WO2020048411A1 - 通信系统的通信方法 - Google Patents

通信系统的通信方法 Download PDF

Info

Publication number
WO2020048411A1
WO2020048411A1 PCT/CN2019/103923 CN2019103923W WO2020048411A1 WO 2020048411 A1 WO2020048411 A1 WO 2020048411A1 CN 2019103923 W CN2019103923 W CN 2019103923W WO 2020048411 A1 WO2020048411 A1 WO 2020048411A1
Authority
WO
WIPO (PCT)
Prior art keywords
substation
data frame
substations
data
communication
Prior art date
Application number
PCT/CN2019/103923
Other languages
English (en)
French (fr)
Inventor
陈治国
袁雪莲
陈建国
Original Assignee
中国矿业大学
徐州德美机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 徐州德美机电科技有限公司 filed Critical 中国矿业大学
Publication of WO2020048411A1 publication Critical patent/WO2020048411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/422Synchronisation for ring networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a communication method of a communication system.
  • an object of the present invention is to provide a communication method of a communication system, which does not need to allocate addresses for substations, and can greatly improve the convenience and efficiency of communication.
  • the present invention provides a communication method of a communication system.
  • the communication system includes a master station and N substations, and the master station and each substation include a communication port A and a communication port B.
  • the first to Nth substations are sequentially arranged, the communication port A of the nth substation is connected to the communication port B of the n + 1th substation, and the communication port A of the master station is connected to the first The communication port B of the substation is connected, and the communication port B of the master station is connected to the communication port A of the Nth substation, so that one master station and the N substations form a ring network, where N is a positive signal greater than 1.
  • the communication method includes: the master station sends a transmission data frame to an adjacent substation along a first direction of the ring network, wherein the transmission data frame includes a delay Time, the start time does not include address information; when each sub-station receives the transmission data frame, the delayed start time in the transmission data frame is modified according to the sub-station transmission consumption time, and along the ring network
  • the first direction transmits the modified transmission data frame to the adjacent substations; the received data frames are received at the N substations
  • the N substations start transmission of the return data frame at the same time according to the delayed start time in the respective received data frame; after each substation starts the transmission of the return data frame, it follows the
  • the second direction of the ring network transmits a return data frame generated by itself or a received data frame generated by another substation to an adjacent substation or the master station, wherein the second direction is opposite to the first direction Direction; the master station receives return data frames generated by the N substations and performs data
  • the communication system is a ring network composed of a master station and N substations connected in series, sending and transmitting data frames along the first direction, and consuming time according to the substation transmission. Modify the delayed start time in the transmitted data frame of each substation, and transmit the return data frame in the second direction. Therefore, by setting and modifying the delayed start time, all substations can synchronously transmit their own Returning data frames improves the speed of data transmission and the convenience of data processing, and identifies the substations by the order of the returned data, without the need to assign addresses to the substations, making it flexible and efficient to build communication systems and modify communication systems such as inserting substations. This greatly improves the convenience and efficiency of communication.
  • the communication method of the communication system according to the above embodiments of the present invention may also have the following additional technical features:
  • the returned data frame is generated by each sub-station according to the data collected by each sub-station, wherein each sub-station collects the data after receiving the transmitted data frame, or collects and stores the data in advance.
  • the delay in the transmission data frame received by the nth substation is The start-up time is Tys- (n-1) Txh, where Tys is the set delay start time of the first substation, and Txh is the transmission consumption time of each substation.
  • the transmission data frame further includes a function code and a transmission consumption time.
  • the returned data frame includes a function code and collected data.
  • the master station When the k-th sub-station of the N sub-stations fails, the master station sends and sends data frames to two adjacent sub-stations, respectively, and the two sub-stations are respectively in the first direction and the second sub-station. And transmitting the modified transmission data frame to the adjacent substations until the k-1th and k + 1th substations receive the transmission data frames, where 1 ⁇ k ⁇ N.
  • the master station When the kth and k + 1th substations in the N substations are disconnected, the master station sends and sends data frames to two adjacent substations, respectively, and the two substations are respectively
  • the modified transmission data frames are transmitted to adjacent substations in the first direction and the second direction until the kth and k + 1th substations receive the transmission data frames, where 1 ⁇ k ⁇ N- 1.
  • Each sub-station also includes a data acquisition module, a processing module, a data output module, and a power module, where the processing module is connected to the data acquisition module, the data output module, communication port A, and communication port B, respectively.
  • the processing module is used to control the data acquisition module of the substation for data collection, and control the data output module of the substation for data output, and for communication between communication port A and communication port B and adjacent substations or the master station. Data transmission is controlled.
  • the power module is connected to the data acquisition module and the processing module, and the power module is used to power the data acquisition module and the processing module.
  • the communication port A and the communication port B of the master station and each substation are parallel communication ports or serial communication ports.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of a substation according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a communication method of a communication system according to an embodiment of the present invention.
  • the communication system in the embodiment of the present invention includes a master station and N substations.
  • the master station and each substation include a communication port A and a communication port B.
  • the first to Nth substations are sequentially arranged, the communication port A of the nth substation is connected to the communication port B of the n + 1th substation, and the communication port A of the master station is connected to the first substation
  • the communication port B of the master station is connected, and the communication port B of the master station is connected to the communication port A of the Nth substation, so that one master station and the N substations form a ring network, where N is a positive integer greater than 1 and 1 ⁇ n ⁇ N-1.
  • each substation further includes a data acquisition module, a processing module, a data output module, and a power supply module.
  • the processing module is connected to the data acquisition module, data output module, communication port A and communication port B respectively.
  • the processing module is used to control the data acquisition module of the substation for data collection, and control the data output module of the substation for data Output and control data transmission between communication port A and communication port B and adjacent substations or master stations.
  • the power module is connected to the data acquisition module and processing module respectively.
  • the power module is used to control the data acquisition module and processing module. For power.
  • the communication port A and the communication port B of the master station may belong to the same communication device, or may belong to different communication devices.
  • communication port A and communication port B may belong to two communication devices located in different geographical locations, and the two communication devices and the device with a data processing function together constitute a master station according to the embodiment of the present invention.
  • the communication port A and communication port B of the master station and each substation are parallel communication ports or serial communication ports.
  • the interconnected sub-stations, the master station and the sub-stations may be connected through a parallel communication port for parallel communication, or may be connected through a serial communication port for communication.
  • Serial communication can also be connected partly through a parallel communication port and partly through a serial communication port for serial-parallel hybrid communication.
  • full-duplex communication can be performed between the substations connected to each other, and between the master station and the substations, and half-duplex communication can also be performed.
  • the communication port A and the communication port B of the master station and each substation are RS485 serial communication ports.
  • the communication method of the communication system according to the embodiment of the present invention includes the following steps:
  • the master station sends a transmission data frame to an adjacent substation along a first direction of the ring network.
  • the transmission data frame includes a delayed start time and does not include address information.
  • each substation When each substation receives a transmission data frame, it modifies the delay start time in the transmission data frame according to the substation transmission consumption time, and transmits the modified substation to the adjacent substation along the first direction of the ring network. Send data frame.
  • the first direction may be a clockwise direction or a counterclockwise direction.
  • a data frame can be sent to the communication port A of the first substation through the communication port A of the master station, and then transmitted from the communication port A of the first substation to the communication port of the second substation in turn.
  • the transmission data frame may be first transmitted to the communication port A of the Nth substation through the communication port B of the master station, and then transmitted from the communication port B of the Nth substation to the N-1th substation in turn.
  • Communication port A transmitted from communication port B of the N-1th substation to communication port A of the N-2th substation, ... until communication port B of the second substation is transmitted to the first substation Communication port A.
  • the delay in the transmission data frame received by the nth substation is taken as an example.
  • the start-up time is Tys- (n-1) Txh, where Tys is the set delay start time of the first substation, and Txh is the transmission consumption time of each substation.
  • the transmission consumption time is the time consumed for data transmission and processing.
  • the transmission consumption time of the nth substation is Txh.
  • the transmitted data frame may include a function code and a transmission consumption time.
  • the N substations After the N substations have received the transmitted data frames, the N substations simultaneously start the transmission of the returned data frames according to the delayed start time in the received transmitted data frames.
  • the returned data frame is generated by each substation based on the collected data.
  • Each substation can collect data after receiving the transmitted data frame, or can collect and store the data in advance.
  • the N substations can simultaneously start the data collection function and start the transmission of their own return data frames at the same time according to the above-mentioned delayed start time setting and modification rules.
  • each substation After each substation starts the transmission of the return data frame, it transmits the return data frame generated by itself or the received data frame generated by other substations to the adjacent substation or the master station along the second direction of the ring network. , Wherein the second direction is opposite to the first direction.
  • the direction of returning a data frame via any substation may be opposite to the direction of transmitting a data frame.
  • the return data frame generated by the n + 1th substation can be communicated by it.
  • Port B is transmitted to communication port A of the nth substation.
  • the returned data frame generated by the nth substation and the received data frame generated by the received n + 1th substation can be transmitted by the communication port of the nth substation.
  • the communication port B of the station is transmitted to the communication port A of the master station.
  • the master station receives the returned data frames generated by the N substations and performs data processing. Among them, the returned data frames generated by the N substations do not contain address information. The master station judges and generates the data frames according to the return order of each returned data frame. The substation of the returned data frame.
  • the ith return data frame is generated for the ith substation. , Where 1 ⁇ i ⁇ N.
  • the data frame is sent from the master station to the first substation and transmitted along the direction from the first substation to the Nth substation as an example.
  • the communication method includes the following: step:
  • Step 1 The master station sends a data frame to the first substation through the communication port A.
  • the data frame format is: function code, delayed start time Tys, and substation transmission time Txh.
  • After communication port B of the first substation receives the transmitted data frame it delays the Tys time to start the data acquisition function of the substation, and at the same time, subtracts the substation transmission consumption time Txh from the delayed start time of the transmitted data frame, Tys. Then, it is used as the delayed start time of the next substation, and is transmitted to the second substation through the communication port A of the substation according to the data frame format. That is, the format of the data frame transmitted to the second substation is: a function code, a delayed start time (Tys-Txh), and a substation transmission time Txh.
  • Step 2 After the communication port B of the second substation receives the transmission data frame, the delay time (Tys-Txh) time starts the data acquisition function of the substation, and at the same time, the delay start time of the transmission data frame (Tys- Txh) minus the transmission time Txh of the substation as the delayed start time of the next substation, that is, the third substation, and transmit it to the third station through the communication port A of the substation according to the data frame format described in step 1.
  • Substations. That is, the format of the data frame transmitted to the third substation is: function code, delayed start time (Tys-2Txh), and the substation transmission consumption time Txh.
  • Step 3 After communication port B of the third substation receives the transmission data frame, repeat step 2 until communication port B of the Nth substation receives the transmission data frame transmitted by the N-1th substation, and then delays. (Tys- (N-1) Txh) time to start the data acquisition function of the substation.
  • Step 4 After all the sub-stations receive the data frame, follow the steps 1 to 3 above to know that all the sub-stations start the data acquisition function of the sub-station at the same time.
  • Each sub-station encapsulates the collected data and function code into a returned data frame, that is, the format of the returned data frame is: function code, collected data.
  • Each substation transparently transmits the returned data frame to the previous substation through the communication port B of the substation, that is, the return data frame generated by the n + 1th substation is transmitted to the nth substation until it is uploaded to the master station. .
  • Step 5 Communication port A of the master station receives the returned data frame for corresponding processing, and discriminates which substation returns the data by the return sequence of the returned data frame.
  • the master station may respectively send a data frame to two adjacent sub-stations, and the two sub-stations
  • the modified transmission data frames are transmitted to the adjacent substations in the first direction and the second direction, respectively, until the k-1th and k + 1th substations receive the transmission data frames, where 1 ⁇ k ⁇ N .
  • the master station can send data frames to two adjacent substations respectively, and the two substations respectively follow the first Direction and the second direction transmit the modified transmission data frame to the adjacent substations until the kth and k + 1th substations receive the transmission data frames, where 1 ⁇ k ⁇ N-1.
  • the direction of transmitting the return data frame via any substation may be the same as the direction of transmitting the data frame.
  • the substation that generates a certain return data frame can be determined by combining the return sequence of the return data frame and the interface that receives the return data frame. For example, the i-th return data frame received by communication interface A of the master station is generated by the i-th substation, and the i-th return data frame received by communication interface B of the master station is by the N-i + Generated by 1 substation.
  • the communication system is a ring network composed of a master station and N substations connected in series, and sends and transmits data frames by sending and transmitting in the first direction, and according to Substation transmission consumption time Modifies the delayed start time in the transmitted data frame of each substation, and transmits the return data frame in the second direction. Therefore, by setting and modifying the delayed start time, all substations can be realized. Synchronously return its own return data frame, improve the data transmission speed and the convenience of data processing, and identify the substations by the order of the returned data, without the need to assign addresses to the substations, making it possible to build a communication system and modify the communication system such as inserting substations. Stations are flexible and efficient, which greatly improves the convenience and efficiency of communication.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms shall be understood in a broad sense unless otherwise specified and defined, for example, they may be fixed connections or removable connections , Or integrated; it can be mechanical or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, it can be the internal connection of the two elements or the interaction between the two elements.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the first feature "on” or “down” of the second feature may be the first and second features in direct contact, or the first and second features indirectly through an intermediate medium. contact.
  • the first feature is “above”, “above”, and “above” the second feature.
  • the first feature is directly above or obliquely above the second feature, or only indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature.
  • the first feature may be directly below or obliquely below the second feature, or it may simply indicate that the first feature is less horizontal than the second feature.

Abstract

本发明公开了一种通信系统的通信方法,通信系统包括由一个主站和N个分站构成的环形网络,通信方法包括:主站沿环形网络的第一方向向相邻的分站下发发送数据帧;每个分站在接收到发送数据帧时,沿环形网络的第一方向向相邻的分站传输修改后的发送数据帧;N个分站均接收到发送数据帧后同时启动返回数据帧的传输;每个分站在启动返回数据帧的传输后,沿环形网络的第二方向向相邻的分站或主站传输自身生成的返回数据帧或接收到的其他分站生成的返回数据帧;主站接收N个分站生成的返回数据帧,并进行数据处理,其中,N个分站生成的返回数据帧均不包含地址信息,主站根据每个返回数据帧的返回顺序判断生成该返回数据帧的分站。

Description

通信系统的通信方法 技术领域
本发明涉及通信技术领域,特别涉及一种通信系统的通信方法。
背景技术
传统的网络通信拓扑中,主站与分站之间采用并行连接结构,此结构需要人为地给每一分站分配地址,在分站较多的情况下需要的人力资源大且易出错。虽然现如今出现大量的能够自动分配地址的串行通信方法,但需要对每个分站特殊设置参数,以此来完成自动分配地址功能,对于分站多的网络通信拓扑,为每个分站设置特殊参数比较繁琐。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明的目的在于提出一种通信系统的通信方法,无需为分站分配地址,能够大大提高通信的方便性和通信效率。
为达到上述目的,本发明提出了一种通信系统的通信方法,所述通信系统包括一个主站和N个分站,所述主站和每个分站均包括通信口A和通信口B,其中,第一至第N个分站顺次排布,第n个分站的通信口A与第n+1个分站的通信口B相连,所述主站的通信口A与第一个分站的通信口B相连,所述主站的通信口B与第N个分站的通信口A相连,以使一个主站与N个分站构成环形网络,其中,N为大于1的正整数,1≤n≤N-1,所述通信方法包括:所述主站沿所述环形网络的第一方向向相邻的分站下发发送数据帧,其中,所述发送数据帧包含延时启动时间,不包含地址信息;每个分站在接收到所述发送数据帧时,根据分站传输消耗时间对所述发送数据帧中的延时启动时间进行修改,并沿所述环形网络的第一方向向相邻的分站传输修改后的发送数据帧;在所述N个分站均接收到发送数据帧后,所述N个分站根据各自接收到的发送数据帧中的延时启动时间,同时启动返回数据帧的传输;每个分站在启动返回数据帧的传输后,沿所述环形网络的第二方向向相邻的分站或主站传输自身生成的返回数据帧或接收到的其他分站生成的返回数据帧,其中,所述第二方向为所述第一方向的相反方向;所述主站接收所述N个分站生成的返回数据帧,并进行数据处理,其中,所述N个分站生成的返回数据帧均不包含地址信息,所述主站根据每个返回数据帧的返回顺序判断生成该返回数据帧的分站。
根据本发明实施例的通信系统的通信方法,通信系统为由一个主站和N个分站串联构成的环形网络,通过沿第一方向下发和传输发送数据帧,并根据分站传输消耗时间对每个分站的发送数据帧中的延时启动时间进行修改,以及沿第二方向传输返回数据帧,由此,通过设置和修改延时启动时间,能够实现所有分站同步回传自身的返回数据帧,提高数据传输速度与数据处理的方便性,并且通过返回数据的顺序来识别所属分站,无需为分站分配地址,使得构建通信系统及修改通信系统如插入分站等灵活高效,从而大大提高了通信的方便性和通信效率。
另外,根据本发明上述实施例提出的通信系统的通信方法还可以具有如下附加的 技术特征:
所述返回数据帧为每个分站根据各自采集的数据生成的,其中,每个分站在接收到发送数据帧后采集所述数据,或预先采集并存储所述数据。
当发送数据帧由所述主站下发至第一个分站,并沿第一个分站至第N个分站的方向传输时,第n个分站接收到的发送数据帧中的延时启动时间为Tys-(n-1)Txh,其中,Tys为设定的第一个分站的延时启动时间,Txh为每个分站的传输消耗时间。
所述发送数据帧还包含功能码和传输消耗时间。
所述返回数据帧包含功能码和采集的数据。
当所述N个分站中的第k个分站发生故障时,所述主站分别向两个相邻的分站下发发送数据帧,该两个分站分别沿第一方向和第二方向向相邻的分站传输修改后的发送数据帧,直至所述第k-1和第k+1个分站均接收到发送数据帧,其中,1<k<N。
当所述N个分站中的第k和第k+1个分站之间断开连接时,所述主站分别向两个相邻的分站下发发送数据帧,该两个分站分别沿第一方向和第二方向向相邻的分站传输修改后的发送数据帧,直至所述第k和第k+1个分站均接收到发送数据帧,其中,1<k<N-1。
每个分站还包括数据采集模块、处理模块、数据输出模块和电源模块,其中,所述处理模块分别与所述数据采集模块、所述数据输出模块、通信口A和通信口B相连,所述处理模块用于控制该分站的数据采集模块进行数据采集,并控制该分站的数据输出模块进行数据输出,以及对通信口A和通信口B与相邻分站或主站之间的数据传输进行控制,所述电源模块分别与所述数据采集模块和所述处理模块相连,所述电源模块用于对所述数据采集模块和所述处理模块进行供电。
所述主站和每个分站的通信口A和通信口B为并行通信口或串行通信口。
附图说明
图1为根据本发明一个实施例的通信系统的结构示意图;
图2为根据本发明一个实施例的分站的结构框图;
图3为根据本发明一个实施例的通信系统的通信方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图来描述本发明实施例的通信系统的通信方法。
如图1所示,本发明实施例的通信系统包括一个主站和N个分站,主站和每个分站均包括通信口A和通信口B。其中,第一至第N个分站顺次排布,第n个分站的通信口A与第n+1个分站的通信口B相连,主站的通信口A与第一个分站的通信口B相连,主站的通信口B与第N个分站的通信口A相连,以使一个主站与N个分站构成环形网络,其中,N为大于1的正整数,1≤n≤N-1。
在本发明的一个实施例中,如图2所示,每个分站还包括数据采集模块、处理模块、数据输出模块和电源模块。其中,处理模块分别与数据采集模块、数据输出模块、通信口A和 通信口B相连,处理模块用于控制该分站的数据采集模块进行数据采集,并控制该分站的数据输出模块进行数据输出,以及对通信口A和通信口B与相邻分站或主站之间的数据传输进行控制,电源模块分别与数据采集模块和处理模块相连,电源模块用于对数据采集模块和处理模块进行供电。
在本发明的一个实施例中,主站的通信口A和通信口B可属于同一通信设备,也可属于不同的通信设备。例如通信口A和通信口B可分别属于位于不同地理位置的两个通信设备,该两个通信设备与具有数据处理功能的设备共同构成本发明实施例所述的主站。
其中,主站和每个分站的通信口A和通信口B为并行通信口或串行通信口。在本发明实施例的通信系统中,相互连接的分站之间、主站与分站之间可均通过并行通信口进行连接以进行并行通信,也可均通过串行通信口进行连接以进行串行通信,还可部分通过并行通信口进行连接、部分通过串行通信口进行连接以进行串并行混合通信。在本发明实施例的通信系统中,相互连接的分站之间、主站与分站之间可进行全双工通信,也可进行半双工通信。
在本发明的一个具体实施例中,主站和每个分站的通信口A和通信口B均为RS485串行通信口。
如图3所示,本发明实施例的通信系统的通信方法,包括以下步骤:
S1,主站沿环形网络的第一方向向相邻的分站下发发送数据帧,其中,发送数据帧包含延时启动时间,不包含地址信息。
S2,每个分站在接收到发送数据帧时,根据分站传输消耗时间对发送数据帧中的延时启动时间进行修改,并沿环形网络的第一方向向相邻的分站传输修改后的发送数据帧。
在本发明的实施例中,第一方向可为顺时针方向或逆时针方向。具体地,发送数据帧可先通过主站的通信口A下发至第一个分站的通信口B,然后依次由第一个分站的通信口A传输至第二个分站的通信口B、由第二个分站的通信口A传输至第三个分站的通信口B、…,直至由第N-1个分站的通信口A传输至第N个分站的通信口B;或者,发送数据帧可先通过主站的通信口B下发至第N个分站的通信口A,然后依次由第N个分站的通信口B传输至第N-1个分站的通信口A、由第N-1个分站的通信口B传输至第N-2个分站的通信口A、…,直至由第二个分站的通信口B传输至第一个分站的通信口A。
以发送数据帧由主站下发至第一个分站,并沿第一个分站至第N个分站的方向传输为例,第n个分站接收到的发送数据帧中的延时启动时间为Tys-(n-1)Txh,其中,Tys为设定的第一个分站的延时启动时间,Txh为每个分站的传输消耗时间。其中,传输消耗时间为数据传输与处理等消耗的时间,举例来说,第n分站的传输消耗时间为Txh,则从第一分站向第N分站依次传输发送数据帧时,数据帧到达第n分站的时间为t,到达第n+1分站的时间为t+Txh。
在本发明的一个实施例中,发送数据帧除包含延时启动时间外,还可包含功能码和传输消耗时间。
S3,在N个分站均接收到发送数据帧后,N个分站根据各自接收到的发送数据帧中的延时启动时间,同时启动返回数据帧的传输。
返回数据帧为每个分站根据各自采集的数据生成的,其中,每个分站可在接收到 发送数据帧后采集数据,或可预先采集并存储数据。
在本发明的一个实施例中,N个分站可根据上述延时启动时间的设定及修改规则,同时启动数据采集功能,并同时开始自身的返回数据帧的传输。
S4,每个分站在启动返回数据帧的传输后,沿环形网络的第二方向向相邻的分站或主站传输自身生成的返回数据帧或接收到的其他分站生成的返回数据帧,其中,第二方向为第一方向的相反方向。
也就是说,经任一分站传输返回数据帧的方向可与传输发送数据帧的方向相反。以发送数据帧由主站下发至第一个分站,并沿第一个分站至第N个分站的方向传输为例,第n+1个分站生成的返回数据帧可由其通信口B传输至第n个分站的通信口A,第n个分站生成的返回数据帧与接收到的第n+1个分站生成的返回数据帧,可由第n个分站的通信口B传输至第n-1个分站的通信口A,…,第一个分站生成的返回数据帧及其接收的第二至第N个分站生成的返回数据帧,可由第一个分站的通信口B传输至主站的通信口A。
S5,主站接收N个分站生成的返回数据帧,并进行数据处理,其中,N个分站生成的返回数据帧均不包含地址信息,主站根据每个返回数据帧的返回顺序判断生成该返回数据帧的分站。
以发送数据帧由主站下发至第一个分站,并沿第一个分站至第N个分站的方向传输为例,第i个返回数据帧,即为第i个分站生成的,其中,1≤i≤N。
在本发明的一个具体实施例中,仍以发送数据帧由主站下发至第一个分站,并沿第一个分站至第N个分站的方向传输为例,通信方法包括以下步骤:
步骤一:主站通过通信口A下发发送数据帧给第一个分站,该数据帧格式为:功能码、延时启动时间Tys、分站传输消耗时间Txh。第一个分站的通信口B接收到该发送数据帧后,延时Tys时间启动该分站的数据采集功能,同时将该发送数据帧的延时启动时间Tys减去分站传输消耗时间Txh后作为下一分站的延时启动时间,并按照上述数据帧格式通过该分站的通信口A传输给第二个分站。即传输给第二个分站的数据帧格式为:功能码、延时启动时间(Tys-Txh)、分站传输消耗时间Txh。
步骤二:第二个分站的通信口B接收到发送数据帧后,延时(Tys-Txh)时间启动该分站的数据采集功能,同时将该发送数据帧的延时启动时间(Tys-Txh)减去分站传输消耗时间Txh后作为下一分站即第三个分站的延时启动时间,并按照步骤一所述的数据帧格式通过该分站的通信口A传输给第三个分站。即传输给第三个分站的数据帧格式为:功能码、延时启动时间(Tys-2Txh)、分站传输消耗时间Txh。
步骤三:第三个分站的通信口B接收到发送数据帧后,重复步骤二,直至第N个分站的通信口B接收到第N-1个分站传输的发送数据帧后,延时(Tys-(N-1)Txh)时间启动该分站数据采集功能。
步骤四:所有分站接收到发送数据帧后,按照上述步骤一至三可知,所有分站同时启动本分站的数据采集功能。各分站将采集的数据与功能码封装成返回数据帧,即返回数据帧格式为:功能码、采集数据。各分站同时通过本分站的通信口B将返回数据帧透明传输给上一分站,即第n+1个分站生成的返回数据帧传输给第n个分站,直至上传到主站。
步骤五:主站通信口A接收到返回数据帧进行相应的处理,并通过返回数据帧的返回顺序辨别是哪个分站返回的数据。
此外,在本发明的一个实施例中,当N个分站中的第k个分站发生故障时,主站可分别向两个相邻的分站下发发送数据帧,该两个分站分别沿第一方向和第二方向向相邻的分站传输修改后的发送数据帧,直至第k-1和第k+1个分站均接收到发送数据帧,其中,1<k<N。
当N个分站中的第k和第k+1个分站之间断开连接时,主站可分别向两个相邻的分站下发发送数据帧,该两个分站分别沿第一方向和第二方向向相邻的分站传输修改后的发送数据帧,直至第k和第k+1个分站均接收到发送数据帧,其中,1<k<N-1。
对于返回数据帧,同样地,经任一分站传输返回数据帧的方向可与传输发送数据帧的方向相反。而生成某一返回数据帧的分站,可结合该返回数据帧的返回顺序和接收返回数据帧的接口来判断。例如主站的通信接口A所接收的第i个返回数据帧,是由第i个分站生成的,主站的通信接口B所接收的第i个返回数据帧,是由第N-i+1个分站生成的。
由此,通过环形网络及上述分别沿第一方向和第二方向传输数据的通信方式,能够在通信网络任一节点发生故障时保证其他节点的正常通信。
综上所述,根据本发明实施例的通信系统的通信方法,通信系统为由一个主站和N个分站串联构成的环形网络,通过沿第一方向下发和传输发送数据帧,并根据分站传输消耗时间对每个分站的发送数据帧中的延时启动时间进行修改,以及沿第二方向传输返回数据帧,由此,通过设置和修改延时启动时间,能够实现所有分站同步回传自身的返回数据帧,提高数据传输速度与数据处理的方便性,并且通过返回数据的顺序来识别所属分站,无需为分站分配地址,使得构建通信系统及修改通信系统如插入分站等灵活高效,从而大大提高了通信的方便性和通信效率。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“项”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (9)

  1. 一种通信系统的通信方法,其特征在于,所述通信系统包括一个主站和N个分站,所述主站和每个分站均包括通信口A和通信口B,其中,第一至第N个分站顺次排布,第n个分站的通信口A与第n+1个分站的通信口B相连,所述主站的通信口A与第一个分站的通信口B相连,所述主站的通信口B与第N个分站的通信口A相连,以使一个主站与N个分站构成环形网络,其中,N为大于1的正整数,1≤n≤N-1,所述通信方法包括:
    所述主站沿所述环形网络的第一方向向相邻的分站下发发送数据帧,其中,所述发送数据帧包含延时启动时间,不包含地址信息;
    每个分站在接收到所述发送数据帧时,根据分站传输消耗时间对所述发送数据帧中的延时启动时间进行修改,并沿所述环形网络的第一方向向相邻的分站传输修改后的发送数据帧;
    在所述N个分站均接收到发送数据帧后,所述N个分站根据各自接收到的发送数据帧中的延时启动时间,同时启动返回数据帧的传输;
    每个分站在启动返回数据帧的传输后,沿所述环形网络的第二方向向相邻的分站或主站传输自身生成的返回数据帧或接收到的其他分站生成的返回数据帧,其中,所述第二方向为所述第一方向的相反方向;
    所述主站接收所述N个分站生成的返回数据帧,并进行数据处理,其中,所述N个分站生成的返回数据帧均不包含地址信息,所述主站根据每个返回数据帧的返回顺序判断生成该返回数据帧的分站。
  2. 根据权利要求1所述的通信系统的通信方法,其特征在于,所述返回数据帧为每个分站根据各自采集的数据生成的,其中,每个分站在接收到发送数据帧后采集所述数据,或预先采集并存储所述数据。
  3. 根据权利要求1所述的通信系统的通信方法,其特征在于,当发送数据帧由所述主站下发至第一个分站,并沿第一个分站至第N个分站的方向传输时,第n个分站接收到的发送数据帧中的延时启动时间为Tys-(n-1)Txh,其中,Tys为设定的第一个分站的延时启动时间,Txh为每个分站的传输消耗时间。
  4. 根据权利要求3所述的通信系统的通信方法,其特征在于,所述发送数据帧还包含功能码和传输消耗时间。
  5. 根据权利要求1所述的通信系统的通信方法,其特征在于,所述返回数据帧包含功能码和采集的数据。
  6. 根据权利要求1所述的通信系统的通信方法,其特征在于,当所述N个分站中的第k个分站发生故障时,所述主站分别向两个相邻的分站下发发送数据帧,该两个分站分别沿第一方向和第二方向向相邻的分站传输修改后的发送数据帧,直至所述第k-1和第k+1个分站均接收到发送数据帧,其中,1<k<N。
  7. 根据权利要求1所述的通信系统的通信方法,其特征在于,当所述N个分站中的第k和第k+1个分站之间断开连接时,所述主站分别向两个相邻的分站下发发送数据帧,该两个分站分别沿第一方向和第二方向向相邻的分站传输修改后的发送数据帧,直至所述第k和第k+1个分站均接收到发送数据帧,其中,1<k<N-1。
  8. 根据权利要求1所述的通信系统的通信方法,其特征在于,每个分站还包括数据采集模块、处理模块、数据输出模块和电源模块,其中,所述处理模块分别与所述数据采集模块、 所述数据输出模块、通信口A和通信口B相连,所述处理模块用于控制该分站的数据采集模块进行数据采集,并控制该分站的数据输出模块进行数据输出,以及对通信口A和通信口B与相邻分站或主站之间的数据传输进行控制,所述电源模块分别与所述数据采集模块和所述处理模块相连,所述电源模块用于对所述数据采集模块和所述处理模块进行供电。
  9. 根据权利要求1-8中任一项所述的通信系统的通信方法,其特征在于,所述主站和每个分站的通信口A和通信口B为并行通信口或串行通信口。
PCT/CN2019/103923 2018-09-07 2019-09-02 通信系统的通信方法 WO2020048411A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811043655.1A CN109462532B (zh) 2018-09-07 2018-09-07 通信系统的通信方法
CN201811043655.1 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020048411A1 true WO2020048411A1 (zh) 2020-03-12

Family

ID=65606622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103923 WO2020048411A1 (zh) 2018-09-07 2019-09-02 通信系统的通信方法

Country Status (2)

Country Link
CN (1) CN109462532B (zh)
WO (1) WO2020048411A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109462532B (zh) * 2018-09-07 2021-02-26 中国矿业大学 通信系统的通信方法
CN110034991A (zh) * 2019-04-12 2019-07-19 香江科技股份有限公司 一种基于rs485总线的环形网络
CN109993958B (zh) * 2019-05-08 2021-06-11 深圳市共济科技股份有限公司 一种rs485总线的数据采集系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163239A1 (en) * 2010-12-28 2012-06-28 Kabushiki Kaisha Toshiba Double-ring network system, method for determining transmission priority in double-ring network and transmission station device
CN103460650A (zh) * 2011-03-15 2013-12-18 欧姆龙株式会社 网络系统、主机及网络系统的控制方法
CN105049312A (zh) * 2015-06-17 2015-11-11 山东超越数控电子有限公司 工业控制环网系统及其组网方法
CN105207971A (zh) * 2014-06-13 2015-12-30 艾默生网络能源有限公司 一种数据传输方法及装置
CN109462532A (zh) * 2018-09-07 2019-03-12 中国矿业大学 通信系统的通信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237997B (zh) * 2011-07-08 2014-05-28 山东大学 一种链状以太网节点间的实时同步及动态补偿方法
CN102868780A (zh) * 2012-09-07 2013-01-09 深圳睿立方智能科技有限公司 对rs-485从机进行编址的网络系统及其编址方法
CN104079401B (zh) * 2014-06-19 2017-10-31 南京航空航天大学 一种基于链状工业以太网络的高精度短周期的实时通信系统
CN107071076B (zh) * 2016-12-23 2020-07-03 京信通信系统(中国)有限公司 通信系统中的设备地址配置方法、装置和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163239A1 (en) * 2010-12-28 2012-06-28 Kabushiki Kaisha Toshiba Double-ring network system, method for determining transmission priority in double-ring network and transmission station device
CN103460650A (zh) * 2011-03-15 2013-12-18 欧姆龙株式会社 网络系统、主机及网络系统的控制方法
CN105207971A (zh) * 2014-06-13 2015-12-30 艾默生网络能源有限公司 一种数据传输方法及装置
CN105049312A (zh) * 2015-06-17 2015-11-11 山东超越数控电子有限公司 工业控制环网系统及其组网方法
CN109462532A (zh) * 2018-09-07 2019-03-12 中国矿业大学 通信系统的通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN CHI ET AL.: "Topology and protocol of practical high speed fiber ring net for large-capacity power electronic systems", PROCEEDINGS OF THE CSEE, vol. 32, no. 15, 25 May 2012 (2012-05-25) *

Also Published As

Publication number Publication date
CN109462532A (zh) 2019-03-12
CN109462532B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2020048411A1 (zh) 通信系统的通信方法
CN110856194B (zh) 一种双模融合组网方法及通信方法
CN100407677C (zh) 用于基于协调器的无线网络之间通信的方法和系统
CN109547096B (zh) 一种适用于全球低轨卫星星座的编址与路由方法
US9960998B2 (en) Forwarding packet in stacking system
CN103200643B (zh) 基于剩余能量感知的分布式容错拓扑控制方法
CN105959217A (zh) 一种sdn移动自组网的数据处理方法及装置
CN105530152B (zh) 智慧家庭协同网络系统及其通信方法
CN112367658B (zh) 一种基于主从结构的无线通信系统及其动态自组网方法
CN101868041A (zh) 主从树型的Zigbee无线传感网络及组建方法、路由协议
CN101291262A (zh) 一种基于移动传感网的语音通信方法
CN111836332A (zh) 一种Lora链形网络通信方法、Lora网关及Lora链形网络通信系统
CN105636022B (zh) 一种基于rssi的低功耗无源无线节点组网的方法
CN109417400A (zh) 用于在网络中选择性接收数据广播的设备、系统和方法
CN101155101A (zh) 无线局域网网状网络信标信息冲突避免的方法、设备及系统
CN103619057B (zh) 基于4‑20mA回路取电的802.15.4e无线设备低功耗组网方法
CN209787196U (zh) 一种IPv6接入式多网融合网关系统
CN103945567B (zh) 逆变器系统的通信组网方法
Abdella et al. Energy routing algorithms for the energy internet
CN103096473A (zh) 一种大容量基带池的基带资源共享方法及系统
CN102083164A (zh) 基于能量感知的无线传感器网络机会路由方法
CN108337671A (zh) 一种mesh网络内设备发现方法
CN102045359B (zh) 融合通信设备及其实现融合通信的方法
KR101077750B1 (ko) 마스터-슬레이브 구조 시스템의 상향 데이터 전송 방법 및 피엘시 시스템의 증설장치
Jiang et al. Opportunistic direct interconnection between co-located wireless sensor networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856972

Country of ref document: EP

Kind code of ref document: A1