WO2020050081A1 - Mold release film for ceramic green sheet production - Google Patents

Mold release film for ceramic green sheet production Download PDF

Info

Publication number
WO2020050081A1
WO2020050081A1 PCT/JP2019/033275 JP2019033275W WO2020050081A1 WO 2020050081 A1 WO2020050081 A1 WO 2020050081A1 JP 2019033275 W JP2019033275 W JP 2019033275W WO 2020050081 A1 WO2020050081 A1 WO 2020050081A1
Authority
WO
WIPO (PCT)
Prior art keywords
release
layer
film
ceramic green
green sheet
Prior art date
Application number
PCT/JP2019/033275
Other languages
French (fr)
Japanese (ja)
Inventor
充晴 中谷
悠介 柴田
量之 應矢
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to SG11202101981QA priority Critical patent/SG11202101981QA/en
Priority to MYPI2021001080A priority patent/MY194550A/en
Priority to JP2020507138A priority patent/JP6813124B2/en
Priority to KR1020217007509A priority patent/KR102335931B1/en
Priority to CN202110566924.8A priority patent/CN113246263B/en
Priority to CN201980057455.8A priority patent/CN112672866B/en
Priority to KR1020217009556A priority patent/KR102342605B1/en
Publication of WO2020050081A1 publication Critical patent/WO2020050081A1/en
Priority to PH12021550425A priority patent/PH12021550425A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/04Discharging the shaped articles
    • B28B13/06Removing the shaped articles from moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • H01G4/306Stacked capacitors made by thin film techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a release film for producing a ceramic green sheet, and more particularly, to an ultra-thin layer capable of producing a film in which occurrence of process defects due to pinholes and thickness unevenness is suppressed when producing an ultra-thin ceramic green sheet. And a release film for producing a ceramic green sheet.
  • Multilayer multilayer ceramic capacitors form a ceramic green sheet by coating and drying a slurry containing a ceramic component such as barium titanate and a binder resin on a release film, and printing electrodes on the resulting ceramic green sheet. After that, it is manufactured by peeling off from the release film, laminating and pressing ceramic green sheets, degreasing and firing, and then applying an external electrode.
  • a ceramic component such as barium titanate and a binder resin
  • the thickness of the ceramic green sheet is reduced to 1.0 ⁇ m or less, and further to 0.6 ⁇ m or less. Further thinning is progressing.
  • the ceramic green sheet is made thinner, there is a problem that defects such as pinholes and cracks are likely to occur due to extremely minute projections on the release film and a force at the time of peeling from the release film.
  • Patent Document 1 discloses that a smoothing layer is provided on the surface of a polyester film, and then a release layer is provided on the smoothing layer.
  • Patent Document 2 discloses that a release layer composed of a (meth) acrylate and a silicone-based component is formed with a thickness of 0.3 ⁇ m or more. According to the descriptions of Patent Document 1 and Patent Document 2, it is disclosed that the arithmetic average roughness Ra of the release layer surface can be 8 nm or less and the maximum protrusion height Rp can be 50 nm or less.
  • Patent Literature 3 proposes a non-silicone release layer containing no silicone in the release layer.
  • Patent Document 4 proposes a film using a silicone resin as a release layer.
  • the release layer is a non-silicone-based release layer as in the technique described in Patent Document 3, the peeling force when peeling the ceramic green sheet is increased, and there is a problem that the ceramic green sheet having a reduced thickness is damaged.
  • the peeling force when peeling the ceramic green sheet is small, but generally, since the glass transition temperature of the silicone resin is below room temperature, There is a problem that the release force is unstable because the release layer is deformed at the time of peeling because the elastic modulus is low.
  • Patent Document 5 proposes a release layer containing an alkyd resin, an amino resin, and a modified silicone resin.
  • Patent Document 6 proposes a release layer containing a melamine resin and a polyorganosiloxane.
  • JP 2014-177093 A International Publication No. WO 2013/145864 JP 2010-144046 A JP 2012-207126 A JP-A-9-239913 JP 2017-7226 A
  • the present invention even if the release layer of the release film for producing a ceramic green sheet is a release layer obtained by curing a composition containing at least a binder component and a silicone-based release agent, By controlling the deterioration of the surface roughness due to the aggregation during the drying of the components and having a high smoothness, and by adjusting the amount of the silicone component on the surface of the release layer, the release for the ceramic green sheet production with excellent releasability is achieved. It is intended to provide a mold film.
  • the present invention has the following configurations. 1. Using a polyester film as a base material, the base material has a surface layer A substantially free of particles on at least one surface, and is released on at least one surface of the surface layer A directly or via another layer. A release film in which layers are laminated, wherein the release layer is formed by curing a composition containing a binder component and a silicone-based release agent, and the Si element ratio on the release layer surface is 2.0 at% or more. A release film for producing a ceramic green sheet, which has a maximum protrusion height (P) of 50 nm or less and a region average roughness (Sa) of 1.5 nm or less at 10.0 at% or less, and a release layer surface. 2.
  • P maximum protrusion height
  • Sa region average roughness
  • a release layer containing at least a binder component and a silicone-based release agent has high smoothness by suppressing deterioration of surface roughness due to aggregation of the above components during drying, and has a release.
  • the amount of the silicone-based component on the surface of the layer even in the production of an ultra-thin ceramic green sheet having a film thickness of 0.2 to 1.0 ⁇ m with excellent peelability, the peelability is good and pinholes and the like can be obtained. It is possible to provide a release film for producing a ceramic green sheet, which can reduce defects.
  • a composition containing a silicone-based release agent is cured, the maximum protrusion height (P) on the surface of the release layer is 50 nm or less, the area average roughness (Sa) is 1.5 nm or less, and
  • the release film for producing a ceramic green sheet in which the Si element ratio on the outermost surface of the mold layer is 2.0 at% or more and 10.0 at% or less, forms an ultra-thin ceramic green sheet having a thickness of 0.2 to 1.0 ⁇ m.
  • the polyester constituting the polyester film used as the base material is not particularly limited, and a film formed from a polyester generally used as a base material for a release film can be used. It is preferably a crystalline linear saturated polyester comprising an aromatic dibasic acid component and a diol component, for example, polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polytrimethylene terephthalate or a resin thereof.
  • the copolymer containing the above component as a main component is more preferable, and a polyester film formed from polyethylene terephthalate is particularly preferable.
  • the repeating unit of ethylene terephthalate is preferably at least 90 mol%, more preferably at least 95 mol%, and other dicarboxylic acid components and diol components may be copolymerized in small amounts, but from the viewpoint of cost. And those produced only from terephthalic acid and ethylene glycol.
  • Known additives such as an antioxidant, a light stabilizer, an ultraviolet absorber, and a crystallization agent may be added as long as the effects of the film of the present invention are not impaired.
  • the polyester film is preferably a biaxially oriented polyester film for reasons such as high bidirectional elastic modulus.
  • the intrinsic viscosity of the polyethylene terephthalate film is preferably 0.50 to 0.70 dl / g, more preferably 0.52 to 0.62 dl / g.
  • the intrinsic viscosity is 0.50 dl / g or more, it is preferable because many breaks do not occur in the stretching step.
  • it is 0.70 dl / g or less it is preferable because the cutability when cutting into a predetermined product width is good and dimensional defects do not occur. Further, it is preferable that the raw material pellets are sufficiently dried in vacuum.
  • the method for producing the polyester film in the present invention is not particularly limited, and a method generally used conventionally can be used.
  • it can be obtained by melting the polyester with an extruder, extruding it into a film, cooling it with a rotary cooling drum to obtain an unstretched film, and biaxially stretching the unstretched film.
  • a biaxially stretched film can be obtained by a method of sequentially biaxially stretching a longitudinally or transversely uniaxially stretched film in the transverse or longitudinal direction, or a method of simultaneously biaxially stretching an unstretched film in the longitudinal and transverse directions. I can do it.
  • the stretching temperature at the time of stretching the polyester film is preferably equal to or higher than the secondary transition point (Tg) of the polyester. It is preferable to stretch 1 to 8 times, especially 2 to 6 times in each of the longitudinal and transverse directions.
  • the polyester film preferably has a thickness of 12 to 50 ⁇ m, more preferably 15 to 38 ⁇ m, and still more preferably 19 to 33 ⁇ m.
  • the thickness of the film is 12 ⁇ m or more, there is no possibility of being deformed by heat at the time of film production, a processing step of a release layer, and a molding of a ceramic green sheet or the like, which is preferable.
  • the thickness of the film is 50 ⁇ m or less, the amount of the film to be discarded after use is not extremely increased, which is preferable in reducing the environmental load.
  • the biaxially oriented polyester film substrate may be a single layer or a multilayer of two or more layers, but preferably has a surface layer A substantially containing no particles on at least one surface.
  • a surface layer B capable of containing particles and the like on the surface opposite to the surface layer A substantially containing no particles.
  • the layer configuration in the thickness direction is the release layer / A / B or a laminated structure such as a release layer / A / C / B.
  • the layer C may have a multilayer structure.
  • the surface layer B may not contain particles. In that case, it is preferable to provide a coat layer containing particles and a binder on the surface layer B in order to impart slipperiness for winding the film into a roll.
  • the surface layer A forming the surface on which the release layer is applied preferably does not substantially contain particles.
  • the average surface roughness (Sa) of the surface layer A is preferably 7 nm or less.
  • Sa is 7 nm or less, pinholes and the like do not easily occur during molding of the laminated ultra-thin ceramic green sheets, which is preferable. It can be said that the smaller the area surface average roughness (Sa) of the surface layer A is, the more preferable it is, but it may be 0.1 nm or more.
  • the coat layer contains substantially no particles, and the area average surface roughness (Sa) after the coat layer is laminated falls within the above range. It is preferable to satisfy.
  • substantially free of particles means, for example, in the case of inorganic particles, when the inorganic element is quantified by fluorescent X-ray analysis, 50 ppm or less, preferably 10 ppm or less, most preferably the detection limit or less. Content. This is the case where contamination components derived from extraneous foreign substances, dirt attached to raw material resin or lines or equipment in the film manufacturing process are peeled off and mixed into the film without actively adding particles to the film. Because there is.
  • the surface layer B forming the surface opposite to the surface to which the release layer is applied preferably contains particles from the viewpoint of the slipperiness of the film and the ease with which air can escape. It is preferable to use silica particles and / or calcium carbonate particles.
  • the content of the particles contained in the surface layer B is preferably 5000 to 15000 ppm in total of the particles.
  • the surface average roughness (Sa) of the film of the surface layer B is preferably in the range of 1 to 40 nm. More preferably, it is in the range of 5 to 35 nm.
  • the total of the silica particles and / or calcium carbonate particles is 5000 ppm or more and Sa is 1 nm or more, when the film is wound up in a roll, air can be uniformly released, and the rolled shape is good and the flatness is good. This is suitable for producing ultra-thin ceramic green sheets.
  • the total of silica particles and / or calcium carbonate particles is 15000 ppm or less and Sa is 40 nm or less, the lubricant is less likely to aggregate and coarse projections cannot be formed. And preferred.
  • inert inorganic particles and / or heat-resistant organic particles other than silica and / or calcium carbonate can be used. From the viewpoint of transparency and cost, it is more preferable to use silica particles and / or calcium carbonate particles, but other inorganic particles that can be used include alumina-silica composite oxide particles, hydroxyapatite particles, and the like.
  • the heat-resistant organic particles include crosslinked polyacrylic particles, crosslinked polystyrene particles, and benzoguanamine particles.
  • porous colloidal silica is preferable, and when using calcium carbonate particles, light calcium carbonate surface-treated with a polyacrylic acid-based polymer compound is preferable from the viewpoint of preventing the lubricant from falling off. .
  • the average particle diameter of the particles added to the surface layer B is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less, particularly preferably 0.5 ⁇ m or more and 1.0 ⁇ m or less.
  • the average particle diameter of the particles is 0.1 ⁇ m or more, the slipperiness of the release film is good, which is preferable.
  • the average particle size is 2.0 ⁇ m or less, there is no possibility that pinholes are generated in the ceramic green sheet due to the coarse particles on the surface of the release layer, which is preferable.
  • the surface layer B may contain two or more kinds of particles made of different materials. Further, particles of the same kind but having different average particle diameters may be contained.
  • the coat layer containing the particles on the surface layer B has lubricity.
  • the present coating layer is not particularly limited, but is preferably provided as a so-called in-line coating applied during the formation of a polyester film.
  • the surface of the coat layer has a surface area for the same reason as the above-mentioned surface average roughness (Sa) of the surface layer B.
  • the average surface roughness (Sa) is preferably in the range of 1 to 40 nm. More preferably, it is in the range of 5 to 35 nm.
  • the surface layer A which is the layer on which the release layer is provided, in order to prevent particles such as a lubricant from being mixed.
  • the thickness ratio of the surface layer A on the side where the release layer is provided is preferably 20% or more and 50% or less of the total thickness of the base film. If it is 20% or more, the influence of the particles contained in the surface layer B and the like is hardly affected from the inside of the film, and it is easy to satisfy the above-mentioned range of the area average surface roughness Sa, which is preferable.
  • the thickness is 50% or less of the thickness of all the layers of the base material film, the usage ratio of the recycled material in the surface layer B can be increased, and the environmental load is reduced, which is preferable.
  • the layers other than the surface layer A can use 50 to 90% by mass of film waste or recycled materials for PET bottles. Even in this case, it is preferable that the type, amount, particle size, and area average surface roughness (Sa) of the lubricant contained in the surface layer B satisfy the above ranges.
  • a film before or after uniaxial stretching in the film forming process is applied to the surface of the surface layer A and / or the surface layer B in order to improve the adhesion of a release layer or the like to be applied later or to prevent electrification.
  • the coat layer preferably does not substantially contain particles.
  • the release layer in the invention is preferably formed by curing a composition containing at least a binder component and a silicone release agent.
  • Other components can be added in addition to the resin or compound as long as the effects of the present invention are not impaired.
  • the binder component contained in the composition for forming a release layer of the present invention is not particularly limited, but can be crosslinked to increase the crosslinking density of the release layer and to improve the durability and solvent resistance of the release layer.
  • the components are crosslinked. Therefore, it is preferable that a resin having a reactive functional group and a crosslinking agent are reacted with the binder component. In addition, it is also preferable that either the reactive functional group or the crosslinking agent is used to form a self-crosslinking.
  • the present invention does not exclude an embodiment in which the binder component comprises only a resin having a reactive functional group or a crosslinking agent.
  • the resin having a reactive functional group is not particularly limited, but polyester resins, poly (meth) acrylic resins, polyurethane resins, polyolefin resins and the like can be suitably used. It is preferable that these resins have at least one kind selected from a carboxyl group, a hydroxyl group, an epoxy, an amino group and the like as a reactive functional group.
  • the resin having a reactive functional group preferably has a long-chain alkyl group and / or a silicone skeleton as a part of the resin skeleton.
  • a part of the resin skeleton having a low surface free energy such as a long chain alkyl group and / or a silicone skeleton, the compatibility between the silicone-based release agent and the binder component described later is increased, and aggregation during drying is performed. Is less likely to occur and the smoothness is improved.
  • the reactive functional group-containing resin having a long-chain alkyl group in the resin skeleton include an alkyd resin or a (meth) acryl resin having a long-chain alkyl group in a side chain.
  • the long-chain alkyl group to be used a linear alkyl group having 6 to 20 carbon atoms is preferable. Having the above-described carbon number is preferable because the surface free energy of the obtained resin can be reduced and the compatibility with the silicone-based release agent is improved.
  • an acid having a long-chain alkyl group for example, octylic acid or stearyl acid
  • a polybasic acid such as phthalic acid
  • Pentaerythritol and diethylene glycol Pentaerythritol and diethylene glycol
  • the (meth) acrylic resin having a long-chain alkyl group in the side chain is preferably obtained by copolymerizing two or more (meth) acrylic monomers.
  • the monomer to be copolymerized preferably contains a monomer having a long-chain alkyl group (for example, lauryl (meth) acrylate, stearyl (meth) acrylate, isodecyl (meth) acrylate, etc.), and a hydroxy group as a reactive functional group site. (E.g., hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, etc.).
  • the content of the monomer having a long-chain alkyl group constituting the obtained acrylic resin is preferably 1 mol% or more and 50 mol% or less based on all the monomers constituting the acrylic resin.
  • the content is 1 mol% or more, the effect of lowering the surface free energy is obtained.
  • the content is 50 mol% or less, the monomer having a reactive functional group becomes relatively high, so that the crosslinking density of the resin becomes high.
  • the reactive functional group-containing resin having a silicone skeleton in the resin skeleton include an alkyd resin or an acrylic resin having a polydimethylsiloxane skeleton in a side chain.
  • Specific examples of commercially available products include Cymac (registered trademark) US350, US352 (manufactured by Toagosei Co., Ltd., reactive functional group: carboxyl group) and Cymac (registered trademark) US270 (manufactured by Toagosei Co., Ltd., reactive functional group: hydroxyl group) )and so on.
  • the binder component contains a crosslinking agent.
  • the crosslinking agent is not particularly limited, but a melamine-based, isocyanate-based, carbodiimide-based, oxazoline-based, or epoxy-based cross-linking agent may be used, and one type or two or more types may be used in combination. .
  • a cross-linking agent that reacts with the reactive functional group introduced into the binder component is preferable.
  • a melamine-based compound is preferable from the viewpoint of reactivity.
  • the use of a melamine-based compound is preferable because a thin film having a coating amount of 0.2 g / m 2 or less after curing of the release layer can be quickly cured and the crosslink density is increased.
  • the melamine-based compound used in the present invention a general compound can be used and is not particularly limited.
  • the melamine-based compound is obtained by condensing melamine and formaldehyde, and has a triazine ring and a methylol group and / or an alkoxymethyl group in one molecule. It is preferable to have one or more.
  • a compound obtained by subjecting a methylol melamine derivative obtained by condensing melamine and formaldehyde to a lower alcohol, such as methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, or the like, to undergo a dehydration condensation reaction and to be etherified is preferred.
  • methylolated melamine derivative examples include monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, and hexamethylol melamine.
  • One type or two or more types may be used.
  • hexamethylolmelamine or hexamethoxymethylolmelamine having many crosslinking points in one molecule is preferably used because the crosslinking density of the binder component can be increased.
  • an ether compound obtained by a dehydration condensation reaction using an alcohol with a methylol melamine derivative is used, hexamethoxymethyl methylol melamine obtained by dehydration condensation with methyl alcohol is particularly preferable from the viewpoint of reactivity.
  • the amount of the crosslinking agent contained in the binder component in the present invention is preferably 15% by mass or more, more preferably 30% by mass or more, even more preferably 50% by mass, based on the resin having a reactive functional group. It is.
  • the binder component may be constituted only by the crosslinking agent.
  • the crosslinking agent is contained in an amount of 15% by mass or more, the crosslinking density of the release layer can be increased, and the solvent resistance and the elastic modulus can be improved.
  • the composition for forming a release layer according to the present invention may contain a catalyst for curing the crosslinking agent.
  • a catalyst for curing the crosslinking agent When a melamine-based compound is used, an acid catalyst is preferably used, and although not particularly limited, carboxylic acid-based, metal salt-based, phosphate ester-based, and sulfonic acid-based compounds can be suitably used. Further, a block type catalyst in which an acid site is blocked can also be used. In particular, paratoluenesulfonic acid can be preferably used from the viewpoint of reactivity.
  • an isocyanate-based compound a general one can be used, and organotin, an amine compound, a trialkylphosphine compound, and the like can be suitably used.
  • the content of the catalyst is preferably 0.1 to 40% by mass based on the crosslinking agent contained in the composition for forming a release layer. More preferably, it is 0.5 to 30% by mass. More preferably, it is 0.5 to 20% by mass. When the content is 0.1% by mass or more, the curing reaction easily proceeds, which is preferable. On the other hand, when the content is 40% by mass or less, there is no possibility that the acid catalyst is transferred to the ceramic green sheet to be molded, and there is no possibility that the acid catalyst has an adverse effect.
  • the silicone-based release agent used in the release layer in the present invention is a compound having a silicone structure in the molecule, and is not particularly limited as long as the effects of the present invention can be obtained. Can be used. Among polyorganosiloxanes, polydimethylsiloxane (abbreviation: PDMS) can be suitably used, and those having a functional group in a part of polydimethylsiloxane are also preferable. Having a functional group is preferable because an intermolecular interaction such as a hydrogen bond with a binder resin is easily generated and migration to a ceramic green sheet becomes difficult.
  • PDMS polydimethylsiloxane
  • the functional group introduced into the polydimethylsiloxane is not particularly limited, but may be a reactive functional group or a non-reactive functional group.
  • the functional group may be introduced at one terminal of the polydimethylsiloxane, and may be at both terminals or a side chain. In addition, one or a plurality of positions may be introduced.
  • Examples of the reactive functional group to be introduced into polydimethylsiloxane include an amino group, an epoxy group, a hydroxyl group, a mercapto group, a carboxyl group, a methacryl group, and an acryl group.
  • a polyether group, an aralkyl group, a fluoroalkyl group, a long-chain alkyl group, an ester group, an amide group, a phenyl group and the like can be used.
  • those having an epoxy group, a carboxyl group, a polyether group, a methacryl group, an acryl group, and an ester group are preferable.
  • the functional group introduced into the polydimethylsiloxane does not react with the binder component.
  • polydimethylsiloxane modified with a hydroxyl group that reacts with melamine resin reacts with melamine in the drying process, so it is difficult to orient on the surface of the release layer, and the Si element ratio on the surface of the release layer decreases, and the release property decreases. In some cases, expression is difficult. Therefore, it is necessary to increase the amount of addition in order to have sufficient releasability, but in that case, the elastic modulus of the release layer may be reduced and the release layer may be easily deformed.
  • the functional group to be introduced into the polydimethylsiloxane the functional group which does not react with the binder resin for the reasons described above, is easily oriented on the surface of the release layer, and has a low migration property to the ceramic green sheet, particularly a polyether group, Ester groups are preferred, and polyether groups are particularly preferred.
  • a carboxyl group is an example of a functional group that has a relatively large Si element ratio on the surface of the release layer even when it reacts with the binder resin.
  • the silicone release agent used in the present invention preferably has a molecular weight of 40,000 or less. More preferably, it is 30,000 or less. When the molecular weight is 40,000 or less, the silicone-based release agent easily segregates on the surface of the release layer, and has good releasability, which is preferable.
  • the content of the silicone-based release agent-derived component contained in the release layer after curing in the present invention is preferably 1 mg / m 2 or more and 15 mg / m 2 or less. More preferably, it is 1 mg / m 2 or more and 10 mg / m 2 or less.
  • the silicone component can be sufficiently precipitated on the outermost layer of the release layer, and the releasability of the ceramic green sheet is stabilized, which is preferable.
  • the silicone component having a relatively low elastic modulus is small in the release layer, so that the elastic modulus of the release layer does not become too low and the releasability of the ceramic sheet is stabilized, which is preferable.
  • the silicone-based release agent may be present in the same structure without changing its chemical structure even in the release layer after curing, or by causing a chemical reaction with a binder component or the like. In some cases, the chemical structure is changed. Therefore, the mass of the substance present per unit area of the release layer after curing, which is derived from the silicone release agent in the composition before curing, is described as the content of the silicone release agent-derived component. .
  • the content of the silicone-based release agent-derived component is determined based on the proportion (% by mass) of the silicone-based release agent in the solid content of the coating liquid containing the composition and the applied amount of the cured release layer solid (g / g). m 2 ).
  • the release layer in the present invention may contain particles having a particle size of 1 ⁇ m or less, but it is preferable not to contain particles or the like that form projections from the viewpoint of suppressing pinholes in the ceramic green sheet.
  • an additive such as an adhesion improver or an antistatic agent may be added to the release layer in the present invention as long as the effect of the present invention is not impaired. Further, in order to improve the adhesion to the base material, it is also preferable to perform a pretreatment such as an anchor coat, a corona treatment, a plasma treatment, or an atmospheric pressure plasma treatment on the polyester film surface before providing the release coating layer.
  • the coating amount of the release layer after curing is not particularly limited, but is preferably 1.0 g / m 2 or less. It is more preferably 0.01 to 0.5 g / m 2 , still more preferably 0.02 to 0.20 g / m 2 , and more preferably 0.02 to 0.09 g / m 2 . It is preferable that the coating amount of the release layer is 0.01 g / m 2 or more, since the release performance can be easily obtained. When it is 0.2 g / m 2 or less, the curing time of the release layer can be shortened, so that the flatness of the release film can be maintained and the thickness unevenness of the ceramic green sheet can be suppressed, which is preferable. Further, when the content is 0.2 g / m 2 or less, the curl of the obtained film is reduced, so that the molding accuracy at the time of molding the ceramic green sheet is preferably improved.
  • Surface free energy of the release layer surface of the release film of the present invention is preferably 18 mJ / m 2 or more 35 mJ / m 2 or less. More preferably, 20 mJ / m 2 or more 30 mJ / m 2 or less, further preferably 21 mJ / m 2 or more 28 mJ / m 2 or less.
  • repelling is less likely to occur when the ceramic slurry is applied, which is preferable.
  • it is 35 mJ / m 2 or less, there is no possibility that the releasability of the ceramic green sheet is reduced, which is preferable.
  • the release film of the present invention preferably has a peel force of 0.5 mN / mm 2 or more and 3 mN / mm 2 or less when peeling the ceramic green sheet. More preferably, it is 0.8 mN / mm 2 or more and 2.5 mN / mm 2 or less. More preferably, 1.0 mN / mm 2 or more and 1.8mN / mm 2 or less.
  • the peeling force is 0.5 mN / mm 2 or more, the peeling force is not too light, and there is no possibility that the ceramic green sheet will be lifted during transportation.
  • the peeling force is 3 mN / mm 2 or less, the ceramic green sheet is not likely to be damaged at the time of peeling, which is preferable.
  • the release film of the present invention preferably has less curl.
  • the curl after heating at 100 ° C. for 15 minutes without applying tension to the film is preferably 2 mm or less, more preferably 1 mm or less.
  • the thickness is set to 2 mm or less, the curling is small when the ceramic green sheet is formed and the electrode is printed, so that the printing accuracy can be improved.
  • the silicone-based release agent-derived component contained in the release layer is sufficiently precipitated on the surface of the release layer of the release film of the present invention.
  • the ratio of the Si element on the surface of the release layer can be used as an index indicating the amount of the component derived from the silicone release agent.
  • the Si element ratio on the release layer surface can be evaluated by ESCA, which can measure only the surface of the release layer.
  • the Si element ratio in the present invention is a ratio (at%) of Si in five elements of C, S, Si, O, and N as in the following equation.
  • Si element ratio (at%) ⁇ Si / (C + O + N + S + Si) ⁇ ⁇ 100 formula
  • the Si element ratio on the outermost surface of the release layer of the release film of the present invention is preferably 2.0 at% or more. It is more preferably at least 2.5 at%, more preferably at least 3.0 at%, still more preferably at least 3.5 at%. If the content is 2.0 at% or more, the surface of the release layer can be sufficiently covered with the silicone-based release agent, and the release force is stable when the thin ceramic green sheet is released.
  • the upper limit of the Si element ratio is preferably 10 at% or less, more preferably 9 at% or less, and still more preferably 8 at% or less. When the content is 10 at% or less, the elastic modulus of the surface of the release layer is not reduced and the peeling is stable, which is preferable.
  • the content of the silicone-based release agent-derived component contained in the release layer after curing described above and the release described later It is preferable to optimize the passage time of the initial drying step after coating the layer.
  • the surface of the release layer of the release film of the present invention is desirably flat so as not to cause defects in the ceramic green sheet applied and molded thereon, and the average surface roughness (Sa) of the region is 1.5 nm. Is preferably 1.2 nm or less, more preferably 1.0 nm or less. Further, the maximum projection height (P) of the release layer surface is preferably 50 nm or less, more preferably 40 nm or less, and still more preferably 30 nm or less. When the area surface average roughness (Sa) is 1.5 nm or less and the maximum projection height (P) is 50 nm or less, defects such as pinholes do not occur during formation of the ceramic green sheet, and the yield is good, which is preferable.
  • the coating amount of the release layer is preferably 0.2 g / m 2 or less, more preferably 0.09 g / m 2. Even if it is thinner than 2, the release layer surface can be smoothed, so the amount of solvent and resin used can be reduced, and it is environmentally friendly and inexpensive release film for forming ultra-thin ceramic green sheets. Can be created.
  • the maximum projection height (P) of the release layer surface of the release film of the present invention is 50 nm or less and the area average roughness (Sa) is 1.5 nm or less
  • a coating liquid for the release layer is applied. It is preferable to suppress aggregation of the silicone-based release agent and the binder component before drying. Therefore, as described in the below-described production method, the target ultra-high smooth release layer surface can be obtained by performing the time from application to drying under constant conditions.
  • the method for producing the release film of the present invention is not particularly limited, but a coating solution obtained by dissolving or dispersing at least a binder component and a silicone-based release agent in a solvent is laminated on at least one surface of the base polyester film by coating or the like. It is preferable to use a method in which a release layer is laminated through an application step of applying, an initial drying step of mainly removing a solvent and the like after the application, and a heat curing step of mainly curing a binder resin and the like.
  • the surface of the polyester film on the side where the release layer is provided is preferably a surface layer A substantially containing no particles, and another coat layer exists between the surface layer A and the release layer. No problem.
  • the solvent for dissolving or dispersing the binder resin and the silicone-based release agent is not particularly limited, but it is preferable to use an organic solvent.
  • Use of an organic solvent is preferable because the surface tension of the coating liquid can be reduced, so that repelling or the like does not easily occur after coating, and the smoothness of the surface of the release layer can be kept high.
  • the organic solvent used in the method for producing a release film of the present invention is not particularly limited, and any known organic solvent can be used.
  • the solvent include aromatic hydrocarbons such as benzene, toluene and xylene, fatty acid hydrocarbons such as cyclohexane, n-hexane and n-heptane, halogenated hydrocarbons such as perchloroethylene, ethyl acetate, methyl ethyl ketone and methyl. Isobutyl ketone and the like. Taking into account the applicability when applying to the surface of the substrate film, a mixed solvent of toluene and methyl ethyl ketone is practically preferable, although not limited.
  • the coating liquid used for coating for forming the release layer is not particularly limited, but preferably contains two or more kinds of organic solvents having different boiling points. It is preferable that at least one organic solvent has a boiling point of 100 ° C. or higher. By adding a solvent having a boiling point of 100 ° C. or more, bumping during drying can be prevented, the coating film can be leveled, and the smoothness of the dried coating film surface can be improved. It is preferable to add about 10 to 50% by mass of the total amount of the coating solution.
  • the solvent having a boiling point of 100 ° C. or higher include toluene, xylene, heoctane, cyclohexanone, methyl isobutyl ketone, and n-propyl acetate.
  • the surface tension (20 ° C.) of the coating liquid when applying the coating liquid for forming a release layer is not particularly limited, but is preferably 30 mN / m or less.
  • an organic solvent having a low surface tension as the organic solvent forming the coating liquid.
  • the surface tension (at 20 ° C.) of at least one organic solvent is preferably 26 mN / m or less, more preferably 23 mN / m or less. It is preferable to include an organic solvent having a surface tension (20 ° C.) of 26 mN / m or less because appearance defects such as repelling during coating can be reduced. It is preferable to add 20% by mass or more to the entire coating liquid.
  • the solid content concentration of the release agent contained in the coating liquid is preferably from 0.1% by mass to 10% by mass, more preferably from 0.2% by mass to 8% by mass.
  • the solid content concentration is 0.1% by mass or more, drying after application is fast, and aggregation of components in the release agent hardly occurs, which is preferable.
  • the solid content concentration is 10% by mass or less, the viscosity of the coating liquid is low and the leveling property is good, so that the flatness after coating can be improved, which is preferable.
  • the viscosity of the coating liquid is preferably from 1 mPa ⁇ s to 100 mPa ⁇ s from the viewpoint of coating appearance, and more preferably from 2 mPa ⁇ s to 10 mPa ⁇ s. It is preferable to adjust the solid content concentration, the organic solvent and the like so as to fall within this range.
  • the coating liquid for forming a release layer is preferably filtered before coating.
  • the filtration method is not particularly limited, and a known method can be used. However, it is preferable to use a surface type, depth type or adsorption type cartridge filter.
  • the use of a cartridge-type filter is preferable because the coating liquid can be used when the coating liquid is continuously fed from the tank to the coating section, so that productivity can be efficiently filtered. It is preferable to use a filter capable of removing 99% or more of a filter having a size of 1 ⁇ m, more preferably a filter capable of filtering 99% or more of a filter having a size of 0.5 ⁇ m.
  • any known coating method can be applied, for example, a roll coating method such as a gravure coating method or a reverse coating method, a bar coating method such as a wire bar, a die coating method, a spray coating method, and an air knife.
  • a roll coating method such as a gravure coating method or a reverse coating method
  • a bar coating method such as a wire bar
  • a die coating method such as a die coating method
  • a spray coating method such as a spray coating method
  • an air knife a coating method
  • a conventionally known method such as a coating method can be used.
  • the coating liquid film thickness (wet amount) at the time of coating is preferably 1 g / m 2 or more and 10 g / m 2 or less.
  • the thickness is more than 1 g / m 2 , the coating is stable, and defects such as repelling and streaks are less likely to appear, which is preferable.
  • the content is 10 g / m 2 or less, it is preferable that the components contained in the release layer be dried quickly and hardly aggregate.
  • Examples of the method of applying the coating liquid on the base film and drying the coating liquid include known hot-air drying and drying by heating with an infrared heater. Hot-air drying with a high drying speed is preferred.
  • the drying furnace can be divided into a constant-rate drying step (hereinafter, referred to as an initial drying step) at an early stage of drying, and a step in which reduced-rate drying and curing of the resin proceed (hereinafter, referred to as a heat curing step).
  • the initial drying step and the heat-curing step may be continuous or discontinuous, but the continuous step is preferable because the productivity is good. It is preferable that the respective steps are distinguished by dividing the drying furnace zone.
  • the number of zones in each step may be any number as long as it is one or more.
  • the film is placed in a drying oven within 1.5 seconds after application, more preferably within 1.0 second, and even more preferably within 0.8 seconds. Since the components contained in the release layer can be dried before agglomeration occurs by placing them in a drying oven and drying within 1.5 seconds after application, it is possible to prevent the smoothness of the surface of the release layer from being deteriorated due to aggregation. Is preferred because It is preferable that the time from application to the drying oven is short, and there is no particular lower limit, but it may be 0.05 seconds or longer, or 0.1 seconds or longer.
  • the initial drying step is not particularly limited, and a known drying furnace can be used.
  • a drying furnace method either the roll support method or the floating method may be used, but the roll support method has a wider range where the air volume during drying can be adjusted, so the air volume etc. is adjusted according to the type of release layer It is preferable because it is possible.
  • the temperature of the initial drying step is preferably from 60 ° C to 140 ° C, more preferably from 70 ° C to 130 ° C, even more preferably from 80 ° C to 120 ° C.
  • a temperature of 60 ° C. or more and 140 ° C. or less is preferable because the amount of the organic solvent contained in the release layer after coating can be effectively dried without poor planarity due to heat.
  • the time required to pass through the initial drying step is preferably from 1.0 to 3.0 seconds, more preferably from 1.0 to 2.5 seconds, and more preferably from 1.2 to 2.5 seconds. Seconds or less are more preferred.
  • the time is preferably at least 1.0 second because the organic solvent contained in the release layer after application can be sufficiently dried. Further, it is preferable to set the release time to 1.0 second or longer because the component derived from the silicone release agent contained in the release layer can be effectively deposited on the surface of the release layer. Further, when the time is 3.0 seconds or less, aggregation of the components in the release layer hardly occurs, which is preferable.
  • the amount of the organic solvent contained in the release layer after passing through the initial drying step is preferably 5% by mass or less, more preferably 2% by mass or less.
  • the amount of the organic solvent in the release layer can be measured by gas chromatography or thermogravimetric analysis after sampling the film after the initial drying step, but it can be estimated by using a drying simulation. It is preferable to obtain the value from simulation because measurement can be performed without stopping the process.
  • the simulation is not particularly limited, but known simulation software can be used.
  • the release film of the present invention preferably undergoes a heat curing step after the initial drying step.
  • the heat curing step is not particularly limited, and a known drying furnace can be used. Regarding the drying furnace system, either a roll supporting system or a floating system may be used.
  • the heat curing step may be a step that is continuous with the initial drying step or a step that is discontinuous, but is preferably a step that is continuous from the viewpoint of productivity.
  • the temperature of the heat curing step is preferably 80 ° C or more and 180 ° C or less, more preferably 90 ° C or more and 160 ° C or less, and most preferably 90 ° C or more and 140 ° C or less.
  • the temperature is 180 ° C. or lower, the flatness of the film is maintained, and the possibility of causing thickness unevenness of the ceramic green sheet is small, which is preferable.
  • the temperature is 140 ° C. or lower, processing can be performed without impairing the flatness of the film, and the possibility of causing unevenness in the thickness of the ceramic green sheet is further reduced.
  • the temperature is 80 ° C. or higher, the thermosetting resin is preferable because the curing proceeds sufficiently.
  • the time of passing through the heat curing step is preferably 2 seconds or more and 30 seconds or less, more preferably 2 seconds or more and 20 seconds or less. If the passage time is 2 seconds or longer, the curing of the thermosetting resin proceeds, which is preferable. Further, it is preferable that the time is 30 seconds or less, since the flatness of the film due to heat does not decrease.
  • the hot air temperature be equal to or lower than the glass transition temperature of the base film and the actual temperature of the base film in a flat state be equal to or lower than the glass transition temperature. If the actual temperature of the base film leaves the drying oven at or above the glass transition temperature, slippage will be poor when it comes into contact with the roll surface, and not only will scratches and the like occur, but curl etc. may occur. is there.
  • the release film of the present invention is preferably wound up in a roll after passing through the heat curing step.
  • the time required for winding into a roll is preferably 2 seconds or more, more preferably 3 seconds or more.
  • the release film, the temperature of which has been raised in the heat curing step is cooled and wound up on a roll.
  • various treatments may be carried out after the heat-curing step and before winding into a roll, aging treatment, charge removal treatment, corona treatment, plasma treatment, ultraviolet irradiation treatment. And an electron beam irradiation treatment.
  • a multilayer ceramic capacitor has a rectangular parallelepiped ceramic body. Inside the ceramic body, first internal electrodes and second internal electrodes are provided alternately along the thickness direction. The first internal electrode is exposed on a first end face of the ceramic body. A first external electrode is provided on the first end surface. The first internal electrode is electrically connected to a first external electrode at a first end face. The second internal electrode is exposed on the second end face of the ceramic body. A second external electrode is provided on the second end surface. The second internal electrode is electrically connected to a second external electrode at a second end face.
  • the release film for producing a ceramic green sheet of the present invention is used for producing such a multilayer ceramic capacitor.
  • it is manufactured as follows. First, using the release film of the present invention as a carrier film, a ceramic slurry for forming a ceramic body is applied and dried. A conductive layer for forming the first or second internal electrode is printed on the applied and dried ceramic green sheet. The ceramic green sheet, the ceramic green sheet on which the conductive layer for forming the first internal electrode is printed, and the ceramic green sheet on which the conductive layer for forming the second internal electrode is printed are appropriately laminated and pressed. Thereby, a mother laminate is obtained. The mother laminate is divided into a plurality of pieces to produce a raw ceramic body. The ceramic body is obtained by firing the raw ceramic body. After that, by forming the first and second external electrodes, the multilayer ceramic capacitor can be completed.
  • Regular surface average roughness (Sa), maximum protrusion height (P) It is a value measured under the following conditions using a non-contact surface profile measuring system (VertScan R550H-M100, manufactured by Ryoka Systems Inc.). The average surface roughness of the area (Sa) was an average value of five measurements, and the maximum protrusion height (P) was measured seven times, and the five maximum values excluding the maximum value and the minimum value were used.
  • Measurement mode WAVE mode
  • Objective 10 ⁇ ⁇ 0.5 ⁇ Tube lens
  • Measurement area 936 ⁇ m ⁇ 702 ⁇ m
  • Surface correction 4th order correction
  • Interpolation processing Complete interpolation
  • Filter processing Gaussian cut-off value 50 ⁇ m
  • the coating amount of the release layer after curing of the release film of the present invention was measured by a gravimetric method.
  • the release film was sampled to a size of 15 cm ⁇ 15 cm, and after neutralization using a static eliminator, the weight was measured using a precision balance (AUW120D manufactured by Shimadzu Corporation).
  • the measured release layer of the release film was wiped off using methyl ethyl ketone, dried at 80 ° C. for 1 minute with a hot-air drier, and the mass was measured again using a precision balance.
  • the release layer coating amount (g / m 2 ) was calculated by dividing the difference in the film weight after wiping from the film weight before wiping the release layer by the film area (15 cm ⁇ 15 cm). The measurement was performed five times using films sampled from different locations, and an average value of three times excluding the maximum value and the minimum value was used.
  • the Si element ratio at the outermost surface of the release layer of the release film of the present invention was measured by ESCA.
  • the device is K-Alpha + (Manufactured by Thermo Fisher Scientific) was used. Details of the measurement conditions are shown below. Using this apparatus, a narrow scan was performed for five elements of C, O, N, S, and Si on the surface of the release layer, and the Si element ratio (at%) was calculated from the following equation.
  • the Si element ratio is the ratio (at%) of Si in the five elements of C, O, N, S, and Si.
  • Si element ratio (at%) ⁇ Si / (C + O + N + S + Si) ⁇ ⁇ 100 Expression
  • the background was removed by the shirley method.
  • the surface Si element ratio was an average value of the measurement results at three or more locations. ⁇ Measurement conditions Excitation X-ray: Monochrome Al Ka-ray X-ray output: 12 kV, 6 mA Photoelectron escape angle: 90 ° Spot size: 400 mm f (approx.) Pass energy: 50eV Step: 0.1eV
  • the contact angle data of water, diiodomethane, and ethylene glycol obtained by the above method were calculated from the "Kitasaki-Hata" theory to determine the dispersion component ⁇ sd, polar component ⁇ sp, and hydrogen bond component ⁇ sh of the surface free energy of the release film, The sum of the components was defined as surface free energy ⁇ s. This calculation was performed using calculation software in the contact angle meter software (FAMAS).
  • the surface tension of the coating liquid was measured by a Wilhelmy method using a platinum plate at 20 ° C. using a surface tensiometer (manufactured by Kyowa Interface Science Co., Ltd .: DY-500 high-performance surface tensiometer). The measurement was performed three times and the average value was adopted.
  • Viscosity of coating liquid The viscosity of the coating liquid was measured at 20 ° C. using a rotary viscometer (TVB-15M, manufactured by Toki Sangyo Co., Ltd.). When measuring a low viscosity liquid of 10 mPa ⁇ s or less, the measurement was performed using an optional low viscosity adapter. The measurement was performed three times, and the average value was adopted.
  • the obtained release film with ceramic green sheet was subjected to static elimination using a static eliminator (manufactured by Keyence Corporation, SJ-F020), and then peeled at a peel angle of 90 °, a peel angle of 90 ° and a peel speed of 10 m / min. The stress applied during peeling was measured and used as the peeling force.
  • the peelability was evaluated 10 times in the same manner as the peelability evaluation of the ceramic green sheet described above.
  • the dispersion of the peeling force 10 times was evaluated based on the following criteria, and the evaluation was made as the peeling stability. :: The difference between the maximum value and the minimum value measured 10 times was smaller than 0.5 mN / mm 2 .
  • The difference between the maximum value and the minimum value measured 10 times was 0.5 mN / mm 2 or more and less than 1.0 N / mm 2 .
  • The difference between the maximum value and the minimum value measured 10 times was smaller than 1.0 mN / mm 2 .
  • the release film sample was cut into a size of 10 cm ⁇ 10 cm, and heat-treated at 100 ° C. for 15 minutes in a hot-air oven so that tension was not applied to the release film. Then, after taking out from the oven and cooling to room temperature, a release film sample was placed on a glass plate so that the release surface faced upward, and the height of the portion floating from the glass plate was measured. At this time, the height of the portion floating the largest from the glass plate was taken as the measured value.
  • the curl properties were evaluated according to the following criteria. : The curl is 1 mm or less, and almost no curl. ⁇ : The curl was larger than 1 mm and 2 mm or less, and a slight curl was observed. X: The curl was larger than 2 mm.
  • PET (I) Preparation of polyethylene terephthalate pellet (PET (I))
  • a continuous esterification reactor consisting of a three-stage complete mixing tank having a stirrer, a decomposer, a raw material inlet, and a product outlet was used.
  • TPA terephthalic acid
  • EG ethylene glycol
  • antimony trioxide was used in such an amount that Sb atoms became 160 ppm with respect to generated PET, and these slurries were esterified.
  • the mixture was continuously supplied to the first esterification reactor of the conversion reaction apparatus, and reacted at 255 ° C.
  • the reaction product in the first esterification reactor is continuously taken out of the system and supplied to the second esterification reactor, and is distilled from the first esterification reactor into the second esterification reactor.
  • An EG solution containing the following amount of TMPA (trimethyl phosphate) was added and reacted at 260 ° C. for 1 hour at an average residence time at normal pressure.
  • the reaction product of the second esterification reactor is continuously taken out of the system and supplied to the third esterification reactor, and 39 MPa (400 kg / cm 2 ) using a high-pressure disperser (manufactured by Nippon Seiki Co., Ltd.).
  • a high-pressure disperser manufactured by Nippon Seiki Co., Ltd.
  • 0.2% by mass of porous colloidal silica having an average particle size of 0.9 ⁇ m subjected to dispersion treatment with an average number of treatments of 5 passes at a pressure of 0.2%, and 1% by mass of an ammonium salt of polyacrylic acid per calcium carbonate adhered thereto While adding 0.4% by mass of synthetic calcium carbonate having a diameter of 0.6 ⁇ m as EG slurries of 10% each, the mixture was reacted at 260 ° C.
  • the esterification reaction product generated in the third esterification reaction vessel was continuously supplied to a three-stage continuous polycondensation reaction apparatus to perform polycondensation, and sintered a stainless steel fiber having a 95% cut diameter of 20 ⁇ m. After filtration with a filter, ultrafiltration was performed and the mixture was extruded into water. After cooling, the mixture was cut into chips to obtain a PET chip having an intrinsic viscosity of 0.60 dl / g (hereinafter abbreviated as PET (I)). .
  • PET (I) intrinsic viscosity of 0.60 dl / g
  • PET (II) Preparation of polyethylene terephthalate pellet (PET (II))
  • PET (II) a PET chip having an intrinsic viscosity of 0.62 dl / g containing no particles such as calcium carbonate and silica was obtained (hereinafter abbreviated as PET (II)).
  • PET (III) Preparation of polyethylene terephthalate pellet (PET (III)) Except that the type and content of the particles of PET (I) were changed to 0.75% by mass of synthetic calcium carbonate having an average particle size of 0.9 ⁇ m obtained by adhering ammonium salt of polyacrylic acid at 1% by mass per calcium carbonate.
  • a PET chip was obtained in the same manner as PET (I) (hereinafter abbreviated as PET (III)).
  • the lubricant content in the PET chip was 0.75% by mass.
  • PET (I) is applied to the surface layer B (anti-release surface side layer), and PET (II) is applied to the surface.
  • the layers are laminated so as to become the layer A (release side layer), extruded (casted) at a speed of 45 m / min into a sheet, electrostatically adhered and cooled on a casting drum at 30 ° C. by an electrostatic adhesion method, An unstretched polyethylene terephthalate sheet having an intrinsic viscosity of 0.59 dl / g was obtained.
  • the unstretched sheet was heated by an infrared heater, and then stretched 3.5 times in the longitudinal direction at a roll temperature of 80 ° C. due to a speed difference between the rolls.
  • A4100 (Cosmoshine (registered trademark), manufactured by Toyobo Co., Ltd.) having a thickness of 25 ⁇ m was used as the laminated film X3.
  • A4100 has a structure in which particles are not substantially contained in the film, and a coating layer containing particles is provided on the surface layer B side by in-line coating. Sa of the surface layer A of the laminated film X3 was 1 nm, and Sa of the surface layer B was 2 nm.
  • E5101 Toyobo Ester (registered trademark) film, manufactured by Toyobo Co., Ltd.) having a thickness of 25 ⁇ m was used.
  • E5101 has a configuration in which particles are contained in the surface layers A and B of the film. Sa of the surface layer A of the laminated film X4 was 24 nm, and Sa of the surface layer B was 24 nm.
  • PET (III) is laminated so as to be a surface layer B (anti-release surface side layer) and PET (II) is to be a surface layer A (release surface side layer), and the layer ratio is calculated by calculating the discharge amount of each extruder.
  • a biaxially stretched polyethylene terephthalate film X5 having a thickness of 31 ⁇ m was obtained in the same manner as for the laminated film X1, except that PET (III) / (II) was set to 80% / 20%. Sa of the surface layer A of the obtained film X5 was 2 nm, and Sa of the surface layer B was 30 nm.
  • Example 1 The coating solution 1 having the following composition was passed through a filter capable of removing 99% or more of foreign substances having a size of 0.5 ⁇ m or more on the surface layer A of the laminated film X1, and the coating film thickness (wet amount) was 5 g / After coating so as to obtain m 2 , it was adjusted to enter the initial drying furnace in 0.5 seconds. After drying in an initial drying oven at 100 ° C. for 2 seconds, the product was continuously heated and cured at 130 ° C. for 7 seconds. Eight seconds after the heat curing step, the resultant was wound into a roll to obtain a release film for producing an ultra-thin ceramic green sheet.
  • Table 1 shows the results obtained by measuring the film thickness, surface roughness, surface free energy, curl, and the like of the obtained release film.
  • the obtained release film was coated with a ceramic slurry and evaluated for coating properties, releasability, and pinholes, good evaluation results were obtained.
  • Examples 2 to 4, Comparative Examples 1 and 7 A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1, except that the composition of the coating liquid 1 was changed so as to have the ratio shown in Table 1.
  • the peeling force was good and good results were obtained for the examples containing the silicone-based release agent, but the peeling force was good for Comparative Example 1 containing no silicone-based release agent.
  • the ceramic green sheet was peeled from the release film, defects such as pinholes were likely to occur.
  • Comparative Example 7 in which the amount of the silicone-based release agent was small and the ratio of the Si element on the surface of the release layer was low, the in-plane peeling uniformity was poor.
  • Examples 5 to 7, Comparative Example 2 The ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the solid content was changed as shown in Table 2 while the resin ratio of the coating liquid 1 was unchanged, and the coating amount (solid content) of the release layer was changed. A production release film was prepared. When the obtained release film was evaluated, the examples in which the coating amount of the release layer was 0.2 g / m 2 or less showed good results without curling. In Comparative Example 2 at 75 g / m 2, the curl was significantly deteriorated. In Comparative Example 2, the content of the silicone-based release agent contained in the release layer was large, and the Si element ratio on the outermost surface of the release layer was increased, and the peeling stability tended to be deteriorated.
  • Example 8 A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that coating liquid 1 was changed to coating liquid 8.
  • Coating liquid 8 Methyl ethyl ketone 57.35 parts by mass Toluene 40.00 parts by mass Cymac (registered trademark) US270 2.33 parts by mass (acrylic polyol containing silicone group, manufactured by Toagosei Co., Ltd., solid content 30%) 0.25 parts by mass of crosslinking agent (hexamethoxymethylolmelamine, solid content 100%) 0.05 parts by mass of silicone release agent (polyether-modified polydimethylsiloxane, TSF4446, solid content 100%, manufactured by Momentive) Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
  • Example 9 A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 9.
  • (Coating liquid 9) Methyl ethyl ketone 58.03 parts by mass Toluene 40.00 parts by mass Tesfine 305 1.90 parts by mass (long chain alkyl group-containing amino alkyd resin, manufactured by Hitachi Chemical, solid content 50%) 0.05 parts by mass of silicone release agent (polyether-modified polydimethylsiloxane, TSF4446, solid content 100%, manufactured by Momentive) Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
  • Example 10 A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1, except that the coating liquid 1 was changed to the coating liquid 10.
  • Coating liquid 10 Methyl ethyl ketone 57.55 parts by mass Toluene 40.00 parts by mass Tesfine 322 2.38 parts by mass (long chain alkyl group-containing aminoacrylic resin, manufactured by Hitachi Chemical Co., Ltd., solid content 40%) 0.05 parts by mass of silicone release agent (polyether-modified polydimethylsiloxane, TSF4446, solid content 100%, manufactured by Momentive) Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
  • Example 11 An ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating solution 11 in which the resin solution A of the coating solution 1 was changed to 6AN-5000 (an acrylic resin containing no long-chain alkyl group) of the coating solution 10 was used. A production release film was prepared.
  • Example 12 A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 12.
  • (Coating liquid 12) Methyl ethyl ketone 58.95 parts by mass Toluene 40.00 parts by mass Hexamethoxymethylolmelamine 0.95 parts by mass (solid content 100%) 0.05 parts by mass of silicone release agent (polyether-modified polydimethylsiloxane, TSF4446, solid content 100%, manufactured by Momentive Performance Materials) Acid catalyst (p-toluenesulfonic acid) 0.05 parts by mass
  • Example 13 A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 13.
  • (Coating liquid 13) Methyl ethyl ketone 57.78 parts by mass Toluene 40.00 parts by mass Resin solution A 1.75 parts by mass (long chain alkyl group-containing acrylic polyol, solid content 40%) 0.25 parts by mass of crosslinking agent (hexamethoxymethylolmelamine, solid content 100%) 0.08 parts by mass of silicone release agent (polyester-modified polydimethylsiloxane, BYK-310, solid content 25%, manufactured by BYK Japan KK) Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
  • Example 14 A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 14.
  • Example 15 A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 15.
  • Examples 16 to 18, Comparative Example 3 A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1, except that the substrate film of Example 1 was changed to the substrate film shown in Table 1.
  • the surface layer A of the release layer was , P was low and the pinhole evaluation was good
  • Comparative Example 3 where X4 containing particles was used in the surface layer A of the base film and the coating amount of the release layer was relatively small and thin, Both Sa and P on the surface of the layer were high, resulting in poor pinhole evaluation.
  • Example 19 to 22, Comparative Examples 4 and 5 Regarding the manufacturing conditions of Example 1, the ultra-thin film was prepared in the same manner as in Example 1 except that the time from coating to entering the initial drying furnace, or the temperature and passing time of the initial drying furnace were changed to the conditions shown in Table 2. A release film for producing a multilayer ceramic green sheet was prepared.
  • Example 6 A release film for producing an ultra-thin ceramic green sheet was produced in the same manner as in Example 11, except that the production conditions of Example 11 were changed to the conditions described in Table 1.
  • the time required to enter the initial drying furnace was 1.5 seconds or less, and the time required for passage through the initial drying furnace was 1.0 seconds or more and 3.0 seconds or less.
  • the surface roughness Sa and the maximum protrusion height P of the mold layer surface were low and the pinhole evaluation was good, in the comparative example where the above conditions were not satisfied, aggregation of the mold release layer was observed and the surface of the mold release layer was observed. As a result, the roughness Sa and the maximum projection height P were increased.
  • a release layer of the release film for producing a ceramic green sheet by at least a composition containing a binder component and a silicone-based release agent is cured, at the time of drying the above components It has become possible to provide a release film having high smoothness and excellent releasability by suppressing deterioration of surface roughness due to aggregation. According to the present invention, even in the production of an ultra-thin ceramic green sheet having a thickness of 0.2 to 1.0 ⁇ m, the peelability is good and defects such as pinholes of the ceramic green sheet can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

[Problem] To provide a mold release film for ceramic green sheet production, which is suppressed in deterioration of the surface roughness of a mold release layer due to aggregation during drying, thereby having high smoothness, and which has excellent releasability by adjusting the amount of a silicone component in the surface of the mold release layer. [Solution] A mold release film for ceramic green sheet production, which uses a polyester film as a base material, and which is configured such that: the base material has a surface layer A on at least one surface, said surface layer A substantially containing no particles; and a mold release layer is superposed on the surface of the surface layer A on at least one surface directly or with another layer being interposed therebetween. The mold release layer is obtained by curing a composition that contains a binder component and a silicone-based mold release agent; the Si element ratio in the mold release layer surface is from 2.0 at% to 10.0 at% (inclusive); and the mold release layer surface has a maximum profile peak height (P) of 50 nm or less and an area average roughness (Sa) of 1.5 nm or less.

Description

セラミックグリーンシート製造用離型フィルムRelease film for ceramic green sheet production
 本発明は、セラミックグリーンシート製造用離型フィルムに関するものであり、詳しくは超薄層のセラミックグリーンシート製造時にピンホール及び厚みムラによる工程不良の発生を抑制したものを製造し得る、超薄層のセラミックグリーンシート製造用離型フィルムに関するものである。 The present invention relates to a release film for producing a ceramic green sheet, and more particularly, to an ultra-thin layer capable of producing a film in which occurrence of process defects due to pinholes and thickness unevenness is suppressed when producing an ultra-thin ceramic green sheet. And a release film for producing a ceramic green sheet.
 近年、多層積層セラミックコンデンサ(略称MLCC)の小型化・大容量化に伴い、セラミックグリーンシートの薄膜化が要求されている。多層積層セラミックコンデンサは離型フィルム上に、チタン酸バリウムなどのセラミック成分とバインダー樹脂を含有したスラリーを塗工し乾燥することでセラミックグリーンシートを成型し、得られたセラミックグリーンシートに電極を印刷した後、離型フィルムから剥離し、セラミックグリーンシートを積層、プレスし、脱脂・焼成後、外部電極を塗布することで製造される。 In recent years, with the miniaturization and large capacity of multilayer multilayer ceramic capacitors (abbreviated as MLCC), thinning of ceramic green sheets is required. Multilayer multilayer ceramic capacitors form a ceramic green sheet by coating and drying a slurry containing a ceramic component such as barium titanate and a binder resin on a release film, and printing electrodes on the resulting ceramic green sheet. After that, it is manufactured by peeling off from the release film, laminating and pressing ceramic green sheets, degreasing and firing, and then applying an external electrode.
 MLCCを小型で大容量化するためには、セラミ ックグリーンシートを薄膜化することが必要であり、その膜厚は1.0μm以下、さらには0.6μm以下の薄膜になってきており、さらなる薄膜化も進んでいる。しかし、セラミックグリーンシートを薄膜化していくと離型フィルム上の極めて微小な突起や離型フィルムから剥離するときの力によって、ピンホールや割れなどの欠点が生じやすくなるといった課題があった。 In order to reduce the size and capacity of the MLCC, it is necessary to reduce the thickness of the ceramic green sheet. The thickness of the ceramic green sheet is reduced to 1.0 μm or less, and further to 0.6 μm or less. Further thinning is progressing. However, when the ceramic green sheet is made thinner, there is a problem that defects such as pinholes and cracks are likely to occur due to extremely minute projections on the release film and a force at the time of peeling from the release film.
 これら課題を解決するために、セラミックグリーンシートの成型に使用する離型フィルムとして、ポリエステルフィルムに離型層を設け、離型層表面を高平滑化したフィルムが提案されている。特許文献1では、ポリエステルフィルムの表面に平滑化層設け、その後平滑化層の上に離型層を設けることが開示されている。また、特許文献2には、(メタ)アクリル酸エステルおよびシリコーン系成分からなる離型層を0.3μm以上の膜厚で形成することが開示されている。特許文献1および特許文献2の記載によれば、離型層表面の算術平均粗さRaが8nm以下かつ最大突起高さRpが50nm以下にすることができることが開示されている。 解決 In order to solve these problems, a film in which a release layer is provided on a polyester film and the surface of the release layer is highly smoothed has been proposed as a release film used for molding a ceramic green sheet. Patent Document 1 discloses that a smoothing layer is provided on the surface of a polyester film, and then a release layer is provided on the smoothing layer. Patent Document 2 discloses that a release layer composed of a (meth) acrylate and a silicone-based component is formed with a thickness of 0.3 μm or more. According to the descriptions of Patent Document 1 and Patent Document 2, it is disclosed that the arithmetic average roughness Ra of the release layer surface can be 8 nm or less and the maximum protrusion height Rp can be 50 nm or less.
 しかし、特許文献1および2に記載された技術によると、ポリエステルフィルム上に積層する樹脂層(離型層および平滑化層)の厚みが厚いため、硬化に時間がかかり、使用する有機溶剤量も増えるため環境負荷が大きいなどの課題があった。また離型層の膜厚が厚いため得られた離型フィルムのカールなども課題となることがあった。また、これらの文献に記載された技術においては、離型層に含まれるシリコーン系成分の量が多く離型層表面の弾性率が低くなり剥離が不安定になる懸念があった。 However, according to the techniques described in Patent Documents 1 and 2, since the thickness of the resin layer (release layer and smoothing layer) laminated on the polyester film is large, it takes a long time to cure, and the amount of the organic solvent used is also small. There were issues such as a large environmental load due to the increase. In addition, curling of the obtained release film due to the large thickness of the release layer sometimes becomes a problem. Further, in the techniques described in these documents, there is a concern that the amount of the silicone-based component contained in the release layer is large, the elastic modulus of the surface of the release layer is low, and peeling becomes unstable.
 また、セラミックグリーンシート成型用離型フィルムの離型層としては、以下のような提案もされている。特許文献3においては、離型層にシリコーンを含まないノンシリコーン系の離型層が提案されている。特許文献4においては、シリコーン樹脂を離型層としたフィルムが提案されている。しかし、特許文献3に記載される技術のようにノンシリコーン系の離型層であるとセラミックグリーンシートを剥離するときの剥離力が大きくなり薄膜化したセラミックグリーンシートではダメージを受ける課題がある。また、特許文献4に記載されるようなシリコーン系樹脂の離型層では、セラミックグリーンシートを剥離するときの剥離力は小さくなるが、一般的にシリコーン樹脂のガラス転移温度が室温以下のため、弾性率が低く、剥離時に離型層が変形するため剥離力が不安定になる課題があった。 The following proposals have also been made for the release layer of the release film for molding ceramic green sheets. Patent Literature 3 proposes a non-silicone release layer containing no silicone in the release layer. Patent Document 4 proposes a film using a silicone resin as a release layer. However, if the release layer is a non-silicone-based release layer as in the technique described in Patent Document 3, the peeling force when peeling the ceramic green sheet is increased, and there is a problem that the ceramic green sheet having a reduced thickness is damaged. Further, in the release layer of the silicone resin as described in Patent Document 4, the peeling force when peeling the ceramic green sheet is small, but generally, since the glass transition temperature of the silicone resin is below room temperature, There is a problem that the release force is unstable because the release layer is deformed at the time of peeling because the elastic modulus is low.
 また、特許文献5において、アルキッド樹脂、アミノ樹脂及び変性シリコーン樹脂を含有した離型層が提案されている。更に、特許文献6においては、メラミン樹脂とポリオルガノシロキサンを含有した離型層が提案されている。離型層のバインダーとしてメラミン樹脂などの架橋体を主に含有し、離型成分としてシリコーン系樹脂を添加したことで、離型層の弾性率を上げて変形性と剥離性を両立させることが提案されている。 特許 Furthermore, Patent Document 5 proposes a release layer containing an alkyd resin, an amino resin, and a modified silicone resin. Further, Patent Document 6 proposes a release layer containing a melamine resin and a polyorganosiloxane. By mainly containing a crosslinked body such as melamine resin as a binder of the release layer and adding a silicone resin as a release component, it is possible to increase the elastic modulus of the release layer and achieve both deformability and releasability. Proposed.
 しかし、特許文献5や6に記載されるように、バインダー樹脂とシリコーン系樹脂を含有する離型層であると、バインダー樹脂とシリコーン系樹脂の有機溶剤への溶解性や溶解液の表面張力が大きく異なるため、乾燥時に相溶性が悪くなり各樹脂が凝集し突起となり、離型層表面の表面粗さを悪化させる課題があった。厚み1.0μm以下、さらには0.6μm以下のセラミックグリーンシートを成型する場合、これら微小な表面粗さの悪化でもピンホールなどが発生し得られる積層セラミックコンデンサの不良率が悪化してしまうため、さらなる平滑性が求められていた。 However, as described in Patent Documents 5 and 6, when the release layer contains a binder resin and a silicone resin, the solubility of the binder resin and the silicone resin in an organic solvent and the surface tension of the solution are reduced. Due to such a large difference, the compatibility deteriorates during drying, and the respective resins coagulate to form projections, which causes a problem of deteriorating the surface roughness of the release layer surface. When molding a ceramic green sheet having a thickness of 1.0 μm or less, or even 0.6 μm or less, even if the minute surface roughness is deteriorated, pinholes and the like are generated and the defective rate of the obtained multilayer ceramic capacitor is deteriorated. , Further smoothness was required.
特開2014-177093号公報JP 2014-177093 A 国際公開第2013/145864号International Publication No. WO 2013/145864 特開2010-144046号公報JP 2010-144046 A 特開2012-207126号公報JP 2012-207126 A 特開平9-239913号公報JP-A-9-239913 特開2017-7226号公報JP 2017-7226 A
 本発明は、上記実情に鑑み、セラミックグリーンシート製造用離型フィルムの離型層として、少なくともバインダー成分とシリコーン系離型剤を含む組成物が硬化されてなる離型層であっても、上記成分の乾燥時の凝集による表面粗さの悪化を抑制し高い平滑性を有し、かつ離型層表面のシリコーン系成分の量を調整することによって、剥離性に優れたセラミックグリーンシート製造用離型フィルムを提供しようとするものである。 In view of the above circumstances, the present invention, even if the release layer of the release film for producing a ceramic green sheet is a release layer obtained by curing a composition containing at least a binder component and a silicone-based release agent, By controlling the deterioration of the surface roughness due to the aggregation during the drying of the components and having a high smoothness, and by adjusting the amount of the silicone component on the surface of the release layer, the release for the ceramic green sheet production with excellent releasability is achieved. It is intended to provide a mold film.
 即ち、本発明は以下の構成よりなる。
1. ポリエステルフィルムを基材とし、前記基材が少なくとも片面に粒子を実質的に含有していない表面層Aを有し、少なくとも片面の表面層Aの表面上に直接又は他の層を介して離型層が積層されている離型フィルムであって、離型層はバインダー成分とシリコーン系離型剤を含有する組成物が硬化されてなり、離型層表面のSi元素比率が2.0at%以上10.0at%以下であり、離型層表面の最大突起高さ(P)が50nm以下かつ領域平均粗さ(Sa)が1.5nm以下であるセラミックグリーンシート製造用離型フィルム。
2. シリコーン系離型剤が、ポリエーテル部位またはカルボキシル基を有するシリコーン系樹脂である上記第1に記載のセラミックグリーンシート製造用離型フィルム。
3. シリコーン系離型剤由来成分が、離型層中に1~15mg/m含有されている上記第1又は第2に記載のセラミックグリーンシート製造用離型フィルム。
4. バインダー成分が長鎖アルキル基および/またはシリコーン骨格を有する樹脂を含む上記第1~第3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。
5. 上記第1~第4のいずれかに記載のセラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法であって、成型されたセラミックグリーンシートが0.2μm~1.0μmの厚みを有するセラミックグリーンシートの製造方法。
6. 上記第5に記載のセラミックグリーンシートの製造方法を採用するセラミックコンデンサの製造方法。
That is, the present invention has the following configurations.
1. Using a polyester film as a base material, the base material has a surface layer A substantially free of particles on at least one surface, and is released on at least one surface of the surface layer A directly or via another layer. A release film in which layers are laminated, wherein the release layer is formed by curing a composition containing a binder component and a silicone-based release agent, and the Si element ratio on the release layer surface is 2.0 at% or more. A release film for producing a ceramic green sheet, which has a maximum protrusion height (P) of 50 nm or less and a region average roughness (Sa) of 1.5 nm or less at 10.0 at% or less, and a release layer surface.
2. 2. The release film for producing a ceramic green sheet as described in 1 above, wherein the silicone release agent is a silicone resin having a polyether moiety or a carboxyl group.
3. 3. The release film for producing a ceramic green sheet according to the above 1 or 2, wherein the silicone-based release agent-derived component is contained in the release layer in an amount of 1 to 15 mg / m 2 .
4. 4. The release film for producing a ceramic green sheet according to any one of the first to third aspects, wherein the binder component contains a resin having a long-chain alkyl group and / or a silicone skeleton.
5. A method for producing a ceramic green sheet using the release film for producing a ceramic green sheet according to any one of the first to fourth aspects, wherein the molded ceramic green sheet has a thickness of 0.2 μm or more. A method for producing a ceramic green sheet having a thickness of 1.0 μm.
6. A method for manufacturing a ceramic capacitor employing the method for manufacturing a ceramic green sheet according to the fifth aspect.
 本発明によると、少なくともバインダー成分とシリコーン系離型剤を含む離型層であっても、上記成分の乾燥時の凝集による表面粗さの悪化を抑制し高い平滑性を有し、かつ離型層表面のシリコーン系成分の量を調整することによって、剥離性に優れた膜厚0.2~1.0μmの超薄膜化したセラミックグリーンシートの製造においても、剥離性がよく、ピンホールなどの欠点を少なくすることができるセラミックグリーンシート製造用離型フィルムの提供が可能となる。 According to the present invention, even a release layer containing at least a binder component and a silicone-based release agent has high smoothness by suppressing deterioration of surface roughness due to aggregation of the above components during drying, and has a release. By adjusting the amount of the silicone-based component on the surface of the layer, even in the production of an ultra-thin ceramic green sheet having a film thickness of 0.2 to 1.0 μm with excellent peelability, the peelability is good and pinholes and the like can be obtained. It is possible to provide a release film for producing a ceramic green sheet, which can reduce defects.
 本発明者らは上記課題を解決するために、離型層の塗工後の乾燥条件や離型層中のシリコーン系化合物の含有量について鋭意検討し最適化することで、少なくとも片面に粒子を実質的に含有しない表面層Aを有するポリエステルフィルムの少なくとも片面の表面層A上に直接もしくは他の層を介して離型層を積層してなる離型フィルムであって、離型層がバインダー成分とシリコーン系離型剤を含有する組成物が硬化されてなり、離型層表面の最大突起高さ(P)が50nm以下かつ領域平均粗さ(Sa)が1.5nm以下であり、かつ離型層最表面のSi元素比率が2.0at%以上10.0at%以下であるセラミックグリーンシート製造用離型フィルムが、膜厚0.2~1.0μmの超薄膜化したセラミックグリーンシートを成型した際に、剥離性に優れ、ピンホールなどの欠点が少なくなることを見出したものである。以下、本発明について詳細に説明する。 In order to solve the above problems, the present inventors have intensively studied and optimized the drying conditions after coating of the release layer and the content of the silicone-based compound in the release layer, so that the particles were formed on at least one surface. A release film obtained by laminating a release layer directly or via another layer on at least one surface layer A of a polyester film having a surface layer A substantially not containing, wherein the release layer comprises a binder component. And a composition containing a silicone-based release agent is cured, the maximum protrusion height (P) on the surface of the release layer is 50 nm or less, the area average roughness (Sa) is 1.5 nm or less, and The release film for producing a ceramic green sheet, in which the Si element ratio on the outermost surface of the mold layer is 2.0 at% or more and 10.0 at% or less, forms an ultra-thin ceramic green sheet having a thickness of 0.2 to 1.0 μm. When Excellent peelability, in which defects such as pinholes was found to become small. Hereinafter, the present invention will be described in detail.
(ポリエステルフィルム)
 本発明において、基材として用いるポリエステルフィルムを構成するポリエステルは、特に限定されず、離型フィルム用基材として通常一般に使用されているポリエステルをフィルム成型したものを使用することが出来るが、好ましくは、芳香族二塩基酸成分とジオール成分からなる結晶性の線状飽和ポリエステルであるのが良く、例えば、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート又はこれらの樹脂の構成成分を主成分とする共重合体がさらに好適であり、とりわけポリエチレンテレフタレートから形成されたポリエステルフィルムが特に好適である。ポリエチレンテレフタレートは、エチレンテレフタレートの繰り返し単位が好ましくは90モル%以上、より好ましくは95モル%以上であり、他のジカルボン酸成分、ジオール成分が少量共重合されていてもよいが、コストの点から、テレフタル酸とエチレングリコールのみから製造されたものが好ましい。また、本発明のフィルムの効果を阻害しない範囲内で、公知の添加剤、例えば、酸化防止剤、光安定剤、紫外線吸収剤、結晶化剤などを添加してもよい。ポリエステルフィルムは双方向の弾性率の高さ等の理由から二軸配向ポリエステルフィルムであることが好ましい。
(Polyester film)
In the present invention, the polyester constituting the polyester film used as the base material is not particularly limited, and a film formed from a polyester generally used as a base material for a release film can be used. It is preferably a crystalline linear saturated polyester comprising an aromatic dibasic acid component and a diol component, for example, polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, polytrimethylene terephthalate or a resin thereof. The copolymer containing the above component as a main component is more preferable, and a polyester film formed from polyethylene terephthalate is particularly preferable. In polyethylene terephthalate, the repeating unit of ethylene terephthalate is preferably at least 90 mol%, more preferably at least 95 mol%, and other dicarboxylic acid components and diol components may be copolymerized in small amounts, but from the viewpoint of cost. And those produced only from terephthalic acid and ethylene glycol. Known additives such as an antioxidant, a light stabilizer, an ultraviolet absorber, and a crystallization agent may be added as long as the effects of the film of the present invention are not impaired. The polyester film is preferably a biaxially oriented polyester film for reasons such as high bidirectional elastic modulus.
 上記ポリエチレンテレフタレートフィルムの固有粘度は0.50~0.70dl/gが好ましく、0.52~0.62dl/gがより好ましい。固有粘度が0.50dl/g以上の場合、延伸工程で破断が多く発生することがなく好ましい。逆に、0.70dl/g以下の場合、所定の製品幅に裁断するときの裁断性が良く、寸法不良が発生しないので好ましい。また、原料ペレットは十分に真空乾燥することが好ましい。 The intrinsic viscosity of the polyethylene terephthalate film is preferably 0.50 to 0.70 dl / g, more preferably 0.52 to 0.62 dl / g. When the intrinsic viscosity is 0.50 dl / g or more, it is preferable because many breaks do not occur in the stretching step. Conversely, when it is 0.70 dl / g or less, it is preferable because the cutability when cutting into a predetermined product width is good and dimensional defects do not occur. Further, it is preferable that the raw material pellets are sufficiently dried in vacuum.
 本発明におけるポリエステルフィルムの製造方法は特に限定されず、従来一般に用いられている方法を用いることが出来る。例えば、前記ポリエステルを押出機にて溶融して、フィルム状に押出し、回転冷却ドラムにて冷却することにより未延伸フィルムを得て、該未延伸フィルムを二軸延伸することにより得ることが出来る。二軸延伸フィルムは、縦方向あるいは横方向の一軸延伸フィルムを横方向または縦方向に逐次二軸延伸する方法、或いは未延伸フィルムを縦方向と横方向に同時二軸延伸する方法で得ることが出来る。 ポ リ エ ス テ ル The method for producing the polyester film in the present invention is not particularly limited, and a method generally used conventionally can be used. For example, it can be obtained by melting the polyester with an extruder, extruding it into a film, cooling it with a rotary cooling drum to obtain an unstretched film, and biaxially stretching the unstretched film. A biaxially stretched film can be obtained by a method of sequentially biaxially stretching a longitudinally or transversely uniaxially stretched film in the transverse or longitudinal direction, or a method of simultaneously biaxially stretching an unstretched film in the longitudinal and transverse directions. I can do it.
 本発明において、ポリエステルフィルム延伸時の延伸温度はポリエステルの二次転移点(Tg)以上とすることが好ましい。縦、横おのおのの方向に1~8倍、特に2~6倍の延伸をすることが好ましい。 に お い て In the present invention, the stretching temperature at the time of stretching the polyester film is preferably equal to or higher than the secondary transition point (Tg) of the polyester. It is preferable to stretch 1 to 8 times, especially 2 to 6 times in each of the longitudinal and transverse directions.
 上記ポリエステルフィルムは、厚みが12~50μmであることが好ましく、より好ましくは15~38μmであり、更に好ましくは、19μm~33μmである。フィルムの厚みが12μm以上であれば、フィルム生産時や離型層の加工工程、セラミックグリーンシートなどの成型の時に、熱により変形するおそれがなく好ましい。一方、フィルムの厚みが50μm以下であれば、使用後に廃棄するフィルムの量が極度に多くならず、環境負荷を小さくする上で好ましい。 The polyester film preferably has a thickness of 12 to 50 μm, more preferably 15 to 38 μm, and still more preferably 19 to 33 μm. When the thickness of the film is 12 μm or more, there is no possibility of being deformed by heat at the time of film production, a processing step of a release layer, and a molding of a ceramic green sheet or the like, which is preferable. On the other hand, when the thickness of the film is 50 μm or less, the amount of the film to be discarded after use is not extremely increased, which is preferable in reducing the environmental load.
 上記二軸配向ポリエステルフィルム基材は、単層であっても2層以上の多層であっても構わないが、少なくとも片面には実質的に粒子を含まない表面層Aを有することが好ましい。2層以上の多層構成からなる積層ポリエステルフィルムの場合は、実質的に粒子を含有しない表面層Aの反対面には、粒子などを含有することができる表面層Bを有することが好ましい。積層構成としては、離型層を塗布する側の層を表面層A、その反対面の層を表面層B、これら以外の芯層を層Cとすると、厚み方向の層構成は離型層/A/B、あるいは離型層/A/C/B等の積層構造が挙げられる。当然ながら層Cは複数の層構成であっても構わない。また、表面層Bには粒子を含まないこともできる。その場合、フィルムをロール状に巻き取るための滑り性付与するため、表面層B上には粒子とバインダーを含んだコート層を設けることが好ましい。 The biaxially oriented polyester film substrate may be a single layer or a multilayer of two or more layers, but preferably has a surface layer A substantially containing no particles on at least one surface. In the case of a laminated polyester film having a multilayer structure of two or more layers, it is preferable to have a surface layer B capable of containing particles and the like on the surface opposite to the surface layer A substantially containing no particles. As for the lamination structure, when the layer on the side where the release layer is applied is the surface layer A, the layer on the opposite side is the surface layer B, and the other core layer is the layer C, the layer configuration in the thickness direction is the release layer / A / B or a laminated structure such as a release layer / A / C / B. Of course, the layer C may have a multilayer structure. Further, the surface layer B may not contain particles. In that case, it is preferable to provide a coat layer containing particles and a binder on the surface layer B in order to impart slipperiness for winding the film into a roll.
 本発明におけるポリエステルフィルム基材において、離型層を塗布する面を形成する表面層Aは、実質的に粒子を含有しないことが好ましい。このとき、表面層Aの領域表面平均粗さ(Sa)は、7nm以下であることが好ましい。Saが7nm以下であると、積層する超薄層セラミックグリーンシートの成型時にピンホールなどの発生が起こりにくく好ましい。表面層Aの領域表面平均粗さ(Sa)は小さいほど好ましいと言えるが、0.1nm以上であって構わない。ここで、表面層A上に後述のアンカーコート層などを設ける場合は、コート層に実質的に粒子を含まないことが好ましく、コート層積層後の領域表面平均粗さ(Sa)が前記範囲を満足することが好ましい。本発明において、「粒子を実質的に含有しない」とは、例えば無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に50ppm以下、好ましくは10ppm以下、最も好ましくは検出限界以下となる含有量を意味する。これは積極的に粒子をフィルム中に添加させなくても、外来異物由来のコンタミ成分や、原料樹脂あるいはフィルムの製造工程におけるラインや装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。 に お い て In the polyester film substrate of the present invention, the surface layer A forming the surface on which the release layer is applied preferably does not substantially contain particles. At this time, the average surface roughness (Sa) of the surface layer A is preferably 7 nm or less. When Sa is 7 nm or less, pinholes and the like do not easily occur during molding of the laminated ultra-thin ceramic green sheets, which is preferable. It can be said that the smaller the area surface average roughness (Sa) of the surface layer A is, the more preferable it is, but it may be 0.1 nm or more. Here, when an anchor coat layer or the like described later is provided on the surface layer A, it is preferable that the coat layer contains substantially no particles, and the area average surface roughness (Sa) after the coat layer is laminated falls within the above range. It is preferable to satisfy. In the present invention, "substantially free of particles" means, for example, in the case of inorganic particles, when the inorganic element is quantified by fluorescent X-ray analysis, 50 ppm or less, preferably 10 ppm or less, most preferably the detection limit or less. Content. This is the case where contamination components derived from extraneous foreign substances, dirt attached to raw material resin or lines or equipment in the film manufacturing process are peeled off and mixed into the film without actively adding particles to the film. Because there is.
 本発明におけるポリエステルフィルム基材において、離型層を塗布する面の反対面を形成する表面層Bは、フィルムの滑り性や空気の抜けやすさの観点から、粒子を含有することが好ましく、特にシリカ粒子及び/又は炭酸カルシウム粒子を用いることが好ましい。含有される粒子含有量は、表面層B中に粒子の合計で5000~15000ppm含有することが好ましい。このとき、表面層Bのフィルムの領域表面平均粗さ(Sa)は、1~40nmの範囲であることが好ましい。より好ましくは、5~35nmの範囲である。シリカ粒子及び/又は炭酸カルシウム粒子の合計が5000ppm以上、Saが1nm以上の場合には、フィルムをロール状に巻き上げるときに、空気を均一に逃がすことができ、巻き姿が良好で平面性良好により、超薄層セラミックグリーンシートの製造に好適なものとなる。また、シリカ粒子及び/又は炭酸カルシウム粒子の合計が15000ppm以下、Saが40nm以下の場合には、滑剤の凝集が生じにくく、粗大突起ができないため、超薄層のセラミックグリーンシート製造時に品質が安定し好ましい。 In the polyester film substrate of the present invention, the surface layer B forming the surface opposite to the surface to which the release layer is applied preferably contains particles from the viewpoint of the slipperiness of the film and the ease with which air can escape. It is preferable to use silica particles and / or calcium carbonate particles. The content of the particles contained in the surface layer B is preferably 5000 to 15000 ppm in total of the particles. At this time, the surface average roughness (Sa) of the film of the surface layer B is preferably in the range of 1 to 40 nm. More preferably, it is in the range of 5 to 35 nm. When the total of the silica particles and / or calcium carbonate particles is 5000 ppm or more and Sa is 1 nm or more, when the film is wound up in a roll, air can be uniformly released, and the rolled shape is good and the flatness is good. This is suitable for producing ultra-thin ceramic green sheets. When the total of silica particles and / or calcium carbonate particles is 15000 ppm or less and Sa is 40 nm or less, the lubricant is less likely to aggregate and coarse projections cannot be formed. And preferred.
 上記表面層Bに含有する粒子としては、シリカ及び/又は炭酸カルシウム以外に不活性な無機粒子及び/又は耐熱性有機粒子などを用いることができる。透明性やコストの観点からシリカ粒子及び/又は炭酸カルシウム粒子を用いることがより好ましいが、他に使用できる無機粒子としては、アルミナ-シリカ複合酸化物粒子、ヒドロキシアパタイト粒子などが挙げられる。また、耐熱性有機粒子としては、架橋ポリアクリル系粒子、架橋ポリスチレン粒子、ベンゾグアナミン系粒子などが挙げられる。またシリカ粒子を用いる場合、多孔質のコロイダルシリカが好ましく、炭酸カルシウム粒子を用いる場合は、ポリアクリル酸系の高分子化合物で表面処理を施した軽質炭酸カルシウムが、滑剤の脱落防止の観点から好ましい。 粒子 As the particles contained in the surface layer B, inert inorganic particles and / or heat-resistant organic particles other than silica and / or calcium carbonate can be used. From the viewpoint of transparency and cost, it is more preferable to use silica particles and / or calcium carbonate particles, but other inorganic particles that can be used include alumina-silica composite oxide particles, hydroxyapatite particles, and the like. Examples of the heat-resistant organic particles include crosslinked polyacrylic particles, crosslinked polystyrene particles, and benzoguanamine particles. When using silica particles, porous colloidal silica is preferable, and when using calcium carbonate particles, light calcium carbonate surface-treated with a polyacrylic acid-based polymer compound is preferable from the viewpoint of preventing the lubricant from falling off. .
 上記表面層Bに添加する粒子の平均粒子径は、0.1μm以上2.0μm以下が好ましく、0.5μm以上1.0μm以下が特に好ましい。粒子の平均粒子径が0.1μm以上であれば、離型フィルムの滑り性が良好であり好ましい。また、平均粒子径が2.0μm以下であれば、離型層表面の粗大粒子によるセラミックグリーンシートにピンホールが発生するおそれがなく好ましい。 平均 The average particle diameter of the particles added to the surface layer B is preferably 0.1 μm or more and 2.0 μm or less, particularly preferably 0.5 μm or more and 1.0 μm or less. When the average particle diameter of the particles is 0.1 μm or more, the slipperiness of the release film is good, which is preferable. Further, when the average particle size is 2.0 μm or less, there is no possibility that pinholes are generated in the ceramic green sheet due to the coarse particles on the surface of the release layer, which is preferable.
 上記表面層Bには素材の異なる粒子を2種類以上含有させてもよい。また、同種の粒子で平均粒径の異なるものを含有させてもよい。 表面 The surface layer B may contain two or more kinds of particles made of different materials. Further, particles of the same kind but having different average particle diameters may be contained.
 表面層Bに粒子を含まない場合は、表面層B上に粒子を含んだコート層で易滑性を持たせることが好ましい。本コート層は、特に限定されないが、ポリエステルフィルムの製膜中に塗工する所謂インラインコートで設けることが好ましい。表面層Bに粒子を含まず、表面層B上に粒子を含むコート層を有する場合、コート層の表面は、上述の表面層Bの領域表面平均粗さ(Sa)と同様の理由により、領域表面平均粗さ(Sa)が1~40nmの範囲であることが好ましい。より好ましくは、5~35nmの範囲である。 (4) When the surface layer B does not contain particles, it is preferable that the coat layer containing the particles on the surface layer B has lubricity. The present coating layer is not particularly limited, but is preferably provided as a so-called in-line coating applied during the formation of a polyester film. In the case where the surface layer B does not contain particles and has a coat layer containing particles on the surface layer B, the surface of the coat layer has a surface area for the same reason as the above-mentioned surface average roughness (Sa) of the surface layer B. The average surface roughness (Sa) is preferably in the range of 1 to 40 nm. More preferably, it is in the range of 5 to 35 nm.
 上記離型層を設ける側の層である表面層Aには、ピンホール低減の観点から、滑剤などの粒子の混入を防ぐため、再生原料などを使用しないことが好ましい。 表面 From the viewpoint of reducing pinholes, it is preferable not to use a recycled material or the like in the surface layer A, which is the layer on which the release layer is provided, in order to prevent particles such as a lubricant from being mixed.
 上記離型層を設ける側の層である表面層Aの厚み比率は、基材フィルムの全層厚みの20%以上50%以下であることが好ましい。20%以上であれば、表面層Bなどに含まれる粒子の影響をフィルム内部から受けづらく、領域表面平均粗さSaが上記の範囲を満足することが容易であり好ましい。基材フィルムの全層の厚みの50%以下であると、表面層Bにおける再生原料の使用比率を増やすことができ、環境負荷が小さくなり好ましい。 厚 み The thickness ratio of the surface layer A on the side where the release layer is provided is preferably 20% or more and 50% or less of the total thickness of the base film. If it is 20% or more, the influence of the particles contained in the surface layer B and the like is hardly affected from the inside of the film, and it is easy to satisfy the above-mentioned range of the area average surface roughness Sa, which is preferable. When the thickness is 50% or less of the thickness of all the layers of the base material film, the usage ratio of the recycled material in the surface layer B can be increased, and the environmental load is reduced, which is preferable.
 また、経済性の観点から上記表面層A以外の層(表面層Bもしくは前述の中間層C)には、50~90質量%のフィルム屑やペットボトルの再生原料を使用することができる。この場合でも、表面層Bに含まれる滑剤の種類や量、粒径ならびに領域表面平均粗さ(Sa)は、上記の範囲を満足することが好ましい。 か ら From the viewpoint of economy, the layers other than the surface layer A (the surface layer B or the above-mentioned intermediate layer C) can use 50 to 90% by mass of film waste or recycled materials for PET bottles. Even in this case, it is preferable that the type, amount, particle size, and area average surface roughness (Sa) of the lubricant contained in the surface layer B satisfy the above ranges.
 また、後に塗布する離型層などの密着性を向上させたり、帯電を防止するなどのために表面層A及び/または表面層Bの表面に製膜工程内の延伸前または一軸延伸後のフィルムにコート層を設けてもよく、コロナ処理などを施すこともできる。表面層A上にコート層を設ける場合には、当該コート層には粒子を実質的に含有しないことが好ましい。 In addition, a film before or after uniaxial stretching in the film forming process is applied to the surface of the surface layer A and / or the surface layer B in order to improve the adhesion of a release layer or the like to be applied later or to prevent electrification. May be provided with a coat layer, or a corona treatment or the like may be performed. When a coat layer is provided on the surface layer A, the coat layer preferably does not substantially contain particles.
(離型層)
 本発明における離型層は、少なくともバインダー成分とシリコーン系離型剤を含む組成物が硬化されてなることが好ましい。本発明の効果を損なわない範囲で、前記樹脂や化合物以外にも他の成分を添加することができる。
(Release layer)
The release layer in the invention is preferably formed by curing a composition containing at least a binder component and a silicone release agent. Other components can be added in addition to the resin or compound as long as the effects of the present invention are not impaired.
(バインダー成分)
 本発明の離型層形成用組成物に含まれるバインダー成分としては、特に限定されないが、離型層の架橋密度を高め、離型層の耐久性や耐溶剤性などを向上させるために架橋できる成分が架橋されてなることが好ましい。そのため、バインダー成分には、反応性官能基を有する樹脂と架橋剤が反応されてなることが好ましい。また、反応性官能基もしくは架橋剤のどちらか単独で自己架橋してなることも好ましい。しかしながら、本発明において、バインダー成分が、反応性官能基を有する樹脂または架橋剤だけからなる態様を排除するものではない。
(Binder component)
The binder component contained in the composition for forming a release layer of the present invention is not particularly limited, but can be crosslinked to increase the crosslinking density of the release layer and to improve the durability and solvent resistance of the release layer. Preferably, the components are crosslinked. Therefore, it is preferable that a resin having a reactive functional group and a crosslinking agent are reacted with the binder component. In addition, it is also preferable that either the reactive functional group or the crosslinking agent is used to form a self-crosslinking. However, the present invention does not exclude an embodiment in which the binder component comprises only a resin having a reactive functional group or a crosslinking agent.
 反応性官能基を有する樹脂としては特に限定されないが、ポリエステル系樹脂、ポリ(メタ)アクリル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂などを好適に使用することができる。これら樹脂には、反応性官能基として、カルボキシル基、ヒドロキシル基、エポキシ、アミノ基などから選ばれる少なくとも1種類以上を有していることが好ましい。 樹脂 The resin having a reactive functional group is not particularly limited, but polyester resins, poly (meth) acrylic resins, polyurethane resins, polyolefin resins and the like can be suitably used. It is preferable that these resins have at least one kind selected from a carboxyl group, a hydroxyl group, an epoxy, an amino group and the like as a reactive functional group.
 反応性官能基を有する樹脂は、長鎖アルキル基および/またはシリコーン骨格を樹脂骨格の一部に有していることが好ましい。長鎖アルキル基および/またはシリコーン骨格のような低表面自由エネルギーの部位を樹脂骨格の一部に有することで、後述するシリコーン系離型剤とバインダー成分との相溶性が高くなり乾燥時の凝集が起こりにくくなり平滑性が向上するため好ましい。 樹脂 The resin having a reactive functional group preferably has a long-chain alkyl group and / or a silicone skeleton as a part of the resin skeleton. By having a part of the resin skeleton having a low surface free energy such as a long chain alkyl group and / or a silicone skeleton, the compatibility between the silicone-based release agent and the binder component described later is increased, and aggregation during drying is performed. Is less likely to occur and the smoothness is improved.
 樹脂骨格に長鎖アルキル基を有する反応性官能基含有樹脂の具体例としては、側鎖に長鎖アルキル基を有するアルキッド樹脂または(メタ)アクリル樹脂などが挙げられる。用いる長鎖アルキル基としては、炭素数が6~20の直鎖状のアルキル基が好適である。前述の炭素数を有することで、得られる樹脂の表面自由エネルギーを低下させることができ、シリコーン系離型剤との相溶性が向上するため好ましい。 Specific examples of the reactive functional group-containing resin having a long-chain alkyl group in the resin skeleton include an alkyd resin or a (meth) acryl resin having a long-chain alkyl group in a side chain. As the long-chain alkyl group to be used, a linear alkyl group having 6 to 20 carbon atoms is preferable. Having the above-described carbon number is preferable because the surface free energy of the obtained resin can be reduced and the compatibility with the silicone-based release agent is improved.
 側鎖に長鎖アルキル基を有するアルキッド樹脂の場合は、前述の長鎖アルキル基を有する酸(例えば、オクチル酸やステアリル酸など)をフタル酸などの多塩基酸に混ぜ、多価アルコール成分(ペンタエリスリトールやジエチレングリコ―ルなど)と混合し、脱水縮合反応により得ることができる。 In the case of an alkyd resin having a long-chain alkyl group in the side chain, an acid having a long-chain alkyl group (for example, octylic acid or stearyl acid) is mixed with a polybasic acid such as phthalic acid to form a polyhydric alcohol component ( Pentaerythritol and diethylene glycol), and can be obtained by a dehydration condensation reaction.
 側鎖に長鎖アルキル基を有する(メタ)アクリル樹脂は、2種類以上の(メタ)アクリルモノマーを共重合して得ることが好ましい。共重合するモノマーとして、長鎖アルキル基を有するモノマー(例えば、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソデシル(メタ)アクリレートなど)を含むことが好ましく、反応性官能基部位として、ヒドロキシ基を有するモノマー(例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレートなど)を含むことが好ましい。前述のほかに得られるポリマーのTg調整や架橋性、反応性などを付与するためにメチルメタクリレートやエチルメタクリレート、ブチルメタクリレート、ヘキサンジオールジメタクリレート、ブタンジオールジアクリレートなど他の既知モノマーも含むことができる。 (4) The (meth) acrylic resin having a long-chain alkyl group in the side chain is preferably obtained by copolymerizing two or more (meth) acrylic monomers. The monomer to be copolymerized preferably contains a monomer having a long-chain alkyl group (for example, lauryl (meth) acrylate, stearyl (meth) acrylate, isodecyl (meth) acrylate, etc.), and a hydroxy group as a reactive functional group site. (E.g., hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, etc.). In addition to the above, other known monomers such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexanediol dimethacrylate, and butanediol diacrylate may be included in order to impart Tg adjustment, crosslinkability, and reactivity of the obtained polymer. .
 得られたアクリル樹脂を構成する長鎖アルキル基を有するモノマーの含有量は、アクリル樹脂を構成する全モノマーに対し1モル%以上50モル%以下であることが好ましい。1モル%以上であると表面自由エネルギーを下げる効果があるため好ましい。50モル%以下であると反応性官能基を有するモノマーが相対的に高くなるため樹脂の架橋密度が高くなるため好ましい。 含有 The content of the monomer having a long-chain alkyl group constituting the obtained acrylic resin is preferably 1 mol% or more and 50 mol% or less based on all the monomers constituting the acrylic resin. When the content is 1 mol% or more, the effect of lowering the surface free energy is obtained. When the content is 50 mol% or less, the monomer having a reactive functional group becomes relatively high, so that the crosslinking density of the resin becomes high.
 樹脂骨格中にシリコーン骨格を有する反応性官能基含有樹脂の具体例としては、側鎖にポリジメチルシロキサン骨格を有するアルキッド樹脂もしくはアクリル樹脂などが挙げられる。市販品の具体例としては、サイマック(登録商標)US350、US352(東亜合成社製、反応性官能基:カルボキシル基)、サイマック(登録商標)US270(東亜合成社製、反応性官能基:ヒドロキシル基)などがある。 Specific examples of the reactive functional group-containing resin having a silicone skeleton in the resin skeleton include an alkyd resin or an acrylic resin having a polydimethylsiloxane skeleton in a side chain. Specific examples of commercially available products include Cymac (registered trademark) US350, US352 (manufactured by Toagosei Co., Ltd., reactive functional group: carboxyl group) and Cymac (registered trademark) US270 (manufactured by Toagosei Co., Ltd., reactive functional group: hydroxyl group) )and so on.
(架橋剤)
 バインダー成分には、架橋剤を含有することも好ましい。架橋剤としては、特に限定されないが、メラミン系、イソシアネート系、カルボジイミド系、オキサゾリン系、エポキシ系の架橋剤などを使用することができ、1種類でも2種類以上を併用して用いても構わない。特に好ましくは、バインダー成分に導入された反応性官能基と反応する架橋剤が好ましい。
(Crosslinking agent)
It is also preferable that the binder component contains a crosslinking agent. The crosslinking agent is not particularly limited, but a melamine-based, isocyanate-based, carbodiimide-based, oxazoline-based, or epoxy-based cross-linking agent may be used, and one type or two or more types may be used in combination. . Particularly preferably, a cross-linking agent that reacts with the reactive functional group introduced into the binder component is preferable.
 本発明に使用する架橋剤としては、反応性の観点からメラミン系化合物が好ましい。メラミン系化合物を使用することで、離型層の硬化後の塗布量が0.2g/m以下のような薄膜でも素早く硬化させることができ架橋密度が高くなるため好ましい。  As the crosslinking agent used in the present invention, a melamine-based compound is preferable from the viewpoint of reactivity. The use of a melamine-based compound is preferable because a thin film having a coating amount of 0.2 g / m 2 or less after curing of the release layer can be quickly cured and the crosslink density is increased.
 本発明に用いるメラミン系化合物としては、一般的なものを使用でき特に限定されないが、メラミンとホルムアルデヒドを縮合して得られ、1分子中にトリアジン環、及びメチロール基及び/又はアルコキシメチル基をそれぞれ1つ以上有していることが好ましい。具体的には、メラミンとホルムアルデヒドを縮合して得られるメチロールメラミン誘導体に、低級アルコールとしてメチルアルコール、エチルアルコール、イソプロピルアルコール、ブチルアルコール等を脱水縮合反応させてエーテル化した化合物などが好ましい。メチロール化メラミン誘導体としては、例えばモノメチロールメラミン、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミンを挙げることができる。1種類を用いても2種類以上も用いても構わない。 As the melamine-based compound used in the present invention, a general compound can be used and is not particularly limited. The melamine-based compound is obtained by condensing melamine and formaldehyde, and has a triazine ring and a methylol group and / or an alkoxymethyl group in one molecule. It is preferable to have one or more. Specifically, a compound obtained by subjecting a methylol melamine derivative obtained by condensing melamine and formaldehyde to a lower alcohol, such as methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, or the like, to undergo a dehydration condensation reaction and to be etherified is preferred. Examples of the methylolated melamine derivative include monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, and hexamethylol melamine. One type or two or more types may be used.
 メラミン系化合物としては、バインダー成分の架橋密度を高くすることができるため1分子中に多くの架橋点をもつヘキサメチロールメラミンや、ヘキサメトキシメチロールメラミンなどを用いることが好ましい。メチロールメラミン誘導体にアルコールを用いて脱水縮合反応したエーテル化合物を用いる場合は、反応性の観点から、メチルアルコールで脱水縮合して得られたヘキサメトキシメチルメチロールメラミンが特に好ましい。 As the melamine-based compound, hexamethylolmelamine or hexamethoxymethylolmelamine having many crosslinking points in one molecule is preferably used because the crosslinking density of the binder component can be increased. When an ether compound obtained by a dehydration condensation reaction using an alcohol with a methylol melamine derivative is used, hexamethoxymethyl methylol melamine obtained by dehydration condensation with methyl alcohol is particularly preferable from the viewpoint of reactivity.
 本発明におけるバインダー成分に含まれる架橋剤の量は、反応性官能基を有する樹脂に対して15質量%以上であることが好ましく、より好ましくは30質量%以上であり、さらに好ましくは50質量%である。また、架橋剤が自己縮合して樹脂膜を形成できる場合は、架橋剤のみでバインダー成分が構成されても構わない。架橋剤を15質量%以上含むことで離型層の架橋密度を高めることができ、耐溶剤性、弾性率を向上させることができるため好ましい。 The amount of the crosslinking agent contained in the binder component in the present invention is preferably 15% by mass or more, more preferably 30% by mass or more, even more preferably 50% by mass, based on the resin having a reactive functional group. It is. When the crosslinking agent can form a resin film by self-condensation, the binder component may be constituted only by the crosslinking agent. When the crosslinking agent is contained in an amount of 15% by mass or more, the crosslinking density of the release layer can be increased, and the solvent resistance and the elastic modulus can be improved.
(触媒)
 本発明における離型層形成用組成物には架橋剤を硬化させるために触媒を含有させることもできる。メラミン系化合物を使用する場合は酸触媒を使用することが好ましく、特に限定されないがカルボン酸系、金属塩系、リン酸エステル系、スルホン酸系のものを好適に使用することができる。また、酸部位がブロックされたブロックタイプの触媒も使用することができる。特に反応性の観点からパラトルエンスルホン酸が好適に使用することができる。イソシアネート系化合物を使用する場合は、一般的なものを使用することができ、有機錫やアミン化合物、トリアルキルホスフィン化合物などが好適に使用することができる。
(catalyst)
The composition for forming a release layer according to the present invention may contain a catalyst for curing the crosslinking agent. When a melamine-based compound is used, an acid catalyst is preferably used, and although not particularly limited, carboxylic acid-based, metal salt-based, phosphate ester-based, and sulfonic acid-based compounds can be suitably used. Further, a block type catalyst in which an acid site is blocked can also be used. In particular, paratoluenesulfonic acid can be preferably used from the viewpoint of reactivity. When an isocyanate-based compound is used, a general one can be used, and organotin, an amine compound, a trialkylphosphine compound, and the like can be suitably used.
 触媒の含有量は、離型層形成用組成物に含まれる架橋剤に対して0.1~40質量%であることが好ましい。より好ましくは、0.5~30質量%である。さらに好ましくは0.5~20質量%である。0.1質量%以上であると、硬化反応が進みやすくなり好ましい。一方40質量%以下であると成型するセラミックグリーンシートへ酸触媒が移行するおそれがなく、悪影響を及ぼすおそれがないことから好ましい。 The content of the catalyst is preferably 0.1 to 40% by mass based on the crosslinking agent contained in the composition for forming a release layer. More preferably, it is 0.5 to 30% by mass. More preferably, it is 0.5 to 20% by mass. When the content is 0.1% by mass or more, the curing reaction easily proceeds, which is preferable. On the other hand, when the content is 40% by mass or less, there is no possibility that the acid catalyst is transferred to the ceramic green sheet to be molded, and there is no possibility that the acid catalyst has an adverse effect.
(シリコーン系離型剤)
 本発明において離型層に用いるシリコーン系離型剤としては、分子内にシリコーン構造を有する化合物であり、本発明の効果を得られる範囲であれば特に限定されないが、ポリオルガノシロキサンなどを好適に使用することができる。ポリオルガノシロキサンの中でもポリジメチルシロキサン(略称、PDMS)が好適に使用することができ、ポリジメチルシロキサンの一部に官能基を有するものも好ましい。官能基を有することでバインダー樹脂と水素結合などの分子間相互作用が発現しやすくなりセラミックグリーンシートへの移行がしにくくなるため好ましい。
(Silicone release agent)
The silicone-based release agent used in the release layer in the present invention is a compound having a silicone structure in the molecule, and is not particularly limited as long as the effects of the present invention can be obtained. Can be used. Among polyorganosiloxanes, polydimethylsiloxane (abbreviation: PDMS) can be suitably used, and those having a functional group in a part of polydimethylsiloxane are also preferable. Having a functional group is preferable because an intermolecular interaction such as a hydrogen bond with a binder resin is easily generated and migration to a ceramic green sheet becomes difficult.
 ポリジメチルシロキサンに導入する官能基としては特に限定されないが、反応性官能基でも非反応性官能基でも構わない。また、官能基はポリジメチルシロキサンの片末端に導入されていてもよいし、両末端でも側鎖でも構わない。また、導入される位置は1つでもよいし、複数でも構わない。 The functional group introduced into the polydimethylsiloxane is not particularly limited, but may be a reactive functional group or a non-reactive functional group. The functional group may be introduced at one terminal of the polydimethylsiloxane, and may be at both terminals or a side chain. In addition, one or a plurality of positions may be introduced.
 ポリジメチルシロキサンに導入する反応性官能基としては、アミノ基、エポキシ基、ヒドロキシル基、メルカプト基、カルボキシル基、メタクリル基、アクリル基などを挙げることができる。非反応性官能基としては、ポリエーテル基、アラルキル基、フロロアルキル基、長鎖アルキル基、エステル基、アミド基、フェニル基などを使用することができる。特に理論で拘束されるわけではないが、上記のうちエポキシ基、カルボキシル基、ポリエーテル基、メタクリル基、アクリル基、エステル基を有するものが好ましい。 (4) Examples of the reactive functional group to be introduced into polydimethylsiloxane include an amino group, an epoxy group, a hydroxyl group, a mercapto group, a carboxyl group, a methacryl group, and an acryl group. As the non-reactive functional group, a polyether group, an aralkyl group, a fluoroalkyl group, a long-chain alkyl group, an ester group, an amide group, a phenyl group and the like can be used. Although not particularly limited by theory, those having an epoxy group, a carboxyl group, a polyether group, a methacryl group, an acryl group, and an ester group are preferable.
 ポリジメチルシロキサンに導入する官能基は、バインダー成分とは反応しないものの方がより好ましい。例えばメラミン樹脂と反応するヒドロキシル基などで変性されたポリジメチルシロキサンは、乾燥工程でメラミンと反応するため、離型層表面に配向しにくく離型層表面のSi元素比率が低下し離型性が発現しにくい場合がある。そのため十分な離型性を持たせるために添加量を増やす必要があるが、その場合離型層の弾性率が低下し離型層の変形が起こりやすくなるおそれがある。 官能 It is more preferable that the functional group introduced into the polydimethylsiloxane does not react with the binder component. For example, polydimethylsiloxane modified with a hydroxyl group that reacts with melamine resin reacts with melamine in the drying process, so it is difficult to orient on the surface of the release layer, and the Si element ratio on the surface of the release layer decreases, and the release property decreases. In some cases, expression is difficult. Therefore, it is necessary to increase the amount of addition in order to have sufficient releasability, but in that case, the elastic modulus of the release layer may be reduced and the release layer may be easily deformed.
 ポリジメチルシロキサンに導入する官能基としては、上述した理由からバインダー樹脂と反応せず、離型層表面に配向しやすく、セラミックグリーンシートへの移行性も少ない官能基としては、特にポリエーテル基、エステル基が好ましく、特にポリエーテル基が好ましい。バインダー樹脂と反応しても比較的離型層表面のSi元素比率が多くなる官能基としてはカルボキシル基が挙げられる。 As the functional group to be introduced into the polydimethylsiloxane, the functional group which does not react with the binder resin for the reasons described above, is easily oriented on the surface of the release layer, and has a low migration property to the ceramic green sheet, particularly a polyether group, Ester groups are preferred, and polyether groups are particularly preferred. A carboxyl group is an example of a functional group that has a relatively large Si element ratio on the surface of the release layer even when it reacts with the binder resin.
 本発明において用いるシリコーン系離型剤は、分子量が40000以下であることが好ましい。より好ましくは、30000以下である。分子量が40000以下であるとシリコーン系離型剤が離型層表面に偏析しやすく剥離性が良く好ましい。 シ リ コ ー ン The silicone release agent used in the present invention preferably has a molecular weight of 40,000 or less. More preferably, it is 30,000 or less. When the molecular weight is 40,000 or less, the silicone-based release agent easily segregates on the surface of the release layer, and has good releasability, which is preferable.
 本発明における硬化後の離型層に含まれるシリコーン系離型剤由来成分の含有量は、1mg/m以上15mg/m以下であることが好ましい。1mg/m2以上、10mg/m2以下がさらに好ましい。1mg/m以上であると離型層最表層にシリコーン成分が十分析出でき、セラミックグリーンシートの剥離性が安定するため好ましい。15mg/m以下であると弾性率の比較的低いシリコーン成分が離型層中に少ないため離型層の弾性率が低くなりすぎずセラミックシートの剥離性が安定するため好ましい。ここで、シリコーン系離型剤は、硬化後の離型層中においても化学構造が変化せずそのままの構造で存在する場合もあれば、バインダー成分等との間で化学反応を起こすなどにより、化学構造が変化して存在する場合もある。そこで、硬化前の組成物中のシリコーン系離型剤に由来して、硬化後の離型層単位面積当たりに存在する物質の質量をシリコーン系離型剤由来成分の含有量と記載している。シリコーン系離型剤由来成分の含有量は、組成物を含む塗液の固形分中のシリコーン系離型剤の存在割合(質量%)と硬化後の離型層固形分の塗布量(g/m)から計算して求めることができる。 The content of the silicone-based release agent-derived component contained in the release layer after curing in the present invention is preferably 1 mg / m 2 or more and 15 mg / m 2 or less. More preferably, it is 1 mg / m 2 or more and 10 mg / m 2 or less. When the content is 1 mg / m 2 or more, the silicone component can be sufficiently precipitated on the outermost layer of the release layer, and the releasability of the ceramic green sheet is stabilized, which is preferable. When the amount is 15 mg / m 2 or less, the silicone component having a relatively low elastic modulus is small in the release layer, so that the elastic modulus of the release layer does not become too low and the releasability of the ceramic sheet is stabilized, which is preferable. Here, the silicone-based release agent may be present in the same structure without changing its chemical structure even in the release layer after curing, or by causing a chemical reaction with a binder component or the like. In some cases, the chemical structure is changed. Therefore, the mass of the substance present per unit area of the release layer after curing, which is derived from the silicone release agent in the composition before curing, is described as the content of the silicone release agent-derived component. . The content of the silicone-based release agent-derived component is determined based on the proportion (% by mass) of the silicone-based release agent in the solid content of the coating liquid containing the composition and the applied amount of the cured release layer solid (g / g). m 2 ).
 本発明における離型層には、粒径が1μm以下の粒子などを含有することができるが、セラミックグリーンシートのピンホール抑制の観点から粒子など突起を形成するものは含有しないほうが好ましい。 離 The release layer in the present invention may contain particles having a particle size of 1 μm or less, but it is preferable not to contain particles or the like that form projections from the viewpoint of suppressing pinholes in the ceramic green sheet.
 本発明における離型層には、本発明の効果を阻害しない範囲であれば、密着向上剤や、帯電防止剤などの添加剤などを添加してもよい。また、基材との密着性を向上させるために、離型塗布層を設ける前にポリエステルフィルム表面に、アンカーコート、コロナ処理、プラズマ処理、大気圧プラズマ処理等の前処理をすることも好ましい。 密 着 An additive such as an adhesion improver or an antistatic agent may be added to the release layer in the present invention as long as the effect of the present invention is not impaired. Further, in order to improve the adhesion to the base material, it is also preferable to perform a pretreatment such as an anchor coat, a corona treatment, a plasma treatment, or an atmospheric pressure plasma treatment on the polyester film surface before providing the release coating layer.
 本発明において硬化後の離型層の塗布量は、特に限定されないが1.0g/m以下であることが好ましい。より好ましくは、0.01~0.5g/mであり、さらに好ましくは0.02~0.20g/mであり、0.02~0.09g/mであればより好ましい。離型層の塗布量が0.01g/m以上であると剥離性能が得られ易く好ましい。0.2g/m以下であると、離型層の硬化時間を短くできるため離型フィルムの平面性が保たれてセラミックグリーンシートの厚みムラを抑制できるため好ましい。また0.2g/m以下であると得られたフィルムのカールも少なくなるためセラミックグリーンシート成型時に成型精度が向上するため好ましい。 In the present invention, the coating amount of the release layer after curing is not particularly limited, but is preferably 1.0 g / m 2 or less. It is more preferably 0.01 to 0.5 g / m 2 , still more preferably 0.02 to 0.20 g / m 2 , and more preferably 0.02 to 0.09 g / m 2 . It is preferable that the coating amount of the release layer is 0.01 g / m 2 or more, since the release performance can be easily obtained. When it is 0.2 g / m 2 or less, the curing time of the release layer can be shortened, so that the flatness of the release film can be maintained and the thickness unevenness of the ceramic green sheet can be suppressed, which is preferable. Further, when the content is 0.2 g / m 2 or less, the curl of the obtained film is reduced, so that the molding accuracy at the time of molding the ceramic green sheet is preferably improved.
 本発明の離型フィルムの離型層表面の表面自由エネルギーは、18mJ/m以上35mJ/m以下であることが好ましい。より好ましくは、20mJ/m以上30mJ/m以下であり、さらに好ましくは21mJ/m以上28mJ/m以下である。18mJ/m以上であるとセラミックスラリーを塗工したときにハジキが発生しづらく均一に塗工することができ好ましい。また35mJ/m以下であるとセラミックグリーンシートの離型性が低下するおそれがなく好ましい。上記範囲とすることで塗工時にハジキがなく、離型性に優れた離型フィルムを提供できる。 Surface free energy of the release layer surface of the release film of the present invention is preferably 18 mJ / m 2 or more 35 mJ / m 2 or less. More preferably, 20 mJ / m 2 or more 30 mJ / m 2 or less, further preferably 21 mJ / m 2 or more 28 mJ / m 2 or less. When it is at least 18 mJ / m 2, repelling is less likely to occur when the ceramic slurry is applied, which is preferable. In addition, when it is 35 mJ / m 2 or less, there is no possibility that the releasability of the ceramic green sheet is reduced, which is preferable. By setting the content within the above range, a release film having no repelling during coating and excellent in releasability can be provided.
 本発明の離型フィルムは、セラミックグリーンシートを剥離するときの剥離力が0.5mN/mm以上、3mN/mm以下であることが好ましい。より好ましくは、0.8mN/mm以上、2.5mN/mm以下である。さらに好ましくは、1.0mN/mm以上、1.8mN/mm以下である。剥離力が0.5mN/mm以上であると、剥離力が軽すぎず搬送時にセラミックグリーンシートが浮き上がるおそれがなく好ましい。剥離力が3mN/mm以下であると剥離時にセラミックグリーンシートがダメージを受けるおそれがなく好ましい。 The release film of the present invention preferably has a peel force of 0.5 mN / mm 2 or more and 3 mN / mm 2 or less when peeling the ceramic green sheet. More preferably, it is 0.8 mN / mm 2 or more and 2.5 mN / mm 2 or less. More preferably, 1.0 mN / mm 2 or more and 1.8mN / mm 2 or less. When the peeling force is 0.5 mN / mm 2 or more, the peeling force is not too light, and there is no possibility that the ceramic green sheet will be lifted during transportation. When the peeling force is 3 mN / mm 2 or less, the ceramic green sheet is not likely to be damaged at the time of peeling, which is preferable.
 本発明の離型フィルムは、カールが少ないことが好ましい。具体的にはフィルムに張力をかけずに100℃で15分加熱したあとのカールが2mm以下であることが好ましく、より好ましくは1mm以下である。もちろん、全くカールしないことも好ましい。2mm以下にすることでセラミックグリーンシートを成型し電極を印刷するときにカールが少なく印刷精度を高めることができるため好ましい。 離 The release film of the present invention preferably has less curl. Specifically, the curl after heating at 100 ° C. for 15 minutes without applying tension to the film is preferably 2 mm or less, more preferably 1 mm or less. Of course, it is also preferable that no curling occurs. When the thickness is set to 2 mm or less, the curling is small when the ceramic green sheet is formed and the electrode is printed, so that the printing accuracy can be improved.
 本発明の離型フィルムの離型層表面には、離型層中に含まれるシリコーン系離型剤由来成分が十分に析出していることが好ましい。シリコーン系離型剤由来成分の析出量を表す指標として、離型層表面のSi元素の比率を用いることができる。離型層表面のSi元素比率は、離型層の表面のみを測定可能なESCAにて評価することができる。なお、本発明におけるSi元素比率は、次式のように、C、S、Si、O、Nの5元素中のSiの割合(at%)とする。
 Si元素比率(at%)={Si/(C+O+N+S+Si)}×100 ・・・式
It is preferable that the silicone-based release agent-derived component contained in the release layer is sufficiently precipitated on the surface of the release layer of the release film of the present invention. The ratio of the Si element on the surface of the release layer can be used as an index indicating the amount of the component derived from the silicone release agent. The Si element ratio on the release layer surface can be evaluated by ESCA, which can measure only the surface of the release layer. Note that the Si element ratio in the present invention is a ratio (at%) of Si in five elements of C, S, Si, O, and N as in the following equation.
Si element ratio (at%) = {Si / (C + O + N + S + Si)} × 100 formula
 本発明の離型フィルムの離型層最表面のSi元素比率は、2.0at%以上であることが好ましい。より好ましくは2.5at%以上であり、3.0at%以上であればなお好ましく、3.5at%以上が更に好ましい。2.0at%以上あると離型層表面をシリコーン系離型剤が十分に被覆することができており薄膜のセラミックグリーンシート剥離時に剥離力が安定するため好ましい。Si元素比率の上限は、10at%以下が好ましく、9at%以下がさらに好ましく、8at%以下がなお好ましい。10at%以下であると離型層表面の弾性率が低くならず剥離が安定するため好ましい。 SiThe Si element ratio on the outermost surface of the release layer of the release film of the present invention is preferably 2.0 at% or more. It is more preferably at least 2.5 at%, more preferably at least 3.0 at%, still more preferably at least 3.5 at%. If the content is 2.0 at% or more, the surface of the release layer can be sufficiently covered with the silicone-based release agent, and the release force is stable when the thin ceramic green sheet is released. The upper limit of the Si element ratio is preferably 10 at% or less, more preferably 9 at% or less, and still more preferably 8 at% or less. When the content is 10 at% or less, the elastic modulus of the surface of the release layer is not reduced and the peeling is stable, which is preferable.
 本発明の離型フィルムの離型層最表面のSi元素比率を達成するためには、前述した硬化後の離型層中に含まれるシリコーン系離型剤由来成分の含有量と後述する離型層塗工後の初期乾燥工程の通過時間を最適化することが好ましい。 In order to achieve the Si element ratio on the release layer outermost surface of the release film of the present invention, the content of the silicone-based release agent-derived component contained in the release layer after curing described above and the release described later It is preferable to optimize the passage time of the initial drying step after coating the layer.
 本発明の離型フィルムの離型層表面は、その上で塗布・成型するセラミックグリーンシートに欠陥を発生させないために、平坦であることが望ましく、領域表面平均粗さ(Sa)が1.5nm以下であることが好ましく、さらに好ましくは1.2nm以下であり、1.0nm以下がなお好ましい。また、離型層表面の最大突起高さ(P)が50nm以下であることが好ましく、40nm以下がよりに好ましく、30nm以下がなお好ましい。領域表面平均粗さ(Sa)が1.5nm以下、最大突起高さ(P)が50nm以下であれば、セラミックグリーンシート形成時に、ピンホールなどの欠点の発生がなく、歩留まりが良好で好ましい。領域表面平均粗さ(Sa)は小さいほど好ましいと言えるが、0.1nm以上であっても構わず、0.3nm以上であっても構わない。最大突起高さ(P)も小さいほど好ましいと言えるが、1nm以上でも構わず、3nm以上であっても構わない。 The surface of the release layer of the release film of the present invention is desirably flat so as not to cause defects in the ceramic green sheet applied and molded thereon, and the average surface roughness (Sa) of the region is 1.5 nm. Is preferably 1.2 nm or less, more preferably 1.0 nm or less. Further, the maximum projection height (P) of the release layer surface is preferably 50 nm or less, more preferably 40 nm or less, and still more preferably 30 nm or less. When the area surface average roughness (Sa) is 1.5 nm or less and the maximum projection height (P) is 50 nm or less, defects such as pinholes do not occur during formation of the ceramic green sheet, and the yield is good, which is preferable. It can be said that the smaller the area surface average roughness (Sa) is, the better. However, it may be 0.1 nm or more, or 0.3 nm or more. It can be said that the maximum protrusion height (P) is preferably as small as possible, but it may be 1 nm or more, or 3 nm or more.
 本発明の離型フィルムは、高度に平坦化された基材フィルムを用いているため、離型層の塗布量が0.2g/m以下であることが好ましく、さらには0.09g/mより薄くしても離型層表面を平滑にすることができるため、使用する溶剤量や樹脂量を少なくすることができ環境にやさしく、安価に超薄層セラミックグリーンシート成型用の離型フィルムを作成することができる。 Since the release film of the present invention uses a highly planarized base film, the coating amount of the release layer is preferably 0.2 g / m 2 or less, more preferably 0.09 g / m 2. Even if it is thinner than 2, the release layer surface can be smoothed, so the amount of solvent and resin used can be reduced, and it is environmentally friendly and inexpensive release film for forming ultra-thin ceramic green sheets. Can be created.
 本発明の離型フィルムの離型層表面の最大突起高さ(P)が50nm以下かつ領域平均粗さ(Sa)が1.5nm以下にするためには、離型層の塗液を塗工し乾燥するまでにシリコーン系離型剤やバインダー成分の凝集を抑えることが好ましい。そのため、後述の製造方法にて述べるように塗工後から乾燥までの時間を一定の条件下で実施することで目標とする超高平滑な離型層表面を得ることができる。 In order that the maximum projection height (P) of the release layer surface of the release film of the present invention is 50 nm or less and the area average roughness (Sa) is 1.5 nm or less, a coating liquid for the release layer is applied. It is preferable to suppress aggregation of the silicone-based release agent and the binder component before drying. Therefore, as described in the below-described production method, the target ultra-high smooth release layer surface can be obtained by performing the time from application to drying under constant conditions.
(離型フィルムの製造方法)
 本発明の離型フィルムの製造方法は特に限定されないが、少なくともバインダー成分とシリコーン系離型剤を溶媒に溶解もしくは分散させた塗液を基材のポリエステルフィルムの少なくとも一方の面に塗布等により積層する塗布工程と、塗布後、主に溶媒等を除去する初期乾燥工程と主にバインダー樹脂等を硬化させる加熱硬化工程を経て離型層が積層される方法を用いることが好ましい。ポリエステルフィルムの離型層を設ける側の表面は、実質的に粒子を含有していない表面層Aであることが好ましく、表面層Aと離型層の間には他のコート層が存在しても構わない。
(Production method of release film)
The method for producing the release film of the present invention is not particularly limited, but a coating solution obtained by dissolving or dispersing at least a binder component and a silicone-based release agent in a solvent is laminated on at least one surface of the base polyester film by coating or the like. It is preferable to use a method in which a release layer is laminated through an application step of applying, an initial drying step of mainly removing a solvent and the like after the application, and a heat curing step of mainly curing a binder resin and the like. The surface of the polyester film on the side where the release layer is provided is preferably a surface layer A substantially containing no particles, and another coat layer exists between the surface layer A and the release layer. No problem.
(塗布工程)
 バインダー樹脂とシリコーン系離型剤を溶解もしくは分散させる溶媒としては特に限定されないが、有機溶剤を用いることが好ましい。有機溶剤を用いることで塗液の表面張力を低くすることができるため塗布後にハジキなどが発生しにくく、離型層表面の平滑性を高く保つことができるため好ましい。
(Coating process)
The solvent for dissolving or dispersing the binder resin and the silicone-based release agent is not particularly limited, but it is preferable to use an organic solvent. Use of an organic solvent is preferable because the surface tension of the coating liquid can be reduced, so that repelling or the like does not easily occur after coating, and the smoothness of the surface of the release layer can be kept high.
 本発明の離型フィルムの製造方法に用いる有機溶剤としては特に限定されず、既知のものを使用することができる。溶媒としては、通常、ベンゼン、トルエン、キシレン等の芳香族炭化水素、シクロヘキサン、n-ヘキサン、n-ヘプタン等の脂肪酸炭化水素、パークロロエチレン等のハロゲン化炭化水素、酢酸エチル、およびメチルエチルケトン、メチルイソブチルケトンなどが挙げられる。基材フィルム表面に塗布する場合の塗布性を考慮すると、限定するものではないが実用上好ましくはトルエンおよびメチルエチルケトンの混合溶媒である。 有機 The organic solvent used in the method for producing a release film of the present invention is not particularly limited, and any known organic solvent can be used. Examples of the solvent include aromatic hydrocarbons such as benzene, toluene and xylene, fatty acid hydrocarbons such as cyclohexane, n-hexane and n-heptane, halogenated hydrocarbons such as perchloroethylene, ethyl acetate, methyl ethyl ketone and methyl. Isobutyl ketone and the like. Taking into account the applicability when applying to the surface of the substrate film, a mixed solvent of toluene and methyl ethyl ketone is practically preferable, although not limited.
 本発明において、離型層形成のための塗布に用いる塗液には、特に限定されないが、2種類以上の沸点が異なる有機溶剤を含むことが好ましい。少なくとも1種類の有機溶剤は沸点が100℃以上であることが好ましい。沸点が100℃以上の溶剤を添加することで、乾燥時の突沸を防ぎ、塗膜がレベリングさせることができ、乾燥後の塗膜表面の平滑性を向上させることができる。その添加量としては、塗液全体に対し、10~50質量%程度添加することが好ましい。沸点100℃以上の溶剤の例としては、トルエン、キシレン、ヘオクタン、シクロヘキサノン、メチルイソブチルケトン、酢酸n―プロピルなどが挙げられる。 に お い て In the present invention, the coating liquid used for coating for forming the release layer is not particularly limited, but preferably contains two or more kinds of organic solvents having different boiling points. It is preferable that at least one organic solvent has a boiling point of 100 ° C. or higher. By adding a solvent having a boiling point of 100 ° C. or more, bumping during drying can be prevented, the coating film can be leveled, and the smoothness of the dried coating film surface can be improved. It is preferable to add about 10 to 50% by mass of the total amount of the coating solution. Examples of the solvent having a boiling point of 100 ° C. or higher include toluene, xylene, heoctane, cyclohexanone, methyl isobutyl ketone, and n-propyl acetate.
 本発明において、離型層形成用の塗液を塗布するときの塗液の表面張力(20℃)は、特に限定されないが30mN/m以下であることが好ましい。表面張力を前記のようにすることで、塗工後の塗れ性が向上し、乾燥後の塗膜表面の凹凸を低減することができる。塗液の表面張力を下げるためには、塗液を形成する有機溶剤は表面張力が低いものを用いることが好ましい。少なくとも1種類の有機溶剤の表面張力(20℃)が26mN/m以下であることが好ましく、さらに好ましくは、23mN/m以下である。表面張力(20℃)が26mN/m以下の有機溶剤を含むことで塗布時にハジキなどの外観欠点を少なくすることができるため好ましい。その添加量としては、塗液全体に対し、20質量%以上添加することが好ましい。 に お い て In the present invention, the surface tension (20 ° C.) of the coating liquid when applying the coating liquid for forming a release layer is not particularly limited, but is preferably 30 mN / m or less. By setting the surface tension as described above, the wettability after coating is improved, and the unevenness of the coating film surface after drying can be reduced. In order to lower the surface tension of the coating liquid, it is preferable to use an organic solvent having a low surface tension as the organic solvent forming the coating liquid. The surface tension (at 20 ° C.) of at least one organic solvent is preferably 26 mN / m or less, more preferably 23 mN / m or less. It is preferable to include an organic solvent having a surface tension (20 ° C.) of 26 mN / m or less because appearance defects such as repelling during coating can be reduced. It is preferable to add 20% by mass or more to the entire coating liquid.
 塗液中に含まれる離型剤の固形分濃度は、0.1質量%以上10質量%以下が好ましく、より好ましくは、0.2質量%以上8質量%以下である。固形分濃度が0.1質量%以上とすることで塗布後の乾燥が速いため、離型剤の中の成分の凝集などが起こりにくく好ましい。一方、固形分濃度が10質量%以下であると、塗工液の粘度が低くレベリング性が良好であるため、塗工後の平面性を向上させることができ好ましい。塗工液の粘度は、1mPa・s以上100mPa・s以下が塗工外観の面で好ましく、2mPa・s以上10mPa・s以下がより好ましい。この範囲になるように固形分濃度、有機溶剤等を調整することが好ましい。 (4) The solid content concentration of the release agent contained in the coating liquid is preferably from 0.1% by mass to 10% by mass, more preferably from 0.2% by mass to 8% by mass. When the solid content concentration is 0.1% by mass or more, drying after application is fast, and aggregation of components in the release agent hardly occurs, which is preferable. On the other hand, when the solid content concentration is 10% by mass or less, the viscosity of the coating liquid is low and the leveling property is good, so that the flatness after coating can be improved, which is preferable. The viscosity of the coating liquid is preferably from 1 mPa · s to 100 mPa · s from the viewpoint of coating appearance, and more preferably from 2 mPa · s to 10 mPa · s. It is preferable to adjust the solid content concentration, the organic solvent and the like so as to fall within this range.
 本発明において、離型層形成用の塗液は塗布前に濾過することが好ましい。濾過方法については、特に限定されず既知の方法を使用することができるが、サーフェスタイプやデプスタイプ、吸着タイプのカートリッジフィルターを用いることが好ましい。カートリッジタイプのフィルターを使用することで塗液をタンクから塗工部に連続的に送液するときに使用することができるため、生産性がよく効率的に濾過できるため好ましい。フィルターの濾過精度としては、1μmの大きさのものを99%以上除去するものを用いることが好ましく、さらに好ましくは0.5μmの大きさのものを99%以上濾過できるものが好ましい。上記濾過精度のものを用いることで、離型剤に混入する異物を除去することができ、本発明のセラミックグリーンシート成型用離型フィルムの離型フィルムに付着する異物を大幅に減少することができる。そのため、本発明の離型フィルムを用いた成型したセラミックグリーンシートの欠点も少なくなりセラミックコンデンサの不良率も低減することができる。 に お い て In the present invention, the coating liquid for forming a release layer is preferably filtered before coating. The filtration method is not particularly limited, and a known method can be used. However, it is preferable to use a surface type, depth type or adsorption type cartridge filter. The use of a cartridge-type filter is preferable because the coating liquid can be used when the coating liquid is continuously fed from the tank to the coating section, so that productivity can be efficiently filtered. It is preferable to use a filter capable of removing 99% or more of a filter having a size of 1 μm, more preferably a filter capable of filtering 99% or more of a filter having a size of 0.5 μm. By using the above-mentioned filtration accuracy, foreign matter mixed in the release agent can be removed, and foreign matter attached to the release film of the ceramic green sheet molding release film of the present invention can be significantly reduced. it can. Therefore, the defects of the ceramic green sheet molded using the release film of the present invention are reduced, and the defective rate of the ceramic capacitor can be reduced.
 上記塗液の塗布法としては、公知の任意の塗布法が適用出来、例えばグラビアコート法やリバースコート法などのロールコート法、ワイヤーバーなどのバーコート法、ダイコート法、スプレーコート法、エアーナイフコート法、等の従来から知られている方法が利用できる。 As the coating method of the coating liquid, any known coating method can be applied, for example, a roll coating method such as a gravure coating method or a reverse coating method, a bar coating method such as a wire bar, a die coating method, a spray coating method, and an air knife. A conventionally known method such as a coating method can be used.
 塗布時の塗液膜厚(Wet量)は、1g/m以上10g/m以下であることが好ましい。1g/mよりも厚いと塗工が安定するためハジキやスジといった欠点が出にくく好ましい。また10g/m以下であれば、乾燥が速く離型層に含まれる成分が凝集しにくく好ましい。 The coating liquid film thickness (wet amount) at the time of coating is preferably 1 g / m 2 or more and 10 g / m 2 or less. When the thickness is more than 1 g / m 2 , the coating is stable, and defects such as repelling and streaks are less likely to appear, which is preferable. Further, when the content is 10 g / m 2 or less, it is preferable that the components contained in the release layer be dried quickly and hardly aggregate.
(乾燥工程)
 塗液を基材フィルム上に塗布し、乾燥する方法としては、公知の熱風乾燥、赤外線ヒーター等による加熱乾燥が挙げられるが、乾燥速度が早い熱風乾燥が好ましい。乾燥炉は、乾燥初期の恒率乾燥工程(以下、初期乾燥工程とよぶ)と減率乾燥および樹脂の硬化が進行する工程(以下、加熱硬化工程とよぶ)に分けることができる。初期乾燥工程と加熱硬化工程は、連続していても不連続でも構わないが、連続している方が生産性がよく好ましい。それぞれの工程は、乾燥炉のゾーンを分けることで区別することが好ましい。各工程のゾーン数は1つ以上あればいくつであっても構わない。
(Drying process)
Examples of the method of applying the coating liquid on the base film and drying the coating liquid include known hot-air drying and drying by heating with an infrared heater. Hot-air drying with a high drying speed is preferred. The drying furnace can be divided into a constant-rate drying step (hereinafter, referred to as an initial drying step) at an early stage of drying, and a step in which reduced-rate drying and curing of the resin proceed (hereinafter, referred to as a heat curing step). The initial drying step and the heat-curing step may be continuous or discontinuous, but the continuous step is preferable because the productivity is good. It is preferable that the respective steps are distinguished by dividing the drying furnace zone. The number of zones in each step may be any number as long as it is one or more.
 本発明の離型フィルムの製造方法においては、塗布後1.5秒以内に乾燥炉に入れることが好ましく、より好ましくは1.0秒以内であり、0.8秒以内がさらに好ましい。塗布後1.5秒以内に乾燥炉に入れ乾燥を始めることで離型層に含まれる成分の凝集が起こる前に乾燥させることができるため、凝集による離型層表面の平滑性悪化を防ぐことができるため好ましい。塗布後、乾燥炉に入れるまでの時間は短いことが好ましく、下限は特に設けないが、0.05秒以上でも構わず、0.1秒以上でも構わない。 に お い て In the method for producing a release film of the present invention, it is preferable that the film is placed in a drying oven within 1.5 seconds after application, more preferably within 1.0 second, and even more preferably within 0.8 seconds. Since the components contained in the release layer can be dried before agglomeration occurs by placing them in a drying oven and drying within 1.5 seconds after application, it is possible to prevent the smoothness of the surface of the release layer from being deteriorated due to aggregation. Is preferred because It is preferable that the time from application to the drying oven is short, and there is no particular lower limit, but it may be 0.05 seconds or longer, or 0.1 seconds or longer.
 初期乾燥工程は、特に限定されず既知の乾燥炉を用いることができる。乾燥炉の方式については、ロールサポート方式でもフローティング方式でもどちらでも構わないが、ロールサポート方式の方が乾燥時の風量を調整できる範囲が広いため、離型層の種類に合わせて風量などを調整できるため好ましい。 The initial drying step is not particularly limited, and a known drying furnace can be used. Regarding the drying furnace method, either the roll support method or the floating method may be used, but the roll support method has a wider range where the air volume during drying can be adjusted, so the air volume etc. is adjusted according to the type of release layer It is preferable because it is possible.
 初期乾燥工程の温度は、60℃以上、140℃以下であることが好ましく、70℃以上、130℃以下がさらに好ましく、80℃以上、120℃以下がさらに好ましい。60℃以上、140℃以下とすることで、熱による平面性不良なく、塗布後の離型層に含まれる有機溶剤量を効果的に乾燥することができるため好ましい。 温度 The temperature of the initial drying step is preferably from 60 ° C to 140 ° C, more preferably from 70 ° C to 130 ° C, even more preferably from 80 ° C to 120 ° C. A temperature of 60 ° C. or more and 140 ° C. or less is preferable because the amount of the organic solvent contained in the release layer after coating can be effectively dried without poor planarity due to heat.
 初期乾燥工程を通過する時間としては、1.0秒以上、3.0秒以下であることが好ましく、1.0秒以上、2.5秒以下より好ましく、1.2秒以上、2.5秒以下がさらに好ましい。1.0秒以上であると塗布後の離型層中に含まれる有機溶剤を十分乾燥させることができるため好ましい。さらに、1.0秒以上とすることで離型層に含まれるシリコーン系離型剤由来成分を離型層表面に効果的に析出させることができるため好ましい。また3.0秒以下であると離型層中の成分の凝集が起こりにくく好ましい。上記時間で乾燥できるように塗液の固形分濃度や有機溶剤種等を調整することで、凝集しやすい塗液を用いても凝集による平滑性の悪化を抑制することができる。 The time required to pass through the initial drying step is preferably from 1.0 to 3.0 seconds, more preferably from 1.0 to 2.5 seconds, and more preferably from 1.2 to 2.5 seconds. Seconds or less are more preferred. The time is preferably at least 1.0 second because the organic solvent contained in the release layer after application can be sufficiently dried. Further, it is preferable to set the release time to 1.0 second or longer because the component derived from the silicone release agent contained in the release layer can be effectively deposited on the surface of the release layer. Further, when the time is 3.0 seconds or less, aggregation of the components in the release layer hardly occurs, which is preferable. By adjusting the solid content concentration of the coating liquid, the type of organic solvent, and the like so that the coating liquid can be dried in the above-described time, deterioration in smoothness due to aggregation can be suppressed even when a coating liquid that easily aggregates is used.
 初期乾燥工程を通過後の離型層に含まれる有機溶剤量は5質量%以下であることが好ましく、より好ましくは2質量%以下である。有機溶剤量を5質量%以下にすることで、加熱工程で加熱されても突沸などによる外観悪化を防ぐことができるため好ましい。離型層中の有機溶剤量は、初期乾燥工程後のフィルムをサンプリングしガスクロマトグラフィーや熱重量分析などで測定することができるが、乾燥のシュミレーションを用いて推測する方法もとることができる。シュミレーションから求めた方が工程を止めることなく測定することができるため好ましい。シュミレーションについては特に限定されないが既知のシュミレーションソフトを使用することができる。 (5) The amount of the organic solvent contained in the release layer after passing through the initial drying step is preferably 5% by mass or less, more preferably 2% by mass or less. When the amount of the organic solvent is 5% by mass or less, deterioration in appearance due to bumping or the like can be prevented even when heated in the heating step, which is preferable. The amount of the organic solvent in the release layer can be measured by gas chromatography or thermogravimetric analysis after sampling the film after the initial drying step, but it can be estimated by using a drying simulation. It is preferable to obtain the value from simulation because measurement can be performed without stopping the process. The simulation is not particularly limited, but known simulation software can be used.
(加熱硬化工程)
 本発明の離型フィルムは初期乾燥工程後、加熱硬化工程を経ることが好ましい。加熱硬化工程は、特に限定されず既知の乾燥炉を用いることができる。乾燥炉の方式については、ロールサポート方式でもフローティング方式でもどちらでも構わない。加熱硬化工程は、初期乾燥工程と連続した工程であっても、不連続な工程であっても構わないが、生産性の観点から連続した工程であることが好ましい。
(Heat curing process)
The release film of the present invention preferably undergoes a heat curing step after the initial drying step. The heat curing step is not particularly limited, and a known drying furnace can be used. Regarding the drying furnace system, either a roll supporting system or a floating system may be used. The heat curing step may be a step that is continuous with the initial drying step or a step that is discontinuous, but is preferably a step that is continuous from the viewpoint of productivity.
 加熱硬化工程の温度は、80℃以上、180℃以下であることが好ましく、90℃以上、160℃以下であることがより好ましく、90℃以上、140℃以下であることがもっとも好ましい。180℃以下の場合、フィルムの平面性が保たれ、セラミックグリーンシートの厚みムラを引き起こす恐れが小さく好ましい。140℃以下であるとフィルムの平面性を損なうことなく加工することができ、セラミックグリーンシートの厚みムラを引き起こす恐れが更に低下するので特に好ましい。80℃以上であると熱硬化系の樹脂の場合は硬化が十分進行するため好ましい。 温度 The temperature of the heat curing step is preferably 80 ° C or more and 180 ° C or less, more preferably 90 ° C or more and 160 ° C or less, and most preferably 90 ° C or more and 140 ° C or less. When the temperature is 180 ° C. or lower, the flatness of the film is maintained, and the possibility of causing thickness unevenness of the ceramic green sheet is small, which is preferable. When the temperature is 140 ° C. or lower, processing can be performed without impairing the flatness of the film, and the possibility of causing unevenness in the thickness of the ceramic green sheet is further reduced. When the temperature is 80 ° C. or higher, the thermosetting resin is preferable because the curing proceeds sufficiently.
 加熱硬化工程を通過する時間は、2秒以上30秒以下が好ましく、2秒以上20秒以下がさらに好ましい。通過時間が2秒以上であると熱硬化系の樹脂の硬化が進行し好ましい。また30秒以下であると熱によるフィルムの平面性が低下せず好ましい。 時間 The time of passing through the heat curing step is preferably 2 seconds or more and 30 seconds or less, more preferably 2 seconds or more and 20 seconds or less. If the passage time is 2 seconds or longer, the curing of the thermosetting resin proceeds, which is preferable. Further, it is preferable that the time is 30 seconds or less, since the flatness of the film due to heat does not decrease.
 加熱硬化工程の最終では、熱風温度を基材フィルムのガラス転移温度以下にし、フラットの状態で基材フィルムの実温をガラス転移温度以下にすることが好ましい。基材フィルムの実温がガラス転移温度以上のまま乾燥炉を出た場合には、ロール表面に接触した際に滑りが不良となり、キズ等が発生するだけでなく、カール等が発生する場合がある。 (4) At the end of the heat curing step, it is preferable that the hot air temperature be equal to or lower than the glass transition temperature of the base film and the actual temperature of the base film in a flat state be equal to or lower than the glass transition temperature. If the actual temperature of the base film leaves the drying oven at or above the glass transition temperature, slippage will be poor when it comes into contact with the roll surface, and not only will scratches and the like occur, but curl etc. may occur. is there.
 本発明の離型フィルムは、加熱硬化工程通過後、ロール状に巻き取ることが好ましい。加熱硬化工程通過後、ロール状に巻き取るまでの時間は2秒以上とることが好ましく、3秒以上がさらに好ましい。2秒以上であると加熱硬化工程で温度が上昇した離型フィルムが冷却されてロールに巻き取られるため平面性が損なわれるおそれがなく好ましい。 離 The release film of the present invention is preferably wound up in a roll after passing through the heat curing step. After passing through the heat curing step, the time required for winding into a roll is preferably 2 seconds or more, more preferably 3 seconds or more. When the time is at least 2 seconds, the release film, the temperature of which has been raised in the heat curing step, is cooled and wound up on a roll.
 本発明の離型フィルムおよびその製造方法においては、加熱硬化工程後ロール状に巻き取るまでの間に、各種処理をしてもよく、エージング処理、除電処理、コロナ処理、プラズマ処理、紫外線照射処理、電子線照射処理などを行うことができる。 In the release film of the present invention and the method for producing the same, various treatments may be carried out after the heat-curing step and before winding into a roll, aging treatment, charge removal treatment, corona treatment, plasma treatment, ultraviolet irradiation treatment. And an electron beam irradiation treatment.
(セラミックグリーンシートとセラミックコンデンサ)
 一般に、積層セラミックコンデンサは、直方体状のセラミック素体を有する。セラミック素体の内部には、第1の内部電極と第2の内部電極とが厚み方向に沿って交互に設けられている。第1の内部電極は、セラミック素体の第1の端面に露出している。第1の端面の上には第1の外部電極が設けられている。第1の内部電極は、第1の端面において第1の外部電極と電気的に接続されている。第2の内部電極は、セラミック素体の第2の端面に露出している。第2の端面の上には第2の外部電極が設けられている。第2の内部電極は、第2の端面において第2の外部電極と電気的に接続されている。
(Ceramic green sheet and ceramic capacitor)
Generally, a multilayer ceramic capacitor has a rectangular parallelepiped ceramic body. Inside the ceramic body, first internal electrodes and second internal electrodes are provided alternately along the thickness direction. The first internal electrode is exposed on a first end face of the ceramic body. A first external electrode is provided on the first end surface. The first internal electrode is electrically connected to a first external electrode at a first end face. The second internal electrode is exposed on the second end face of the ceramic body. A second external electrode is provided on the second end surface. The second internal electrode is electrically connected to a second external electrode at a second end face.
 本発明のセラミックグリーンシート製造用離型フィルムは、このような積層セラミックコンデンサを製造するために用いられる。例えば、以下のようにして製造される。まず、本発明の離型フィルムをキャリアフィルムとして用い、セラミック素体を構成するためのセラミックスラリーを塗布、乾燥させる。塗布、乾燥したセラミックグリーンシートの上に、第1又は第2の内部電極を構成するための導電層を印刷する。セラミックグリーンシート、第1の内部電極を構成するための導電層が印刷されたセラミックグリーンシート及び第2の内部電極を構成するための導電層が印刷されたセラミックグリーンシートを適宜積層し、プレスすることにより、マザー積層体を得る。マザー積層体を複数に分断し、生のセラミック素体を作製する。生のセラミック素体を焼成することによりセラミック素体を得る。その後、第1及び第2の外部電極を形成することにより積層セラミックコンデンサを完成させることができる。 型 The release film for producing a ceramic green sheet of the present invention is used for producing such a multilayer ceramic capacitor. For example, it is manufactured as follows. First, using the release film of the present invention as a carrier film, a ceramic slurry for forming a ceramic body is applied and dried. A conductive layer for forming the first or second internal electrode is printed on the applied and dried ceramic green sheet. The ceramic green sheet, the ceramic green sheet on which the conductive layer for forming the first internal electrode is printed, and the ceramic green sheet on which the conductive layer for forming the second internal electrode is printed are appropriately laminated and pressed. Thereby, a mother laminate is obtained. The mother laminate is divided into a plurality of pieces to produce a raw ceramic body. The ceramic body is obtained by firing the raw ceramic body. After that, by forming the first and second external electrodes, the multilayer ceramic capacitor can be completed.
 以下に、実施例を用いて本発明のさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。本発明で用いた特性値は下記の方法を用いて評価した。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. The characteristic values used in the present invention were evaluated using the following methods.
(領域表面平均粗さ(Sa)、最大突起高さ(P))
 非接触表面形状計測システム(菱化システム社製、VertScan R550H-M100)を用いて、下記の条件で測定した値である。領域表面平均粗さ(Sa)は、5回測定の平均値を採用し、最大突起高さ(P)は7回測定し最大値と最小値を除いた5回の最大値を使用した。
 (測定条件)
  ・測定モード:WAVEモード
  ・対物レンズ:10倍
  ・0.5×Tubeレンズ
  ・測定面積 936μm×702μm
 (解析条件)
  ・面補正:  4次補正
  ・補間処理: 完全補間
  ・フィルター処理:ガウシアン カットオフ値50μm
(Region surface average roughness (Sa), maximum protrusion height (P))
It is a value measured under the following conditions using a non-contact surface profile measuring system (VertScan R550H-M100, manufactured by Ryoka Systems Inc.). The average surface roughness of the area (Sa) was an average value of five measurements, and the maximum protrusion height (P) was measured seven times, and the five maximum values excluding the maximum value and the minimum value were used.
(Measurement condition)
・ Measurement mode: WAVE mode ・ Objective: 10 × ・ 0.5 × Tube lens ・ Measurement area 936 μm × 702 μm
(Analysis conditions)
・ Surface correction: 4th order correction ・ Interpolation processing: Complete interpolation ・ Filter processing: Gaussian cut-off value 50μm
(離型層の塗布量)
 本発明の離型フィルムの硬化後の離型層の塗布量は、重量法を用いて測定した。離型フィルムを15cm×15cmの大きさにサンプリングし、除電機を用いて除電した後、精密天秤(島津製作所製 AUW120D)を用いて重量を測定した。測定した離型フィルムの離型層をメチルエチルケトンを用いて拭き取り熱風乾燥機で80℃1分乾燥後に再度、精密天秤を用いて質量を測定した。離型層拭き取り前のフィルム重量から拭き取り後のフィルム重量の差をフィルム面積(15cm×15cm)で除することで離型層塗布量(g/m)を算出した。なお、測定は異なる箇所からサンプリングしたフィルムを用いて5回行い、最大値と最小値を除いた3回の平均値を用いた。
(Amount of release layer applied)
The coating amount of the release layer after curing of the release film of the present invention was measured by a gravimetric method. The release film was sampled to a size of 15 cm × 15 cm, and after neutralization using a static eliminator, the weight was measured using a precision balance (AUW120D manufactured by Shimadzu Corporation). The measured release layer of the release film was wiped off using methyl ethyl ketone, dried at 80 ° C. for 1 minute with a hot-air drier, and the mass was measured again using a precision balance. The release layer coating amount (g / m 2 ) was calculated by dividing the difference in the film weight after wiping from the film weight before wiping the release layer by the film area (15 cm × 15 cm). The measurement was performed five times using films sampled from different locations, and an average value of three times excluding the maximum value and the minimum value was used.
(離型層最表面のSi元素比率)
本発明の離型フィルムの離型層最表面Si元素比率はESCAにて測定した。装置にはK-Alpha
 (Thermo Fisher Scientific社製)を用いた。測定条件の詳細は以下に示した。本装置を用いて離型層表面のC、O、N、S、Siの5元素についてナロースキャンを行い、ここからSi元素比率(at%)を次式により算出した。(本発明ではSi元素比率は、C、O、N、S、Siの5元素中でのSiの割合(at%)とする。)
 Si元素比率(at%)={Si/(C+O+N+S+Si)}×100 ・・・式
 なお、解析の際、バックグラウンドの除去はshirley法にて行った。また、表面Si元素
比率は3箇所以上の測定結果の平均値とした。 

  ・測定条件
   励起X線 : モノクロ化Al Ka線
   X線出力: 12 kV、6mA
   光電子脱出角度 : 90 °
   スポットサイズ :400 mm f(程度)
   パスエネルギー : 50eV
   ステップ : 0.1eV
(Ratio of Si element on the outermost surface of the release layer)
The Si element ratio at the outermost surface of the release layer of the release film of the present invention was measured by ESCA. The device is K-Alpha
+ (Manufactured by Thermo Fisher Scientific) was used. Details of the measurement conditions are shown below. Using this apparatus, a narrow scan was performed for five elements of C, O, N, S, and Si on the surface of the release layer, and the Si element ratio (at%) was calculated from the following equation. (In the present invention, the Si element ratio is the ratio (at%) of Si in the five elements of C, O, N, S, and Si.)
Si element ratio (at%) = {Si / (C + O + N + S + Si)} × 100 Expression In the analysis, the background was removed by the shirley method. The surface Si element ratio was an average value of the measurement results at three or more locations.

・ Measurement conditions Excitation X-ray: Monochrome Al Ka-ray X-ray output: 12 kV, 6 mA
Photoelectron escape angle: 90 °
Spot size: 400 mm f (approx.)
Pass energy: 50eV
Step: 0.1eV
(表面自由エネルギー)
 25℃、50%RHの条件下で接触角計(協和界面科学株式会社製: 全自動接触角計
 DM-701)を用いて離型フィルムの離型面に水(液滴量1.8μL)、ジヨードメタン(液適量0.9μL)、エチレングリコール(液適量0.9μL)の液滴を作成しその接触角を測定した。接触角は、各液を離型フィルムに滴下後10秒後の接触角を採用した。前記方法で得られた、水、ジヨードメタン、エチレングリコールの接触角データを「北崎-畑」理論より計算し離型フィルムの表面自由エネルギーの分散成分γsd、極性成分γsp、水素結合成分γshを求め、各成分を合計したものを表面自由エネルギーγsとした。本計算には、本接触角計ソフトウェア(FAMAS)内の計算ソフトを用いて行った。
(Surface free energy)
Using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd .: fully automatic contact angle meter DM-701) under the conditions of 25 ° C. and 50% RH, water (1.8 μL of droplet amount) was applied to the release surface of the release film , A liquid drop of diiodomethane (suitable amount of liquid 0.9 μL) and ethylene glycol (suitable amount of liquid 0.9 μL) were prepared, and the contact angles were measured. As the contact angle, a contact angle 10 seconds after each liquid was dropped onto the release film was employed. The contact angle data of water, diiodomethane, and ethylene glycol obtained by the above method were calculated from the "Kitasaki-Hata" theory to determine the dispersion component γsd, polar component γsp, and hydrogen bond component γsh of the surface free energy of the release film, The sum of the components was defined as surface free energy γs. This calculation was performed using calculation software in the contact angle meter software (FAMAS).
(塗液の表面張力)
 塗液の表面張力は、表面張力計(協和界面科学株式会社製:高機能表面張力計 DY-500)を用いて、20℃条件下、白金プレートを用いてWilhelmy法で測定を行った。3回測定し平均値を採用した。
(Surface tension of coating liquid)
The surface tension of the coating liquid was measured by a Wilhelmy method using a platinum plate at 20 ° C. using a surface tensiometer (manufactured by Kyowa Interface Science Co., Ltd .: DY-500 high-performance surface tensiometer). The measurement was performed three times and the average value was adopted.
(塗液の粘度)
 塗液の粘度は、回転式粘度計(東機産業株式会社製:TVB-15M)を使用し20℃条件下で測定を行った。10mPa・s以下の低粘度液を測定する場合はオプションの低粘度アダプターを使用して測定を行った。3回測定を行い平均値を採用した。
(Viscosity of coating liquid)
The viscosity of the coating liquid was measured at 20 ° C. using a rotary viscometer (TVB-15M, manufactured by Toki Sangyo Co., Ltd.). When measuring a low viscosity liquid of 10 mPa · s or less, the measurement was performed using an optional low viscosity adapter. The measurement was performed three times, and the average value was adopted.
(セラミックスラリーの塗工性評価)
 下記、材料からなる組成物を攪拌混合し、ビーズミルを用いて直径0.5mmのジルコニアビーズで60分間分散し、セラミックスラリーを得た。
トルエン                    76.3質量部
エタノール                   76.3質量部
チタン酸バリウム(富士チタン社製 HPBT-1)35.0質量部
ポリビニルブチラール               3.5質量部
(積水化学社製 エスレック(登録商標)BM-S)
DOP(フタル酸ジオクチル)           1.8質量部
 次いで得られた離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のスラリーが1μmになるように塗工し90℃で1分乾燥後、以下の基準で塗工性を評価した。○:ハジキなどがなく全面に塗工できている。
△:塗工端部でややハジキがあるが、ほぼ全面に塗工できている。
×:ハジキが多く、塗工できていない。
(Evaluation of coatability of ceramic slurry)
The composition composed of the following materials was stirred and mixed, and dispersed with zirconia beads having a diameter of 0.5 mm using a bead mill for 60 minutes to obtain a ceramic slurry.
76.3 parts by mass of toluene 76.3 parts by mass of ethanol 75.0 parts by mass of barium titanate (HPBT-1 manufactured by Fuji Titanium Co., Ltd.) 35.0 parts by mass 3.5 parts by mass of polyvinyl butyral 3.5 parts by mass (ESREC® BM-S manufactured by Sekisui Chemical Co., Ltd.)
1.8 parts by mass of DOP (dioctyl phthalate) Then, the release surface of the obtained release film sample is applied using an applicator so that the slurry after drying is 1 μm, and dried at 90 ° C. for 1 minute. The coatability was evaluated based on the following criteria. :: The entire surface was coated without repelling.
Δ: Although some repelling was observed at the coated end, the coating was completed on almost the entire surface.
×: Many cissings were not applied.
(セラミックグリーンシートのピンホール評価)
 前記セラミックスラリーの塗工性評価と同様にして離型フィルムの離型面に厚さ1μmのセラミックグリーンシートを成型した。
 次いで得られた離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のスラリーが1μmの厚みになるように塗布し90℃で1分乾燥後、離型フィルムを剥離し、セラミックグリーンシートを得た。
 得られたセラミックグリーンシートのフィルム幅方向の中央領域において25cmの範囲でセラミックスラリーの塗布面の反対面から光を当て、光が透過して見えるピンホールの発生状況を観察し、下記基準で目視判定した。
○:ピンホールの発生なし
△:ピンホールの発生がほぼなし
×:ピンホールの発生が多数あり
(Evaluation of pinholes on ceramic green sheets)
A ceramic green sheet having a thickness of 1 μm was formed on the release surface of the release film in the same manner as in the evaluation of the coatability of the ceramic slurry.
Subsequently, the slurry after drying was applied to the release surface of the obtained release film sample using an applicator so as to have a thickness of 1 μm, dried at 90 ° C. for 1 minute, the release film was peeled off, and the ceramic green sheet was removed. Obtained.
In the center region of the obtained ceramic green sheet in the film width direction, light is applied from the opposite surface of the ceramic slurry application surface in a range of 25 cm 2 , and the state of occurrence of pinholes through which light is visible is observed. It was visually determined.
:: No pinholes are generated △: Almost no pinholes are generated X: Many pinholes are generated
(セラミックグリーンシートの剥離性評価)
 下記、材料からなる組成物を攪拌混合し、ビーズミルを用いて直径0.5mmのジルコニアビーズで60分間分散し、セラミックスラリーを得た。
トルエン                    38.3質量部
エタノール                   38.3質量部
チタン酸バリウム(富士チタン社製 HPBT-1)64.8質量部
ポリビニルブチラール               6.5質量部
(積水化学社製 エスレック(登録商標)BM-S)
DOP(フタル酸ジオクチル)           3.3質量部
 次いで得られた離型フィルムサンプルの離型面にアプリケーターを用いて乾燥後のスラリーが10μmの厚みになるように塗布し90℃で1分乾燥しセラミックグリーンシートを離型フィルム上に成型した。得られたセラミックグリーンシート付き離型フィルムを除電機(キーエンス社製、SJ-F020)を用いて除電した後に30mmの幅で剥離角度90度、剥離速度10m/minで剥離した。剥離時にかかる応力を測定し剥離力とした。
(Evaluation of peelability of ceramic green sheet)
The composition composed of the following materials was stirred and mixed, and dispersed with zirconia beads having a diameter of 0.5 mm using a bead mill for 60 minutes to obtain a ceramic slurry.
38.3 parts by mass of toluene 38.3 parts by mass of ethanol 34.8 parts by mass of barium titanate (HPBT-1 manufactured by Fuji Titanium Co., Ltd.) 64.8 parts by mass of polyvinyl butyral 6.5 parts by mass (ESREC (registered trademark) BM-S manufactured by Sekisui Chemical Co., Ltd.)
3.3 parts by mass of DOP (dioctyl phthalate) Then, the slurry after drying is applied to the release surface of the obtained release film sample using an applicator so as to have a thickness of 10 μm, dried at 90 ° C. for 1 minute, and dried. A green sheet was formed on a release film. The obtained release film with ceramic green sheet was subjected to static elimination using a static eliminator (manufactured by Keyence Corporation, SJ-F020), and then peeled at a peel angle of 90 °, a peel angle of 90 ° and a peel speed of 10 m / min. The stress applied during peeling was measured and used as the peeling force.
(セラミックグリーンシートの剥離安定性評価)
前述のセラミックグリーンシートの剥離性評価と同等にして、10回剥離性の評価を行った。10回の剥離力のばらつきを以下の基準で評価を行い剥離安定性の評価とした。
○:10回測定したときの最大値と最小値の差が0.5mN/mm2より小さかった。
△:10回測定したときの最大値と最小値の差が0.5mN/mm2以上、1.0N/mm2未満であった。
×:10回測定したときの最大値と最小値の差が1.0mN/mm2より小さかった。
(Evaluation of peeling stability of ceramic green sheet)
The peelability was evaluated 10 times in the same manner as the peelability evaluation of the ceramic green sheet described above. The dispersion of the peeling force 10 times was evaluated based on the following criteria, and the evaluation was made as the peeling stability.
:: The difference between the maximum value and the minimum value measured 10 times was smaller than 0.5 mN / mm 2 .
Δ: The difference between the maximum value and the minimum value measured 10 times was 0.5 mN / mm 2 or more and less than 1.0 N / mm 2 .
×: The difference between the maximum value and the minimum value measured 10 times was smaller than 1.0 mN / mm 2 .
(離型フィルムのカール評価)
 離型フィルムサンプルを10cm×10cmサイズにカットし、離型フィルムに張力がかからないようにして熱風オーブンで100℃15分間熱処理を行った。その後、オーブンから取り出し室温まで冷却したのち、離型面が上になるようにガラス板の上に離型フィルムサンプルを置いて、ガラス板から浮いている部分の高さを測定した。このときガラス板から一番大きく浮いている部分の高さを測定値とした。以下の基準でカール性の評価を行った。
○:カールが1mm以下であり、ほとんどカールしていない。
△:カールが1mmよりも大きく、2mm以下であり、少しカールが見られた。
×:カールが2mmよりも大きくカールしていた。
(Curl evaluation of release film)
The release film sample was cut into a size of 10 cm × 10 cm, and heat-treated at 100 ° C. for 15 minutes in a hot-air oven so that tension was not applied to the release film. Then, after taking out from the oven and cooling to room temperature, a release film sample was placed on a glass plate so that the release surface faced upward, and the height of the portion floating from the glass plate was measured. At this time, the height of the portion floating the largest from the glass plate was taken as the measured value. The curl properties were evaluated according to the following criteria.
:: The curl is 1 mm or less, and almost no curl.
Δ: The curl was larger than 1 mm and 2 mm or less, and a slight curl was observed.
X: The curl was larger than 2 mm.
(ポリエチレンテレフタレートペレット(PET(I))の調製)
 エステル化反応装置として、攪拌装置、分縮器、原料仕込口及び生成物取出口を有する3段の完全混合槽よりなる連続エステル化反応装置を用いた。TPA(テレフタル酸)を2トン/時とし、EG(エチレングリコール)をTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間、255℃で反応させた。次いで、第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成PETに対して8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウム四水塩を含むEG溶液と、生成PETに対してP原子が40ppmのとなる量のTMPA(リン酸トリメチル)を含むEG溶液を添加し、常圧にて平均滞留時間1時間、260℃で反応させた。次いで、第2エステル化反応缶の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、高圧分散機(日本精機社製)を用いて39MPa(400kg/cm)の圧力で平均処理回数5パスの分散処理をした平均粒径が0.9μmの多孔質コロイダルシリカ0.2質量%と、ポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒径が0.6μmの合成炭酸カルシウム0.4質量%とを、それぞれ10%のEGスラリーとして添加しながら、常圧にて平均滞留時間0.5時間、260℃で反応させた。第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、95%カット径が20μmのステンレススチール繊維を焼結したフィルターで濾過を行ってから、限外濾過を行って水中に押出し、冷却後にチップ状にカットして、固有粘度0.60dl/gのPETチップを得た(以後、PET(I)と略す)。PETチップ中の滑剤含有量は0.6質量%であった。
(Preparation of polyethylene terephthalate pellet (PET (I)))
As the esterification reactor, a continuous esterification reactor consisting of a three-stage complete mixing tank having a stirrer, a decomposer, a raw material inlet, and a product outlet was used. TPA (terephthalic acid) was set at 2 tons / hour, EG (ethylene glycol) was set at 2 moles with respect to 1 mole of TPA, antimony trioxide was used in such an amount that Sb atoms became 160 ppm with respect to generated PET, and these slurries were esterified. The mixture was continuously supplied to the first esterification reactor of the conversion reaction apparatus, and reacted at 255 ° C. at ordinary pressure for 4 hours on average. Next, the reaction product in the first esterification reactor is continuously taken out of the system and supplied to the second esterification reactor, and is distilled from the first esterification reactor into the second esterification reactor. EG solution containing magnesium acetate tetrahydrate in an amount such that Mg atoms become 65 ppm with respect to the generated PET, and 40 ppm with P atoms with respect to the generated PET. An EG solution containing the following amount of TMPA (trimethyl phosphate) was added and reacted at 260 ° C. for 1 hour at an average residence time at normal pressure. Next, the reaction product of the second esterification reactor is continuously taken out of the system and supplied to the third esterification reactor, and 39 MPa (400 kg / cm 2 ) using a high-pressure disperser (manufactured by Nippon Seiki Co., Ltd.). 0.2% by mass of porous colloidal silica having an average particle size of 0.9 μm subjected to dispersion treatment with an average number of treatments of 5 passes at a pressure of 0.2%, and 1% by mass of an ammonium salt of polyacrylic acid per calcium carbonate adhered thereto While adding 0.4% by mass of synthetic calcium carbonate having a diameter of 0.6 μm as EG slurries of 10% each, the mixture was reacted at 260 ° C. and an average residence time of 0.5 hour at normal pressure. The esterification reaction product generated in the third esterification reaction vessel was continuously supplied to a three-stage continuous polycondensation reaction apparatus to perform polycondensation, and sintered a stainless steel fiber having a 95% cut diameter of 20 μm. After filtration with a filter, ultrafiltration was performed and the mixture was extruded into water. After cooling, the mixture was cut into chips to obtain a PET chip having an intrinsic viscosity of 0.60 dl / g (hereinafter abbreviated as PET (I)). . The lubricant content in the PET chip was 0.6% by mass.
(ポリエチレンテレフタレートペレット(PET(II))の調製)
 一方、上記PETチップの製造において、炭酸カルシウム、シリカ等の粒子を全く含有しない固有粘度0.62dl/gのPETチップを得た(以後、PET(II)と略す。)。
(Preparation of polyethylene terephthalate pellet (PET (II)))
On the other hand, in the production of the above-mentioned PET chip, a PET chip having an intrinsic viscosity of 0.62 dl / g containing no particles such as calcium carbonate and silica was obtained (hereinafter abbreviated as PET (II)).
(ポリエチレンテレフタレートペレット(PET(III))の調製)
 PET(I)の粒子の種類、含有量をポリアクリル酸のアンモニウム塩を炭酸カルシウムあたり1質量%付着させた平均粒径が0.9μmの合成炭酸カルシウム0.75質量%に変更した以外は、PET(I)と同様にしてPETチップを得た(以後、PET(III)と略す)。PETチップ中の滑剤含有量は0.75質量%であった。
(Preparation of polyethylene terephthalate pellet (PET (III)))
Except that the type and content of the particles of PET (I) were changed to 0.75% by mass of synthetic calcium carbonate having an average particle size of 0.9 μm obtained by adhering ammonium salt of polyacrylic acid at 1% by mass per calcium carbonate. A PET chip was obtained in the same manner as PET (I) (hereinafter abbreviated as PET (III)). The lubricant content in the PET chip was 0.75% by mass.
(積層フィルムX1の製造)
 これらのPETチップを乾燥後、285℃で溶融し、別個の溶融押出し機押出機により290℃で溶融し、95%カット径が15μmのステンレススチール繊維を焼結したフィルターと、95%カット径が15μmのステンレススチール粒子を焼結したフィルターの2段の濾過を行って、フィードブロック内で合流して、PET(I)を表面層B(反離型面側層)、PET(II)を表面層A(離型面側層)となるように積層し、シート状に45m/分のスピードで押出(キャスティング)し、静電密着法により30℃のキャスティングドラム上に静電密着・冷却させ、固有粘度が0.59dl/gの未延伸ポリエチレンテレフタレートシートを得た。層比率は各押出機の吐出量計算でPET(I)/PET(II
)=60%/40%となるように調整した。次いで、この未延伸シートを赤外線ヒーターで加熱した後、ロール温度80℃でロール間のスピード差により縦方向に3.5倍延伸した。その後、テンターに導き、140℃で横方向に4.2倍の延伸を行なった。次いで、熱固定ゾーンにおいて、210℃で熱処理した。その後、横方向に170℃で2.3%の緩和処理をして、厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムX1を得た。得られたフィルムX1の表面層AのSaは2nm、表面層BのSaは28nmであった。
(Production of laminated film X1)
After drying these PET chips, they are melted at 285 ° C., melted at 290 ° C. by a separate melt extruder extruder, and a filter obtained by sintering a stainless steel fiber having a 95% cut diameter of 15 μm; Two-stage filtration of a filter obtained by sintering stainless steel particles of 15 μm is performed, and the two are combined in the feed block. PET (I) is applied to the surface layer B (anti-release surface side layer), and PET (II) is applied to the surface. The layers are laminated so as to become the layer A (release side layer), extruded (casted) at a speed of 45 m / min into a sheet, electrostatically adhered and cooled on a casting drum at 30 ° C. by an electrostatic adhesion method, An unstretched polyethylene terephthalate sheet having an intrinsic viscosity of 0.59 dl / g was obtained. The layer ratio is calculated as PET (I) / PET (II
) = 60% / 40%. Next, the unstretched sheet was heated by an infrared heater, and then stretched 3.5 times in the longitudinal direction at a roll temperature of 80 ° C. due to a speed difference between the rolls. Then, it was guided to a tenter and stretched 4.2 times in the transverse direction at 140 ° C. Next, heat treatment was performed at 210 ° C. in the heat setting zone. Thereafter, a relaxation treatment of 2.3% was performed in the horizontal direction at 170 ° C. to obtain a biaxially stretched polyethylene terephthalate film X1 having a thickness of 31 μm. Sa of the surface layer A of the obtained film X1 was 2 nm, and Sa of the surface layer B was 28 nm.
(積層フィルムX2の製造)
 積層フィルムX1と同様の層構成、延伸条件は変更せずに、キャスティング時の速度を変更することで厚みを調整し、25μmの厚みの二軸延伸ポリエチレンテレフタレートフィルムX2を得た。得られたフィルムX2の表面層AのSaは3nm、表面層BのSaは29nmであった。
(Production of laminated film X2)
The thickness was adjusted by changing the speed at the time of casting without changing the same layer configuration and stretching conditions as those of the laminated film X1, to obtain a biaxially stretched polyethylene terephthalate film X2 having a thickness of 25 μm. Sa of the surface layer A of the obtained film X2 was 3 nm, and Sa of the surface layer B was 29 nm.
(積層フィルムX3)
 積層フィルムX3としては、厚み25μmのA4100(コスモシャイン(登録商標)、東洋紡社製)を使用した。A4100は、フィルム中に粒子を実質的に含有せず、表面層B側にインラインコートで粒子を含んだコート層を設けた構成をしている。積層フィルムX3の表面層AのSaは1nm、表面層BのSaは2nmであった。
(Laminated film X3)
A4100 (Cosmoshine (registered trademark), manufactured by Toyobo Co., Ltd.) having a thickness of 25 μm was used as the laminated film X3. A4100 has a structure in which particles are not substantially contained in the film, and a coating layer containing particles is provided on the surface layer B side by in-line coating. Sa of the surface layer A of the laminated film X3 was 1 nm, and Sa of the surface layer B was 2 nm.
(積層フィルムX4)
 積層フィルムX4としては、厚み25μmのE5101(東洋紡エステル(登録商標)フィルム、東洋紡社製)を使用した。E5101は、フィルムの表面層A及びB中に粒子を含有した構成になっている。積層フィルムX4の表面層AのSaは24nm、表面層BのSaは24nmであった。
(Laminated film X4)
As the laminated film X4, E5101 (Toyobo Ester (registered trademark) film, manufactured by Toyobo Co., Ltd.) having a thickness of 25 μm was used. E5101 has a configuration in which particles are contained in the surface layers A and B of the film. Sa of the surface layer A of the laminated film X4 was 24 nm, and Sa of the surface layer B was 24 nm.
(積層フィルムX5の製造)
 PET(III)を表面層B(反離型面側層)、PET(II)を表面層A(離型面側層)となるように積層し、層比率を各押出機の吐出量計算でPET(III)/(II)=80%/20%にした以外は積層フィルムX1と同様の方法で厚さ31μmの二軸延伸ポリエチレンテレフタレートフィルムX5を得た。得られたフィルムX5の表面層AのSaは2nm、表面層BのSaは30nmであった。
(Production of laminated film X5)
PET (III) is laminated so as to be a surface layer B (anti-release surface side layer) and PET (II) is to be a surface layer A (release surface side layer), and the layer ratio is calculated by calculating the discharge amount of each extruder. A biaxially stretched polyethylene terephthalate film X5 having a thickness of 31 μm was obtained in the same manner as for the laminated film X1, except that PET (III) / (II) was set to 80% / 20%. Sa of the surface layer A of the obtained film X5 was 2 nm, and Sa of the surface layer B was 30 nm.
(樹脂溶液A)長鎖アルキル基含有アクリルポリオール
 ステアリル(メタ)アクリレート20モル%とヒドロキシエチル(メタ)アクリレート40モル%、メチル(メタ)アクリレート40モル%の比になるように混合し、固形分濃度が40質量%になるようにトルエンで希釈し、窒素気流下でアゾビスイソブチロニトリルを0.5モル%添加し共重合させ、樹脂溶液Aを得た。このとき得られたポリマーの重量平均分子量は30000であった。
(Resin solution A) Long-chain alkyl group-containing acrylic polyol Stearyl (meth) acrylate 20 mol%, hydroxyethyl (meth) acrylate 40 mol%, methyl (meth) acrylate 40 mol% are mixed at a ratio of 40 mol% The mixture was diluted with toluene so that the concentration became 40% by mass, and azobisisobutyronitrile was added in an amount of 0.5 mol% under a nitrogen stream to carry out copolymerization to obtain a resin solution A. The weight average molecular weight of the obtained polymer was 30,000.
(実施例1)
 積層フィルムX1の表面層A上に以下組成の塗液1を、0.5μm以上の異物を99%以上除去できるフィルターを通した後に、リバースグラビアを用いて塗布膜厚(wet量)が5g/mになるように塗工後、0.5秒で初期乾燥炉に入るように調整した。初期乾燥炉にて100℃で2秒乾燥後、連続して加熱硬化工程に入れ130℃で7秒加熱した。加熱硬化工程後、8秒後にロール状に巻き取り超薄層セラミックグリーンシート製造用離型フィルムを得た。得られた離型フィルムの膜厚、表面粗さ、表面自由エネルギー、カール等を測定した結果を表1に記載した。また得られた離型フィルムにセラミックスラリーを塗工し塗工性、剥離性、ピンホールを評価したところ、良好な評価結果が得られた。
 (塗液1) 固形分1.0質量%、表面張力:27mN/m、粘度5mPa・s
  メチルエチルケトン            57.93質量部
  トルエン                 40.00質量部
  樹脂溶液A                 1.75質量部
  (長鎖アルキル基含有アクリルポリオール、固形分40%)
  架橋剤                   0.25質量部
  (ヘキサメトキシメチロールメラミン、固形分100%)  
  シリコーン系離型剤             0.05質量部
(ポリエーテル変性ポリジメチルシロキサン、TSF4446、固形分100%、モメンティブ製)
  酸触媒(パラトルエンスルホン酸)      0.02質量部
(Example 1)
The coating solution 1 having the following composition was passed through a filter capable of removing 99% or more of foreign substances having a size of 0.5 μm or more on the surface layer A of the laminated film X1, and the coating film thickness (wet amount) was 5 g / After coating so as to obtain m 2 , it was adjusted to enter the initial drying furnace in 0.5 seconds. After drying in an initial drying oven at 100 ° C. for 2 seconds, the product was continuously heated and cured at 130 ° C. for 7 seconds. Eight seconds after the heat curing step, the resultant was wound into a roll to obtain a release film for producing an ultra-thin ceramic green sheet. Table 1 shows the results obtained by measuring the film thickness, surface roughness, surface free energy, curl, and the like of the obtained release film. In addition, when the obtained release film was coated with a ceramic slurry and evaluated for coating properties, releasability, and pinholes, good evaluation results were obtained.
(Coating liquid 1) Solid content: 1.0% by mass, surface tension: 27 mN / m, viscosity: 5 mPa · s
Methyl ethyl ketone 57.93 parts by mass Toluene 40.00 parts by mass Resin solution A 1.75 parts by mass (long chain alkyl group-containing acrylic polyol, solid content 40%)
0.25 parts by mass of crosslinking agent (hexamethoxymethylolmelamine, solid content 100%)
0.05 parts by mass of silicone release agent (polyether-modified polydimethylsiloxane, TSF4446, solid content 100%, manufactured by Momentive)
Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
(実施例2~4、比較例1、7)
 塗液1の組成を表1に記載の比率になるように変更した以外は実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。得られた離型フィルムを評価したところ、シリコーン系離型剤が入っている実施例については剥離力もよく良好な結果が得られたが、シリコーン系離型剤を含まない比較例1では剥離力が高くなり離型フィルムからセラミックグリーンシートを剥離するときにピンホールなどの欠点が生じやすくなる結果となった。また、シリコーン系離型剤量が少なく、離型層表面のSi元素比率が低い比較例7も面内の剥離均一性が悪くなった。
(Examples 2 to 4, Comparative Examples 1 and 7)
A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1, except that the composition of the coating liquid 1 was changed so as to have the ratio shown in Table 1. When the obtained release film was evaluated, the peeling force was good and good results were obtained for the examples containing the silicone-based release agent, but the peeling force was good for Comparative Example 1 containing no silicone-based release agent. And when the ceramic green sheet was peeled from the release film, defects such as pinholes were likely to occur. In Comparative Example 7 in which the amount of the silicone-based release agent was small and the ratio of the Si element on the surface of the release layer was low, the in-plane peeling uniformity was poor.
(実施例5~7、比較例2)
 塗液1の樹脂比率はそのままに固形分を表2に記載にように変更し、離型層の塗布量(固形分)を変更した以外は実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
 得られた離型フィルムを評価したところ、離型層の塗布量が0.2g/m以下の実施例についてはカールもなく良好な結果であったが、離型層の塗布量が0.75g/mの比較例2についてはカールが大きく悪化する結果であった。また比較例2では離型層中に含まれるシリコーン系離型剤の含有量が多く離型層最表面のSi元素比率が高くなり剥離安定性が悪くなる傾向が見られた。
(Examples 5 to 7, Comparative Example 2)
The ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the solid content was changed as shown in Table 2 while the resin ratio of the coating liquid 1 was unchanged, and the coating amount (solid content) of the release layer was changed. A production release film was prepared.
When the obtained release film was evaluated, the examples in which the coating amount of the release layer was 0.2 g / m 2 or less showed good results without curling. In Comparative Example 2 at 75 g / m 2, the curl was significantly deteriorated. In Comparative Example 2, the content of the silicone-based release agent contained in the release layer was large, and the Si element ratio on the outermost surface of the release layer was increased, and the peeling stability tended to be deteriorated.
(実施例8)
 塗液1を塗液8に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(塗液8) 
  メチルエチルケトン            57.35質量部
  トルエン                 40.00質量部
  サイマック(登録商標)US270      2.33質量部
  (シリコーン基含有アクリルポリオール、東亞合成社製、固形分30%)
  架橋剤                   0.25質量部
  (ヘキサメトキシメチロールメラミン、固形分100%)  
  シリコーン系離型剤             0.05質量部
(ポリエーテル変性ポリジメチルシロキサン、TSF4446、固形分100%、モメンティブ製)
  酸触媒(パラトルエンスルホン酸)      0.02質量部
(Example 8)
A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that coating liquid 1 was changed to coating liquid 8.
(Coating liquid 8)
Methyl ethyl ketone 57.35 parts by mass Toluene 40.00 parts by mass Cymac (registered trademark) US270 2.33 parts by mass (acrylic polyol containing silicone group, manufactured by Toagosei Co., Ltd., solid content 30%)
0.25 parts by mass of crosslinking agent (hexamethoxymethylolmelamine, solid content 100%)
0.05 parts by mass of silicone release agent (polyether-modified polydimethylsiloxane, TSF4446, solid content 100%, manufactured by Momentive)
Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
(実施例9)
 塗液1を塗液9に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(塗液9) 
  メチルエチルケトン            58.03質量部
  トルエン                 40.00質量部
  テスファイン305             1.90質量部
  (長鎖アルキル基含有アミノアルキッド樹脂、日立化成社製、固形分50%)
  シリコーン系離型剤             0.05質量部
(ポリエーテル変性ポリジメチルシロキサン、TSF4446、固形分100%、モメンティブ製)
  酸触媒(パラトルエンスルホン酸)      0.02質量部
(Example 9)
A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 9.
(Coating liquid 9)
Methyl ethyl ketone 58.03 parts by mass Toluene 40.00 parts by mass Tesfine 305 1.90 parts by mass (long chain alkyl group-containing amino alkyd resin, manufactured by Hitachi Chemical, solid content 50%)
0.05 parts by mass of silicone release agent (polyether-modified polydimethylsiloxane, TSF4446, solid content 100%, manufactured by Momentive)
Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
(実施例10)
 塗液1を塗液10に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(塗液10) 
  メチルエチルケトン            57.55質量部
  トルエン                 40.00質量部
  テスファイン322             2.38質量部
  (長鎖アルキル基含有アミノアクリル樹脂、日立化成社製、固形分40%)
  シリコーン系離型剤             0.05質量部
(ポリエーテル変性ポリジメチルシロキサン、TSF4446、固形分100%、モメンティブ製)
  酸触媒(パラトルエンスルホン酸)      0.02質量部
(Example 10)
A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1, except that the coating liquid 1 was changed to the coating liquid 10.
(Coating liquid 10)
Methyl ethyl ketone 57.55 parts by mass Toluene 40.00 parts by mass Tesfine 322 2.38 parts by mass (long chain alkyl group-containing aminoacrylic resin, manufactured by Hitachi Chemical Co., Ltd., solid content 40%)
0.05 parts by mass of silicone release agent (polyether-modified polydimethylsiloxane, TSF4446, solid content 100%, manufactured by Momentive)
Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
(実施例11)
 塗液1の樹脂溶液Aを塗液10の6AN-5000(長鎖アルキル基を含有しないアクリル樹脂)に変更した塗液11を用いる以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(塗液11) 
  メチルエチルケトン            57.93質量部
  トルエン                 40.00質量部
  6AN-5000              1.75質量部
  (アクリルポリオール、大成ファインケミカル社製、固形分40%)
  架橋剤                   0.25質量部
  (ヘキサメトキシメチロールメラミン、固形分100%)  
  シリコーン系離型剤             0.05質量部
(ポリエーテル変性ポリジメチルシロキサン、TSF4446、固形分100%、モメンティブ製)
  酸触媒(パラトルエンスルホン酸)      0.02質量部
(Example 11)
An ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating solution 11 in which the resin solution A of the coating solution 1 was changed to 6AN-5000 (an acrylic resin containing no long-chain alkyl group) of the coating solution 10 was used. A production release film was prepared.
(Coating liquid 11)
Methyl ethyl ketone 57.93 parts by mass Toluene 40.00 parts by mass 6AN-5000 1.75 parts by mass (acryl polyol, manufactured by Taisei Fine Chemical Co., solid content 40%)
0.25 parts by mass of crosslinking agent (hexamethoxymethylolmelamine, solid content 100%)
0.05 parts by mass of silicone release agent (polyether-modified polydimethylsiloxane, TSF4446, solid content 100%, manufactured by Momentive)
Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
(実施例12)
 塗液1を塗液12に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(塗液12) 
  メチルエチルケトン            58.95質量部
  トルエン                 40.00質量部
  ヘキサメトキシメチロールメラミン      0.95質量部
  (固形分100%)  
  シリコーン系離型剤             0.05質量部
(ポリエーテル変性ポリジメチルシロキサン、TSF4446、固形分100%、モメンティブ・パフォーマンス・マテリアルズ社製)
  酸触媒(パラトルエンスルホン酸)      0.05質量部
(Example 12)
A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 12.
(Coating liquid 12)
Methyl ethyl ketone 58.95 parts by mass Toluene 40.00 parts by mass Hexamethoxymethylolmelamine 0.95 parts by mass (solid content 100%)
0.05 parts by mass of silicone release agent (polyether-modified polydimethylsiloxane, TSF4446, solid content 100%, manufactured by Momentive Performance Materials)
Acid catalyst (p-toluenesulfonic acid) 0.05 parts by mass
 実施例8~12のようにバインダー成分を変更しても良好な結果が得られた。バインダー成分に長鎖アルキル基もしくはシリコーン骨格を含む樹脂の方が同条件で加工しても表面突起がより低くなる傾向が見られた。 良好 Good results were obtained even when the binder component was changed as in Examples 8 to 12. Even when a resin containing a long-chain alkyl group or a silicone skeleton as a binder component was processed under the same conditions, a tendency was observed that surface protrusions became lower.
(実施例13)
 塗液1を塗液13に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(塗液13)
  メチルエチルケトン            57.78質量部
  トルエン                 40.00質量部
  樹脂溶液A                 1.75質量部
  (長鎖アルキル基含有アクリルポリオール、固形分40%)
  架橋剤                   0.25質量部
  (ヘキサメトキシメチロールメラミン、固形分100%)  
  シリコーン系離型剤             0.08質量部
(ポリエステル変性ポリジメチルシロキサン、BYK‐310、固形分25%、ビックケミー・ジャパン社製)
  酸触媒(パラトルエンスルホン酸)      0.02質量部
(Example 13)
A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 13.
(Coating liquid 13)
Methyl ethyl ketone 57.78 parts by mass Toluene 40.00 parts by mass Resin solution A 1.75 parts by mass (long chain alkyl group-containing acrylic polyol, solid content 40%)
0.25 parts by mass of crosslinking agent (hexamethoxymethylolmelamine, solid content 100%)
0.08 parts by mass of silicone release agent (polyester-modified polydimethylsiloxane, BYK-310, solid content 25%, manufactured by BYK Japan KK)
Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
(実施例14)
 塗液1を塗液14に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(塗液14)
  メチルエチルケトン            57.93質量部
  トルエン                 40.00質量部
  樹脂溶液A                 1.75質量部
  (長鎖アルキル基含有アクリルポリオール、固形分40%)
  架橋剤                   0.25質量部
  (ヘキサメトキシメチロールメラミン、固形分100%)  
  シリコーン系離型剤             0.02質量部
(カルボキシル変性ポリジメチルシロキサン、X22-3710、固形分100%、信越化学社製)
  酸触媒(パラトルエンスルホン酸)      0.02質量部
(Example 14)
A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 14.
(Coating liquid 14)
Methyl ethyl ketone 57.93 parts by mass Toluene 40.00 parts by mass Resin solution A 1.75 parts by mass (long chain alkyl group-containing acrylic polyol, solid content 40%)
0.25 parts by mass of crosslinking agent (hexamethoxymethylolmelamine, solid content 100%)
0.02 parts by mass of silicone release agent (carboxyl-modified polydimethylsiloxane, X22-3710, solid content 100%, manufactured by Shin-Etsu Chemical Co., Ltd.)
Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
(実施例15)
 塗液1を塗液15に変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(塗液15)
  メチルエチルケトン            57.78質量部
  トルエン                 40.00質量部
  樹脂溶液A                 1.75質量部
  (長鎖アルキル基含有アクリルポリオール、固形分40%)
  架橋剤                   0.25質量部
  (ヘキサメトキシメチロールメラミン、固形分100%)  
  シリコーン系離型剤             0.08質量部
(ポリエステル変性水酸基含有ポリジメチルシロキサン、BYK‐370、固形分25%、ビックケミー・ジャパン社製)
  酸触媒(パラトルエンスルホン酸)      0.02質量部
(Example 15)
A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 15.
(Coating liquid 15)
Methyl ethyl ketone 57.78 parts by mass Toluene 40.00 parts by mass Resin solution A 1.75 parts by mass (long chain alkyl group-containing acrylic polyol, solid content 40%)
0.25 parts by mass of crosslinking agent (hexamethoxymethylolmelamine, solid content 100%)
0.08 parts by mass of silicone-based release agent (polyester modified hydroxyl group-containing polydimethylsiloxane, BYK-370, solid content 25%, manufactured by BYK Japan KK)
Acid catalyst (p-toluenesulfonic acid) 0.02 parts by mass
 シリコーン系離型剤の種類を変更した実施例13~15では、どれもよい評価結果を得られたが、架橋剤(本実施例ではメラミン)と反応する水酸基を含有していないものの方が同条件では離型層最表面のSi元素比率が高く剥離性がよくなる傾向が見られた。 In Examples 13 to 15 in which the type of the silicone-based release agent was changed, good evaluation results were obtained, but those having no hydroxyl group that reacts with the crosslinking agent (melamine in this example) were the same. Under the conditions, there was a tendency that the Si element ratio on the outermost surface of the release layer was high and the releasability was good.
(実施例16~18、比較例3)
 実施例1の基材フィルムを表1記載の基材フィルムに変更した以外は、実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
 得られた離型フィルムを評価したところ、基材フィルムの表面層Aに粒子を含有しないX1、X2、X3、X5を使用した実施例1~15及び16~18では、離型層表面のSa,Pが低くピンホール評価が良好であったのに対し、基材フィルムの表面層Aに粒子を含有するX4を用い、離型層の塗布量が比較的少なく薄い比較例3では、離型層表面のSa,Pともに高く、ピンホール評価が悪化する結果であった。
(Examples 16 to 18, Comparative Example 3)
A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Example 1, except that the substrate film of Example 1 was changed to the substrate film shown in Table 1.
When the obtained release film was evaluated, in Examples 1 to 15 and 16 to 18 in which X1, X2, X3 and X5 containing no particles were used in the surface layer A of the substrate film, the surface layer A of the release layer was , P was low and the pinhole evaluation was good, whereas in Comparative Example 3 where X4 containing particles was used in the surface layer A of the base film and the coating amount of the release layer was relatively small and thin, Both Sa and P on the surface of the layer were high, resulting in poor pinhole evaluation.
(実施例19~22、比較例4、5)
 実施例1の製造条件について、塗布後~初期乾燥炉に入るまでの時間、または初期乾燥炉の温度、通過時間を表2に記載の条件に変更した以外は実施例1と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(Examples 19 to 22, Comparative Examples 4 and 5)
Regarding the manufacturing conditions of Example 1, the ultra-thin film was prepared in the same manner as in Example 1 except that the time from coating to entering the initial drying furnace, or the temperature and passing time of the initial drying furnace were changed to the conditions shown in Table 2. A release film for producing a multilayer ceramic green sheet was prepared.
(比較例6)
 実施例11の製造条件を表1に記載の条件に変更した以外は、実施例11と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(Comparative Example 6)
A release film for producing an ultra-thin ceramic green sheet was produced in the same manner as in Example 11, except that the production conditions of Example 11 were changed to the conditions described in Table 1.
(比較例8)
シリコーン系離型剤の含有量を表1記載したものに変更した以外は比較例4と同様にして超薄層セラミックグリーンシート製造用離型フィルムを作成した。
(Comparative Example 8)
A release film for producing an ultra-thin ceramic green sheet was prepared in the same manner as in Comparative Example 4, except that the content of the silicone-based release agent was changed to that shown in Table 1.
 得られたフィルムを評価したところ、塗布後、初期乾燥炉に入るまでの時間を1.5秒以下にし初期乾燥炉の通過時間を1.0秒以上3.0秒以下にした実施例では離型層表面の表面粗さSaや最大突起高さPは低くピンホール評価が良好であったのに対し、前記条件外にした比較例では、離型層の凝集が見られ離型層の表面粗さSaや最大突起高さPが高くなる結果であった。また、初期乾燥工程の通過時間を短くした比較例4、8では離型層表面のシリコーン系離型剤の析出が少なく離型層最表面のSi元素比率が低くなる傾向が見られた。特に比較例8では離型層最表面のSi元素比率が低下し剥離安定性が悪化する結果であった。 When the obtained film was evaluated, after coating, the time required to enter the initial drying furnace was 1.5 seconds or less, and the time required for passage through the initial drying furnace was 1.0 seconds or more and 3.0 seconds or less. Although the surface roughness Sa and the maximum protrusion height P of the mold layer surface were low and the pinhole evaluation was good, in the comparative example where the above conditions were not satisfied, aggregation of the mold release layer was observed and the surface of the mold release layer was observed. As a result, the roughness Sa and the maximum projection height P were increased. Further, in Comparative Examples 4 and 8 in which the passage time in the initial drying step was shortened, there was a tendency that precipitation of the silicone release agent on the surface of the release layer was small and the Si element ratio on the outermost surface of the release layer was low. In particular, in Comparative Example 8, the result was that the Si element ratio on the outermost surface of the release layer was reduced, and the peeling stability was deteriorated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、セラミックグリーンシート製造用離型フィルムの離型層として、少なくともバインダー成分とシリコーン系離型剤を含む組成物が硬化されてなるものとすることにより、上記成分の乾燥時の凝集による表面粗さの悪化を抑制し高い平滑性を有し、かつ剥離性に優れた離型フィルムを提供することが可能となった。本発明によって、膜厚0.2~1.0μmの超薄膜化したセラミックグリーンシートの製造においても、剥離性がよく、セラミックグリーンシートのピンホールなどの欠点を少なくすることができる。 According to the present invention, as a release layer of the release film for producing a ceramic green sheet, by at least a composition containing a binder component and a silicone-based release agent is cured, at the time of drying the above components It has become possible to provide a release film having high smoothness and excellent releasability by suppressing deterioration of surface roughness due to aggregation. According to the present invention, even in the production of an ultra-thin ceramic green sheet having a thickness of 0.2 to 1.0 μm, the peelability is good and defects such as pinholes of the ceramic green sheet can be reduced.

Claims (6)

  1.  ポリエステルフィルムを基材とし、前記基材が少なくとも片面に粒子を実質的に含有していない表面層Aを有し、少なくとも片面の表面層Aの表面上に直接又は他の層を介して離型層が積層されている離型フィルムであって、離型層はバインダー成分とシリコーン系離型剤を含有する組成物が硬化されてなり、離型層表面のSi元素比率が2.0at%以上10.0at%以下であり、離型層表面の最大突起高さ(P)が50nm以下かつ領域平均粗さ(Sa)が1.5nm以下であるセラミックグリーンシート製造用離型フィルム。 Using a polyester film as a base material, the base material has a surface layer A substantially free of particles on at least one surface, and is released on at least one surface of the surface layer A directly or via another layer. A release film in which layers are laminated, wherein the release layer is formed by curing a composition containing a binder component and a silicone-based release agent, and the Si element ratio on the release layer surface is 2.0 at% or more. A release film for producing a ceramic green sheet, which has a maximum protrusion height (P) of 50 nm or less and a region average roughness (Sa) of 1.5 nm or less at 10.0 at% or less, and a release layer surface.
  2.  シリコーン系離型剤が、ポリエーテル部位またはカルボキシル基を有するシリコーン系樹脂である請求項1に記載のセラミックグリーンシート製造用離型フィルム。 The release film for producing a ceramic green sheet according to claim 1, wherein the silicone release agent is a silicone resin having a polyether moiety or a carboxyl group.
  3.  シリコーン系離型剤由来成分が、離型層中に1~15mg/m含有されている請求項1又は2に記載のセラミックグリーンシート製造用離型フィルム。 3. The release film for producing a ceramic green sheet according to claim 1, wherein the silicone-based release agent-derived component is contained in the release layer in an amount of 1 to 15 mg / m 2 .
  4.  バインダー成分が長鎖アルキル基および/またはシリコーン骨格を有する樹脂を含む請求項1~3のいずれかに記載のセラミックグリーンシート製造用離型フィルム。 4. The release film for producing a ceramic green sheet according to claim 1, wherein the binder component contains a resin having a long-chain alkyl group and / or a silicone skeleton.
  5.  請求項1~4のいずれかに記載のセラミックグリーンシート製造用離型フィルムを用いてセラミックグリーンシートを成型するセラミックグリーンシートの製造方法であって、成型されたセラミックグリーンシートが0.2μm~1.0μmの厚みを有するセラミックグリーンシートの製造方法。 A method for producing a ceramic green sheet using the release film for producing a ceramic green sheet according to any one of claims 1 to 4, wherein the molded ceramic green sheet has a thickness of 0.2 μm to 1 μm. A method for producing a ceramic green sheet having a thickness of 0.0 μm.
  6.  請求項5に記載のセラミックグリーンシートの製造方法を採用するセラミックコンデンサの製造方法。 A method for manufacturing a ceramic capacitor, which employs the method for manufacturing a ceramic green sheet according to claim 5.
PCT/JP2019/033275 2018-09-03 2019-08-26 Mold release film for ceramic green sheet production WO2020050081A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
SG11202101981QA SG11202101981QA (en) 2018-09-03 2019-08-26 Release film for production of ceramic green sheet
MYPI2021001080A MY194550A (en) 2018-09-03 2019-08-26 Release film for production of ceramic green sheet
JP2020507138A JP6813124B2 (en) 2018-09-03 2019-08-26 Release film for manufacturing ceramic green sheets
KR1020217007509A KR102335931B1 (en) 2018-09-03 2019-08-26 Release film for manufacturing ceramic green sheet
CN202110566924.8A CN113246263B (en) 2018-09-03 2019-08-26 Release film for producing ceramic green sheet
CN201980057455.8A CN112672866B (en) 2018-09-03 2019-08-26 Release film for producing ceramic green sheet
KR1020217009556A KR102342605B1 (en) 2018-09-03 2019-08-26 Mold release film for ceramic green sheet production
PH12021550425A PH12021550425A1 (en) 2018-09-03 2021-03-01 Release film for production of ceramic green sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018164503 2018-09-03
JP2018-164503 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020050081A1 true WO2020050081A1 (en) 2020-03-12

Family

ID=69722527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033275 WO2020050081A1 (en) 2018-09-03 2019-08-26 Mold release film for ceramic green sheet production

Country Status (7)

Country Link
JP (3) JP6813124B2 (en)
KR (2) KR102335931B1 (en)
CN (2) CN112672866B (en)
MY (2) MY194550A (en)
PH (1) PH12021550425A1 (en)
SG (2) SG10202103428TA (en)
WO (1) WO2020050081A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186939A1 (en) * 2020-03-17 2021-09-23 リンテック株式会社 Release film for use in ceramic green sheet production process
WO2022138485A1 (en) * 2020-12-23 2022-06-30 東洋紡株式会社 Method for producing mold release film for resin sheet molding
KR20240035552A (en) 2021-08-26 2024-03-15 후지필름 가부시키가이샤 Release film, manufacturing method of release film, ceramic condenser
WO2024117152A1 (en) * 2022-11-30 2024-06-06 三井化学東セロ株式会社 Method for manufacturing ceramic green sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102408154B1 (en) * 2021-09-07 2022-06-14 도레이첨단소재 주식회사 Release film
WO2024004832A1 (en) * 2022-06-27 2024-01-04 東洋紡株式会社 Layered poly(ethylene terephthalate) film, release film, and method for producing layered poly(ethylene terephthalate) film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239913A (en) * 1996-03-04 1997-09-16 Teijin Ltd Mold releasing film
JP2014012417A (en) * 2013-09-17 2014-01-23 Toray Advanced Film Co Ltd Release film
WO2015129779A1 (en) * 2014-02-28 2015-09-03 リンテック株式会社 Release film for green sheet manufacturing, release film manufacturing method for green sheet manufacturing, green sheet manufacturing method, and green sheet
WO2018159247A1 (en) * 2017-03-01 2018-09-07 東洋紡株式会社 Mold releasing film for manufacturing ceramic green sheet and method for manufacturing mold releasing film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY195236A (en) * 2008-01-11 2023-01-11 Toyo Boseki Mould Release Film
JP5251315B2 (en) * 2008-07-10 2013-07-31 東洋紡株式会社 Release film production method
JP5422195B2 (en) 2008-12-18 2014-02-19 リンテック株式会社 Release agent and release sheet
JP2010143037A (en) * 2008-12-18 2010-07-01 Toray Advanced Film Co Ltd Release film
JP5756315B2 (en) 2011-03-29 2015-07-29 リンテック株式会社 Release agent composition and release film for molding ceramic green sheet
KR101997310B1 (en) 2012-03-28 2019-07-05 린텍 가부시키가이샤 Peeling film for step for producing ceramic green sheet
WO2013145865A1 (en) * 2012-03-28 2013-10-03 リンテック株式会社 Parting film for step for producing ceramic green sheet
SG11201406777XA (en) * 2012-04-23 2015-01-29 Lintec Corp Release film for producing green sheet
JP6033134B2 (en) 2013-03-15 2016-11-30 リンテック株式会社 Release film for producing green sheet and method for producing release film for producing green sheet
JP6091287B2 (en) * 2013-03-28 2017-03-08 リンテック株式会社 Release film for green sheet manufacturing
JP6414424B2 (en) * 2014-09-19 2018-10-31 東洋紡株式会社 Release film for ceramic sheet production
JP2016141008A (en) * 2015-01-30 2016-08-08 リンテック株式会社 Release film and method for producing release film
WO2016158592A1 (en) * 2015-03-27 2016-10-06 リンテック株式会社 Releasing film for ceramic green sheet production step
JP6474327B2 (en) 2015-06-23 2019-02-27 リンテック株式会社 Release film for ceramic green sheet manufacturing process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239913A (en) * 1996-03-04 1997-09-16 Teijin Ltd Mold releasing film
JP2014012417A (en) * 2013-09-17 2014-01-23 Toray Advanced Film Co Ltd Release film
WO2015129779A1 (en) * 2014-02-28 2015-09-03 リンテック株式会社 Release film for green sheet manufacturing, release film manufacturing method for green sheet manufacturing, green sheet manufacturing method, and green sheet
WO2018159247A1 (en) * 2017-03-01 2018-09-07 東洋紡株式会社 Mold releasing film for manufacturing ceramic green sheet and method for manufacturing mold releasing film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186939A1 (en) * 2020-03-17 2021-09-23 リンテック株式会社 Release film for use in ceramic green sheet production process
WO2022138485A1 (en) * 2020-12-23 2022-06-30 東洋紡株式会社 Method for producing mold release film for resin sheet molding
TWI799022B (en) * 2020-12-23 2023-04-11 日商東洋紡股份有限公司 Manufacturing method of release film for resin sheet molding and manufacturing method of ceramic green body
CN116635160A (en) * 2020-12-23 2023-08-22 东洋纺株式会社 Method for producing release film for molding resin sheet
KR20240035552A (en) 2021-08-26 2024-03-15 후지필름 가부시키가이샤 Release film, manufacturing method of release film, ceramic condenser
WO2024117152A1 (en) * 2022-11-30 2024-06-06 三井化学東セロ株式会社 Method for manufacturing ceramic green sheet

Also Published As

Publication number Publication date
CN113246263B (en) 2022-05-06
CN112672866A (en) 2021-04-16
SG10202103428TA (en) 2021-05-28
JP7092221B2 (en) 2022-06-28
JP2021091223A (en) 2021-06-17
JP2021079699A (en) 2021-05-27
KR102342605B9 (en) 2023-12-07
KR20210038720A (en) 2021-04-07
JP6813124B2 (en) 2021-01-13
KR102335931B1 (en) 2021-12-06
CN113246263A (en) 2021-08-13
JP6841375B1 (en) 2021-03-10
CN112672866B (en) 2022-03-15
MY195706A (en) 2023-02-07
MY194550A (en) 2022-12-01
KR102342605B1 (en) 2021-12-23
JPWO2020050081A1 (en) 2021-02-15
PH12021550425A1 (en) 2021-09-20
KR20210036404A (en) 2021-04-02
SG11202101981QA (en) 2021-04-29

Similar Documents

Publication Publication Date Title
JP6409997B1 (en) Release film for producing ceramic green sheet and method for producing the same
JP6841375B1 (en) Release film for manufacturing ceramic green sheets
JP5281554B2 (en) Release film
KR102314397B1 (en) Release film for manufacturing ceramic green sheet
JP6593371B2 (en) Method for producing release film for producing ceramic green sheet
JP6852720B2 (en) Release film for manufacturing ceramic green sheets
JP6699816B1 (en) Release film for manufacturing ceramic green sheets
JP2024028476A (en) Release film for manufacturing ceramic green sheet
TWI468290B (en) Release film
JP2020026135A (en) Release film for ceramic green sheet manufacturing
JP2019166656A (en) Release film for ceramic green sheet production
JP2023151062A (en) Release film for molding resin sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020507138

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857061

Country of ref document: EP

Kind code of ref document: A1