WO2020049641A1 - Communication device, and method for structuring logic circuit - Google Patents

Communication device, and method for structuring logic circuit Download PDF

Info

Publication number
WO2020049641A1
WO2020049641A1 PCT/JP2018/032821 JP2018032821W WO2020049641A1 WO 2020049641 A1 WO2020049641 A1 WO 2020049641A1 JP 2018032821 W JP2018032821 W JP 2018032821W WO 2020049641 A1 WO2020049641 A1 WO 2020049641A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
detection device
selection signal
logic circuit
unit
Prior art date
Application number
PCT/JP2018/032821
Other languages
French (fr)
Japanese (ja)
Inventor
英和 金井
壮志 野村
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2018/032821 priority Critical patent/WO2020049641A1/en
Priority to JP2020540906A priority patent/JP7054416B2/en
Publication of WO2020049641A1 publication Critical patent/WO2020049641A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the present disclosure relates to a technology for constructing a logic circuit of a programmable logic device that communicates with a detection device that detects and outputs position information of a motor or the like.
  • Patent Document 1 there is a technique for changing input / output characteristics of a programmable logic device such as an FPGA (Field Programmable Gate Array) (for example, Patent Document 1).
  • the PROM of the FPGA device described in Patent Literature 1 stores two types of configuration information having different input / output characteristics.
  • the FPGA device selects configuration information according to the magnitude of the power supply voltage and the like, and constructs a logic circuit based on the selected configuration information.
  • the logic circuit may be constructed using configuration information provided by an encoder manufacturer. it can.
  • an encoder or the like of another manufacturer is connected to the constructed logic circuit, there is a possibility that position information cannot be appropriately transmitted and received between the logic circuit and the encoder due to a difference in communication protocol or the like.
  • the present application has been made in view of the above-described problem, and is capable of appropriately transmitting and receiving position information between the changed detection device and the programmable logic device even when the connected detection device is changed. It is an object of the present invention to provide a method for constructing a device and a logic circuit.
  • connection unit connected to a detection device that detects and outputs position information, first configuration information for constructing a logic circuit capable of communicating with the detection device,
  • a storage unit capable of storing first configuration information and second configuration information for constructing the logic circuit capable of communicating with the detection device different in type from the detection device capable of communicating with the first configuration information;
  • a selection signal output unit that outputs a selection signal for selecting the second configuration information, and, based on the selection signal output from the selection signal output unit, reads the first configuration information or the second configuration information and reads the first configuration information or the second configuration information.
  • a programmable logic device for constructing a logic circuit and executing the communication of the position information between the connection unit and the detection device connected by the constructed logic circuit; Comprising scan and, the, discloses a communication device.
  • the contents of the present disclosure are not limited to the implementation as a communication device, but can be implemented as a method of constructing a logic circuit in a communication device.
  • the programmable logic device can construct a logic circuit according to the type of the detection device based on the selection signal, and the constructed logic circuit can communicate with the detection device. Therefore, even if the detection device connected to the connection unit is changed, it is possible to appropriately transmit and receive the position information between the changed detection device and the programmable logic device.
  • FIG. 3 is a block diagram showing a configuration related to a driving portion of a work transfer device in the configuration of the work transfer system.
  • FIG. 3 is a block diagram illustrating a connection configuration between an FPGA substrate and a first driving unit. 9 is a flowchart for explaining processing at the time of activation.
  • FIG. 1 is a perspective view showing a schematic configuration of the work transfer system 10.
  • the work transfer system 10 includes a work transfer device 11, a work supply device 13, a work storage member 15, and the like on a base 10A.
  • the work transfer system 10 transfers the work 21 stored in the work storage member 15 to the pallet 17 used for subsequent work based on the control of a system control unit 19 (see FIG. 3) provided in the base 10A. Move to and place on.
  • the work transfer system 10 allows the work robot (not shown) or a worker in a post-process to easily work the work 21 placed on the sampling mounting table 15A of the work storage member 15 in an indefinite posture. Is placed on the pallet 17 while being aligned in a predetermined posture.
  • the “undefined posture” refers to a state where the position, the direction, and the like of the work 21 are not unified. In the following description, as shown in FIG.
  • the direction in which the pallet 17 is transported in the work transfer system 10 is defined as a horizontal direction (X-axis), and a direction orthogonal to the left-right direction and parallel to the plane of the pallet 17 transported.
  • X-axis horizontal direction
  • Y-axis front-rear direction
  • Z-axis vertical direction
  • the work 21 to be worked is, for example, a bolt.
  • the work 21 is not limited to a bolt, and may be, for example, another mechanical component (a nut, a washer, or the like).
  • the work 21 has at least a part thereof, for example, an adsorption portion 23 shown in an enlarged view of FIG.
  • the work 21 is attracted by the electromagnets of the work transfer device 11 and the work supply device 13 to be described later, and the work 21 is moved while being suctioned by the suction portion 23 formed of a magnetic material.
  • the work storage member 15 is a member for storing the work 21 and is provided with a plurality of boxes having a box shape with a bottom and an open top. Each of the work accommodating members 15 is provided with a sampling mounting table 15A at a predetermined height from the bottom. The work 21 stored at the bottom of the work accommodating member 15 is transferred by the work supply device 13 to the mounting table 15A. A part of the bottom of the work storage member 15 is inclined, and the work 21 dropped from the mounting table 15A is stored in one place.
  • a moving unit 16 for moving the work accommodating member 15 is provided on the base 10A.
  • the moving unit 16 moves between the storage table 16A on which the work storage member 15 is placed, the retracted position of the storage table 16A (the position shown by the dotted line in FIG. 1), and the transfer processing position (the position shown by the solid line in FIG. 1). And a rail 16B to be moved.
  • the system control unit 19 (see FIG. 3) drives a drive source (not shown) based on an operation from an operator or the like, and moves the accommodation table 16A to the evacuation position or the placement processing position. Thereby, the worker can appropriately replenish the work 21 to the work storage member 15.
  • the pallet 17 is a member on which the works 21 are arranged and mounted, has a magnetic force, and fixes the work 21 by the magnetic force.
  • the work transfer device 11 arranges the bolts, which are the works 21, on the pallet 17 at a predetermined interval with the head of the work 21 facing downward.
  • the work transfer device 11 arranges the work 21 at a predetermined position on the pallet 17 determined according to the type of the work 21.
  • the work transfer system 10 includes a transport unit 25 that transports the pallet 17.
  • the transport unit 25 is a unit that carries in and transports the pallet 17, and fixes and unloads the work 21 at the transfer position.
  • the transport unit 25 has a pair of conveyor belts arranged at predetermined intervals in the front-rear direction and extending in the left-right direction.
  • the pallet 17 is conveyed by this conveyor belt.
  • the system control unit 19 controls the transport unit 25 to carry out, for example, the pallet 17 to a subsequent device.
  • the subsequent device identifies the position of the work 21 on the pallet 17 based on, for example, position information predetermined according to the type of the work 21 and performs the work.
  • FIG. 2 shows a schematic configuration of the work transfer device 11.
  • the work transfer device 11 collects the work 21 from each of the work storage members 15 and places the collected work 21 on the pallet 17.
  • the work transfer device 11 includes a base 31, an arm 33, an end effector 39, and the like.
  • the base 31 is fixed on a base 10A (see FIG. 1) of the work transfer system 10, and has a support shaft 41 for supporting the arm 33.
  • the support shaft portion 41 has a cylindrical portion 41A and a holding portion 41B.
  • the cylindrical portion 41A has a cylindrical shape extending in the vertical direction, and has a holding portion 41B at an upper end portion.
  • the holding portion 41B supports the base end of the arm portion 33.
  • the base 31 incorporates a first drive unit 32, and drives the first drive unit 32 based on the control of the FPGA board 81 (see FIG. 3) to rotate the column 41A.
  • the holding section 41B is driven to rotate about an axis extending in the vertical direction as a central axis with the rotation of the cylindrical section 41A.
  • the arm unit 33 is a so-called articulated robot in which the first arm 45 and the second arm 46 are connected from the base end to the distal end.
  • the first arm 45 is a longitudinal member extending in one direction, and has a base end supported by the holding portion 41 ⁇ / b> B of the support shaft 41.
  • the holding part 41B of the support shaft part 41 is connected to the first arm 45 via the second driving part 35.
  • the second drive unit 35 rotates the first arm 45 with respect to the holding unit 41B about a direction perpendicular to the up-down direction as a center axis based on the control of the FPGA board 81 (see FIG. 3).
  • the second arm 46 is connected to the distal end of the first arm 45 via the third drive unit 37.
  • the second arm 46 is a longitudinal member extending in one direction from the tip of the first arm 45.
  • the third drive unit 37 moves the distal end of the first arm 45 with respect to the distal end of the first arm 45 based on the control of the FPGA board 81 (see FIG. 3) with the direction perpendicular to the extending direction of the first arm 45 as the central axis.
  • the two arms 46 are rotated.
  • the end effector 39 is provided at the distal end of the second arm 46 and is configured to be detachable from the second arm 46.
  • the type of the end effector 39 can be changed according to its use.
  • the end effector 39 mounted in FIG. 2 is an example, and includes a fourth driving unit 51, a sampling unit 53, an imaging unit 55, and a pedestal unit 57.
  • the fourth drive section 51 rotates the pedestal section 57 of the end effector 39 about a direction orthogonal to the extending direction of the second arm 46 as a center axis based on the control of the FPGA board 81 (see FIG. 3).
  • the pedestal portion 57 is an L-shaped plate member, and the sampling portion 53 is attached to a tip portion.
  • the collecting unit 53 is a member that attracts and collects the suction site 23 (see the enlarged view of FIG. 1) of the work 21, and includes a attracting unit 61, a pair of holding units 63, and a fixing member 67.
  • the attracting portion 61, the holding portion 63, and the fixing member 67 are disposed between the two plates 65.
  • the fixing member 67 is a rod-shaped member, and is configured to be vertically movable by an air cylinder 71.
  • the air cylinder 71 moves the fixing member 67 up and down according to the amount of air supplied from an air supply unit (not shown) provided on the base 10A.
  • the fixing member 67 is arranged above the plate 65 at the initial position, and moves downward when the work 21 is clamped.
  • the pair of holding portions 63 are rotatably supported at both ends of a rod-shaped fixing member 67.
  • the attracting portion 61 is configured by connecting a shaft member to an electromagnet, and attracts and collects the magnetic work 21 to the tip of the shaft member.
  • the attracting portion 61 is fixed below the plate 65.
  • the attracting portion 61 is configured to generate, for example, three levels of magnetic force (attractive force) in accordance with the power supplied from the power supply 77 (see FIG. 3) provided on the base 10A.
  • the pair of holding portions 63 sandwich and support the work 21 (see FIG. 1) after being attracted by the attracting portion 61.
  • the pair of holding portions 63 are provided with holding pins 69.
  • the holding pin 69 is fixed to a surface of each of the holding portions 63 facing the plate 65.
  • Guide grooves 65 ⁇ / b> A for guiding the pin 69 are formed in each of the plates 65.
  • the imaging unit 55 is a unit that captures an image, and is fixed to a surface on the distal end side of the plate 65.
  • the imaging unit 55 transmits the captured image data to the system control unit 19 (see FIG. 3).
  • the work supply device 13 shown in FIG. 1 is configured such that the end effector 73 can be exchanged in accordance with its use, similarly to the work transfer device 11.
  • the work supply device 13 has the same configuration as the work transfer device 11 except for the type of the end effector 73, and its operation is controlled by the system control unit 19 and the FPGA board 81. Therefore, a detailed description of the work supply device 13 is omitted.
  • the configuration of the first to fourth driving units 32 to 51 will be described.
  • the configurations of the second drive unit 35, the third drive unit 37, and the fourth drive unit 51 are the same as those of the first drive unit 32. Therefore, in the following description, the first drive unit 32 will be mainly described, and the description of the other drive units will be omitted as appropriate.
  • FIG. 3 shows a configuration related to a driving portion of the work transfer device 11 in the configuration of the work transfer system 10.
  • the first drive unit 32 has a servomotor 83 as a drive source, and an encoder 85 that detects and outputs position information ED such as the rotational position of the servomotor 83.
  • the encoder 85 is connected via an encoder cable 87 to an FPGA board 81 provided on the base 10A.
  • the second drive unit 35 and the like other than the first drive unit 32 are also connected to the FPGA board 81 via the encoder cable 87.
  • FIG. 4 shows a connection configuration between the FPGA substrate 81 and the first drive unit 32.
  • driving units other than the first driving unit 32 (the second driving unit 35 and the like) are not shown in order to avoid complicating the drawing.
  • the FPGA board 81 includes an amplifier circuit 91 (FPGA 92), a connection unit 93, an upper connection unit 95, a power supply connection unit 97, a memory 99, a memory controller 110, a CPU 111, And a switch 115.
  • the amplifier circuit 91, the connection unit 93, the upper connection unit 95, and the like can communicate with each other via a communication bus or the like.
  • the FPGA board 81 has an FPGA (Field Programmable Gate Array) 92 as a programmable logic device capable of constructing a logic circuit based on configuration information, for example.
  • the FPGA 92 reads the configuration information and constructs the amplifier circuit 91 with a logic circuit.
  • the programmable logic device of the present disclosure is not limited to an FPGA, but may be a programmable logic device (PLD), a composite programmable logic device (CPLD), or the like.
  • connection unit 93 is a connector mounted on the FPGA board 81, and is connected to the encoder cable 87 of the encoder 85.
  • connection unit 93 is not limited to the configuration mounted on the FPGA substrate 81, and may be configured to be connected to the FPGA substrate 81 by a cable or the like.
  • the connection unit 93 of the present embodiment is configured by a common interface that can be connected to a plurality of types of encoders 85.
  • the connector 89 provided at the tip of the encoder cable 87 has the same shape.
  • the connector 89 may be a connector provided at the end of an encoder cable 87 directly connected to the encoder 85, or may be a connector after the encoder cable 87 has been converted once. Therefore, in the encoder 85 of the present embodiment, the shape of the connector 89 is common even when the manufacturer, model number, model, and the like are different.
  • connection portion 93 has a shape connectable to the shared connector 89. For this reason, the connection unit 93 can be connected to different types of encoders 85.
  • the encoder 85 transmits the position information ED corresponding to the rotation drive of the servo motor 83 to the FPGA board 81 via the encoder cable 87, the connector 89, and the connection unit 93.
  • the upper connection unit 95 of the FPGA board 81 is connected to the system control unit 19 which is a higher control unit.
  • the FPGA board 81 is connected to a power supply unit 77 provided on the base 10A via a power supply connection unit 97.
  • the amplifier circuit 91 can control the power supply unit 77 via the power supply connection unit 97.
  • the amplifier circuit 91 controls the power supply unit 77 based on the position information ED input via the connection unit 93 and the command value input from the system control unit 19 via the upper connection unit 95.
  • the servo motor 83 of the first drive unit 32 is, for example, a motor driven by three-phase alternating current having coils of each phase of U-phase, V-phase, and W-phase. It is connected to the unit 77.
  • the servomotor 83 is driven according to the three-phase AC W supplied from the power supply unit 77 through the power supply line 90.
  • the amplifier circuit 91 changes the size, cycle, and the like of the three-phase AC W based on the position information ED and the like.
  • the FPGA board 81 executes feedback control on the servo motor 83 of the first drive unit 32.
  • the FPGA board 81 may execute not only control of the rotation position and rotation speed of the servo motor 83 but also torque control of the servo motor 83.
  • FIG. 3 illustrates a single power supply line 90 connected to each servo motor 83 of a plurality of driving units (the first driving unit 32 and the second driving unit 35) in order to avoid complicating the drawing. This is shown with a cable. Further, as described above, the second drive unit 35, the third drive unit 37, and the fourth drive unit 51 other than the first drive unit 32 have the same configuration as the first drive unit 32, and the amplifier circuit 91 Is feedback-controlled.
  • the first configuration information 101, the second configuration information 102, and the startup program 103 are stored in the memory 99 of the FPGA board 81.
  • the first and second configuration information 101 and 102 are configuration information for constructing a logic circuit functioning as the amplifier circuit 91.
  • the first configuration information 101 is, for example, information for constructing an amplifier circuit 91 capable of communicating the position information ED using a communication protocol different from that of the second configuration information 102.
  • the communication protocol referred to here is, for example, an agreement between the transmitting and receiving sides for normal communication such as a data format, a bit order, a communication speed, and a communication command used for communication of the position information ED.
  • the communication protocol may include a protocol defined by a communication standard such as HDLC (High Level Data Link Control Procedure) or a protocol uniquely defined by a manufacturer of the encoder 85.
  • the first configuration information 101 corresponds to, for example, an encoder 85 manufactured by Company A, and constructs an amplifier circuit 91 capable of communicating the position information ED with a communication protocol used by the encoder 85 manufactured by Company A.
  • the second configuration information 102 corresponds to, for example, an encoder 85 manufactured by Company B, and is information that configures an amplifier circuit 91 that can communicate the position information ED with a communication protocol used by the encoder 85 manufactured by Company B. is there.
  • the first configuration information 101 may be information corresponding to an encoder 85 of a different type from the second configuration information 102.
  • the first configuration information 101 and the second configuration information 102 may be encoders 85 of the same manufacturer or information corresponding to encoders 85 of different model numbers (eg, different data formats of the position information ED). That is, the first configuration information 101 only needs to be information corresponding to the encoder 85 that cannot perform communication with the amplifier circuit 91 constructed with the second configuration information 102.
  • the detection device of the present embodiment is the encoder 85 that detects the position information ED of the servomotor 83 (an example of the motor).
  • the FPGA 92 (an example of a programmable logic device) constructs, as a logic circuit, an amplifier circuit 91 that performs feedback control of the servomotor 83 based on the position information ED acquired from the encoder 85. According to this, it is possible to select the configuration information (the first and second configuration information 101 and 102) according to the type of the encoder 85, and construct the amplifier circuit 91 according to the type of the encoder 85 with a logic circuit. Then, the feedback control based on the position information ED of the encoder 85 can be appropriately performed on the servo motor 83 by the constructed amplifier circuit 91.
  • the first configuration information 101 of the present embodiment is, for example, an amplifier circuit 91 (an example of a logic circuit) capable of communicating the position information ED with an encoder 85 (an example of a first detection device) manufactured by Company A. Is the information to construct.
  • the second configuration information 102 includes, for example, an amplifier circuit 91 that can communicate the position information ED with an encoder 85 manufactured by Company B (an example of a second detection device) different from the encoder 85 manufactured by Company A. Information to build.
  • the encoder A manufactured by the company A and the encoder 85 manufactured by the company B communicate the position information ED using different communication protocols. According to this, as will be described later, it is possible to construct an amplifier circuit 91 that can execute communication with the encoder 85 even when any of the encoders 85 having different communication protocols for transmitting and receiving the position information ED is connected.
  • the startup program 103 in the memory 99 is a program executed by the CPU 111 when the FPGA board 81 is started.
  • the memory 99 has, for example, a nonvolatile memory such as a flash memory, a volatile memory such as a RAM, and the like.
  • the storage unit that stores the configuration information is not limited to a memory, and may be another storage device such as a hard disk.
  • the memory controller 110 controls a writing process to the memory 99 and a reading process from the memory 99.
  • the CPU 111 reads out the startup program 103 from the memory 99 via the memory controller 110 and executes it.
  • the CPU 111 executes the start-up program 103 to select configuration information (first and second configuration information 101, 102) to be loaded on the FPGA 92 of the FPGA board 81, and constructs the amplifier circuit 91 based on the configuration information.
  • the CPU 111 that executes the startup program 103 may be simply described by a device name. For example, the statement that “the CPU 111 determines the signal level and reports an error according to the determination result” states that “the CPU 111 determines the signal level by reading and executing the startup program 103, and Notify an error accordingly. "
  • connection section 93 of the present embodiment is provided with a connection terminal 113 for determining the type of the encoder 85 connected to the connection section 93.
  • the connection terminal 113 short-circuits a specific connection pin and outputs a high-level first selection signal CS1 to the CPU 111.
  • a specific connection pin is connected to the ground, and the connection terminal 113 outputs a low-level first selection signal CS1 to the CPU 111. That is, when different types of encoders 85 are connected, the connection terminal 113 outputs the first selection signal CS1 having a different signal level.
  • the connection terminal 113 outputs not only a configuration corresponding to two types of encoders 85 such as company A and company B, but also a first selection signal CS1 having different signal levels corresponding to three or more types of encoders 85.
  • the configuration may be such that: For example, the connection terminal 113 receives the first selection signal CS1 of the first signal level when the connector 89 of Company A is connected, and the first selection signal CS1 of the second signal level when the connector 89 of Company B is connected. , C, the first selection signal CS1 of the third signal level may be output.
  • connection section 93 of the present embodiment is a common interface that can be connected to a plurality of types of encoders 85.
  • the connection terminal 113 (an example of a selection signal output section) is provided in the connection section 93, and varies according to the connection structure of the connector 89 of the encoder 85 connected to the connection section 93 (an example of a selection signal). Is output. According to this, the connection terminal 113 can output a different first selection signal CS1 depending on the connection structure of the connector 89 of the encoder 85 connected to the connection section 93, for example, the position of the connection pin or the position of GND.
  • the configuration information (the first configuration information 101 or the second configuration information 102) to be read by the FPGA 92 by changing the signal level or the like of the first selection signal CS1 while reducing the number of the connection units 93 by sharing the interface.
  • the CPU 111 appropriately.
  • the dip switch 115 is a small switch mounted on the FPGA substrate 81, and is provided with, for example, a slide switch that can be slid.
  • the dip switch 115 outputs a second selection signal CS2 having a different signal level to the CPU 111, for example, depending on the position of the slide switch. For example, when the dip switch 115 moves the slide switch to the first position, the dip switch 115 outputs the second selection signal CS2 at a high level, and moves the slide switch to the second position different from the first position. In this case, a low-level second selection signal CS2 is output.
  • the CPU 111 determines whether to use the first configuration information 101 or the second configuration information 102 based on the first selection signal CS1 of the connection terminal 113 and the second selection signal CS2 of the DIP switch 115. Thus, the user can select the configuration information to be used by operating the DIP switch 115.
  • the DIP switch 115 is not limited to a slide switch, and may be a push lock type switch or the like.
  • the dip switch 115 (an example of a selection signal output unit) of the present embodiment is a switch that outputs a different second selection signal CS2 (an example of a selection signal) according to an operation from the outside.
  • the user can change the type of the second selection signal CS2 by changing the setting of the DIP switch 115 provided on the FPGA board 81, and the configuration information to be read by the FPGA 92 (the first configuration information) 101 or the second configuration information 102) can be appropriately instructed to the CPU 111.
  • step (hereinafter simply referred to as “S”) 11 in FIG. 5 the power of the work transfer system 10 is turned on, and power is supplied to the FPGA board 81.
  • the CPU 111 reads and executes the activation program 103 from the memory 99 (S13).
  • the connection terminal 113 outputs a high-level or low-level first selection signal CS1 to the CPU 111 according to a connection structure (arrangement of connection pins and the like) of the connector 89 connected to the connection section 93.
  • the DIP switch 115 outputs a high-level or low-level second selection signal CS2 to the CPU 111 according to the position of the slide switch, that is, the setting by the user (S13).
  • the CPU 111 determines whether or not the signal levels of the two selection signals match (S15). For example, when the CPU 111 inputs the first selection signal CS1 at a high level, it means that the encoder 85 manufactured by Company A is connected. Further, for example, when the CPU 111 inputs the high-level second selection signal CS2, it means that the user has set the DIP switch 115 to connect the encoder 85 manufactured by Company A. Therefore, the CPU 111 determines whether or not the signal levels of the first selection signal CS1 and the second selection signal CS2 match, thereby setting the encoder 85 actually connected to the connector 89 and the setting of the DIP switch 115. It can be determined whether they match. This makes it possible to detect an error in the setting of the DIP switch 115 by the user and an error in the first selection signal CS1 due to damage to the connector 89.
  • the CPU 111 determines that the signal levels of the first selection signal CS1 and the second selection signal CS2 match (S15: YES), it executes S17, and when it determines that they do not match (S15: NO), it executes S19.
  • the CPU 111 reports the error, and ends the processing illustrated in FIG. In this case, for example, the CPU 111 displays an error such as “the setting of the dip switch 115 does not match the type of the encoder 85 (connector 89)” on the screen of the management PC connected to the work transfer system 10.
  • the CPU 111 notifies the error by turning on an error lamp provided on the work transfer device 11 or sounding a buzzer.
  • the user can recognize that the type of the connected encoder 85 does not match the type of the encoder 85 set by the DIP switch 115.
  • the user can take appropriate measures such as checking the model name of the encoder 85 and the setting of the DIP switch 115.
  • the CPU 111 similarly determines the match between the first selection signal CS1 and the second selection signal CS2 for each of the second drive unit 35, the third drive unit 37, and the fourth drive unit 51 other than the first drive unit 32. And so on.
  • the CPU 111 causes the FPGA 92 to read configuration information corresponding to the signal levels of the first selection signal CS1 and the second selection signal CS2, and constructs the amplifier circuit 91. For example, when both the first and second selection signals CS1 and CS2 are high-level signals, the CPU 111 causes the FPGA 92 to read the first configuration information 101 and causes the FPGA 92 to construct the amplifier circuit 91. Further, for example, when the first and second selection signals CS1 and CS2 are both low level signals, the CPU 111 causes the FPGA 92 to read the second configuration information 102 and configure the amplifier circuit 91. Thereby, the amplifier circuit 91 according to the manufacturer and the communication protocol is automatically constructed.
  • the amplifier circuit 91 starts communication with the encoder 85 of the first drive unit 32, and after setting initial values and the like, starts transmission and reception of position information ED and the like (S21).
  • an amplifier circuit 91 corresponding to a driving unit other than the first driving unit 32 (such as the second driving unit 35) is similarly constructed, and starts communicating the position information ED with the encoder 85 ( S21).
  • the amplifier circuit 91 corresponding to the type of the connected encoder 85 can be constructed, and the transmission and reception of the position information ED between the amplifier circuit 91 and the encoder 85 can be appropriately performed.
  • the FPGA board 81 is an example of a communication device.
  • the encoder 85 is an example of a detection device.
  • the amplifier circuit 91 is an example of a logic circuit.
  • the memory 99 is an example of a storage unit.
  • the connection terminal 113 and the DIP switch 115 are examples of a selection signal output unit.
  • the first selection signal CS1 and the second selection signal CS2 are examples of a selection signal.
  • the FPGA 92 is an example of a programmable logic device.
  • the FPGA board 81 includes a connection unit 93 connected to the encoder 85, a memory 99 capable of storing first configuration information 101 and second configuration information 102, and a first configuration information 101 or A connection terminal 113 and a DIP switch 115 for outputting selection signals (first selection signal CS1 and second selection signal CS2) for selecting second configuration information 102, and an amplifier circuit based on first and second selection signals CS1 and CS2 And an FPGA 92 configured to construct the amplifier circuit 91 and execute the communication of the position information ED by the constructed amplifier circuit 91.
  • the FPGA 92 reads the first configuration information 101 or the second configuration information 102 on the basis of the first and second selection signals CS1 and CS2, constructs the amplifier circuit 91, and determines the position between the first and second configuration signals 101 and 102.
  • the communication of the information ED is executed.
  • the FPGA 92 can construct an amplifier circuit 91 according to the type of the encoder 85 based on the first and second selection signals CS1 and CS2, and the constructed amplifier circuit 91 can communicate with the encoder 85. Therefore, even if the encoder 85 connected to the connection unit 93 is changed, it is possible to appropriately transmit and receive the position information ED between the changed encoder 85 and the amplifier circuit 91.
  • the configuration is such that two pieces of configuration information (first and second configuration information 101 and 102) are stored in the memory 99. That is, the configuration is compatible with two types of encoders 85.
  • the FPGA substrate 81 may have a configuration that can support three or more types.
  • a configuration that can communicate with a plurality of types of encoders 85 such as first configuration information 101 for company A, second configuration information 102 for company B, and third configuration information for company C, is stored in the memory 99. Information may be stored.
  • the connection terminal 113 and the DIP switch 115 are configured to output the first selection signal CS1 and the second selection signal CS2 having different signal levels (three or more signal levels) according to the number of configuration information. .
  • the selection signal may be changed without changing the signal level (high level or low level) of the first selection signal CS1 or the second selection signal CS2.
  • the connection terminal 113 may turn on a signal of a different signal line among a plurality of signal lines connected to the CPU 111 according to a connection structure (a type of the encoder 85) of the connector 89 to be connected.
  • the CPU 111 can determine which configuration information should be selected according to the signal line of the ON signal.
  • the DIP switch 115 may be configured to output the second selection signal CS2 having a different bit value depending on the position of the slide switch.
  • the CPU 111 can determine which configuration information should be selected based on the bit value input from the DIP switch 115.
  • the FPGA board 81 may be configured to include only one of the connection terminal 113 and the DIP switch 115.
  • the CPU 111 may select the configuration information based only on the input first selection signal CS1 or second selection signal CS2 without executing the determination process of S15 in FIG.
  • the process of selecting the first configuration information 101 or the second configuration information 102 does not have to be realized by executing the activation program 103 by the CPU 111, that is, by processing on software.
  • the memory 99 that stores the first configuration information 101 and the memory 99 that stores the second configuration information 102 are different memories.
  • a switch circuit for changing a connection circuit is connected to both of the two memories according to the signal level of the first selection signal CS1 to be input. Then, by changing the connection circuit of the switch circuit according to the signal level of the first selection signal CS1, the memory 99 for reading the configuration information may be changed, and the amplifier circuit 91 may be changed.
  • the detection device is not limited to the encoder 85 that detects the rotational position and the like of the servo motor 83, and may be, for example, a linear scale that detects the linear movement position information ED.
  • the FPGA board 81 may select the configuration information according to the type of the connected linear scale, and change the amplifier circuit 91 that controls the linear motor.
  • the amplifier circuit 91 can be changed according to the type of the linear scale, and the linear motor can be appropriately feedback-controlled by the amplifier circuit 91.
  • the FPGA substrate 81 may control a drive source of the moving unit 16 and a drive source of the transport unit 25.
  • 81 FPGA board (example of communication device), 83 servo motor (motor), 85 encoder (detection device), 89 connector, 91 amplifier circuit (logic circuit), 92 FPGA (programmable logic device), 93 connection section, 113 connection terminal (Selection signal output unit), CS1 ⁇ first selection signal (selection signal), CS2 ⁇ second selection signal (selection signal), ED ⁇ position information.

Abstract

The purpose of the present invention is to provide: a communication device with which it is possible, even when the detection device with which a connection is made is changed, to adequately exchange location information between a programmable logic device and the changed detection device; and a method for structuring a logic circuit. A communication device, comprising: a connection unit connected to a detection device for detecting and outputting location information; a storage unit capable of storing first configuration information for constructing a logic circuit capable of communicating with a detection device, and second configuration information for constructing a logic circuit capable of communicating with a detection device of a type different from the detection device capable of communicating with the first configuration information; a selection signal outputting unit for outputting a selection signal that selects the first configuration information or the second configuration information; and a programmable logic device for reading the first configuration information or the second configuration information on the basis of the selection signal outputted by the selection signal outputting unit, constructing a logic circuit, and communicating the location information with the detection device connected to the connection unit via the constructed logic circuit.

Description

通信装置及び論理回路の構築方法Communication device and logic circuit construction method
 本開示は、モータ等の位置情報を検出して出力する検出装置との間で通信を行うプログラマブル論理デバイスの論理回路を構築する技術に関するものである。 The present disclosure relates to a technology for constructing a logic circuit of a programmable logic device that communicates with a detection device that detects and outputs position information of a motor or the like.
 従来、FPGA(Field Programmable Gate Array)などのプログラマブル論理デバイスの入出力特性を変更する技術がある(例えば、特許文献1など)。特許文献1に記載されたFPGA装置のPROMには、入出力特性の異なる2種類のコンフィグ情報が記憶されている。FPGA装置は、電源電圧の大きさなどに応じてコンフィグ情報を選択し、選択したコンフィグ情報に基づいて論理回路を構築する。 Conventionally, there is a technique for changing input / output characteristics of a programmable logic device such as an FPGA (Field Programmable Gate Array) (for example, Patent Document 1). The PROM of the FPGA device described in Patent Literature 1 stores two types of configuration information having different input / output characteristics. The FPGA device selects configuration information according to the magnitude of the power supply voltage and the like, and constructs a logic circuit based on the selected configuration information.
特開平11-95994号公報JP-A-11-95994
 ところで、モータの位置情報を検出するエンコーダ等と通信を行う回路を、プログラマブル論理デバイスの論理回路で構築する場合、例えば、エンコーダの製造メーカが提供するコンフィグ情報を用いて論理回路を構築することができる。しかしながら、構築した論理回路に別のメーカのエンコーダなどを接続した場合、通信プロトコルの違いなどから論理回路とエンコーダとの間で位置情報を適切に送受信できない虞がある。 By the way, when a circuit that communicates with an encoder or the like that detects position information of a motor is constructed by a logic circuit of a programmable logic device, for example, the logic circuit may be constructed using configuration information provided by an encoder manufacturer. it can. However, when an encoder or the like of another manufacturer is connected to the constructed logic circuit, there is a possibility that position information cannot be appropriately transmitted and received between the logic circuit and the encoder due to a difference in communication protocol or the like.
 本願は、上記の課題に鑑みてなされたものであり、接続する検出装置を変更した場合であっても、変更後の検出装置とプログラマブル論理デバイスとの間で位置情報の送受信を適切に行える通信装置及び論理回路の構築方法を提供することを目的とする。 The present application has been made in view of the above-described problem, and is capable of appropriately transmitting and receiving position information between the changed detection device and the programmable logic device even when the connected detection device is changed. It is an object of the present invention to provide a method for constructing a device and a logic circuit.
 上記課題を解決するために、本明細書は、位置情報を検出して出力する検出装置と接続される接続部と、前記検出装置と通信可能な論理回路を構築する第1コンフィグ情報と、前記第1コンフィグ情報と通信可能な前記検出装置とは種類が異なる前記検出装置と通信可能な前記論理回路を構築する第2コンフィグ情報と、を記憶可能である記憶部と、前記第1コンフィグ情報又は前記第2コンフィグ情報を選択する選択信号を出力する選択信号出力部と、前記選択信号出力部から出力された前記選択信号に基づいて、前記第1コンフィグ情報又は前記第2コンフィグ情報を読み込んで前記論理回路を構築し、構築した前記論理回路により前記接続部と接続された前記検出装置との間で前記位置情報の通信を実行するプログラマブル論理デバイスと、を備える、通信装置を開示する。 In order to solve the above-mentioned problem, the present specification describes a connection unit connected to a detection device that detects and outputs position information, first configuration information for constructing a logic circuit capable of communicating with the detection device, A storage unit capable of storing first configuration information and second configuration information for constructing the logic circuit capable of communicating with the detection device different in type from the detection device capable of communicating with the first configuration information; A selection signal output unit that outputs a selection signal for selecting the second configuration information, and, based on the selection signal output from the selection signal output unit, reads the first configuration information or the second configuration information and reads the first configuration information or the second configuration information. A programmable logic device for constructing a logic circuit and executing the communication of the position information between the connection unit and the detection device connected by the constructed logic circuit; Comprising scan and, the, discloses a communication device.
 また、本開示の内容は、通信装置としての実施に限定されることなく、通信装置における論理回路の構築方法としても実施し得るものである。 内容 In addition, the contents of the present disclosure are not limited to the implementation as a communication device, but can be implemented as a method of constructing a logic circuit in a communication device.
 本開示の通信装置等によれば、プログラマブル論理デバイスは、検出装置の種類に応じた論理回路を選択信号に基づいて構築でき、構築した論理回路によって検出装置との通信が可能となる。従って、仮に、接続部と接続する検出装置を変更した場合であっても、変更後の検出装置とプログラマブル論理デバイスとの間で位置情報の送受信を適切に行うことができる。 According to the communication device and the like of the present disclosure, the programmable logic device can construct a logic circuit according to the type of the detection device based on the selection signal, and the constructed logic circuit can communicate with the detection device. Therefore, even if the detection device connected to the connection unit is changed, it is possible to appropriately transmit and receive the position information between the changed detection device and the programmable logic device.
本実施形態のワーク移載システムの概略構成図である。It is a schematic structure figure of a work transfer system of this embodiment. ワーク移載装置の概略構成図である。It is a schematic structure figure of a work transfer device. ワーク移載システムの構成のうち、ワーク移載装置の駆動部分に係わる構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration related to a driving portion of a work transfer device in the configuration of the work transfer system. FPGA基板と、第1駆動部との接続構成を示すブロック図である。FIG. 3 is a block diagram illustrating a connection configuration between an FPGA substrate and a first driving unit. 起動時の処理を説明するためのフローチャートである。9 is a flowchart for explaining processing at the time of activation.
 以下、本開示の一実施形態について図面を参照しながら説明する。まず、本開示の通信装置を具体化した一実施形態であるFPGA基板81(図3参照)を備える部品装着システムについて説明する。図1は、ワーク移載システム10の概略構成を示す斜視図である。図1に示すように、ワーク移載システム10は、ワーク移載装置11、ワーク供給装置13、ワーク収容部材15などを基台10A上に備えている。 Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings. First, a component mounting system including an FPGA board 81 (see FIG. 3), which is an embodiment of the communication device of the present disclosure, will be described. FIG. 1 is a perspective view showing a schematic configuration of the work transfer system 10. As shown in FIG. 1, the work transfer system 10 includes a work transfer device 11, a work supply device 13, a work storage member 15, and the like on a base 10A.
 ワーク移載システム10は、基台10A内に設けられたシステム制御部19(図3参照)の制御に基づいて、ワーク収容部材15に収容されたワーク21を、その後の作業に用いられるパレット17へ移動、載置させる。ワーク移載システム10は、例えば、不定姿勢でワーク収容部材15の採取用載置台15Aに載置されたワーク21を、後工程の作業用ロボット(図示略)や作業者が作業しやすいように、所定の姿勢で整列させた状態でパレット17に載置する。ここでいう「不定姿勢」とは、ワーク21の位置、方向などが統一されていない状態をいう。なお、以下の説明では、図1に示すように、ワーク移載システム10におけるパレット17を搬送する方向を左右方向(X軸)、左右方向に直交し搬送されるパレット17の平面と平行な方向を前後方向(Y軸)、左右方向及び前後方向に直交する方向を上下方向(Z軸)と称して説明する。 The work transfer system 10 transfers the work 21 stored in the work storage member 15 to the pallet 17 used for subsequent work based on the control of a system control unit 19 (see FIG. 3) provided in the base 10A. Move to and place on. The work transfer system 10 allows the work robot (not shown) or a worker in a post-process to easily work the work 21 placed on the sampling mounting table 15A of the work storage member 15 in an indefinite posture. Is placed on the pallet 17 while being aligned in a predetermined posture. Here, the “undefined posture” refers to a state where the position, the direction, and the like of the work 21 are not unified. In the following description, as shown in FIG. 1, the direction in which the pallet 17 is transported in the work transfer system 10 is defined as a horizontal direction (X-axis), and a direction orthogonal to the left-right direction and parallel to the plane of the pallet 17 transported. Are referred to as a front-rear direction (Y-axis), and a direction orthogonal to the left-right direction and the front-rear direction is referred to as a vertical direction (Z-axis).
 作業対象であるワーク21は、例えば、ボルトである。なお、ワーク21は、ボルトに限らず、例えば、他の機械部品(ナット、ワッシャなど)でもよく、機械部品に限らず、電気部品、電子部品、化学部品などでもよい。ワーク21は、少なくともその一部、例えば、図1の拡大図に示す吸着部位23が磁性体により形成されている。ワーク21は、磁性体により形成された吸着部位23を、後述するワーク移載装置11やワーク供給装置13が有する電磁石によって引き付けられ、吸着した状態で移動させられる。 ワ ー ク The work 21 to be worked is, for example, a bolt. The work 21 is not limited to a bolt, and may be, for example, another mechanical component (a nut, a washer, or the like). The work 21 has at least a part thereof, for example, an adsorption portion 23 shown in an enlarged view of FIG. The work 21 is attracted by the electromagnets of the work transfer device 11 and the work supply device 13 to be described later, and the work 21 is moved while being suctioned by the suction portion 23 formed of a magnetic material.
 ワーク収容部材15は、ワーク21を貯蔵する部材であり、上方が開放された有底箱型形状をなすボックスが複数個設けられている。ワーク収容部材15の各々には、底部から所定の高さに採取用載置台15Aが設けられている。ワーク収容部材15の底部に貯蔵したワーク21は、ワーク供給装置13によって採取用載置台15Aに移載される。ワーク収容部材15の底部は、一部が傾斜しており、採取用載置台15Aから落下したワーク21が一箇所に貯蔵される。 The work storage member 15 is a member for storing the work 21 and is provided with a plurality of boxes having a box shape with a bottom and an open top. Each of the work accommodating members 15 is provided with a sampling mounting table 15A at a predetermined height from the bottom. The work 21 stored at the bottom of the work accommodating member 15 is transferred by the work supply device 13 to the mounting table 15A. A part of the bottom of the work storage member 15 is inclined, and the work 21 dropped from the mounting table 15A is stored in one place.
 また、基台10A上には、ワーク収容部材15を移動させる移動部16が設けられている。移動部16は、ワーク収容部材15を載せる収容台16Aと、収容台16Aを退避位置(図1に点線で示す位置)と、移載処理位置(図1に実線で示す位置)との間で移動させるレール16Bとを有している。システム制御部19(図3参照)は、作業者からの操作等に基づいて、図示しない駆動源を駆動し、収容台16Aを退避位置、又は載置処理位置に移動させる。これにより、作業者は、ワーク収容部材15にワーク21の補充を適宜行うことが可能となる。 移動 A moving unit 16 for moving the work accommodating member 15 is provided on the base 10A. The moving unit 16 moves between the storage table 16A on which the work storage member 15 is placed, the retracted position of the storage table 16A (the position shown by the dotted line in FIG. 1), and the transfer processing position (the position shown by the solid line in FIG. 1). And a rail 16B to be moved. The system control unit 19 (see FIG. 3) drives a drive source (not shown) based on an operation from an operator or the like, and moves the accommodation table 16A to the evacuation position or the placement processing position. Thereby, the worker can appropriately replenish the work 21 to the work storage member 15.
 パレット17は、ワーク21を配列載置する部材であり、磁力を帯びており、ワーク21を磁力で固定する。ワーク移載装置11は、例えば、ワーク21であるボルトの頭部を下方にして所定間隔でパレット17に配列させる。ワーク移載装置11は、ワーク21の種類に応じて定められたパレット17上の所定位置にワーク21を配設する。 (4) The pallet 17 is a member on which the works 21 are arranged and mounted, has a magnetic force, and fixes the work 21 by the magnetic force. The work transfer device 11 arranges the bolts, which are the works 21, on the pallet 17 at a predetermined interval with the head of the work 21 facing downward. The work transfer device 11 arranges the work 21 at a predetermined position on the pallet 17 determined according to the type of the work 21.
 また、ワーク移載システム10は、パレット17を搬送する搬送部25を備えている。搬送部25は、パレット17の搬入、搬送、ワーク21の移載位置での固定、搬出を行うユニットである。搬送部25は、前後方向において所定間隔を間に設けて配置され、左右方向に向かって延びる1対のコンベアベルトを有している。パレット17は、このコンベアベルトにより搬送される。システム制御部19(図3参照)は、搬送部25を制御して、例えば、パレット17を後段の装置に搬出する。後段の装置は、パレット17上のワーク21の位置を、例えば、ワーク21の種類に応じて予め定められた位置情報に基づいて特定し作業を行う。 (5) The work transfer system 10 includes a transport unit 25 that transports the pallet 17. The transport unit 25 is a unit that carries in and transports the pallet 17, and fixes and unloads the work 21 at the transfer position. The transport unit 25 has a pair of conveyor belts arranged at predetermined intervals in the front-rear direction and extending in the left-right direction. The pallet 17 is conveyed by this conveyor belt. The system control unit 19 (see FIG. 3) controls the transport unit 25 to carry out, for example, the pallet 17 to a subsequent device. The subsequent device identifies the position of the work 21 on the pallet 17 based on, for example, position information predetermined according to the type of the work 21 and performs the work.
 次に、ワーク移載装置11の詳細な構成について説明する。図2は、ワーク移載装置11の概略構成を示している。ワーク移載装置11は、ワーク収容部材15の各々からワーク21を採取し、採取したワーク21をパレット17に載置する。図2に示すように、ワーク移載装置11は、基部31と、アーム部33と、エンドエフェクタ39などを有している。 Next, a detailed configuration of the work transfer device 11 will be described. FIG. 2 shows a schematic configuration of the work transfer device 11. The work transfer device 11 collects the work 21 from each of the work storage members 15 and places the collected work 21 on the pallet 17. As shown in FIG. 2, the work transfer device 11 includes a base 31, an arm 33, an end effector 39, and the like.
 基部31は、ワーク移載システム10の基台10A(図1参照)の上に固定されており、アーム部33を支持するための支持軸部41を有している。支持軸部41は、円柱部41Aと、保持部41Bとを有している。円柱部41Aは、上下方向に延設される円柱形状をなし、上端部に保持部41Bを有している。保持部41Bは、アーム部33の基端部を支持している。また、基部31は、第1駆動部32を内蔵しており、FPGA基板81(図3参照)の制御に基づいて第1駆動部32を駆動し円柱部41Aを回転させる。保持部41Bは、円柱部41Aの回転にともなって上下方向に沿った軸を中心軸として回転駆動する。 The base 31 is fixed on a base 10A (see FIG. 1) of the work transfer system 10, and has a support shaft 41 for supporting the arm 33. The support shaft portion 41 has a cylindrical portion 41A and a holding portion 41B. The cylindrical portion 41A has a cylindrical shape extending in the vertical direction, and has a holding portion 41B at an upper end portion. The holding portion 41B supports the base end of the arm portion 33. Further, the base 31 incorporates a first drive unit 32, and drives the first drive unit 32 based on the control of the FPGA board 81 (see FIG. 3) to rotate the column 41A. The holding section 41B is driven to rotate about an axis extending in the vertical direction as a central axis with the rotation of the cylindrical section 41A.
 アーム部33は、基端部から先端部に向かって第1アーム45及び第2アーム46を連結させた所謂、多関節ロボットである。第1アーム45は、一方向に延びる長手部材であり、支持軸部41の保持部41Bによって基端部を支持されている。支持軸部41の保持部41Bは、第2駆動部35を介して第1アーム45と連結されている。第2駆動部35は、FPGA基板81(図3参照)の制御に基づいて、上下方向と直交する方向を中心軸として保持部41Bに対して第1アーム45を回転させる。 The arm unit 33 is a so-called articulated robot in which the first arm 45 and the second arm 46 are connected from the base end to the distal end. The first arm 45 is a longitudinal member extending in one direction, and has a base end supported by the holding portion 41 </ b> B of the support shaft 41. The holding part 41B of the support shaft part 41 is connected to the first arm 45 via the second driving part 35. The second drive unit 35 rotates the first arm 45 with respect to the holding unit 41B about a direction perpendicular to the up-down direction as a center axis based on the control of the FPGA board 81 (see FIG. 3).
 第2アーム46は、第1アーム45の先端部に第3駆動部37を介して連結されている。第2アーム46は、第1アーム45の先端部から一方向に延びる長手部材である。第3駆動部37は、FPGA基板81(図3参照)の制御に基づいて、第1アーム45の延設方向に対して直交する方向を中心軸として第1アーム45の先端部に対して第2アーム46を回転させる。 The second arm 46 is connected to the distal end of the first arm 45 via the third drive unit 37. The second arm 46 is a longitudinal member extending in one direction from the tip of the first arm 45. The third drive unit 37 moves the distal end of the first arm 45 with respect to the distal end of the first arm 45 based on the control of the FPGA board 81 (see FIG. 3) with the direction perpendicular to the extending direction of the first arm 45 as the central axis. The two arms 46 are rotated.
 エンドエフェクタ39は、第2アーム46の先端部に設けられ、第2アーム46に対して着脱可能に構成されている。ワーク移載装置11は、その用途に応じて、エンドエフェクタ39の種類を変更可能となっている。図2において装着しているエンドエフェクタ39は、一例であり、第4駆動部51と、採取部53と、撮像部55と、台座部57を有している。第4駆動部51は、FPGA基板81(図3参照)の制御に基づいて、第2アーム46の延設方向に対して直交する方向を中心軸としてエンドエフェクタ39の台座部57を回転させる。 The end effector 39 is provided at the distal end of the second arm 46 and is configured to be detachable from the second arm 46. In the work transfer device 11, the type of the end effector 39 can be changed according to its use. The end effector 39 mounted in FIG. 2 is an example, and includes a fourth driving unit 51, a sampling unit 53, an imaging unit 55, and a pedestal unit 57. The fourth drive section 51 rotates the pedestal section 57 of the end effector 39 about a direction orthogonal to the extending direction of the second arm 46 as a center axis based on the control of the FPGA board 81 (see FIG. 3).
 図2に示すように、台座部57は、L字形状の板部材であり、先端部分に採取部53が取り付けられている。採取部53は、ワーク21の吸着部位23(図1の拡大図参照)を引き付けて採取する部材であり、引付部61、一対の挟持部63、固定部材67などを有している。引付部61、挟持部63及び固定部材67は、2枚のプレート65の間に配設されている。固定部材67は、棒状の部材であり、エアシリンダ71によって上下動可能に構成されている。エアシリンダ71は、基台10Aに設けられたエア供給部(図示略)から供給されるエアの供給量に応じて固定部材67を上下動させる。 台 As shown in FIG. 2, the pedestal portion 57 is an L-shaped plate member, and the sampling portion 53 is attached to a tip portion. The collecting unit 53 is a member that attracts and collects the suction site 23 (see the enlarged view of FIG. 1) of the work 21, and includes a attracting unit 61, a pair of holding units 63, and a fixing member 67. The attracting portion 61, the holding portion 63, and the fixing member 67 are disposed between the two plates 65. The fixing member 67 is a rod-shaped member, and is configured to be vertically movable by an air cylinder 71. The air cylinder 71 moves the fixing member 67 up and down according to the amount of air supplied from an air supply unit (not shown) provided on the base 10A.
 固定部材67は、初期位置ではプレート65の上方に配置され、ワーク21を挟持する際に下方に移動する。一対の挟持部63は、棒状の固定部材67の両端に回動可能に軸支されている。一対の挟持部63は、固定部材67が初期位置にあるときは(図2の左側の拡大図参照)、プレート65の内部に収納されている。引付部61は、電磁石に軸部材を接続して構成されており、当該軸部材の先端に磁性体のワーク21を引き付けて採取するものである。引付部61は、プレート65の下方に固定されている。引付部61は、基台10Aに設けられた電源部77(図3参照)から供給される電力に応じて、例えば3段階の磁力(引付力)を生じるよう構成されている。 The fixing member 67 is arranged above the plate 65 at the initial position, and moves downward when the work 21 is clamped. The pair of holding portions 63 are rotatably supported at both ends of a rod-shaped fixing member 67. When the fixing member 67 is at the initial position (see the enlarged view on the left side in FIG. 2), the pair of holding portions 63 are housed inside the plate 65. The attracting portion 61 is configured by connecting a shaft member to an electromagnet, and attracts and collects the magnetic work 21 to the tip of the shaft member. The attracting portion 61 is fixed below the plate 65. The attracting portion 61 is configured to generate, for example, three levels of magnetic force (attractive force) in accordance with the power supplied from the power supply 77 (see FIG. 3) provided on the base 10A.
 一対の挟持部63は、引付部61が引き付けた後のワーク21(図1参照)を挟み込んで支持する。一対の挟持部63には、挟持ピン69が設けられている。挟持ピン69は、挟持部63の各々におけるプレート65と対向する面に固定されている。プレート65の各々には、挟持ピン69を案内するためのガイド溝65Aが形成されている。一対の挟持部63は、固定部材67が下方に移動すると、ガイド溝65Aにより所定の軌道に導かれ、その先端でワーク21を挟持する(図2の右側の拡大図参照)。また、撮像部55は、画像を撮像するユニットであり、プレート65の先端側の面に固定されている。撮像部55は、撮像した画像データをシステム制御部19(図3参照)へ送信する。 The pair of holding portions 63 sandwich and support the work 21 (see FIG. 1) after being attracted by the attracting portion 61. The pair of holding portions 63 are provided with holding pins 69. The holding pin 69 is fixed to a surface of each of the holding portions 63 facing the plate 65. Guide grooves 65 </ b> A for guiding the pin 69 are formed in each of the plates 65. When the fixing member 67 moves downward, the pair of holding portions 63 are guided to a predetermined trajectory by the guide grooves 65A, and hold the work 21 at their tips (see an enlarged view on the right side in FIG. 2). The imaging unit 55 is a unit that captures an image, and is fixed to a surface on the distal end side of the plate 65. The imaging unit 55 transmits the captured image data to the system control unit 19 (see FIG. 3).
 なお、図1に示すワーク供給装置13は、ワーク移載装置11と同様に、その用途に応じて、エンドエフェクタ73を交換可能に構成されている。また、ワーク供給装置13は、エンドエフェクタ73の種類を除いて、ワーク移載装置11と同様の構成となっており、システム制御部19やFPGA基板81により作動を制御される。このため、ワーク供給装置13の詳細な説明を省略する。 The work supply device 13 shown in FIG. 1 is configured such that the end effector 73 can be exchanged in accordance with its use, similarly to the work transfer device 11. The work supply device 13 has the same configuration as the work transfer device 11 except for the type of the end effector 73, and its operation is controlled by the system control unit 19 and the FPGA board 81. Therefore, a detailed description of the work supply device 13 is omitted.
 次に、第1駆動部32~第4駆動部51の構成について説明する。なお、第2駆動部35、第3駆動部37、第4駆動部51の構成は、第1駆動部32と同様となっている。このため、以下の説明では、第1駆動部32について主に説明し、他の駆動部についての説明を適宜省略する。 Next, the configuration of the first to fourth driving units 32 to 51 will be described. The configurations of the second drive unit 35, the third drive unit 37, and the fourth drive unit 51 are the same as those of the first drive unit 32. Therefore, in the following description, the first drive unit 32 will be mainly described, and the description of the other drive units will be omitted as appropriate.
 図3は、ワーク移載システム10の構成のうち、ワーク移載装置11の駆動部分に係わる構成を示している。図3に示すように、第1駆動部32は、駆動源としてのサーボモータ83と、サーボモータ83の回転位置等の位置情報EDを検出して出力するエンコーダ85と有している。エンコーダ85は、エンコーダケーブル87を介して、基台10Aに設けられたFPGA基板81と接続されている。同様に、第1駆動部32以外の第2駆動部35等も、エンコーダケーブル87を介してFPGA基板81と接続されている。 FIG. 3 shows a configuration related to a driving portion of the work transfer device 11 in the configuration of the work transfer system 10. As shown in FIG. 3, the first drive unit 32 has a servomotor 83 as a drive source, and an encoder 85 that detects and outputs position information ED such as the rotational position of the servomotor 83. The encoder 85 is connected via an encoder cable 87 to an FPGA board 81 provided on the base 10A. Similarly, the second drive unit 35 and the like other than the first drive unit 32 are also connected to the FPGA board 81 via the encoder cable 87.
 図4は、FPGA基板81と、第1駆動部32との接続構成を示している。なお、図面が煩雑となるのを避けるため、図4では、第1駆動部32以外の駆動部(第2駆動部35等)の図示を省略している。図4に示すように、FPGA基板81は、アンプ回路91(FPGA92)と、接続部93と、上位接続部95と、電源接続部97と、メモリ99と、メモリコントローラ110と、CPU111と、ディップスイッチ115とを備えている。アンプ回路91、接続部93、上位接続部95等は、通信バス等により互いに通信可能となっている。 FIG. 4 shows a connection configuration between the FPGA substrate 81 and the first drive unit 32. In FIG. 4, driving units other than the first driving unit 32 (the second driving unit 35 and the like) are not shown in order to avoid complicating the drawing. As shown in FIG. 4, the FPGA board 81 includes an amplifier circuit 91 (FPGA 92), a connection unit 93, an upper connection unit 95, a power supply connection unit 97, a memory 99, a memory controller 110, a CPU 111, And a switch 115. The amplifier circuit 91, the connection unit 93, the upper connection unit 95, and the like can communicate with each other via a communication bus or the like.
 また、FPGA基板81は、例えば、コンフィグ情報に基づいて論理回路を構築可能なプログラマブル論理デバイスとしてFPGA(Field Programmable Gate Array)92を有する。FPGA92は、コンフィグ情報を読み込んでアンプ回路91を論理回路で構築する。なお、本開示のプログラマブル論理デバイスは、FPGAに限らず、プログラマブルロジックデバイス(PLD)、複合プログラマブルロジックデバイス(CPLD)などでも良い。 The FPGA board 81 has an FPGA (Field Programmable Gate Array) 92 as a programmable logic device capable of constructing a logic circuit based on configuration information, for example. The FPGA 92 reads the configuration information and constructs the amplifier circuit 91 with a logic circuit. The programmable logic device of the present disclosure is not limited to an FPGA, but may be a programmable logic device (PLD), a composite programmable logic device (CPLD), or the like.
 FPGA92のアンプ回路91は、接続部93に接続されている。接続部93は、FPGA基板81に実装されたコネクタであり、エンコーダ85のエンコーダケーブル87と接続される。なお、接続部93は、FPGA基板81の基板上に実装される構成に限らず、FPGA基板81とケーブル等により接続される構成でも良い。 The amplifier circuit 91 of the FPGA 92 is connected to the connection unit 93. The connection section 93 is a connector mounted on the FPGA board 81, and is connected to the encoder cable 87 of the encoder 85. Note that the connection unit 93 is not limited to the configuration mounted on the FPGA substrate 81, and may be configured to be connected to the FPGA substrate 81 by a cable or the like.
 本実施形態の接続部93は、複数の種類のエンコーダ85と接続可能な共通のインタフェースで構成されている。例えば、エンコーダケーブル87の先端に設けられたコネクタ89は、同一の形状となっている。このコネクタ89は、エンコーダ85に直接接続されたエンコーダケーブル87の先端に設けられたコネクタでも良く、エンコーダケーブル87を一旦変換した後のコネクタでも良い。従って、本実施形態のエンコーダ85は、製造メーカ、型番や機種などが異なる場合であっても、コネクタ89の形状が共通化されている。 The connection unit 93 of the present embodiment is configured by a common interface that can be connected to a plurality of types of encoders 85. For example, the connector 89 provided at the tip of the encoder cable 87 has the same shape. The connector 89 may be a connector provided at the end of an encoder cable 87 directly connected to the encoder 85, or may be a connector after the encoder cable 87 has been converted once. Therefore, in the encoder 85 of the present embodiment, the shape of the connector 89 is common even when the manufacturer, model number, model, and the like are different.
 接続部93は、この共通化されたコネクタ89と接続可能な形状となっている。このため、接続部93は、種類の異なるエンコーダ85であっても接続可能となっている。エンコーダ85は、サーボモータ83の回転駆動に応じた位置情報EDを、エンコーダケーブル87、コネクタ89、接続部93を介してFPGA基板81に送信する。 The connection portion 93 has a shape connectable to the shared connector 89. For this reason, the connection unit 93 can be connected to different types of encoders 85. The encoder 85 transmits the position information ED corresponding to the rotation drive of the servo motor 83 to the FPGA board 81 via the encoder cable 87, the connector 89, and the connection unit 93.
 また、FPGA基板81の上位接続部95は、上位の制御部であるシステム制御部19と接続されている。また、FPGA基板81は、電源接続部97を介して、基台10Aに設けられた電源部77と接続されている。アンプ回路91は、電源接続部97を介して電源部77を制御可能となっている。アンプ回路91は、接続部93を介して入力した位置情報EDと、上位接続部95を介してシステム制御部19から入力した指令値とに基づいて電源部77を制御する。第1駆動部32のサーボモータ83は、例えば、U相,V相,W相の各相のコイルを有する三相交流で駆動するモータであり、電源線90を介して各相のコイルが電源部77に接続されている。サーボモータ83は、電源部77から電源線90を通じて供給される三相交流Wに応じて駆動する。アンプ回路91は、位置情報ED等に基づいて、三相交流Wの大きさや周期等を変更する。これにより、FPGA基板81は、第1駆動部32のサーボモータ83に対するフィードバック制御を実行する。FPGA基板81は、サーボモータ83の回転位置や回転速度の制御だけでなく、サーボモータ83のトルク制御なども実行しても良い。 (4) The upper connection unit 95 of the FPGA board 81 is connected to the system control unit 19 which is a higher control unit. The FPGA board 81 is connected to a power supply unit 77 provided on the base 10A via a power supply connection unit 97. The amplifier circuit 91 can control the power supply unit 77 via the power supply connection unit 97. The amplifier circuit 91 controls the power supply unit 77 based on the position information ED input via the connection unit 93 and the command value input from the system control unit 19 via the upper connection unit 95. The servo motor 83 of the first drive unit 32 is, for example, a motor driven by three-phase alternating current having coils of each phase of U-phase, V-phase, and W-phase. It is connected to the unit 77. The servomotor 83 is driven according to the three-phase AC W supplied from the power supply unit 77 through the power supply line 90. The amplifier circuit 91 changes the size, cycle, and the like of the three-phase AC W based on the position information ED and the like. As a result, the FPGA board 81 executes feedback control on the servo motor 83 of the first drive unit 32. The FPGA board 81 may execute not only control of the rotation position and rotation speed of the servo motor 83 but also torque control of the servo motor 83.
 なお、図3は、図面が煩雑となるのを避けるため、複数の駆動部(第1駆動部32や第2駆動部35)のそれぞれのサーボモータ83と接続される電源線90を1本のケーブルで図示している。また、上記したように、第1駆動部32以外の第2駆動部35、第3駆動部37、第4駆動部51は、第1駆動部32と同様の構成となっており、アンプ回路91によってフィードバック制御される。 FIG. 3 illustrates a single power supply line 90 connected to each servo motor 83 of a plurality of driving units (the first driving unit 32 and the second driving unit 35) in order to avoid complicating the drawing. This is shown with a cable. Further, as described above, the second drive unit 35, the third drive unit 37, and the fourth drive unit 51 other than the first drive unit 32 have the same configuration as the first drive unit 32, and the amplifier circuit 91 Is feedback-controlled.
 また、FPGA基板81のメモリ99には、第1コンフィグ情報101と、第2コンフィグ情報102と、起動プログラム103が記憶されている。第1及び第2コンフィグ情報101,102は、アンプ回路91として機能する論理回路を構築するためのコンフィグ情報である。第1コンフィグ情報101は、例えば、第2コンフィグ情報102とは異なる通信プロトコルで位置情報EDの通信が可能なアンプ回路91を構築する情報である。ここでいう通信プロトコルとは、例えば、位置情報EDの通信に用いられるデータ形式、ビット順、通信速度、通信コマンドなどの通信を正常に行うための送受信側の取り決めである。通信プロトコルは、HDLC(High level Data Link Control procedure)などの通信規格により規定されたものや、エンコーダ85の製造メーカなどにより独自に規定されたものを含んでも良い。具体的には、第1コンフィグ情報101は、例えば、A社製のエンコーダ85に対応しており、A社製のエンコーダ85で用いられる通信プロトコルで位置情報EDを通信可能なアンプ回路91を構築する情報である。また、第2コンフィグ情報102は、例えば、B社製のエンコーダ85に対応しており、B社製のエンコーダ85で用いられる通信プロトコルで位置情報EDを通信可能なアンプ回路91を構築する情報である。なお、第1コンフィグ情報101は、第2コンフィグ情報102とは異なる種類のエンコーダ85に対応した情報であれば良い。例えば、第1コンフィグ情報101と第2コンフィグ情報102とは、同一の製造メーカのエンコーダ85でも、型番の異なる(位置情報EDのデータ形式が異なるなどの)エンコーダ85に対応した情報でも良い。即ち、第1コンフィグ情報101は、第2コンフィグ情報102で構築したアンプ回路91では通信を実行できないエンコーダ85に対応した情報であれば良い。 {Circle around (1)} The first configuration information 101, the second configuration information 102, and the startup program 103 are stored in the memory 99 of the FPGA board 81. The first and second configuration information 101 and 102 are configuration information for constructing a logic circuit functioning as the amplifier circuit 91. The first configuration information 101 is, for example, information for constructing an amplifier circuit 91 capable of communicating the position information ED using a communication protocol different from that of the second configuration information 102. The communication protocol referred to here is, for example, an agreement between the transmitting and receiving sides for normal communication such as a data format, a bit order, a communication speed, and a communication command used for communication of the position information ED. The communication protocol may include a protocol defined by a communication standard such as HDLC (High Level Data Link Control Procedure) or a protocol uniquely defined by a manufacturer of the encoder 85. More specifically, the first configuration information 101 corresponds to, for example, an encoder 85 manufactured by Company A, and constructs an amplifier circuit 91 capable of communicating the position information ED with a communication protocol used by the encoder 85 manufactured by Company A. Information. The second configuration information 102 corresponds to, for example, an encoder 85 manufactured by Company B, and is information that configures an amplifier circuit 91 that can communicate the position information ED with a communication protocol used by the encoder 85 manufactured by Company B. is there. Note that the first configuration information 101 may be information corresponding to an encoder 85 of a different type from the second configuration information 102. For example, the first configuration information 101 and the second configuration information 102 may be encoders 85 of the same manufacturer or information corresponding to encoders 85 of different model numbers (eg, different data formats of the position information ED). That is, the first configuration information 101 only needs to be information corresponding to the encoder 85 that cannot perform communication with the amplifier circuit 91 constructed with the second configuration information 102.
 従って、本実施形態の検出装置は、サーボモータ83(モータの一例)の位置情報EDを検出するエンコーダ85である。そして、FPGA92(プログラマブル論理デバイスの一例)は、このエンコーダ85から取得した位置情報EDに基づいて、サーボモータ83をフィードバック制御するアンプ回路91を論理回路として構築する。これによれば、エンコーダ85の種類に応じてコンフィグ情報(第1及び第2コンフィグ情報101,102)を選択し、エンコーダ85の種類に応じたアンプ回路91を論理回路で構築できる。そして、構築したアンプ回路91によって、エンコーダ85の位置情報EDに基づいたフィードバック制御をサーボモータ83に適切に実施できる。 Therefore, the detection device of the present embodiment is the encoder 85 that detects the position information ED of the servomotor 83 (an example of the motor). The FPGA 92 (an example of a programmable logic device) constructs, as a logic circuit, an amplifier circuit 91 that performs feedback control of the servomotor 83 based on the position information ED acquired from the encoder 85. According to this, it is possible to select the configuration information (the first and second configuration information 101 and 102) according to the type of the encoder 85, and construct the amplifier circuit 91 according to the type of the encoder 85 with a logic circuit. Then, the feedback control based on the position information ED of the encoder 85 can be appropriately performed on the servo motor 83 by the constructed amplifier circuit 91.
 また、本実施形態の第1コンフィグ情報101は、例えば、A社製のエンコーダ85(第1検出装置の一例)との間で位置情報EDの通信が可能なアンプ回路91(論理回路の一例)を構築する情報である。第2コンフィグ情報102は、例えば、A社製のエンコーダ85とは種類が異なるB社製のエンコーダ85(第2検出装置の一例)との間で位置情報EDの通信が可能なアンプ回路91を構築する情報である。A社製のエンコーダ85と、B社製のエンコーダ85とは、互いに異なる通信プロトコルで位置情報EDの通信を行う。これによれば、後述するように、位置情報EDの送受信を行う通信プロトコルが異なるエンコーダ85のいずれを接続した場合でも、エンコーダ85と通信を実行できるアンプ回路91を構築できる。 The first configuration information 101 of the present embodiment is, for example, an amplifier circuit 91 (an example of a logic circuit) capable of communicating the position information ED with an encoder 85 (an example of a first detection device) manufactured by Company A. Is the information to construct. The second configuration information 102 includes, for example, an amplifier circuit 91 that can communicate the position information ED with an encoder 85 manufactured by Company B (an example of a second detection device) different from the encoder 85 manufactured by Company A. Information to build. The encoder A manufactured by the company A and the encoder 85 manufactured by the company B communicate the position information ED using different communication protocols. According to this, as will be described later, it is possible to construct an amplifier circuit 91 that can execute communication with the encoder 85 even when any of the encoders 85 having different communication protocols for transmitting and receiving the position information ED is connected.
 また、メモリ99の起動プログラム103は、FPGA基板81の起動時にCPU111によって実行されるプログラムである。メモリ99は、例えば、フラッシュメモリなどの不揮発性メモリと、RAMなどの揮発性メモリなどを有する。なお、コンフィグ情報を記憶する記憶部は、メモリに限らず、ハードディスクなどの他の記憶装置でも良い。 The startup program 103 in the memory 99 is a program executed by the CPU 111 when the FPGA board 81 is started. The memory 99 has, for example, a nonvolatile memory such as a flash memory, a volatile memory such as a RAM, and the like. Note that the storage unit that stores the configuration information is not limited to a memory, and may be another storage device such as a hard disk.
 メモリコントローラ110は、メモリ99に対する書き込み処理、及びメモリ99からの読み出し処理を制御する。CPU111は、例えば、ワーク移載システム10の電源が投入され、FPGA基板81に電力が供給されると、メモリコントローラ110を介して起動プログラム103をメモリ99から読み出して実行する。CPU111は、起動プログラム103を実行することで、FPGA基板81のFPGA92にローディングするコンフィグ情報(第1及び第2コンフィグ情報101,102)を選択し、コンフィグ情報に基づいてアンプ回路91を構築する。なお、以下の説明では、起動プログラム103を実行するCPU111のことを、単に装置名で記載する場合がある。例えば、「CPU111は、信号レベルを判断し、判断結果に応じてエラーを報知する」という記載は、「CPU111は、起動プログラム103を読み込んで実行することで、信号レベルを判断し、判断結果に応じてエラーを報知する」ということを意味する場合がある。 (4) The memory controller 110 controls a writing process to the memory 99 and a reading process from the memory 99. For example, when the power of the work transfer system 10 is turned on and power is supplied to the FPGA board 81, the CPU 111 reads out the startup program 103 from the memory 99 via the memory controller 110 and executes it. The CPU 111 executes the start-up program 103 to select configuration information (first and second configuration information 101, 102) to be loaded on the FPGA 92 of the FPGA board 81, and constructs the amplifier circuit 91 based on the configuration information. In the following description, the CPU 111 that executes the startup program 103 may be simply described by a device name. For example, the statement that “the CPU 111 determines the signal level and reports an error according to the determination result” states that “the CPU 111 determines the signal level by reading and executing the startup program 103, and Notify an error accordingly. "
 本実施形態の接続部93には、接続部93に接続されたエンコーダ85の種類を判断するための接続端子113が設けられている。接続端子113は、例えば、A社製のエンコーダ85のコネクタ89が接続された場合、特定の接続ピンがショートしてハイレベルの第1選択信号CS1をCPU111に出力する。また、接続端子113は、例えば、B社製のエンコーダ85のコネクタ89が接続された場合、特定の接続ピンがグランドと接続され、ローレベルの第1選択信号CS1をCPU111に出力する。即ち、接続端子113は、異なる種類のエンコーダ85が接続されると、異なる信号レベルの第1選択信号CS1を出力する。なお、接続端子113は、A社やB社などの2種類のエンコーダ85に対応した構成だけでなく、3以上の複数種類のエンコーダ85に対応して異なる信号レベルの第1選択信号CS1を出力する構成でも良い。例えば、接続端子113は、A社のコネクタ89を接続されると第1信号レベルの第1選択信号CS1を、B社のコネクタ89を接続されると第2信号レベルの第1選択信号CS1を、C社のコネクタ89を接続されると第3信号レベルの第1選択信号CS1を出力する構成でも良い。 接 続 The connection section 93 of the present embodiment is provided with a connection terminal 113 for determining the type of the encoder 85 connected to the connection section 93. For example, when the connector 89 of the encoder 85 manufactured by Company A is connected, the connection terminal 113 short-circuits a specific connection pin and outputs a high-level first selection signal CS1 to the CPU 111. For example, when the connector 89 of the encoder 85 manufactured by Company B is connected to the connection terminal 113, a specific connection pin is connected to the ground, and the connection terminal 113 outputs a low-level first selection signal CS1 to the CPU 111. That is, when different types of encoders 85 are connected, the connection terminal 113 outputs the first selection signal CS1 having a different signal level. The connection terminal 113 outputs not only a configuration corresponding to two types of encoders 85 such as company A and company B, but also a first selection signal CS1 having different signal levels corresponding to three or more types of encoders 85. The configuration may be such that: For example, the connection terminal 113 receives the first selection signal CS1 of the first signal level when the connector 89 of Company A is connected, and the first selection signal CS1 of the second signal level when the connector 89 of Company B is connected. , C, the first selection signal CS1 of the third signal level may be output.
 従って、本実施形態の接続部93は、複数の種類のエンコーダ85と接続可能な共通のインタフェースとなっている。接続端子113(選択信号出力部の一例)は、接続部93に設けられ、接続部93に接続されたエンコーダ85のコネクタ89の接続構造に応じて異なる第1選択信号CS1(選択信号の一例)を出力する。これによれば、接続端子113は、接続部93に接続されたエンコーダ85のコネクタ89の接続構造、例えば、接続ピンの位置やGNDの位置などに応じて異なる第1選択信号CS1を出力できる。これにより、インタフェースの共通化を図り接続部93の数を減らしつつ、第1選択信号CS1の信号レベル等を変更してFPGA92が読み込むべきコンフィグ情報(第1コンフィグ情報101又は第2コンフィグ情報102)をCPU111へ適切に指示できる。 Therefore, the connection section 93 of the present embodiment is a common interface that can be connected to a plurality of types of encoders 85. The connection terminal 113 (an example of a selection signal output section) is provided in the connection section 93, and varies according to the connection structure of the connector 89 of the encoder 85 connected to the connection section 93 (an example of a selection signal). Is output. According to this, the connection terminal 113 can output a different first selection signal CS1 depending on the connection structure of the connector 89 of the encoder 85 connected to the connection section 93, for example, the position of the connection pin or the position of GND. As a result, the configuration information (the first configuration information 101 or the second configuration information 102) to be read by the FPGA 92 by changing the signal level or the like of the first selection signal CS1 while reducing the number of the connection units 93 by sharing the interface. To the CPU 111 appropriately.
 また、ディップスイッチ115は、FPGA基板81の基板上に実装された小型のスイッチであり、例えば、スライド操作可能なスライドスイッチが設けられている。ディップスイッチ115は、例えば、スライドスイッチの位置に応じて異なる信号レベルの第2選択信号CS2をCPU111に出力する。例えば、ディップスイッチ115は、第1の位置にスライドスイッチを移動させた場合、ハイレベルの第2選択信号CS2を出力し、第1の位置とは異なる第2の位置にスライドスイッチを移動させた場合、ローレベルの第2選択信号CS2を出力する。CPU111は、接続端子113の第1選択信号CS1と、ディップスイッチ115の第2選択信号CS2に基づいて、第1コンフィグ情報101又は第2コンフィグ情報102のどちらを用いるかを判断する。これにより、ユーザは、ディップスイッチ115を操作することで、使用するコンフィグ情報を選択することができる。なお、ディップスイッチ115は、スライドスイッチに限らず、プッシュロック式のスイッチなどでも良い。 The dip switch 115 is a small switch mounted on the FPGA substrate 81, and is provided with, for example, a slide switch that can be slid. The dip switch 115 outputs a second selection signal CS2 having a different signal level to the CPU 111, for example, depending on the position of the slide switch. For example, when the dip switch 115 moves the slide switch to the first position, the dip switch 115 outputs the second selection signal CS2 at a high level, and moves the slide switch to the second position different from the first position. In this case, a low-level second selection signal CS2 is output. The CPU 111 determines whether to use the first configuration information 101 or the second configuration information 102 based on the first selection signal CS1 of the connection terminal 113 and the second selection signal CS2 of the DIP switch 115. Thus, the user can select the configuration information to be used by operating the DIP switch 115. The DIP switch 115 is not limited to a slide switch, and may be a push lock type switch or the like.
 従って、本実施形態のディップスイッチ115(選択信号出力部の一例)は、外部からの操作に応じて異なる第2選択信号CS2(選択信号の一例)を出力するスイッチである。これによれば、例えば、ユーザは、FPGA基板81に設けられたディップスイッチ115の設定を変更することで、第2選択信号CS2の種類を変更でき、FPGA92が読み込むべきコンフィグ情報(第1コンフィグ情報101又は第2コンフィグ情報102)をCPU111へ適切に指示できる。 Therefore, the dip switch 115 (an example of a selection signal output unit) of the present embodiment is a switch that outputs a different second selection signal CS2 (an example of a selection signal) according to an operation from the outside. According to this, for example, the user can change the type of the second selection signal CS2 by changing the setting of the DIP switch 115 provided on the FPGA board 81, and the configuration information to be read by the FPGA 92 (the first configuration information) 101 or the second configuration information 102) can be appropriately instructed to the CPU 111.
 次に、CPU111による起動時の処理について、図5を参照しつつ説明する。
 まず、図5のステップ(以下、単に「S」と記載する)11において、ワーク移載システム10の電源が投入され、FPGA基板81に電力が供給される。CPU111は、メモリ99から起動プログラム103を読み込んで実行する(S13)。また、接続端子113は、接続部93に接続されたコネクタ89の接続構造(接続ピンの配置等)に応じて、ハイレベル又はローレベルの第1選択信号CS1をCPU111に出力する。また、ディップスイッチ115は、電力を供給されると、スライドスイッチの位置、即ち、ユーザによる設定に応じて、ハイレベル又はローレベルの第2選択信号CS2をCPU111に出力する(S13)。
Next, a process at the time of startup by the CPU 111 will be described with reference to FIG.
First, in step (hereinafter simply referred to as “S”) 11 in FIG. 5, the power of the work transfer system 10 is turned on, and power is supplied to the FPGA board 81. The CPU 111 reads and executes the activation program 103 from the memory 99 (S13). The connection terminal 113 outputs a high-level or low-level first selection signal CS1 to the CPU 111 according to a connection structure (arrangement of connection pins and the like) of the connector 89 connected to the connection section 93. Further, when the power is supplied, the DIP switch 115 outputs a high-level or low-level second selection signal CS2 to the CPU 111 according to the position of the slide switch, that is, the setting by the user (S13).
 CPU111は、S13において、第1選択信号CS1及び第2選択信号CS2を入力すると、2つの選択信号の信号レベルが一致するか否かを判断する(S15)。例えば、ハイレベルの第1選択信号CS1をCPU111が入力した場合、A社製のエンコーダ85が接続されたこととなる。また、例えば、ハイレベルの第2選択信号CS2をCPU111が入力した場合、A社製のエンコーダ85を接続する旨の設定がユーザによってディップスイッチ115になされたこととなる。従って、CPU111は、第1選択信号CS1と第2選択信号CS2の信号レベルが一致するか否かを判断することで、コネクタ89に実際に接続されたエンコーダ85と、ディップスイッチ115の設定とが一致するか否かを判断できる。これにより、ユーザによるディップスイッチ115の設定の誤りや、コネクタ89の損傷による第1選択信号CS1の誤りを検出できる。 When the CPU 111 receives the first selection signal CS1 and the second selection signal CS2 in S13, the CPU 111 determines whether or not the signal levels of the two selection signals match (S15). For example, when the CPU 111 inputs the first selection signal CS1 at a high level, it means that the encoder 85 manufactured by Company A is connected. Further, for example, when the CPU 111 inputs the high-level second selection signal CS2, it means that the user has set the DIP switch 115 to connect the encoder 85 manufactured by Company A. Therefore, the CPU 111 determines whether or not the signal levels of the first selection signal CS1 and the second selection signal CS2 match, thereby setting the encoder 85 actually connected to the connector 89 and the setting of the DIP switch 115. It can be determined whether they match. This makes it possible to detect an error in the setting of the DIP switch 115 by the user and an error in the first selection signal CS1 due to damage to the connector 89.
 CPU111は、第1選択信号CS1と第2選択信号CS2の信号レベルが一致すると判断すると(S15:YES)、S17を実行し、一致しないと判断すると(S15:NO)、S19を実行する。CPU111は、S19において、エラーを報知し、図5に示す処理を終了する。この場合、CPU111は、例えば、ワーク移載システム10に接続された管理PCの画面に、「ディップスイッチ115の設定とエンコーダ85(コネクタ89)の種類が一致しません」などのエラーを表示する。あるいは、CPU111は、ワーク移載装置11に設けられたエラー用のランプを点灯させる、ブザーを鳴動させるなどによりエラーを報知する。これにより、ユーザは、接続したエンコーダ85の種類と、ディップスイッチ115で設定したエンコーダ85の種類とが一致していないことを認識できる。ユーザは、エンコーダ85の機種名やディップスイッチ115の設定を確認するなどの適切な対応を行うことができる。なお、CPU111は、第1駆動部32以外の第2駆動部35、第3駆動部37、第4駆動部51のそれぞれについて同様に、第1選択信号CS1と第2選択信号CS2の一致を判断等する。 When the CPU 111 determines that the signal levels of the first selection signal CS1 and the second selection signal CS2 match (S15: YES), it executes S17, and when it determines that they do not match (S15: NO), it executes S19. In S19, the CPU 111 reports the error, and ends the processing illustrated in FIG. In this case, for example, the CPU 111 displays an error such as “the setting of the dip switch 115 does not match the type of the encoder 85 (connector 89)” on the screen of the management PC connected to the work transfer system 10. Alternatively, the CPU 111 notifies the error by turning on an error lamp provided on the work transfer device 11 or sounding a buzzer. Thus, the user can recognize that the type of the connected encoder 85 does not match the type of the encoder 85 set by the DIP switch 115. The user can take appropriate measures such as checking the model name of the encoder 85 and the setting of the DIP switch 115. The CPU 111 similarly determines the match between the first selection signal CS1 and the second selection signal CS2 for each of the second drive unit 35, the third drive unit 37, and the fourth drive unit 51 other than the first drive unit 32. And so on.
 また、S17において、CPU111は、第1選択信号CS1及び第2選択信号CS2の信号レベルに応じたコンフィグ情報をFPGA92に読み込ませ、アンプ回路91を構築する。例えば、CPU111は、第1及び第2選択信号CS1,CS2がともにハイレベルの信号であった場合、第1コンフィグ情報101をFPGA92に読み込ませ、アンプ回路91を構築させる。また、例えば、CPU111は、第1及び第2選択信号CS1,CS2がともにローレベルの信号であった場合、第2コンフィグ情報102をFPGA92に読み込ませ、アンプ回路91を構築させる。これにより、製造メーカや通信プロトコルに応じたアンプ回路91が自動で構築される。 {Circle around (7)} In S17, the CPU 111 causes the FPGA 92 to read configuration information corresponding to the signal levels of the first selection signal CS1 and the second selection signal CS2, and constructs the amplifier circuit 91. For example, when both the first and second selection signals CS1 and CS2 are high-level signals, the CPU 111 causes the FPGA 92 to read the first configuration information 101 and causes the FPGA 92 to construct the amplifier circuit 91. Further, for example, when the first and second selection signals CS1 and CS2 are both low level signals, the CPU 111 causes the FPGA 92 to read the second configuration information 102 and configure the amplifier circuit 91. Thereby, the amplifier circuit 91 according to the manufacturer and the communication protocol is automatically constructed.
 アンプ回路91は、構築されると、第1駆動部32のエンコーダ85と通信を開始し、初期値の設定等を終えると、位置情報EDの送受信等を開始する(S21)。同様に、第1駆動部32以外の他の駆動部(第2駆動部35など)に対応するアンプ回路91も、同様に構築され、エンコーダ85との間で位置情報EDの通信を開始する(S21)。これにより、接続されたエンコーダ85の種類に応じたアンプ回路91を構築し、アンプ回路91とエンコーダ85との間で位置情報EDの送受信を適切に実行することができる。 (4) When constructed, the amplifier circuit 91 starts communication with the encoder 85 of the first drive unit 32, and after setting initial values and the like, starts transmission and reception of position information ED and the like (S21). Similarly, an amplifier circuit 91 corresponding to a driving unit other than the first driving unit 32 (such as the second driving unit 35) is similarly constructed, and starts communicating the position information ED with the encoder 85 ( S21). Thereby, the amplifier circuit 91 corresponding to the type of the connected encoder 85 can be constructed, and the transmission and reception of the position information ED between the amplifier circuit 91 and the encoder 85 can be appropriately performed.
 因みに、FPGA基板81は、通信装置の一例である。エンコーダ85は、検出装置の一例である。アンプ回路91は、論理回路の一例である。メモリ99は、記憶部の一例である。接続端子113、ディップスイッチ115は、選択信号出力部の一例である。第1選択信号CS1及び第2選択信号CS2は、選択信号の一例である。FPGA92は、プログラマブル論理デバイスの一例である。 Incidentally, the FPGA board 81 is an example of a communication device. The encoder 85 is an example of a detection device. The amplifier circuit 91 is an example of a logic circuit. The memory 99 is an example of a storage unit. The connection terminal 113 and the DIP switch 115 are examples of a selection signal output unit. The first selection signal CS1 and the second selection signal CS2 are examples of a selection signal. The FPGA 92 is an example of a programmable logic device.
 以上、上記した本実施形態によれば以下の効果を奏する。
 本実施形態の一態様では、FPGA基板81は、エンコーダ85と接続される接続部93と、第1コンフィグ情報101及び第2コンフィグ情報102を記憶可能であるメモリ99と、第1コンフィグ情報101又は第2コンフィグ情報102を選択する選択信号(第1選択信号CS1、第2選択信号CS2)を出力する接続端子113及びディップスイッチ115と、第1及び第2選択信号CS1,CS2に基づいてアンプ回路91を構築し、構築したアンプ回路91により位置情報EDの通信を実行するFPGA92と、を備える。
As described above, according to the above-described embodiment, the following effects can be obtained.
In one aspect of the present embodiment, the FPGA board 81 includes a connection unit 93 connected to the encoder 85, a memory 99 capable of storing first configuration information 101 and second configuration information 102, and a first configuration information 101 or A connection terminal 113 and a DIP switch 115 for outputting selection signals (first selection signal CS1 and second selection signal CS2) for selecting second configuration information 102, and an amplifier circuit based on first and second selection signals CS1 and CS2 And an FPGA 92 configured to construct the amplifier circuit 91 and execute the communication of the position information ED by the constructed amplifier circuit 91.
 これによれば、FPGA92は、第1及び第2選択信号CS1,CS2に基づいて、第1コンフィグ情報101又は第2コンフィグ情報102を読み込んでアンプ回路91を構築し、エンコーダ85との間で位置情報EDの通信を実行する。FPGA92は、エンコーダ85の種類に応じたアンプ回路91を第1及び第2選択信号CS1,CS2に基づいて構築でき、構築したアンプ回路91によってエンコーダ85との通信が可能となる。従って、仮に、接続部93と接続するエンコーダ85を変更した場合であっても、変更後のエンコーダ85とアンプ回路91との間で位置情報EDの送受信を適切に行うことができる。 According to this, the FPGA 92 reads the first configuration information 101 or the second configuration information 102 on the basis of the first and second selection signals CS1 and CS2, constructs the amplifier circuit 91, and determines the position between the first and second configuration signals 101 and 102. The communication of the information ED is executed. The FPGA 92 can construct an amplifier circuit 91 according to the type of the encoder 85 based on the first and second selection signals CS1 and CS2, and the constructed amplifier circuit 91 can communicate with the encoder 85. Therefore, even if the encoder 85 connected to the connection unit 93 is changed, it is possible to appropriately transmit and receive the position information ED between the changed encoder 85 and the amplifier circuit 91.
 尚、本願は上記の実施形態に限定されるものではなく、本願の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、上記実施形態では、2つのコンフィグ情報(第1及び第2コンフィグ情報101,102)をメモリ99に記憶する構成であった。即ち、2種類のエンコーダ85に対応可能な構成であった。しかしながら、FPGA基板81は、3以上の複数種類に対応可能な構成でも良い。例えば、メモリ99に、A社用の第1コンフィグ情報101、B社用の第2コンフィグ情報102、C社用の第3コンフィグ情報・・のように複数の種類のエンコーダ85と通信可能なコンフィグ情報を記憶しても良い。この場合、接続端子113及びディップスイッチ115を、コンフィグ情報の数に応じて、異なる信号レベル(3種類以上の信号レベル)の第1選択信号CS1や第2選択信号CS2を出力可能な構成とする。
Note that the present application is not limited to the above-described embodiment, and it goes without saying that various improvements and modifications can be made without departing from the spirit of the present application.
For example, in the above-described embodiment, the configuration is such that two pieces of configuration information (first and second configuration information 101 and 102) are stored in the memory 99. That is, the configuration is compatible with two types of encoders 85. However, the FPGA substrate 81 may have a configuration that can support three or more types. For example, a configuration that can communicate with a plurality of types of encoders 85, such as first configuration information 101 for company A, second configuration information 102 for company B, and third configuration information for company C, is stored in the memory 99. Information may be stored. In this case, the connection terminal 113 and the DIP switch 115 are configured to output the first selection signal CS1 and the second selection signal CS2 having different signal levels (three or more signal levels) according to the number of configuration information. .
 また、第1選択信号CS1や第2選択信号CS2の信号レベル(ハイレベルやローレベル)を変更せずに、選択信号を変更しても良い。例えば、接続端子113は、接続されるコネクタ89の接続構造(エンコーダ85の種類)に応じて、CPU111と接続される複数の信号線のうち、異なる信号線の信号をONしても良い。これにより、CPU111は、ON信号の信号線に応じて、どのコンフィグ情報を選択すべきかを判断できる。また、例えば、ディップスイッチ115は、スライドスイッチの位置に応じて異なるビット値の第2選択信号CS2を出力する構成でも良い。これにより、CPU111は、ディップスイッチ115から入力したビット値に基づいて、どのコンフィグ情報を選択すべきかを判断できる。 (4) The selection signal may be changed without changing the signal level (high level or low level) of the first selection signal CS1 or the second selection signal CS2. For example, the connection terminal 113 may turn on a signal of a different signal line among a plurality of signal lines connected to the CPU 111 according to a connection structure (a type of the encoder 85) of the connector 89 to be connected. Thereby, the CPU 111 can determine which configuration information should be selected according to the signal line of the ON signal. Further, for example, the DIP switch 115 may be configured to output the second selection signal CS2 having a different bit value depending on the position of the slide switch. Thus, the CPU 111 can determine which configuration information should be selected based on the bit value input from the DIP switch 115.
 また、FPGA基板81は、接続端子113又はディップスイッチ115のどちらか一方のみを備える構成でも良い。この場合、CPU111は、図5のS15の判断処理を実行せず、入力した第1選択信号CS1又は第2選択信号CS2のみに基づいてコンフィグ情報を選択しても良い。
 また、第1コンフィグ情報101又は第2コンフィグ情報102を選択する処理は、CPU111で起動プログラム103を実行することで、即ち、ソフトウェア上の処理で実現しなくとも良い。例えば、第1コンフィグ情報101を記憶するメモリ99と、第2コンフィグ情報102を記憶するメモリ99を別のメモリとする。また、入力する第1選択信号CS1の信号レベルに応じて、接続回路を変更するスイッチ回路を2つのメモリの両方に接続する。そして、スイッチ回路の接続回路を第1選択信号CS1の信号レベルに応じて変更することで、コンフィグ情報を読み出すメモリ99を変更し、アンプ回路91を変更しても良い。
Further, the FPGA board 81 may be configured to include only one of the connection terminal 113 and the DIP switch 115. In this case, the CPU 111 may select the configuration information based only on the input first selection signal CS1 or second selection signal CS2 without executing the determination process of S15 in FIG.
Further, the process of selecting the first configuration information 101 or the second configuration information 102 does not have to be realized by executing the activation program 103 by the CPU 111, that is, by processing on software. For example, the memory 99 that stores the first configuration information 101 and the memory 99 that stores the second configuration information 102 are different memories. Also, a switch circuit for changing a connection circuit is connected to both of the two memories according to the signal level of the first selection signal CS1 to be input. Then, by changing the connection circuit of the switch circuit according to the signal level of the first selection signal CS1, the memory 99 for reading the configuration information may be changed, and the amplifier circuit 91 may be changed.
 また、本開示における検出装置は、サーボモータ83の回転位置等を検出するエンコーダ85に限らず、例えば、直線移動の位置情報EDを検出するリニアスケールでも良い。この場合、FPGA基板81は、接続されるリニアスケールの種類に応じてコンフィグ情報を選択し、リニアモータを制御するアンプ回路91を変更しても良い。これにより、例えば、リニアスケールの位置情報EDに基づいて移動するリニアモータに対し、リニアスケールの種類に応じてアンプ回路91を変更し、アンプ回路91によりリニアモータを適切にフィードバック制御できる。
 また、FPGA基板81は、移動部16の駆動源や搬送部25の駆動源などを制御しても良い。
Further, the detection device according to the present disclosure is not limited to the encoder 85 that detects the rotational position and the like of the servo motor 83, and may be, for example, a linear scale that detects the linear movement position information ED. In this case, the FPGA board 81 may select the configuration information according to the type of the connected linear scale, and change the amplifier circuit 91 that controls the linear motor. Thus, for example, for a linear motor that moves based on the linear scale position information ED, the amplifier circuit 91 can be changed according to the type of the linear scale, and the linear motor can be appropriately feedback-controlled by the amplifier circuit 91.
Further, the FPGA substrate 81 may control a drive source of the moving unit 16 and a drive source of the transport unit 25.
 81 FPGA基板(通信装置の一例)、83 サーボモータ(モータ)、85 エンコーダ(検出装置)、89 コネクタ、91 アンプ回路(論理回路)、92 FPGA(プログラマブル論理デバイス)、93 接続部、113 接続端子(選択信号出力部)、CS1 第1選択信号(選択信号)、CS2 第2選択信号(選択信号)、ED 位置情報。 81 FPGA board (example of communication device), 83 servo motor (motor), 85 encoder (detection device), 89 connector, 91 amplifier circuit (logic circuit), 92 FPGA (programmable logic device), 93 connection section, 113 connection terminal (Selection signal output unit), CS1 {first selection signal (selection signal), CS2 {second selection signal (selection signal), ED} position information.

Claims (6)

  1.  位置情報を検出して出力する検出装置と接続される接続部と、
     前記検出装置と通信可能な論理回路を構築する第1コンフィグ情報と、前記第1コンフィグ情報と通信可能な前記検出装置とは種類が異なる前記検出装置と通信可能な前記論理回路を構築する第2コンフィグ情報と、を記憶可能である記憶部と、
     前記第1コンフィグ情報又は前記第2コンフィグ情報を選択する選択信号を出力する選択信号出力部と、
     前記選択信号出力部から出力された前記選択信号に基づいて、前記第1コンフィグ情報又は前記第2コンフィグ情報を読み込んで前記論理回路を構築し、構築した前記論理回路により前記接続部と接続された前記検出装置との間で前記位置情報の通信を実行するプログラマブル論理デバイスと、
    を備える、通信装置。
    A connection unit connected to a detection device that detects and outputs position information,
    First configuration information for constructing a logic circuit capable of communicating with the detection device; and second configuration information for constructing the logic circuit capable of communicating with the detection device different from the detection device capable of communicating with the first configuration information. A storage unit capable of storing configuration information;
    A selection signal output unit that outputs a selection signal for selecting the first configuration information or the second configuration information,
    Based on the selection signal output from the selection signal output unit, the first configuration information or the second configuration information is read to construct the logic circuit, and the logic circuit is connected to the connection unit by the constructed logic circuit. A programmable logic device that executes communication of the position information with the detection device,
    A communication device comprising:
  2.  前記接続部は、
     複数の種類の前記検出装置と接続可能な共通のインタフェースであり、
     前記選択信号出力部は、
     前記接続部に設けられ、前記接続部に接続された前記検出装置のコネクタの接続構造に応じて異なる前記選択信号を出力する、請求項1に記載の通信装置。
    The connection unit is
    A common interface connectable to a plurality of types of the detection device,
    The selection signal output unit,
    2. The communication device according to claim 1, wherein the communication device is provided in the connection unit and outputs the different selection signal according to a connection structure of a connector of the detection device connected to the connection unit.
  3.  前記選択信号出力部は、
     外部からの操作に応じて異なる前記選択信号を出力するスイッチである、請求項1又は請求項2に記載の通信装置。
    The selection signal output unit,
    The communication device according to claim 1, wherein the communication device is a switch that outputs the different selection signal according to an external operation.
  4.  前記検出装置は、
     モータの前記位置情報を検出するエンコーダであり、
     前記プログラマブル論理デバイスは、
     前記検出装置から取得した前記位置情報に基づいて、前記モータをフィードバック制御するアンプ回路を前記論理回路として構築する、請求項1乃至請求項3の何れか1項に記載の通信装置。
    The detection device,
    An encoder for detecting the position information of the motor,
    The programmable logic device comprises:
    The communication device according to claim 1, wherein an amplifier circuit that performs feedback control of the motor is configured as the logic circuit based on the position information acquired from the detection device.
  5.  前記第1コンフィグ情報は、
     第1検出装置との間で前記位置情報の通信が可能な前記論理回路を構築する情報であり、
     前記第2コンフィグ情報は、
     前記第1検出装置とは種類が異なる第2検出装置との間で前記位置情報の通信が可能な前記論理回路を構築する情報であり、
     前記第1検出装置と、前記第2検出装置とは、
     互いに異なる通信プロトコルで前記位置情報の通信を行う、請求項1乃至請求項4の何れか1項に記載の通信装置。
    The first configuration information includes:
    Information for constructing the logic circuit capable of communicating the position information with the first detection device,
    The second configuration information includes:
    The first detection device is information that constructs the logic circuit capable of communicating the position information with a second detection device of a different type,
    The first detection device and the second detection device,
    The communication device according to claim 1, wherein communication of the position information is performed using communication protocols different from each other.
  6.  位置情報を検出して出力する検出装置と接続される接続部と、前記検出装置と通信可能な論理回路を構築する第1コンフィグ情報と、前記第1コンフィグ情報と通信可能な前記検出装置とは種類が異なる前記検出装置と通信可能な前記論理回路を構築する第2コンフィグ情報と、を記憶可能である記憶部と、前記論理回路を構築するプログラマブル論理デバイスと、を備える通信装置における論理回路の構築方法であって、
     前記第1コンフィグ情報又は前記第2コンフィグ情報を選択する選択信号を出力する工程と、
     前記選択信号に基づいて、前記プログラマブル論理デバイスに対し、前記第1コンフィグ情報又は前記第2コンフィグ情報を読み込んで前記論理回路を構築させる工程と、
     構築した前記論理回路により前記接続部と接続された前記検出装置との間で前記位置情報の通信を実行させる工程と、
    を含む、論理回路の構築方法。
    A connection unit connected to a detection device that detects and outputs position information, first configuration information that constructs a logic circuit that can communicate with the detection device, and the detection device that can communicate with the first configuration information. A storage unit capable of storing second configuration information for constructing the logic circuit capable of communicating with the detection device of a different type, and a programmable logic device for constructing the logic circuit; A construction method,
    Outputting a selection signal for selecting the first configuration information or the second configuration information;
    A step of reading the first configuration information or the second configuration information and constructing the logic circuit for the programmable logic device based on the selection signal;
    Causing the constructed logic circuit to execute communication of the position information between the connection unit and the detection device connected to the connection unit,
    And a method of constructing a logic circuit.
PCT/JP2018/032821 2018-09-05 2018-09-05 Communication device, and method for structuring logic circuit WO2020049641A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/032821 WO2020049641A1 (en) 2018-09-05 2018-09-05 Communication device, and method for structuring logic circuit
JP2020540906A JP7054416B2 (en) 2018-09-05 2018-09-05 How to build communication equipment and logic circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/032821 WO2020049641A1 (en) 2018-09-05 2018-09-05 Communication device, and method for structuring logic circuit

Publications (1)

Publication Number Publication Date
WO2020049641A1 true WO2020049641A1 (en) 2020-03-12

Family

ID=69722483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032821 WO2020049641A1 (en) 2018-09-05 2018-09-05 Communication device, and method for structuring logic circuit

Country Status (2)

Country Link
JP (1) JP7054416B2 (en)
WO (1) WO2020049641A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503913A (en) * 2007-01-02 2011-01-27 アソクス・リミテッド System and method for handoff between different communication standards
JP2013110904A (en) * 2011-11-24 2013-06-06 Fuji Electric Co Ltd Electric motor drive device
JP2014007552A (en) * 2012-06-25 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> Configuration information storage device and configuration information storage method
WO2015052843A1 (en) * 2013-10-11 2015-04-16 富士機械製造株式会社 Multiplexing communication system and substrate processing machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244594A (en) 2011-05-24 2012-12-10 Japan Radio Co Ltd Communication device and setting method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503913A (en) * 2007-01-02 2011-01-27 アソクス・リミテッド System and method for handoff between different communication standards
JP2013110904A (en) * 2011-11-24 2013-06-06 Fuji Electric Co Ltd Electric motor drive device
JP2014007552A (en) * 2012-06-25 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> Configuration information storage device and configuration information storage method
WO2015052843A1 (en) * 2013-10-11 2015-04-16 富士機械製造株式会社 Multiplexing communication system and substrate processing machine

Also Published As

Publication number Publication date
JP7054416B2 (en) 2022-04-13
JPWO2020049641A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
KR100592064B1 (en) Articulated robot
JP6384195B2 (en) Robot system and robot teaching method
US10058018B2 (en) Flexible assembly machine, system and method
US9329593B2 (en) Robot system, method for controlling robot, and method for producing to-be-processed material
KR100787186B1 (en) Multiple hand-gripper device of module type
CN104551629A (en) Fastening device, robot system, and fastening method
CN113228246B (en) Substrate transfer robot and automatic teaching method
US20140350707A1 (en) Robot system
CN111687819A (en) Work tool for gripping workpiece including connector, and robot device provided with work tool
JP2020526928A (en) Transport device and adapter pendant
US10450683B2 (en) Sewing system
US20210405607A1 (en) Omni-directional computerized numerical control (cnc) machine tool and method of performing the same
KR20180118779A (en) Electronic component mounting apparatus and mounting method of electronic component
US8028100B2 (en) Automated processing system employing intelligent module automatic recognition
WO2020049641A1 (en) Communication device, and method for structuring logic circuit
CN109955279A (en) Robot, its control method, article assemble method and storage medium
JP2011025358A (en) Production system
WO2017179114A1 (en) Working robot
US10695918B2 (en) Transfer system, transfer apparatus and module
JP6830001B2 (en) Transmission equipment and work robots
US11213959B2 (en) Identification number setting system, identification number setting method, and robot system
JP2020142362A (en) Robot device, method for controlling robot device, method for manufacturing article using robot device, communication device, communication method, control program and recording medium
CN101142870A (en) Pick-and-place robot for placing electrical components on substrates
TWI760008B (en) Position detection method, control device, and robot system
Xing et al. Reconfigurable manufacturing system for agile manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932396

Country of ref document: EP

Kind code of ref document: A1