferably used.
  • the resin layer which is an example of the oxygen barrier layer, from the viewpoint of high oxygen barrier properties, a layer made of polyol resin is more preferable, and among them, saponified vinyl acetate such as polyvinyl alcohol, ethylene-vinyl alcohol, etc. A layer made of a polymer and a mixture containing these resins is even more preferable because it has particularly excellent oxygen barrier properties.
  • the support containing the particulate color conversion material has oxygen barrier properties, and at least a part of the surface of the support is covered with the above-mentioned oxygen barrier layer.
  • the color conversion member described above is also preferable because higher oxygen barrier properties can be obtained.
  • an oxygen barrier film or the like is provided on both sides of the layer (color conversion layer) of the color conversion member consisting of the particulate color conversion material of the present invention and an oxygen barrier support.
  • An example is a structure in which barrier layers are laminated.
  • the oxygen barrier properties of the support can prevent oxygen from entering from the edges of the entire surface of the support that are not covered with the barrier film, and the particulate color conversion material at the edges can be prevented from entering through the edges that are not covered with the barrier film. Deterioration can be suppressed.
  • the support that can be used in the color conversion member of the present invention can contain additives, if necessary, in addition to the particulate color conversion material and luminescent material described above.
  • additives include light-absorbing dyes, light-absorbing pigments, antioxidants, processing and heat stabilizers, light resistance stabilizers such as ultraviolet absorbers, dispersants and leveling agents, plasticizers, epoxy compounds, etc. curing agents such as amines, acid anhydrides, and imidazole, adhesion aids, inorganic particles such as titanium oxide particles, zirconia particles, and silica particles, and silane coupling agents.
  • the method for producing the color conversion member according to the embodiment of the present invention is not particularly limited as long as it is a method that can mold a support containing the particulate color conversion material of the present invention into a desired shape.
  • a composition is prepared by mixing the particulate color conversion material of the present invention, a resin serving as a support, a solvent, etc., and then the composition is applied onto a substrate and dried.
  • Examples include a method of forming a support containing the particulate color conversion material of the invention into a sheet shape.
  • Another example is a method in which the particulate color conversion material of the present invention and a resin serving as a support are kneaded while heating and molded using an extruder.
  • a color conversion substrate according to an embodiment of the present invention includes at least the particulate color conversion material of the present invention or the color conversion member of the present invention. It is composed of
  • the color conversion substrate of the present invention includes a plurality of color conversion layers on a transparent substrate.
  • the color conversion layer preferably includes a red conversion layer and a green conversion layer.
  • the red conversion layer is formed of a phosphor material that absorbs at least blue light and emits red light.
  • the green color conversion layer is formed of a phosphor material that absorbs at least blue light and emits green light.
  • partition walls may be formed in the color conversion substrate of the present invention, and the color conversion layer is preferably arranged between the partition walls (in a recess).
  • the color conversion substrate of the present invention may be one in which excitation light is input from the transparent substrate side and emission is visually recognized from the side opposite to the transparent substrate, or excitation light is input from the color conversion layer side and the transparent substrate The light emission may be visually recognized from the side.
  • the quantum yield of the color conversion layer is usually 0.5 or more, preferably 0.7 or more, more preferably 0 when the color conversion substrate is irradiated with blue light having a peak wavelength of 440 nm or more and 460 nm or less. .8 or more, particularly preferably 0.9 or more.
  • the particulate color conversion material or color conversion member of the present invention can also be used in ink.
  • the ink according to the embodiment of the present invention (hereinafter sometimes abbreviated as "the ink of the present invention") is in a liquid, gel, or solid state containing at least the particulate color conversion material or color conversion member of the present invention. It is used for writing characters and coloring the surface.
  • the ink of the present invention can achieve both luminescence with high color purity and high durability. It can be preferably used as an ink.
  • a light source unit according to an embodiment of the present invention includes at least a light source and the above-mentioned particulate color conversion material or color conversion member. It is constructed.
  • the method of arranging the light source and the particulate color conversion material or color conversion member is not particularly limited.
  • a remote phosphor format may be used in which the light source and the particulate color conversion material or color conversion member are separated.
  • the light source unit of the present invention may further include a color filter for the purpose of increasing color purity.
  • any light source may be used as long as it emits light in a wavelength range that can be absorbed by the particulate color conversion material of the present invention or the luminescent material used in the color conversion member. Can be done.
  • any excitation light source can be used in principle, such as hot cathode tubes, cold cathode tubes, fluorescent light sources such as inorganic electroluminescence (EL), organic EL light sources, LED light sources, incandescent light sources, or sunlight. It is possible.
  • an LED light source is a suitable light source.
  • a light emitting diode having maximum emission in a wavelength range of 400 nm or more and 500 nm or less is a more suitable LED light source.
  • a light emitting diode (blue LED light source) having maximum emission in a wavelength range of 400 nm or more and 500 nm or less is a more suitable light source because it can enhance the color purity of blue light.
  • a blue LED light source having maximum emission in a wavelength range of 430 nm or more and 480 nm or less is more preferable
  • a blue LED light source having maximum emission in a wavelength range of 450 nm or more and 470 nm or less is more preferable.
  • the above-mentioned light source may have one kind of luminescence peak or two or more kinds of luminescence peaks, but in order to improve color purity, it is preferable to have one kind of luminescence peak. It is also possible to use a plurality of light sources with different types of emission peaks in any combination.
  • the light source unit of the present invention is useful for various light sources such as space illumination and backlighting.
  • the light source unit of the present invention can be used for displays, lighting devices, interiors, signs, signboards, etc. Among them, it is particularly suitable for use in displays and lighting devices.
  • a display according to an embodiment of the present invention includes at least a light source unit including a light source and a particulate color conversion material or a color conversion member as described above.
  • the above-mentioned light source unit is used as a backlight unit in a display such as a liquid crystal display.
  • the lighting device includes at least a light source unit including a light source and a particulate color conversion material or a color conversion member as described above.
  • this lighting device combines a blue LED light source as a light source unit and a particulate color conversion material or color conversion member that converts the blue light from the blue LED light source into light with a longer wavelength. configured to emit light.
  • each color conversion member to be evaluated and a prism sheet were placed on a planar light emitting device equipped with a blue LED element with an emission peak wavelength of 450 nm.
  • a current of 30 mA is applied to the planar light emitting device in this state to light up the blue LED element, and the emission spectrum, chromaticity, and brightness are measured using a spectroradiometer (CS-1000, manufactured by Konica Minolta). did.
  • the (u', v') color when the color purity is improved by the color filter is calculated from the emission spectrum obtained by measuring the color conversion characteristics mentioned above and the spectral data of the transmittance of the color filter.
  • the color gamut in space was calculated.
  • the area of the calculated color gamut in the (u', v') color space is BT. Evaluation was made based on the following criteria based on the ratio when the color gamut area of the 2020 standard is taken as 100%.
  • A indicates that the above ratio is 91% or more.
  • “B” indicates that the above ratio is 86% or more and 90% or less.
  • “C” indicates that the above ratio is 81% or more and 85% or less.
  • the higher the above ratio the wider the color gamut and the better the color reproducibility of the color conversion member.
  • ⁇ Durability evaluation> In the durability evaluation, in each example and comparative example, a current of 30 mA was applied to a light emitting device equipped with the produced color conversion member and a blue LED element (manufactured by USHIO EPITEX, model number SMBB450H-1100, emission peak wavelength: 450 nm). The blue LED element was turned on, and the initial luminescence peak intensity was measured using a spectral radiance meter (CS-1000, manufactured by Konica Minolta). Note that the distance between the color conversion member and the blue LED element in this light emitting device was 3 cm. Thereafter, the durability of the color conversion member was evaluated by continuously irradiating it with light from a blue LED element in an environment of 60° C. and observing the time until the emission peak intensity decreased by 5%.
  • CS-1000 spectral radiance meter
  • edge deterioration In the evaluation of edge deterioration, light irradiation was performed for 300 hours under the same conditions as in the durability evaluation above, and compared to the center of the sample, the luminescence intensity was significantly reduced in the range of mm from the edge of the sample. was visually confirmed and evaluated using the following criteria.
  • A indicates that the distance from the edge is 0 mm or more and less than 1 mm.
  • B indicates that the distance from the end is 1 mm or more and less than 5 mm.
  • C indicates that the distance from the end is 5 mm or more.
  • the sample of the color conversion member used for the measurement was a sheet-shaped sample cut into a size of 30 mm x 30 mm.
  • compounds G-1, G-2, G-3, G-4, G-5, R-1 are used as luminescent materials contained in particulate color conversion materials or color conversion members. was used.
  • Compounds G-1, G-2, G-3, G-4, G-5, and R-1 are the compounds shown below. Among these, compounds G-1, G-3, G-4, and G-5 are compounds that emit delayed fluorescence (delayed fluorescence materials).
  • This color conversion composition was dried by a spray drying method and further pulverized in a mortar to produce a particulate color conversion material.
  • the particle size of 100 isolated particles was measured using ECLIPSE L200N (manufactured by Nikon Corporation), and the average value was calculated, and the average particle size was about 1 ⁇ m. The particle size was measured by selecting the part with the largest diameter.
  • particulate color conversion material and the support resin liquid are mixed, and the mixture is stirred using a planetary stirring/defoaming device "Mazelstar” (registered trademark) KK-400 (manufactured by Kurabo Industries, Ltd.).
  • a color conversion dispersion liquid was prepared by stirring and defoaming at 1000 rpm for 20 minutes. This color conversion dispersion liquid was applied onto a slide glass plate using a film applicator, heated at 120°C for 30 minutes, and dried to form a color conversion member (including particulate color conversion material) with an average thickness of 12 ⁇ m. Created.
  • Example 1 When light from a blue LED element (blue light) was color-converted using the color conversion member produced as described above, when only the green light emission region was extracted, the peak wavelength was 523 nm, and the emission at the peak wavelength was found to be 523 nm. Green light emission with high color purity, with a spectral half width of 38 nm, was obtained. Further, when the light from the blue LED element was continuously irradiated according to the above method, the time until the brightness decreased by 5% (light durability) was about 60 hours. In Example 1, when compared with Comparative Example 3 described later, the light durability was improved by about 2.4 times. The color conversion member and evaluation results of Example 1 are shown in Table 2-1 below.
  • Examples 2-4 color conversion members were produced and evaluated in the same manner as in Example 1, except that Compounds G-3 to G-5 were used as luminescent materials, respectively. However, the amount of the luminescent material mixed was adjusted so that the conversion rate when converting light from the blue LED element into green light was the same as that of Compound G-1 of Example 1. The color conversion member and evaluation results of Example 2 are shown in Table 2-1.
  • Comparative examples 1 and 2 In Comparative Examples 1 and 2, color conversion members were produced and evaluated in the same manner as in Example 1, except that Coumarine 6 (manufactured by Sigma-Aldrich) or Compound G-2 was used as the luminescent material. However, the amount of the luminescent material mixed was adjusted so that the conversion rate when converting light from the blue LED element into green light was the same as that of Compound G-1 of Example 1. The color conversion members and evaluation results in each of Comparative Examples 1 and 2 are shown in Table 2-1.
  • Comparative examples 3 to 8 In Comparative Examples 3 to 8, each color conversion composition prepared in Examples 1 to 4 and Comparative Examples 1 and 2 was applied onto a slide glass plate using a film applicator, heated at 120 ° C. for 30 minutes, It was dried to produce a film-like color conversion member (not containing particulate color conversion material). In each of Comparative Examples 3 to 8, durability was evaluated by measuring the peak wavelength and half-width when color-converting light from a blue LED element using the produced color conversion member. The color conversion members and evaluation results in each of Comparative Examples 3 to 8 are shown in Table 2-2 below. However, the oxygen permeability of polyester resin T1 was 600 cc/m 2 ⁇ day ⁇ atm.
  • Example 1 the particulate color conversion material prepared in Example 1 and the support resin liquid of Example 5 were mixed, and the mixture was passed through a planetary stirring/defoaming device "Mazelstar” (registered trademark) KK- 400 (manufactured by Kurabo Industries, Ltd.) for 20 minutes with stirring and defoaming at 1000 rpm to prepare a color conversion dispersion.
  • This color conversion dispersion liquid was applied onto a slide glass plate using a film applicator, heated at 100°C for 60 minutes, and dried to form a color conversion member (including particulate color conversion material) with an average film thickness of 9 ⁇ m. Created.
  • Example 5 When light from a blue LED element was color-converted using the color conversion member produced as described above, when only the green light emission region was extracted, the peak wavelength was 523 nm, and the half-value width of the emission spectrum at the peak wavelength. Green emission with high color purity of 38 nm was obtained. Further, when the light from the blue LED element was continuously irradiated according to the above method, it took about 600 hours until the brightness decreased by 5%. In Example 5, compared to Example 1, the light durability was improved by about 10 times. The color conversion member and evaluation results of Example 5 are as shown in Table 3 below.
  • Examples 6-8 color conversion members were produced and evaluated in the same manner as in Example 5, except that the particulate color conversion materials produced in Examples 2 to 4 were used as particulate color conversion materials. Ta. The color conversion members and evaluation results in each of Examples 6 to 8 are shown in Table 3.
  • Comparative examples 9 and 10 In Comparative Examples 9 and 10, color conversion members were produced and evaluated in the same manner as in Example 5, except that each of the particulate color conversion materials produced in Comparative Examples 1 and 2 was used as the particulate color conversion material. went. The color conversion members and evaluation results in each of Comparative Examples 9 and 10 are shown in Table 3.
  • This color conversion composition was dried by a spray drying method and further pulverized in a mortar to produce a second particulate color conversion material having an average particle size of about 1 ⁇ m.
  • the first particulate color conversion material, the second particulate color conversion material, and the support resin liquid were mixed and stirred to prepare a color conversion dispersion.
  • This color conversion dispersion liquid was applied onto a slide glass plate using a film applicator, heated at 120° C. for 30 minutes, and dried to produce a color conversion member (containing particulate color conversion material).
  • color gamut area is the area of the color gamut in the (u', v') color space. Further, “A” to “C” in the "color gamut area” column indicate the evaluation results of the area of this color gamut.
  • Example 14 The color conversion member and evaluation results of Example 14 are shown in Table 4.
  • Comparative example 11 In Comparative Example 11, Coumarine 6 (manufactured by Sigma-Aldrich) was used as the luminescent material of the first particulate color conversion material, and the conversion rate when converting light from a blue LED element into green light was that of Compound G- of Example 11. Lumogen F Red305 (manufactured by BASF) was used as the luminescent material of the second particulate color conversion material, and the amount of substance was adjusted to be the same as that of Compound R-1 of Example 11. A color conversion member was produced and evaluated in the same manner as in Example 11, except that the mixture was adjusted to . The color conversion member and evaluation results of Comparative Example 11 are shown in Table 4.
  • a color conversion dispersion liquid was applied onto a slide glass plate using a film applicator, heated at 120° C. for 30 minutes, and dried to produce a color conversion member (containing particulate color conversion material).
  • Example 16 In Example 16, the color conversion dispersion prepared in Example 5 was applied onto "Therapel” (registered trademark) BLK (release film manufactured by Toray Film Processing Co., Ltd.) using a film applicator, and heated at 100°C. The mixture was heated and dried for 60 minutes to produce a color conversion member (including particulate color conversion material) having an average thickness of 9 ⁇ m.
  • "Therapel" registered trademark
  • BLK release film manufactured by Toray Film Processing Co., Ltd.
  • thermosetting adhesive layer As the oxygen barrier laminated film 1 constituting the oxygen barrier layer, an alumina-deposited polyethylene terephthalate film with a coating layer "Barrierox” (registered trademark) 1011SBR2 (manufactured by Toray Industries, Ltd., thickness 12 ⁇ m, oxygen permeability of about 0 A thermosetting adhesive layer was formed on this coating layer by a coating method, and the oxygen barrier laminate film 1 was laminated on one side of the color conversion member. Thereafter, "Therapel” (registered trademark) BLK was peeled off from this color conversion member, and the oxygen barrier laminate film 1 on which a thermosetting adhesive layer was formed in the same manner as above was laminated on the peeled surface. In this way, a color conversion member (including particulate color conversion material) having oxygen barrier layers on both sides was produced.
  • Example 16 When the color conversion member produced as described above was continuously irradiated with light from a blue LED element, the time until the brightness decreased by 5% (light durability) was about 1000 hours.
  • the durability evaluation of Example 16 showed that the light durability was improved by about 8.3 times when compared with Comparative Example 12, which will be described later. Furthermore, no end deterioration was observed at the ends of the sample.
  • the color conversion member and evaluation results of Example 16 are shown in Table 6-1 below.
  • Example 17 In Example 17, a thermosetting adhesive layer was formed on a polyethylene terephthalate film "Lumirror” (registered trademark) U48 (manufactured by Toray Industries, Inc., thickness 50 ⁇ m) by a coating method, and on top of that, as an oxygen barrier layer. , an ethylene-vinyl alcohol copolymer film (ethylene content 32 mol%, thickness 12 ⁇ m) was laminated. In this way, an oxygen barrier laminate film 2 constituting an oxygen barrier layer was produced. The oxygen permeability of this oxygen barrier laminate film 2 was approximately 0.7 cc/m 2 ⁇ day ⁇ atm.
  • a color conversion member (including particulate color conversion material) was prepared in the same manner as in Example 16 except that a thermosetting adhesive layer was formed on the ethylene-vinyl alcohol copolymer film of this oxygen barrier laminated film 2. were produced and evaluated.
  • the color conversion member and evaluation results of Example 17 are shown in Table 6-1.
  • Example 18 In Example 18, the color conversion dispersion prepared in Example 1 was heated at 120° C. for 30 minutes and dried to produce a color conversion member (including particulate color conversion material) with an average thickness of 12 ⁇ m. Except for this, a color conversion member (including particulate color conversion material) was produced and evaluated in the same manner as in Example 16. The color conversion member and evaluation results of Example 18 are shown in Table 6-1.
  • Example 19 In Example 19, the color conversion dispersion prepared in Example 1 was heated at 120° C. for 30 minutes and dried to produce a color conversion member (including particulate color conversion material) with an average film thickness of 12 ⁇ m. Except for this, a color conversion member (including particulate color conversion material) was produced and evaluated in the same manner as in Example 17. The color conversion member and evaluation results of Example 19 are shown in Table 6-1.
  • Example 20 As the oxygen barrier laminated film 3 constituting the oxygen barrier layer, an alumina vapor-deposited polyethylene terephthalate film "Barrierox" (registered trademark) 1011HG (manufactured by Toray Industries, Inc., thickness 12 ⁇ m, oxygen permeability: A color conversion member (particulate color conversion material) was prepared in the same manner as in Example 18 except that a thermosetting adhesive layer was formed on the alumina layer of this film. (including materials) were prepared and evaluated. The color conversion member and evaluation results of Example 20 are shown in Table 6-1.
  • Comparative example 12 In Comparative Example 12, the color conversion composition prepared in Example 1 was applied onto "Therapel” (registered trademark) BLK (release film manufactured by Toray Film Processing Co., Ltd.) using a film applicator, and heated at 120°C. The mixture was heated for 30 minutes and dried to produce a film-like color conversion member (not containing particulate color conversion material). Oxygen barrier laminated film 3 was laminated on both sides of this film-like color conversion member by the same method as in Example 20, thereby forming the color conversion member of Comparative Example 12 (particles) having an oxygen barrier layer on both sides. (containing no color conversion material) was prepared. Thereafter, the color conversion member of Comparative Example 12 was evaluated. The color conversion member and evaluation results of Comparative Example 12 are shown in Table 6-2.
  • the particulate color conversion material, the color conversion member, and the light source unit, display, lighting device, and color conversion board including the same according to the present invention are suitable for achieving both improved color reproducibility and improved durability. ing.

Abstract

A particulate color conversion material according to one embodiment of the present invention has a matrix resin and at least one type of light-emitting material. The at least one type of light-emitting material includes an organic light-emitting material that emits delayed fluorescence having a half-width of 50 nm or less.

Description

粒子状色変換材料、色変換部材ならびにそれを含む光源ユニット、ディスプレイ、照明装置および色変換基板Particulate color conversion materials, color conversion members, light source units containing the same, displays, lighting devices, and color conversion substrates
 本発明は、粒子状色変換材料、色変換部材、ならびにそれを含む光源ユニット、ディスプレイ、照明装置および色変換基板に関する。 The present invention relates to a particulate color conversion material, a color conversion member, and a light source unit, display, lighting device, and color conversion substrate including the same.
 色変換方式によるマルチカラー化技術を、液晶ディスプレイや有機ELディスプレイ、照明装置などへ応用する検討が盛んである。色変換とは、発光体からの発光をより長波長な光へと変換することを表し、例えば、青色発光を緑色や赤色発光へと変換することなどが挙げられる。 There is active research into applying multicolor technology using color conversion methods to liquid crystal displays, organic EL displays, lighting devices, etc. Color conversion refers to converting light emitted from a light emitter into light with a longer wavelength, and includes, for example, converting blue light into green or red light.
 この色変換機能を有する組成物(以下、「色変換組成物」という)をシート化し、例えば青色光源と組み合わせることにより、青色光源から、青、緑、赤色の3原色を取り出すこと、すなわち白色光を取り出すことが可能となる。このような青色光源と色変換機能を有するシート(以下、「色変換シート」という)とを組み合わせた白色光源をバックライトユニット等の光源ユニットとし、この光源ユニットと、液晶駆動部分と、カラーフィルターとを組み合わせることにより、フルカラーディスプレイの作製が可能になる。また、青色光源と色変換シートとを組み合わせた白色光源は、そのままLED照明などの白色光源(照明装置)として用いることもできる。 By forming a composition having this color conversion function (hereinafter referred to as "color conversion composition") into a sheet and combining it with, for example, a blue light source, the three primary colors of blue, green, and red can be extracted from the blue light source, that is, white light. It becomes possible to take out. A white light source that combines such a blue light source and a sheet with a color conversion function (hereinafter referred to as "color conversion sheet") is used as a light source unit such as a backlight unit, and this light source unit, a liquid crystal drive part, and a color filter are used as a light source unit such as a backlight unit. By combining these, it becomes possible to create a full-color display. Further, a white light source that is a combination of a blue light source and a color conversion sheet can be used as it is as a white light source (illumination device) such as LED lighting.
 色変換方式を利用する液晶ディスプレイの課題として、色再現性の向上が挙げられる。色再現性の向上には、光源ユニットの青、緑、赤の各発光スペクトルの半値幅を狭くし、青、緑、赤各色の色純度を高めることが有効である。これを解決する手段として、無機半導体微粒子による量子ドットを色変換組成物の成分として用いる技術が提案されている(例えば、特許文献1参照)。 Improving color reproducibility is an issue for liquid crystal displays that use color conversion methods. In order to improve color reproducibility, it is effective to narrow the half-widths of the blue, green, and red emission spectra of the light source unit and increase the color purity of each of the blue, green, and red colors. As a means to solve this problem, a technique has been proposed in which quantum dots made of inorganic semiconductor fine particles are used as a component of a color conversion composition (for example, see Patent Document 1).
 また、量子ドットの代わりに、カドミウム等の毒性元素の懸念の少ない有機物の発光材料を色変換組成物の成分として用いる技術も提案されている。有機発光材料を色変換組成物の成分として用いる技術の例としては、クマリン誘導体を用いたもの(例えば、特許文献2参照)、ローダミン誘導体を用いたもの(例えば、特許文献3参照)、ピロメテン誘導体を用いたもの(例えば、特許文献4参照)が開示されている。また、有機発光材料の劣化を防ぎ、耐久性を向上させるための技術の例として、光安定化剤を添加する技術も開示されている(例えば、特許文献5参照)。 Additionally, a technique has been proposed in which, instead of quantum dots, an organic luminescent material with less concern about toxic elements such as cadmium is used as a component of the color conversion composition. Examples of techniques using organic luminescent materials as components of color conversion compositions include those using coumarin derivatives (see, for example, Patent Document 2), those using rhodamine derivatives (see, for example, Patent Document 3), and those using pyrromethene derivatives. (for example, see Patent Document 4) has been disclosed. Further, as an example of a technique for preventing deterioration of an organic light-emitting material and improving durability, a technique of adding a light stabilizer has also been disclosed (see, for example, Patent Document 5).
特開2012-22028号公報Japanese Patent Application Publication No. 2012-22028 特開2007-273440号公報JP2007-273440A 特開2001-164245号公報Japanese Patent Application Publication No. 2001-164245 特開2011-241160号公報Japanese Patent Application Publication No. 2011-241160 国際公開第2011/149028号International Publication No. 2011/149028
 特許文献1に記載の量子ドットを用いる技術では、確かに、緑色、赤色の発光スペクトルの半値幅が狭く、色再現性は向上する。その反面、量子ドットは、熱、空気中の水分や酸素に弱く、耐久性が十分でなかった。また、量子ドットは、カドミウムを含む等の課題もある。 In the technology using quantum dots described in Patent Document 1, the half-value widths of green and red emission spectra are certainly narrow, and color reproducibility is improved. On the other hand, quantum dots are sensitive to heat, moisture and oxygen in the air, and lack sufficient durability. In addition, quantum dots also have problems such as containing cadmium.
 また、近年、4Kや8Kといった高精細化、ハイダイナミックレンジ(HDR)、およびローカルディミングによる高コントラスト化に伴い、液晶ディスプレイの光源ユニットに求められる照度が高まっている。このため、駆動熱による光源ユニットの高温化が生じている。 In addition, in recent years, the illuminance required for the light source unit of a liquid crystal display has increased with the advancement of high definition such as 4K and 8K, high dynamic range (HDR), and high contrast due to local dimming. For this reason, the temperature of the light source unit increases due to drive heat.
 特許文献2~4に記載の有機発光材料を用いる技術では、確かに色再現性を向上させることは可能であるが、高温下での耐久性が不足していた。また、特許文献5に記載されている光安定化剤のような既存の技術は、耐久性の向上効果はあるものの、高温下で耐久性を向上させる技術としては、不十分であった。特に、有機発光材料を用いた色変換材料には、高温下において耐久性が著しく悪くなるという課題があり、上記既存の技術では、未だ、この課題を十分に解決できていなかった。 Although it is certainly possible to improve color reproducibility with the techniques using organic light-emitting materials described in Patent Documents 2 to 4, they lack durability at high temperatures. Further, although existing techniques such as the light stabilizer described in Patent Document 5 have the effect of improving durability, they are insufficient as techniques for improving durability at high temperatures. In particular, color conversion materials using organic light-emitting materials have a problem in that their durability deteriorates significantly at high temperatures, and the existing techniques described above have not yet been able to satisfactorily solve this problem.
 本発明が解決しようとする課題は、バックライトユニット等の光源ユニット、液晶ディスプレイ等のディスプレイやLED照明等の照明装置に用いられる色変換材料において、色再現性の向上と耐久性の向上とを両立させることであり、特に、高温下における耐久性を向上させることである。 The problem to be solved by the present invention is to improve color reproducibility and durability in color conversion materials used in light source units such as backlight units, displays such as liquid crystal displays, and lighting devices such as LED lighting. In particular, it is important to improve durability under high temperatures.
 上述した課題を解決し、目的を達成するために、本発明は、以下の[1]~[19]のいずれか一つに記載の構成を有する。 In order to solve the above-mentioned problems and achieve the objects, the present invention has the configuration described in any one of [1] to [19] below.
 すなわち、本発明に係る粒子状色変換材料は、[1]マトリクス樹脂および少なくとも1種の発光材料を有する粒子状色変換材料であって、前記少なくとも1種の発光材料には、半値幅が50nm以下の遅延蛍光を放出する有機発光材料が含まれる、ことを特徴とする。 That is, the particulate color conversion material according to the present invention is [1] a particulate color conversion material comprising a matrix resin and at least one kind of luminescent material, wherein the at least one kind of luminescent material has a half-width of 50 nm. It is characterized in that it contains an organic light-emitting material that emits delayed fluorescence as described below.
 また、本発明に係る粒子状色変換材料は、[2]上記[1]に記載の発明において、前記有機発光材料が、一般式(1)で表される部分構造を含む化合物である、ことを特徴とする。 [2] In the invention described in [1] above, the particulate color conversion material according to the present invention is characterized in that the organic light-emitting material is a compound containing a partial structure represented by general formula (1). It is characterized by
Figure JPOXMLDOC01-appb-C000007
(一般式(1)において、Bはホウ素原子であり、Nは窒素原子であり、Cは炭素原子である。nは、0以上2以下の整数である。nが0である場合、一般式(1)で表される部分構造は、BとNとの直接結合構造を示す。)
Figure JPOXMLDOC01-appb-C000007
(In general formula (1), B is a boron atom, N is a nitrogen atom, and C is a carbon atom. n is an integer from 0 to 2. When n is 0, the general formula The partial structure represented by (1) shows a direct bond structure between B and N.)
 また、本発明に係る粒子状色変換材料は、[3]上記[2]に記載の発明において、前記有機発光材料が、前記一般式(1)で表される部分構造を2つ以上含む化合物である、ことを特徴とする。 [3] In the invention described in [2] above, the particulate color conversion material according to the present invention is a compound in which the organic light-emitting material includes two or more partial structures represented by the general formula (1). It is characterized by:
 また、本発明に係る粒子状色変換材料は、[4]上記[1]~[3]のいずれか一つに記載の発明において、前記有機発光材料が、一般式(2)または一般式(3)で表される化合物を含む、ことを特徴とする。 [4] In the invention described in any one of [1] to [3] above, the particulate color conversion material according to the present invention is characterized in that the organic light-emitting material has the general formula (2) or the general formula ( It is characterized by containing the compound represented by 3).
Figure JPOXMLDOC01-appb-C000008
(一般式(2)または一般式(3)において、環Za、環Zbおよび環Zcは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール環、または置換もしくは無置換の環形成炭素数6~30のヘテロアリール環である。Z1およびZ2は、それぞれ独立に、酸素原子、NRa(置換基Raを有する窒素原子)または硫黄原子である。Z1がNRaである場合、置換基Raは、環Zaもしくは環Zbと結合して環を形成してもよい。Z2がNRaである場合、置換基Raは、環Zaもしくは環Zcと結合して環を形成してもよい。Eは、ホウ素原子、リン原子、SiRa(置換基Raを有するケイ素原子)またはP=Oである。E1およびE2は、それぞれ独立に、BRa(置換基Raを有するホウ素原子)、PRa(置換基Raを有するリン原子)、SiRa2(置換基Raを2個有するケイ素原子)、P(=O)Ra2(置換基Raを2個有するホスフィンオキシド)またはP(=S)Ra2(置換基Raを2個有するホスフィンスルフィド)、C=O(カルボニル基)、S(=O)またはS(=O)2である。E1がBRa、PRa、SiRa2、P(=O)Ra2またはP(=S)Ra2である場合、置換基Raは、環Zaもしくは環Zbと結合して環を形成してもよい。E2がBRa、PRa、SiRa2、P(=O)Ra2またはP(=S)Ra2である場合、置換基Raは、環Zaもしくは環Zcと結合して環を形成してもよい。置換基Raは、それぞれ独立に、水素、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールエーテル基、置換もしくは無置換のアリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、置換もしくは無置換のカルボニル基、置換もしくは無置換のカルボキシル基、置換もしくは無置換のオキシカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミド基、スルホニル基、置換もしくは無置換のスルホン酸エステル基、置換もしくは無置換のスルホンアミド基、置換もしくは無置換のアミノ基、置換もしくは無置換のイミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基、置換もしくは無置換のホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる置換基である。また、置換基Raは、選ばれる前記置換基でさらに置換されていてもよく、それらの置換基は、選ばれる前記置換基でさらに置換されてもよい。)
Figure JPOXMLDOC01-appb-C000008
(In general formula (2) or general formula (3), ring Za, ring Zb and ring Zc each independently represent a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms. It is a heteroaryl ring having 6 to 30 ring carbon atoms. Z 1 and Z 2 are each independently an oxygen atom, NRa (a nitrogen atom having a substituent Ra), or a sulfur atom. Z 1 is NRa In this case, the substituent Ra may be combined with ring Za or ring Zb to form a ring. When Z 2 is NRa, the substituent Ra may be combined with ring Za or ring Zc to form a ring. E is a boron atom, a phosphorus atom, SiRa (a silicon atom having a substituent Ra), or P=O. E 1 and E 2 each independently represent a BRa (a boron atom having a substituent Ra). ), PRa (phosphorous atom having a substituent Ra), SiRa 2 (silicon atom having two substituents Ra), P(=O)Ra 2 (phosphine oxide having two substituents Ra) or P(=S ) Ra 2 (phosphine sulfide having two substituents Ra), C=O (carbonyl group), S(=O) or S(=O) 2 . E 1 is BRa, PRa, SiRa 2 , P( When =O)Ra 2 or P(=S)Ra 2 , the substituent Ra may be combined with ring Za or ring Zb to form a ring. E 2 is BRa, PRa, SiRa 2 , P When (=O)Ra 2 or P(=S)Ra 2 , the substituent Ra may be bonded with ring Za or ring Zc to form a ring. Each substituent Ra independently represents hydrogen , substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or unsubstituted carbonyl group, substituted or unsubstituted carboxyl group, substituted or unsubstituted oxycarbonyl group, substituted or unsubstituted ester group, substitution or unsubstituted carbamoyl group, substituted or unsubstituted amide group, sulfonyl group, substituted or unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonamide group, substituted or unsubstituted amino group, substituted or unsubstituted Formed between imino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted siloxanyl group, substituted or unsubstituted boryl group, substituted or unsubstituted phosphine oxide group, and adjacent substituents A substituent selected from fused rings and aliphatic rings. Further, the substituent Ra may be further substituted with the selected substituent, and these substituents may be further substituted with the selected substituent. )
 また、本発明に係る粒子状色変換材料は、[5]上記[4]に記載の発明において、前記一般式(2)におけるEがホウ素原子であり、前記一般式(3)におけるE1およびE2がBRaである、ことを特徴とする。 Further, in the particulate color conversion material according to the present invention, in the invention described in [5] above [4], E in the general formula (2) is a boron atom, and E 1 and It is characterized in that E 2 is BRa.
 また、本発明に係る色変換部材は、[6]上記[1]~[5]のいずれか一つに記載の粒子状色変換材料を含有する支持体を備える、ことを特徴とする。 Furthermore, the color conversion member according to the present invention is characterized in that it comprises a support containing the particulate color conversion material according to [6] any one of [1] to [5] above.
 また、本発明に係る色変換部材は、[7]上記[6]に記載の発明において、当該色変換部材が、ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する第1発光材料と第1マトリクス樹脂とからなる第1粒子状色変換材料と、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する第2発光材料と第2マトリクス樹脂とからなる第2粒子状色変換材料と、を含む、ことを特徴とする。 [7] In the invention described in [6] above, the color conversion member according to the present invention is a first light emitting material in which the color conversion member emits light whose peak wavelength is observed in a region of 500 nm or more and less than 580 nm. and a first matrix resin, and a second particulate color consisting of a second light-emitting material and a second matrix resin that emits light whose peak wavelength is observed in a region of 580 nm or more and 750 nm or less. and a conversion material.
 また、本発明に係る色変換部材は、[8]上記[7]に記載の発明において、前記第1発光材料が、半値幅が50nm以下の遅延蛍光を放出する有機発光材料を少なくとも含む、ことを特徴とする。 [8] In the invention described in [7] above, the color conversion member according to the present invention is characterized in that the first light-emitting material includes at least an organic light-emitting material that emits delayed fluorescence with a half-width of 50 nm or less. It is characterized by
 また、本発明に係る色変換部材は、[9]上記[6]または[7]に記載の発明において、前記第2発光材料が、一般式(4)で表される化合物を少なくとも含む、ことを特徴とする。 [9] In the invention described in [6] or [7] above, the color conversion member according to the present invention is characterized in that the second luminescent material contains at least a compound represented by general formula (4). It is characterized by
Figure JPOXMLDOC01-appb-C000009
(一般式(4)において、Xは、C-R7またはNである。R1~R9は、それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。R1~R9は、それぞれ独立に置換されてもよい。これらR1~R9の各々を置換する置換基は、水素、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールエーテル基、置換もしくは無置換のアリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、置換もしくは無置換のカルボニル基、置換もしくは無置換のカルボキシル基、置換もしくは無置換のオキシカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミド基、スルホニル基、置換もしくは無置換のスルホン酸エステル基、置換もしくは無置換のスルホンアミド基、置換もしくは無置換のアミノ基、置換もしくは無置換のイミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基、置換もしくは無置換のホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。)
Figure JPOXMLDOC01-appb-C000009
(In the general formula ( 4 ) , group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxy R 1 selected from carbonyl groups, carbamoyl groups, amino groups, nitro groups, silyl groups, siloxanyl groups, boryl groups, phosphine oxide groups, and fused rings and aliphatic rings formed between adjacent substituents. ~R 9 may each be independently substituted.The substituents for each of R 1 ~R 9 include hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or Unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group , thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or unsubstituted carbonyl group, substituted or unsubstituted carboxyl group, substituted or unsubstituted oxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted amide group, sulfonyl group, substituted or Unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonamide group, substituted or unsubstituted amino group, substituted or unsubstituted imino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted siloxanyl group, substituted or unsubstituted boryl group, substituted or unsubstituted phosphine oxide group, and fused rings and aliphatic rings formed between adjacent substituents.)
 また、本発明に係る色変換部材は、[10]上記[6]~[9]のいずれか一つに記載の発明において、前記支持体が、上記[1]~[5]のいずれか一つに記載の粒子状色変換材料および少なくとも1種の発光材料を含有する、ことを特徴とする。 [10] The color conversion member according to the present invention is the invention according to any one of [6] to [9] above, wherein the support is one of any one of [1] to [5] above. It is characterized by containing the particulate color conversion material described in 1. and at least one kind of luminescent material.
 また、本発明に係る色変換部材は、[11]上記[10]に記載の発明において、前記少なくとも1種の発光材料が、一般式(1)で表される部分構造を含む化合物、一般式(2)で表される化合物および一般式(3)で表される化合物のうち少なくとも一つを含有する、ことを特徴とする。 [11] In the invention described in [10] above, the color conversion member according to the present invention is characterized in that the at least one kind of luminescent material is a compound containing a partial structure represented by general formula (1), a compound containing a partial structure represented by general formula (1), It is characterized by containing at least one of the compound represented by (2) and the compound represented by general formula (3).
Figure JPOXMLDOC01-appb-C000010
(一般式(1)において、Bはホウ素原子であり、Nは窒素原子であり、Cは炭素原子である。nは、0以上2以下の整数である。nが0である場合、一般式(1)で表される部分構造は、BとNとの直接結合構造を示す。)
Figure JPOXMLDOC01-appb-C000010
(In general formula (1), B is a boron atom, N is a nitrogen atom, and C is a carbon atom. n is an integer from 0 to 2. When n is 0, the general formula The partial structure represented by (1) shows a direct bond structure between B and N.)
Figure JPOXMLDOC01-appb-C000011
(一般式(2)または一般式(3)において、環Za、環Zbおよび環Zcは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール環、または置換もしくは無置換の環形成炭素数6~30のヘテロアリール環である。Z1およびZ2は、それぞれ独立に、酸素原子、NRa(置換基Raを有する窒素原子)または硫黄原子である。Z1がNRaである場合、置換基Raは、環Zaもしくは環Zbと結合して環を形成してもよい。Z2がNRaである場合、置換基Raは、環Zaもしくは環Zcと結合して環を形成してもよい。Eは、ホウ素原子、リン原子、SiRa(置換基Raを有するケイ素原子)またはP=Oである。E1およびE2は、それぞれ独立に、BRa(置換基Raを有するホウ素原子)、PRa(置換基Raを有するリン原子)、SiRa2(置換基Raを2個有するケイ素原子)、P(=O)Ra2(置換基Raを2個有するホスフィンオキシド)またはP(=S)Ra2(置換基Raを2個有するホスフィンスルフィド)、C=O(カルボニル基)、S(=O)またはS(=O)2である。E1がBRa、PRa、SiRa2、P(=O)Ra2またはP(=S)Ra2である場合、置換基Raは、環Zaもしくは環Zbと結合して環を形成してもよい。E2がBRa、PRa、SiRa2、P(=O)Ra2またはP(=S)Ra2である場合、置換基Raは、環Zaもしくは環Zcと結合して環を形成してもよい。置換基Raは、それぞれ独立に、水素、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールエーテル基、置換もしくは無置換のアリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、置換もしくは無置換のカルボニル基、置換もしくは無置換のカルボキシル基、置換もしくは無置換のオキシカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミド基、スルホニル基、置換もしくは無置換のスルホン酸エステル基、置換もしくは無置換のスルホンアミド基、置換もしくは無置換のアミノ基、置換もしくは無置換のイミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基、置換もしくは無置換のホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる置換基である。また、置換基Raは、選ばれる前記置換基でさらに置換されていてもよく、それらの置換基は、選ばれる前記置換基でさらに置換されてもよい。)
Figure JPOXMLDOC01-appb-C000011
(In general formula (2) or general formula (3), ring Za, ring Zb and ring Zc each independently represent a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms. It is a heteroaryl ring having 6 to 30 ring carbon atoms. Z 1 and Z 2 are each independently an oxygen atom, NRa (a nitrogen atom having a substituent Ra), or a sulfur atom. Z 1 is NRa In this case, the substituent Ra may be combined with ring Za or ring Zb to form a ring. When Z 2 is NRa, the substituent Ra may be combined with ring Za or ring Zc to form a ring. E is a boron atom, a phosphorus atom, SiRa (a silicon atom having a substituent Ra), or P=O. E 1 and E 2 each independently represent a BRa (a boron atom having a substituent Ra). ), PRa (phosphorous atom having a substituent Ra), SiRa 2 (silicon atom having two substituents Ra), P(=O)Ra 2 (phosphine oxide having two substituents Ra) or P(=S ) Ra 2 (phosphine sulfide having two substituents Ra), C=O (carbonyl group), S(=O) or S(=O) 2 . E 1 is BRa, PRa, SiRa 2 , P( When =O)Ra 2 or P(=S)Ra 2 , the substituent Ra may be combined with ring Za or ring Zb to form a ring. E 2 is BRa, PRa, SiRa 2 , P When (=O)Ra 2 or P(=S)Ra 2 , the substituent Ra may be bonded with ring Za or ring Zc to form a ring. Each substituent Ra independently represents hydrogen , substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or unsubstituted carbonyl group, substituted or unsubstituted carboxyl group, substituted or unsubstituted oxycarbonyl group, substituted or unsubstituted ester group, substitution or unsubstituted carbamoyl group, substituted or unsubstituted amide group, sulfonyl group, substituted or unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonamide group, substituted or unsubstituted amino group, substituted or unsubstituted Formed between imino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted siloxanyl group, substituted or unsubstituted boryl group, substituted or unsubstituted phosphine oxide group, and adjacent substituents A substituent selected from fused rings and aliphatic rings. Further, the substituent Ra may be further substituted with the selected substituent, and these substituents may be further substituted with the selected substituent. )
 また、本発明に係る色変換部材は、[12]上記[10]に記載の発明において、前記少なくとも1種の発光材料が、一般式(4)で表される化合物を少なくとも含有する、ことを特徴とする。 [12] In the invention described in [10] above, the color conversion member according to the present invention is characterized in that the at least one kind of luminescent material contains at least a compound represented by general formula (4). Features.
Figure JPOXMLDOC01-appb-C000012
(一般式(4)において、Xは、C-R7またはNである。R1~R9は、それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。R1~R9は、それぞれ独立に置換されてもよい。これらR1~R9の各々を置換する置換基は、水素、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールエーテル基、置換もしくは無置換のアリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、置換もしくは無置換のカルボニル基、置換もしくは無置換のカルボキシル基、置換もしくは無置換のオキシカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミド基、スルホニル基、置換もしくは無置換のスルホン酸エステル基、置換もしくは無置換のスルホンアミド基、置換もしくは無置換のアミノ基、置換もしくは無置換のイミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基、置換もしくは無置換のホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。)
Figure JPOXMLDOC01-appb-C000012
(In the general formula ( 4 ) , group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxy R 1 selected from carbonyl groups, carbamoyl groups, amino groups, nitro groups, silyl groups, siloxanyl groups, boryl groups, phosphine oxide groups, and fused rings and aliphatic rings formed between adjacent substituents. ~R 9 may each be independently substituted.The substituents for each of R 1 ~R 9 include hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or Unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group , thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or unsubstituted carbonyl group, substituted or unsubstituted carboxyl group, substituted or unsubstituted oxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted amide group, sulfonyl group, substituted or Unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonamide group, substituted or unsubstituted amino group, substituted or unsubstituted imino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted siloxanyl group, substituted or unsubstituted boryl group, substituted or unsubstituted phosphine oxide group, and fused rings and aliphatic rings formed between adjacent substituents.)
 また、本発明に係る色変換部材は、[13]上記[6]~[12]のいずれか一つに記載の発明において、前記支持体の酸素透過度が1.0cc/m2・day・atm以下である、ことを特徴とする。 [13] In the invention described in any one of [6] to [12] above, the color conversion member according to the present invention is characterized in that the support has an oxygen permeability of 1.0 cc/m 2 ·day · It is characterized by being less than ATM.
 また、本発明に係る色変換部材は、[14]上記[6]~[13]のいずれか一つに記載の発明において、前記支持体の表面の少なくとも一部に、酸素バリア性の層を有する、ことを特徴とする。 [14] In the invention described in any one of [6] to [13] above, the color conversion member according to the present invention is provided with an oxygen barrier layer on at least a part of the surface of the support. It is characterized by having.
 また、本発明に係る光源ユニットは、[15]光源と、上記[1]~[5]のいずれか一つに記載の粒子状色変換材料または上記[6]~[14]のいずれか一つに記載の色変換部材と、を備えることを特徴とする。 Further, the light source unit according to the present invention includes [15] a light source, and the particulate color conversion material according to any one of [1] to [5] above or any one of [6] to [14] above. It is characterized by comprising the color conversion member described in .
 また、本発明に係る光源ユニットは、[16]上記[15]に記載の発明において、前記光源が、波長400nm以上500nm以下の範囲に極大発光を有する発光ダイオードである、ことを特徴とする。 [16] The light source unit according to the present invention is characterized in that in the invention described in [15] above, the light source is a light emitting diode having maximum emission in a wavelength range of 400 nm or more and 500 nm or less.
 また、本発明に係るディスプレイは、[17]上記[15]または[16]に記載の光源ユニットを備える、ことを特徴とする。 [17] The display according to the present invention is characterized by comprising the light source unit described in [15] or [16] above.
 また、本発明に係る照明装置は、[18]上記[15]または[16]に記載の光源ユニットを備える、ことを特徴とする。 [18] The lighting device according to the present invention is characterized by comprising the light source unit described in [15] or [16] above.
 また、本発明に係る色変換基板は、[19]上記[1]~[5]のいずれか一つに記載の粒子状色変換材料または上記[6]~[14]のいずれか一つに記載の色変換部材と、を含有する、ことを特徴とする。 [19] The particulate color conversion material according to any one of [1] to [5] above or any one of [6] to [14] above. It is characterized by containing the color conversion member described above.
 本発明に係る粒子状色変換材料およびこれを用いた色変換部材は、高色純度の発光と高い耐久性とが両立されているため、色再現性の向上と耐久性の向上とを両立させることが可能となるという効果を奏する。 The particulate color conversion material according to the present invention and the color conversion member using the same have both high color purity of light emission and high durability, so that both improved color reproducibility and improved durability can be achieved. This has the effect of making it possible.
図1は、本発明の実施の形態に係る色変換部材の第一例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a first example of a color conversion member according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る色変換部材の第二例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing a second example of the color conversion member according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る色変換部材の第三例を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing a third example of the color conversion member according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る色変換部材の第四例を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing a fourth example of the color conversion member according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る色変換部材の第五例を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing a fifth example of the color conversion member according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る色変換部材の第六例を示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing a sixth example of the color conversion member according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る色変換部材の第七例を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing a seventh example of the color conversion member according to the embodiment of the present invention.
 以下、本発明に係る粒子状色変換材料、色変換部材ならびにそれを含む光源ユニット、ディスプレイ、照明装置および色変換基板の好適な実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。 Preferred embodiments of a particulate color conversion material, a color conversion member, a light source unit including the same, a display, a lighting device, and a color conversion substrate according to the present invention will be specifically described below. The present invention is not limited to this form, and can be implemented with various changes depending on the purpose and use.
 本発明の実施の形態に係る粒子状色変換材料(以下、「本発明の粒子状色変換材料」と略記する場合がある)は、マトリクス樹脂および少なくとも1種の発光材料を有する粒子状色変換材料である。具体的には、本発明の粒子状色変換材料は、マトリクス樹脂中に少なくとも1種の発光材料を含有した粒子状の色変換材料である。本発明の粒子状色変換材料において、マトリクス樹脂中に含有される少なくとも1種の発光材料には、半値幅が50nm以下の遅延蛍光を放出する有機発光材料が含まれる。すなわち、本発明の粒子状色変換材料は、少なくとも当該有機発光材料をマトリクス樹脂中に有している。なお、本発明の粒子状色変換材料が有する発光材料の詳細については、後述する。 A particulate color conversion material according to an embodiment of the present invention (hereinafter sometimes abbreviated as "particulate color conversion material of the present invention") is a particulate color conversion material having a matrix resin and at least one luminescent material. It is the material. Specifically, the particulate color conversion material of the present invention is a particulate color conversion material containing at least one kind of luminescent material in a matrix resin. In the particulate color conversion material of the present invention, at least one type of luminescent material contained in the matrix resin includes an organic luminescent material that emits delayed fluorescence with a half-width of 50 nm or less. That is, the particulate color conversion material of the present invention has at least the organic light emitting material in the matrix resin. Note that details of the luminescent material included in the particulate color conversion material of the present invention will be described later.
 また、本発明の実施の形態に係る色変換部材(以下、「本発明の色変換部材」と略記する場合がある)は、上記粒子状色変換材料を含有する支持体を備えるものである。すなわち、本発明の色変換部材は、本発明の粒子状色変換材料と、当該粒子状色変換材料を含有する支持体と、を備えている。 Further, a color conversion member according to an embodiment of the present invention (hereinafter sometimes abbreviated as "color conversion member of the present invention") includes a support containing the particulate color conversion material. That is, the color conversion member of the present invention includes the particulate color conversion material of the present invention and a support containing the particulate color conversion material.
 本発明の実施の形態に係る粒子状色変換材料および色変換部材の代表的な構造例として、例えば、図1~図7に示すものが挙げられる。図1は、本発明の実施の形態に係る色変換部材の第一例を示す模式断面図である。図2は、本発明の実施の形態に係る色変換部材の第二例を示す模式断面図である。図3は、本発明の実施の形態に係る色変換部材の第三例を示す模式断面図である。図4は、本発明の実施の形態に係る色変換部材の第四例を示す模式断面図である。図5は、本発明の実施の形態に係る色変換部材の第五例を示す模式断面図である。図6は、本発明の実施の形態に係る色変換部材の第六例を示す模式断面図である。図7は、本発明の実施の形態に係る色変換部材の第七例を示す模式断面図である。 Typical structural examples of particulate color conversion materials and color conversion members according to embodiments of the present invention include those shown in FIGS. 1 to 7, for example. FIG. 1 is a schematic cross-sectional view showing a first example of a color conversion member according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing a second example of the color conversion member according to the embodiment of the present invention. FIG. 3 is a schematic cross-sectional view showing a third example of the color conversion member according to the embodiment of the present invention. FIG. 4 is a schematic cross-sectional view showing a fourth example of the color conversion member according to the embodiment of the present invention. FIG. 5 is a schematic cross-sectional view showing a fifth example of the color conversion member according to the embodiment of the present invention. FIG. 6 is a schematic cross-sectional view showing a sixth example of the color conversion member according to the embodiment of the present invention. FIG. 7 is a schematic cross-sectional view showing a seventh example of the color conversion member according to the embodiment of the present invention.
 図1に示すように、第一例の色変換部材1Aは、粒子状色変換材料2aと、当該粒子状色変換材料2aを含有する支持体3aと、を備える。支持体3aの内部には、図1に示すように、粒子状色変換材料2aが分散している。粒子状色変換材料2aは、本発明の粒子状色変換材料の一例であり、マトリクス樹脂中に少なくとも1種の発光材料が含有されたものである。図1に示す構造例では、色変換部材1Aは、単層の支持体3a中に1種の粒子状色変換材料2aが分散した状態で含まれる単層構造を有している。 As shown in FIG. 1, the color conversion member 1A of the first example includes a particulate color conversion material 2a and a support 3a containing the particulate color conversion material 2a. As shown in FIG. 1, particulate color conversion material 2a is dispersed inside the support 3a. The particulate color conversion material 2a is an example of the particulate color conversion material of the present invention, and includes at least one kind of luminescent material contained in a matrix resin. In the structural example shown in FIG. 1, the color conversion member 1A has a single layer structure in which one type of particulate color conversion material 2a is contained in a dispersed state in a single layer support 3a.
 図2に示すように、第二例の色変換部材1Bは、2種の粒子状色変換材料2a、2bと、当該2種の粒子状色変換材料2a、2bを含有する支持体3aと、を備える。支持体3aの内部には、図2に示すように、粒子状色変換材料2aおよび粒子状色変換材料2bが各々分散している。粒子状色変換材料2aおよび粒子状色変換材料2bは、いずれも、マトリクス樹脂中に少なくとも1種の発光材料が含有されたものである。例えば、これら粒子状色変換材料2aおよび粒子状色変換材料2bは、発光色が互いに異なる等、互いに異なる発光特性(色変換特性)を有している。図2に示す構造例では、色変換部材1Bは、2種の粒子状色変換材料2aおよび粒子状色変換材料2bが単層の支持体3a中に分散した状態で含まれる単層構造を有している。 As shown in FIG. 2, the color conversion member 1B of the second example includes two types of particulate color conversion materials 2a and 2b, a support body 3a containing the two types of particulate color conversion materials 2a and 2b, Equipped with. As shown in FIG. 2, particulate color conversion material 2a and particulate color conversion material 2b are respectively dispersed inside the support 3a. Both the particulate color conversion material 2a and the particulate color conversion material 2b contain at least one type of luminescent material in a matrix resin. For example, the particulate color conversion material 2a and the particulate color conversion material 2b have different light emission characteristics (color conversion characteristics), such as different emission colors. In the structural example shown in FIG. 2, the color conversion member 1B has a single layer structure in which two types of particulate color conversion material 2a and particulate color conversion material 2b are contained in a dispersed state in a single layer support 3a. are doing.
 図3に示すように、第三例の色変換部材1Cは、2種の粒子状色変換材料2a、2bと、当該2種の粒子状色変換材料2a、2bを各々含有する2層の支持体3a、3bと、を備える。これら2層の支持体3a、3bのうち、一方の支持体3aの内部には、1種の粒子状色変換材料2aが分散し、他方の支持体3bの内部には、もう1種の粒子状色変換材料2bが分散している。なお、これら粒子状色変換材料2aおよび粒子状色変換材料2bは、上述した第二例の色変換部材1Bと同様である。図3に示す構造例では、色変換部材1Cは、粒子状色変換材料2aが分散した状態で含まれる単層の支持体3aと、上記粒子状色変換材料2aとは異なる粒子状色変換材料2bが分散した状態で含まれる単層の支持体3bと、を積層した積層構造を有している。 As shown in FIG. 3, the color conversion member 1C of the third example includes two types of particulate color conversion materials 2a and 2b, and a two-layer support containing each of the two types of particulate color conversion materials 2a and 2b. It includes bodies 3a and 3b. Among these two layers of supports 3a and 3b, one type of particulate color conversion material 2a is dispersed inside one support 3a, and another type of particles is dispersed inside the other support 3b. The color changing material 2b is dispersed therein. Note that these particulate color conversion material 2a and particulate color conversion material 2b are the same as the color conversion member 1B of the second example described above. In the structural example shown in FIG. 3, the color conversion member 1C includes a single layer support 3a containing a particulate color conversion material 2a in a dispersed state, and a particulate color conversion material different from the particulate color conversion material 2a. It has a laminated structure in which a single-layer support 3b containing 2b in a dispersed state is laminated.
 図4に示すように、第四例の色変換部材1Dは、1種の粒子状色変換材料2aと、当該1種の粒子状色変換材料2aを含有する支持体3aと、この支持体3aの表面の少なくとも一部を覆う酸素バリア層11と、を備える。酸素バリア層11は、酸素バリア性を有する層である。例えば、酸素バリア層11は、図4に示すように、粒子状色変換材料2aを含有した支持体3aの厚さ方向の両端面(図4では支持体3aの上面および下面)を覆うように形成される。なお、図4に示す粒子状色変換材料2aおよび支持体3aは、上述した第一例の色変換部材1A(図1参照)と同様である。図4に示す構造例では、色変換部材1Dは、図1に示した第一例の色変換部材1Aと同様に粒子状色変換材料2aを含有した支持体3aの厚さ方向の両端面に酸素バリア層11が積層された積層構造を有している。 As shown in FIG. 4, the color conversion member 1D of the fourth example includes one type of particulate color conversion material 2a, a support body 3a containing the one type of particulate color conversion material 2a, and this support body 3a. an oxygen barrier layer 11 covering at least a portion of the surface of the oxygen barrier layer 11 . The oxygen barrier layer 11 is a layer having oxygen barrier properties. For example, as shown in FIG. 4, the oxygen barrier layer 11 covers both end surfaces in the thickness direction of the support 3a containing the particulate color conversion material 2a (the upper and lower surfaces of the support 3a in FIG. 4). It is formed. Note that the particulate color conversion material 2a and support body 3a shown in FIG. 4 are the same as the color conversion member 1A (see FIG. 1) of the first example described above. In the structural example shown in FIG. 4, the color conversion member 1D is attached to both end faces in the thickness direction of the support 3a containing the particulate color conversion material 2a, similarly to the color conversion member 1A of the first example shown in FIG. It has a laminated structure in which oxygen barrier layers 11 are laminated.
 図5に示すように、第五例の色変換部材1Eは、2種の粒子状色変換材料2a、2bと、当該2種の粒子状色変換材料2a、2bを含有する支持体3aと、この支持体3aの表面の少なくとも一部を覆う酸素バリア層11と、を備える。例えば、酸素バリア層11は、図5に示すように、2種の粒子状色変換材料2a、2bを含有した支持体3aの厚さ方向の両端面(図5では支持体3aの上面および下面)を覆うように形成される。なお、図5に示す粒子状色変換材料2a、2bおよび支持体3aは、上述した第二例の色変換部材1B(図2参照)と同様である。図5に示す構造例では、色変換部材1Eは、図2に示した第二例の色変換部材1Bと同様に粒子状色変換材料2a、2bを含有した支持体3aの厚さ方向の両端面に酸素バリア層11が積層された積層構造を有している。 As shown in FIG. 5, the color conversion member 1E of the fifth example includes two types of particulate color conversion materials 2a and 2b, a support body 3a containing the two types of particulate color conversion materials 2a and 2b, An oxygen barrier layer 11 covering at least a portion of the surface of the support 3a is provided. For example, as shown in FIG. 5, the oxygen barrier layer 11 is formed on both end surfaces in the thickness direction of a support 3a containing two types of particulate color conversion materials 2a and 2b (in FIG. 5, the upper and lower surfaces of the support 3a). ) is formed to cover the Note that the particulate color conversion materials 2a, 2b and the support 3a shown in FIG. 5 are the same as the color conversion member 1B of the second example described above (see FIG. 2). In the structural example shown in FIG. 5, the color conversion member 1E includes both ends in the thickness direction of a support 3a containing particulate color conversion materials 2a and 2b, similar to the color conversion member 1B of the second example shown in FIG. It has a laminated structure in which an oxygen barrier layer 11 is laminated on the surface.
 図6に示すように、第六例の色変換部材1Fは、2種の粒子状色変換材料2a、2bと、当該2種の粒子状色変換材料2a、2bを各々含有する2層の支持体3a、3bと、これら2層の支持体3a、3bの各表面の少なくとも一部を覆う酸素バリア層11と、を備える。例えば、酸素バリア層11は、図6に示すように、粒子状色変換材料2aを含有した支持体3aの厚さ方向の一端面(図6では支持体3aの上面)と、粒子状色変換材料2bを含有した支持体3bの厚さ方向の一端面(図6では支持体3bの下面)と、を覆うように形成される。なお、図6に示す2種の粒子状色変換材料2a、2bを各々含有した2層の支持体3a、3bの積層体は、上述した第三例の色変換部材1C(図3参照)と同様である。図6に示す構造例では、色変換部材1Fは、図3に示した第三例の色変換部材1Cと同様の上記積層体における厚さ方向の両端面に酸素バリア層11が積層された積層構造を有している。 As shown in FIG. 6, the color conversion member 1F of the sixth example includes two types of particulate color conversion materials 2a and 2b, and a two-layer support containing each of the two types of particulate color conversion materials 2a and 2b. The oxygen barrier layer 11 covers at least a portion of each surface of these two layers of supports 3a and 3b. For example, as shown in FIG. 6, the oxygen barrier layer 11 is formed between one end surface in the thickness direction of the support 3a containing the particulate color conversion material 2a (the upper surface of the support 3a in FIG. 6) and the particulate color conversion material 2a. It is formed so as to cover one end surface in the thickness direction of the support 3b containing the material 2b (the lower surface of the support 3b in FIG. 6). Note that the laminate of two layers of supports 3a and 3b each containing two types of particulate color conversion materials 2a and 2b shown in FIG. The same is true. In the structural example shown in FIG. 6, the color conversion member 1F is a laminate in which oxygen barrier layers 11 are laminated on both end faces in the thickness direction of the laminate, similar to the color conversion member 1C of the third example shown in FIG. It has a structure.
 図7に示すように、第七例の色変換部材1Gは、1種の粒子状色変換材料2aと、当該1種の粒子状色変換材料2aを含有する支持体3aと、当該支持体3aの表面の全部を覆う酸素バリア層11と、を備える。例えば、酸素バリア層11は、図7に示すように、粒子状色変換材料2aを含有した支持体3aの厚さ方向の両端面(図7では支持体3aの上面および下面)と、当該支持体3aの側面(上記厚さ方向に対して垂直な方向の各端面)の全域と、を覆うように形成される。なお、図7に示す粒子状色変換材料2aおよび支持体3aは、上述した第一例の色変換部材1A(図1参照)と同様である。図7に示す構造例では、色変換部材1Gは、図1に示した第一例の色変換部材1Aと同様に粒子状色変換材料2aを含有した支持体3aの全面に酸素バリア層11が積層された積層構造を有している。 As shown in FIG. 7, the color conversion member 1G of the seventh example includes one type of particulate color conversion material 2a, a support 3a containing the one type of particulate color conversion material 2a, and a support 3a containing the one type of particulate color conversion material 2a. an oxygen barrier layer 11 covering the entire surface of the device. For example, as shown in FIG. 7, the oxygen barrier layer 11 is formed on both end surfaces in the thickness direction of the support 3a containing the particulate color conversion material 2a (in FIG. 7, the upper and lower surfaces of the support 3a), and It is formed so as to cover the entire side surface (each end surface in the direction perpendicular to the thickness direction) of the body 3a. Note that the particulate color conversion material 2a and the support 3a shown in FIG. 7 are the same as the color conversion member 1A (see FIG. 1) of the first example described above. In the structural example shown in FIG. 7, the color conversion member 1G has an oxygen barrier layer 11 on the entire surface of the support 3a containing the particulate color conversion material 2a, similar to the color conversion member 1A of the first example shown in FIG. It has a laminated structure.
 なお、本発明の色変換部材は、上述した図1~7に例示されるものに限定されない。例えば、本発明の色変換部材は、単層の支持体の内部に3種以上の粒子状色変換材料を含むものであってもよいし、複数層の支持体のうち少なくとも1つの層の内部に2種以上の粒子状色変換材料を含むものであってもよいし、1種以上の粒子状色変換材料を含有する支持体を3層以上積層した積層構造を有するものであってもよい。また、本発明の色変換部材は、図6に示した第六例の色変換部材1Fのように2つの酸素バリア層11の間に複数層の支持体(例えば支持体3a、3b)を有する場合において、これら複数層の支持体の間に介在する酸素バリア層11をさらに有していてもよいし、図2に示した第二例の色変換部材1Bと同様の単層構造あるいは図3に示した第三例の色変換部材1Cと同様の積層構造を有する場合において、図7に示した第七例の色変換部材1Gと同様に上記単層構造あるいは上記積層構造の全面に酸素バリア層11を有していてもよい。また、本発明の色変換部材は、1種以上の粒子状色変換材料を含有する支持体(例えば図1~図7に例示した支持体3a、3b)の内部に当該粒子状色変換材料とは異なる発光材料がさらに含まれる構造を有するものであってもよい。この場合、当該発光材料は、上記支持体の内部に分散した状態で含まれることが好ましい。さらに、本発明の色変換部材が有する積層構造の各層の間(例えば、図3に示す支持体3aと支持体3bとの間や図4に示す支持体3aと酸素バリア層11との間)には、接着層または粘着層が設けられていてもよい。 Note that the color conversion member of the present invention is not limited to those illustrated in FIGS. 1 to 7 described above. For example, the color conversion member of the present invention may contain three or more types of particulate color conversion materials inside a single layer support, or may include inside at least one layer of a multilayer support. It may contain two or more types of particulate color conversion materials, or it may have a laminated structure in which three or more layers of supports containing one or more types of particulate color conversion materials are laminated. . Further, the color conversion member of the present invention has a plurality of layers of supports (for example, supports 3a and 3b) between two oxygen barrier layers 11, like the color conversion member 1F of the sixth example shown in FIG. In some cases, it may further include an oxygen barrier layer 11 interposed between these multiple layers of supports, or it may have a single layer structure similar to the color conversion member 1B of the second example shown in FIG. In the case where the color conversion member 1C has a laminated structure similar to the color conversion member 1C of the third example shown in FIG. It may have a layer 11. Further, the color conversion member of the present invention includes a support containing one or more particulate color conversion materials (for example, supports 3a and 3b illustrated in FIGS. 1 to 7). may have a structure that further includes a different luminescent material. In this case, the luminescent material is preferably contained in a dispersed state inside the support. Furthermore, between each layer of the laminated structure of the color conversion member of the present invention (for example, between the support 3a and the support 3b shown in FIG. 3, and between the support 3a and the oxygen barrier layer 11 shown in FIG. 4) may be provided with an adhesive layer or an adhesive layer.
<発光材料>
 本発明の実施の形態に係る粒子状色変換材料は、マトリクス樹脂中に、少なくとも1種の発光材料(例えば有機発光材料)を有する。ここで、本発明における発光材料とは、何らかの光が照射されたときに、その光の波長とは異なる波長の光を発する材料のことをいう。
<Light-emitting material>
A particulate color conversion material according to an embodiment of the present invention has at least one type of luminescent material (for example, an organic luminescent material) in a matrix resin. Here, the luminescent material in the present invention refers to a material that, when irradiated with some kind of light, emits light of a wavelength different from the wavelength of that light.
 高効率な色変換を達成するためには、発光材料が量子収率の高い発光特性を示すことが好ましい。一般に、発光材料としては、無機蛍光体、蛍光顔料、蛍光染料、量子ドット等の公知の発光材料が挙げられる。しかし、本発明においては、分散の均一性、使用量の低減および環境負荷の低減の観点から、粒子状色変換材料が有する1種以上の発光材料として、少なくとも有機発光材料が用いられる。また、本発明の実施の形態に係る粒子状色変換材料は、マトリクス樹脂中に少なくとも有機発光材料を含有するため、色純度の高い発光を示す。 In order to achieve highly efficient color conversion, it is preferable that the luminescent material exhibits luminescent properties with high quantum yield. In general, examples of the luminescent material include known luminescent materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots. However, in the present invention, at least an organic luminescent material is used as one or more luminescent materials included in the particulate color conversion material from the viewpoint of uniformity of dispersion, reduction in usage amount, and reduction in environmental load. Further, the particulate color conversion material according to the embodiment of the present invention contains at least an organic light-emitting material in the matrix resin, and thus exhibits light emission with high color purity.
 多くの有機発光材料の中でも、本発明の実施の形態に係る粒子状色変換材料は、遅延蛍光を放出する有機発光材料を含む。ここで、遅延蛍光を放出する有機発光材料については、「最先端の有機EL」(安達千波矢、藤本弘編、シーエムシー出版発行)の87~103ページで解説されている。その文献の中で、発光材料の一重項励起状態と三重項励起状態のエネルギー準位を近接させることにより、通常は遷移確率が低い三重項励起状態から一重項励起状態への逆エネルギー移動が高効率で生じ、熱活性化遅延蛍光(Thermally Activated delayed Fluorescence,TADF)が発現すると説明されている。さらに、当該文献中の図5で、遅延蛍光の発生メカニズムが説明されている。遅延蛍光の発光は、過渡PL(Photo Luminescence)測定によって確認できる。 Among many organic light-emitting materials, particulate color conversion materials according to embodiments of the present invention include organic light-emitting materials that emit delayed fluorescence. Here, organic light emitting materials that emit delayed fluorescence are explained on pages 87 to 103 of "Cutting Edge Organic EL" (edited by Chinaya Adachi and Hiroshi Fujimoto, published by CMC Publishing). In that literature, by bringing the energy levels of the singlet excited state and triplet excited state of a luminescent material close together, the reverse energy transfer from the triplet excited state to the singlet excited state, which normally has a low transition probability, is increased. It is explained that thermally activated delayed fluorescence (TADF) occurs with high efficiency. Further, in FIG. 5 of the document, the mechanism of generation of delayed fluorescence is explained. Emission of delayed fluorescence can be confirmed by transient PL (Photo Luminescence) measurement.
 また、発光材料の一重項励起状態のエネルギー準位と三重項励起状態のエネルギー準位とを一致させることで、三重項励起状態から一重項励起状態への逆エネルギー移動を高速化できることが報告されている(Nature Photonics volume 14, pages643-649(2020))。さらに、発光材料の一重項励起状態のエネルギー準位よりも三重項励起状態のエネルギー準位が高い化合物の研究も活発に行われている。 It has also been reported that by matching the energy level of the singlet excited state and triplet excited state of a luminescent material, the reverse energy transfer from the triplet excited state to the singlet excited state can be accelerated. (Nature Photonics volume 14, pages 643-649 (2020)). Furthermore, active research is being conducted on compounds whose triplet excited state energy level is higher than the singlet excited state energy level of luminescent materials.
 本明細書では、熱活性化遅延蛍光を発現する有機発光材料を含め、三重項励起状態から一重項励起状態へ高効率で遷移し蛍光を放出する有機発光材料を、「遅延蛍光を放出する有機発光材料」と表記する。また、以下では、当該「遅延蛍光を放出する有機発光材料」を「遅延蛍光材料」と略記する場合がある。 In this specification, organic light-emitting materials that transition from a triplet excited state to a singlet excited state and emit fluorescence, including organic light-emitting materials that exhibit thermally activated delayed fluorescence, are referred to as "organic light-emitting materials that emit fluorescence by transitioning from a triplet excited state to a singlet excited state with high efficiency". "Light-emitting material". Furthermore, hereinafter, the "organic light emitting material that emits delayed fluorescence" may be abbreviated as "delayed fluorescence material".
 通常、蛍光発光は、発光材料が光励起された後に生成する一重項励起状態から放出され、項間交差によって生じた発光材料の三重項励起状態は、室温環境下であれば、熱失活する。このため、当該発光材料の三重項励起状態から蛍光は放出されない。一方、上述のように、遅延蛍光材料は、三重項励起状態が生成しても、速やかに一重項励起状態に変換された後、蛍光を放出するので、通常の蛍光発光材料において発光に寄与することができなかった三重項励起状態も蛍光発光に寄与することができる。したがって、高効率の発光が得られる。 Normally, fluorescence is emitted from a singlet excited state generated after a luminescent material is photoexcited, and the triplet excited state of a luminescent material generated by intersystem crossing is thermally inactivated in a room temperature environment. Therefore, no fluorescence is emitted from the triplet excited state of the luminescent material. On the other hand, as mentioned above, even if a triplet excited state is generated in a delayed fluorescent material, it is quickly converted to a singlet excited state and then emits fluorescence, so it does not contribute to light emission in ordinary fluorescent materials. Triplet excited states that could not be produced can also contribute to fluorescence emission. Therefore, highly efficient light emission can be obtained.
 また、三重項励起状態の有機発光材料は、通常、反応性が高い。さらに、当該有機発光材料が遅延蛍光材料以外の発光材料である場合、当該有機発光材料の三重項励起状態としての寿命は長い。このため、三重項励起状態の有機発光材料は、その周囲の分子と反応を起こし易い。例えば、酸素存在下では、反応性が高く移動度も大きい酸素が、この三重項励起状態の有機発光材料からのエネルギーの受け手になり、一重項酸素が生成することで、有機発光材料の酸化劣化の原因となる。一方、酸素が存在しない場合には、有機発光材料の周囲の分子が、上記エネルギーの受け手になり得る。すなわち、酸素が存在せず、一重項酸素が生成しない場合であっても、反応性の高い三重項励起状態の有機発光材料が長時間存在すると、この有機発光材料とその周囲の分子との反応が進行することで、この有機発光材料が劣化する。 Further, organic light-emitting materials in the triplet excited state usually have high reactivity. Furthermore, when the organic luminescent material is a luminescent material other than a delayed fluorescent material, the lifetime of the organic luminescent material in the triplet excited state is long. Therefore, organic light-emitting materials in a triplet excited state tend to react with surrounding molecules. For example, in the presence of oxygen, oxygen, which has high reactivity and high mobility, becomes a receiver of energy from the organic light-emitting material in the triplet excited state, producing singlet oxygen, which causes oxidative deterioration of the organic light-emitting material. It causes On the other hand, in the absence of oxygen, molecules surrounding the organic light-emitting material can become recipients of the energy. In other words, even if oxygen is not present and singlet oxygen is not produced, if a highly reactive organic luminescent material in the triplet excited state exists for a long time, the reaction between this organic luminescent material and surrounding molecules will occur. As this progresses, this organic light-emitting material deteriorates.
 しかし、上記三重項励起状態となる有機発光材料が遅延蛍光材料である場合、三重項励起状態の遅延蛍光材料は、速やかに一重項励起状態の遅延蛍光材料に変換される。このため、三重項励起状態の遅延蛍光材料とその周囲の分子との反応が進行しにくいことから、この反応による遅延蛍光材料の劣化が起こりにくく、遅延蛍光材料の優れた耐久性を示すことができる。すなわち、高耐久性の発現のためには、遅延蛍光材料の三重項励起状態から一重項励起状態への逆項間交差は、早い方が良い。例えば、この逆項間交差の速度定数は、1.0×102-1以上であることが好ましい。 However, when the organic light-emitting material in the triplet excited state is a delayed fluorescent material, the triplet excited state delayed fluorescent material is quickly converted to the singlet excited state delayed fluorescent material. For this reason, the reaction between the delayed fluorescent material in the triplet excited state and the surrounding molecules is difficult to proceed, so the delayed fluorescent material is unlikely to deteriorate due to this reaction, and the delayed fluorescent material exhibits excellent durability. can. That is, in order to achieve high durability, the sooner the reverse intersystem crossing from the triplet excited state to the singlet excited state of the delayed fluorescent material occurs, the better. For example, the rate constant of this inverse intersystem crossing is preferably 1.0×10 2 s −1 or more.
 一重項励起状態のエネルギー準位と三重項励起状態のエネルギー準位とを近接させる分子設計としては、同一分子内において、電子ドナー性骨格と電子アクセプター性骨格とを結合させることが有効である。そうすることで、分子内で、HOMO(Highest occupied molecular orbital)軌道とLUMO(Lowest unoccupied molecular orbital)軌道とを分離させることができる。電子ドナー性骨格と電子アクセプター性骨格とは、直接結合していてもよいし、連結基を介して結合していてもよい。この場合の連結基としては、芳香族炭化水素を含む骨格が好ましい。 As a molecular design that brings the energy level of the singlet excited state and the energy level of the triplet excited state close to each other, it is effective to combine an electron donor skeleton and an electron acceptor skeleton within the same molecule. By doing so, the HOMO (Highest Occupied Molecular Orbital) orbit and the LUMO (Lowest Unoccupied Molecular Orbital) orbit can be separated within the molecule. The electron donor skeleton and the electron acceptor skeleton may be bonded directly or may be bonded via a linking group. In this case, the linking group preferably has a skeleton containing an aromatic hydrocarbon.
 電子ドナー性骨格としては、例えば、アミン窒素原子を有する骨格が挙げられる。中でも、ジアリールアミンやトリアリールアミンを含む骨格、カルバゾールを含む骨格、ベンゾカルバゾールを含む骨格、インドロカルバゾールを含む骨格、フェノキサジンを含む骨格、およびフェノチアジンを含む骨格が好ましい。これらの中でも、カルバゾールを含む骨格、ベンゾカルバゾールを含む骨格、インドロカルバゾールを含む骨格、およびフェノキサジンを含む骨格がより好ましく、カルバゾールを含む骨格、およびフェノキサジンを含む骨格がより一層好ましい。 Examples of the electron donor skeleton include a skeleton having an amine nitrogen atom. Among these, preferred are a skeleton containing diarylamine or triarylamine, a skeleton containing carbazole, a skeleton containing benzocarbazole, a skeleton containing indolocarbazole, a skeleton containing phenoxazine, and a skeleton containing phenothiazine. Among these, skeletons containing carbazole, skeletons containing benzocarbazole, skeletons containing indolocarbazole, and skeletons containing phenoxazine are more preferred, and skeletons containing carbazole and skeletons containing phenoxazine are even more preferred.
 一方、電子アクセプター性骨格としては、通常、電子求引性を有する置換基(すなわち電子求引基)を含む骨格が挙げられる。電子求引基とは、電子受容性基とも呼称し、有機電子論において、誘起効果や共鳴効果により、置換した原子団から、電子を引き付ける原子団である。電子求引基としては、ハメット則の置換基定数(σp(パラ))として、正の値をとるものが挙げられる。ハメット則の置換基定数(σp(パラ))は、化学便覧基礎編改訂5版(II-380頁)から引用することができる。なお、フェニル基も正の値をとる例もあるが、本発明において、電子求引基にフェニル基は含まれない。 On the other hand, examples of the electron-accepting skeleton usually include a skeleton containing a substituent having electron-withdrawing properties (i.e., an electron-withdrawing group). An electron-withdrawing group is also called an electron-accepting group, and in organic electron theory, it is an atomic group that attracts electrons from a substituted atomic group through an induction effect or a resonance effect. Examples of the electron-withdrawing group include those having a positive value as the Hammett's substituent constant (σp (para)). The substituent constant (σp (para)) of Hammett's rule can be quoted from the Chemical Handbook, Basic Edition, Revised 5th Edition (page II-380). Although there are examples in which phenyl groups also take positive values, in the present invention, phenyl groups are not included in the electron-withdrawing groups.
 電子求引基の例として、例えば、-F(σp:+0.20)、-Cl(σp:+0.28)、-Br(σp:+0.30)、-I(σp:+0.30)、-CO212(σp:R12がエチル基の時+0.45)、-CONH2(σp:+0.38)、-COR12(σp:R12がメチル基の時+0.49)、-CF3(σp:+0.51)、-SO212(σp:R12がメチル基の時+0.69)、-NO2(σp:+0.81)等が挙げられる。R12は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のシクロアルキル基を表す。これら各基の具体例としては、後述の一般式(2)または一般式(3)で表される化合物における置換基と同様の例が挙げられる。 Examples of electron-withdrawing groups include -F (σp: +0.20), -Cl (σp: +0.28), -Br (σp: +0.30), -I (σp: +0.30), -CO 2 R 12 (σp: +0.45 when R 12 is an ethyl group), -CONH 2 (σp: +0.38), -COR 12 (σp: +0.49 when R 12 is a methyl group), - Examples include CF 3 (σp: +0.51), -SO 2 R 12 (σp: +0.69 when R 12 is a methyl group), and -NO 2 (σp: +0.81). R 12 is each independently a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, or a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms; Represents a substituted alkyl group having 1 to 30 carbon atoms or a substituted or unsubstituted cycloalkyl group having 1 to 30 carbon atoms. Specific examples of each of these groups include the same examples as the substituents in the compound represented by general formula (2) or general formula (3) described below.
 電子求引基を含む骨格の中でも、炭素原子と窒素原子とが二重結合で結合した部分構造を有するヘテロアリール基を含む骨格、フッ素化された置換基を含む骨格、シアノ基を含む骨格、カルボニル基を含む骨格、スルホキシドまたはジスルホキシドを含む骨格、およびホスフィンオキシド基を含む骨格等が好ましい。これらの中でも、炭素原子と窒素原子とが二重結合で結合した部分構造を有するヘテロアリール基を含む骨格、フッ素化された置換基を含む骨格、およびシアノ基を含む骨格が、遅延蛍光材料の安定性の観点から、より好ましい。 Among skeletons containing electron-withdrawing groups, skeletons containing heteroaryl groups having a partial structure in which carbon atoms and nitrogen atoms are bonded with double bonds, skeletons containing fluorinated substituents, skeletons containing cyano groups, A skeleton containing a carbonyl group, a skeleton containing a sulfoxide or disulfoxide, a skeleton containing a phosphine oxide group, etc. are preferred. Among these, skeletons containing heteroaryl groups with partial structures in which carbon atoms and nitrogen atoms are bonded by double bonds, skeletons containing fluorinated substituents, and skeletons containing cyano groups are suitable for delayed fluorescent materials. More preferred from the viewpoint of stability.
 炭素原子と窒素原子とが二重結合で結合した部分構造を有するヘテロアリール基を含む骨格の中では、具体的には、ピリジン、ピリミジン、ピラジン、トリアジン、キノリン、キノキサリン、キナゾリン、またはフェナントロリンを含む骨格が好ましい。これらの中でも、ピリミジン、トリアジン、キノキサリン、またはキナゾリンを含む骨格がより好ましく、トリアジンを含む骨格がより一層好ましい。 Among the skeletons containing a heteroaryl group having a partial structure in which a carbon atom and a nitrogen atom are bonded with a double bond, specific examples thereof include pyridine, pyrimidine, pyrazine, triazine, quinoline, quinoxaline, quinazoline, or phenanthroline. Skeletons are preferred. Among these, skeletons containing pyrimidine, triazine, quinoxaline, or quinazoline are more preferred, and skeletons containing triazine are even more preferred.
 フッ素化された置換基を含む骨格の中では、フッ化アリール基、またはフルオロアルキル基を含む骨格がより好ましい。フッ化アリール基を含む骨格としては、フッ素化されたベンゼン環が好ましく、具体的には、フルオロベンゼン、ジフルオロベンゼン、トリフルオロベンゼン、テトラフルオロベンゼンまたはペンタフルオロベンゼンを含む骨格がより好ましい。フルオロアルキル基を含む骨格としては、トリフルオロメチル基で置換されたベンゼン環を含む骨格が好ましく、これらの中でも、モノ(トリフルオロメチル)ベンゼンまたはビス(トリフルオロメチル)ベンゼンを含む骨格がより好ましい。 Among skeletons containing fluorinated substituents, skeletons containing fluorinated aryl groups or fluoroalkyl groups are more preferred. The skeleton containing a fluorinated aryl group is preferably a fluorinated benzene ring, and specifically, a skeleton containing fluorobenzene, difluorobenzene, trifluorobenzene, tetrafluorobenzene or pentafluorobenzene is more preferable. As the skeleton containing a fluoroalkyl group, a skeleton containing a benzene ring substituted with a trifluoromethyl group is preferable, and among these, a skeleton containing mono(trifluoromethyl)benzene or bis(trifluoromethyl)benzene is more preferable. .
 シアノ基を有する骨格の中では、シアノベンゼン、ジシアノベンゼン、トリシアノベンゼンを含む骨格がより好ましい。 Among skeletons having a cyano group, skeletons containing cyanobenzene, dicyanobenzene, and tricyanobenzene are more preferred.
 以上のような電子ドナー性骨格と電子アクセプター性骨格とを結合させた化合物の一例を以下に示すが、当該化合物は、特にこれらに限定されるものではない。なお、ここに示した化合物は、過去の文献により、遅延蛍光を放出することが知られている。 An example of a compound in which the above-described electron donor skeleton and electron acceptor skeleton are combined is shown below, but the compound is not particularly limited to these. Note that the compounds shown here are known to emit delayed fluorescence according to past literature.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 また、遅延蛍光材料として、上述した電子ドナー性骨格と電子アクセプター性骨格とを結合させた化合物以外に、下記の一般式(1)で表される部分構造を含む化合物が好ましい。 In addition to the above-mentioned compound in which an electron donor skeleton and an electron acceptor skeleton are combined as a delayed fluorescent material, a compound containing a partial structure represented by the following general formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(1)において、Bはホウ素原子であり、Nは窒素原子であり、Cは炭素原子である。nは、0以上2以下の整数である。nが0である場合、一般式(1)で表される部分構造は、BとNとの直接結合構造を示す。 In general formula (1), B is a boron atom, N is a nitrogen atom, and C is a carbon atom. n is an integer from 0 to 2. When n is 0, the partial structure represented by general formula (1) represents a direct bond structure between B and N.
 一般式(1)で表される部分構造を含む遅延蛍光材料においては、電子ドナー性の窒素原子と電子アクセプター性のホウ素原子とが分子内で近い位置に配置されている。このような遅延蛍光材料は、多重共鳴効果によってHOMO軌道とLUMO軌道とを分離させることが可能な化合物である。遅延蛍光材料のHOMO軌道とLUMO軌道とを明瞭に分離させることで、当該遅延蛍光材料の一重項励起状態のエネルギー準位と三重項励起状態のエネルギー準位とをより近接させることができ、これにより、遅延蛍光を放出しやすくすることができる。一重項励起状態のエネルギー準位と三重項励起状態のエネルギー準位とをより近接させるためには、遅延蛍光材料は、一般式(1)で表される部分構造を分子内に2つ以上含む化合物であることが好ましい。 In a delayed fluorescent material containing a partial structure represented by the general formula (1), a nitrogen atom having an electron donor property and a boron atom having an electron acceptor property are arranged close to each other in the molecule. Such a delayed fluorescent material is a compound that can separate the HOMO orbital and the LUMO orbital due to the multiple resonance effect. By clearly separating the HOMO orbit and LUMO orbit of the delayed fluorescent material, the energy level of the singlet excited state and the energy level of the triplet excited state of the delayed fluorescent material can be brought closer to each other. This makes it easier to emit delayed fluorescence. In order to bring the energy level of the singlet excited state and the energy level of the triplet excited state closer together, the delayed fluorescent material contains two or more substructures represented by the general formula (1) in the molecule. Preferably, it is a compound.
 また、遅延蛍光材料においては、そのπ共役系が拡張すると、より効率的に三重項励起状態から一重項励起状態に逆項間交差が起きる。このため、遅延蛍光材料のπ共役系が拡張することは好ましい。そのような観点から、遅延蛍光材料は、下記の一般式(2)または一般式(3)で表される化合物を含むものであることが好ましい。 Furthermore, in delayed fluorescent materials, when the π-conjugated system is expanded, reverse intersystem crossing occurs more efficiently from the triplet excited state to the singlet excited state. For this reason, it is preferable that the π-conjugated system of the delayed fluorescent material is expanded. From such a viewpoint, the delayed fluorescent material preferably contains a compound represented by the following general formula (2) or general formula (3).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(2)または一般式(3)において、環Za、環Zbおよび環Zcは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール環、または置換もしくは無置換の環形成炭素数6~30のヘテロアリール環である。 In general formula (2) or general formula (3), ring Za, ring Zb and ring Zc each independently represent a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring. It is a heteroaryl ring having 6 to 30 carbon atoms.
 一般式(2)において、Z1およびZ2は、それぞれ独立に、酸素原子、NRa(置換基Raを有する窒素原子)または硫黄原子である。Z1がNRaである場合、置換基Raは、環Zaもしくは環Zbと結合して環を形成してもよい。Z2がNRaである場合、置換基Raは、環Zaもしくは環Zcと結合して環を形成してもよい。Eは、ホウ素原子、リン原子、SiRa(置換基Raを有するケイ素原子)またはP=Oである。 In general formula (2), Z 1 and Z 2 are each independently an oxygen atom, NRa (a nitrogen atom having a substituent Ra), or a sulfur atom. When Z 1 is NRa, the substituent Ra may be combined with ring Za or ring Zb to form a ring. When Z 2 is NRa, the substituent Ra may be combined with ring Za or ring Zc to form a ring. E is a boron atom, a phosphorus atom, SiRa (silicon atom having a substituent Ra), or P=O.
 一般式(3)において、E1およびE2は、それぞれ独立に、BRa(置換基Raを有するホウ素原子)、PRa(置換基Raを有するリン原子)、SiRa2(置換基Raを2個有するケイ素原子)、P(=O)Ra2(置換基Raを2個有するホスフィンオキシド)またはP(=S)Ra2(置換基Raを2個有するホスフィンスルフィド)、C=O(カルボニル基)、S(=O)またはS(=O)2である。E1がBRa、PRa、SiRa2、P(=O)Ra2またはP(=S)Ra2である場合、置換基Raは、環Zaもしくは環Zbと結合して環を形成してもよい。E2がBRa、PRa、SiRa2、P(=O)Ra2またはP(=S)Ra2である場合、置換基Raは、環Zaもしくは環Zcと結合して環を形成してもよい。 In general formula (3), E 1 and E 2 each independently represent BRa (a boron atom having a substituent Ra), PRa (a phosphorus atom having a substituent Ra), and SiRa 2 (a phosphorus atom having two substituents Ra). silicon atom), P(=O)Ra 2 (phosphine oxide having two substituents Ra) or P(=S)Ra 2 (phosphine sulfide having two substituents Ra), C=O (carbonyl group), S(=O) or S(=O) 2 . When E 1 is BRa, PRa, SiRa 2 , P(=O)Ra 2 or P(=S)Ra 2 , the substituent Ra may be combined with ring Za or ring Zb to form a ring. . When E2 is BRa, PRa, SiRa2 , P(=O) Ra2 or P(=S) Ra2 , the substituent Ra may be combined with ring Za or ring Zc to form a ring. .
 上記の置換基Raは、それぞれ独立に、水素、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールエーテル基、置換もしくは無置換のアリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、置換もしくは無置換のカルボニル基、置換もしくは無置換のカルボキシル基、置換もしくは無置換のオキシカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミド基、スルホニル基、置換もしくは無置換のスルホン酸エステル基、置換もしくは無置換のスルホンアミド基、置換もしくは無置換のアミノ基、置換もしくは無置換のイミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基、置換もしくは無置換のホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる置換基である。また、置換基Raは、これらの中から選ばれる置換基でさらに置換されていてもよい。当該置換基Raを置換する置換基は、これらの中から選ばれる置換基でさらに置換されてもよい。 The above substituents Ra each independently represent hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, or a substituted or unsubstituted cycloalkyl group. Substituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or unsubstituted carbonyl group, substituted or unsubstituted carboxyl group, substituted or unsubstituted oxy Carbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted amide group, sulfonyl group, substituted or unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonamide group, substitution or unsubstituted amino group, substituted or unsubstituted imino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted siloxanyl group, substituted or unsubstituted boryl group, substituted or unsubstituted phosphine oxide group , and a fused ring and an aliphatic ring formed between adjacent substituents. Moreover, the substituent Ra may be further substituted with a substituent selected from these. The substituent substituting the substituent Ra may be further substituted with a substituent selected from these.
 また、この一般式(2)または一般式(3)で表される化合物は、上述した一般式(1)で表される部分構造を分子内に2つ以上含むことが好ましい。 Furthermore, the compound represented by this general formula (2) or general formula (3) preferably contains two or more partial structures represented by the above-mentioned general formula (1) in the molecule.
 上記の全ての基において、水素は重水素であってもよい。このことは、以下に説明する化合物またはその部分構造においても同様である。また、本明細書において、例えば、炭素数6~40の置換もしくは無置換のアリール基とは、アリール基に置換した置換基に含まれる炭素数も含めて炭素数が6~40となるアリール基である。炭素数を規定している他の置換基も、これと同様である。 In all of the above groups, hydrogen may be deuterium. This also applies to the compounds or partial structures thereof described below. In addition, in this specification, for example, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms refers to an aryl group having 6 to 40 carbon atoms, including the number of carbon atoms contained in the substituents substituted on the aryl group. It is. The same applies to other substituents defining the number of carbon atoms.
 「置換もしくは無置換の」という場合における「無置換」とは、水素原子または重水素原子が置換したことを意味する。以下に説明する化合物またはその部分構造において、「置換もしくは無置換の」という場合についても、上記と同様である。 In the case of "substituted or unsubstituted", "unsubstituted" means that a hydrogen atom or a deuterium atom is substituted. In the compounds or partial structures thereof described below, the term "substituted or unsubstituted" is the same as above.
 また、上記の全ての基において、置換される場合の置換基としては、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アリール基、ヘテロアリール基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、アミド基、スルホニル基、スルホン酸エステル基、スルホンアミド基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、またはホスフィンオキシド基等が挙げられる。また、これらの置換基は、さらに上述の置換基によって置換されていてもよい。 In addition, in all of the above groups, substituents when substituted include alkyl groups, cycloalkyl groups, heterocyclic groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, hydroxyl groups, and thiol groups. group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, amide group, sulfonyl group, sulfonic acid ester group, sulfonamide group, amino group, nitro group, silyl group, siloxanyl group, boryl group, or phosphine oxide group. Moreover, these substituents may be further substituted with the above-mentioned substituents.
 アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等の飽和脂肪族炭化水素基を示し、これは、置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、ハロゲン、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は、特に限定されないが、入手の容易性やコストの点から、好ましくは1以上20以下、より好ましくは1以上8以下の範囲である。 The alkyl group refers to a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group; It may or may not have a group. There are no particular restrictions on the additional substituents when substituted, and examples thereof include alkyl groups, halogens, aryl groups, heteroaryl groups, and the like, and this point is also common to the following description. Further, the number of carbon atoms in the alkyl group is not particularly limited, but from the viewpoint of availability and cost, it is preferably in the range of 1 to 20, more preferably 1 to 8.
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基等の飽和脂環式炭化水素基を示し、これは、置換基を有していても有していなくてもよい。アルキル基部分の炭素数は、特に限定されないが、好ましくは、3以上20以下の範囲である。 A cycloalkyl group refers to a saturated alicyclic hydrocarbon group such as a cyclopropyl group, a cyclohexyl group, a norbornyl group, or an adamantyl group, which may or may not have a substituent. . The number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミド等の炭素以外の原子を環内に有する脂肪族環を示し、これは、置換基を有していても有していなくてもよい。複素環基の炭素数は、特に限定されないが、好ましくは、2以上20以下の範囲である。 A heterocyclic group refers to an aliphatic ring having an atom other than carbon in the ring, such as a pyran ring, a piperidine ring, or a cyclic amide, whether or not it has a substituent. good. The number of carbon atoms in the heterocyclic group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基等の二重結合を含む不飽和脂肪族炭化水素基を示し、これは、置換基を有していても有していなくてもよい。アルケニル基の炭素数は、特に限定されないが、好ましくは、2以上20以下の範囲である。 An alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond, such as a vinyl group, allyl group, butadienyl group, and may or may not have a substituent. . The number of carbon atoms in the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基等の二重結合を含む不飽和脂環式炭化水素基を示し、これは、置換基を有していても有していなくてもよい。シクロアルケニル基の炭素数は、特に限定されないが、好ましくは、3以上20以下の範囲である。 A cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond, such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, even if it has a substituent. It is not necessary to have it. The number of carbon atoms in the cycloalkenyl group is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
 アルキニル基とは、例えば、エチニル基等の三重結合を含む不飽和脂肪族炭化水素基を示し、これは、置換基を有していても有していなくてもよい。アルキニル基の炭素数は、特に限定されないが、好ましくは、2以上20以下の範囲である。 The alkynyl group refers to, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent. The number of carbon atoms in the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基等のエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は、置換基を有していても有していなくてもよい。アルコキシ基の炭素数は、特に限定されないが、好ましくは、1以上20以下の範囲である。 An alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded via an ether bond, such as a methoxy group, an ethoxy group, or a propoxy group, and this aliphatic hydrocarbon group has a substituent. It is not necessary to have either. The number of carbon atoms in the alkoxy group is not particularly limited, but is preferably in the range of 1 to 20.
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は、置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は、特に限定されないが、好ましくは、1以上20以下の範囲である。 An alkylthio group is an alkoxy group in which the oxygen atom of the ether bond is replaced with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent. The number of carbon atoms in the alkylthio group is not particularly limited, but is preferably in the range of 1 to 20.
 アリールエーテル基とは、例えば、フェノキシ基等、エーテル結合を介して芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は、置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は、特に限定されないが、好ましくは、6以上40以下の範囲である。 The aryl ether group refers to a functional group such as a phenoxy group to which an aromatic hydrocarbon group is bonded via an ether bond, and the aromatic hydrocarbon group may have a substituent or not. Good too. The number of carbon atoms in the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールチオエーテル基における芳香族炭化水素基は、置換基を有していても有していなくてもよい。アリールチオエーテル基の炭素数は、特に限定されないが、好ましくは、6以上40以下の範囲である。 An arylthioether group is an aryl ether group in which the oxygen atom of the ether bond is replaced with a sulfur atom. The aromatic hydrocarbon group in the arylthioether group may or may not have a substituent. The number of carbon atoms in the arylthioether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリール基とは、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フェナントリル基、アントラセニル基、ベンゾフェナントリル基、ベンゾアントラセニル基、クリセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、ベンゾフルオランテニル基、ジベンゾアントラセニル基、ペリレニル基、ヘリセニル基等の芳香族炭化水素基を示す。中でも、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基が好ましい。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は、特に限定されないが、好ましくは6以上40以下、より好ましくは6以上30以下の範囲である。 Aryl groups include, for example, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, phenanthryl group, anthracenyl group, benzophenanthryl group, and benzanthracetyl group. This refers to aromatic hydrocarbon groups such as nyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzaanthracenyl group, perylenyl group, and helicenyl group. Among these, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, pyrenyl group, fluoranthenyl group, and triphenylenyl group are preferable. The aryl group may or may not have a substituent. The number of carbon atoms in the aryl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less, more preferably 6 or more and 30 or less.
 また、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましく、フェニル基、ビフェニル基、ターフェニル基、ナフチル基がより好ましい。さらに好ましくは、フェニル基、ビフェニル基、ターフェニル基であり、フェニル基が特に好ましい。 Further, as the aryl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, and an anthracenyl group are preferable, and a phenyl group, a biphenyl group, a terphenyl group, and a naphthyl group are more preferable. More preferred are phenyl, biphenyl, and terphenyl, with phenyl being particularly preferred.
 それぞれの置換基がさらにアリール基で置換される場合、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましく、フェニル基、ビフェニル基、ターフェニル基、ナフチル基がより好ましい。特に好ましくは、フェニル基である。 When each substituent is further substituted with an aryl group, the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, or an anthracenyl group; More preferred are phenyl group and naphthyl group. Particularly preferred is a phenyl group.
 ヘテロアリール基とは、例えば、ピリジル基、フラニル基、チエニル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ピリダジニル基、トリアジニル基、ナフチリジニル基、シンノリニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ベンゾカルバゾリル基、カルボリニル基、インドロカルバゾリル基、ベンゾフロカルバゾリル基、ベンゾチエノカルバゾリル基、ジヒドロインデノカルバゾリル基、ベンゾキノリニル基、アクリジニル基、ジベンゾアクリジニル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基等の、炭素以外の原子を一個または複数個環内に有する環状芳香族基を示す。ただし、ナフチリジニル基とは、1,5-ナフチリジニル基、1,6-ナフチリジニル基、1,7-ナフチリジニル基、1,8-ナフチリジニル基、2,6-ナフチリジニル基、2,7-ナフチリジニル基のいずれかを示す。ヘテロアリール基は、置換基を有していても有していなくてもよい。ヘテロアリール基の炭素数は、特に限定されないが、好ましくは、2以上40以下、より好ましくは2以上30以下の範囲である。 Examples of heteroaryl groups include pyridyl group, furanyl group, thienyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, triazinyl group, naphthyridinyl group, cinnolinyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, Benzofuranyl group, benzothienyl group, indolyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, benzocarbazolyl group, carbolinyl group, indolocarbazolyl group, benzofurocarbazolyl group, benzothienocarbazolyl Atoms other than carbon, such as groups, dihydroindenocarbazolyl groups, benzoquinolinyl groups, acridinyl groups, dibenzaacridinyl groups, benzimidazolyl groups, imidazopyridyl groups, benzoxazolyl groups, benzothiazolyl groups, phenanthrolinyl groups, etc. represents a cyclic aromatic group having one or more in the ring. However, the naphthyridinyl group refers to any of the following: 1,5-naphthyridinyl group, 1,6-naphthyridinyl group, 1,7-naphthyridinyl group, 1,8-naphthyridinyl group, 2,6-naphthyridinyl group, 2,7-naphthyridinyl group. Show that. A heteroaryl group may or may not have a substituent. The number of carbon atoms in the heteroaryl group is not particularly limited, but is preferably in the range of 2 or more and 40 or less, more preferably 2 or more and 30 or less.
 また、ヘテロアリール基としては、ピリジル基、フラニル基、チエニル基、キノリニル基、ピリミジル基、トリアジニル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基が好ましく、ピリジル基、フラニル基、チエニル基、キノリニル基がより好ましい。特に好ましくは、ピリジル基である。 In addition, examples of the heteroaryl group include a pyridyl group, a furanyl group, a thienyl group, a quinolinyl group, a pyrimidyl group, a triazinyl group, a benzofuranyl group, a benzothienyl group, an indolyl group, a dibenzofuranyl group, a dibenzothienyl group, a carbazolyl group, and a benzimidazolyl group. , imidazopyridyl group, benzoxazolyl group, benzothiazolyl group, and phenanthrolinyl group are preferable, and pyridyl group, furanyl group, thienyl group, and quinolinyl group are more preferable. Particularly preferred is a pyridyl group.
 それぞれの置換基がさらにヘテロアリール基で置換される場合、ヘテロアリール基としては、ピリジル基、フラニル基、チエニル基、キノリニル基、ピリミジル基、トリアジニル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基が好ましく、ピリジル基、フラニル基、チエニル基、キノリニル基がより好ましい。特に好ましくは、ピリジル基である。 When each substituent is further substituted with a heteroaryl group, examples of the heteroaryl group include pyridyl group, furanyl group, thienyl group, quinolinyl group, pyrimidyl group, triazinyl group, benzofuranyl group, benzothienyl group, indolyl group, dibenzo A furanyl group, a dibenzothienyl group, a carbazolyl group, a benzimidazolyl group, an imidazopyridyl group, a benzoxazolyl group, a benzothiazolyl group, and a phenanthrolinyl group are preferred, and a pyridyl group, a furanyl group, a thienyl group, and a quinolinyl group are more preferred. Particularly preferred is a pyridyl group.
 ハロゲンとは、フッ素、塩素、臭素およびヨウ素から選ばれる原子を示す。また、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基は、置換基を有していても有していなくてもよい。ここで、置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基等が挙げられ、これら置換基は、さらに置換されてもよい。 Halogen refers to an atom selected from fluorine, chlorine, bromine, and iodine. Furthermore, the carbonyl group, carboxyl group, oxycarbonyl group, and carbamoyl group may or may not have a substituent. Here, examples of the substituent include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and these substituents may be further substituted.
 アミノ基とは、置換もしくは無置換のアミノ基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基が挙げられる。アリール基、ヘテロアリール基としては、フェニル基、ナフチル基、ピリジル基、キノリニル基が好ましい。これら置換基は、さらに置換されてもよい。炭素数は、特に限定されないが、好ましくは、2以上50以下、より好ましくは6以上40以下、特に好ましくは6以上30以下の範囲である。 The amino group is a substituted or unsubstituted amino group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a straight-chain alkyl group, and a branched alkyl group. As the aryl group and heteroaryl group, phenyl group, naphthyl group, pyridyl group, and quinolinyl group are preferable. These substituents may be further substituted. The number of carbon atoms is not particularly limited, but is preferably in the range of 2 or more and 50 or less, more preferably 6 or more and 40 or less, particularly preferably 6 or more and 30 or less.
 シリル基とは、例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、プロピルジメチルシリル基、ビニルジメチルシリル基等のアルキルシリル基や、フェニルジメチルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、トリナフチルシリル基等のアリールシリル基を示す。ケイ素上の置換基は、さらに置換されてもよい。シリル基の炭素数は、特に限定されないが、好ましくは、1以上30以下の範囲である。 Silyl groups include, for example, alkylsilyl groups such as trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, propyldimethylsilyl group, and vinyldimethylsilyl group, phenyldimethylsilyl group, tert-butyldiphenylsilyl group, and trimethylsilyl group. Indicates an arylsilyl group such as a phenylsilyl group or a trinaphthylsilyl group. Substituents on silicon may be further substituted. The number of carbon atoms in the silyl group is not particularly limited, but is preferably in the range of 1 to 30.
 シロキサニル基とは、例えば、トリメチルシロキサニル基等のエーテル結合を介したケイ素化合物基を示す。ケイ素上の置換基は、さらに置換されてもよい。また、ボリル基とは、置換もしくは無置換のボリル基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基、アリールエーテル基、アルコキシ基、ヒドロキシル基が挙げられる。中でも、アリール基、アリールエーテル基が好ましい。 The siloxanyl group refers to a silicon compound group via an ether bond, such as a trimethylsiloxanyl group. Substituents on silicon may be further substituted. Moreover, the boryl group is a substituted or unsubstituted boryl group. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a straight-chain alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group, and a hydroxyl group. Among these, aryl groups and aryl ether groups are preferred.
 ホスフィンオキシド基とは、-P(=O)R1011で表される基である。ホスフィンオキシド基のR1011は、上述の置換する場合の置換基と同様の群から選ばれる。 The phosphine oxide group is a group represented by -P(=O)R 10 R 11 . R 10 R 11 of the phosphine oxide group is selected from the same group as the above-mentioned substituents.
 環Za、環Zbおよび環Zcにおける置換もしくは無置換の環形成炭素数6~30のアリール環としては、ベンゼン環、ナフタレン環、フェナントレン環、クリセン環、アントラセン環、ピレン環といった芳香族炭化水素環が挙げられる。これらの中でも、溶解性を確保する観点から、ベンゼン環が好ましい。また、環形成炭素数6~30のヘテロアリール環としては、ピリジン環、キノリン環、フェナントロリン環といった芳香族ヘテロアリール環構造が挙げられる。これらの中でも、原料入手のしやすさや合成の難易度の観点から、ピリジン環が好ましい。 Examples of the substituted or unsubstituted aryl ring having 6 to 30 carbon atoms in Ring Za, Ring Zb, and Ring Zc include aromatic hydrocarbon rings such as a benzene ring, a naphthalene ring, a phenanthrene ring, a chrysene ring, an anthracene ring, and a pyrene ring. can be mentioned. Among these, a benzene ring is preferred from the viewpoint of ensuring solubility. Examples of the heteroaryl ring having 6 to 30 carbon atoms include aromatic heteroaryl ring structures such as a pyridine ring, a quinoline ring, and a phenanthroline ring. Among these, a pyridine ring is preferred from the viewpoint of raw material availability and synthesis difficulty.
 一般式(2)において、置換基Raは、置換基も含めて炭素数6~40の基であることが好ましい。当該置換基Raは、置換もしくは無置換のアリール基であることがより好ましい。置換もしくは無置換のアリール基としては、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフェナントレニル基等が挙げられる。これらの中でも、置換もしくは無置換のフェニル基がより好ましい。 In general formula (2), the substituent Ra is preferably a group having 6 to 40 carbon atoms including the substituents. The substituent Ra is more preferably a substituted or unsubstituted aryl group. Examples of the substituted or unsubstituted aryl group include a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted phenanthrenyl group, etc. can be mentioned. Among these, substituted or unsubstituted phenyl groups are more preferred.
 また、一般式(3)において、置換基Raは、置換基も含めて炭素数6~40の基であることが好ましい。当該置換基Raは、置換もしくは無置換のアリール基または置換もしくは無置換のアルキル基であることがより好ましい。 Furthermore, in the general formula (3), the substituent Ra is preferably a group having 6 to 40 carbon atoms including the substituents. The substituent Ra is more preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted alkyl group.
 一般式(2)におけるZ1およびZ2は、酸素原子またはNRaであることが好ましい。なぜならば、一般式(2)で表される化合物のπ共役系が効率よく拡張し、より効率的に三重項励起状態から一重項励起状態に逆項間交差が起きるため、耐久性をさらに向上させることができるからである。 Z 1 and Z 2 in general formula (2) are preferably an oxygen atom or NRa. This is because the π-conjugated system of the compound represented by general formula (2) expands efficiently, and reverse intersystem crossing occurs more efficiently from the triplet excited state to the singlet excited state, further improving durability. This is because it can be done.
 また、一般式(2)におけるEはホウ素原子であることが好ましく、一般式(3)におけるE1およびE2はBRaであることが好ましい。なぜならば、一般式(2)または一般式(3)で表される化合物のπ共役系が効率よく拡張し、より効率的に三重項励起状態から一重項励起状態に逆項間交差が起きるため、耐久性をさらに向上させることができるからである。 Further, E in general formula (2) is preferably a boron atom, and E 1 and E 2 in general formula (3) are preferably BRa. This is because the π-conjugated system of the compound represented by general formula (2) or general formula (3) expands efficiently, and reverse intersystem crossing occurs more efficiently from the triplet excited state to the singlet excited state. This is because the durability can be further improved.
 また、環Za、環Zbおよび環Zcは、ベンゼン環であることが好ましい。なぜならば、一般式(2)または一般式(3)で表される化合物のπ共役系が効率よく拡張し、より効率的に三重項励起状態から一重項励起状態に逆項間交差が起きるため、耐久性をさらに向上させることができるからである。 Further, it is preferable that the ring Za, the ring Zb, and the ring Zc are benzene rings. This is because the π-conjugated system of the compound represented by general formula (2) or general formula (3) expands efficiently, and reverse intersystem crossing occurs more efficiently from the triplet excited state to the singlet excited state. This is because the durability can be further improved.
 一般式(2)または一般式(3)で表される化合物は、例えば文献Adv.Mater.,2016,28,2777-2781に記載されているように、電子ドナー性のアミン窒素原子と電子アクセプター性のホウ素原子とを最適に配置することで、多重共鳴効果によりHOMO軌道とLUMO軌道とを分離させることが可能な分子である。HOMO軌道とLUMO軌道とを明瞭に分離し、一重項励起状態と三重項励起状態とをより近接させることによって遅延蛍光を放出しやすくするという観点では、一般式(2)において、Eが電子アクセプター性の強いホウ素原子であり、かつZ1とZ2がどちらも電子ドナー性の強い基であるNRaであることが好ましい。 The compound represented by the general formula (2) or the general formula (3) is described, for example, in the literature Adv. Mater. , 2016, 28, 2777-2781, by optimally arranging the electron donating amine nitrogen atom and the electron acceptor boron atom, the HOMO orbital and LUMO orbital can be separated by the multiple resonance effect. It is a molecule that can be separated. From the viewpoint of clearly separating the HOMO orbital and the LUMO orbital and bringing the singlet excited state and triplet excited state closer together to facilitate the emission of delayed fluorescence, in general formula (2), E is an electron acceptor. NRa is preferably a boron atom with strong electron donor properties, and Z 1 and Z 2 are both groups with strong electron donor properties.
 また、一般式(2)または一般式(3)で表される化合物の発光スペクトルは、当該化合物の多重共鳴効果により、電子ドナー性骨格と電子アクセプター性骨格とを結合させた化合物よりもシャープとなる。したがって、遅延蛍光材料が一般式(2)または一般式(3)で表される化合物であることにより、高色純度の発光が得られる。すなわち、一般式(2)または一般式(3)で表される化合物は、ディスプレイの色域向上に有利であるため、遅延蛍光材料として好ましい。また、一般式(2)または一般式(3)で表される化合物は、主にLUMO軌道が局在する一般式(2)または一般式(3)中のE原子の周囲に環Za、環Zb、環Zcが存在することから、LUMO軌道をE原子から各環にわたって非局在化することができる。LUMO軌道を非局在化することで効率的に多重共鳴効果が働くため、より高色純度の発光が得られる。なお、上記E原子は、一般式(2)においてEの原子であり、一般式(3)においてE1およびE2の各原子である。 Furthermore, the emission spectrum of the compound represented by general formula (2) or general formula (3) is sharper than that of a compound in which an electron donor skeleton and an electron acceptor skeleton are combined, due to the multiple resonance effect of the compound. Become. Therefore, when the delayed fluorescent material is a compound represented by the general formula (2) or the general formula (3), light emission with high color purity can be obtained. That is, the compound represented by the general formula (2) or the general formula (3) is advantageous in improving the color gamut of a display, and is therefore preferable as a delayed fluorescent material. In addition, the compound represented by the general formula (2) or the general formula (3) mainly has a ring Za or a ring around the E atom in the general formula (2) or the general formula (3) where the LUMO orbital is localized. Since Zb and ring Zc exist, the LUMO orbital can be delocalized from the E atom to each ring. By delocalizing the LUMO orbital, the multiple resonance effect works efficiently, so that luminescence with higher color purity can be obtained. Note that the above E atom is an atom of E in general formula (2), and is each atom of E 1 and E 2 in general formula (3).
 さらに、一般式(2)または一般式(3)の置換基Raが、環Za、環Zb、および環Zcの少なくとも一つの環と結合した構造をなすことがより好ましい。なぜならば、置換基Raが環Za、環Zb、および環Zcの少なくとも一つの環と結合することにより、一般式(2)中のEや一般式(3)中のE1およびE2の立体保護効果がより高まり、蛍光量子収率の低下を抑える効果がより向上することが期待できるためである。 Furthermore, it is more preferable that the substituent Ra of the general formula (2) or the general formula (3) forms a structure bonded to at least one ring of the ring Za, the ring Zb, and the ring Zc. This is because substituent Ra is bonded to at least one ring of ring Za, ring Zb, and ring Zc, so that E in general formula (2) and E 1 and E 2 in general formula This is because it is expected that the protective effect will be further enhanced and the effect of suppressing the decrease in fluorescence quantum yield will be further improved.
 以下に、一般式(2)または一般式(3)で表される化合物の一例を示す。しかし、当該化合物は、特にこれらに限定されるものではない。 Examples of compounds represented by general formula (2) or general formula (3) are shown below. However, the compounds are not particularly limited to these.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 遅延蛍光材料の発光波長は、特に限定されないが、青色光源から、青、緑、赤色の3原色を取り出すために、遅延蛍光材料が青色の光で励起された際において緑色あるいは赤色の発光波長であることが好ましい。すなわち、遅延蛍光材料は、波長400nm以上500nm以下の範囲の励起光を用いることによってピーク波長が500nm以上580nm未満の領域に観測される発光を呈すること、あるいは、波長400nm以上500nm以下の範囲の励起光を用いることによってピーク波長が580nm以上750nm以下の領域に観測される発光を呈することが好ましい。 The emission wavelength of the delayed fluorescent material is not particularly limited, but in order to extract the three primary colors of blue, green, and red from a blue light source, the delayed fluorescent material has a green or red emission wavelength when excited with blue light. It is preferable that there be. That is, the delayed fluorescent material exhibits luminescence observed in a region with a peak wavelength of 500 nm or more and less than 580 nm by using excitation light with a wavelength of 400 nm or more and 500 nm or less, or when excitation light with a wavelength of 400 nm or more and 500 nm or less is observed. It is preferable to use light to emit light whose peak wavelength is observed in a region of 580 nm or more and 750 nm or less.
 また、色域を拡大し、色再現性を向上させるためには、青、緑、赤の各色の発光スペクトルの重なりが小さいことが好ましい。 Furthermore, in order to expand the color gamut and improve color reproducibility, it is preferable that the emission spectra of blue, green, and red have small overlap.
 例えば、適度な励起エネルギーを有する波長400nm以上500nm以下の範囲の青色光を励起光として用いる場合は、ピーク波長が500nm以上の領域に観測される発光を緑色の発光として利用する。この場合、励起光と緑色光との発光スペクトルの重なりが小さくなり、色再現性が向上するため、好ましい。その効果をより大きくする上で、本発明の実施の形態に係る発光材料が緑色の発光を呈する場合の発光のピーク波長の下限値は、より好ましくは510nm以上であり、さらに好ましくは515nm以上であり、特に好ましくは520nm以上である。 For example, when blue light having a wavelength of 400 nm or more and 500 nm or less and having appropriate excitation energy is used as excitation light, light emission observed in a region with a peak wavelength of 500 nm or more is used as green light emission. In this case, the overlap between the emission spectra of the excitation light and the green light is reduced, and color reproducibility is improved, which is preferable. In order to further increase the effect, the lower limit of the peak wavelength of light emission when the light emitting material according to the embodiment of the present invention emits green light is more preferably 510 nm or more, and even more preferably 515 nm or more. The wavelength is particularly preferably 520 nm or more.
 また、励起光と赤色光との発光スペクトルの重なりを小さくするためには、ピーク波長が580nm未満の領域に観測される発光を緑色の発光として利用することが好ましい。その効果をより大きくする上で、本発明の実施の形態に係る発光材料が緑色の発光を呈する場合の発光のピーク波長の上限値は、より好ましくは550nm以下であり、さらに好ましくは540nm以下であり、特に好ましくは535nm以下である。 Furthermore, in order to reduce the overlap between the emission spectra of excitation light and red light, it is preferable to use light emission observed in a region with a peak wavelength of less than 580 nm as green light emission. In order to further increase the effect, the upper limit of the peak wavelength of light emission when the light emitting material according to the embodiment of the present invention emits green light is more preferably 550 nm or less, and even more preferably 540 nm or less. The wavelength is particularly preferably 535 nm or less.
 さらに、ピーク波長が500nm以上580nm未満の領域に観測される発光を緑色の発光として利用する場合は、ピーク波長が580nm以上の領域に観測される発光を赤色の発光として利用する。この場合、緑色光と赤色光との発光スペクトルの重なりが小さくなり、色再現性が向上するため、好ましい。その効果をより大きくする上で、本発明の実施の形態に係る発光材料が赤色の発光を呈する場合の発光のピーク波長の下限値は、より好ましくは620nm以上であり、さらに好ましくは630nm以上であり、特に好ましくは635nm以上である。 Furthermore, when using the light emission observed in a region with a peak wavelength of 500 nm or more and less than 580 nm as green light emission, the light emission observed in a region with a peak wavelength of 580 nm or more is used as red light emission. In this case, the overlap between the emission spectra of green light and red light is reduced and color reproducibility is improved, which is preferable. In order to further increase the effect, when the luminescent material according to the embodiment of the present invention emits red light, the lower limit of the peak wavelength of light emission is more preferably 620 nm or more, and even more preferably 630 nm or more. The wavelength is particularly preferably 635 nm or more.
 赤色光のピーク波長の上限は、可視域の上界付近である750nm以下であればよいが、700nm以下である場合、視感度が大きくなるため、より好ましい。その効果をより大きくする上で、本発明の実施の形態に係る発光材料が赤色の発光を呈する場合のピーク波長の上限値は、さらに好ましくは680nm以下であり、特に好ましくは660nm以下である。 The upper limit of the peak wavelength of red light may be 750 nm or less, which is near the upper limit of the visible range, but 700 nm or less is more preferable because visibility increases. In order to further increase the effect, the upper limit of the peak wavelength when the luminescent material according to the embodiment of the present invention emits red light is more preferably 680 nm or less, particularly preferably 660 nm or less.
 すなわち、波長400nm以上500nm以下の範囲の青色光を励起光として用いる場合、緑色光のピーク波長は、500nm以上580nm未満であることが好ましく、510nm以上550nm以下であることがより好ましく、515nm以上540nm以下であることがさらに好ましく、520nm以上530nm以下であることが特に好ましい。また、赤色光のピーク波長は、580nm以上750nm以下であることが好ましく、620nm以上700nm以下であることがより好ましく、630nm以上680nm以下であることがさらに好ましく、635nm以上660nm以下であることが特に好ましい。 That is, when blue light having a wavelength of 400 nm or more and 500 nm or less is used as excitation light, the peak wavelength of the green light is preferably 500 nm or more and less than 580 nm, more preferably 510 nm or more and 550 nm or less, and 515 nm or more and 540 nm or less. It is more preferably the following, and particularly preferably 520 nm or more and 530 nm or less. Further, the peak wavelength of the red light is preferably 580 nm or more and 750 nm or less, more preferably 620 nm or more and 700 nm or less, even more preferably 630 nm or more and 680 nm or less, and particularly preferably 635 nm or more and 660 nm or less. preferable.
 また、発光スペクトルの重なりを小さくし、色再現性を向上させるためには、青、緑、赤の各色の発光スペクトルのピーク波長における半値幅(以下、単に「発光スペクトルの半値幅」という)が小さいことが好ましい。特に、緑色光および赤色光の各発光スペクトルの半値幅が小さいことは、色再現性の向上に有効である。 In addition, in order to reduce the overlap of emission spectra and improve color reproducibility, it is necessary to increase the half-width at the peak wavelength of the emission spectra of each color of blue, green, and red (hereinafter simply referred to as "half-width of emission spectrum"). Preferably small. In particular, a small half-width of each emission spectrum of green light and red light is effective for improving color reproducibility.
 例えば、緑色光の発光スペクトルの半値幅は、50nm以下であることが好ましく、40nm以下であることがより好ましく、30nm以下であることがさらに好ましく、25nm以下であることが特に好ましい。赤色光の発光スペクトルの半値幅は、80nm以下であることが好ましく、60nm以下であることがより好ましく、50nm以下であることがさらに好ましく、40nm以下であることが特に好ましい。 For example, the half width of the emission spectrum of green light is preferably 50 nm or less, more preferably 40 nm or less, even more preferably 30 nm or less, and particularly preferably 25 nm or less. The half width of the emission spectrum of red light is preferably 80 nm or less, more preferably 60 nm or less, even more preferably 50 nm or less, and particularly preferably 40 nm or less.
 本発明の実施の形態に係る粒子状色変換材料に含まれる遅延蛍光材料は、半値幅が50nm以下の遅延蛍光を放出するため、高い色再現性を達成することができる。「半値幅が50nm以下の遅延蛍光を放出する」とは、遅延蛍光材料の発光スペクトルの半値幅が50nm以下であることをいう。本発明における遅延蛍光材料の発光スペクトルの半値幅は、40nm以下であることがより好ましく、30nm以下であることがさらに好ましく、25nm以下であることが特に好ましい。 The delayed fluorescent material included in the particulate color conversion material according to the embodiment of the present invention emits delayed fluorescence with a half width of 50 nm or less, and therefore can achieve high color reproducibility. "Emits delayed fluorescence with a half-value width of 50 nm or less" means that the half-value width of the emission spectrum of the delayed fluorescent material is 50 nm or less. The half width of the emission spectrum of the delayed fluorescent material in the present invention is more preferably 40 nm or less, even more preferably 30 nm or less, and particularly preferably 25 nm or less.
 なお、本発明における遅延蛍光材料の発光スペクトルの形状に関しては、特に制限されるものではない。例えば、励起エネルギーの効率的な利用が可能であり、色純度も高くなることから、本発明における遅延蛍光材料の発光スペクトルは単一ピークであることが好ましい。ここで、単一ピークとは、ある波長領域で、最も強度の強いピークに対して、その強度の5%以上の強度を持つピークがない状態を示す。 Note that the shape of the emission spectrum of the delayed fluorescent material in the present invention is not particularly limited. For example, it is preferable that the emission spectrum of the delayed fluorescent material in the present invention has a single peak because it allows efficient use of excitation energy and increases color purity. Here, a single peak refers to a state in which there is no peak having an intensity of 5% or more of the strongest peak in a certain wavelength region.
 また、有機発光材料が緑色の発光を呈する場合、この有機発光材料は、赤色の発光を呈する場合よりも高いエネルギーを有する励起状態を経由する。このため、緑色の発光を呈する有機発光材料(以下、緑色発光材料と略記する場合がある)の方が、赤色の発光を呈する有機発光材料に比べて本質的に劣化を引き起こしやすい。これに対し、遅延蛍光を放出する有機発光材料、特に一般式(2)または一般式(3)で表される化合物等を含む遅延蛍光材料は、高色純度の発光と高い耐久性とを両立させることができる。したがって、色変換部材の耐久性をさらに向上させるためには、粒子状色変換材料中に含まれる1種以上の発光材料のうち少なくとも緑色発光材料(第1発光材料)は、遅延蛍光を放出する有機発光材料であることが好ましい。すなわち、遅延蛍光材料は、波長400nm以上500nm以下の範囲の励起光を用いることにより、ピーク波長が500nm以上580nm未満の領域に観測される発光を呈することが好ましい。 Furthermore, when the organic light-emitting material emits green light, this organic light-emitting material passes through an excited state with higher energy than when it emits red light. For this reason, organic light-emitting materials that emit green light (hereinafter sometimes abbreviated as green light-emitting materials) are inherently more prone to deterioration than organic light-emitting materials that emit red light. On the other hand, organic light-emitting materials that emit delayed fluorescence, especially delayed fluorescence materials containing compounds represented by general formula (2) or general formula (3), achieve both high color purity of light emission and high durability. can be done. Therefore, in order to further improve the durability of the color conversion member, at least the green light emitting material (first light emitting material) among the one or more types of light emitting materials contained in the particulate color conversion material should emit delayed fluorescence. Preferably, it is an organic luminescent material. That is, the delayed fluorescent material preferably emits light whose peak wavelength is observed in a region of 500 nm or more and less than 580 nm by using excitation light with a wavelength of 400 nm or more and 500 nm or less.
<その他の発光材料>
 本発明の実施の形態に係る粒子状色変換材料は、マトリクス樹脂中に含まれる少なくとも1種の発光材料として、上述した遅延蛍光材料に加えて、さらに、遅延蛍光を放出する有機発光材料以外の発光材料(その他の発光材料)を有することができる。当該その他の発光材料としては、例えば、無機蛍光体、蛍光顔料、蛍光染料、量子ドットおよび遅延蛍光を放出しない有機発光材料等が挙げられる。当該その他の発光材料は、これらを2種以上含有してもよい。高効率な色変換を達成するためには、当該その他の発光材料として、量子収率の高い発光特性を示す材料が好ましい。具体的には、量子ドット、遅延蛍光を放出しない有機発光材料が好ましく、中でも、遅延蛍光を放出しない有機発光材料がより好ましい。
<Other luminescent materials>
The particulate color conversion material according to the embodiment of the present invention includes, as at least one luminescent material contained in the matrix resin, in addition to the delayed fluorescent material described above, a material other than an organic luminescent material that emits delayed fluorescence. It can have a luminescent material (or other luminescent material). Examples of the other luminescent materials include inorganic phosphors, fluorescent pigments, fluorescent dyes, quantum dots, and organic luminescent materials that do not emit delayed fluorescence. The other luminescent material may contain two or more of these. In order to achieve highly efficient color conversion, the other luminescent material is preferably a material that exhibits luminescent properties with high quantum yield. Specifically, quantum dots and organic light-emitting materials that do not emit delayed fluorescence are preferred, and organic light-emitting materials that do not emit delayed fluorescence are particularly preferred.
 遅延蛍光を放出しない有機発光材料としては、例えば、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデン等の縮合アリール環を有する化合物やその誘導体等が好適なものとして挙げられる。 Suitable organic light-emitting materials that do not emit delayed fluorescence include, for example, compounds having a fused aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, and indene, and derivatives thereof. It is mentioned as.
 また、遅延蛍光を放出しない有機発光材料としては、例えば、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピリジン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン等のヘテロアリール環を有する化合物やその誘導体等が好適なものとして挙げられる。 Examples of organic light-emitting materials that do not emit delayed fluorescence include furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, Suitable examples include compounds having a heteroaryl ring such as imidazopyridine, phenanthroline, pyridine, pyrazine, naphthyridine, quinoxaline, and pyrrolopyridine, and derivatives thereof.
 また、遅延蛍光を放出しない有機発光材料としては、例えば、ボラン誘導体、スチルベン誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体、クマリン誘導体等が好適なものとして挙げられる。スチルベン誘導体としては、例えば、1,4-ジスチリルベンゼン、4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベン等が挙げられる。クマリン誘導体としては、例えば、クマリン6、クマリン7、クマリン153等が挙げられる。 Examples of organic light-emitting materials that do not emit delayed fluorescence include borane derivatives, stilbene derivatives, aromatic acetylene derivatives, tetraphenylbutadiene derivatives, aldazine derivatives, pyrromethene derivatives, diketopyrrolo[3,4-c]pyrrole derivatives, and coumarin derivatives. etc. are mentioned as suitable ones. Examples of stilbene derivatives include 1,4-distyrylbenzene, 4,4'-bis(2-(4-diphenylaminophenyl)ethenyl)biphenyl, 4,4'-bis(N-(stilben-4-yl) )-N-phenylamino)stilbene and the like. Examples of coumarin derivatives include coumarin 6, coumarin 7, coumarin 153, and the like.
 また、遅延蛍光を放出しない有機発光材料としては、例えば、 イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾール等のアゾール誘導体およびその金属錯体等が好適なものとして挙げられる。 Suitable organic light-emitting materials that do not emit delayed fluorescence include azole derivatives such as imidazole, thiazole, thiadiazole, carbazole, oxazole, oxadiazole, and triazole, and metal complexes thereof.
 また、遅延蛍光を放出しない有機発光材料としては、例えば、シアニン系化合物、キサンテン系化合物やチオキサンテン系化合物等が好適なものとして挙げられる。シアニン系化合物としては、例えば、インドシアニングリーン等が挙げられる。キサンテン系化合物やチオキサンテン系化合物としては、例えば、フルオレセイン、エオシン、ローダミン等が挙げられる。 Furthermore, suitable examples of organic light-emitting materials that do not emit delayed fluorescence include cyanine compounds, xanthene compounds, and thioxanthene compounds. Examples of cyanine compounds include indocyanine green and the like. Examples of xanthene compounds and thioxanthene compounds include fluorescein, eosin, rhodamine, and the like.
 また、遅延蛍光を放出しない有機発光材料としては、例えば、ポリフェニレン系化合物、ナフタルイミド誘導体、フタロシアニン誘導体およびその金属錯体、ポルフィリン誘導体およびその金属錯体、オキサジン系化合物、ヘリセン系化合物等が好適なものとして挙げられる。オキサジン系化合物としては、例えば、ナイルレッドやナイルブルー等が挙げられる。 In addition, suitable examples of organic light-emitting materials that do not emit delayed fluorescence include polyphenylene compounds, naphthalimide derivatives, phthalocyanine derivatives and their metal complexes, porphyrin derivatives and their metal complexes, oxazine compounds, helicene compounds, etc. Can be mentioned. Examples of oxazine compounds include Nile Red and Nile Blue.
 また、遅延蛍光を放出しない有機発光材料としては、例えば、芳香族アミン誘導体および有機金属錯体化合物等が好適なものとして挙げられる。芳香族アミン誘導体としては、例えば、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン等が挙げられる。有機金属錯体化合物としては、例えば、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)等が挙げられる。 In addition, suitable examples of organic light-emitting materials that do not emit delayed fluorescence include aromatic amine derivatives and organometallic complex compounds. Examples of aromatic amine derivatives include N,N'-diphenyl-N,N'-di(3-methylphenyl)-4,4'-diphenyl-1,1'-diamine. Examples of the organometallic complex compound include iridium (Ir), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt), osmium (Os), and rhenium (Re).
 以下に、上述したような有機発光材料の一例を示すが、当該有機発光材料は、特にこれらに限定されるものではない。 An example of the organic light-emitting material as described above is shown below, but the organic light-emitting material is not particularly limited to these.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 また、遅延蛍光を放出しない有機発光材料としては、上述した一般式(1)で表される部分構造を含むものも、高い色純度の発光を得られる観点から、好ましい。 Further, as an organic light-emitting material that does not emit delayed fluorescence, one containing a partial structure represented by the above-mentioned general formula (1) is also preferable from the viewpoint of obtaining light emission with high color purity.
 上述した遅延蛍光を放出しない有機発光材料は、蛍光発光材料であっても、リン光発光材料であってもよいが、高い色純度を達成するためには、蛍光発光材料であることが好ましい。中でも、高い蛍光量子収率を与え、色度の耐久性がより良好である点で、ピロメテン誘導体を好適に用いることができる。ピロメテン誘導体の中でも、ピロメテンのホウ素錯体が好ましい。ピロメテンのホウ素錯体としては、後述の一般式(4)で表される化合物が好適なものとして挙げられる。 The above-mentioned organic light-emitting material that does not emit delayed fluorescence may be a fluorescent material or a phosphorescent material, but in order to achieve high color purity, it is preferably a fluorescent material. Among them, pyrromethene derivatives can be preferably used because they provide a high fluorescence quantum yield and have better chromaticity durability. Among the pyrromethene derivatives, boron complexes of pyrromethene are preferred. Preferred examples of the boron complex of pyrromethene include compounds represented by the general formula (4) described below.
 また、本発明の実施の形態に係る粒子状色変換材料は、励起光から遅延蛍光材料へのエネルギー移動効率を高めるために、ルブレン等のアシストドーパントをさらに含有してもよい。 Furthermore, the particulate color conversion material according to the embodiment of the present invention may further contain an assist dopant such as rubrene in order to increase the efficiency of energy transfer from excitation light to the delayed fluorescent material.
 本発明の粒子状色変換材料における発光材料の含有量は、化合物のモル吸光係数、発光量子収率および励起波長における吸収強度、ならびに作製する粒子状色変換材料や色変換部材のサイズや厚み、透過率にもよるが、通常はマトリクス樹脂の100重量部に対して、1.0×10-4重量部以上30重量部以下であることが好ましい。また、当該発光材料の含有量は、1.0×10-3重量部以上10重量部以下であることがより好ましく、5.0×10-3重量部以上5重量部以下であることが特に好ましい。 The content of the luminescent material in the particulate color conversion material of the present invention is determined by the molar extinction coefficient of the compound, the emission quantum yield, the absorption intensity at the excitation wavelength, and the size and thickness of the particulate color conversion material or color conversion member to be produced. Although it depends on the transmittance, it is usually preferably 1.0 x 10 -4 parts by weight or more and 30 parts by weight or less per 100 parts by weight of the matrix resin. Further, the content of the luminescent material is more preferably 1.0 x 10 -3 parts by weight or more and 10 parts by weight or less, particularly preferably 5.0 x 10 -3 parts by weight or more and 5 parts by weight or less. preferable.
<マトリクス樹脂>
 本発明の実施の形態に係る粒子状色変換材料は、上述した少なくとも1種の発光材料を含有するマトリクス樹脂を備える。当該粒子状色変換材料において、マトリクス樹脂としては、成形加工性、透明性、耐熱性等に優れる材料が好適に用いられる。このようなマトリクス樹脂の例としては、例えば、アクリル酸系、メタクリル酸系、ポリケイ皮酸ビニル系、環ゴム系等の反応性ビニル基を有する光硬化型レジスト材料、エポキシ樹脂、シリコーン樹脂(シリコーンゴム、シリコーンゲル等のオルガノポリシロキサン硬化物(架橋物)を含む)、ウレア樹脂、フッ素樹脂、ポリカーボネート樹脂、アクリル樹脂、ウレタン樹脂、メラミン樹脂、ポリビニル樹脂、ポリアミド樹脂、フェノール樹脂、ポリビニルアルコール樹脂、セルロース樹脂、脂肪族エステル樹脂、芳香族エステル樹脂、脂肪族ポリオレフィン樹脂、芳香族ポリオレフィン樹脂等の公知のものが挙げられる。また、マトリクス樹脂としては、これらの樹脂の混合物や共重合体を用いても構わない。これらの樹脂を適宜設計することで、本発明の色変換部材の粒子状色変換材料に有用なマトリクス樹脂が得られる。
<Matrix resin>
A particulate color conversion material according to an embodiment of the present invention includes a matrix resin containing at least one type of luminescent material described above. In the particulate color conversion material, a material having excellent moldability, transparency, heat resistance, etc. is preferably used as the matrix resin. Examples of such matrix resins include photocurable resist materials having reactive vinyl groups such as acrylic acid, methacrylic acid, polyvinyl cinnamate, and ring rubber, epoxy resins, and silicone resins. rubber, silicone gel, etc.), urea resin, fluororesin, polycarbonate resin, acrylic resin, urethane resin, melamine resin, polyvinyl resin, polyamide resin, phenol resin, polyvinyl alcohol resin, Known resins include cellulose resin, aliphatic ester resin, aromatic ester resin, aliphatic polyolefin resin, and aromatic polyolefin resin. Furthermore, as the matrix resin, a mixture or copolymer of these resins may be used. By appropriately designing these resins, a matrix resin useful for the particulate color conversion material of the color conversion member of the present invention can be obtained.
 これらの樹脂の中でも、透明性や有機発光材料の分散性の観点から、上記マトリクス樹脂は、アクリル樹脂、アクリル酸エステルまたはメタクリル酸エステル部位を含む共重合樹脂、ポリエステル樹脂、シクロオレフィン樹脂、エポキシ樹脂、シリコーン樹脂のいずれかであることが好ましい。また、耐熱性の観点からは、上記マトリクス樹脂として、熱硬化性樹脂や光硬化性樹脂を好適に用いることができる。 Among these resins, from the viewpoint of transparency and dispersibility of organic light emitting materials, the above matrix resins include acrylic resins, copolymer resins containing acrylic ester or methacrylic ester moieties, polyester resins, cycloolefin resins, and epoxy resins. , silicone resin. Moreover, from the viewpoint of heat resistance, a thermosetting resin or a photocurable resin can be suitably used as the matrix resin.
 また、マトリクス樹脂のガラス転移温度(Tg)は、特に限定されるものではないが、30℃以上180℃以下であることが好ましい。マトリクス樹脂のTgが30℃以上である場合、光源からの入射光による熱や機器の駆動熱によるマトリクス樹脂の分子運動が抑制され、これにより、当該マトリクス樹脂中における発光材料の分散状態の変化が抑制されることから、粒子状色変換材料の耐久性の悪化を防ぐことができる。また、マトリクス樹脂のTgが180℃以下である場合、シート等に成形した場合のマトリクス樹脂の可撓性を確保することができる。マトリクス樹脂のTgは、より好ましくは50℃以上170℃以下であり、さらに好ましくは70℃以上160℃以下であり、特に好ましくは、90℃以上150℃以下である。 Furthermore, the glass transition temperature (Tg) of the matrix resin is not particularly limited, but is preferably 30° C. or higher and 180° C. or lower. When the Tg of the matrix resin is 30°C or higher, the molecular movement of the matrix resin due to the heat from the incident light from the light source or the driving heat of the equipment is suppressed, and thereby the change in the dispersion state of the luminescent material in the matrix resin is suppressed. Since this is suppressed, deterioration of the durability of the particulate color conversion material can be prevented. Further, when the Tg of the matrix resin is 180° C. or less, the flexibility of the matrix resin when molded into a sheet or the like can be ensured. The Tg of the matrix resin is more preferably 50°C or more and 170°C or less, still more preferably 70°C or more and 160°C or less, particularly preferably 90°C or more and 150°C or less.
 また、マトリクス樹脂の分子量は、用いられる樹脂の種類にもよるため、特に限定されるものではないが、3000以上1500000以下であることが好ましい。当該分子量が3000よりも小さい場合、マトリクス樹脂が脆くなり、成形した場合のマトリクス樹脂の可撓性が低くなる。また、当該分子量が1500000よりも大きい場合、マトリクス樹脂の成形時の粘度が過度に大きくなることや、マトリクス樹脂自体の化学的安定性が低下するといった問題がある。マトリクス樹脂の分子量は、より好ましくは5000以上1200000以下であり、さらに好ましくは7000以上1000000以下であり、特に好ましくは、10000以上800000以下である。 Furthermore, the molecular weight of the matrix resin is not particularly limited as it depends on the type of resin used, but it is preferably 3,000 or more and 1,500,000 or less. When the molecular weight is smaller than 3000, the matrix resin becomes brittle and the flexibility of the matrix resin when molded becomes low. Furthermore, if the molecular weight is greater than 1,500,000, there are problems such as the viscosity of the matrix resin during molding becoming excessively large and the chemical stability of the matrix resin itself decreasing. The molecular weight of the matrix resin is more preferably 5,000 or more and 1,200,000 or less, still more preferably 7,000 or more and 1,000,000 or less, particularly preferably 10,000 or more and 800,000 or less.
<添加剤>
 本発明の実施の形態に係る粒子状色変換材料は、上述した少なくとも1種の発光材料およびマトリクス樹脂以外に、その他の成分として添加剤を含有してもよい。添加剤としては、例えば、光安定化剤、酸化防止剤、加工および熱安定化剤、紫外線吸収剤等の耐光性安定化剤、可塑剤、エポキシ化合物等の架橋剤、アミン、酸無水物、イミダゾール等の硬化剤、シリカ粒子やシリコーン微粒子等の無機粒子およびシランカップリング剤等が挙げられる。
<Additives>
The particulate color conversion material according to the embodiment of the present invention may contain additives as other components in addition to the above-mentioned at least one luminescent material and matrix resin. Examples of additives include light stabilizers, antioxidants, processing and heat stabilizers, light resistance stabilizers such as ultraviolet absorbers, plasticizers, crosslinking agents such as epoxy compounds, amines, acid anhydrides, Examples include curing agents such as imidazole, inorganic particles such as silica particles and silicone fine particles, and silane coupling agents.
 光安定化剤としては、例えば、3級アミンやカテコール誘導体、Ni、Sc、V、Mn、Fe、Co、Cu、Y、Zr、Mo、Agおよびランタノイドからなる群より選ばれる少なくとも1種の遷移金属を含む、錯体や有機酸との塩などを挙げることができるが、特に限定されるものではない。また、これらの光安定化剤は、単独で使用してもよいし、複数併用してもよい。 Examples of the light stabilizer include tertiary amines, catechol derivatives, Ni, Sc, V, Mn, Fe, Co, Cu, Y, Zr, Mo, Ag, and at least one type of transition selected from the group consisting of lanthanoids. Examples include complexes containing metals and salts with organic acids, but are not particularly limited. Further, these light stabilizers may be used alone or in combination.
 酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-p-クレゾール、2,6-ジ-tert-ブチル-4-エチルフェノール等のフェノール系酸化防止剤を挙げることができるが、特にこれらに限定されるものではない。また、これらの酸化防止剤は、単独で使用してもよいし、複数併用してもよい。 Examples of antioxidants include phenolic antioxidants such as 2,6-di-tert-butyl-p-cresol and 2,6-di-tert-butyl-4-ethylphenol. It is not particularly limited to these. Further, these antioxidants may be used alone or in combination.
 加工および熱安定化剤としては、例えば、トリブチルホスファイト、トリシクロヘキシルホスファイト、トリエチルホスフィン、ジフェニルブチルホスフィン等のリン系安定化剤を挙げることができるが、特にこれらに限定されるものではない。また、これらの安定化剤は、単独で使用してもよいし、複数併用してもよい。 Examples of processing and thermal stabilizers include, but are not limited to, phosphorus stabilizers such as tributyl phosphite, tricyclohexyl phosphite, triethyl phosphine, and diphenylbutyl phosphine. Further, these stabilizers may be used alone or in combination.
 耐光性安定化剤としては、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール等のベンゾトリアゾール類を挙げることができるが、特にこれらに限定されるものではない。また、これらの耐光性安定化剤は、単独で使用してもよいし、複数併用してもよい。 Examples of light resistance stabilizers include 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2H- Examples include benzotriazoles such as benzotriazole, but are not particularly limited thereto. Further, these light resistance stabilizers may be used alone or in combination.
 散乱粒子としては、例えば、屈折率が1.7以上2.8以下である無機粒子が好ましい。当該無機粒子としては、例えば、チタニア、ジルコニア、アルミナ、セリア、酸化スズ、酸化インジウム、酸化鉄、酸化亜鉛、窒化アルミニウム、アルミニウム、スズ、チタンまたはジルコニウムの硫化物、チタンまたはジルコニウムの水酸化物等が挙げられる。 As the scattering particles, for example, inorganic particles having a refractive index of 1.7 or more and 2.8 or less are preferable. Examples of the inorganic particles include titania, zirconia, alumina, ceria, tin oxide, indium oxide, iron oxide, zinc oxide, aluminum nitride, aluminum, tin, titanium or zirconium sulfide, titanium or zirconium hydroxide, etc. can be mentioned.
 本発明の実施の形態に係る粒子状色変換材料において、これらの添加剤の含有量は、化合物のモル吸光係数、発光量子収率および励起波長における吸収強度、ならびに作製する粒子状色変換材料や色変換部材のサイズや厚み、透過率にもよるが、マトリクス樹脂の100重量部に対して、1.0×10-3重量部以上であることが好ましく、1.0×10-2重量部以上であることがより好ましく、1.0×10-1重量部以上であることが特に好ましい。また、これらの添加剤の含有量は、マトリクス樹脂の100重量部に対して、30重量部以下であることが好ましく、15重量部以下であることがより好ましく、10重量部以下であることが特に好ましい。 In the particulate color conversion material according to the embodiment of the present invention, the content of these additives is determined based on the molar absorption coefficient of the compound, the emission quantum yield, and the absorption intensity at the excitation wavelength, as well as the particulate color conversion material to be produced and the content of these additives. Although it depends on the size, thickness, and transmittance of the color conversion member, it is preferably 1.0 x 10 -3 parts by weight or more, and 1.0 x 10 -2 parts by weight based on 100 parts by weight of the matrix resin. The amount is more preferably at least 1.0×10 −1 parts by weight, particularly preferably at least 1.0×10 −1 parts by weight. Further, the content of these additives is preferably 30 parts by weight or less, more preferably 15 parts by weight or less, and preferably 10 parts by weight or less with respect to 100 parts by weight of the matrix resin. Particularly preferred.
<粒子状色変換材料>
 本発明の粒子状色変換材料は、上述したように、マトリクス樹脂中に少なくとも1種の発光材料を含有した粒子状の色変換材料であり、粉体として扱うことが可能である。そのため、複数種類の粒子状色変換材料を混合して使用することで、精緻な波長変換特性の調整を行うことが容易である。例えば、青色光の一部を色変換して白色光を得る場合、粒子状色変換材料として、緑色の発光を呈する発光材料を含有する緑色変換材料と、赤色の発光を呈する発光材料を含有する赤色変換材料とをそれぞれ用意し、それらの混合量を調整することで、白色光のホワイトバランスや色温度を容易に調整することができる。
<Particulate color conversion material>
As described above, the particulate color conversion material of the present invention is a particulate color conversion material containing at least one type of luminescent material in a matrix resin, and can be handled as a powder. Therefore, by mixing and using a plurality of types of particulate color conversion materials, it is easy to precisely adjust wavelength conversion characteristics. For example, when color converting a part of blue light to obtain white light, the particulate color conversion material contains a green conversion material containing a luminescent material that emits green light and a luminescent material that emits red light. The white balance and color temperature of white light can be easily adjusted by preparing a red color converting material and adjusting the amount of mixture thereof.
 さらに、粒子状色変換材料の粒子径や形状、マトリクス樹脂の屈折率などの制御によって、粒子状色変換材料の色変換特性を調整することや、色変換機能以外の機能を粒子状色変換材料に付与することも可能である。例えば、光散乱機能を発現させることが可能である。 Furthermore, by controlling the particle size and shape of the particulate color conversion material, the refractive index of the matrix resin, etc., the color conversion characteristics of the particulate color conversion material can be adjusted, and functions other than the color conversion function can be added to the particulate color conversion material. It is also possible to give. For example, it is possible to develop a light scattering function.
 本発明の粒子状色変換材料では、色変換材料の各粒子は個々に独立している。このため、粒子状色変換材料の粒子群あるいは粒子状色変換材料を用いた色変換部材の中に、高温条件での光照射によってラジカル種などの高活性種が発生した際、高活性種が当該粒子群の全体に伝播することが抑制される。これにより、粒子状色変換材料の粒子群あるいは粒子状色変換材料を用いた色変換部材全体の加速的な劣化を抑制することができる。 In the particulate color conversion material of the present invention, each particle of the color conversion material is individually independent. Therefore, when highly active species such as radicals are generated in a particle group of particulate color conversion material or a color conversion member using particulate color conversion material due to light irradiation under high temperature conditions, highly active species such as radicals are generated. Propagation to the entire particle group is suppressed. Thereby, accelerated deterioration of the particle group of the particulate color conversion material or the entire color conversion member using the particulate color conversion material can be suppressed.
 また、本発明の粒子状色変換材料では、マトリクス樹脂中に含まれる1種以上の発光材料として、少なくとも上述の遅延蛍光材料を用いている。このため、粒子状色変換材料およびこれを用いた色変換部材のさらなる耐久性の向上が可能であり、粒子状色変換材料およびこれを用いた色変換部材の高色純度と高耐久性とを両立させることができる。一般に、粒子状色変換材料およびこれを用いた色変換部材では、フィルムなどの連続相である状態と比較して界面が多くなるため、界面での反射による発光材料の励起回数の増加が生じやすい。これは、粒子状色変換材料に内包される発光材料の発光の一部が当該粒子状色変換材料の粒子内部と粒子外部との界面で反射され、粒子内部の発光材料を再度励起させることで起こる。この励起回数の増加は、三重項励起状態にある有機発光材料の生成数の増大や、三重項励起状態の有機発光材料からのエネルギー移動に起因して発生する一重項酸素などの活性の高い化学種の生成確率の増大、さらに、それらの活性種が周囲の分子と反応する機会の増加に繋がるため、粒子状色変換材料中の有機発光材料の劣化や分解を促進する。これに対し、遅延蛍光材料は、前述の通り、三重項励起状態を速やかに一重項励起状態に変換することができるため、界面での反射によって励起回数が増加しても、劣化しにくく、優れた耐久性を示すことができる。 Furthermore, in the particulate color conversion material of the present invention, at least the above-mentioned delayed fluorescent material is used as one or more types of luminescent material contained in the matrix resin. Therefore, it is possible to further improve the durability of the particulate color conversion material and the color conversion member using the same, and to achieve high color purity and high durability of the particulate color conversion material and the color conversion member using the same. It is possible to achieve both. In general, particulate color conversion materials and color conversion members using them have more interfaces than continuous phase materials such as films, so the number of excitations of the luminescent material tends to increase due to reflection at the interfaces. . This is because a part of the light emitted from the luminescent material contained in the particulate color conversion material is reflected at the interface between the inside and outside of the particle of the particulate color conversion material, re-exciting the luminescent material inside the particle. happen. This increase in the number of excitations is due to an increase in the number of organic light-emitting materials in the triplet excited state, and to highly active chemicals such as singlet oxygen generated due to energy transfer from the organic light-emitting material in the triplet excited state. This leads to an increase in the probability of species generation and an increase in the chance that these active species react with surrounding molecules, thus promoting the deterioration and decomposition of the organic light-emitting material in the particulate color conversion material. On the other hand, delayed fluorescent materials, as mentioned above, can quickly convert the triplet excited state to the singlet excited state, so they do not deteriorate easily even if the number of excitations increases due to reflection at the interface, making them an excellent material. It can show durability.
 本発明の粒子状色変換材料の平均粒径は、0.0010μm以上100μm以下であることが好ましく、0.010μm以上30μm以下であることがより好ましく、0.010μm以上10μm以下であることが特に好ましい。粒子状色変換材料の平均粒径は、顕微鏡観察やレーザー回折散乱法により粒度分布を測定して得られるものであるが、原則、顕微鏡観察による粒度分布の測定結果から得られるものとする。ただし、レーザー回折散乱法による粒度分布の測定結果から1μm以下の粒径が得られた場合、粒子状色変換材料の平均粒径としては、レーザー回折散乱法による粒径を採用する。また、顕微鏡観察による粒度分布の測定の場合、特に限定されないが、例えば、粒子状色変換材料の粉末のうち、100個程度の孤立粒子の粒径を測定し、その平均値を算出することにより、粒子状色変換材料の平均粒径を求めることができる。 The average particle size of the particulate color conversion material of the present invention is preferably 0.0010 μm or more and 100 μm or less, more preferably 0.010 μm or more and 30 μm or less, and especially 0.010 μm or more and 10 μm or less. preferable. The average particle diameter of the particulate color conversion material is obtained by measuring the particle size distribution by microscopic observation or laser diffraction scattering method, but in principle, it is obtained from the measurement results of the particle size distribution by microscopic observation. However, if a particle size of 1 μm or less is obtained from the measurement results of the particle size distribution by the laser diffraction scattering method, the particle size determined by the laser diffraction scattering method is used as the average particle size of the particulate color conversion material. In addition, in the case of measuring the particle size distribution by microscopic observation, for example, the particle size of about 100 isolated particles among the powder of the particulate color conversion material is measured, and the average value thereof is calculated. , the average particle size of the particulate color conversion material can be determined.
 本発明の粒子状色変換材料の形状は、特に限定されるものではなく、例えば、上述した図1~7に示した粒子状色変換材料2a、2bのように球体状であってもよいし、楕円体状等、球体状以外の形状であってもよい。中でも、本発明の粒子状色変換材料の形状は、真球度が高い形状の方が好ましい。粒子状色変換材料の真球度が高いことにより、当該粒子状色変換材料の粒子表面での望まない光散乱や粒子内部での多重反射による光学的損失を低減することができる。さらには、多重励起による発光材料(例えば粒子状色変換材料中の有機発光材料)の劣化促進を抑制することができる。 The shape of the particulate color conversion material of the present invention is not particularly limited, and may be spherical, for example, as in the particulate color conversion materials 2a and 2b shown in FIGS. 1 to 7 above. , or may have a shape other than a spherical shape, such as an ellipsoidal shape. Among these, the shape of the particulate color conversion material of the present invention is preferably a shape with high sphericity. The high sphericity of the particulate color conversion material makes it possible to reduce optical loss due to undesired light scattering on the surface of the particles of the particulate color conversion material and multiple reflections inside the particles. Furthermore, it is possible to suppress accelerated deterioration of a luminescent material (for example, an organic luminescent material in a particulate color conversion material) due to multiple excitation.
<粒子状色変換材料の作製方法>
 本発明の実施の形態に係る粒子状色変換材料の作製方法は、少なくとも1種の発光材料を含んだマトリクス樹脂を粒子状に成形できる方法であれば、特に限定されない。例えば、粒子状色変換材料は、界面重合法、W/O系液中乾燥法、ストーバー法、スプレードライ法、in Situ重合法、水溶液からの相分離法、有機溶媒からの相分離法、融解分散冷却法、および気中懸濁被覆法等の手法により、作製することができる。
<Method for producing particulate color conversion material>
The method for producing the particulate color conversion material according to the embodiment of the present invention is not particularly limited as long as it is a method that can mold a matrix resin containing at least one type of luminescent material into particles. For example, particulate color conversion materials can be produced by interfacial polymerization, W/O drying in liquid, Stover method, spray drying, in situ polymerization, phase separation from aqueous solutions, phase separation from organic solvents, and melting. It can be produced by methods such as a dispersion cooling method and an air suspension coating method.
 中でも、前述した発光材料、マトリクス樹脂および溶媒等の材料を所定量混合して作製した組成物を、スプレードライ法によって乾燥させることで粒子状に成形する方法が、粒子状色変換材料の簡便な作製方法として挙げられる。得られる粒子の形状が真球に近づくという観点では、前述した発光材料、マトリクス樹脂および有機溶媒等の材料を所定量混合して作製した組成物を、W/Oエマルジョン化した後、W/O系液中乾燥法によって乾燥させることで粒子状に成形する方法や、前述した発光材料、マトリクス樹脂を形成する原料モノマー、および溶媒等の材料を所定量混合して作製した組成物を、in Situ重合法、特に界面活性剤を用いてW/Oエマルジョン化した状態で反応させる乳化重合法によって重合させることで粒子状に成形する方法が、粒子状色変換材料の好適な作製方法として挙げられる。 Among them, a method of forming particles into particles by drying a composition prepared by mixing predetermined amounts of materials such as the above-mentioned luminescent material, matrix resin, and solvent using a spray drying method is a simple method for producing particulate color conversion materials. This can be mentioned as a manufacturing method. From the viewpoint that the shape of the obtained particles approaches a perfect sphere, a composition prepared by mixing predetermined amounts of materials such as the luminescent material, matrix resin, and organic solvent described above is made into a W/O emulsion, and then a W/O emulsion is formed. A composition prepared by mixing predetermined amounts of materials such as a luminescent material, a raw material monomer for forming a matrix resin, a solvent, etc., and a method of forming particles by drying in a system liquid, or an in-situ method. A preferred method for producing a particulate color conversion material is a polymerization method, in particular, a method in which the particulate color conversion material is formed into particles by polymerization by an emulsion polymerization method in which a W/O emulsion is reacted using a surfactant.
 また、粒子状色変換材料をW/O系液中乾燥法によって作製する場合、上記組成物のW/Oエマルジョン状態あるいは、上記組成物からの有機溶媒の除去中または除去後の微粒子状態のいずれかの段階において、追加でマトリクス樹脂を架橋硬化することにより、粒子の耐熱性を向上させる方法も、粒子状色変換材料の好適な作製方法として挙げられる。 In addition, when the particulate color conversion material is produced by a W/O-based in-liquid drying method, either the W/O emulsion state of the above composition or the fine particle state during or after the removal of the organic solvent from the above composition. A method of improving the heat resistance of the particles by additionally crosslinking and curing the matrix resin at this stage can also be cited as a suitable method for producing the particulate color conversion material.
 溶媒としては、例えば、水、2-プロパノール、エタノール、トルエン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ヘキサン、シクロヘキサン、テトラヒドロフラン、アセトン、テルピネオール、テキサノール、1,2-ジメトキシエタン、メチルセルソルブ、エチルセルソルブ、ブチルカルビトール、ブチルカルビトールアセテート、1-メトキシ-2-プロパノール、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの溶媒を2種類以上混合して使用することも可能である。これらの溶媒の中で、トルエンやメチルエチルケトン、酢酸メチル、酢酸エチル、テトラヒドロフランは、乾燥後の残存溶媒が少ない点で好適に用いられる。 Examples of the solvent include water, 2-propanol, ethanol, toluene, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, hexane, cyclohexane, tetrahydrofuran, acetone, terpineol, texanol, 1, Examples include 2-dimethoxyethane, methyl cellosolve, ethyl cellosolve, butyl carbitol, butyl carbitol acetate, 1-methoxy-2-propanol, propylene glycol monomethyl ether acetate, and the like. It is also possible to use a mixture of two or more of these solvents. Among these solvents, toluene, methyl ethyl ketone, methyl acetate, ethyl acetate, and tetrahydrofuran are preferably used because they leave little solvent remaining after drying.
<支持体>
 本発明の粒子状色変換材料は、それ自体のみ(すなわち粒子の状態)で使用してもよい。また、光学部材への適用性をより高める観点から、本発明の粒子状色変換材料は、支持体に含有させた状態で用いることが好ましい。本発明の粒子状色変換材料を含有する支持体は、例えば図1~7に示したように、本発明の色変換部材として用いることができる。
<Support>
The particulate color conversion material of the invention may be used as such (ie in the form of particles). Further, from the viewpoint of further enhancing applicability to optical members, the particulate color conversion material of the present invention is preferably used in a state in which it is contained in a support. A support containing the particulate color conversion material of the present invention can be used as a color conversion member of the present invention, for example, as shown in FIGS. 1 to 7.
 支持体の材質としては、特に制限無く、公知の金属、樹脂、ガラス、セラミック、紙等を使用することができるが、透明性や加工成形性の観点から、支持体は樹脂からなることが好ましい。支持体が樹脂からなる場合、粒子状色変換材料が当該支持体中に分散していることがより好ましい。本発明において、分散とは、一つの相をなす物質の中に、他の物質が散在することをいい、その分布は偏りがあってもよく、均一であってもよい。ただし、粒子状色変換材料を分散させると記載した場合、分散媒に完全に溶解して均一な1つの相を形成する態様を除く。本発明の粒子状色変換材料が支持体に分散されているか否かを確認するために、肉眼での観察、顕微鏡観察、発光分光法測定および屈折率測定などの方法を適宜用いることができる。支持体に好適な樹脂としては、例えば、上述のマトリクス樹脂で例示した樹脂が挙げられる。 As the material of the support, known metals, resins, glass, ceramics, paper, etc. can be used without particular limitations, but from the viewpoint of transparency and processability, it is preferable that the support is made of resin. . When the support is made of resin, it is more preferable that the particulate color conversion material is dispersed in the support. In the present invention, dispersion refers to the scattering of other substances in a substance forming one phase, and the distribution may be biased or uniform. However, when it is stated that the particulate color conversion material is dispersed, this excludes an embodiment in which it is completely dissolved in a dispersion medium to form one uniform phase. In order to confirm whether the particulate color conversion material of the present invention is dispersed in the support, methods such as visual observation, microscopic observation, emission spectroscopy measurement, and refractive index measurement can be used as appropriate. Examples of resins suitable for the support include the resins exemplified in the above-mentioned matrix resins.
 また、支持体が樹脂からなる場合、粒子状色変換材料のマトリクス樹脂と支持体を形成する樹脂とのSP値の差は、0.5(cal/cm30.5以上であることが好ましい。SP値の差が0.5(cal/cm30.5以上であることにより、粒子状色変換材料を、支持体中に溶解することなく分散させることができる。当該SP値の差は、1.0(cal/cm30.5以上であることがより好ましく、1.5(cal/cm30.5以上であることがより好ましく、2.0(cal/cm30.5以上であることが特に好ましい。また、当該SP値の差が大きすぎると、粒子同士が凝集して消光の原因となる。このため、当該SP値の差の上限値は、4.0(cal/cm30.5以下であることがより好ましく、3.0(cal/cm30.5以下であることがより一層好ましく、2.5(cal/cm30.5以下であることが特に好ましい。 Further, when the support is made of resin, the difference in SP value between the matrix resin of the particulate color conversion material and the resin forming the support is preferably 0.5 (cal/cm 3 ) or more. When the difference in SP value is 0.5 (cal/cm 3 ) or more, the particulate color conversion material can be dispersed in the support without being dissolved. The difference in SP value is more preferably 1.0 (cal/cm 3 ) 0.5 or more, more preferably 1.5 (cal/cm 3 ) 0.5 or more, and 2.0 (cal/cm 3 ) 3 ) It is particularly preferable that it is 0.5 or more. Furthermore, if the difference in SP value is too large, particles will aggregate with each other, causing quenching. Therefore, the upper limit of the difference in SP values is more preferably 4.0 (cal/cm 3 ) 0.5 or less, even more preferably 3.0 (cal/cm 3 ) 0.5 or less, 2.5 (cal/cm 3 ) 0.5 or less is particularly preferable.
 また、支持体が樹脂からなる場合、粒子状色変換材料のマトリクス樹脂のSP値は、当該支持体を形成する樹脂のSP値より大きいことが好ましい。 Furthermore, when the support is made of resin, the SP value of the matrix resin of the particulate color conversion material is preferably larger than the SP value of the resin forming the support.
 支持体の性状としては、特に限定されるものではないが、液体、ジェル、固体の状態でのものが挙げられる。支持体の形状としては、特に限定されるものではないが、粒状、塊状、シート状などが挙げられる。また、支持体の形状としては、型に充填された形式も挙げられる。中でも、後述の光源ユニットへの適用性をより高める観点で、支持体の形状はシート状であることが好ましい。 The nature of the support is not particularly limited, but includes liquid, gel, and solid states. The shape of the support is not particularly limited, but examples include granules, blocks, and sheets. Further, the shape of the support includes a type filled in a mold. Among these, from the viewpoint of further increasing applicability to a light source unit described below, the shape of the support is preferably a sheet.
 一方、LED光源との一体化や、パターニングされた部材との一体化の観点からは、支持体の形成手法として、型に充填する手法も好ましい。 On the other hand, from the viewpoint of integration with an LED light source or with a patterned member, a method of filling a mold is also preferable as a method of forming the support.
 上記のような支持体中に含まれる粒子状色変換材料は、1種類であってもよいし、複数種類であってもよい。 The number of particulate color conversion materials contained in the support as described above may be one or more types.
 本発明の色変換部材は、その一態様として、緑色の発光を呈する第1発光材料(緑色発光材料)を含有する粒子状色変換材料(以下、第1粒子状色変換材料という)と、赤色の発光を呈する第2発光材料(赤色発光材料)を含有する粒子状色変換材料(以下、第2粒子状色変換材料という)と、の少なくとも2種類を同一の支持体中に含むことが好ましい。これにより、本発明の色変換部材は、青色光の一部を色変換して白色光を得ることができる。 In one embodiment, the color conversion member of the present invention includes a particulate color conversion material (hereinafter referred to as a first particulate color conversion material) containing a first luminescent material (green luminescent material) that emits green light; It is preferable that the same support contains at least two types of particulate color conversion material (hereinafter referred to as second particulate color conversion material) containing a second light emitting material (red light emitting material) that emits light of . Thereby, the color conversion member of the present invention can convert a part of blue light into white light.
 すなわち、本発明の色変換部材は、上述した粒子状色変換材料および支持体を備え、当該粒子状色変換材料として、ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する第1発光材料と第1マトリクス樹脂とからなる第1粒子状色変換材料と、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する第2発光材料と第2マトリクス樹脂とからなる第2粒子状色変換材料と、を上述の支持体中に含有するものが好ましい。 That is, the color conversion member of the present invention includes the above-described particulate color conversion material and a support, and the particulate color conversion material includes a first light emission whose peak wavelength is observed in a region of 500 nm or more and less than 580 nm. A first particulate color conversion material made of a material and a first matrix resin, and a second particulate color conversion material made of a second matrix resin and a second luminescent material that emits light whose peak wavelength is observed in a region of 580 nm or more and 750 nm or less. A color converting material is preferably contained in the above-mentioned support.
 本発明において、第1粒子状色変換材料の第1発光材料は、半値幅が50nm以下の遅延蛍光を放出する有機発光材料(遅延蛍光材料)を少なくとも含むことがより好ましい。前述の通り、高いエネルギーを有する励起状態を経由する緑色発光材料(すなわち上記第1発光材料)が上記遅延蛍光材料を含むもの或いは上記遅延蛍光材料そのものであることにより、色変換部材の耐久性をさらに向上させることができる。 In the present invention, it is more preferable that the first luminescent material of the first particulate color conversion material includes at least an organic luminescent material (delayed fluorescent material) that emits delayed fluorescence with a half width of 50 nm or less. As mentioned above, the durability of the color conversion member can be improved by using the green light-emitting material that passes through an excited state with high energy (i.e., the first light-emitting material) containing the delayed fluorescent material or being the delayed fluorescent material itself. Further improvements can be made.
 一方、本発明において、第2粒子状色変換材料の第2発光材料は、上述した一般式(1)で表される部分構造を含む化合物、一般式(2)で表される化合物および一般式(3)で表される化合物のうち少なくとも一つを含有することが好ましい。 On the other hand, in the present invention, the second luminescent material of the second particulate color conversion material is a compound containing a partial structure represented by the above-mentioned general formula (1), a compound represented by the general formula (2), and a compound represented by the general formula (1). It is preferable to contain at least one of the compounds represented by (3).
 また、本発明において、第2粒子状色変換材料の第2発光材料は、高色純度の発光が得られる観点から、後述の一般式(4)で表される化合物を少なくとも含有することも好ましい。 Further, in the present invention, it is also preferable that the second luminescent material of the second particulate color conversion material contains at least a compound represented by the general formula (4) described below, from the viewpoint of obtaining luminescence with high color purity. .
 本発明の色変換部材の別態様として、粒子状色変換材料を含有する支持体を複数種類組み合わせた色変換部材も好ましい。例えば、当該別態様の色変換部材としては、緑色の発光を呈する第1粒子状色変換材料を含有する支持体と、赤色の発光を呈する第2粒子状色変換材料を含有する支持体と、を組み合わせてなるものが挙げられる。すなわち、本発明の好ましい態様として、ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する第1発光材料と第1マトリクス樹脂とからなる第1粒子状色変換材料を有する第1支持体と、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する第2発光材料と第2マトリクス樹脂とからなる第2粒子状色変換材料を有する第2支持体と、からなる色変換部材が挙げられる。複数種類の支持体を組み合わせる方法としては、組み合わせる各支持体の形状にもよるが、同一平面上に並べる方法や、積層させる方法等が挙げられる。 As another embodiment of the color conversion member of the present invention, a color conversion member in which a plurality of types of supports containing particulate color conversion materials are combined is also preferable. For example, the color conversion member of the other embodiment includes a support containing a first particulate color conversion material that emits green light, a support containing a second particulate color conversion material that emits red light, Examples include those made by combining the following. That is, as a preferred embodiment of the present invention, the first support has a first particulate color conversion material consisting of a first luminescent material and a first matrix resin that exhibits luminescence observed in a region with a peak wavelength of 500 nm or more and less than 580 nm. and a second support having a second particulate color conversion material made of a second luminescent material and a second matrix resin that exhibits luminescence observed in a region with a peak wavelength of 580 nm or more and 750 nm or less. can be mentioned. Methods for combining multiple types of supports include a method of arranging them on the same plane, a method of stacking them, etc., depending on the shape of each support to be combined.
 これらの第1発光材料および第2発光材料としては、特に限定なく、無機蛍光体、蛍光顔料、蛍光染料、量子ドット等の公知の発光材料が挙げられる。特に、色再現性の高い白色光を得ることができることから、第1発光材料および第2発光材料として、有機発光材料が好ましい。 These first light-emitting materials and second light-emitting materials are not particularly limited, and include known light-emitting materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots. In particular, organic light-emitting materials are preferable as the first light-emitting material and the second light-emitting material because white light with high color reproducibility can be obtained.
 上述した第1粒子状色変換材料および第2粒子状色変換材料のそれぞれにおける有機発光材料とマトリクス樹脂との組み合わせを最適化することで、有機発光材料の発光ピーク波長を望ましい波長にシフトし、色域を拡大することができる。すなわち、第1粒子状色変換材料の第1マトリクス樹脂と第2粒子状色変換材料の第2マトリクス樹脂とは、互いに同じ樹脂であってもよいし、異なる樹脂であってもよい。なお、2つのマトリクス樹脂が互いに異なるとは、樹脂の組成が異なることをいう。 By optimizing the combination of the organic luminescent material and matrix resin in each of the first particulate color conversion material and the second particulate color conversion material described above, the emission peak wavelength of the organic luminescent material is shifted to a desired wavelength, Color gamut can be expanded. That is, the first matrix resin of the first particulate color conversion material and the second matrix resin of the second particulate color conversion material may be the same resin or different resins. Note that the two matrix resins being different from each other means that the compositions of the resins are different.
 また、マトリクス樹脂の溶解パラメータであるSP値と、有機発光材料の発光ピーク波長とには強い関係がある。SP値が大きいマトリクス樹脂中では、マトリクス樹脂と有機発光材料との間の相互作用により、有機発光材料の励起状態が安定化される。そのため、SP値が小さいマトリクス樹脂中と比較して、この有機発光材料の発光ピーク波長は、長波長側にシフトする。したがって、有機発光材料を最適なSP値を持つマトリクス樹脂中に分散させることで、有機発光材料の発光ピーク波長の最適化が可能である。 Furthermore, there is a strong relationship between the SP value, which is the solubility parameter of the matrix resin, and the emission peak wavelength of the organic light-emitting material. In a matrix resin with a large SP value, the interaction between the matrix resin and the organic luminescent material stabilizes the excited state of the organic luminescent material. Therefore, compared to the matrix resin having a small SP value, the emission peak wavelength of this organic light-emitting material shifts to the longer wavelength side. Therefore, by dispersing the organic light-emitting material in a matrix resin having an optimal SP value, it is possible to optimize the emission peak wavelength of the organic light-emitting material.
 例えば、第1マトリクス樹脂のSP値をSPA(cal/cm30.5とし、第2マトリクス樹脂のSP値をSPB(cal/cm30.5とするとき、SPA≦SPBであることが好ましい。この場合、第1粒子状色変換材料および第2粒子状色変換材料における緑色光と赤色光との発光ピーク波長の差が、同一のマトリクス樹脂中に有機発光材料を分散させた場合と比較して大きくなり、その結果、色域が拡大する。 For example, when the SP value of the first matrix resin is SP A (cal/cm 3 ) 0.5 and the SP value of the second matrix resin is SP B (cal/cm 3 ) 0.5 , SP A ≦SP B. is preferred. In this case, the difference in the emission peak wavelengths of green light and red light in the first particulate color conversion material and the second particulate color conversion material is greater than that in the case where the organic light emitting material is dispersed in the same matrix resin. As a result, the color gamut is expanded.
 中でも、SPB≧9.5であることが好ましい。SPBが大きい値である程、第2粒子状色変換材料における赤色光の発光ピーク波長がより大きく長波長化し、その結果、第2粒子状色変換材料からは、深い赤色の光を発光することができる。その効果をより大きくするという観点から、より好ましくは、SPB≧10.0である。 Among these, it is preferable that SP B ≧9.5. The larger the value of SP B is, the longer the emission peak wavelength of red light in the second particulate color conversion material becomes, and as a result, the second particulate color conversion material emits deep red light. be able to. From the viewpoint of increasing the effect, it is more preferable that SP B ≧10.0.
 SPBの上限値は特に限定されないが、SPB≦15.0であるマトリクス樹脂は、有機発光材料の分散性がよいため、好適に用いることができる。その効果をより大きくするという観点から、より好ましくはSPB≦14.0であり、さらに好ましくはSPB≦13.0であり、特に好ましくはSPB≦12.0である。 Although the upper limit of SP B is not particularly limited, a matrix resin in which SP B ≦15.0 has good dispersibility of the organic light emitting material, and therefore can be suitably used. From the viewpoint of increasing the effect, it is more preferable that SP B ≦14.0, still more preferably SP B ≦13.0, particularly preferably SP B ≦12.0.
 また、SPA≦11.0である場合、第1粒子状色変換材料における緑色光の発光ピーク波長の長波長化が抑制され、その結果、第1粒子状色変換材料および第2粒子状色変換材料における緑色光と赤色光との発光ピーク波長の差が大きくなる。このため、SPA≦11.0であることが好ましい。その効果をより大きくするという観点から、より好ましくは、SPA≦10.5であり、さらに好ましくはSPA≦10.0である。 Further, when SP A ≦11.0, the emission peak wavelength of green light in the first particulate color conversion material is suppressed from becoming longer, and as a result, the first particulate color conversion material and the second particulate color The difference in the emission peak wavelengths of green light and red light in the conversion material increases. Therefore, it is preferable that SP A ≦11.0. From the viewpoint of increasing the effect, it is more preferable that SP A ≦10.5, and even more preferably that SP A ≦10.0.
 SPAの下限値は特に限定されないが、SPA≧7.0であるマトリクス樹脂は、有機発光材料の分散性がよいため、好適に用いることができる。その効果をより大きくするという観点から、より好ましくはSPA≧7.4であり、さらに好ましくはSPA≧7.8であり、特に好ましくはSPA≧8.0である。 Although the lower limit of SP A is not particularly limited, a matrix resin in which SP A ≧7.0 has good dispersibility of the organic light-emitting material, and thus can be suitably used. From the viewpoint of increasing the effect, it is more preferable that SP A ≧7.4, still more preferably SP A ≧7.8, particularly preferably SP A ≧8.0.
 ここで、溶解パラメータ(SP値)は、一般的に用いられている、Poly.Eng.Sci.,vol.14,No.2,pp.147-154(1974)等に記載のFedorsの推算法を用い、樹脂を構成するモノマーの種類および比率から算出される値である。複数種類の樹脂の混合物に関しても、同様の方法によってSP値を算出することができる。例えば、ポリメタクリル酸メチルのSP値は9.9(cal/cm30.5と算出でき、ポリエチレンテレフタレート(PET)のSP値は11.6(cal/cm30.5と算出でき、ビスフェノールA系エポキシ樹脂のSP値は10.9(cal/cm30.5と算出できる。 Here, the solubility parameter (SP value) is determined by the generally used Fedors estimation method described in Poly.Eng.Sci., vol. 14, No. 2, pp. 147-154 (1974), etc. This is a value calculated from the types and ratios of monomers constituting the resin. The SP value can also be calculated using a similar method for a mixture of multiple types of resins. For example, the SP value of polymethyl methacrylate can be calculated as 9.9 (cal/cm 3 ) 0.5 , the SP value of polyethylene terephthalate (PET) can be calculated as 11.6 (cal/cm 3 ) 0.5, and the SP value of polymethyl methacrylate (PET) can be calculated as 11.6 (cal/cm 3 ) 0.5 . The SP value of the epoxy resin can be calculated as 10.9 (cal/cm 3 ) 0.5 .
 樹脂の代表的なSP値は、表1に示す通りである。上述した第1マトリクス樹脂および第2マトリクス樹脂は、例えば、表1に示すような樹脂の中から任意に組み合わせて用いることができる。 Typical SP values of the resins are shown in Table 1. The above-described first matrix resin and second matrix resin can be used in any combination from among the resins shown in Table 1, for example.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 本発明の色変換部材の別態様として、色変換部材の支持体は、本発明の粒子状色変換材料以外に、少なくとも1種の発光材料を含有することも好ましい。中でも、色純度の観点から、色変換部材の支持体は、少なくとも1種の有機発光材料を含有することがより好ましく、上述した一般式(1)で表される部分構造を含む化合物、一般式(2)で表される化合物および一般式(3)で表される化合物のうち少なくとも一つを含有することが特に好ましい。また、高色純度の発光が得られるという観点から、色変換部材の支持体は、上記発光材料の一つとして、一般式(4)で表される化合物を少なくとも含有することも好ましい。 As another embodiment of the color conversion member of the present invention, the support of the color conversion member preferably contains at least one type of luminescent material in addition to the particulate color conversion material of the present invention. Among them, from the viewpoint of color purity, it is more preferable that the support of the color conversion member contains at least one kind of organic light-emitting material, such as a compound containing a partial structure represented by the above-mentioned general formula (1), a general formula It is particularly preferable to contain at least one of the compound represented by (2) and the compound represented by general formula (3). Further, from the viewpoint of obtaining light emission with high color purity, it is also preferable that the support of the color conversion member contains at least a compound represented by general formula (4) as one of the above-mentioned light-emitting materials.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(4)において、Xは、C-R7またはNである。R1~R9は、それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。R1~R9は、それぞれ独立に置換されてもよい。これらR1~R9の各々を置換する置換基は、上述した一般式(2)または一般式(3)における置換基Raと同様の群から選ばれる。 In general formula (4), X is CR 7 or N. R 1 to R 9 may be the same or different, and include hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, an alkylthio group, Aryl ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group , a phosphine oxide group, and a fused ring and an aliphatic ring formed between adjacent substituents. R 1 to R 9 may each be independently substituted. The substituents for each of R 1 to R 9 are selected from the same group as the substituent Ra in the above-mentioned general formula (2) or general formula (3).
 光安定性の観点から、一般式(4)中のXは、C-R7であることが好ましい。また、より高い蛍光量子収率を与え且つより熱分解しづらいという観点および光安定性の観点から、一般式(4)中のXがC-R7であり、R7が置換もしくは無置換のアリール基であることが好ましい。アリール基としては、発光波長を損なわないという観点から、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましく、置換もしくは無置換のフェニル基であることがより好ましい。 From the viewpoint of photostability, X in general formula (4) is preferably CR 7 . In addition, from the viewpoint of providing a higher fluorescence quantum yield and being more difficult to thermally decompose, and from the viewpoint of photostability, X in general formula (4) is CR 7 and R 7 is substituted or unsubstituted. An aryl group is preferred. From the viewpoint of not impairing the emission wavelength, the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, or an anthracenyl group, and a substituted or unsubstituted phenyl group is more preferable. preferable.
 一般式(4)において、R8およびR9は、フッ素、含フッ素アルキル基、含フッ素ヘテロアリール基または含フッ素アリール基、シアノ基であることが好ましい。特に、励起光に対して安定でより高い蛍光量子収率が得られることから、R8およびR9は、フッ素またはシアノ基であることがより好ましい。 In general formula (4), R 8 and R 9 are preferably fluorine, a fluorine-containing alkyl group, a fluorine-containing heteroaryl group, a fluorine-containing aryl group, or a cyano group. In particular, R 8 and R 9 are preferably fluorine or cyano groups, since they are stable to excitation light and a higher fluorescence quantum yield can be obtained.
 一般式(4)で表される化合物の好ましい第一例として、R1、R3、R4およびR6の全てが、それぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基であり、さらに、XがC-R7であり、R7が置換もしくは無置換のフェニル基である場合が挙げられる。この場合、R1、R3、R4、R6およびR7の少なくとも一つが、メトキシ基で置換されたフェニル基であることが特に好ましい。 As a first preferred example of the compound represented by the general formula (4), all of R 1 , R 3 , R 4 and R 6 may be the same or different, and are substituted or unsubstituted phenyl groups; , Further examples include the case where X is CR 7 and R 7 is a substituted or unsubstituted phenyl group. In this case, it is particularly preferred that at least one of R 1 , R 3 , R 4 , R 6 and R 7 is a phenyl group substituted with a methoxy group.
 一般式(4)で表される化合物の好ましい第二例として、R1、R3、R4およびR6の全てが、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基であり、さらに、XがC-R7であり、R7が置換もしくは無置換のフェニル基である場合が挙げられる。この場合、R2およびR5がそれぞれ同じでも異なっていてもよく、置換もしくは無置換のエステル基であることが特に好ましい。 As a second preferred example of the compound represented by general formula (4), all of R 1 , R 3 , R 4 and R 6 may be the same or different, and are substituted or unsubstituted alkyl groups; , Further examples include the case where X is CR 7 and R 7 is a substituted or unsubstituted phenyl group. In this case, R 2 and R 5 may be the same or different, and are particularly preferably substituted or unsubstituted ester groups.
 また、一般式(4)で表される化合物の好ましい第三例として、R1とR2、R2とR3、R4とR5、およびR5とR6の4組のうち少なくとも1組が、下記一般式(5A)~(5D)のいずれかの環構造であることが挙げられる。一般式(5A)~(5D)の各々で表される各環構造は、二重結合を有している。このため、当該各環構造のいずれかを上記化合物中に導入することにより、共役を拡張させ、発光を長波長化させることができる。さらに、上記化合物中に導入した環構造によって二重結合部位を中心骨格に化学結合で固定できるため、励起状態での過度な構造緩和を抑制することができ、色純度の良い発光を得ることができる。この第三例 において、R2およびR3が一般式(5D)で表される環構造であり、一般式(5D)中のArが置換もしくは無置換のベンゼン環であり、一般式(5D)中のR101およびR102が、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基または置換もしくは無置換のフェニル基であり、XがC-R7であり、R7が置換もしくは無置換のフェニル基である場合が好適な例として挙げられる。この場合、R4およびR6は、それぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基であることがより好ましい。また、一般式(5D)中のR101とR102とが環を形成することも好ましい。一般式(5A)~(5D)中、R101、R102およびR201~R204は、上述した一般式(4)におけるR1~R7と同義である。 Further, as a third preferable example of the compound represented by the general formula (4), at least one of the four groups R 1 and R 2 , R 2 and R 3 , R 4 and R 5 , and R 5 and R 6 The set may be a ring structure of any one of the following general formulas (5A) to (5D). Each ring structure represented by each of the general formulas (5A) to (5D) has a double bond. Therefore, by introducing any one of the ring structures into the above compound, the conjugation can be expanded and the wavelength of the emitted light can be increased. Furthermore, because the ring structure introduced into the above compound allows the double bond site to be fixed to the central skeleton through chemical bonds, excessive structural relaxation in the excited state can be suppressed, making it possible to obtain light emission with good color purity. can. In this third example, R 2 and R 3 are ring structures represented by the general formula (5D), Ar in the general formula (5D) is a substituted or unsubstituted benzene ring, and the general formula (5D) R 101 and R 102 in the formula may be the same or different and are a substituted or unsubstituted alkyl group or a substituted or unsubstituted phenyl group, X is CR 7 , and R 7 is a substituted or A preferred example is an unsubstituted phenyl group. In this case, R 4 and R 6 may be the same or different, and are preferably substituted or unsubstituted phenyl groups. Further, it is also preferable that R 101 and R 102 in general formula (5D) form a ring. In general formulas (5A) to (5D), R 101 , R 102 and R 201 to R 204 have the same meanings as R 1 to R 7 in general formula (4) described above.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 本発明の色変換部材の別態様として、色変換部材の支持体は、酸素バリア性を有することも好ましい。酸素バリア性とは、酸素透過度が低い特性を示す。本発明においては、支持体の酸素透過度は、1.0cc/m2・day・atm以下であることが好ましく、0.5cc/m2・day・atm以下であることがより好ましく、0.1cc/m2・day・atm以下であることが特に好ましい。 As another embodiment of the color conversion member of the present invention, the support of the color conversion member preferably has oxygen barrier properties. Oxygen barrier properties refer to characteristics of low oxygen permeability. In the present invention, the oxygen permeability of the support is preferably 1.0 cc/m 2 ·day · atm or less, more preferably 0.5 cc/m 2 ·day · atm or less, and 0.5 cc/m 2 ·day · atm or less. It is particularly preferable that it is 1 cc/m 2 ·day · atm or less.
 なお、酸素透過度は、膜厚が均一な平面状試験片を用い、特に記載がない場合、温度20℃、湿度0%RHの条件で、モコン(MOCON)社(米国)製の酸素透過率測定装置(機種名、“オキシトラン”(登録商標)(“OXTRAN”2/20))を使用して、JIS K7126-2(2006)に記載の電解センサ法に基づいて測定したときの値である。 In addition, the oxygen permeability was measured using a flat test piece with a uniform film thickness, unless otherwise specified, under the conditions of a temperature of 20°C and a humidity of 0% RH. This value is measured using a measuring device (model name: "OXTRAN" (registered trademark) ("OXTRAN" 2/20)) based on the electrolytic sensor method described in JIS K7126-2 (2006). .
 上述の通り、酸素が存在しない場合には、反応性の高い三重項励起状態の有機発光材料とその周囲の分子との反応が当該有機発光材料の劣化要因となり得る。しかし、上記三重項励起状態となる有機発光材料が遅延蛍光材料である場合、三重項励起状態の遅延蛍光材料は、速やかに一重項励起状態の遅延蛍光材料に変換できる。そのため、酸素が存在しない場合には、遅延蛍光材料は、従来の有機発光材料(遅延蛍光を放出しない有機発光材料)よりも大幅に優れた耐久性を示すことができる。 As mentioned above, in the absence of oxygen, the reaction between the highly reactive organic light-emitting material in the triplet excited state and surrounding molecules can be a factor in the deterioration of the organic light-emitting material. However, when the organic light-emitting material in the triplet excited state is a delayed fluorescent material, the delayed fluorescent material in the triplet excited state can be quickly converted to the delayed fluorescent material in the singlet excited state. Therefore, in the absence of oxygen, delayed fluorescent materials can exhibit significantly greater durability than conventional organic light emitting materials (organic light emitting materials that do not emit delayed fluorescence).
 また、本発明の色変換部材の別態様として、色変換部材は、例えば図4~7に示したように、支持体の表面の少なくとも一部に酸素バリア性の層(すなわち酸素バリア層)を有することも好ましい。支持体への酸素の透過を酸素バリア層によって遮断した場合、上述の通り、遅延蛍光材料は、従来の有機発光材料よりも大幅に優れた耐久性を示すことができる。本発明においては、当該酸素バリア層の酸素透過度は、2.0cc/m2・day・atm以下であることが好ましく、1.0cc/m2・day・atm以下であることがより好ましく、0.5cc/m2・day・atm以下であることがさらに好ましく、0.1cc/m2・day・atm以下であることが特に好ましい。 Further, as another embodiment of the color conversion member of the present invention, the color conversion member has an oxygen barrier layer (that is, an oxygen barrier layer) on at least a portion of the surface of the support, as shown in FIGS. 4 to 7, for example. It is also preferable to have When the permeation of oxygen into the support is blocked by an oxygen barrier layer, delayed fluorescent materials can exhibit significantly greater durability than conventional organic light-emitting materials, as described above. In the present invention, the oxygen permeability of the oxygen barrier layer is preferably 2.0 cc/m 2 ·day · atm or less, more preferably 1.0 cc/m 2 ·day · atm or less, It is more preferably 0.5 cc/m 2 ·day · atm or less, and particularly preferably 0.1 cc/m 2 ·day · atm or less.
 また、上記酸素バリア層としては、ガラス層、無機酸化物層、無機窒化物層、樹脂層等が挙げられる。上記酸素バリア層を構成する無機酸化物としては、コストの観点から、酸化ケイ素、酸化アルミニウムが好ましく、中でも、酸化アルミニウムが特に好適に用いることができる。上記酸素バリア層の一例である樹脂層としては、酸素バリア性の高さの観点から、ポリオール系樹脂からなる層がより好ましく、中でも、ポリビニルアルコール等の酢酸ビニルのケン化物やエチレン-ビニルアルコール共重合体、およびこれらの樹脂を含む混合物からなる層が、酸素バリア性が特に優れるため、より一層好ましい。 Further, examples of the oxygen barrier layer include a glass layer, an inorganic oxide layer, an inorganic nitride layer, a resin layer, and the like. As the inorganic oxide constituting the oxygen barrier layer, from the viewpoint of cost, silicon oxide and aluminum oxide are preferable, and among them, aluminum oxide can be particularly preferably used. As the resin layer, which is an example of the oxygen barrier layer, from the viewpoint of high oxygen barrier properties, a layer made of polyol resin is more preferable, and among them, saponified vinyl acetate such as polyvinyl alcohol, ethylene-vinyl alcohol, etc. A layer made of a polymer and a mixture containing these resins is even more preferable because it has particularly excellent oxygen barrier properties.
 本発明の色変換部材の更なる別態様として、粒子状色変換材料を含有する支持体が酸素バリア性を有し、かつ、当該支持体の表面の少なくとも一部が上述の酸素バリア層によって被覆されている色変換部材も、より高い酸素バリア性が得られるため、好ましい。例えば、当該別態様の色変換部材の構成としては、本発明の粒子状色変換材料と酸素バリア性の支持体とからなる色変換部材の層(色変換層)の両面にバリアフィルム等の酸素バリア層を積層させる構成が挙げられる。この場合、支持体の全表面のうち、バリアフィルムで覆われていない端部からの酸素の侵入は、支持体の酸素バリア性によって防ぐことができ、当該端部での粒子状色変換材料の劣化を抑制することができる。 As a further embodiment of the color conversion member of the present invention, the support containing the particulate color conversion material has oxygen barrier properties, and at least a part of the surface of the support is covered with the above-mentioned oxygen barrier layer. The color conversion member described above is also preferable because higher oxygen barrier properties can be obtained. For example, as for the structure of the color conversion member of the other embodiment, an oxygen barrier film or the like is provided on both sides of the layer (color conversion layer) of the color conversion member consisting of the particulate color conversion material of the present invention and an oxygen barrier support. An example is a structure in which barrier layers are laminated. In this case, the oxygen barrier properties of the support can prevent oxygen from entering from the edges of the entire surface of the support that are not covered with the barrier film, and the particulate color conversion material at the edges can be prevented from entering through the edges that are not covered with the barrier film. Deterioration can be suppressed.
 本発明の色変換部材に使用することができる支持体は、上述した粒子状色変換材料や発光材料以外に、必要に応じて添加剤を含有することができる。当該添加剤としては、例えば、光吸収色素や光吸収顔料、酸化防止剤、加工および熱安定化剤、紫外線吸収剤等の耐光性安定化剤、分散剤やレベリング剤、可塑剤、エポキシ化合物等の架橋剤、アミン、酸無水物、イミダゾール等の硬化剤、接着補助剤、酸化チタン粒子やジルコニア粒子、シリカ粒子等の無機粒子およびシランカップリング剤等が挙げられる。 The support that can be used in the color conversion member of the present invention can contain additives, if necessary, in addition to the particulate color conversion material and luminescent material described above. Examples of such additives include light-absorbing dyes, light-absorbing pigments, antioxidants, processing and heat stabilizers, light resistance stabilizers such as ultraviolet absorbers, dispersants and leveling agents, plasticizers, epoxy compounds, etc. curing agents such as amines, acid anhydrides, and imidazole, adhesion aids, inorganic particles such as titanium oxide particles, zirconia particles, and silica particles, and silane coupling agents.
<色変換部材の作製方法>
 本発明の実施の形態に係る色変換部材の作製方法は、本発明の粒子状色変換材料を含んだ支持体を所望の形状に成形できる方法であれば、特に限定されない。例えば、本発明の粒子状色変換材料、支持体となる樹脂、および溶剤等を混合して組成物を作製し、その後、当該組成物を、基材上に塗布して乾燥することにより、本発明の粒子状色変換材料を含んだ支持体をシート状に成形する方法が挙げられる。また、本発明の粒子状色変換材料と、支持体となる樹脂と、を加熱しながら混錬し、押し出し機を用いて成形する方法も挙げられる。
<Method for manufacturing color conversion member>
The method for producing the color conversion member according to the embodiment of the present invention is not particularly limited as long as it is a method that can mold a support containing the particulate color conversion material of the present invention into a desired shape. For example, a composition is prepared by mixing the particulate color conversion material of the present invention, a resin serving as a support, a solvent, etc., and then the composition is applied onto a substrate and dried. Examples include a method of forming a support containing the particulate color conversion material of the invention into a sheet shape. Another example is a method in which the particulate color conversion material of the present invention and a resin serving as a support are kneaded while heating and molded using an extruder.
<色変換基板>
 本発明の実施の形態に係る色変換基板(以下、「本発明の色変換基板」と略記する場合がある)は、少なくとも本発明の粒子状色変換材料または本発明の色変換部材を備えるように構成される。例えば、本発明の色変換基板は、透明基板上に、複数の色変換層を備えるものである。本発明において、色変換層は、赤色変換層と緑色変換層とを含むことが好ましい。赤色変換層は、少なくとも青色光を吸収して赤色光を発する蛍光体材料によって形成されている。緑色変換層は、少なくとも青色光を吸収して緑色光を発する蛍光体材料によって形成されている。また、本発明の色変換基板には、隔壁が形成されていてもよく、色変換層は、隔壁と隔壁との間(凹部)に配置されていることが好ましい。本発明の色変換基板は、透明基板側から励起光を入射させ、透明基板と反対の側から発光を視認するものであってもよいし、色変換層側から励起光を入射させ、透明基板側から発光を視認するものであってもよい。色変換層の量子収率は、ピーク波長が440nm以上460nm以下の青色光を色変換基板に照射したとき、通常は0.5以上であり、好ましくは0.7以上であり、より好ましくは0.8以上であり、特に好ましくは0.9以上である。
<Color conversion board>
A color conversion substrate according to an embodiment of the present invention (hereinafter sometimes abbreviated as "color conversion substrate of the present invention") includes at least the particulate color conversion material of the present invention or the color conversion member of the present invention. It is composed of For example, the color conversion substrate of the present invention includes a plurality of color conversion layers on a transparent substrate. In the present invention, the color conversion layer preferably includes a red conversion layer and a green conversion layer. The red conversion layer is formed of a phosphor material that absorbs at least blue light and emits red light. The green color conversion layer is formed of a phosphor material that absorbs at least blue light and emits green light. Moreover, partition walls may be formed in the color conversion substrate of the present invention, and the color conversion layer is preferably arranged between the partition walls (in a recess). The color conversion substrate of the present invention may be one in which excitation light is input from the transparent substrate side and emission is visually recognized from the side opposite to the transparent substrate, or excitation light is input from the color conversion layer side and the transparent substrate The light emission may be visually recognized from the side. The quantum yield of the color conversion layer is usually 0.5 or more, preferably 0.7 or more, more preferably 0 when the color conversion substrate is irradiated with blue light having a peak wavelength of 440 nm or more and 460 nm or less. .8 or more, particularly preferably 0.9 or more.
<インク>
 本発明の粒子状色変換材料または色変換部材は、インクに用いることもできる。本発明の実施の形態に係るインク(以下、「本発明のインク」と略記する場合がある)は、少なくとも本発明の粒子状色変換材料または色変換部材を含んだ液体、ジェルまたは固体の状態に構成され、文字等の記載や表面への色付けのために用いられるものである。本発明のインクは、本発明の粒子状色変換材料または色変換部材を用いることで、高色純度の発光と高耐久性とを両立させることができるため、特に、セキュリティ印刷用途のための蛍光インクとして好ましく用いることができる。
<Ink>
The particulate color conversion material or color conversion member of the present invention can also be used in ink. The ink according to the embodiment of the present invention (hereinafter sometimes abbreviated as "the ink of the present invention") is in a liquid, gel, or solid state containing at least the particulate color conversion material or color conversion member of the present invention. It is used for writing characters and coloring the surface. By using the particulate color conversion material or color conversion member of the present invention, the ink of the present invention can achieve both luminescence with high color purity and high durability. It can be preferably used as an ink.
<光源ユニット>
 本発明の実施の形態に係る光源ユニット(以下、「本発明の光源ユニット」と略記する場合がある)は、少なくとも、光源と、上述の粒子状色変換材料または色変換部材と、を備えるよう構成されたものである。本発明の光源ユニットにおいて、光源と粒子状色変換材料または色変換部材との配置方法については特に限定されず、光源と粒子状色変換材料または色変換部材とを密着させた構成を取ってもよいし、光源と粒子状色変換材料または色変換部材とを離したリモートフォスファー形式を取ってもよい。また、本発明の光源ユニットは、色純度を高める目的で、さらにカラーフィルターを備える構成を取ってもよい。
<Light source unit>
A light source unit according to an embodiment of the present invention (hereinafter sometimes abbreviated as "a light source unit of the present invention") includes at least a light source and the above-mentioned particulate color conversion material or color conversion member. It is constructed. In the light source unit of the present invention, the method of arranging the light source and the particulate color conversion material or color conversion member is not particularly limited. Alternatively, a remote phosphor format may be used in which the light source and the particulate color conversion material or color conversion member are separated. Further, the light source unit of the present invention may further include a color filter for the purpose of increasing color purity.
<光源>
 本発明の光源ユニットが備える光源の種類は、本発明の粒子状色変換材料または色変換部材に用いられる発光材料が吸収可能な波長領域に発光を示すものであれば、いずれの光源でも用いることができる。例えば、熱陰極管や冷陰極管、無機エレクトロルミネッセンス(EL)などの蛍光性光源、有機EL素子光源、LED光源、白熱光源、あるいは太陽光など、いずれの励起光の光源でも原理的には利用可能である。これらの中でも、LED光源が好適な光源である。例えば、波長400nm以上500nm以下の範囲に極大発光を有する発光ダイオードが、より好適なLED光源である。ディスプレイや照明用途では、青色光の色純度を高められる点で、波長400nm以上500nm以下の範囲に極大発光を有する発光ダイオード(青色LED光源)が、より一層好適な光源である。さらに、本発明の光源ユニットが備える光源としては、波長430nm以上480nm以下の範囲に極大発光を有する青色LED光源がより好ましく、波長450nm以上470nm以下の範囲に極大発光を有する青色LED光源がさらに好ましい。
<Light source>
As for the type of light source provided in the light source unit of the present invention, any light source may be used as long as it emits light in a wavelength range that can be absorbed by the particulate color conversion material of the present invention or the luminescent material used in the color conversion member. Can be done. For example, any excitation light source can be used in principle, such as hot cathode tubes, cold cathode tubes, fluorescent light sources such as inorganic electroluminescence (EL), organic EL light sources, LED light sources, incandescent light sources, or sunlight. It is possible. Among these, an LED light source is a suitable light source. For example, a light emitting diode having maximum emission in a wavelength range of 400 nm or more and 500 nm or less is a more suitable LED light source. For display and lighting applications, a light emitting diode (blue LED light source) having maximum emission in a wavelength range of 400 nm or more and 500 nm or less is a more suitable light source because it can enhance the color purity of blue light. Further, as the light source included in the light source unit of the present invention, a blue LED light source having maximum emission in a wavelength range of 430 nm or more and 480 nm or less is more preferable, and a blue LED light source having maximum emission in a wavelength range of 450 nm or more and 470 nm or less is more preferable. .
 上記光源は、1種類の発光ピークを持つものでもよく、2種類以上の発光ピークを持つものでもよいが、色純度を高めるためには、1種類の発光ピークを持つものが好ましい。また、発光ピークの種類の異なる複数の光源を任意に組み合わせて使用することも可能である。 The above-mentioned light source may have one kind of luminescence peak or two or more kinds of luminescence peaks, but in order to improve color purity, it is preferable to have one kind of luminescence peak. It is also possible to use a plurality of light sources with different types of emission peaks in any combination.
 本発明の光源ユニットは、空間照明、バックライト等の種々な光源に有用である。具体的には、本発明の光源ユニットは、ディスプレイ、照明装置、インテリア、標識、看板などの用途に使用できるが、中でも、ディスプレイや照明装置に特に好適に用いられる。 The light source unit of the present invention is useful for various light sources such as space illumination and backlighting. Specifically, the light source unit of the present invention can be used for displays, lighting devices, interiors, signs, signboards, etc. Among them, it is particularly suitable for use in displays and lighting devices.
<ディスプレイ、照明装置>
 本発明の実施の形態に係るディスプレイは、少なくとも、上述したように光源と、粒子状色変換材料または色変換部材と、を含む光源ユニットを備える。例えば、液晶ディスプレイ等のディスプレイには、バックライトユニットとして、上述の光源ユニットが用いられる。
<Display, lighting equipment>
A display according to an embodiment of the present invention includes at least a light source unit including a light source and a particulate color conversion material or a color conversion member as described above. For example, the above-mentioned light source unit is used as a backlight unit in a display such as a liquid crystal display.
 また、本発明の実施の形態に係る照明装置は、少なくとも、上述したように光源と、粒子状色変換材料または色変換部材と、を含む光源ユニットを備える。例えば、この照明装置は、光源ユニットとしての青色LED光源と、この青色LED光源からの青色光をこれよりも長波長の光に変換する粒子状色変換材料または色変換部材とを組み合わせて、白色光を発光するように構成される。 Further, the lighting device according to the embodiment of the present invention includes at least a light source unit including a light source and a particulate color conversion material or a color conversion member as described above. For example, this lighting device combines a blue LED light source as a light source unit and a particulate color conversion material or color conversion member that converts the blue light from the blue LED light source into light with a longer wavelength. configured to emit light.
 以下、実施例を挙げて本発明を説明するが、本発明は下記の実施例によって限定されるものではない。まず、実施例および比較例における測定方法、評価方法および発光材料について説明する。 Hereinafter, the present invention will be explained with reference to examples, but the present invention is not limited to the following examples. First, measurement methods, evaluation methods, and luminescent materials in Examples and Comparative Examples will be explained.
<色変換特性の測定>
 色変換特性の測定では、発光ピーク波長が450nmの青色LED素子を搭載した面状発光装置に、評価対象とする各色変換部材およびプリズムシートを載せた。この状態の面状発光装置に30mAの電流を流して、この青色LED素子を点灯させ、分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて、発光スペクトル、色度および輝度を測定した。
<Measurement of color conversion characteristics>
In the measurement of color conversion characteristics, each color conversion member to be evaluated and a prism sheet were placed on a planar light emitting device equipped with a blue LED element with an emission peak wavelength of 450 nm. A current of 30 mA is applied to the planar light emitting device in this state to light up the blue LED element, and the emission spectrum, chromaticity, and brightness are measured using a spectroradiometer (CS-1000, manufactured by Konica Minolta). did.
<色域の算出>
 色域の算出では、上記色変換特性の測定によって得られた発光スペクトルと、カラーフィルターの透過率のスペクトルデータとから、カラーフィルターによって色純度を向上させた場合の(u’,v’)色空間における色域を算出した。また、算出された(u’,v’)色空間における色域の面積は、BT.2020規格の色域面積を100%とした場合の割合により、以下の基準で評価した。この(u’,v’)色空間における色域の面積の評価結果として、「A」は、上記の割合が91%以上であることを示す。「B」は、上記の割合が86%以上90%以下であることを示す。「C」は、上記の割合が81%以上85%以下であることを示す。この評価結果において、上記の割合が高いほど、色域が広く、色変換部材の色再現性が良好である。
<Calculation of color gamut>
In calculating the color gamut, the (u', v') color when the color purity is improved by the color filter is calculated from the emission spectrum obtained by measuring the color conversion characteristics mentioned above and the spectral data of the transmittance of the color filter. The color gamut in space was calculated. Also, the area of the calculated color gamut in the (u', v') color space is BT. Evaluation was made based on the following criteria based on the ratio when the color gamut area of the 2020 standard is taken as 100%. As an evaluation result of the area of the color gamut in this (u', v') color space, "A" indicates that the above ratio is 91% or more. "B" indicates that the above ratio is 86% or more and 90% or less. "C" indicates that the above ratio is 81% or more and 85% or less. In this evaluation result, the higher the above ratio, the wider the color gamut and the better the color reproducibility of the color conversion member.
<耐久性評価>
 耐久性評価では、各実施例および比較例において、作製した色変換部材および青色LED素子(USHIO EPITEX社製;型番SMBB450H-1100、発光ピーク波長:450nm)を搭載した発光装置に、30mAの電流を流して青色LED素子を点灯させ、分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて、初期の発光ピーク強度を測定した。なお、この発光装置における色変換部材と青色LED素子との距離は3cmとした。その後、60℃の環境下で青色LED素子からの光を連続照射し、発光ピーク強度が5%低下するまでの時間を観測することで、色変換部材の耐久性を評価した。
<Durability evaluation>
In the durability evaluation, in each example and comparative example, a current of 30 mA was applied to a light emitting device equipped with the produced color conversion member and a blue LED element (manufactured by USHIO EPITEX, model number SMBB450H-1100, emission peak wavelength: 450 nm). The blue LED element was turned on, and the initial luminescence peak intensity was measured using a spectral radiance meter (CS-1000, manufactured by Konica Minolta). Note that the distance between the color conversion member and the blue LED element in this light emitting device was 3 cm. Thereafter, the durability of the color conversion member was evaluated by continuously irradiating it with light from a blue LED element in an environment of 60° C. and observing the time until the emission peak intensity decreased by 5%.
<端部劣化の評価>
 端部劣化の評価では、上記耐久性評価と同様の条件で光照射を300時間行い、サンプル中央部と比較して、当該サンプルの端部から何mmの範囲まで発光強度が大きく低下しているかを目視で確認し、以下の基準で評価した。端部劣化の評価結果として、「A」は、上記端部からの距離が0mm以上1mm未満であることを示す。「B」は、上記端部からの距離が1mm以上5mm未満であることを示す。「C」は、上記端部からの距離が5mm以上であることを示す。ただし、測定に用いる色変換部材のサンプルは、30mm×30mmの大きさに切断したシート状のものを用いた。
<Evaluation of edge deterioration>
In the evaluation of edge deterioration, light irradiation was performed for 300 hours under the same conditions as in the durability evaluation above, and compared to the center of the sample, the luminescence intensity was significantly reduced in the range of mm from the edge of the sample. was visually confirmed and evaluated using the following criteria. As an evaluation result of edge deterioration, "A" indicates that the distance from the edge is 0 mm or more and less than 1 mm. "B" indicates that the distance from the end is 1 mm or more and less than 5 mm. "C" indicates that the distance from the end is 5 mm or more. However, the sample of the color conversion member used for the measurement was a sheet-shaped sample cut into a size of 30 mm x 30 mm.
<酸素透過度の測定>
 酸素透過度の測定では、評価対象として、膜厚が均一な平面状試験片を用いた。特に記載がない場合、温度20℃、湿度0%RHの条件で、モコン(MOCON)社(米国)製の酸素透過率測定装置(機種名、“オキシトラン”(登録商標)(“OXTRAN”2/20))を使用して、JIS K7126-2(2006)に記載の電解センサ法に基づいて上記平面状試験片の酸素透過度を測定した。
<Measurement of oxygen permeability>
In the measurement of oxygen permeability, a flat test piece with a uniform film thickness was used as the evaluation target. Unless otherwise specified, an oxygen permeability measuring device (model name: "OXTRAN" (registered trademark)) ("OXTRAN" 2/ 20)) was used to measure the oxygen permeability of the above flat test piece based on the electrolytic sensor method described in JIS K7126-2 (2006).
<発光材料>
 下記の実施例および比較例においては、粒子状色変換材料または色変換部材に含まれる発光材料として、化合物G-1、G-2、G-3、G-4、G-5、R-1を用いた。化合物G-1、G-2、G-3、G-4、G-5、R-1は、以下に示す化合物である。これらのうち、化合物G-1、G-3、G-4、G-5は、遅延蛍光を放出する化合物(遅延蛍光材料)である。
<Light-emitting material>
In the following examples and comparative examples, compounds G-1, G-2, G-3, G-4, G-5, R-1 are used as luminescent materials contained in particulate color conversion materials or color conversion members. was used. Compounds G-1, G-2, G-3, G-4, G-5, and R-1 are the compounds shown below. Among these, compounds G-1, G-3, G-4, and G-5 are compounds that emit delayed fluorescence (delayed fluorescence materials).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 実施例1
 実施例1では、まず、マトリクス樹脂としてポリエステル樹脂T1(SP値=10.7(cal/cm30.5)を用い、このマトリクス樹脂の100重量部に対して、発光材料として化合物G-1を0.10重量部、溶剤としてテトラヒドロフランを600重量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスター”(登録商標)KK-400(クラボウ社製)を用いて300rpmで30分間撹拌・脱泡し、これにより、色変換組成物を得た。この色変換組成物を、スプレードライ法で乾燥させ、さらに乳鉢で粉砕化することにより、粒子状色変換材料を作製した。この粒子状色変換材料について、ECLIPSE L200N(ニコン社製)を用い、孤立粒子100個の粒径を測定して、その平均値を算出したところ、平均粒径は約1μmだった。粒径は、最も直径が大きくなる部分を選択して測定した。
Example 1
In Example 1, first, polyester resin T1 (SP value = 10.7 (cal/cm 3 ) 0.5 ) was used as a matrix resin, and compound G-1 was added as a luminescent material to 100 parts by weight of this matrix resin. 0.10 parts by weight and 600 parts by weight of tetrahydrofuran as a solvent were mixed. These mixtures were stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring/defoaming device "Mazerstar" (registered trademark) KK-400 (manufactured by Kurabo Industries, Ltd.), thereby obtaining a color conversion composition. . This color conversion composition was dried by a spray drying method and further pulverized in a mortar to produce a particulate color conversion material. Regarding this particulate color conversion material, the particle size of 100 isolated particles was measured using ECLIPSE L200N (manufactured by Nikon Corporation), and the average value was calculated, and the average particle size was about 1 μm. The particle size was measured by selecting the part with the largest diameter.
 次に、支持体用の材料として水添SEBS共重合体樹脂T2(SP値=8.5(cal/cm30.5、酸素透過度>2000cc/m2・day・atm)を用い、この樹脂の100重量部に対して、溶剤としてシクロヘキサンを300重量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスター”(登録商標)KK-400(クラボウ社製)を用いて300rpmで30分間撹拌・脱泡し、これにより、支持体用樹脂液を得た。 Next, hydrogenated SEBS copolymer resin T2 (SP value = 8.5 (cal/cm 3 ) 0.5 , oxygen permeability > 2000 cc/m 2 ·day · atm) was used as a material for the support, and this resin 300 parts by weight of cyclohexane as a solvent was mixed with 100 parts by weight of cyclohexane. These mixtures were stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring/defoaming device "Mazerstar" (registered trademark) KK-400 (manufactured by Kurabo Industries, Ltd.), thereby obtaining a resin liquid for the support. Ta.
 最後に、上記粒子状色変換材料と支持体用樹脂液とを混合し、これらの混合物を、遊星式撹拌・脱泡装置“マゼルスター”(登録商標)KK-400(クラボウ社製)を用いて1000rpmで20分間撹拌・脱泡することで、色変換分散液を作製した。この色変換分散液を、フィルムアプリケーターを用いて、スライドガラス板上に塗布し、120℃で30分加熱、乾燥して、平均膜厚12μmの色変換部材(粒子状色変換材料を含む)を作製した。 Finally, the particulate color conversion material and the support resin liquid are mixed, and the mixture is stirred using a planetary stirring/defoaming device "Mazelstar" (registered trademark) KK-400 (manufactured by Kurabo Industries, Ltd.). A color conversion dispersion liquid was prepared by stirring and defoaming at 1000 rpm for 20 minutes. This color conversion dispersion liquid was applied onto a slide glass plate using a film applicator, heated at 120°C for 30 minutes, and dried to form a color conversion member (including particulate color conversion material) with an average thickness of 12 μm. Created.
 上記のように作製した色変換部材を用いて青色LED素子からの光(青色光)を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長が523nmであり、ピーク波長における発光スペクトルの半値幅が38nmであるという、高色純度の緑色発光が得られた。また、上記の方法に従い、青色LED素子からの光を連続照射したところ、輝度が5%低下するまでの時間(光耐久性)は、約60時間であった。実施例1では、後述の比較例3と比較すると、約2.4倍の光耐久性の向上を示した。実施例1の色変換部材および評価結果は、後述の表2-1に示す通りである。 When light from a blue LED element (blue light) was color-converted using the color conversion member produced as described above, when only the green light emission region was extracted, the peak wavelength was 523 nm, and the emission at the peak wavelength was found to be 523 nm. Green light emission with high color purity, with a spectral half width of 38 nm, was obtained. Further, when the light from the blue LED element was continuously irradiated according to the above method, the time until the brightness decreased by 5% (light durability) was about 60 hours. In Example 1, when compared with Comparative Example 3 described later, the light durability was improved by about 2.4 times. The color conversion member and evaluation results of Example 1 are shown in Table 2-1 below.
 実施例2~4
 実施例2~4では、発光材料として化合物G-3~G-5をそれぞれ用いたこと以外は実施例1と同様にして、色変換部材の作製および評価を行った。ただし、発光材料の混合量は、青色LED素子からの光を緑色光に変換する際の変換率が実施例1の化合物G-1と同じになるように調整した。実施例2の色変換部材および評価結果は、表2-1に示す通りである。
Examples 2-4
In Examples 2 to 4, color conversion members were produced and evaluated in the same manner as in Example 1, except that Compounds G-3 to G-5 were used as luminescent materials, respectively. However, the amount of the luminescent material mixed was adjusted so that the conversion rate when converting light from the blue LED element into green light was the same as that of Compound G-1 of Example 1. The color conversion member and evaluation results of Example 2 are shown in Table 2-1.
 比較例1、2
 比較例1、2では、発光材料としてCoumarine6(シグマアルドリッチ社製)または化合物G-2を用いたこと以外は実施例1と同様にして、色変換部材の作製および評価を行った。ただし、発光材料の混合量は、青色LED素子からの光を緑色光に変換する際の変換率が実施例1の化合物G-1と同じになるように調整した。比較例1、2の各々における色変換部材および評価結果は、表2-1に示す通りである。
Comparative examples 1 and 2
In Comparative Examples 1 and 2, color conversion members were produced and evaluated in the same manner as in Example 1, except that Coumarine 6 (manufactured by Sigma-Aldrich) or Compound G-2 was used as the luminescent material. However, the amount of the luminescent material mixed was adjusted so that the conversion rate when converting light from the blue LED element into green light was the same as that of Compound G-1 of Example 1. The color conversion members and evaluation results in each of Comparative Examples 1 and 2 are shown in Table 2-1.
 比較例3~8
 比較例3~8では、実施例1~4および比較例1、2において作製した各色変換組成物を、それぞれ、フィルムアプリケーターを用いて、スライドガラス板上に塗布し、120℃で30分加熱、乾燥して、フィルム状の色変換部材(粒子状色変換材料を含まない)を作製した。比較例3~8の各々において、作製した色変換部材を用いて青色LED素子からの光を色変換させたときのピーク波長および半値幅を測定し、耐久性評価を行った。比較例3~8の各々における色変換部材および評価結果は、後述の表2-2に示す通りである。ただし、ポリエステル樹脂T1の酸素透過度は、600cc/m2・day・atmであった。
Comparative examples 3 to 8
In Comparative Examples 3 to 8, each color conversion composition prepared in Examples 1 to 4 and Comparative Examples 1 and 2 was applied onto a slide glass plate using a film applicator, heated at 120 ° C. for 30 minutes, It was dried to produce a film-like color conversion member (not containing particulate color conversion material). In each of Comparative Examples 3 to 8, durability was evaluated by measuring the peak wavelength and half-width when color-converting light from a blue LED element using the produced color conversion member. The color conversion members and evaluation results in each of Comparative Examples 3 to 8 are shown in Table 2-2 below. However, the oxygen permeability of polyester resin T1 was 600 cc/m 2 ·day · atm.
 実施例5
 実施例5では、支持体用の材料としてポリビニルアルコール樹脂T3(SP値=12.6(cal/cm30.5、酸素透過度=0,4cc/m2・day・atm)を用い、この樹脂の100重量部に対して、溶剤として水/2-プロパノール混合溶液を400重量部、加熱撹拌しながら混合し、これにより、支持体用樹脂液を得た。
Example 5
In Example 5, polyvinyl alcohol resin T3 (SP value = 12.6 (cal/cm 3 ) 0.5 , oxygen permeability = 0.4 cc/m 2 ·day · atm) was used as the material for the support. 400 parts by weight of a mixed solution of water/2-propanol as a solvent were mixed with 100 parts by weight of the mixture while heating and stirring, thereby obtaining a resin liquid for a support.
 次に、実施例1で作製した粒子状色変換材料と実施例5の支持体用樹脂液とを混合し、これらの混合物を、遊星式撹拌・脱泡装置“マゼルスター”(登録商標)KK-400(クラボウ社製)を用いて1000rpmで20分間撹拌・脱泡することで、色変換分散液を作製した。この色変換分散液を、フィルムアプリケーターを用いて、スライドガラス板上に塗布し、100℃で60分加熱、乾燥して、平均膜厚9μmの色変換部材(粒子状色変換材料を含む)を作製した。 Next, the particulate color conversion material prepared in Example 1 and the support resin liquid of Example 5 were mixed, and the mixture was passed through a planetary stirring/defoaming device "Mazelstar" (registered trademark) KK- 400 (manufactured by Kurabo Industries, Ltd.) for 20 minutes with stirring and defoaming at 1000 rpm to prepare a color conversion dispersion. This color conversion dispersion liquid was applied onto a slide glass plate using a film applicator, heated at 100°C for 60 minutes, and dried to form a color conversion member (including particulate color conversion material) with an average film thickness of 9 μm. Created.
 上記のように作製した色変換部材を用いて青色LED素子からの光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長が523nmであり、ピーク波長における発光スペクトルの半値幅が38nmであるという、高色純度の緑色発光が得られた。また、上記の方法に従い、青色LED素子からの光を連続照射したところ、輝度が5%低下するまでの時間は、約600時間であった。実施例5では、実施例1と比較すると、約10倍の光耐久性の向上を示した。実施例5の色変換部材および評価結果は、後述の表3に示す通りである。 When light from a blue LED element was color-converted using the color conversion member produced as described above, when only the green light emission region was extracted, the peak wavelength was 523 nm, and the half-value width of the emission spectrum at the peak wavelength. Green emission with high color purity of 38 nm was obtained. Further, when the light from the blue LED element was continuously irradiated according to the above method, it took about 600 hours until the brightness decreased by 5%. In Example 5, compared to Example 1, the light durability was improved by about 10 times. The color conversion member and evaluation results of Example 5 are as shown in Table 3 below.
 実施例6~8
 実施例6~8では、粒子状色変換材料として実施例2~4で作製した粒子状色変換材料をそれぞれ用いたこと以外は実施例5と同様にして、色変換部材の作製および評価を行った。実施例6~8の各々における色変換部材および評価結果は、表3に示す通りである。
Examples 6-8
In Examples 6 to 8, color conversion members were produced and evaluated in the same manner as in Example 5, except that the particulate color conversion materials produced in Examples 2 to 4 were used as particulate color conversion materials. Ta. The color conversion members and evaluation results in each of Examples 6 to 8 are shown in Table 3.
 実施例9
 実施例9では、支持体用の材料としてポリビニルアルコール樹脂T5(SP値=12.2(cal/cm30.5、酸素透過度=0.8cc/m2・day・atm)を用いたこと以外は実施例5と同様にして、色変換部材の作製および評価を行った。実施例9の色変換部材および評価結果は、表3に示す通りである。
Example 9
In Example 9, polyvinyl alcohol resin T5 (SP value = 12.2 (cal/cm 3 ) 0.5 , oxygen permeability = 0.8 cc/m 2 ·day · atm) was used as the material for the support. A color conversion member was produced and evaluated in the same manner as in Example 5. The color conversion member and evaluation results of Example 9 are shown in Table 3.
 実施例10
 実施例10では、支持体用の材料としてエチレンビニルアルコール共重合樹脂T6(SP値=10.9(cal/cm30.5、酸素透過度=4.0cc/m2・day・atm)を用いたこと以外は実施例5と同様にして、色変換部材の作製および評価を行った。実施例10の色変換部材および評価結果は、表3に示す通りである。
Example 10
In Example 10, ethylene vinyl alcohol copolymer resin T6 (SP value = 10.9 (cal/cm 3 ) 0.5 , oxygen permeability = 4.0 cc/m 2 ·day · atm) was used as the material for the support. A color conversion member was produced and evaluated in the same manner as in Example 5 except for the following. The color conversion member and evaluation results of Example 10 are shown in Table 3.
 比較例9、10
 比較例9、10では、粒子状色変換材料として比較例1、2で作製した各粒子状色変換材料をそれぞれ用いたこと以外は実施例5と同様にして、色変換部材の作製および評価を行った。比較例9、10の各々における色変換部材および評価結果は、表3に示す通りである。
Comparative examples 9 and 10
In Comparative Examples 9 and 10, color conversion members were produced and evaluated in the same manner as in Example 5, except that each of the particulate color conversion materials produced in Comparative Examples 1 and 2 was used as the particulate color conversion material. went. The color conversion members and evaluation results in each of Comparative Examples 9 and 10 are shown in Table 3.
 実施例11
 実施例11では、まず、マトリクス樹脂としてポリエステル樹脂T1(SP値=10.7(cal/cm30.5)を用い、このマトリクス樹脂の100重量部に対して、発光材料として化合物G-1を0.10重量部、溶剤としてテトラヒドロフランを600重量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスター”(登録商標)KK-400(クラボウ社製)を用いて300rpmで30分間撹拌・脱泡し、これにより、色変換組成物を得た。この色変換組成物を、スプレードライ法で乾燥させ、さらに乳鉢で粉砕化することにより、平均粒径が約1μmの第1粒子状色変換材料を作製した。
Example 11
In Example 11, first, polyester resin T1 (SP value = 10.7 (cal/cm 3 ) 0.5 ) was used as a matrix resin, and compound G-1 was added as a luminescent material to 100 parts by weight of this matrix resin. 0.10 parts by weight and 600 parts by weight of tetrahydrofuran as a solvent were mixed. These mixtures were stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring/defoaming device "Mazerstar" (registered trademark) KK-400 (manufactured by Kurabo Industries, Ltd.), thereby obtaining a color conversion composition. . This color conversion composition was dried by a spray drying method and further pulverized in a mortar to produce a first particulate color conversion material having an average particle size of about 1 μm.
 上記と同様に、マトリクス樹脂としてポリエステル樹脂T1(SP値=10.7(cal/cm30.5)を用い、このマトリクス樹脂の100重量部に対して、発光材料として化合物R-1を0.10重量部、溶剤としてテトラヒドロフランを600重量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスター”(登録商標)KK-400(クラボウ社製)を用いて300rpmで30分間撹拌・脱泡し、これにより、色変換組成物を得た。この色変換組成物を、スプレードライ法で乾燥させ、さらに乳鉢で粉砕化することにより、平均粒径が約1μmの第2粒子状色変換材料を作製した。 Similarly to the above, polyester resin T1 (SP value = 10.7 (cal/cm 3 ) 0.5 ) was used as the matrix resin, and 0.0% of compound R-1 was added as the luminescent material to 100 parts by weight of this matrix resin. 10 parts by weight and 600 parts by weight of tetrahydrofuran as a solvent were mixed. These mixtures were stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring/defoaming device "Mazerstar" (registered trademark) KK-400 (manufactured by Kurabo Industries, Ltd.), thereby obtaining a color conversion composition. . This color conversion composition was dried by a spray drying method and further pulverized in a mortar to produce a second particulate color conversion material having an average particle size of about 1 μm.
 次に、支持体用の材料として水添SEBS共重合体樹脂T2(SP値=8.5(cal/cm30.5)を用い、この樹脂の100重量部に対して、溶剤としてシクロヘキサンを300重量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスター”(登録商標)KK-400(クラボウ社製)を用いて300rpmで30分間撹拌・脱泡し、これにより、支持体用樹脂液を得た。 Next, hydrogenated SEBS copolymer resin T2 (SP value = 8.5 (cal/cm 3 ) 0.5 ) was used as a material for the support, and 300 parts by weight of cyclohexane was added as a solvent to 100 parts by weight of this resin. Parts by weight were mixed. These mixtures were stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring/defoaming device "Mazerstar" (registered trademark) KK-400 (manufactured by Kurabo Industries, Ltd.), thereby obtaining a resin liquid for the support. Ta.
 最後に、上記第1粒子状色変換材料と第2粒子状色変換材料と支持体用樹脂液とを混合し、撹拌することで、色変換分散液を作製した。この色変換分散液を、フィルムアプリケーターを用いて、スライドガラス板上に塗布し、120℃で30分加熱、乾燥して、色変換部材(粒子状色変換材料を含む)を作製した。 Finally, the first particulate color conversion material, the second particulate color conversion material, and the support resin liquid were mixed and stirred to prepare a color conversion dispersion. This color conversion dispersion liquid was applied onto a slide glass plate using a film applicator, heated at 120° C. for 30 minutes, and dried to produce a color conversion member (containing particulate color conversion material).
 上記のように作製した色変換部材を用いて青色LED素子からの光(青色光)を色変換させたところ、青色光の一部が緑色光と赤色光とに変換され、白色光が得られた。緑色光の発光領域のみを抜粋すると、ピーク波長が523nmであり、ピーク波長における発光スペクトルの半値幅が36nmであるという、高色純度の緑色発光が得られた。また、赤色光の発光領域のみを抜粋すると、ピーク波長が641nmであり、ピーク波長における発光スペクトルの半値幅が50nmであるという、高色純度の赤色発光が得られた。(u’,v’)色空間における色域の面積は、BT.2020規格の色域面積に対して91%であった。実施例11の色変換部材および評価結果は、後述の表4に示す通りである。表4において、「色域面積」は、(u’,v’)色空間における色域の面積である。また、「色域面積」欄の「A」~「C」は、この色域の面積の評価結果を示すものである。 When the color conversion member produced as described above was used to convert the light (blue light) from the blue LED element, part of the blue light was converted into green light and red light, and white light was obtained. Ta. When only the green light emission region was extracted, green light emission with high color purity was obtained, with a peak wavelength of 523 nm and a half width of the emission spectrum at the peak wavelength of 36 nm. Further, when only the red light emission region was extracted, red light emission with high color purity was obtained, with a peak wavelength of 641 nm and a half width of the emission spectrum at the peak wavelength of 50 nm. The area of the color gamut in the (u', v') color space is BT. It was 91% of the color gamut area of the 2020 standard. The color conversion member and evaluation results of Example 11 are as shown in Table 4 below. In Table 4, "color gamut area" is the area of the color gamut in the (u', v') color space. Further, "A" to "C" in the "color gamut area" column indicate the evaluation results of the area of this color gamut.
 実施例12
 実施例12では、第2粒子状色変換材料のマトリクス樹脂として、アクリル樹脂T4(SP値=9.8(cal/cm30.5)を用いたこと以外は実施例11と同様にして、色変換部材の作製および評価を行った。実施例12の色変換部材および評価結果は、表4に示す通りである。
Example 12
In Example 12, the color was changed in the same manner as in Example 11 except that acrylic resin T4 (SP value = 9.8 (cal/cm 3 ) 0.5 ) was used as the matrix resin of the second particulate color conversion material. A conversion member was manufactured and evaluated. The color conversion member and evaluation results of Example 12 are shown in Table 4.
 実施例13
 実施例13では、第1粒子状色変換材料のマトリクス樹脂として、アクリル樹脂T4(SP値=9.8(cal/cm30.5)を用いたこと以外は実施例11と同様にして、色変換部材の作製および評価を行った。実施例13の色変換部材および評価結果は、表4に示す通りである。
Example 13
In Example 13, the color was changed in the same manner as in Example 11 except that acrylic resin T4 (SP value = 9.8 (cal/cm 3 ) 0.5 ) was used as the matrix resin of the first particulate color conversion material. A conversion member was manufactured and evaluated. The color conversion member and evaluation results of Example 13 are shown in Table 4.
 実施例14
 実施例14では、まず、マトリクス樹脂としてポリエステル樹脂T1(SP値=10.7(cal/cm30.5)を用い、このマトリクス樹脂の100重量部に対して、発光材料として、化合物G-1を0.10重量部、化合物R-1を0.10重量部、溶剤としてテトラヒドロフランを600重量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスター”(登録商標)KK-400(クラボウ社製)を用いて300rpmで30分間撹拌・脱泡し、これにより、色変換組成物を得た。この色変換組成物を、スプレードライ法で乾燥させ、さらに乳鉢で粉砕化することにより、平均粒径が約1μmの第1粒子状色変換材料を作製した。
Example 14
In Example 14, first, polyester resin T1 (SP value = 10.7 (cal/cm 3 ) 0.5 ) was used as a matrix resin, and compound G-1 was added as a luminescent material to 100 parts by weight of this matrix resin. 0.10 parts by weight of Compound R-1, 0.10 parts by weight of Compound R-1, and 600 parts by weight of tetrahydrofuran as a solvent were mixed. These mixtures were stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring/defoaming device "Mazerstar" (registered trademark) KK-400 (manufactured by Kurabo Industries, Ltd.), thereby obtaining a color conversion composition. . This color conversion composition was dried by a spray drying method and further pulverized in a mortar to produce a first particulate color conversion material having an average particle size of about 1 μm.
 次に、支持体用の材料として水添SEBS共重合体樹脂T2(SP値=8.5(cal/cm30.5)を用い、実施例3と同様に、支持体用樹脂液を得た。 Next, hydrogenated SEBS copolymer resin T2 (SP value = 8.5 (cal/cm 3 ) 0.5 ) was used as the material for the support, and a resin liquid for the support was obtained in the same manner as in Example 3. .
 最後に、上記第1粒子状色変換材料と支持体用樹脂液とを混合し、撹拌することで、色変換分散液を作製した。この色変換分散液を、フィルムアプリケーターを用いて、スライドガラス板上に塗布し、120℃で30分加熱、乾燥して、色変換部材(粒子状色変換材料を含む)を作製した。作製した色変換部材を用いて、実施例11と同様に評価を行った。実施例14の色変換部材および評価結果は、表4に示す通りである。 Finally, the first particulate color conversion material and the support resin liquid were mixed and stirred to prepare a color conversion dispersion. This color conversion dispersion liquid was applied onto a slide glass plate using a film applicator, heated at 120° C. for 30 minutes, and dried to produce a color conversion member (containing particulate color conversion material). Evaluation was performed in the same manner as in Example 11 using the produced color conversion member. The color conversion member and evaluation results of Example 14 are shown in Table 4.
 比較例11
 比較例11では、第1粒子状色変換材料の発光材料としてCoumarine6(シグマアルドリッチ社製)を用い、青色LED素子からの光を緑色光に変換する際の変換率が実施例11の化合物G-1と同じになるように調整して混合し、第2粒子状色変換材料の発光材料としてLumogen F Red305(BASF社製)を用い、実施例11の化合物R-1と同じ物質量になるように調整して混合したこと以外は、実施例11と同様にして、色変換部材の作製および評価を行った。比較例11の色変換部材および評価結果は、表4に示す通りである。
Comparative example 11
In Comparative Example 11, Coumarine 6 (manufactured by Sigma-Aldrich) was used as the luminescent material of the first particulate color conversion material, and the conversion rate when converting light from a blue LED element into green light was that of Compound G- of Example 11. Lumogen F Red305 (manufactured by BASF) was used as the luminescent material of the second particulate color conversion material, and the amount of substance was adjusted to be the same as that of Compound R-1 of Example 11. A color conversion member was produced and evaluated in the same manner as in Example 11, except that the mixture was adjusted to . The color conversion member and evaluation results of Comparative Example 11 are shown in Table 4.
 実施例15
 実施例15では、まず、マトリクス樹脂としてポリエステル樹脂T1(SP値=10.7(cal/cm30.5)を用い、このマトリクス樹脂の100重量部に対して、発光材料として化合物G-1を0.10重量部、溶剤としてテトラヒドロフランを600重量部、混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスター”(登録商標)KK-400(クラボウ社製)を用いて300rpmで30分間撹拌・脱泡し、これにより、色変換組成物を得た。この色変換組成物を、スプレードライ法で乾燥させ、さらに乳鉢で粉砕化することにより、平均粒径が約1μmの粒子状色変換材料を作製した。
Example 15
In Example 15, first, polyester resin T1 (SP value = 10.7 (cal/cm 3 ) 0.5 ) was used as a matrix resin, and compound G-1 was added as a luminescent material to 100 parts by weight of this matrix resin. 0.10 parts by weight and 600 parts by weight of tetrahydrofuran as a solvent were mixed. These mixtures were stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring/defoaming device "Mazerstar" (registered trademark) KK-400 (manufactured by Kurabo Industries, Ltd.), thereby obtaining a color conversion composition. . This color conversion composition was dried by a spray drying method and further pulverized in a mortar to produce a particulate color conversion material having an average particle size of about 1 μm.
 次に、支持体用の材料としてアクリル樹脂T4(SP値=9.8(cal/cm30.5、酸素透過度=600cc/m2・day・atm)を用い、この樹脂の100重量部に対して、発光材料として化合物R-1を0.03重量部、溶剤として酢酸エチルを200重量部、1-メトキシ-2-プロパノールを200重量部、を混合した。これらの混合物を、遊星式撹拌・脱泡装置“マゼルスター”(登録商標)KK-400(クラボウ社製)を用いて300rpmで30分間撹拌・脱泡し、これにより、支持体用樹脂液を得た。 Next, acrylic resin T4 (SP value = 9.8 (cal/cm 3 ) 0.5 , oxygen permeability = 600 cc/m 2 ·day · atm) was used as a material for the support, and 100 parts by weight of this resin was added to On the other hand, 0.03 parts by weight of Compound R-1 as a luminescent material, 200 parts by weight of ethyl acetate and 200 parts by weight of 1-methoxy-2-propanol as solvents were mixed. These mixtures were stirred and defoamed at 300 rpm for 30 minutes using a planetary stirring/defoaming device "Mazerstar" (registered trademark) KK-400 (manufactured by Kurabo Industries, Ltd.), thereby obtaining a resin liquid for the support. Ta.
 最後に、上記粒子状色変換材料と支持体用樹脂液とを混合し、撹拌することで、色変換分散液を作製した。この色変換分散液を、フィルムアプリケーターを用いて、スライドガラス板上に塗布し、120℃で30分加熱、乾燥して、色変換部材(粒子状色変換材料を含む)を作製した。 Finally, the particulate color conversion material and the support resin liquid were mixed and stirred to prepare a color conversion dispersion. This color conversion dispersion liquid was applied onto a slide glass plate using a film applicator, heated at 120° C. for 30 minutes, and dried to produce a color conversion member (containing particulate color conversion material).
 上記のように作製した色変換部材を用いて青色LED素子からの光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長が523nmであり、ピーク波長における発光スペクトルの半値幅が33nmであるという、高色純度の緑色発光が得られた。また、赤色光の発光領域のみを抜粋すると、ピーク波長が630nmであり、ピーク波長における発光スペクトルの半値幅が49nmであるという、高色純度の赤色発光が得られた。(u’,v’)色空間における色域の面積は、BT.2020規格の色域面積に対して86%であった。実施例15の色変換部材および評価結果は、後述の表5に示す通りである。表5において、「色域面積」は、(u’,v’)色空間における色域の面積である。また、「色域面積」欄の「A」~「C」は、この色域の面積の評価結果を示すものである。 When light from a blue LED element was color-converted using the color conversion member produced as described above, when only the green light emission region was extracted, the peak wavelength was 523 nm, and the half-value width of the emission spectrum at the peak wavelength. Green emission with high color purity of 33 nm was obtained. Further, when only the red light emission region was extracted, red light emission with high color purity was obtained, with a peak wavelength of 630 nm and a half width of the emission spectrum at the peak wavelength of 49 nm. The area of the color gamut in the (u', v') color space is BT. It was 86% of the color gamut area of the 2020 standard. The color conversion member and evaluation results of Example 15 are as shown in Table 5 below. In Table 5, "color gamut area" is the area of the color gamut in the (u', v') color space. Further, "A" to "C" in the "color gamut area" column indicate the evaluation results of the area of this color gamut.
 実施例16
 実施例16では、実施例5で作製した色変換分散液を、フィルムアプリケーターを用いて、“セラピール”(登録商標)BLK(東レフィルム加工社製の離型フィルム)上に塗布し、100℃で60分加熱、乾燥して、平均膜厚が9μmの色変換部材(粒子状色変換材料を含む)を作製した。
Example 16
In Example 16, the color conversion dispersion prepared in Example 5 was applied onto "Therapel" (registered trademark) BLK (release film manufactured by Toray Film Processing Co., Ltd.) using a film applicator, and heated at 100°C. The mixture was heated and dried for 60 minutes to produce a color conversion member (including particulate color conversion material) having an average thickness of 9 μm.
 次に、酸素バリア層を構成する酸素バリア性積層フィルム1として、コート層付アルミナ蒸着ポリエチレンテレフタレートフィルム“バリアロックス”(登録商標)1011SBR2(東レ社製、厚さ12μm、酸素透過度は、約0.1cc/m2・day・atm)を用い、このコート層の上に熱硬化性接着層を塗布法で形成し、上記の色変換部材の一面に酸素バリア性積層フィルム1をラミネートした。その後、この色変換部材から“セラピール”(登録商標)BLKを剥離し、剥離した面に、上記と同様に熱硬化性接着層を形成した酸素バリア性積層フィルム1をラミネートした。これにより、酸素バリア性の層を両面に有する色変換部材(粒子状色変換材料を含む)を作製した。 Next, as the oxygen barrier laminated film 1 constituting the oxygen barrier layer, an alumina-deposited polyethylene terephthalate film with a coating layer "Barrierox" (registered trademark) 1011SBR2 (manufactured by Toray Industries, Ltd., thickness 12 μm, oxygen permeability of about 0 A thermosetting adhesive layer was formed on this coating layer by a coating method, and the oxygen barrier laminate film 1 was laminated on one side of the color conversion member. Thereafter, "Therapel" (registered trademark) BLK was peeled off from this color conversion member, and the oxygen barrier laminate film 1 on which a thermosetting adhesive layer was formed in the same manner as above was laminated on the peeled surface. In this way, a color conversion member (including particulate color conversion material) having oxygen barrier layers on both sides was produced.
 上記のように作製した色変換部材を用いて、青色LED素子からの光を連続照射したところ、輝度が5%低下するまでの時間(光耐久性)は、約1000時間であった。この実施例16の耐久性評価では、後述の比較例12と比較すると、約8.3倍の光耐久性の向上を示した。また、サンプル端部における端部劣化は、確認されなかった。実施例16の色変換部材および評価結果は、後述の表6-1に示す通りである。 When the color conversion member produced as described above was continuously irradiated with light from a blue LED element, the time until the brightness decreased by 5% (light durability) was about 1000 hours. The durability evaluation of Example 16 showed that the light durability was improved by about 8.3 times when compared with Comparative Example 12, which will be described later. Furthermore, no end deterioration was observed at the ends of the sample. The color conversion member and evaluation results of Example 16 are shown in Table 6-1 below.
 実施例17
 実施例17では、ポリエチレンテレフタレートフィルム“ルミラー”(登録商標)U48(東レ社製、厚さ50μm)の上に熱硬化性接着層を塗布法で形成し、その上に、酸素バリア性の層として、エチレン-ビニルアルコール共重合体フィルム(エチレン含有率32mol%、厚さ12μm)をラミネートした。これにより、酸素バリア層を構成する酸素バリア性積層フィルム2を作製した。この酸素バリア性積層フィルム2の酸素透過度は、約0.7cc/m2・day・atmであった。この酸素バリア性積層フィルム2のエチレン-ビニルアルコール共重合体フィルム上に熱硬化性接着層を形成したこと以外は、実施例16と同様にして、色変換部材(粒子状色変換材料を含む)の作製および評価を行った。実施例17の色変換部材および評価結果は、表6-1に示す通りである。
Example 17
In Example 17, a thermosetting adhesive layer was formed on a polyethylene terephthalate film "Lumirror" (registered trademark) U48 (manufactured by Toray Industries, Inc., thickness 50 μm) by a coating method, and on top of that, as an oxygen barrier layer. , an ethylene-vinyl alcohol copolymer film (ethylene content 32 mol%, thickness 12 μm) was laminated. In this way, an oxygen barrier laminate film 2 constituting an oxygen barrier layer was produced. The oxygen permeability of this oxygen barrier laminate film 2 was approximately 0.7 cc/m 2 ·day · atm. A color conversion member (including particulate color conversion material) was prepared in the same manner as in Example 16 except that a thermosetting adhesive layer was formed on the ethylene-vinyl alcohol copolymer film of this oxygen barrier laminated film 2. were produced and evaluated. The color conversion member and evaluation results of Example 17 are shown in Table 6-1.
 実施例18
 実施例18では、実施例1で作製した色変換分散液を用い、120℃で30分加熱、乾燥して、平均膜厚が12μmの色変換部材(粒子状色変換材料を含む)を作製したこと以外は実施例16と同様にして、色変換部材(粒子状色変換材料を含む)の作製および評価を行った。実施例18の色変換部材および評価結果は、表6-1に示す通りである。
Example 18
In Example 18, the color conversion dispersion prepared in Example 1 was heated at 120° C. for 30 minutes and dried to produce a color conversion member (including particulate color conversion material) with an average thickness of 12 μm. Except for this, a color conversion member (including particulate color conversion material) was produced and evaluated in the same manner as in Example 16. The color conversion member and evaluation results of Example 18 are shown in Table 6-1.
 実施例19
 実施例19では、実施例1で作製した色変換分散液を用い、120℃で30分加熱、乾燥して、平均膜厚が12μmの色変換部材(粒子状色変換材料を含む)を作製したこと以外は実施例17と同様にして、色変換部材(粒子状色変換材料を含む)の作製および評価を行った。実施例19の色変換部材および評価結果は、表6-1に示す通りである。
Example 19
In Example 19, the color conversion dispersion prepared in Example 1 was heated at 120° C. for 30 minutes and dried to produce a color conversion member (including particulate color conversion material) with an average film thickness of 12 μm. Except for this, a color conversion member (including particulate color conversion material) was produced and evaluated in the same manner as in Example 17. The color conversion member and evaluation results of Example 19 are shown in Table 6-1.
 実施例20
 実施例20では、酸素バリア層を構成する酸素バリア性積層フィルム3として、コート層の無いアルミナ蒸着ポリエチレンテレフタレートフィルム“バリアロックス”(登録商標)1011HG(東レ社製、厚さ12μm、酸素透過度は、約1.5cc/m2・day・atm)を用い、このフィルムのアルミナ層上に熱硬化性接着層を形成したこと以外は実施例18と同様にして、色変換部材(粒子状色変換材料を含む)の作製および評価を行った。実施例20の色変換部材および評価結果は、表6-1に示す通りである。
Example 20
In Example 20, as the oxygen barrier laminated film 3 constituting the oxygen barrier layer, an alumina vapor-deposited polyethylene terephthalate film "Barrierox" (registered trademark) 1011HG (manufactured by Toray Industries, Inc., thickness 12 μm, oxygen permeability: A color conversion member (particulate color conversion material) was prepared in the same manner as in Example 18 except that a thermosetting adhesive layer was formed on the alumina layer of this film. (including materials) were prepared and evaluated. The color conversion member and evaluation results of Example 20 are shown in Table 6-1.
 比較例12
 比較例12では、実施例1で作製した色変換組成物を、フィルムアプリケーターを用いて、“セラピール”(登録商標)BLK(東レフィルム加工社製の離型フィルム)上に塗布し、120℃で30分加熱、乾燥して、フィルム状の色変換部材(粒子状色変換材料を含まない)を作製した。このフィルム状の色変換部材の両面に、実施例20と同様の手法によって酸素バリア性積層フィルム3をラミネートし、これにより、酸素バリア性の層を両面に有する比較例12の色変換部材(粒子状色変換材料を含まない)を作製した。その後、比較例12の色変換部材の評価を行った。比較例12の色変換部材および評価結果は、表6-2に示す通りである。
Comparative example 12
In Comparative Example 12, the color conversion composition prepared in Example 1 was applied onto "Therapel" (registered trademark) BLK (release film manufactured by Toray Film Processing Co., Ltd.) using a film applicator, and heated at 120°C. The mixture was heated for 30 minutes and dried to produce a film-like color conversion member (not containing particulate color conversion material). Oxygen barrier laminated film 3 was laminated on both sides of this film-like color conversion member by the same method as in Example 20, thereby forming the color conversion member of Comparative Example 12 (particles) having an oxygen barrier layer on both sides. (containing no color conversion material) was prepared. Thereafter, the color conversion member of Comparative Example 12 was evaluated. The color conversion member and evaluation results of Comparative Example 12 are shown in Table 6-2.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 以上のように、本発明に係る粒子状色変換材料、色変換部材ならびにそれを含む光源ユニット、ディスプレイ、照明装置および色変換基板は、色再現性の向上と耐久性の向上との両立に適している。 As described above, the particulate color conversion material, the color conversion member, and the light source unit, display, lighting device, and color conversion board including the same according to the present invention are suitable for achieving both improved color reproducibility and improved durability. ing.
 1A、1B、1C、1D、1E、1F、1G 色変換部材
 2a、2b 粒子状色変換材料
 3a、3b 支持体
 11 酸素バリア層
1A, 1B, 1C, 1D, 1E, 1F, 1G Color conversion member 2a, 2b Particulate color conversion material 3a, 3b Support 11 Oxygen barrier layer

Claims (19)

  1.  マトリクス樹脂および少なくとも1種の発光材料を有する粒子状色変換材料であって、
     前記少なくとも1種の発光材料には、半値幅が50nm以下の遅延蛍光を放出する有機発光材料が含まれる、
     ことを特徴とする粒子状色変換材料。
    A particulate color conversion material comprising a matrix resin and at least one luminescent material, the particulate color conversion material comprising:
    The at least one type of luminescent material includes an organic luminescent material that emits delayed fluorescence with a half width of 50 nm or less.
    A particulate color conversion material characterized by:
  2.  前記有機発光材料が、一般式(1)で表される部分構造を含む化合物である、
     ことを特徴とする請求項1に記載の粒子状色変換材料。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Bはホウ素原子であり、Nは窒素原子であり、Cは炭素原子である。nは、0以上2以下の整数である。nが0である場合、一般式(1)で表される部分構造は、BとNとの直接結合構造を示す。)
    The organic light-emitting material is a compound containing a partial structure represented by general formula (1),
    The particulate color conversion material according to claim 1, characterized in that:
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1), B is a boron atom, N is a nitrogen atom, and C is a carbon atom. n is an integer from 0 to 2. When n is 0, the general formula The partial structure represented by (1) shows a direct bond structure between B and N.)
  3.  前記有機発光材料が、前記一般式(1)で表される部分構造を2つ以上含む化合物である、
     ことを特徴とする請求項2に記載の粒子状色変換材料。
    The organic light-emitting material is a compound containing two or more partial structures represented by the general formula (1),
    The particulate color conversion material according to claim 2, characterized in that:
  4.  前記有機発光材料が、一般式(2)または一般式(3)で表される化合物を含む、
     ことを特徴とする請求項1に記載の粒子状色変換材料。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)または一般式(3)において、環Za、環Zbおよび環Zcは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール環、または置換もしくは無置換の環形成炭素数6~30のヘテロアリール環である。Z1およびZ2は、それぞれ独立に、酸素原子、NRa(置換基Raを有する窒素原子)または硫黄原子である。Z1がNRaである場合、置換基Raは、環Zaもしくは環Zbと結合して環を形成してもよい。Z2がNRaである場合、置換基Raは、環Zaもしくは環Zcと結合して環を形成してもよい。Eは、ホウ素原子、リン原子、SiRa(置換基Raを有するケイ素原子)またはP=Oである。E1およびE2は、それぞれ独立に、BRa(置換基Raを有するホウ素原子)、PRa(置換基Raを有するリン原子)、SiRa2(置換基Raを2個有するケイ素原子)、P(=O)Ra2(置換基Raを2個有するホスフィンオキシド)またはP(=S)Ra2(置換基Raを2個有するホスフィンスルフィド)、C=O(カルボニル基)、S(=O)またはS(=O)2である。E1がBRa、PRa、SiRa2、P(=O)Ra2またはP(=S)Ra2である場合、置換基Raは、環Zaもしくは環Zbと結合して環を形成してもよい。E2がBRa、PRa、SiRa2、P(=O)Ra2またはP(=S)Ra2である場合、置換基Raは、環Zaもしくは環Zcと結合して環を形成してもよい。置換基Raは、それぞれ独立に、水素、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールエーテル基、置換もしくは無置換のアリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、置換もしくは無置換のカルボニル基、置換もしくは無置換のカルボキシル基、置換もしくは無置換のオキシカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミド基、スルホニル基、置換もしくは無置換のスルホン酸エステル基、置換もしくは無置換のスルホンアミド基、置換もしくは無置換のアミノ基、置換もしくは無置換のイミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基、置換もしくは無置換のホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる置換基である。また、置換基Raは、選ばれる前記置換基でさらに置換されていてもよく、それらの置換基は、選ばれる前記置換基でさらに置換されてもよい。)
    The organic luminescent material contains a compound represented by general formula (2) or general formula (3),
    The particulate color conversion material according to claim 1, characterized in that:
    Figure JPOXMLDOC01-appb-C000002
    (In general formula (2) or general formula (3), ring Za, ring Zb and ring Zc each independently represent a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms. It is a heteroaryl ring having 6 to 30 ring carbon atoms. Z 1 and Z 2 are each independently an oxygen atom, NRa (a nitrogen atom having a substituent Ra), or a sulfur atom. Z 1 is NRa In this case, the substituent Ra may be combined with ring Za or ring Zb to form a ring. When Z 2 is NRa, the substituent Ra may be combined with ring Za or ring Zc to form a ring. E is a boron atom, a phosphorus atom, SiRa (a silicon atom having a substituent Ra), or P=O. E 1 and E 2 each independently represent a BRa (a boron atom having a substituent Ra). ), PRa (phosphorous atom having a substituent Ra), SiRa 2 (silicon atom having two substituents Ra), P(=O)Ra 2 (phosphine oxide having two substituents Ra) or P(=S ) Ra 2 (phosphine sulfide having two substituents Ra), C=O (carbonyl group), S(=O) or S(=O) 2 . E 1 is BRa, PRa, SiRa 2 , P( When =O)Ra 2 or P(=S)Ra 2 , the substituent Ra may be combined with ring Za or ring Zb to form a ring. E 2 is BRa, PRa, SiRa 2 , P When (=O)Ra 2 or P(=S)Ra 2 , the substituent Ra may be bonded with ring Za or ring Zc to form a ring. Each substituent Ra independently represents hydrogen , substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or unsubstituted carbonyl group, substituted or unsubstituted carboxyl group, substituted or unsubstituted oxycarbonyl group, substituted or unsubstituted ester group, substitution or unsubstituted carbamoyl group, substituted or unsubstituted amide group, sulfonyl group, substituted or unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonamide group, substituted or unsubstituted amino group, substituted or unsubstituted Formed between imino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted siloxanyl group, substituted or unsubstituted boryl group, substituted or unsubstituted phosphine oxide group, and adjacent substituents A substituent selected from fused rings and aliphatic rings. Further, the substituent Ra may be further substituted with the selected substituent, and these substituents may be further substituted with the selected substituent. )
  5.  前記一般式(2)におけるEがホウ素原子であり、前記一般式(3)におけるE1およびE2がBRaである、
     ことを特徴とする請求項4に記載の粒子状色変換材料。
    E in the general formula (2) is a boron atom, and E 1 and E 2 in the general formula (3) are BRa,
    The particulate color conversion material according to claim 4, characterized in that:
  6.  請求項1~5のいずれか一つに記載の粒子状色変換材料を含有する支持体を備える、
     ことを特徴とする色変換部材。
    comprising a support containing the particulate color conversion material according to any one of claims 1 to 5,
    A color conversion member characterized by:
  7.  当該色変換部材が、
     ピーク波長が500nm以上580nm未満の領域に観測される発光を呈する第1発光材料と第1マトリクス樹脂とからなる第1粒子状色変換材料と、
     ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する第2発光材料と第2マトリクス樹脂とからなる第2粒子状色変換材料と、
     を含む、
     ことを特徴とする請求項6に記載の色変換部材。
    The color conversion member is
    a first particulate color conversion material consisting of a first luminescent material and a first matrix resin that exhibits luminescence observed in a region with a peak wavelength of 500 nm or more and less than 580 nm;
    a second particulate color conversion material consisting of a second luminescent material and a second matrix resin that exhibits luminescence observed in a region with a peak wavelength of 580 nm or more and 750 nm or less;
    including,
    The color conversion member according to claim 6, characterized in that:
  8.  前記第1発光材料が、半値幅が50nm以下の遅延蛍光を放出する有機発光材料を少なくとも含む、
     ことを特徴とする請求項7に記載の色変換部材。
    The first luminescent material includes at least an organic luminescent material that emits delayed fluorescence with a half width of 50 nm or less.
    The color conversion member according to claim 7, characterized in that:
  9.  前記第2発光材料が、一般式(4)で表される化合物を少なくとも含む、
     ことを特徴とする請求項7に記載の色変換部材。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(4)において、Xは、C-R7またはNである。R1~R9は、それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。R1~R9は、それぞれ独立に置換されてもよい。これらR1~R9の各々を置換する置換基は、水素、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールエーテル基、置換もしくは無置換のアリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、置換もしくは無置換のカルボニル基、置換もしくは無置換のカルボキシル基、置換もしくは無置換のオキシカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミド基、スルホニル基、置換もしくは無置換のスルホン酸エステル基、置換もしくは無置換のスルホンアミド基、置換もしくは無置換のアミノ基、置換もしくは無置換のイミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基、置換もしくは無置換のホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。)
    The second luminescent material contains at least a compound represented by general formula (4).
    The color conversion member according to claim 7, characterized in that:
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula ( 4 ) , group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxy R 1 selected from carbonyl groups, carbamoyl groups, amino groups, nitro groups, silyl groups, siloxanyl groups, boryl groups, phosphine oxide groups, and fused rings and aliphatic rings formed between adjacent substituents. ~R 9 may each be independently substituted.The substituents for each of R 1 ~R 9 include hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or Unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group , thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or unsubstituted carbonyl group, substituted or unsubstituted carboxyl group, substituted or unsubstituted oxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted amide group, sulfonyl group, substituted or Unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonamide group, substituted or unsubstituted amino group, substituted or unsubstituted imino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted siloxanyl group, substituted or unsubstituted boryl group, substituted or unsubstituted phosphine oxide group, and fused rings and aliphatic rings formed between adjacent substituents.)
  10.  前記支持体が、少なくとも1種の発光材料をさらに含有する、
     ことを特徴とする請求項6に記載の色変換部材。
    The support further contains at least one luminescent material.
    The color conversion member according to claim 6, characterized in that:
  11.  前記少なくとも1種の発光材料が、一般式(1)で表される部分構造を含む化合物、一般式(2)で表される化合物および一般式(3)で表される化合物のうち少なくとも一つを含有する、
     ことを特徴とする請求項10に記載の色変換部材。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(1)において、Bはホウ素原子であり、Nは窒素原子であり、Cは炭素原子である。nは、0以上2以下の整数である。nが0である場合、一般式(1)で表される部分構造は、BとNとの直接結合構造を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (一般式(2)または一般式(3)において、環Za、環Zbおよび環Zcは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール環、または置換もしくは無置換の環形成炭素数6~30のヘテロアリール環である。Z1およびZ2は、それぞれ独立に、酸素原子、NRa(置換基Raを有する窒素原子)または硫黄原子である。Z1がNRaである場合、置換基Raは、環Zaもしくは環Zbと結合して環を形成してもよい。Z2がNRaである場合、置換基Raは、環Zaもしくは環Zcと結合して環を形成してもよい。Eは、ホウ素原子、リン原子、SiRa(置換基Raを有するケイ素原子)またはP=Oである。E1およびE2は、それぞれ独立に、BRa(置換基Raを有するホウ素原子)、PRa(置換基Raを有するリン原子)、SiRa2(置換基Raを2個有するケイ素原子)、P(=O)Ra2(置換基Raを2個有するホスフィンオキシド)またはP(=S)Ra2(置換基Raを2個有するホスフィンスルフィド)、C=O(カルボニル基)、S(=O)またはS(=O)2である。E1がBRa、PRa、SiRa2、P(=O)Ra2またはP(=S)Ra2である場合、置換基Raは、環Zaもしくは環Zbと結合して環を形成してもよい。E2がBRa、PRa、SiRa2、P(=O)Ra2またはP(=S)Ra2である場合、置換基Raは、環Zaもしくは環Zcと結合して環を形成してもよい。置換基Raは、それぞれ独立に、水素、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールエーテル基、置換もしくは無置換のアリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、置換もしくは無置換のカルボニル基、置換もしくは無置換のカルボキシル基、置換もしくは無置換のオキシカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミド基、スルホニル基、置換もしくは無置換のスルホン酸エステル基、置換もしくは無置換のスルホンアミド基、置換もしくは無置換のアミノ基、置換もしくは無置換のイミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基、置換もしくは無置換のホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる置換基である。また、置換基Raは、選ばれる前記置換基でさらに置換されていてもよく、それらの置換基は、選ばれる前記置換基でさらに置換されてもよい。)
    The at least one luminescent material is at least one of a compound containing a partial structure represented by general formula (1), a compound represented by general formula (2), and a compound represented by general formula (3). containing,
    The color conversion member according to claim 10.
    Figure JPOXMLDOC01-appb-C000004
    (In general formula (1), B is a boron atom, N is a nitrogen atom, and C is a carbon atom. n is an integer from 0 to 2. When n is 0, the general formula The partial structure represented by (1) shows a direct bond structure between B and N.)
    Figure JPOXMLDOC01-appb-C000005
    (In general formula (2) or general formula (3), ring Za, ring Zb and ring Zc each independently represent a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aryl ring having 6 to 30 ring carbon atoms. It is a heteroaryl ring having 6 to 30 ring carbon atoms. Z 1 and Z 2 are each independently an oxygen atom, NRa (a nitrogen atom having a substituent Ra), or a sulfur atom. Z 1 is NRa In this case, the substituent Ra may be combined with ring Za or ring Zb to form a ring. When Z 2 is NRa, the substituent Ra may be combined with ring Za or ring Zc to form a ring. E is a boron atom, a phosphorus atom, SiRa (a silicon atom having a substituent Ra), or P=O. E 1 and E 2 each independently represent a BRa (a boron atom having a substituent Ra). ), PRa (phosphorous atom having a substituent Ra), SiRa 2 (silicon atom having two substituents Ra), P(=O)Ra 2 (phosphine oxide having two substituents Ra) or P(=S ) Ra 2 (phosphine sulfide having two substituents Ra), C=O (carbonyl group), S(=O) or S(=O) 2 . E 1 is BRa, PRa, SiRa 2 , P( When =O)Ra 2 or P(=S)Ra 2 , the substituent Ra may be combined with ring Za or ring Zb to form a ring. E 2 is BRa, PRa, SiRa 2 , P When (=O)Ra 2 or P(=S)Ra 2 , the substituent Ra may be bonded with ring Za or ring Zc to form a ring. Each substituent Ra independently represents hydrogen , substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group, thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or unsubstituted carbonyl group, substituted or unsubstituted carboxyl group, substituted or unsubstituted oxycarbonyl group, substituted or unsubstituted ester group, substitution or unsubstituted carbamoyl group, substituted or unsubstituted amide group, sulfonyl group, substituted or unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonamide group, substituted or unsubstituted amino group, substituted or unsubstituted Formed between imino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted siloxanyl group, substituted or unsubstituted boryl group, substituted or unsubstituted phosphine oxide group, and adjacent substituents A substituent selected from fused rings and aliphatic rings. Further, the substituent Ra may be further substituted with the selected substituent, and these substituents may be further substituted with the selected substituent. )
  12.  前記少なくとも1種の発光材料が、一般式(4)で表される化合物を少なくとも含有する、
     ことを特徴とする請求項10に記載の色変換部材。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(4)において、Xは、C-R7またはNである。R1~R9は、それぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。R1~R9は、それぞれ独立に置換されてもよい。これらR1~R9の各々を置換する置換基は、水素、置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の複素環基、置換もしくは無置換のアルケニル基、置換もしくは無置換のシクロアルケニル基、置換もしくは無置換のアルキニル基、水酸基、チオール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアルキルチオ基、置換もしくは無置換のアリールエーテル基、置換もしくは無置換のアリールチオエーテル基、ハロゲン、シアノ基、アルデヒド基、置換もしくは無置換のカルボニル基、置換もしくは無置換のカルボキシル基、置換もしくは無置換のオキシカルボニル基、置換もしくは無置換のエステル基、置換もしくは無置換のカルバモイル基、置換もしくは無置換のアミド基、スルホニル基、置換もしくは無置換のスルホン酸エステル基、置換もしくは無置換のスルホンアミド基、置換もしくは無置換のアミノ基、置換もしくは無置換のイミノ基、ニトロ基、置換もしくは無置換のシリル基、置換もしくは無置換のシロキサニル基、置換もしくは無置換のボリル基、置換もしくは無置換のホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。)
    The at least one luminescent material contains at least a compound represented by general formula (4),
    The color conversion member according to claim 10.
    Figure JPOXMLDOC01-appb-C000006
    (In the general formula ( 4 ) , group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxy R 1 selected from carbonyl groups, carbamoyl groups, amino groups, nitro groups, silyl groups, siloxanyl groups, boryl groups, phosphine oxide groups, and fused rings and aliphatic rings formed between adjacent substituents. ~R 9 may each be independently substituted.The substituents for each of R 1 ~R 9 include hydrogen, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or Unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted or unsubstituted heterocyclic group, substituted or unsubstituted alkenyl group, substituted or unsubstituted cycloalkenyl group, substituted or unsubstituted alkynyl group, hydroxyl group , thiol group, substituted or unsubstituted alkoxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted aryl ether group, substituted or unsubstituted arylthioether group, halogen, cyano group, aldehyde group, substituted or unsubstituted carbonyl group, substituted or unsubstituted carboxyl group, substituted or unsubstituted oxycarbonyl group, substituted or unsubstituted ester group, substituted or unsubstituted carbamoyl group, substituted or unsubstituted amide group, sulfonyl group, substituted or Unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonamide group, substituted or unsubstituted amino group, substituted or unsubstituted imino group, nitro group, substituted or unsubstituted silyl group, substituted or unsubstituted siloxanyl group, substituted or unsubstituted boryl group, substituted or unsubstituted phosphine oxide group, and fused rings and aliphatic rings formed between adjacent substituents.)
  13.  前記支持体の酸素透過度が1.0cc/m2・day・atm以下である、
     ことを特徴とする請求項6に記載の色変換部材。
    The oxygen permeability of the support is 1.0 cc/m 2 ·day · atm or less,
    The color conversion member according to claim 6, characterized in that:
  14.  前記支持体の表面の少なくとも一部に、酸素バリア性の層を有する、
     ことを特徴とする請求項6に記載の色変換部材。
    having an oxygen barrier layer on at least a part of the surface of the support;
    The color conversion member according to claim 6, characterized in that:
  15.  光源と、
     請求項1~5のいずれか一つに記載の粒子状色変換材料と、
     を備えることを特徴とする光源ユニット。
    a light source and
    Particulate color conversion material according to any one of claims 1 to 5,
    A light source unit comprising:
  16.  前記光源が、波長400nm以上500nm以下の範囲に極大発光を有する発光ダイオードである、
     ことを特徴とする請求項15に記載の光源ユニット。
    The light source is a light emitting diode having maximum emission in a wavelength range of 400 nm or more and 500 nm or less,
    The light source unit according to claim 15.
  17.  請求項15に記載の光源ユニットを備える、
     ことを特徴とするディスプレイ。
    comprising a light source unit according to claim 15;
    A display characterized by:
  18.  請求項15に記載の光源ユニットを備える、
     ことを特徴とする照明装置。
    comprising a light source unit according to claim 15;
    A lighting device characterized by:
  19.  請求項1~5のいずれか一つに記載の粒子状色変換材料を含有する、
     ことを特徴とする色変換基板。
    Containing the particulate color conversion material according to any one of claims 1 to 5,
    A color conversion board characterized by:
PCT/JP2023/026418 2022-07-25 2023-07-19 Particulate color conversion material, color conversion member, and light source unit, display, lighting device, and color conversion substrate including same WO2024024590A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-117797 2022-07-25
JP2022117797 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024024590A1 true WO2024024590A1 (en) 2024-02-01

Family

ID=89706376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026418 WO2024024590A1 (en) 2022-07-25 2023-07-19 Particulate color conversion material, color conversion member, and light source unit, display, lighting device, and color conversion substrate including same

Country Status (1)

Country Link
WO (1) WO2024024590A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508818A (en) * 2010-12-21 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ Lighting device having polymer-containing base material
WO2018117095A1 (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Wavelength conversion film and backlight unit
JP2021091644A (en) * 2019-12-12 2021-06-17 学校法人関西学院 Multimer compound
WO2021192795A1 (en) * 2020-03-23 2021-09-30 東レ株式会社 Color conversion composition, color conversion film, light source unit, display, and lighting including same, and compound
WO2022070877A1 (en) * 2020-09-30 2022-04-07 東レ株式会社 Color conversion sheet and light source unit including same, display, and lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508818A (en) * 2010-12-21 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ Lighting device having polymer-containing base material
WO2018117095A1 (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Wavelength conversion film and backlight unit
JP2021091644A (en) * 2019-12-12 2021-06-17 学校法人関西学院 Multimer compound
WO2021192795A1 (en) * 2020-03-23 2021-09-30 東レ株式会社 Color conversion composition, color conversion film, light source unit, display, and lighting including same, and compound
WO2022070877A1 (en) * 2020-09-30 2022-04-07 東レ株式会社 Color conversion sheet and light source unit including same, display, and lighting device

Similar Documents

Publication Publication Date Title
KR102035515B1 (en) Color conversion sheet, light source unit, display and lighting device comprising the same
TW201708500A (en) Color conversion composition, color conversion film and backlight unit, display and lighting device each comprising same
JP7276125B2 (en) Light-emitting elements, displays and color conversion substrates
JP6939787B2 (en) Color conversion sheet, light source unit including it, display and lighting equipment
KR102384506B1 (en) Pyromethene boron complex, color conversion composition, color conversion film, light source unit, display, lighting device and light emitting device
WO2021192795A1 (en) Color conversion composition, color conversion film, light source unit, display, and lighting including same, and compound
WO2022070877A1 (en) Color conversion sheet and light source unit including same, display, and lighting device
JP7290047B2 (en) Color conversion composition, color conversion sheet, and light source unit, display and lighting device containing the same
JP7380216B2 (en) Color conversion materials, light source units, displays, lighting devices, color conversion substrates, and inks
WO2024024590A1 (en) Particulate color conversion material, color conversion member, and light source unit, display, lighting device, and color conversion substrate including same
TW201726885A (en) Color conversion composition, color conversion film, and light source unit, display and lighting system containing same
WO2023042751A1 (en) Color conversion member, light source unit including same, display, and illumination device
WO2022255173A1 (en) Color conversion composition, color conversion sheet, light source unit including same, display, and lighting device
WO2024057867A1 (en) Color conversion composition, color conversion sheet, light source unit, display device and lighting device
JP2021076790A (en) Color conversion film, light source unit including the same, display, and illumination device
KR20240053601A (en) Color conversion member, light source unit including the same, display and lighting device
JP7359151B2 (en) Pyrromethene boron complex, color conversion composition, color conversion film, light source unit, display and lighting device
WO2022230643A1 (en) Polycyclic aromatic compound, color conversion composition, color conversion sheet, light source unit, display and lighting device
WO2023008318A1 (en) Color conversion sheet, light source unit including same, display, and illumination device
CN117916636A (en) Color conversion member, light source unit including the same, display, and lighting device
KR20240020715A (en) Color conversion sheet, light source unit including the same, display and lighting device
JP2023027448A (en) Light source unit including color conversion sheet, and display and illuminance device including the same
TW202005134A (en) Color conversion composition, color conversion sheet, light source unit, display and lighting device
JP2023104057A (en) Color conversion composition, color conversion sheet and light source unit including the same, display, and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846321

Country of ref document: EP

Kind code of ref document: A1