WO2020050072A1 - 学習装置、推論装置及び学習済みモデル - Google Patents

学習装置、推論装置及び学習済みモデル Download PDF

Info

Publication number
WO2020050072A1
WO2020050072A1 PCT/JP2019/033168 JP2019033168W WO2020050072A1 WO 2020050072 A1 WO2020050072 A1 WO 2020050072A1 JP 2019033168 W JP2019033168 W JP 2019033168W WO 2020050072 A1 WO2020050072 A1 WO 2020050072A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
processing
image data
learning
unit
Prior art date
Application number
PCT/JP2019/033168
Other languages
English (en)
French (fr)
Inventor
孝祐 中郷
大資 本木
正樹 渡部
智希 小松
弘典 茂木
昌伸 本田
隆彦 加藤
智彦 新関
Original Assignee
株式会社Preferred Networks
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Preferred Networks, 東京エレクトロン株式会社 filed Critical 株式会社Preferred Networks
Priority to CN201980057338.1A priority Critical patent/CN112640038A/zh
Priority to KR1020217006357A priority patent/KR102541743B1/ko
Priority to JP2020541139A priority patent/JP7190495B2/ja
Publication of WO2020050072A1 publication Critical patent/WO2020050072A1/ja
Priority to US17/189,608 priority patent/US11922307B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/32Normalisation of the pattern dimensions

Definitions

  • the present invention relates to a learning device, an inference device, and a learned model.
  • the present disclosure improves simulation accuracy of a manufacturing process.
  • the learning device has, for example, the following configuration. That is, Image data of the object, an acquisition unit that acquires data relating to processing on the object, image data of the object, and data relating to the processing are input to a learning model, and the output of the learning model is A learning unit that learns the learning model so as to approach the image data of the object after the processing.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of the simulation system.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of each device included in the simulation system.
  • FIG. 3 is a diagram illustrating an example of the learning data.
  • FIG. 4 is a diagram illustrating an example of a functional configuration of a learning unit of the learning device according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a functional configuration of a data shaping unit of the learning device according to the first embodiment.
  • FIG. 6 is a diagram illustrating a specific example of a process performed by the data shaping unit of the learning device according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of the simulation system.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of each device included in the simulation system.
  • FIG. 3 is a diagram illustrating an example of the learning data.
  • FIG. 4 is a diagram illustrating an example of a functional configuration of
  • FIG. 7 is a diagram illustrating a specific example of a process using the learning model for dry etching of the learning device according to the first embodiment.
  • FIG. 8 is a flowchart illustrating the flow of the learning process.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of an execution unit of the inference apparatus.
  • FIG. 10 is a diagram showing the simulation accuracy of the learned model for dry etching.
  • FIG. 11 is a diagram showing the simulation accuracy of the learned model for deposition.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of a data shaping unit of the learning device according to the second embodiment.
  • FIG. 13 is a diagram illustrating a specific example of a process performed by the learning model for dry etching of the learning apparatus according to the second embodiment.
  • FIG. 14 is a diagram illustrating an example of a functional configuration of a learning unit of the learning device according to the third embodiment.
  • FIG. 15 is a diagram illustrating an example of a functional configuration of a data shaping unit of the learning device according to the fourth embodiment.
  • FIG. 16 is a diagram illustrating an application example of the inference apparatus.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of the simulation system.
  • the simulation system 100 includes a learning device 120 and an inference device 130. Note that various data and various information used in the simulation system 100 are obtained from a semiconductor maker or a database of a semiconductor maker.
  • predetermined parameter data (details will be described later) is set in the semiconductor manufacturing apparatus 110, and a plurality of unprocessed wafers (objects) are transported so that each manufacturing process ( For example, processing corresponding to dry etching, deposition) is performed.
  • the measurement apparatus 111 generates, for example, pre-processing image data (two-dimensional image data) indicating a cross-sectional shape at each position of the pre-processing wafer.
  • the measuring device 111 includes a scanning electron microscope (SEM), a length-measuring scanning electron microscope (CD-SEM), a transmission electron microscope (TEM), an atomic force microscope (AFM), and the like. Further, it is assumed that various metadata such as the magnification of the microscope is associated with the pre-processing image data generated by the measuring device 111.
  • the processed wafer is unloaded from the semiconductor manufacturing apparatus 110.
  • the semiconductor manufacturing apparatus 110 measures the environment during the processing when the processing according to each manufacturing process is performed on the wafer before the processing, and stores the measured environment as environment information.
  • the measuring device 112 As processed wafers, some of the processed wafers are transported to the measuring device 112, and the shape is measured by the measuring device 112 at various positions. Thereby, the measuring device 112 generates, for example, processed image data (two-dimensional image data) indicating a cross-sectional shape at each position of the processed wafer.
  • the measuring device 112 includes a scanning electron microscope (SEM), a length-measuring scanning electron microscope (CD-SEM), a transmission electron microscope (TEM), an atomic force microscope (AFM), and the like. Is included.
  • the pre-processing image data generated by the measuring device 111, the parameter data set in the semiconductor manufacturing apparatus 110 and the retained environment information, and the post-processing image data generated by the measuring device 112 are used as learning data as learning devices 120. Collected at The learning device 120 stores the collected learning data in the learning data storage unit 123.
  • the parameter data set in the semiconductor manufacturing apparatus 110 and the stored environment information correspond to the processing performed when the semiconductor manufacturing apparatus 110 executes a process corresponding to the manufacturing process on the wafer (object) before processing. Is any data about As described above, by using arbitrary data related to a process corresponding to a manufacturing process as learning data when the process is performed according to the manufacturing process, a factor correlated with each event of the manufacturing process can be reflected in machine learning.
  • a data shaping program and a learning program are installed in the learning device 120, and the learning device 120 functions as the data shaping unit 121 and the learning unit 122 by executing the programs.
  • the data shaping unit 121 is an example of a processing unit.
  • the data shaping unit 121 reads the learning data stored in the learning data storage unit 123, and processes a part of the read learning data into a predetermined format suitable for the learning unit 122 to input to the learning model. I do.
  • the learning unit 122 performs machine learning on the learning model using the read learning data (including the learning data processed by the data shaping unit 121), and generates a learned model of the semiconductor manufacturing process.
  • the learned model generated by the learning unit 122 is provided to the inference device 130.
  • a data shaping program and an execution program are installed in the inference device 130, and the inference device 130 functions as the data shaping unit 131 and the execution unit 132 by executing the programs.
  • the data shaping unit 131 is an example of a processing unit.
  • the data shaping unit 131 acquires the pre-processing image data generated by the measuring device 111, the parameter data input to the inference device 130, and the environment information. Further, the data shaping unit 131 processes the acquired parameter data and environment information into a predetermined format suitable for the execution unit 132 to input the learned model.
  • the execution unit 132 inputs the pre-processing image data, the parameter data and the environment information processed into a predetermined format by the data shaping unit 131 to the learned model, and executes a simulation, so that the post-processing image data ( (Simulation result) is output (inference).
  • the user of the inference apparatus 130 compares the processed image data output by the execution unit 132 executing the simulation using the learned model with the corresponding processed image data generated by the measurement apparatus 112. This verifies the trained model.
  • the user of the inference apparatus 130 can calculate the simulation error of the learned model and verify the simulation accuracy.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of each device included in the simulation system.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the learning device.
  • the learning device 120 has a CPU (Central Processing Unit) 201 and a ROM (Read Only Memory) 202.
  • the learning device 120 has a RAM (Random Access Memory) 203 and a GPU (Graphics Processing Unit) 204.
  • a processor processing circuit, Processing @ Circuit, Processing @ Circuitry
  • the CPU 201 and the GPU 204 and memories such as the ROM 202 and the RAM 203 form a so-called computer.
  • the learning device 120 further includes an auxiliary storage device 205, an operation device 206, a display device 207, an I / F (Interface) device 208, and a drive device 209.
  • the hardware of the learning device 120 is mutually connected via a bus 210.
  • the CPU 201 is an arithmetic device that executes various programs (for example, a data shaping program, a learning program, and the like) installed in the auxiliary storage device 205.
  • the ROM 202 is a non-volatile memory and functions as a main storage device.
  • the ROM 202 stores various programs, data, and the like necessary for the CPU 201 to execute various programs installed in the auxiliary storage device 205.
  • the ROM 202 stores a boot program such as BIOS (Basic Input / Output System) and EFI (Extensible Firmware Interface).
  • the RAM 203 is a volatile memory such as a DRAM (Dynamic Random Access Memory) or an SRAM (Static Random Access Memory), and functions as a main storage device.
  • the RAM 203 provides a work area where various programs installed in the auxiliary storage device 205 are developed when the CPU 201 executes the programs.
  • the GPU 204 is an arithmetic device for image processing.
  • the CPU 201 executes various programs, the GPU 204 performs high-speed arithmetic on various image data by parallel processing.
  • the auxiliary storage device 205 is a storage unit that stores various programs, various image data that is subjected to image processing by the GPU 204 when the various programs are executed by the CPU 201, and the like.
  • the learning data storage unit 123 is realized in the auxiliary storage device 205.
  • the operation device 206 is an input device used when the administrator of the learning device 120 inputs various instructions to the learning device 120.
  • the display device 207 is a display device that displays the internal state of the learning device 120.
  • the I / F device 208 is a connection device for connecting to and communicating with another device.
  • the drive device 209 is a device for setting the recording medium 220.
  • the recording medium 220 includes a medium that optically, electrically, or magnetically records information, such as a CD-ROM, a flexible disk, and a magneto-optical disk.
  • the recording medium 220 may include a semiconductor memory such as a ROM and a flash memory that electrically records information.
  • the various programs to be installed in the auxiliary storage device 205 are installed, for example, by setting the distributed recording medium 220 to the drive device 209 and reading out the various programs recorded on the recording medium 220 by the drive device 209. Is done.
  • various programs to be installed in the auxiliary storage device 205 may be installed by being downloaded via a network (not shown).
  • FIG. 3 is a diagram illustrating an example of the learning data.
  • the learning data 300 includes, as information items, “process”, “job ID”, “image data before processing”, “parameter data”, “environment information”, and “image data after processing”. "Is included.
  • Step 4 a name indicating a semiconductor manufacturing process is stored.
  • the example of FIG. 3 shows a state in which two names “dry etching” and “deposition” are stored as “processes”.
  • the "job ID" stores an identifier for identifying a job executed by the semiconductor manufacturing apparatus 110.
  • FIG. 3 shows an example in which “PJ001” and “PJ002” are stored as “job ID” of dry etching. Further, the example of FIG. 3 shows a state where “PJ101” is stored as the “job ID” of the deposition.
  • the file name of the image data before processing generated by the measuring device 111 is stored in the “image data before processing”.
  • the pre-processing image of the file name “shape data LD001” is acquired by the measuring device 111 for one pre-processing wafer of the lot (wafer group) of the job. Indicates that data has been generated.
  • the “parameter data” stores parameters indicating predetermined processing conditions set when the pre-processing wafer is processed in the semiconductor manufacturing apparatus 110.
  • “parameter 001_1”, “parameter 001_2”, “parameter 001_3”,. -Set as a set value in the semiconductor manufacturing apparatus 110 such as Pressure (pressure in a chamber), Power (power of a high-frequency power source), Gas (gas flow rate), Temperature (temperature in a chamber or temperature on a wafer surface), and the like.
  • Data, Data set as target values in the semiconductor manufacturing apparatus 110 such as CD (Critical Dimension), Depth (depth), Taper (taper angle), Tilting (tilting angle), Bowing (Boeing), etc.
  • Information on the hardware configuration of the semiconductor manufacturing apparatus 110, Etc. are included.
  • the “environment information” stores information indicating an environment during processing of the unprocessed wafer, which is measured when the semiconductor processing apparatus 110 processes the unprocessed wafer.
  • the environment information “environment data 001_1”, “environment data 001_2”, “environment data 001_3”,. Indicates that was measured.
  • Vpp potential difference
  • Vdc DC self-bias voltage
  • OES emission intensity by emission spectral analysis
  • Reflect reflected wave power
  • Data output from the semiconductor manufacturing apparatus 110 during processing mainly, data relating to current and voltage
  • -Plasma density plasma density
  • Ion energy ion energy
  • Ion flux ion flow rate
  • the "processed image data” stores the file name of the processed image data generated by the measuring device 112.
  • FIG. 4 is a diagram illustrating an example of a functional configuration of a learning unit of the learning device according to the first embodiment.
  • the learning unit 122 of the learning device 120 includes a learning model for dry etching 420, a learning model for deposition 421, a comparing unit 430, and a changing unit 440.
  • the pre-processing image data, parameter data, and environment information of the learning data 300 stored in the learning data storage unit 123 are read by the data shaping unit 121 and input to the corresponding learning model.
  • the parameter data and the environment information are processed into a predetermined format by the data shaping unit 121 and then input to the corresponding learning model.
  • the parameter data and the environment information may be processed in a predetermined format in advance, and the data shaping unit 121 may read out the data processed in a predetermined format in advance and input the read data into the corresponding learning model. .
  • the learning model for dry etching 420 outputs an output result.
  • the learning model for dry etching 420 inputs an output result to the comparison unit 430.
  • the deposition learning model 421 outputs an output result.
  • the deposition learning model 421 inputs the output result to the comparison unit 430.
  • the change unit 440 updates the model parameters of the dry etching learning model 420 or the deposition learning model 421 based on the difference information notified from the comparison unit 430.
  • the difference information used for updating the model parameters may be a square error or an absolute error.
  • the learning unit 122 inputs the pre-processing image data, the parameter data processed in the predetermined format, and the environment information to the learning model, and the output result output from the learning model approaches the processed image data.
  • the model parameters are updated by machine learning.
  • the learning unit 122 can reflect the processed image data in which the influence of each event of the semiconductor manufacturing process appears on the machine learning, and also machine-learns the relationship between these events, the parameter data, and the environment information. be able to.
  • FIG. 5 is a diagram illustrating an example of a functional configuration of a data shaping unit of the learning device according to the first embodiment.
  • the data shaping unit 121 includes a shape data obtaining unit 501, a channel-specific data generating unit 502, a one-dimensional data obtaining unit 511, a one-dimensional data expanding unit 512, and a connecting unit 520.
  • the shape data acquisition unit 501 reads the pre-processing image data of the learning data 300 from the learning data storage unit 123, and notifies the data-by-channel generation unit 502.
  • the channel-specific data generation unit 502 is an example of a generation unit.
  • the channel-specific data generation unit 502 converts the pre-processing image data (here, represented by a pixel value corresponding to the composition ratio (or content ratio) of each material) notified from the shape data acquisition unit 501. get. Further, the channel-specific data generation unit 502 generates image data of a plurality of channels according to the type of the material from the acquired pre-processing image data.
  • the image data of the channel according to the type of the material is referred to as channel-specific data.
  • the channel-specific data generating unit 502 generates channel-specific data including a layer of air and four channel-specific data including respective layers of four types of materials from the unprocessed image data.
  • the channel-specific data generating unit 502 notifies the linking unit 520 of the plurality of generated channel-specific data.
  • the channel-specific data generation unit 502 generates the channel-specific data, but the channel-specific data may be generated in advance.
  • the channel-specific data generation unit 502 reads out the channel-specific data generated in advance and notifies the connection unit 520 of the read data.
  • the one-dimensional data acquisition unit 511 reads the parameter data and the environment information of the learning data 300 from the learning data storage unit 123 and notifies the one-dimensional data development unit 512 of the read.
  • the one-dimensional data development unit 512 converts the parameter data and the environment information notified from the one-dimensional data acquisition unit 511 into a predetermined format (two-dimensional data corresponding to the vertical size and the horizontal size of the pre-processing image data) corresponding to the pre-processing image data. In the form of a dimensional array).
  • the parameter data includes, for example, numerical values of parameters such as “parameter 001_1”, “parameter 001_2”, “parameter 001_3”,... Arranged one-dimensionally. More specifically, the parameter data is configured by one-dimensionally arranging numerical values of N types of parameters.
  • the one-dimensional data development unit 512 extracts the values of the N types of parameters included in the parameter data one by one, and converts the extracted values into two-dimensional values according to the vertical size and the horizontal size of the pre-processing image data. Array. As a result, the one-dimensional data developing unit 512 generates N parameter data arranged two-dimensionally.
  • the one-dimensional data development unit 512 notifies the coupling unit 520 of the N pieces of parameter data arranged two-dimensionally.
  • the environment information is formed by one-dimensionally arranging numerical values of each environment information such as “environment data 001_1”, “environment data 001_2”, “environment data 001_3”, and so on.
  • the environment information is configured by one-dimensionally arraying numerical values of M types of environment data.
  • the one-dimensional data development unit 512 extracts the numerical values of the M types of environmental data included in the environmental information one by one, and divides the extracted numerical values into two according to the vertical size and the horizontal size of the pre-processing image data. Array in dimensions. As a result, the one-dimensional data development unit 512 generates M pieces of environmental information arranged two-dimensionally.
  • the one-dimensional data development unit 512 notifies the coupling unit 520 of the M pieces of environmental information arranged two-dimensionally.
  • the linking unit 520 includes the two-dimensionally arranged N parameter data and the M environment, which are notified from the one-dimensional data expanding unit 512, to the plurality of channel-specific data notified from the channel-specific data generation unit 502.
  • the information is linked as a new channel to generate linked data.
  • the connection unit 520 generates the connection data, but the connection data may be generated in advance. In this case, the connection unit 520 reads out the connection data generated in advance and inputs the connection data to the learning model.
  • FIG. 6 is a diagram illustrating a specific example of processing by the data shaping unit.
  • the pre-processing image data 600 includes an air layer, a material A layer, a material B layer, a material C layer, and a material D layer.
  • the channel-specific data generation unit 502 generates channel-specific data 601, 602, 603, 604, and 605.
  • the parameter data 610 includes, for example, numerical values of respective parameters (“parameter 001_1”, “parameter 001_2”, “parameter 001_3”,%) Arranged one-dimensionally.
  • the environment information 620 for example, numerical values of each environment data such as “environment data 001_1”, “environment data 001_2”, “environment data 001_3”,. It becomes.
  • the one-dimensional data development unit 512 arranges the parameters 001_1 two-dimensionally (the same values are arranged vertically and horizontally) according to the vertical size and the horizontal size of the image data 600 before processing. Similarly, the one-dimensional data development unit 512 arranges the parameter 001_2 two-dimensionally according to the vertical size and the horizontal size of the image data 600 before processing. Similarly, the one-dimensional data developing unit 512 arranges the parameters 001_3 two-dimensionally according to the vertical size and the horizontal size of the pre-processing image data 600.
  • the one-dimensional data development unit 512 arranges the environment data 001_1 two-dimensionally (the same values are arranged vertically and horizontally) according to the vertical size and the horizontal size of the image data 600 before processing. Similarly, the one-dimensional data developing unit 512 arranges the environment data 001_2 in a two-dimensional manner according to the vertical size and the horizontal size of the pre-processing image data 600. Similarly, the one-dimensional data development unit 512 arranges the environment data 001_3 two-dimensionally according to the vertical size and the horizontal size of the image data 600 before processing.
  • connection data 630 is generated.
  • FIG. 7 is a diagram illustrating a specific example of a process using the learning model for dry etching of the learning device according to the first embodiment.
  • a learning model (so-called UNET) based on a U-shaped convolutional neural network (CNN) is used as the learning model 420 for dry etching.
  • the one-dimensional data development unit 512 of the data shaping unit 121 is configured to two-dimensionally arrange the parameter data and the environment information in order to convert the data input to UNET into image data. It is. By being able to input parameter data and environmental information to UNET, it becomes possible to perform machine learning using factors correlated with each event of dry etching.
  • FIG. 7 shows a state in which connected data 630 is input to the learning model 420 for dry etching using UNET, and an output result 700 including a plurality of channel-specific data is output.
  • FIG. 8 is a flowchart illustrating the flow of the learning process.
  • step S801 the measurement apparatus 111 measures shapes at various positions on the unprocessed wafer before being processed by the semiconductor manufacturing apparatus 110, and generates pre-processing image data.
  • step S802 the measurement apparatus 112 measures the shape of the processed wafer after being processed by the semiconductor manufacturing apparatus 110 at various positions, and generates processed image data.
  • step S803 the learning apparatus 120 obtains the parameter data set in the semiconductor manufacturing apparatus 110 and the environment during the processing when the semiconductor manufacturing apparatus 110 performs processing corresponding to each manufacturing process. Get environmental information.
  • step S804 the learning device 120 uses the pre-processing image data generated by the measuring device 111, the post-processing image data generated by the measuring device 112, the acquired parameter data, and the environment information as learning data as learning data. It is stored in the storage unit 123.
  • step S805 the data shaping unit 121 of the learning device 120 reads out the unprocessed image data, parameter data, and environment information from the learning data storage unit 123, and generates linked data.
  • step S806 the learning unit 122 of the learning device 120 performs machine learning on the learning model using the connected data as input and the processed image data as output to generate a learned model.
  • step S807 the learning unit 122 of the learning device 120 transmits the generated learned model to the inference device 130.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of the execution unit of the inference apparatus.
  • the execution unit 132 of the inference apparatus 130 includes a learned model 920 for dry etching, a learned model 921 for deposition, and an output unit 930.
  • the learned model for dry etching 920 when the connected data is input from the data shaping unit 131, a simulation is performed. In addition, the learned model for dry etching 920 notifies the output unit 930 of an output result output by executing the simulation.
  • the deposition learned model 921 executes a simulation. Further, the deposition learned model 921 notifies the output unit 930 of an output result output by executing the simulation.
  • the pre-processing image data generated by the measuring device 111 is input, but arbitrary pre-processing image data is input to the dry-etched learned model 920 and the deposition-learned model 921. It is possible.
  • the user of the inference apparatus 130 has input the same parameter data and environment information as the parameter data set in the semiconductor manufacturing apparatus 110 and the stored environment information.
  • the user of the inference device 130 can verify the simulation accuracy of the inference device 130.
  • FIG. 10 is a diagram showing the simulation accuracy of the learned model for dry etching.
  • FIG. 11 is a diagram showing the simulation accuracy of the learned model for deposition.
  • the simulation accuracy can be improved even when compared with a general physical model (a model in which a semiconductor manufacturing process is identified based on physical laws).
  • each event that cannot be represented by a physical equation cannot be reflected in simulation, but in the case of a learning model, each event that affects the processed image data is machine-learned. Because it can be reflected in Further, in the case of the learning model according to the present embodiment, since factors (parameter data, environmental information) correlated with each event of the semiconductor manufacturing process are input, the relationship between each event and the factor can be machine-learned. It is.
  • Each event that cannot be expressed by the physical equation in the case of dry etching includes, for example, an event in which the gas in the chamber becomes non-uniform. Alternatively, there is an event in which the etched particles adhere as deposition. In addition, in the case of deposition, for example, there is an event that particles adhere and then bounce once or more.
  • the gas in the chamber is treated as being uniform during dry etching. Further, in a general physical model, particles are treated as being attached to a position where the particles first come into contact during deposition.
  • the processed image data in which the effects of these events have appeared can be reflected in machine learning, and the relationship between these events, parameter data, and environmental information is machine-learned. be able to. Therefore, in the case of a trained model, simulation accuracy can be improved as compared with a general physical model.
  • the trained model it is possible to realize a simulation accuracy that cannot be achieved by a simulator based on a physical model.
  • the simulation time can be reduced as compared with a simulator based on a physical model.
  • the learning device includes: In the semiconductor manufacturing apparatus, parameter data set when processing the unprocessed wafer and environment information indicating the processing environment of the unprocessed wafer measured when processing the unprocessed wafer are acquired.
  • Acquire pre-processing image data which is image data indicating a pre-processing shape of a pre-processing wafer processed in the semiconductor manufacturing apparatus.
  • the acquired parameter data and environment information are processed into the image data format.
  • linked data is generated by linking the processed parameter data and environment information to the image data before processing. -The generated concatenated data is input to a U-shaped convolutional neural network-based learning model, and machine learning is performed so that the output result approaches processed image data indicating the shape of the processed wafer.
  • the learning device it is possible to reflect factors correlated with each event of the semiconductor manufacturing process in machine learning, and generate a learned model that realizes highly accurate simulation. be able to.
  • the inference apparatus includes: -Acquire pre-processing image data, parameter data, and environment information.
  • the acquired parameter data and environment information are two-dimensionally arranged according to the vertical size and the horizontal size of the acquired image data before processing, thereby processing the image data into a format.
  • linked data is generated by linking the processed parameter data and environment information to the pre-processing image data.
  • -Input the generated concatenated data to the trained model and execute simulation.
  • the inference apparatus it is possible to generate a machine-learned model using a factor correlated with each event of the semiconductor manufacturing process, and realize a highly accurate simulation. can do.
  • the simulation accuracy of the semiconductor manufacturing process can be improved.
  • the parameter data and the environment information are processed into the format of the image data according to the vertical size and the horizontal size of the image data before processing, and the learning model (or the learned model) is connected to the image data before processing. Model).
  • the method of processing the parameter data and the environment information and the method of inputting the processed parameter data and the environment information to the learning model (or the trained model) are not limited thereto.
  • the processed parameter data and environment information may be configured to be input to each layer of the learning model (or the learned model).
  • a predetermined format used when converting the image data convolved in each layer of the learning model (or the trained model) is used. You may comprise so that it may process.
  • the second embodiment will be described focusing on differences from the first embodiment.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of a data shaping unit of the learning device according to the second embodiment.
  • a difference from the functional configuration of the data shaping unit 121 illustrated in FIG. 5 is that the data shaping unit 1200 illustrated in FIG. 12 includes a connecting unit 1201 and a normalizing unit 1202.
  • the linking unit 1201 links the plurality of channel-specific data notified from the channel-specific data generating unit 502 to generate linked data.
  • the normalization unit 1202 normalizes the parameter data and the environment information notified from the one-dimensional data acquisition unit 511, and generates normalized parameter data and normalized environment information.
  • FIG. 13 is a diagram illustrating a specific example of a process performed by the learning model for dry etching of the learning apparatus according to the second embodiment.
  • connection data 1310 generated by the connection unit 1201 of the data shaping unit 1200 is input to the learning model for dry etching 1300.
  • the learning model for dry etching 1300 includes the normalization parameter data generated by the normalization unit 1202 of the data shaping unit 1200, Environment information is entered.
  • the learning model for dry etching 1300 includes a neural network unit 1301, which is a fully-coupled learning model, in addition to UNET, which is a CNN-based learning model.
  • the neural network unit 1301 converts the value of each pixel of each image data to be subjected to convolution processing in each layer of UNET into a value of a predetermined format (for example, linear coefficients ⁇ and ⁇ ) are output.
  • a predetermined format for example, linear coefficients ⁇ and ⁇
  • the neural network unit 1301 has a function of processing the normalized parameter data and the normalized environment information into a predetermined format (for example, a linear coefficient format).
  • the neural network unit 1301 outputs ( ⁇ 1 , ⁇ 1 ) to ( ⁇ 9 , ⁇ 9 ) as coefficients of a linear expression.
  • the coefficient of the linear equation is input to each layer for each data for each channel. It is assumed that a plurality of sets are input.
  • the coefficients ( ⁇ 1 , ⁇ 1 ) to ( ⁇ 9 , ⁇ 9 ) of the linear expression are, for example, any of the image data among the image data for each channel for which the convolution processing is performed in each layer of the UNET. It can be considered as an indicator that data is important. That is, the neural network unit 1301 performs a process of calculating an index indicating importance of each image data processed in each layer of the learning model based on the normalized parameter data and the normalized environment information.
  • an output result 700 including a plurality of channel-specific data is output. You.
  • the output result 700 is compared with the processed image data by the comparing unit 430, and difference information is calculated.
  • the changing unit 440 updates the model parameters of the UNET and the model parameters of the neural network unit 1301 in the learning model for dry etching 1300 based on the difference information.
  • image data having high importance is normalized by the normalization parameter data and the normalization parameter data in each layer of UNET. Extraction can be performed based on environmental information.
  • the learning device includes: In the semiconductor manufacturing apparatus, parameter data set when processing the unprocessed wafer and environment information indicating the processing environment of the unprocessed wafer measured when processing the unprocessed wafer are acquired.
  • Acquire pre-processing image data which is image data indicating a pre-processing shape of a pre-processing wafer processed in the semiconductor manufacturing apparatus. Normalize the acquired parameter data and environment information, and process them into the form of linear coefficients used when converting the value of each pixel of each image data to be convolved in each layer of the learning model.
  • the learning unit performs machine learning, the value of each pixel of the image data convolved in each layer is converted using a linear expression.
  • the learning apparatus it is possible to reflect factors correlated with each event of the semiconductor manufacturing process in machine learning, and generate a learned model that realizes a highly accurate simulation. be able to.
  • the learning device has been described in the second embodiment, the same processing is performed in the inference device when the execution unit executes the simulation.
  • FIG. 14 is a diagram illustrating an example of a functional configuration of a learning unit of the learning device according to the third embodiment.
  • the internal configuration in the learning model is different from the functional configuration of the learning unit 122 illustrated in FIG.
  • the internal structure in the learning model will be described using the learning model for dry etching 1410, but the learning model for deposition also has the same internal structure.
  • the learning model for dry etching 1410 of the learning unit 1400 includes a sigmoid function unit 1412 and a multiplication unit 1413 in addition to the UNET 1411.
  • the sigmoid function unit 1412 is an example of a processing unit. As shown in FIG. 14, the sigmoid function unit 1412 multiplies a first output result output from the UNET 1411 by a sigmoid function 1420 to output a second output result 1421.
  • the multiplication unit 1413 obtains the second output result 1421 from the sigmoid function unit 1412. Further, the multiplication unit 1413 acquires the pre-processing image data from the data shaping unit 121. Further, the multiplying unit 1413 notifies the comparing unit 430 of the final output result 1422 by multiplying the obtained image data before processing by the obtained second output result 1421.
  • the UNET 1411 in the case where the learning model for dry etching 1410 is machine-learned is used as the first output result as the first output result. Is output.
  • the scraping rate refers to a value of a change rate indicating how much each material layer included in the pre-processing image data has been cut in the post-processing image data.
  • the shaving rate approaches a value obtained by dividing the image data after processing by the image data before processing.
  • the first output result output from the UNET 1411 in the process of machine learning takes an arbitrary value.
  • the sigmoid function unit 1412 is a function for converting an arbitrary value to a value of 0 to 1.
  • the sigmoid function unit 1412 converts the first output result to a second output result, thereby obtaining the domain knowledge. Can be reflected.
  • image data indicating the adhesion rate is output as the first output result from UNET when the learning model for deposition is machine-learned.
  • the adhesion rate refers to a value of a change rate indicating how much a thin film adheres to the layer of each material included in the image data before processing in the image data after processing.
  • the adhesion rate approaches a value obtained by dividing the difference between the image data before processing and the image data after processing by the image data before processing.
  • the first output result output from UNET in the process of machine learning takes an arbitrary value.
  • the adhesion rate falls within the range of 0 to 1.
  • the sigmoid function unit is a function that converts an arbitrary value into a value of 0 to 1.
  • the sigmoid function unit converts the first output result into the second output result, thereby reflecting the domain knowledge. Can be done.
  • the domain knowledge can be reflected in the machine learning, and the simulation accuracy can be further improved.
  • the data shaping unit has been described as generating the linked data of the vertical size and the horizontal size according to the vertical size and the horizontal size of the image data before processing.
  • the vertical size and the horizontal size of the concatenated data generated by the data shaping unit are arbitrary, and the concatenated data may be generated after compressing the image data before processing.
  • the fourth embodiment will be described focusing on differences from the first to third embodiments.
  • FIG. 15 is a diagram illustrating an example of a functional configuration of a data shaping unit of the learning device according to the fourth embodiment.
  • reference numeral 15a in FIG. 15 denotes a data shaping unit 1510 in which a compression unit 1511 is added to the data shaping unit 121 of the learning device according to the first embodiment.
  • the compression unit 1511 compresses the pre-processing image data acquired by the shape data acquisition unit 501.
  • the obtained average value is defined as the pixel value of one pixel obtained by combining the n pixels.
  • the compression unit 1511 can compress the unprocessed image data by a factor of 1 / n.
  • the compression unit 1511 performs the composition ratio (or content ratio) of the material before and after compression. Compression processing is performed so that is maintained as much as possible. Note that the compression rate of the compression process by the compression unit 1511 is not limited to an integral multiple, and the compression unit 1511 can perform compression processing at an arbitrary compression ratio.
  • 15b in FIG. 15 shows a data shaping unit 1520 obtained by adding a compression unit 1511 to the data shaping unit 1200 of the learning device according to the second embodiment.
  • the compression unit 1511 of the data shaping unit 1520 has the same function as the compression unit 1511 of the data shaping unit 1510. Therefore, a detailed description is omitted here.
  • the size of the concatenated data input to the learning units 122 and 1400 (or the execution unit 132) can be reduced.
  • the learning time when the learning units 122 and 1400 perform the machine learning or the simulation time when the execution unit 132 executes the simulation can be reduced.
  • the learning unit 122 is provided with the learning model for dry etching 420 and the learning model for deposition 421, and machine learning is performed separately using different learning data.
  • dry etching and deposition may occur simultaneously.
  • one learning model may be provided in the learning unit 122 so that machine learning is performed for a case where dry etching and deposition occur simultaneously.
  • the learning unit 122 includes, for the one learning model, a learning model including pre-processing image data before dry etching and deposition occurs and post-processing image data after dry etching and deposition occurs. Perform machine learning using data.
  • the simulator can be provided integrally.
  • the data shaping unit 121 processes both the parameter data and the environment information into a predetermined format and inputs the processed data to the corresponding learning model.
  • the data shaping unit 121 may process only the parameter data into a predetermined format and input the processed parameter data to the corresponding learning model. That is, in performing the machine learning of the learning model in the learning unit 122, only the parameter data may be used without using the environment information.
  • the data shaping unit 131 processes both parameter data and environment information into a predetermined format and inputs the processed data to the corresponding learned model.
  • the data shaping unit 131 may process only the parameter data into a predetermined format and input the processed parameter data to the corresponding learned model. That is, when performing a simulation using the learned model in the execution unit 132, only the parameter data may be used without using the environment information.
  • the image data before processing and the image data after processing are described as two-dimensional image data.
  • the image data before processing and the image data after processing are not limited to two-dimensional image data, but may be three-dimensional image data (so-called voxel data).
  • the concatenated data When the pre-processing image data is two-dimensional image data, the concatenated data has an array of (channel, vertical size, horizontal size). However, when the pre-processing image data is three-dimensional image data, the concatenated data is , (Channel, vertical size, horizontal size, depth size).
  • the two-dimensional image data is deformed or the three-dimensional image data is deformed and handled.
  • three-dimensional image data may be acquired, two-dimensional image data of a predetermined cross section may be generated, and input as pre-processing image data.
  • three-dimensional image data may be generated based on two-dimensional image data of a continuous predetermined cross section and input as pre-processing image data.
  • the method of generating the data for each channel is not limited to this, and the data for each channel is generated based on a larger classification such as Oxide, Silicon, Organics, and Nitride instead of each specific film type. Is also good.
  • the inference apparatus 130 outputs the post-processing image data and ends the processing when the pre-processing image data, the parameter data, and the environment information are input. did.
  • the configuration of the inference device 130 is not limited to this.
  • a configuration may be adopted in which the post-processing image data output by inputting the pre-processing image data, the parameter data, and the environment information is input again to the inference apparatus 130 together with the corresponding parameter data and environment information. Good.
  • the inference device 130 can continuously output a change in shape.
  • the processed image data is input to the inference apparatus 130 again, it is assumed that the corresponding parameter data and environment information can be arbitrarily changed.
  • the inference apparatus 130 may be applied to, for example, a service that searches for an optimal recipe, optimal parameter data, and an optimal hardware configuration and provides the semiconductor manufacturer.
  • FIG. 16 is a diagram illustrating an application example of the inference apparatus, in which the inference apparatus 130 is applied to a service providing system 1600.
  • the service providing system 1600 is connected to, for example, each office of a semiconductor manufacturer via a network 1640, and acquires image data before processing.
  • the acquired image data before processing is stored in the data storage unit 1602.
  • the inference apparatus 130 reads out the pre-processing image data from the data storage unit 1602 and executes the simulation while changing the parameter data and the environment information. Thereby, the user of the inference apparatus 130 can search for the optimal recipe, the optimal parameter data, or the optimal hardware configuration.
  • the information providing apparatus 1601 provides the optimal recipe and the optimal parameter data searched by the user of the inference apparatus 130 to each office of the semiconductor maker.
  • the service providing system 1600 can provide semiconductor manufacturers with optimal recipes and optimal parameter data.
  • the pre-processing wafer has been described as the target.
  • the target is not limited to the pre-processing wafer. There may be.
  • the measuring device 111 (or the measuring device 112) generates the pre-processing image data (or the post-processing image data) has been described.
  • the image data before processing is not limited to the case where the measurement device 111 (or the measurement device 112) generates.
  • the measurement device 111 (or the measurement device 112) generates multidimensional measurement data indicating the shape of the target object
  • the learning device 120 generates the pre-processing image data (or the post-processing image data) based on the measurement data. May be generated.
  • the measurement data generated by the measurement device 111 includes, for example, data including position information and film type information. Specifically, it includes data generated by the CD-SEM and combining the position information and the CD measurement data. Alternatively, data including a combination of a two-dimensional or three-dimensional shape generated by X-ray or Raman method and information such as a film type is included. That is, it is assumed that the multidimensional measurement data indicating the shape of the target object includes various expression formats according to the type of the measurement device.
  • the learning device 120 and the inference device 130 are shown as separate bodies, but they may be integrally configured.
  • the learning device 120 has been described as being configured by one computer, but may be configured by a plurality of computers.
  • the inference apparatus 130 has been described as being configured by one computer, but may be configured by a plurality of computers.
  • the learning device 120 and the inference device 130 have been described as being applied to the semiconductor manufacturing process.
  • the learning device 120 and the inference device 130 may be applied to processes other than the semiconductor manufacturing process.
  • the processes other than the semiconductor manufacturing process include manufacturing processes other than the semiconductor manufacturing process and non-manufacturing processes.
  • the learning device 120 and the inference device 130 are realized by causing a general-purpose computer to execute various programs. Not limited.
  • a dedicated electronic circuit that is, hardware
  • IC Integrated Circuit
  • a plurality of components may be realized by one electronic circuit, one component may be realized by a plurality of electronic circuits, or one component and one electronic circuit may be realized.
  • the present invention is not limited to the configuration shown here, such as a combination of the configuration described in the above embodiment with other elements. These points can be changed without departing from the spirit of the present invention, and can be appropriately determined according to the application form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

製造プロセスのシミュレーション精度を向上させる。学習装置であって、対象物の画像データと、前記対象物に対する処理に関するデータとを取得する取得部と、前記対象物の画像データと、前記処理に関するデータとを学習モデルに入力し、前記学習モデルの出力が、前記処理後の前記対象物の画像データに近づくように、前記学習モデルを学習する学習部とを備える。

Description

学習装置、推論装置及び学習済みモデル
 本発明は、学習装置、推論装置及び学習済みモデルに関する。
 従来より、半導体製造メーカでは、各製造プロセス(例えば、ドライエッチング、デポジション等)について物理モデルを生成し、シミュレーションを実行することで、最適なレシピの探索や、プロセスパラメータの調整等を行っている。
 一方で、半導体製造プロセスは挙動が複雑であるため、物理モデルでは表現できない事象もあり、シミュレーション精度には限界がある。このため、最近では、物理モデルに基づくシミュレータの代替として、機械学習された学習済みモデルの適用が検討されている。
 ここで、学習済みモデルの場合、物理モデルのように、半導体製造プロセスの各事象を、物理方程式等を用いて規定する必要がないといった利点があり、物理モデルに基づくシミュレータでは実現できないシミュレーション精度を実現することが期待される。
 本開示は、製造プロセスのシミュレーション精度を向上させる。
 本開示の一態様による学習装置は、例えば、以下のような構成を有する。即ち、
 対象物の画像データと、前記対象物に対する処理に関するデータとを取得する取得部と、前記対象物の画像データと、前記処理に関するデータとを学習モデルに入力し、前記学習モデルの出力が、前記処理後の前記対象物の画像データに近づくように、前記学習モデルを学習する学習部とを備える。
図1は、シミュレーションシステムの全体構成の一例を示す図である。 図2は、シミュレーションシステムを構成する各装置のハードウェア構成の一例を示す図である。 図3は、学習用データの一例を示す図である。 図4は、第1の実施形態に係る学習装置の学習部の機能構成の一例を示す図である。 図5は、第1の実施形態に係る学習装置のデータ整形部の機能構成の一例を示す図である。 図6は、第1の実施形態に係る学習装置のデータ整形部による処理の具体例を示す図である。 図7は、第1の実施形態に係る学習装置のドライエッチング用学習モデルによる処理の具体例を示す図である。 図8は、学習処理の流れを示すフローチャートである。 図9は、推論装置の実行部の機能構成の一例を示す図である。 図10は、ドライエッチング用学習済みモデルのシミュレーション精度を示した図である。 図11は、デポジション用学習済みモデルのシミュレーション精度を示した図である。 図12は、第2の実施形態に係る学習装置のデータ整形部の機能構成の一例を示す図である。 図13は、第2の実施形態に係る学習装置のドライエッチング用学習モデルによる処理の具体例を示す図である。 図14は、第3の実施形態に係る学習装置の学習部の機能構成の一例を示す図である。 図15は、第4の実施形態に係る学習装置のデータ整形部の機能構成の一例を示す図である。 図16は、推論装置の適用例を示す図である。
 以下、各実施形態について添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する。
 [第1の実施形態]
 <シミュレーションシステムの全体構成>
 はじめに、半導体製造プロセスのシミュレーションを行うシミュレーションシステムの全体構成について説明する。図1は、シミュレーションシステムの全体構成の一例を示す図である。図1に示すように、シミュレーションシステム100は、学習装置120、推論装置130を有する。なお、シミュレーションシステム100において用いられる各種データ、各種情報は、半導体製造メーカから、あるいは半導体製造装置メーカのデータベースなどから入手される。
 図1上段に示すように、半導体製造装置110には、所定のパラメータデータ(詳細は後述)が設定されており、複数の処理前ウェハ(対象物)が搬送されることで、各製造プロセス(例えば、ドライエッチング、デポジション)に応じた処理を実行する。
 なお、複数の処理前ウェハのうちの一部の処理前ウェハは、測定装置111に搬送され、様々な位置において測定装置111により形状が測定される。これにより、測定装置111では、例えば、処理前ウェハの各位置での断面形状を示す処理前画像データ(2次元の画像データ)を生成する。なお、測定装置111には、走査型電子顕微鏡(SEM)、測長走査型電子顕微鏡(CD-SEM)、透過電子顕微鏡(TEM)、原子間力顕微鏡(AFM)等が含まれる。また、測定装置111により生成される処理前画像データには、顕微鏡の拡大率等の各種メタデータが対応付けられているものとする。
 図1の例は、測定装置111が、処理前画像データとして、ファイル名=「形状データLD001」、「形状データLD002」、「形状データLD003」・・・等の処理前画像データを生成した様子を示している。
 一方、各製造プロセスに応じた処理が実行されると、半導体製造装置110からは、処理後ウェハが搬出される。半導体製造装置110では、処理前ウェハに対して各製造プロセスに応じた処理を実行した際の、処理中の環境を測定し、環境情報として保持する。
 処理後ウェハとして半導体製造装置110から搬出された複数の処理後ウェハのうちの一部の処理後ウェハは、測定装置112に搬送され、様々な位置において測定装置112により形状が測定される。これにより、測定装置112では、例えば、処理後ウェハの各位置での断面形状を示す処理後画像データ(2次元の画像データ)を生成する。なお、測定装置111と同様に、測定装置112には、走査型電子顕微鏡(SEM)、測長走査型電子顕微鏡(CD-SEM)、透過電子顕微鏡(TEM)、原子間力顕微鏡(AFM)等が含まれる。
 図1の例は、測定装置112が、処理後画像データとして、ファイル名=「形状データLD001’」、「形状データLD002’」、「形状データLD003’」、・・・等の処理後画像データを生成した様子を示している。
 測定装置111により生成された処理前画像データ、半導体製造装置110に設定されたパラメータデータ及び保持された環境情報、測定装置112により生成された処理後画像データは、学習用データとして、学習装置120にて収集される。また、学習装置120では、収集した学習用データを、学習用データ格納部123に格納する。なお、半導体製造装置110に設定されたパラメータデータ及び保持された環境情報は、半導体製造装置110が、処理前ウェハ(対象物)に対して製造プロセスに応じた処理を実行した際の、該処理に関する任意のデータである。このように、製造プロセスに応じた処理を実行した際の、該処理に関する任意のデータを学習用データとすることで、製造プロセスの各事象に相関する因子を機械学習に反映させることができる。
 学習装置120には、データ整形プログラム及び学習プログラムがインストールされており、当該プログラムが実行されることで、学習装置120はデータ整形部121及び学習部122として機能する。
 データ整形部121は加工部の一例である。データ整形部121は、学習用データ格納部123に格納された学習用データを読み出し、読み出した学習用データの一部を、学習部122が学習モデルに入力するのに適した所定の形式に加工する。
 学習部122は、読み出された学習用データ(データ整形部121により加工された学習用データを含む)を用いて、学習モデルについて機械学習を行い、半導体製造プロセスの学習済みモデルを生成する。学習部122により生成された学習済みモデルは、推論装置130に提供される。
 推論装置130には、データ整形プログラム及び実行プログラムがインストールされており、当該プログラムが実行されることで、推論装置130はデータ整形部131及び実行部132として機能する。
 データ整形部131は加工部の一例である。データ整形部131は、測定装置111により生成された処理前画像データ及び推論装置130に入力されたパラメータデータ、環境情報を取得する。また、データ整形部131は、取得したパラメータデータ及び環境情報を、実行部132が学習済みモデルに入力するのに適した所定の形式に加工する。
 実行部132は、処理前画像データと、データ整形部131において所定の形式に加工されたパラメータデータ及び環境情報とを、学習済みモデルに入力し、シミュレーションを実行することで、処理後画像データ(シミュレーション結果)を出力(推論)する。
 推論装置130のユーザは、実行部132が学習済みモデルを用いてシミュレーションを実行することで出力された処理後画像データと、測定装置112により生成された、対応する処理後画像データとを対比することで、学習済みモデルを検証する。
 具体的には、推論装置130のユーザは、
・処理前画像データ、パラメータデータ、環境情報をデータ整形部131に入力したことで実行部132により出力される処理後画像データと、
・処理前ウェハが半導体製造装置110により処理され、処理後ウェハが測定装置112により測定されることで生成される処理後画像データと、
を対比する。これにより、推論装置130のユーザは、学習済みモデルのシミュレーション誤差を算出し、シミュレーション精度を検証することができる。
 なお、検証が完了すると、推論装置130には、任意の処理前画像データと、任意のパラメータデータ及び環境情報とが入力され、様々なシミュレーションが実行されることになる。
 <シミュレーションシステムを構成する各装置のハードウェア構成>
 次に、シミュレーションシステム100を構成する各装置(学習装置120、推論装置130)のハードウェア構成について、図2を用いて説明する。図2は、シミュレーションシステムを構成する各装置のハードウェア構成の一例を示す図である。
 なお、学習装置120と推論装置130のハードウェア構成は概ね同じであることから、ここでは、学習装置120のハードウェア構成について説明する。
 図2は、学習装置のハードウェア構成の一例を示す図である。図2に示すように、学習装置120は、CPU(Central Processing Unit)201、ROM(Read Only Memory)202を有する。また、学習装置120は、RAM(Random Access Memory)203、GPU(Graphics Processing Unit)204を有する。なお、CPU201、GPU204などのプロセッサ(処理回路、Processing Circuit、Processing Circuitry)と、ROM202、RAM203などのメモリは、いわゆるコンピュータを形成する。
 更に、学習装置120は、補助記憶装置205、操作装置206、表示装置207、I/F(Interface)装置208、ドライブ装置209を有する。なお、学習装置120の各ハードウェアは、バス210を介して相互に接続される。
 CPU201は、補助記憶装置205にインストールされた各種プログラム(例えば、データ整形プログラム、学習プログラム等)を実行する演算デバイスである。
 ROM202は、不揮発性メモリであり、主記憶装置として機能する。ROM202は、補助記憶装置205にインストールされた各種プログラムをCPU201が実行するために必要な各種プログラム、データ等を格納する。具体的には、ROM202はBIOS(Basic Input/Output System)やEFI(Extensible Firmware Interface)等のブートプログラム等を格納する。
 RAM203は、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等の揮発性メモリであり、主記憶装置として機能する。RAM203は、補助記憶装置205にインストールされた各種プログラムがCPU201によって実行される際に展開される、作業領域を提供する。
 GPU204は、画像処理用の演算デバイスであり、CPU201により各種プログラムが実行される際に、各種画像データについて、並列処理による高速演算を行う。
 補助記憶装置205は、各種プログラムや、各種プログラムがCPU201によって実行される際にGPU204によって画像処理される各種画像データ等を記憶する記憶部である。例えば、学習用データ格納部123は、補助記憶装置205において実現される。
 操作装置206は、学習装置120の管理者が学習装置120に対して各種指示を入力する際に用いる入力デバイスである。表示装置207は、学習装置120の内部状態を表示する表示デバイスである。I/F装置208は、他の装置と接続し、通信を行うための接続デバイスである。
 ドライブ装置209は記録媒体220をセットするためのデバイスである。ここでいう記録媒体220には、CD-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記録媒体220には、ROM、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等が含まれていてもよい。
 なお、補助記憶装置205にインストールされる各種プログラムは、例えば、配布された記録媒体220がドライブ装置209にセットされ、該記録媒体220に記録された各種プログラムがドライブ装置209により読み出されることでインストールされる。あるいは、補助記憶装置205にインストールされる各種プログラムは、不図示のネットワークを介してダウンロードされることで、インストールされてもよい。
 <学習用データの説明>
 次に、学習用データ格納部123に格納される学習用データについて説明する。図3は、学習用データの一例を示す図である。図3に示すように、学習用データ300には、情報の項目として、“工程”、“ジョブID”、“処理前画像データ”、“パラメータデータ”、“環境情報”、“処理後画像データ”が含まれる。
 “工程”には、半導体製造プロセスを示す名称が格納される。図3の例は、“工程”として、「ドライエッチング」と、「デポジション」の2つの名称が格納された様子を示している。
 “ジョブID”には、半導体製造装置110により実行されるジョブを識別するための識別子が格納される。
 図3の例は、ドライエッチングの“ジョブID”として、「PJ001」、「PJ002」が格納された様子を示している。また、図3の例は、デポジションの“ジョブID”として、「PJ101」が格納された様子を示している。
 “処理前画像データ”には、測定装置111により生成された処理前画像データのファイル名が格納される。図3の例は、ジョブID=「PJ001」の場合、当該ジョブのロット(ウェハ群)のうちの1つの処理前ウェハについて、測定装置111により、ファイル名=「形状データLD001」の処理前画像データが生成されたことを示している。
 また、図3の例は、ジョブID=「PJ002」の場合、当該ジョブのロット(ウェハ群)のうちの1つの処理前ウェハについて、測定装置111により、ファイル名=「形状データLD002」の処理前画像データが生成されたことを示している。更に、図3の例は、ジョブID=「PJ101」の場合、当該ジョブのロット(ウェハ群)のうちの1つの処理前ウェハについて、測定装置111により、ファイル名=「形状データLD101」の処理前画像データが生成されたことを示している。
 “パラメータデータ”には、半導体製造装置110において処理前ウェハを処理する際に設定された、所定の処理条件を示すパラメータが格納される。図3の例は、半導体製造装置110において、ジョブID=「PJ001」の処理を実行した際に、「パラメータ001_1」、「パラメータ001_2」、「パラメータ001_3」、・・・が設定されたことを示している。
 なお、「パラメータ001_1」、「パラメータ001_2」、「パラメータ001_3」、・・・には、例えば、
・Pressure(チャンバ内の圧力)、Power(高周波電源の電力)、Gas(ガス流量)、Temperature(チャンバ内の温度またはウェハの表面の温度)等のように、半導体製造装置110に設定値として設定されるデータ、
・CD(Critical Dimension)、Depth(深さ)、Taper(テーパ角)、Tilting(チルト角)、Bowing(ボーイング)等のように、半導体製造装置110に目標値として設定されるデータ、
・半導体製造装置110のハードウェア形体に関する情報、
等が含まれる。
 “環境情報”には、半導体製造装置110において、処理前ウェハを処理した際に測定された、処理前ウェハの処理中の環境を示す情報が格納される。図3の例は、半導体製造装置110がジョブID=「PJ001」の処理を実行した際に、環境情報として、「環境データ001_1」、「環境データ001_2」、「環境データ001_3」、・・・が測定されたことを示している。
 なお、「環境データ001_1」、「環境データ001_2」、「環境データ001_3」、・・・には、例えば、
・Vpp(電位差)、Vdc(直流自己バイアス電圧)、OES(発光分光分析による発光強度)、Reflect(反射波電力)、
等のように、処理中に半導体製造装置110から出力されるデータ(主に電流や電圧に関するデータ)、
・Plasma density(プラズマ密度)、Ion energy(イオンエネルギ)、Ion flux(イオン流量)、
等のように、処理中に測定されるデータ(主に光に関するデータのほか、温度、圧力に関するデータ)、
が含まれる。
 “処理後画像データ”には、測定装置112により生成された処理後画像データのファイル名が格納される。図3の例は、ジョブID=「PJ001」の場合、測定装置112により、ファイル名=「形状データLD001’」の処理後画像データが生成されたことを示している。
 また、図3の例は、ジョブID=「PJ002」の場合、測定装置112により、ファイル名=「形状データLD002’」の処理後画像データが生成されたことを示している。更に、図3の例は、ジョブID=「PJ101」の場合、測定装置112により、ファイル名=「形状データLD101’」の処理後画像データが生成されたことを示している。
 <学習装置の機能構成>
 次に、学習装置120の各部(データ整形部121、学習部122)の機能構成の詳細について説明する。
 (1)学習部の機能構成の詳細
 はじめに、学習装置120の学習部122の機能構成の詳細について説明する。図4は、第1の実施形態に係る学習装置の学習部の機能構成の一例を示す図である。図4に示すように、学習装置120の学習部122は、ドライエッチング用学習モデル420、デポジション用学習モデル421、比較部430、変更部440を有する。
 学習用データ格納部123に格納された学習用データ300の処理前画像データ、パラメータデータ、環境情報は、データ整形部121により読み出され、対応する学習モデルに入力される。なお、本実施形態において、パラメータデータ及び環境情報は、データ整形部121にて所定の形式に加工された上で、対応する学習モデルに入力される。しかしながら、パラメータデータ及び環境情報は、予め所定の形式に加工されていてもよく、データ整形部121は、予め所定の形式に加工されたものを読み出して、対応する学習モデルに入力してもよい。
 ドライエッチング用学習モデル420には、処理前画像データと、データ整形部121により所定の形式に加工されたパラメータデータ及び環境情報と(ただし、“工程”=「ドライエッチング」が対応付けられたものに限る)が入力される。処理前画像データと、所定の形式に加工されたパラメータデータ及び環境情報とが入力されると、ドライエッチング用学習モデル420では出力結果を出力する。また、ドライエッチング用学習モデル420は、出力結果を比較部430に入力する。
 同様に、デポジション用学習モデル421には、処理前画像データと、データ整形部121により所定の形式に加工されたパラメータデータ及び環境情報と(ただし、“工程”=「デポジション」が対応付けられたものに限る)が入力される。処理前画像データと、所定の形式に加工されたパラメータデータ及び環境情報とが入力されると、デポジション用学習モデル421では出力結果を出力する。また、デポジション用学習モデル421は出力結果を比較部430に入力する。
 比較部430は、ドライエッチング用学習モデル420より入力された出力結果と、学習用データ300の処理後画像データ(“工程”=「ドライエッチング」が対応付けられた処理後画像データ)とを比較し、差分情報を変更部440に通知する。
 同様に、比較部430は、デポジション用学習モデル421より入力された出力結果と、学習用データ300の処理後画像データ(“工程”=「デポジション」が対応付けられた処理後画像データ)とを比較し、差分情報を変更部440に通知する。
 変更部440は、比較部430より通知された差分情報に基づいて、ドライエッチング用学習モデル420またはデポジション用学習モデル421のモデルパラメータを更新する。なお、モデルパラメータの更新に用いる差分情報は、2乗誤差であっても絶対誤差であってもよい。
 このように、学習部122では、処理前画像データと、所定の形式に加工されたパラメータデータ及び環境情報とを学習モデルに入力し、学習モデルより出力される出力結果が処理後画像データに近づくように、機械学習によりモデルパラメータを更新する。
 これにより、学習部122では、半導体製造プロセスの各事象の影響が現れた処理後画像データを機械学習に反映させることができるとともに、これらの事象とパラメータデータ及び環境情報との関係を機械学習させることができる。
 (2)データ整形部の機能構成の詳細
 次に、学習装置120のデータ整形部121の機能構成の詳細について説明する。図5は、第1の実施形態に係る学習装置のデータ整形部の機能構成の一例を示す図である。図5に示すように、データ整形部121は、形状データ取得部501、チャネル別データ生成部502、1次元データ取得部511、1次元データ展開部512、連結部520を有する。
 形状データ取得部501は、学習用データ格納部123より学習用データ300の処理前画像データを読み出し、チャネル別データ生成部502に通知する。
 チャネル別データ生成部502は生成部の一例である。チャネル別データ生成部502は、形状データ取得部501より通知された処理前画像データ(ここでは、各マテリアルの組成比(または含有比)に応じた画素値により表現されているものとする)を取得する。また、チャネル別データ生成部502は、取得した処理前画像データから、マテリアルの種類に応じた複数のチャネルの画像データを生成する。以下、マテリアルの種類に応じたチャネルの画像データを、チャネル別データと称す。例えば、チャネル別データ生成部502は、処理前画像データから、空気の層を含むチャネル別データと、4種類のマテリアルそれぞれの層を含む4つのチャネル別データとを生成する。
 また、チャネル別データ生成部502は、生成した複数のチャネル別データを連結部520に通知する。なお、本実施形態では、チャネル別データ生成部502がチャネル別データを生成するものとしたが、チャネル別データは予め生成されていてもよい。この場合、チャネル別データ生成部502は、予め生成されたチャネル別データを読み出して、連結部520に通知する。
 1次元データ取得部511は、学習用データ格納部123より学習用データ300のパラメータデータ、環境情報を読み出し、1次元データ展開部512に通知する。
 1次元データ展開部512は、1次元データ取得部511より通知されたパラメータデータ、環境情報を、処理前画像データに応じた所定の形式(処理前画像データの縦サイズ及び横サイズに応じた2次元配列の形式)に加工する。
 ここで、パラメータデータは、例えば、「パラメータ001_1」、「パラメータ001_2」、「パラメータ001_3」、・・・等の各パラメータの数値が1次元に配列されてなる。具体的には、パラメータデータは、N種類のパラメータの数値が1次元に配列されてなる。
 このため、1次元データ展開部512では、パラメータデータに含まれるN種類のパラメータの数値を1種類ずつ抽出し、抽出した数値を、処理前画像データの縦サイズ及び横サイズに応じて、2次元に配列する。この結果、1次元データ展開部512では、2次元に配列されたN個のパラメータデータが生成されることになる。
 また、1次元データ展開部512は、2次元に配列されたN個のパラメータデータを連結部520に通知する。
 同様に、環境情報は、例えば、「環境データ001_1」、「環境データ001_2」、「環境データ001_3」、・・・等の各環境情報の数値が1次元に配列されてなる。具体的には、環境情報は、M種類の環境データの数値が1次元に配列されてなる。
 このため、1次元データ展開部512では、環境情報に含まれるM種類の環境データの数値を1種類ずつ抽出し、抽出した数値を、処理前画像データの縦サイズ及び横サイズに応じて、2次元に配列する。この結果、1次元データ展開部512では、2次元に配列されたM個の環境情報が生成されることになる。
 また、1次元データ展開部512は、2次元に配列されたM個の環境情報を連結部520に通知する。
 連結部520は、チャネル別データ生成部502より通知された、複数のチャネル別データに、1次元データ展開部512より通知された、2次元に配列されたN個のパラメータデータ及びM個の環境情報を新たなチャネルとして連結し、連結データを生成する。なお、本実施形態では、連結部520が連結データを生成するものとしたが、連結データは予め生成されていてもよい。この場合、連結部520は、予め生成された連結データを読み出して、学習モデルに入力する。
 <学習装置の各部による処理の具体例>
 次に、学習装置120の各部による処理のうち、上述したデータ整形部121による処理及び学習部122内のドライエッチング用学習モデル420による処理の具体例について説明する。
 (1)データ整形部による処理の具体例
 図6は、データ整形部による処理の具体例を示す図である。図6において、処理前画像データ600は、例えば、ファイル名=「形状データLD001」の処理前画像データである。
 図6に示すように、処理前画像データ600には、空気の層、マテリアルAの層、マテリアルBの層、マテリアルCの層、マテリアルDの層が含まれる。この場合、チャネル別データ生成部502では、チャネル別データ601、602、603、604、605を生成する。
 また、図6に示すように、パラメータデータ610は、例えば、各パラメータ(「パラメータ001_1」、「パラメータ001_2」、「パラメータ001_3」、・・・等)の数値が1次元に配列されてなる。
 更に、図6に示すように、環境情報620は、例えば、「環境データ001_1」、「環境データ001_2」、「環境データ001_3」、・・・等の各環境データの数値が1次元に配列されてなる。
 この場合、1次元データ展開部512は、処理前画像データ600の縦サイズ及び横サイズに応じて、パラメータ001_1を2次元に配列する(同じ値を縦及び横に配列する)。同様に、1次元データ展開部512は、処理前画像データ600の縦サイズ及び横サイズに応じて、パラメータ001_2を2次元に配列する。同様に、1次元データ展開部512は、処理前画像データ600の縦サイズ及び横サイズに応じて、パラメータ001_3を2次元に配列する。
 また、1次元データ展開部512は、処理前画像データ600の縦サイズ及び横サイズに応じて、環境データ001_1を2次元に配列する(同じ値を縦及び横に配列する)。同様に、1次元データ展開部512は、処理前画像データ600の縦サイズ及び横サイズに応じて、環境データ001_2を2次元に配列する。同様に、1次元データ展開部512は、処理前画像データ600の縦サイズ及び横サイズに応じて、環境データ001_3を2次元に配列する。
 2次元に配列されたパラメータデータ611、612、613等、及び、2次元に配列された環境情報621、622、623等は、連結部520により、チャネル別データ601~605に新たなチャネルとして連結され、連結データ630が生成される。
 (2)ドライエッチング用学習モデルによる処理の具体例
 次に、学習部122内のドライエッチング用学習モデル420による処理の具体例について説明する。図7は、第1の実施形態に係る学習装置のドライエッチング用学習モデルによる処理の具体例を示す図である。図7に示すように、本実施形態では、ドライエッチング用学習モデル420として、U字型の畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)ベースの学習モデル(いわゆるUNET)を用いる。
 UNETの場合、通常は、画像データを入力し、画像データを出力する。このため、学習部122の学習モデルとして当該UNETを用いることで、半導体製造プロセスの処理前後の画像データを入出力とすることができる。
 一方で、UNETの場合、画像データの形式になっていないデータについては、画像データの形式に加工しておく必要がある。上記したデータ整形部121の1次元データ展開部512が、パラメータデータ及び環境情報を2次元に配列するように構成されているのは、UNETに入力されるデータを、画像データの形式にするためである。UNETに対して、パラメータデータ及び環境情報の入力が可能となることで、ドライエッチングの各事象に相関する因子を用いて機械学習を行うことが可能となる。
 図7の例は、UNETを用いたドライエッチング用学習モデル420に、連結データ630を入力し、複数のチャネル別データを含む出力結果700が出力された様子を示している。
 なお、図7の例では、ドライエッチング用学習モデル420による処理の具体例について示したが、デポジション用学習モデル421による処理の具体例も同様である。
 <学習処理の流れ>
 次に、学習処理全体の流れについて説明する。図8は、学習処理の流れを示すフローチャートである。
 ステップS801において、測定装置111は、半導体製造装置110により処理される前の処理前ウェハについて、様々な位置で形状を測定し、処理前画像データを生成する。
 ステップS802において、測定装置112は、半導体製造装置110により処理された後の処理後ウェハについて、様々な位置で形状を測定し、処理後画像データを生成する。
 ステップS803において、学習装置120は、半導体製造装置110が各製造プロセスに応じた処理を実行した際に、半導体製造装置110において設定されたパラメータデータと、処理中の環境を測定することで得た環境情報とを取得する。
 ステップS804において、学習装置120は、測定装置111により生成された処理前画像データ、測定装置112により生成された処理後画像データ、取得したパラメータデータ及び環境情報を、学習用データとして、学習用データ格納部123に格納する。
 ステップS805において、学習装置120のデータ整形部121は、学習用データ格納部123より、処理前画像データ、パラメータデータ、環境情報を読み出し、連結データを生成する。
 ステップS806において、学習装置120の学習部122は、連結データを入力、処理後画像データを出力として、学習モデルについて機械学習を行い、学習済みモデルを生成する。
 ステップS807において、学習装置120の学習部122は、生成した学習済みモデルを推論装置130に送信する。
 <推論装置の機能構成>
 次に、推論装置130の機能構成の詳細について説明する。なお、推論装置130の各部(データ整形部131、実行部132)のうち、データ整形部131の機能構成の詳細は、学習装置120のデータ整形部121の機能構成の詳細と同じである。そこで、データ整形部131の機能構成の詳細についての説明は、ここでは省略し、以下では、実行部132の機能構成の詳細について説明する。
 図9は、推論装置の実行部の機能構成の一例を示す図である。図9に示すように、推論装置130の実行部132は、ドライエッチング用学習済みモデル920、デポジション用学習済みモデル921、出力部930を有する。
 測定装置111により生成された処理前画像データ(例えば、機械学習に用いられていないもの)が取得され、推論装置130にパラメータデータ及び環境情報が入力されると、データ整形部131では連結データを生成する。また、データ整形部131では、生成した連結データを、各学習済みモデルに入力する。なお、図9の例は、測定装置111により生成された処理前画像データとして、ファイル名=「形状データSD001」、「形状データSD002」、・・・等が取得された様子を示している。
 ドライエッチング用学習済みモデル920では、データ整形部131より連結データが入力されると、シミュレーションを実行する。また、ドライエッチング用学習済みモデル920は、シミュレーションを実行したことで出力される出力結果を出力部930に通知する。
 同様に、デポジション用学習済みモデル921は、データ整形部131より連結データが入力されると、シミュレーションを実行する。また、デポジション用学習済みモデル921は、シミュレーションを実行したことで出力される出力結果を出力部930に通知する。
 なお、ここでは、測定装置111により生成された処理前画像データを入力するものとしたが、ドライエッチング用学習済みモデル920、デポジション用学習済みモデル921には、任意の処理前画像データが入力可能である。
 出力部930は、ドライエッチング用学習済みモデル920より通知された出力結果から、処理後画像データ(例えば、ファイル名=「形状データSD001’’」)を生成し、シミュレーション結果として出力する。同様に、出力部930は、デポジション用学習済みモデル921より通知された出力結果から、処理後画像データ(例えば、ファイル名=「形状データSD101’’」)を生成し、シミュレーション結果として出力する。
 ここで、推論装置130のユーザが、半導体製造装置110に設定されたパラメータデータ及び保持された環境情報と同じパラメータデータ及び環境情報を入力したとする。この場合、推論装置130のユーザは、出力部930から出力された処理後画像データと、測定装置112により生成された処理後画像データ(例えば、ファイル名=「形状データSD001’」)とを対比することができる。この結果、推論装置130のユーザは、推論装置130のシミュレーション精度を検証することができる。
 図10は、ドライエッチング用学習済みモデルのシミュレーション精度を示した図である。このうち、図10の10aは、比較対象として、測定装置111により生成された処理前画像データ(ファイル名=「形状データSD001」)と、測定装置112により生成された処理後画像データ(ファイル名=「形状データSD001’」)とを示している。
 一方、図10の10bは、ドライエッチング用学習済みモデル920によりシミュレーションが実行された場合の、処理前画像データ(ファイル名=「形状データSD001」)と処理後画像データ(ファイル名=「形状データSD001’’」)とを示している。
 図10の10aの処理後画像データ(ファイル名=「形状データSD001」)と、図10の10bの処理後画像データ(ファイル名=「形状データSD001’’」)とを対比すると、両者に差はない。このように、ドライエッチング用学習済みモデル920によれば、半導体製造装置110によるドライエッチングについて、高精度なシミュレーションを実現することができる。
 同様に、図11は、デポジション用学習済みモデルのシミュレーション精度を示した図である。このうち、図11の11aは、比較対象として、測定装置111により生成された処理前画像データ(ファイル名=「形状データSD101」)と、測定装置112により生成された処理後画像データ(ファイル名=「形状データSD101’」)とを示している。
 一方、図11の11bは、デポジション用学習済みモデル921によりシミュレーションが実行された場合の、処理前画像データ(ファイル名=「形状データSD101」)と処理後画像データ(ファイル名=「形状データSD101’’」)とを示している。
 図11の11aの処理後画像データ(ファイル名=「形状データSD101’」)と、図11の11bの処理後画像データ(ファイル名=「形状データSD101’’」)とを対比すると、両者に差はない。このように、デポジション用学習済みモデル921によれば、半導体製造装置110によるデポジションについて、高精度なシミュレーションを実現することができる。
 なお、実行部132の各学習済みモデルの場合、一般的な物理モデル(半導体製造プロセスを物理法則に基づいて同定したモデル)と比較しても、シミュレーション精度を向上させることができる。
 これは、一般的な物理モデルの場合、物理方程式で表現できない各事象については、シミュレーションに反映させることができないが、学習モデルの場合、処理後画像データに影響が現れる各事象については、機械学習に反映させることができるからである。また、本実施形態に係る学習モデルの場合、半導体製造プロセスの各事象と相関する因子(パラメータデータ、環境情報)が入力されるため、各事象と因子との関係を機械学習させることができるからである。
 なお、物理方程式で表現できない各事象とは、ドライエッチングの場合にあっては、例えば、チャンバ内のガスが不均一となる事象等が挙げられる。あるいは、エッチングされた粒子が、デポジションとして付着する事象等が挙げられる。また、デポジションの場合にあっては、例えば、粒子が1回以上跳ね返ってから付着する事象等が挙げられる。
 これらの事象について、一般的な物理モデルでは、ドライエッチングの際、チャンバ内のガスは均一であるとして取り扱う。また、一般的な物理モデルでは、デポジションの際、粒子は最初に接触した位置に付着するものとして取り扱う。
 これに対して、学習済みモデルの場合、これらの事象の影響が現れた処理後画像データを機械学習に反映させることができるとともに、これらの事象とパラメータデータ及び環境情報との関係を機械学習させることができる。このため、学習済みモデルの場合、一般的な物理モデルと比較して、シミュレーション精度を向上させることができる。
 このように、学習済みモデルによれば、物理モデルに基づくシミュレータでは実現できないシミュレーション精度を実現することができる。加えて、学習済みモデルによれば、物理モデルに基づくシミュレータと比較して、シミュレーション時間を短縮することができる。更に、学習済みモデルの場合、物理モデルに基づくシミュレータのように、人手でルールを作り込んだり、適切な物理方程式をたてる必要がないといった利点もある。
 <まとめ>
 以上の説明から明らかなように、第1の実施形態に係る学習装置は、
・半導体製造装置において、処理前ウェハを処理する際に設定されたパラメータデータと、処理前ウェハを処理する際に測定された処理前ウェハの処理中の環境を示す環境情報とを取得する。
・半導体製造装置において処理される処理前ウェハの処理前の形状を示す画像データである、処理前画像データを取得する。
・取得した処理前画像データの縦サイズ及び横サイズに応じて、取得したパラメータデータ及び環境情報を2次元に配列することで、取得したパラメータデータ及び環境情報を、画像データの形式に加工する。また、処理前画像データに、加工したパラメータデータ及び環境情報を連結して連結データを生成する。
・生成した連結データをU字型の畳み込みニューラルネットワークベースの学習モデルに入力し、出力結果が、処理後ウェハの形状を示す処理後画像データに近づくように、機械学習を行う。
 これにより、第1の実施形態に係る学習装置によれば、半導体製造プロセスの各事象に相関する因子を機械学習に反映させることが可能となり、高精度なシミュレーションを実現する学習済みモデルを生成することができる。
 また、第1の実施形態に係る推論装置は、
・処理前画像データと、パラメータデータ及び環境情報とを取得する。
・取得した処理前画像データの縦サイズ及び横サイズに応じて、取得したパラメータデータ及び環境情報を2次元に配列することで、画像データの形式に加工する。また、処理前画像データに、加工したパラメータデータ及び環境情報を連結して連結データを生成する。
・生成した連結データを、学習済みモデルに入力し、シミュレーションを実行する。
 これにより、第1の実施形態に係る推論装置によれば、半導体製造プロセスの各事象に相関する因子を用いて機械学習された学習済みモデルを生成することが可能となり、高精度なシミュレーションを実現することができる。
 このように、第1の実施形態によれば、半導体製造プロセスのシミュレーションにおいて、シミュレーション精度を向上させることができる。
 [第2の実施形態]
 上記第1の実施形態では、処理前画像データの縦サイズ及び横サイズに応じて、パラメータデータ及び環境情報を画像データの形式に加工し、処理前画像データと連結して学習モデル(または学習済みモデル)に入力するものとして説明した。
 しかしながら、パラメータデータ及び環境情報の加工方法及び加工したパラメータデータ及び環境情報の学習モデル(または学習済みモデル)への入力方法は、これに限定されない。例えば、加工したパラメータデータ及び環境情報は、学習モデル(または学習済みモデル)の各層に入力するように構成してもよい。また、パラメータデータ及び環境情報は、学習モデル(または学習済みモデル)の各層に入力するにあたり、学習モデル(または学習済みモデル)の各層で畳み込み処理された画像データを変換する際に用いる所定の形式に加工するように構成してもよい。以下、第2の実施形態について、上記第1の実施形態との相違点を中心に説明する。
 <データ整形部の機能構成>
 はじめに、第2の実施形態に係る学習装置のデータ整形部の機能構成の詳細について説明する。図12は、第2の実施形態に係る学習装置のデータ整形部の機能構成の一例を示す図である。図5に示したデータ整形部121の機能構成との相違点は、図12に示すデータ整形部1200の場合、連結部1201と正規化部1202とを有している点である。
 連結部1201は、チャネル別データ生成部502より通知された複数のチャネル別データを連結し、連結データを生成する。
 正規化部1202は、1次元データ取得部511より通知されたパラメータデータ及び環境情報を正規化し、正規化パラメータデータ及び正規化環境情報を生成する。
 <学習モデルによる処理の具体例>
 次に、ドライエッチング用学習モデルによる処理の具体例について説明する。図13は、第2の実施形態に係る学習装置のドライエッチング用学習モデルによる処理の具体例を示す図である。
 図13に示すように、第2の実施形態に係る学習装置の場合、ドライエッチング用学習モデル1300には、データ整形部1200の連結部1201により生成された連結データ1310が入力される。
 また、図13に示すように、第2の実施形態に係る学習装置の場合、ドライエッチング用学習モデル1300には、データ整形部1200の正規化部1202により生成された正規化パラメータデータ、正規化環境情報が入力される。
 なお、図13に示すように、ドライエッチング用学習モデル1300には、CNNベースの学習モデルであるUNETに加えて、全結合型の学習モデルであるニューラルネットワーク部1301が含まれる。
 ニューラルネットワーク部1301は、正規化パラメータデータ及び正規化環境情報が入力されると、UNETの各層で畳み込み処理が行われる各画像データの各画素の値を変換する際に用いる所定の形式の値(例えば、1次式の係数γ、β)を出力する。つまり、ニューラルネットワーク部1301は、正規化パラメータデータ及び正規化環境情報を、所定の形式(例えば、1次式の係数の形式)に加工する機能を有する。
 図13の例では、UNETが9層から構成されているため、ニューラルネットワーク部1301は、1次式の係数として、(γ,β)~(γ,β)を出力する。なお、図13の例では、紙面の都合上、各層には、1次式の係数が1組ずつ入力されるものとしているが、各層には、チャネル別データごとに、1次式の係数が複数組ずつ入力されるものとする。
 UNETの各層では、畳み込み処理が行われるチャネル別データごとの各画像データの各画素の値(ここでは“h”とする)を、例えば、1次式=h×γ+β(第1の層の場合には、h×γ+β)を用いて変換する。
 ここで、1次式の係数(γ,β)~(γ,β)は、例えば、UNETの各層において畳み込み処理が行われるチャネル別データごとの各画像データのうち、いずれの画像データが重要かを示す指標と捉えることができる。つまり、ニューラルネットワーク部1301では、正規化パラメータデータ及び正規化環境情報に基づいて、学習モデルの各層において処理される各画像データの、重要度を示す指標を算出する処理を行う。
 上記のような構成のもと、ドライエッチング用学習モデル1300に、連結データ1310と正規化パラメータデータ及び正規化環境情報とが入力されると、複数のチャネル別データを含む出力結果700が出力される。なお、出力結果700は、比較部430にて処理後画像データと比較され、差分情報が算出される。第2の実施形態に係る学習装置の場合、変更部440は、差分情報に基づいて、ドライエッチング用学習モデル1300内の、UNETのモデルパラメータと、ニューラルネットワーク部1301のモデルパラメータとを更新する。
 このように、第2の実施形態に係る学習装置によれば、ドライエッチング用学習モデル1300について機械学習を行う際、UNETの各層において、重要度が高い画像データを、正規化パラメータデータ及び正規化環境情報に基づいて抽出することが可能となる。
 <まとめ>
 以上の説明から明らかなように、第2の実施形態に係る学習装置は、
・半導体製造装置において、処理前ウェハを処理する際に設定されたパラメータデータと、処理前ウェハを処理する際に測定された処理前ウェハの処理中の環境を示す環境情報とを取得する。
・半導体製造装置において処理される処理前ウェハの処理前の形状を示す画像データである、処理前画像データを取得する。
・取得したパラメータデータ及び環境情報を正規化し、学習モデルの各層で畳み込み処理される各画像データの各画素の値を変換する際に用いる1次式の係数の形式に加工する。
・学習部が機械学習を行う際、各層で畳み込み処理された画像データの各画素の値を、1次式を用いて変換する。
 これにより、第2の実施形態に係る学習装置によれば、半導体製造プロセスの各事象に相関する因子を機械学習に反映させることが可能となり、高精度なシミュレーションを実現する学習済みモデルを生成することができる。
 なお、第2の実施形態では、学習装置について説明したが、推論装置においても、実行部がシミュレーションを実行する際に、同様の処理が行われるものとする。
 [第3の実施形態]
 上記第1及び第2の実施形態では、学習部が機械学習を行うにあたり、半導体製造プロセス固有の制約条件については特に言及しなかった。一方で、半導体製造プロセスには、固有の制約条件があり、学習部による機械学習に反映させることで(つまり、学習部による機械学習にドメイン知識を反映させることで)、シミュレーション精度を更に向上させることができる。以下、ドメイン知識を反映させた第3の実施形態について、上記第1及び第2の実施形態との相違点を中心に説明する。
 <学習モデルの機能構成の詳細>
 図14は、第3の実施形態に係る学習装置の学習部の機能構成の一例を示す図である。図4に示した学習部122の機能構成とは、学習モデル内の内部構成が異なる。なお、ここでは、ドライエッチング用学習モデル1410を用いて、学習モデル内の内部構成について説明するが、デポジション用学習モデルも同様の内部構成を有しているものとする。
 図14に示すように、学習部1400のドライエッチング用学習モデル1410は、UNET1411に加えて、シグモイド関数部1412と、乗算部1413とを有する。
 シグモイド関数部1412は処理部の一例であり、図14に示すように、UNET1411の出力である第1出力結果に、シグモイド関数1420を乗算することで、第2出力結果1421を出力する。
 乗算部1413は、シグモイド関数部1412より第2出力結果1421を取得する。また、乗算部1413は、データ整形部121より処理前画像データを取得する。更に、乗算部1413は、取得した処理前画像データに、取得した第2出力結果1421を乗算することで、最終出力結果1422を比較部430に通知する。
 このように、処理前画像データを乗算して最終出力結果1422を出力する構成とすることで、ドライエッチング用学習モデル1410を機械学習させた場合のUNET1411からは、第1出力結果として、削れ率を示す画像データが出力されることになる。
 ここで削れ率とは、処理前画像データに含まれる各マテリアルの層が、処理後画像データにおいて、どの程度削られたかを示す変化率の値を指す。ドライエッチング用学習モデル1410を機械学習させることで、削れ率は、処理後画像データを処理前画像データで除算した値に近づくことになる。ただし、機械学習の過程でUNET1411から出力される第1出力結果は、任意の値をとる。
 一方で、ドライエッチングの場合、形状の変化に関して、“処理の前後でマテリアルが増えることはない”という制約条件(ドメイン知識)がある。したがって、ドライエッチングの場合、削れ率は、0~1の範囲に収まることになる。
 ここで、シグモイド関数部1412は、任意の値を、0~1の値に変換する関数であり、第1出力結果をシグモイド関数部1412で第2出力結果に変換することで、上記ドメイン知識を反映させることができる。
 なお、図14には示していないが、デポジション用学習モデルにおいても、シグモイド関数部や乗算部等を配することで、同様の処理を行うことができる。具体的には、デポジション用学習モデルを機械学習させた場合のUNETからは、第1出力結果として、付着率を示す画像データが出力されることになる。
 ここで付着率とは、処理前画像データに含まれる各マテリアルの層に対して、処理後画像データにおいて、どの程度薄膜が付着したかを示す変化率の値を指す。デポジション用学習モデルを機械学習させることで、付着率は、処理前画像データと処理後画像データとの差分を、処理前画像データで除算した値に近づくことになる。ただし、機械学習の過程でUNETから出力される第1出力結果は、任意の値をとる。
 一方で、デポジションの場合、形状の変化に関して、“処理の前後でマテリアルが減ることはない”という制約条件(ドメイン知識)がある。したがって、デポジションの場合、付着率は、0~1の範囲に収まることになる。
 上述したとおり、シグモイド関数部は、任意の値を、0~1の値に変換する関数であり、第1出力結果をシグモイド関数部で第2出力結果に変換することで、上記ドメイン知識を反映させることができる。
 このように、第3の実施形態に係る学習装置120の学習部1400によれば、機械学習にドメイン知識を反映させることが可能となり、シミュレーション精度を更に向上させることができる。
 [第4の実施形態]
 上記第1乃至第3の実施形態では、データ整形部が、処理前画像データの縦サイズ及び横サイズに応じた縦サイズ及び横サイズの連結データを生成するものとして説明した。しかしながら、データ整形部が生成する連結データの縦サイズ及び横サイズは任意であり、処理前画像データを圧縮してから、連結データを生成するように構成してもよい。以下、第4の実施形態について、上記第1乃至第3の実施形態との相違点を中心に説明する。
 <データ整形部の機能構成の詳細>
 図15は、第4の実施形態に係る学習装置のデータ整形部の機能構成の一例を示す図である。このうち、図15の15aは、第1の実施形態に係る学習装置のデータ整形部121に、圧縮部1511を付加したデータ整形部1510を示している。
 圧縮部1511は、形状データ取得部501において取得された処理前画像データを圧縮する。圧縮部1511では、例えば、隣接するn個(nは2以上の整数。例えば、縦方向2個×横方向2個の場合はn=4)の画素の画素値について平均値を算出し、算出した平均値を、当該n個の画素をまとめた1個の画素の画素値とする。これにより、圧縮部1511では、処理前画像データを1/n倍に圧縮することができる。
 このように、圧縮部1511では、処理前画像データが各マテリアルの組成比(または含有比)を表した画像データであることに鑑みて、圧縮の前後で、マテリアルの組成比(または含有比)が極力維持されるように圧縮処理を行う。なお、圧縮部1511による圧縮処理の圧縮率は、整数倍に限定されず、圧縮部1511では、任意の圧縮率による圧縮処理が可能であるとする。
 同様に、図15の15bは、第2の実施形態に係る学習装置のデータ整形部1200に、圧縮部1511を付加したデータ整形部1520を示している。
 データ整形部1520が有する圧縮部1511は、データ整形部1510が有する圧縮部1511と同じ機能を有する。このため、ここでは、詳細な説明は省略する。
 このように、データ整形部1510または1520に圧縮部1511を付加することで、学習部122、1400(あるいは、実行部132)に入力される連結データのサイズを縮小することができる。この結果、第4の実施形態によれば、学習部122、1400が機械学習を行う場合の学習時間、あるいは、実行部132がシミュレーションを実行する場合のシミュレーション時間を短縮することができる。
 [その他の実施形態]
 上記第1の実施形態では、学習部122に、ドライエッチング用学習モデル420と、デポジション用学習モデル421とをそれぞれ設け、異なる学習用データを用いて別々に機械学習を行うものとして説明した。
 しかしながら、半導体製造プロセスにおいて、ドライエッチングとデポジションとが、同時に発生することもある。このような場合を想定して、学習部122に1の学習モデルを設け、ドライエッチングとデポジションとが同時に発生するケースを機械学習させるように構成してもよい。
 この場合、学習部122では、当該1の学習モデルについて、ドライエッチング及びデポジションが発生する前の処理前画像データと、ドライエッチング及びデポジションが発生した後の処理後画像データとを含む学習用データを用いて機械学習を行う。
 このように、一般的な物理モデルでは、ドライエッチングとデポジションとでシミュレータを分けて設ける必要があったところ、学習モデルでは統合して設けることもできる。
 また、上記第1の実施形態では、データ整形部121が、パラメータデータと環境情報の両方を所定の形式に加工して、対応する学習モデルに入力するものとして説明した。しかしながら、データ整形部121は、パラメータデータのみを所定の形式に加工して、対応する学習モデルに入力してもよい。つまり、学習部122において学習モデルの機械学習を行うにあたり、環境情報を用いずにパラメータデータのみを用いてもよい。
 同様に、上記第1の実施形態では、データ整形部131が、パラメータデータと環境情報の両方を所定の形式に加工して、対応する学習済みモデルに入力するものとして説明した。しかしながら、データ整形部131は、パラメータデータのみを所定の形式に加工して、対応する学習済みモデルに入力してもよい。つまり、実行部132において学習済みモデルを用いてシミュレーションを行うにあたり、環境情報を用いずにパラメータデータのみを用いてもよい。
 また、上記第1の実施形態では、処理前画像データ及び処理後画像データが、2次元の画像データであるとして説明した。しかしながら、処理前画像データ及び処理後画像データは、2次元の画像データに限定されず、3次元の画像データ(いわゆるボクセルデータ)であってもよい。
 なお、処理前画像データが2次元の画像データの場合、連結データは、(チャネル、縦サイズ、横サイズ)の配列となるが、処理前画像データが3次元の画像データの場合、連結データは、(チャネル、縦サイズ、横サイズ、奥行きサイズ)の配列となる。
 また、上記第1の実施形態では、2次元の画像データをそのまま取り扱うものとして説明したが、2次元の画像データを変形して、あるいは、3次元の画像データを変形して取り扱うように構成してもよい。例えば、3次元の画像データを取得し、所定断面の2次元の画像データを生成して、処理前画像データとして入力してもよい。あるいは、連続する所定断面の2次元の画像データに基づいて、3次元の画像データを生成して、処理前画像データとして入力してもよい。
 また、上記第1の実施形態において、チャネル別データ生成部502は、空気の層、各マテリアルの層ごとに、チャネル別データを生成するものとして説明した。しかしながら、チャネル別データの生成方法はこれに限定されず、特定の膜種ごとではなく、Oxide、Silicon、Organics、Nitrideといったように、より大きな分類に基づいて、チャネル別データを生成するようにしてもよい。
 また、上記第1乃至第4の実施形態において、推論装置130は、処理前画像データ、パラメータデータ及び環境情報が入力された場合に、処理後画像データを出力して処理を終了するものとして説明した。しかしながら、推論装置130の構成はこれに限定されない。例えば、処理前画像データ、パラメータデータ及び環境情報が入力されることで出力される処理後画像データを、対応するパラメータデータ及び環境情報とともに、再び、推論装置130に入力するように構成してもよい。これにより、推論装置130では、形状の変化を連続的に出力することができる。なお、推論装置130に処理後画像データを再び入力するにあたり、対応するパラメータデータ及び環境情報は、任意に変更可能であるとする。
 また、上記第1乃至第4の実施形態においては、推論装置130の具体的な適用例について特に言及しなかった。しかしながら、推論装置130は、例えば、最適なレシピや最適なパラメータデータ、最適なハードウェア形体を探索して半導体製造メーカに提供するサービスに、適用してもよい。
 図16は、推論装置の適用例を示す図であり、推論装置130を、サービス提供システム1600に適用した例を示している。
 サービス提供システム1600は、例えば、ネットワーク1640を介して、半導体製造メーカの各事業所と接続し、処理前画像データを取得する。また、サービス提供システム1600では、取得した処理前画像データを、データ格納部1602に格納する。
 また、推論装置130は、データ格納部1602より処理前画像データを読み出し、パラメータデータ及び環境情報を変えながらシミュレーションを実行する。これにより、推論装置130のユーザは、最適なレシピ、最適なパラメータデータあるいは最適なハードウェア形体を探索することができる。
 情報提供装置1601では、推論装置130のユーザが探索した最適なレシピ、最適なパラメータデータを、半導体製造メーカの各事業所に提供する。
 このように、推論装置130を、サービス提供システム1600に適用することで、サービス提供システム1600では、半導体製造メーカに対して、最適なレシピ、最適なパラメータデータを提供することが可能となる。
 また、上記第1乃至第4の実施形態では、処理前ウェハを対象物として説明したが、対象物は処理前ウェハに限定されず、例えば、半導体製造装置110のチャンバ内壁や、パーツ表面等であってもよい。
 また、上記第1乃至第4の実施形態では、測定装置111(または測定装置112)が処理前画像データ(または処理後画像データ)を生成する場合について説明した。しかしながら、処理前画像データ(または処理後画像データ)は、測定装置111(または測定装置112)が生成する場合に限定されない。例えば、測定装置111(または測定装置112)は、対象物の形状を示す多次元の計測データを生成し、学習装置120が当該計測データに基づいて、処理前画像データ(または処理後画像データ)を生成するように構成してもよい。
 なお、測定装置111(または測定装置112)が生成する計測データには、例えば、位置情報と膜種情報等を含むデータが含まれる。具体的には、CD-SEMにより生成される、位置情報とCD測長データとを組み合わせたデータが含まれる。あるいは、X線やラマン法により生成される、2次元または3次元の形状と膜種等の情報とを組み合わせたデータが含まれる。つまり、対象物の形状を示す多次元の計測データには、測定装置の種類に応じた様々な表現形式が含まれるものとする。
 また、上記第1乃至第4の実施形態において、学習装置120と、推論装置130とは別体として示したが、一体として構成してもよい。
 また、上記第1乃至第4の実施形態において、学習装置120は、1台のコンピュータで構成されるものとして説明したが、複数台のコンピュータで構成されていてもよい。同様に、上記第1乃至第4の実施形態において、推論装置130は、1台のコンピュータで構成されるものとして説明したが、複数台のコンピュータで構成されてもよい。
 また、上記第1乃至第4の実施形態では、学習装置120、推論装置130を、半導体製造プロセスに適用するものとして説明したが、半導体製造プロセス以外の他のプロセスに適用してもよいことはいうまでもない。ここでいう、半導体製造プロセス以外の他のプロセスには、半導体製造プロセス以外の他の製造プロセス、非製造プロセスが含まれるものとする。
 また、上記第1乃至第4の実施形態において、学習装置120、推論装置130は、汎用のコンピュータに各種プログラムを実行させることで実現したが、学習装置120、推論装置130の実現方法はこれに限定されない。
 例えば、プロセッサ、メモリなどを実装しているIC(Integrated Circuit)などの専用の電子回路(すなわちハードウェア)により実現されてもよい。複数の構成要素が一つの電子回路で実現されてもよいし、一つの構成要素が複数の電子回路で実現されてもよいし、構成要素と電子回路が一対一で実現されてもよい。
 なお、上記実施形態に挙げた構成等に、その他の要素との組み合わせ等、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。
 本出願は、2018年9月3日に出願された日本国特許出願第2018-164931号に基づきその優先権を主張するものであり、同日本国特許出願の全内容を参照することにより本願に援用する。
100         :シミュレーションシステム
110         :半導体製造装置
111         :測定装置
112         :測定装置
120         :学習装置
121         :データ整形部
122         :学習部
130         :推論装置
131         :データ整形部
132         :実行部
300         :学習用データ
420         :ドライエッチング用学習モデル
421         :デポジション用学習モデル
430         :比較部
440         :変更部
501         :形状データ取得部
502         :チャネル別データ生成部
511         :1次元データ取得部
512         :1次元データ展開部
520         :連結部
600         :処理前画像データ
601~605     :チャネル別データ
610         :パラメータデータ
611~613     :2次元に配列されたパラメータデータ
620         :環境情報
621~623     :2次元に配列された環境情報
630         :連結データ
700         :出力結果
920         :ドライエッチング用学習済みモデル
921         :デポジション用学習済みモデル
930         :出力部
1200        :データ整形部
1201        :連結部
1300        :ドライエッチング用学習モデル
1301        :ニューラルネットワーク部
1310        :連結データ
1400        :学習部
1510、1520   :データ整形部
1511        :圧縮部

Claims (21)

  1.  対象物の画像データと、前記対象物に対する処理に関するデータとを取得する取得部と、
     前記対象物の画像データと、前記処理に関するデータとを学習モデルに入力し、前記学習モデルの出力が、前記処理後の前記対象物の画像データに近づくように、前記学習モデルを学習する学習部と
     を備える学習装置。
  2.  前記処理に関するデータを前記対象物の画像データに応じた形式に加工する加工部、を更に備え、
     前記学習部は、前記加工されたデータを前記学習モデルに入力する
     請求項1に記載の学習装置。
  3.  前記学習モデルに入力する前記対象物の画像データは、前記対象物に含まれるマテリアルに応じた複数のチャネルを有し、各チャネルは各マテリアルの組成比または含有比に応じた値を有する
     請求項1または2に記載の学習装置。
  4.  前記処理が半導体製造プロセスに応じた処理である
     請求項1乃至3のいずれか1項に記載の学習装置。
  5.  前記処理に関するデータは、前記半導体製造プロセスに応じた処理を半導体製造装置が実行する際の、処理条件を示すパラメータを含む
     請求項4に記載の学習装置。
  6.  前記処理に関するデータは、前記半導体製造プロセスに応じた処理を半導体製造装置が実行する際に測定される環境情報を含む
     請求項4または5に記載の学習装置。
  7.  前記パラメータは、少なくとも、前記半導体製造装置に設定される設定値、前記半導体製造装置のハードウェアの形体のいずれか1つを含む
     請求項5に記載の学習装置。
  8.  前記環境情報は、少なくとも、前記半導体製造装置において測定される電流に関するデータ、電圧に関するデータ、光に関するデータ、温度に関するデータ、圧力に関するデータのいずれか1つを含む
     請求項6に記載の学習装置。
  9.  前記加工部は、前記処理に関するデータを、前記画像データの縦サイズ及び横サイズに応じた2次元配列の形式に加工する
     請求項2に記載の学習装置。
  10.  前記学習部は、
     前記学習モデルの出力と、前記処理後の前記対象物の画像データとを比較する比較部と、
     前記比較部による比較により得られた差分情報に基づいて前記学習モデルのモデルパラメータを更新する変更部と
     を備える請求項1に記載の学習装置。
  11.  第1の対象物の画像データと、前記第1の対象物に対する第1の処理に関するデータとが入力された場合の出力が、前記第1の処理後の前記第1の対象物の画像データに近づくように学習された学習済みモデルを記憶する記憶部と、
     第2の対象物の画像データと、第2の処理に関するデータとを前記学習済みモデルに入力し、前記第2の対象物に対する前記第2の処理後の画像データを推論する実行部と
     を備える推論装置。
  12.  前記第2の処理に関するデータを前記第2の対象物の画像データに応じた形式に加工する加工部、を更に備え、
     前記実行部は、前記加工された第2の処理に関するデータを前記学習済みモデルに入力する
     請求項11に記載の推論装置。
  13.  前記学習済みモデルに入力する前記第2の対象物の画像データは、前記第2の対象物に含まれるマテリアルに応じた複数のチャネルを有し、各チャネルは各マテリアルの組成比または含有比に応じた値を有する
     請求項11または12に記載の推論装置。
  14.  前記第1の処理及び前記第2の処理が半導体製造プロセスに応じた処理である
     請求項11乃至13のいずれか1項に記載の推論装置。
  15.  前記第2の処理に関するデータは、前記半導体製造プロセスに応じた処理を半導体製造装置が実行する際の、処理条件を示すパラメータを含む
     請求項14に記載の推論装置。
  16.  前記第2の処理に関するデータは、前記半導体製造プロセスに応じた処理を半導体製造装置が実行する際に測定される環境情報を含む
     請求項14または15に記載の推論装置。
  17.  前記パラメータは、少なくとも、前記半導体製造装置に設定される設定値、前記半導体製造装置のハードウェアの形体のいずれか1つを含む
     請求項15に記載の推論装置。
  18.  前記環境情報は、少なくとも、前記半導体製造装置において測定される電流に関するデータ、電圧に関するデータ、光に関するデータ、温度に関するデータ、圧力に関するデータのいずれか1つを含む
     請求項16に記載の推論装置。
  19.  前記加工部は、前記第2の処理に関するデータを、前記第2の対象物の画像データの縦サイズ及び横サイズに応じた2次元配列の形式に加工する
     請求項12に記載の推論装置。
  20.  前記実行部は、推論された前記第2の対象物に対する前記第2の処理後の画像データと、第3の処理に関するデータとを、前記学習済みモデルに入力し、前記第2の処理後の前記第2の対象物に対する前記第3の処理後の画像データを推論する
     請求項11乃至19のいずれか1項に記載の推論装置。
  21.  第1の対象物の画像データと、前記第1の対象物に対する第1の処理に関するデータとが入力された場合の出力が、前記第1の処理後の前記第1の対象物の画像データに近づくように学習されており、
     第2の対象物の画像データと、第2の処理に関するデータとが入力された場合に、前記第2の対象物に対する第2の処理後の画像データを推論する、
     処理をコンピュータに実行させるための学習済みモデル。
PCT/JP2019/033168 2018-09-03 2019-08-23 学習装置、推論装置及び学習済みモデル WO2020050072A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980057338.1A CN112640038A (zh) 2018-09-03 2019-08-23 学习装置、推断装置及学习完成模型
KR1020217006357A KR102541743B1 (ko) 2018-09-03 2019-08-23 학습 장치, 추론 장치 및 학습 완료 모델
JP2020541139A JP7190495B2 (ja) 2018-09-03 2019-08-23 推論方法、推論装置、モデルの生成方法及び学習装置
US17/189,608 US11922307B2 (en) 2018-09-03 2021-03-02 Learning device, inference device, and learned model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-164931 2018-09-03
JP2018164931 2018-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/189,608 Continuation US11922307B2 (en) 2018-09-03 2021-03-02 Learning device, inference device, and learned model

Publications (1)

Publication Number Publication Date
WO2020050072A1 true WO2020050072A1 (ja) 2020-03-12

Family

ID=69722532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033168 WO2020050072A1 (ja) 2018-09-03 2019-08-23 学習装置、推論装置及び学習済みモデル

Country Status (6)

Country Link
US (1) US11922307B2 (ja)
JP (1) JP7190495B2 (ja)
KR (1) KR102541743B1 (ja)
CN (1) CN112640038A (ja)
TW (1) TWI803690B (ja)
WO (1) WO2020050072A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145225A1 (ja) * 2020-12-28 2022-07-07 東京エレクトロン株式会社 パラメータ導出装置、パラメータ導出方法及びパラメータ導出プログラム
WO2022180827A1 (ja) * 2021-02-26 2022-09-01 日本電信電話株式会社 光学特性のai予測システム
KR20230124638A (ko) 2020-12-25 2023-08-25 도쿄엘렉트론가부시키가이샤 관리 시스템, 관리 방법 및 관리 프로그램
KR20230127251A (ko) 2020-12-28 2023-08-31 도쿄엘렉트론가부시키가이샤 관리 장치, 예측 방법 및 예측 프로그램
JP7399783B2 (ja) 2020-04-30 2023-12-18 株式会社Screenホールディングス 基板処理装置、基板処理方法、学習用データの生成方法、学習方法、学習装置、学習済モデルの生成方法、および、学習済モデル
JP7467292B2 (ja) 2020-03-13 2024-04-15 東京エレクトロン株式会社 解析装置、解析方法及び解析プログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202115390A (zh) * 2019-06-06 2021-04-16 日商東京威力科創股份有限公司 基板檢查裝置、基板檢查系統及基板檢查方法
EP4035127A4 (en) 2019-09-24 2023-10-18 Applied Materials, Inc. INTERACTIVE TRAINING OF A MACHINE LEARNING MODEL FOR TISSUE SEGMENTATION
US20230043803A1 (en) * 2021-08-04 2023-02-09 Theia Scientific, LLC System and method for multi-modal microscopy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224126A (ja) * 1993-01-25 1994-08-12 Fuji Electric Co Ltd 半導体製造装置の膜質予測装置
JPH11330449A (ja) * 1998-05-20 1999-11-30 Toshiba Corp 半導体装置の製造方法、シミュレーション装置、シミュレーション方法、シミュレーションプログラムを記録した記録媒体、及びシミュレーション用データを記録した記録媒体
JP2004040004A (ja) * 2002-07-08 2004-02-05 Renesas Technology Corp 配線設計データを利用した化学的機械的研磨方法、加工物の製造方法、およびデザインルール決定方法
JP2004153229A (ja) * 2002-03-14 2004-05-27 Nikon Corp 加工形状の予測方法、加工条件の決定方法、加工量予測方法、加工形状予測システム、加工条件決定システム、加工システム、加工形状予測計算機プログラム、加工条件決定計算機プログラム、プログラム記録媒体、及び半導体デバイスの製造方法
JP2007227618A (ja) * 2006-02-23 2007-09-06 Hitachi High-Technologies Corp 半導体プロセスモニタ方法およびそのシステム
JP2011071296A (ja) * 2009-09-25 2011-04-07 Sharp Corp 特性予測装置、特性予測方法、特性予測プログラムおよびプログラム記録媒体
JP2013518449A (ja) * 2010-01-29 2013-05-20 東京エレクトロン株式会社 半導体製造ツールを自己学習及び自己改善するための方法及びシステム
US20170194126A1 (en) * 2015-12-31 2017-07-06 Kla-Tencor Corporation Hybrid inspectors
JP2018049936A (ja) * 2016-09-21 2018-03-29 株式会社日立製作所 探索装置および探索方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020085688A (ko) 2001-05-09 2002-11-16 학교법인 인하학원 반도체 식각 공정 모의 실험 해석기 및 해석 방법
US6819427B1 (en) 2001-10-10 2004-11-16 Advanced Micro Devices, Inc. Apparatus of monitoring and optimizing the development of a photoresist material
KR20040080742A (ko) 2003-03-13 2004-09-20 원태영 식각 공정 시뮬레이션의 병렬 연산 구현 방법
JP2005202949A (ja) 2003-12-01 2005-07-28 Oscillated Recall Technology:Kk 大域的エッチングシミュレータ
US8722547B2 (en) 2006-04-20 2014-05-13 Applied Materials, Inc. Etching high K dielectrics with high selectivity to oxide containing layers at elevated temperatures with BC13 based etch chemistries
US9245714B2 (en) 2012-10-01 2016-01-26 Kla-Tencor Corporation System and method for compressed data transmission in a maskless lithography system
JP6173889B2 (ja) 2013-11-28 2017-08-02 ソニーセミコンダクタソリューションズ株式会社 シミュレーション方法、シミュレーションプログラム、加工制御システム、シミュレータ、プロセス設計方法およびマスク設計方法
US10056304B2 (en) 2014-11-19 2018-08-21 Deca Technologies Inc Automated optical inspection of unit specific patterning
US9965901B2 (en) * 2015-11-19 2018-05-08 KLA—Tencor Corp. Generating simulated images from design information
CN108700818B (zh) 2015-12-22 2020-10-16 Asml荷兰有限公司 用于过程窗口表征的设备和方法
JP2017182129A (ja) * 2016-03-28 2017-10-05 ソニー株式会社 情報処理装置。
WO2018048575A1 (en) * 2016-09-07 2018-03-15 Elekta, Inc. System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions
US11580398B2 (en) * 2016-10-14 2023-02-14 KLA-Tenor Corp. Diagnostic systems and methods for deep learning models configured for semiconductor applications
US20210305070A1 (en) 2017-10-17 2021-09-30 Ulvac, Inc. Object processing apparatus
US10572697B2 (en) 2018-04-06 2020-02-25 Lam Research Corporation Method of etch model calibration using optical scatterometry
JP2020057172A (ja) * 2018-10-01 2020-04-09 株式会社Preferred Networks 学習装置、推論装置及び学習済みモデル
JP2021089526A (ja) * 2019-12-03 2021-06-10 株式会社Preferred Networks 推定装置、訓練装置、推定方法、訓練方法、プログラム及び非一時的コンピュータ可読媒体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224126A (ja) * 1993-01-25 1994-08-12 Fuji Electric Co Ltd 半導体製造装置の膜質予測装置
JPH11330449A (ja) * 1998-05-20 1999-11-30 Toshiba Corp 半導体装置の製造方法、シミュレーション装置、シミュレーション方法、シミュレーションプログラムを記録した記録媒体、及びシミュレーション用データを記録した記録媒体
JP2004153229A (ja) * 2002-03-14 2004-05-27 Nikon Corp 加工形状の予測方法、加工条件の決定方法、加工量予測方法、加工形状予測システム、加工条件決定システム、加工システム、加工形状予測計算機プログラム、加工条件決定計算機プログラム、プログラム記録媒体、及び半導体デバイスの製造方法
JP2004040004A (ja) * 2002-07-08 2004-02-05 Renesas Technology Corp 配線設計データを利用した化学的機械的研磨方法、加工物の製造方法、およびデザインルール決定方法
JP2007227618A (ja) * 2006-02-23 2007-09-06 Hitachi High-Technologies Corp 半導体プロセスモニタ方法およびそのシステム
JP2011071296A (ja) * 2009-09-25 2011-04-07 Sharp Corp 特性予測装置、特性予測方法、特性予測プログラムおよびプログラム記録媒体
JP2013518449A (ja) * 2010-01-29 2013-05-20 東京エレクトロン株式会社 半導体製造ツールを自己学習及び自己改善するための方法及びシステム
US20170194126A1 (en) * 2015-12-31 2017-07-06 Kla-Tencor Corporation Hybrid inspectors
JP2018049936A (ja) * 2016-09-21 2018-03-29 株式会社日立製作所 探索装置および探索方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467292B2 (ja) 2020-03-13 2024-04-15 東京エレクトロン株式会社 解析装置、解析方法及び解析プログラム
JP7399783B2 (ja) 2020-04-30 2023-12-18 株式会社Screenホールディングス 基板処理装置、基板処理方法、学習用データの生成方法、学習方法、学習装置、学習済モデルの生成方法、および、学習済モデル
KR20230124638A (ko) 2020-12-25 2023-08-25 도쿄엘렉트론가부시키가이샤 관리 시스템, 관리 방법 및 관리 프로그램
WO2022145225A1 (ja) * 2020-12-28 2022-07-07 東京エレクトロン株式会社 パラメータ導出装置、パラメータ導出方法及びパラメータ導出プログラム
KR20230127251A (ko) 2020-12-28 2023-08-31 도쿄엘렉트론가부시키가이샤 관리 장치, 예측 방법 및 예측 프로그램
WO2022180827A1 (ja) * 2021-02-26 2022-09-01 日本電信電話株式会社 光学特性のai予測システム

Also Published As

Publication number Publication date
KR20210038665A (ko) 2021-04-07
JP7190495B2 (ja) 2022-12-15
US20210209413A1 (en) 2021-07-08
CN112640038A (zh) 2021-04-09
US11922307B2 (en) 2024-03-05
KR102541743B1 (ko) 2023-06-13
TW202026959A (zh) 2020-07-16
JPWO2020050072A1 (ja) 2021-08-26
TWI803690B (zh) 2023-06-01

Similar Documents

Publication Publication Date Title
WO2020050072A1 (ja) 学習装置、推論装置及び学習済みモデル
US20210090244A1 (en) Method and system for optimizing optical inspection of patterned structures
KR102120523B1 (ko) 프로세스 유도된 왜곡 예측 및 오버레이 에러의 피드포워드 및 피드백 보정
WO2020049974A1 (ja) 学習装置、推論装置、学習モデルの生成方法及び推論方法
US20200104708A1 (en) Training apparatus, inference apparatus and computer readable storage medium
US10628935B2 (en) Method and system for identifying defects of integrated circuits
CN110325843B (zh) 引导式集成电路缺陷检测
JPWO2020111258A1 (ja) 仮想測定装置、仮想測定方法及び仮想測定プログラム
Mack et al. Analytical linescan model for SEM metrology
TW202011110A (zh) 用於計算光學模型模擬的特徵核心的方法
JP6956806B2 (ja) データ処理装置、データ処理方法及びプログラム
TW202123057A (zh) 推論裝置、推論方法及推論程式
Valade et al. Tilted beam SEM, 3D metrology for industry
US20230369032A1 (en) Etching processing apparatus, etching processing system, analysis apparatus, etching processing method, and storage medium
WO2022145225A1 (ja) パラメータ導出装置、パラメータ導出方法及びパラメータ導出プログラム
Chu et al. Overlay run-to-run control based on device structure measured overlay in DRAM HVM
TWI837123B (zh) 光阻及蝕刻模型建立
Nikitin Use of mathematical modeling for measurements of nanodimensions in microelectronics
Fang et al. A compact physical CD-SEM simulator for IC photolithography modeling applications
TW202230204A (zh) 用於提取特徵向量以辨識圖案物件之特徵提取方法
TW202336623A (zh) 用於建立基於物理之模型之系統和方法
TW202006817A (zh) 光阻及蝕刻模型建立
JP2002289842A (ja) シミュレーション装置およびシミュレーション方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541139

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217006357

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856532

Country of ref document: EP

Kind code of ref document: A1