WO2020048302A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2020048302A1
WO2020048302A1 PCT/CN2019/100742 CN2019100742W WO2020048302A1 WO 2020048302 A1 WO2020048302 A1 WO 2020048302A1 CN 2019100742 W CN2019100742 W CN 2019100742W WO 2020048302 A1 WO2020048302 A1 WO 2020048302A1
Authority
WO
WIPO (PCT)
Prior art keywords
spreading
block
time
mapped
processor
Prior art date
Application number
PCT/CN2019/100742
Other languages
English (en)
French (fr)
Inventor
王磊
陈雁
徐修强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19857596.1A priority Critical patent/EP3840281A4/en
Publication of WO2020048302A1 publication Critical patent/WO2020048302A1/zh
Priority to US17/193,225 priority patent/US20210195568A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • H04L5/026Multiplexing of multicarrier modulation signals using code division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • Non-orthogonal multiple access (NOMA) technology is a multiple access technology that allows multiple terminal devices to send or receive data in a non-orthogonal manner on the same time-frequency resource.
  • NOMA orthogonal frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • non-orthogonal multiple access technology can significantly increase the number, throughput, and spectrum of terminal devices that can be accessed simultaneously in the system Therefore, it is considered to be an important alternative multiple access technology in the 5th generation (5G) mobile communication system, and is currently being discussed in the 5G new radio (NR) standard.
  • 5G 5th generation
  • NR new radio
  • This application provides a communication method, device, and computer-readable storage medium to provide a solution for adjusting a spreading factor.
  • the present application provides a communication method, which includes: determining a spreading block according to a first spreading factor M, and sending the spreading block; wherein M is based on an available time-frequency resource block Determined by a resource element RE, the time-frequency resource block is a resource block corresponding to a second spreading factor N, the M and N are integers, and M is less than N, and the spread-spectrum block is mapped to the time-frequency resource The block is available on the RE.
  • the time-frequency resource block corresponding to the second spreading factor N may be, but is not limited to, the following explanations:
  • the network device may configure a time-frequency resource block and a second spreading factor N for the terminal device, and the terminal device may determine one or more resource element RE groups in the time-frequency resource according to the second spreading factor N.
  • a resource element RE group may include N REs, and the RE group may be used to map a spreading block of length N.
  • the RE group may also be referred to as a time-frequency resource block corresponding to the second spreading factor N. .
  • the terminal device when determining the resource element RE group according to the second spreading factor N, may skip REs that are not available to the terminal device, or may not skip REs that are not available to the terminal device, that is, RE Unavailable REs can be included in the group.
  • RE Unavailable REs can be included in the group.
  • the number of available REs included in the RE group may be less than N.
  • the target terminal device determines the RE group, it does not skip unavailable REs.
  • the terminal device may determine one or more RE groups in the time-frequency resource in a time-domain-first manner.
  • the number of available REs in the time domain may not be divisible by N, and some will appear When the number of REs included in the RE group is less than N.
  • the REs in one RE group correspond to the same subcarrier.
  • the terminal device may determine one or more RE groups in the time-frequency resource in a frequency-domain-first manner.
  • the number of available REs in the frequency domain may not be evenly divisible by N, and some RE groups may contain less than N REs.
  • the REs in one RE group correspond to the same symbol.
  • the M may be equal to the number of available REs in the time-frequency resource block.
  • the ratio of M to N is greater than or equal to the first threshold, or M is less than or equal to N.
  • the second spreading factor may be configured by a network device.
  • the ratio of M to N when the ratio of M to N is greater than or equal to the first threshold, it can be considered that the number of available resource elements RE in the current time-frequency resource block is large, and the spreading factor is adjusted to the first
  • the frequency factor M can ensure the demodulation performance of non-orthogonal multiple access systems. Otherwise, when the ratio of M to N is less than the first threshold, the generated spreading block may be significantly damaged, and demodulation performance may be affected.
  • the spreading factor is adjusted according to the available resource elements in the time-frequency resource block, and the first spreading block generated according to the adjusted spreading factor is sent.
  • a pre-configured spreading factor is directly used to generate a spreading block, which can ensure that the generated spreading block can perform complete time-frequency resource mapping without changing the mapping position of the spreading block. It can further ensure the detection performance of the spread spectrum block and reduce multi-user interference.
  • the present application further provides a communication method, including: receiving a spreading block, where the spreading block is mapped to an available resource element RE of a time-frequency resource block, and a spreading factor of the spreading block is A spreading factor M, where M is determined according to the available REs in the time-frequency resource block, the time-frequency resource block is a resource block corresponding to a second spreading factor N, and M and N are An integer, and M is less than N.
  • the M may be equal to the number of the available REs in the time-frequency resource block.
  • the ratio of M to N is greater than or equal to the first threshold, or the M is less than or equal to N.
  • the second spreading factor may be set according to a configuration of a network device.
  • the present application provides a communication method, including: obtaining a second spreading block according to a second spreading factor N; and if the number of available resource elements RE in the time-frequency resource block is less than the N, discarding the first Two spreading blocks; a first spreading block is obtained according to a first spreading factor M, and the first spreading block is sent, and the first spreading block is mapped to the available RE of the time-frequency resource block .
  • M is determined according to the available REs in the time-frequency resource block, the M and N are integers, and M is less than N, and the time-frequency resource block is the second spreading factor N Corresponding resource block.
  • the M may be equal to the number of available REs in the time-frequency resource block.
  • the ratio of M to N is greater than or equal to the first threshold, or M is less than or equal to N.
  • the second spreading factor may be configured by a network device.
  • a second spreading block is generated according to the second spreading factor. If the second spreading block can be completely mapped when the time-frequency resource is mapped, the second spreading block is sent. Otherwise, the second spreading block is discarded, and the spreading factor is readjusted according to the available resource elements in the time-frequency resource block to obtain the first spreading factor, and the first spreading block generated according to the first spreading factor is sent.
  • a pre-configured spreading factor is directly used to generate a spreading block, which can ensure that the generated spreading block can perform complete time-frequency resource mapping, and further ensure the detection performance of the spreading block. Reduce multi-user interference.
  • the present application provides a communication method including: receiving a first spreading block, where the first spreading block is mapped onto an available resource element RE of a time-frequency resource block, and the first spreading block
  • the spreading factor of the frequency block is a second spreading factor M
  • the M is determined according to the available RE in the time-frequency resource block
  • the time-frequency resource block is corresponding to the second spreading factor N
  • N A resource block, where M and N are integers, and M is less than N.
  • the M may be equal to the number of available REs in the time-frequency resource block.
  • the ratio of M to N is greater than or equal to the first threshold, or M is less than or equal to N.
  • the second spreading factor may be configured by a network device.
  • a communication method including: transmitting a spreading block; wherein the spreading block is mapped to at least an ith orthogonal frequency division multiplexed OFDM symbol and an i + 1th OFDM symbol, and A first complex number symbol in the spreading block is mapped to a resource element RE of the i-th OFDM symbol in a frequency domain along a first direction, and a second complex number symbol in the spreading block is along the frequency domain.
  • a second direction is mapped to the RE of the i + 1th OFDM symbol, and the first direction is opposite to the second direction; or the spreading block is mapped to at least the i-th subcarrier and the i + th
  • the third complex symbol in the spreading block is mapped to the RE of the i-th subcarrier along the third direction in the time domain, and the fourth complex symbol in the spreading block is at The domain is mapped onto the RE of the i + 1th subcarrier along a fourth direction, the third direction is opposite to the fourth direction, and i is a positive integer.
  • the first direction is a direction in which the frequency domain increases
  • the second direction is a direction in which the frequency domain decreases; or the first direction is a direction in which the frequency domain decreases, the The second direction is the direction in which the frequency domain increases.
  • the third direction is a direction in which the time domain increases, and the fourth direction is a direction in which the time domain decreases; or the third direction is a direction in which the time domain decreases, the The fourth direction is a direction in which the time domain increases.
  • the implementation manner provided in the fifth aspect it is guaranteed that the available resource elements of the spreading block mapped to the i-th OFDM symbol and the i + 1-th OFDM are adjacent, so that the "positive The requirements for mapping complex symbols in the same spreading block to adjacent resource elements in an OFDM system. Because the channel characteristics of adjacent resource elements are similar, the implementation manner provided in the fifth aspect can ensure the spreading performance of the spreading block.
  • a communication method may include: receiving a spreading block; wherein the spreading block is mapped to at least an ith orthogonal frequency division multiplexed OFDM symbol and an i + 1th OFDM symbol, A first complex number symbol in the spreading block is mapped onto a resource element RE of the i-th OFDM symbol in the frequency domain along a first direction, and a second complex number symbol in the spreading block is along the frequency domain.
  • the second direction is mapped to the RE of the i + 1th OFDM symbol, the first direction is opposite to the second direction; or the spreading block is mapped to at least the i-th subcarrier and the i-th On +1 subcarriers, the third complex symbol in the spreading block is mapped to the RE of the i-th subcarrier along the third direction in the time domain.
  • the fourth complex symbol in the spreading block is The time domain is mapped onto the RE of the i + 1th subcarrier along a fourth direction, the third direction is opposite to the fourth direction, and i is a positive integer.
  • the first direction is a direction in which the frequency domain increases
  • the second direction is a direction in which the frequency domain decreases; or the first direction is a direction in which the frequency domain decreases, the The second direction is the direction in which the frequency domain increases.
  • the third direction is a direction in which the time domain increases, and the fourth direction is a direction in which the time domain decreases; or the third direction is a direction in which the time domain decreases, the The fourth direction is a direction in which the time domain increases.
  • the present application provides a device, which may be a network device, or a device (such as a chip) capable of supporting the network device to implement the method of the first aspect, or
  • the device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method of the first aspect, and may include:
  • a processing unit configured to determine a spreading block according to a first spreading factor M, where M is determined according to an available resource element RE in a time-frequency resource block, and the time-frequency resource block is a second spreading factor N
  • M and N are integers, and M is less than N;
  • the transceiver unit is configured to send the spreading block, and the spreading block is mapped to the available RE of the time-frequency resource block.
  • the transceiver unit is further configured to send configuration information.
  • configuration information refer to the foregoing description of the first aspect, which is not specifically limited herein.
  • the present application provides a device, which may be a network device, or a device (such as a chip) capable of supporting the network device to implement the method of the first aspect, or
  • the device may be a terminal device, or a device (such as a chip) capable of supporting the terminal device to implement the method in the first aspect may include:
  • Memory for storing program memory
  • the processor is configured to call and execute a program instruction stored in the memory to implement the following functions: determine a spreading block according to the first spreading factor M, and send the spreading block by using a communication interface.
  • the spreading block is mapped onto an available resource element RE of a time-frequency resource block, and a spreading factor of the spreading block is a first spreading factor M, where M is based on the time-frequency resource block. It is determined by the available RE that the time-frequency resource block is a resource block corresponding to a second spreading factor N, the M and N are integers, and M is less than N.
  • the transceiver unit is further configured to send configuration information.
  • configuration information refer to the foregoing description of the first aspect, which is not specifically limited herein.
  • the present application provides a device, which may be a network device, or a device (such as a chip) capable of supporting the network device to implement the method of the second aspect, or
  • the device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method of the second aspect, and may include:
  • the transceiver unit is configured to receive a spreading block, where the spreading block is mapped to an available resource element RE of a time-frequency resource block, and a spreading factor of the spreading block is a first spreading factor M, where M is It is determined according to the available REs in the time-frequency resource block that the time-frequency resource block is a resource block corresponding to a second spreading factor N, the M and N are integers, and M is less than N.
  • a processing unit is configured to process a received spreading block, such as processing such as despreading or demodulation.
  • the transceiver unit is further configured to receive configuration information; and the processing unit is further configured to configure the second spreading factor N according to the configuration information.
  • the present application provides an apparatus, and the present application provides an apparatus, which may be a network device or an apparatus capable of supporting the network device to implement the method of the second aspect ( (Such as a chip), or the device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method of the second aspect, and may include:
  • Memory for storing program memory
  • the processor is configured to call and execute the program instructions stored in the memory to implement the following functions: receiving the spread spectrum block through the communication interface, and processing the spread spectrum block.
  • the spreading block is mapped onto an available resource element RE of a time-frequency resource block, and a spreading factor of the spreading block is a first spreading factor M, where M is based on the time-frequency resource block. It is determined by the available RE that the time-frequency resource block is a resource block corresponding to a second spreading factor N, the M and N are integers, and M is less than N.
  • the transceiver unit is further configured to receive configuration information; and the processing unit is further configured to configure the second spreading factor N according to the configuration information.
  • the present application provides a device, which may be a network device, or a device (such as a chip) capable of supporting the network device to implement the method of the third aspect, or
  • the device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method of the third aspect, and may include:
  • a processing unit configured to obtain a second spreading block according to the second spreading factor N, discard the second spreading block when the number of available resource elements RE in the time-frequency resource block is less than the N, and according to the first A spreading factor M obtains a first spreading block.
  • the time-frequency resource block is a resource block corresponding to the second spreading factor N, the M is determined according to the available REs in the time-frequency resource block, and M and N are integers, And M is less than N;
  • the transceiver unit is configured to send the first spreading block, where the first spreading block is mapped to the available RE of the time-frequency resource block.
  • the transceiver unit is further configured to send configuration information.
  • configuration information refer to the description in the third aspect above, which is not specifically limited herein.
  • the present application provides an apparatus.
  • the present application provides an apparatus, which may be a network device or an apparatus capable of supporting the network device to implement the method of the third aspect. (Such as a chip), or the device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method of the third aspect, and may include:
  • Memory for storing program memory
  • a processor configured to call and execute program instructions stored in the memory, receive and / or send data through the communication interface, and implement the following functions: obtaining a second spreading block according to a second spreading factor N, The number of available resource elements RE in the resource block is less than N, discarding the second spreading block, obtaining a first spreading block according to a first spreading factor M, and receiving the first spreading block through a communication interface. .
  • the time-frequency resource block is a resource block corresponding to the second spreading factor N
  • the M is determined according to the available REs in the time-frequency resource block
  • M and N are integers
  • M is less than N.
  • the transceiver unit is further configured to send configuration information.
  • configuration information refer to the foregoing description of the third aspect, which is not specifically limited herein.
  • the present application provides a device, which may be a network device, or a device (such as a chip) capable of supporting the network device to implement the method of the fourth aspect, or The device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method of the fourth aspect, and may include:
  • the transceiver unit is configured to receive a first spreading block; the processing unit is configured to process the first spreading block.
  • the first spreading block is mapped to an available resource element RE of a time-frequency resource block, and a spreading factor of the first spreading block is a second spreading factor M, where M is Determined by the available REs in a frequency resource block, the time-frequency resource block is a resource block corresponding to a second spreading factor N, the M and N are integers, and M is less than N.
  • the processing unit is configured to process the first spreading block, such as despreading and demodulation.
  • the transceiver unit is further configured to receive configuration information; the processing unit is further configured to:
  • the present application provides an apparatus.
  • the present application provides an apparatus, which may be a network device or an apparatus capable of supporting the network device to implement the method of the fourth aspect. (Such as a chip), or the device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method of the fourth aspect, which may include:
  • Memory for storing program memory
  • a processor for invoking and executing program instructions stored in the memory, receiving and / or sending data through the communication interface, and realizing the following functions: receiving a first spread spectrum block through the communication interface, and spreading the first spread spectrum Block (for example, demodulation or despreading, etc.).
  • the processor is further configured to receive configuration information through the communication interface, and configure a second spreading factor N according to the configuration information.
  • the present application provides a device, which may be a network device, or a device (such as a chip) capable of supporting the network device to implement the method of the fifth aspect, or
  • the device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method in the fifth aspect, and may include:
  • the spreading block is mapped on at least the ith orthogonal frequency division multiplexing OFDM symbol and the i + 1th OFDM symbol, and the first complex symbol in the spreading block is along the first in the frequency domain.
  • the direction is mapped to the resource element RE of the i-th OFDM symbol, and the second complex symbol in the spreading block is mapped to the RE of the i + 1-th OFDM symbol in the frequency domain along the second direction.
  • the first direction is opposite to the second direction; or
  • the spreading block is mapped to at least the i-th subcarrier and the i + 1th subcarrier, and the third complex symbol in the spreading block is mapped to the i-th subcarrier in the third direction in the time domain.
  • the fourth complex symbol in the spreading block is mapped to the RE of the i + 1th subcarrier along the fourth direction in the time domain, and the third direction is opposite to the fourth direction , Where i is a positive integer.
  • the second aspect, the third direction, or the fourth direction refer to the introduction of the fifth aspect above.
  • the present application provides an apparatus.
  • the present application provides an apparatus, which may be a network device or an apparatus capable of supporting the network device to implement the method of the fifth aspect. (Such as a chip), or the device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method of the fifth aspect, which may include:
  • Memory for storing program memory
  • the processor is configured to call and execute program instructions stored in the memory, receive and / or send data through the communication interface, and implement the following functions: generate a spread spectrum block, and send the spread spectrum block through the communication interface.
  • the spreading block is mapped on at least the ith orthogonal frequency division multiplexing OFDM symbol and the i + 1th OFDM symbol, and the first complex symbol in the spreading block is along the first in the frequency domain.
  • the direction is mapped to the resource element RE of the i-th OFDM symbol, and the second complex symbol in the spreading block is mapped to the RE of the i + 1-th OFDM symbol in the frequency domain along the second direction.
  • the first direction is opposite to the second direction; or
  • the spreading block is mapped to at least the i-th subcarrier and the i + 1th subcarrier, and the third complex symbol in the spreading block is mapped to the i-th subcarrier in the third direction in the time domain.
  • the fourth complex symbol in the spreading block is mapped to the RE of the i + 1th subcarrier along the fourth direction in the time domain, and the third direction is opposite to the fourth direction , Where i is a positive integer.
  • the present application provides a device, which may be a network device, or a device (such as a chip) capable of supporting the network device to implement the method of the sixth aspect, or
  • the device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method of the sixth aspect, and may include:
  • the spreading block is mapped on at least the ith orthogonal frequency division multiplexing OFDM symbol and the i + 1th OFDM symbol, and the first complex symbol in the spreading block is along the first in the frequency domain.
  • the direction is mapped to the resource element RE of the i-th OFDM symbol, and the second complex symbol in the spreading block is mapped to the RE of the i + 1-th OFDM symbol in the frequency domain along the second direction.
  • the first direction is opposite to the second direction; or
  • the spreading block is mapped to at least the i-th subcarrier and the i + 1th subcarrier, and the third complex symbol in the spreading block is mapped to the i-th subcarrier in the third direction in the time domain.
  • the fourth complex symbol in the spreading block is mapped to the RE of the i + 1th subcarrier along the fourth direction in the time domain, and the third direction is opposite to the fourth direction , Where i is a positive integer.
  • a processing unit configured to process a spread spectrum block.
  • the present application provides an apparatus.
  • the present application provides an apparatus, which may be a network device or an apparatus capable of supporting the network device to implement the method of the sixth aspect. (Such as a chip), or the device may be a terminal device or a device (such as a chip) capable of supporting the terminal device to implement the method of the sixth aspect, which may include:
  • Memory for storing program memory
  • the processor is configured to call and execute program instructions stored in the memory, receive and / or send data through the communication interface, and implement the following functions: receiving a spread spectrum block through a communication interface and processing the spread spectrum block.
  • the spreading block is mapped on at least the ith orthogonal frequency division multiplexing OFDM symbol and the i + 1th OFDM symbol, and the first complex symbol in the spreading block is along the first in the frequency domain.
  • the direction is mapped to the resource element RE of the i-th OFDM symbol, and the second complex symbol in the spreading block is mapped to the RE of the i + 1-th OFDM symbol in the frequency domain along the second direction.
  • the first direction is opposite to the second direction; or
  • the spreading block is mapped to at least the i-th subcarrier and the i + 1th subcarrier, and the third complex symbol in the spreading block is mapped to the i-th subcarrier in the third direction in the time domain.
  • the fourth complex symbol in the spreading block is mapped to the RE of the i + 1th subcarrier along the fourth direction in the time domain, and the third direction is opposite to the fourth direction , Where i is a positive integer.
  • the present application provides a computer storage medium that stores computer instructions that, when run on a computer, cause the computer to execute any of the first to sixth aspects described above. method.
  • the present application provides a computer program including computer instructions that, when the computer instructions are executed by a computer, cause the computer to execute the method according to any one of the first aspect to the sixth aspect. .
  • the present application provides a computer program product containing instructions that, when run on a computer, causes the computer to perform the method described in any one of the first aspect to the sixth aspect.
  • an embodiment of the present application provides a chip system, which includes a processor and may further include a memory, for implementing the method described in any one of the first aspect to the sixth aspect.
  • the present application provides a communication system including the device described in any one of the seventh aspect to the eighteenth aspect.
  • FIG. 1 is a process of transmitting data by using a non-orthogonal multiple access technology at a transmitting end according to an embodiment of the present application
  • FIGS. 2a, 2b, and 2c are schematic diagrams of time-frequency resource mapping provided by an embodiment of the present application.
  • FIG. 3 is another schematic diagram of time-frequency resource mapping provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • FIG. 6, FIG. 7, FIG. 8a, FIG. 8b, FIG. 8c, FIG. 8d, and FIG. 8e are application scenarios of the communication method provided by the embodiments of the present application;
  • FIG. 9 is another schematic flowchart of a communication method according to an embodiment of the present application.
  • FIGS. 10a and 10b are schematic diagrams of time-domain priority mapping provided by an embodiment of the present application.
  • 11a and 11b are another schematic diagram of time-domain priority mapping provided by an embodiment of the present application.
  • 12a and 12b are schematic diagrams of priority mapping in the frequency domain provided by an embodiment of the present application.
  • FIG. 13a and 13b are another schematic diagram of frequency domain priority mapping provided by an embodiment of the present application.
  • 16 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 17 is another schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • Non-orthogonal multiple access (NOMA) technology It is a multiple access technology that allows multiple terminal devices to send or receive data on the same time-frequency resource.
  • NOMA multiple terminal devices can simultaneously transmit data on the same time-frequency resources.
  • the system will assign a NOMA multiple access signature to each terminal device.
  • signature, MA signature
  • the terminal device can also autonomously select the NOMA multiple access signature.
  • each terminal device may perform operations such as spreading and modulating the input data according to the respective multiple access signatures, and send the spread and modulated data.
  • each terminal device can perform operations such as despreading and demodulating the received data according to its respective multiple access signature.
  • the non-orthogonal multiple access in the embodiments of the present application may include, but is not limited to, the following technologies: sparse code multiple access (SCMA), multi-user shared access (MUSA) ), Pattern division multiple access (PDMA), interleave-grid multiple access (IGMA), resource extended multiple access (RSMA), non- Orthogonal coded multiple access (non-orthogonal coded multiple access (NCMA)) and non-orthogonal coded access (NOCA)).
  • SCMA sparse code multiple access
  • MUSA multi-user shared access
  • PDMA Pattern division multiple access
  • IGMA interleave-grid multiple access
  • RSMA resource extended multiple access
  • NCMA non- Orthogonal coded multiple access
  • NOCA non-orthogonal coded access
  • Multi-access signature also known as NOMA signature, or NOMA multiple-access signature.
  • NOMA signature also known as NOMA signature, or NOMA multiple-access signature.
  • NOMA multiple-access signature Various types of non-orthogonal multiple access technologies can correspond to their corresponding multiple access signatures.
  • a network device may be a device that connects a terminal device to a wireless network in the network.
  • the network device may be a node in a radio access network, a base station, or a radio access network (RAN) node (or device).
  • RAN radio access network
  • some examples of network equipment are: gNB, transmission reception point (TRP), evolved Node B (eNB), home base station (e.g., home NodeB, or home NodeB, HNB) Baseband unit (BBU), or WiFi access point (AP).
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node. This structure separates the protocol layer of the eNB in a long term evolution (LTE) system. Some protocol layer functions are centrally controlled by the CU. The remaining part or all of the protocol layer functions are distributed in the DU. Centralized control of DU.
  • LTE long term evolution
  • Terminal equipment including user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminals are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • this application provides an application scenario, which may be an example of communication using non-orthogonal multiple access technology.
  • the scenario shown in FIG. 1 is only an exemplary description, and is not intended to limit the technical solution of the present application.
  • the data processing process of the sending end is generally: firstly group the input data to obtain one or more groups of data. For each group of data, a multi-access signature can be used to modulate and spread the frequency of each group of data to obtain a spreading block. Each set of data corresponds to one spreading block, and multiple sets of data correspond to multiple spreading blocks. Finally, time-frequency resource mapping is performed on each spreading block and sent to the receiving end. For example, every two bits of input data can be divided into a group, that is, a group of data includes 2 bits. Then, a group of data is modulated and spread to obtain 4 complex symbols, which form a spreading block.
  • the length of the spreading block can be referred to as the size of a spreading factor (SF). For example, if the length of a spreading block is 4, including 4 complex symbols, then the spreading corresponding to the spreading block The size of the factor SF may be four.
  • the two factors that determine its multiple access signature are the sparse pattern and the set of non-zero positions in the sparse pattern.
  • the multiple-access signature which may be referred to as sparse code multiple-access SCMA technology, is determined according to a sparse mode and a preset value set of a non-zero position in the sparse mode. For example, for a sparse code with a length of 4 and a sparseness of 50%, there are a total of 6 sparse patterns:
  • the value of the non-zero position in the sparse mode may be generated according to the value of the input data bits and a predefined rule. For example, if 4 bits are a group, the relationship between input data bits and non-zero position values can be determined by the following Table 1:
  • Table 1 is only an exemplary description, and is not intended to limit the definition of SCMA.
  • the correspondence between different users, data bits, and non-zero position values may be the same or different.
  • multiple access technologies such as multi-user shared access MUSA, pattern division multiple access PDMA, non-orthogonal coding access NOCA, non-orthogonal coding multiple access NCMA, and resource extension multiple access RSMA etc.
  • a linear spreading sequence linear spreading sequence
  • a linear spreading sequence may be used for spreading.
  • the modulation symbol after the constellation modulation is multiplied with the linear spreading sequence to generate an output symbol sequence.
  • the spreading factor may be equal to the length of the linear spreading sequence. For example, the modulation symbol of the input data bit after constellation modulation is ⁇ , if the spreading sequence is Then the output symbol sequence after spreading can be
  • a grid mapping pattern (grid mapping pattern) can be used as a multiple access signature.
  • the spreading factor is equal to the length of the trellis mapping pattern.
  • a grid mapping mode with a length of 4 and a sparsity of 0.5 can have the following 6 grid mapping modes:
  • each non-zero position in the grid mapping mode maps a constellation-modulated modulation symbol. For example, using Grid map pattern , The modulation symbols ⁇ and ⁇ of the data bits after constellation modulation are mapped to non-zero positions in the grid mapping mode, that is, the mapped output symbol sequence is
  • the multiple access signatures of different users may be orthogonal or non-orthogonal. Whether the two multi-access signatures are orthogonal can be defined in the following ways:
  • Definition 1 If the product of the conjugate transpose of the multiple access signature A and the multiple access signature B is zero, it can be considered that the multiple access signature A is orthogonal to the multiple access signature B, otherwise the multiple access signature is considered The incoming signature A is not orthogonal to the multiple access signature B.
  • Definition 2 If the product of the conjugate transpose of the multiple access signature A and the multiple access signature B is zero, the multiple access signature A is also considered orthogonal to the multiple access signature B, otherwise the multiple access signature is considered The incoming signature A is not orthogonal to the multiple access signature B.
  • time-frequency resource mapping when time-frequency resource mapping is performed on a spreading block, it is generally performed by using a complex symbol in the spreading block as a unit, and usually a complex number is mapped to a resource in the time-frequency resource.
  • Element resource element, RE.
  • a resource block RB is allocated in advance for data transmission.
  • one RB may include 12 REs.
  • two spreading blocks can be obtained, and each spreading block includes four complex symbols.
  • the complex symbols 0 to 3 of the spreading block 1 can be mapped to RE0 to RE3
  • the complex symbols 0 to 3 of the spreading block 2 can be mapped to RE4 to RE7.
  • the following two solutions can be adopted:
  • the first solution skip the unavailable RE.
  • the complex symbols 0 to 3 of the spreading block 1 may be mapped to RE0 to RE3.
  • the complex number 0 can be mapped to RE4, and the complex number 1 to complex number 3 can be mapped to RE6 to RE8, respectively.
  • the complex symbols included in it are mapped to RE4, RE6, RE7, and RE8, respectively.
  • RE4, RE6, RE7, and RE8 the requirements of the non-orthogonal multiple access technology for "the spreading block positions of multiple users must be aligned" cannot be met.
  • the second solution discard the plural symbols that should be mapped to unavailable REs, which is also called Puncture.
  • setting RE5 is not available.
  • the complex symbols 0 to 3 in the spreading block 1 may be mapped to RE0 to RE3 as well.
  • the complex symbol 0 in the spreading block 2 is mapped to RE4, the complex symbol 2 and the complex number 3 in the spreading block 2 are respectively mapped to RE6 and RE7, and the complex symbol 1 in the spreading block 2 is discarded. Because the complex symbol 1 is discarded, the detection performance of the spreading block will be reduced, affecting the overall performance.
  • the present application provides a communication method.
  • the principle of the method is: according to the available resource elements RE in the time-frequency resource block, adjusting the spreading factor of the spreading block, and using the adjusted spreading factor to generate the spreading block. And map the generated spreading block to the available resource elements of the time-frequency resource block and send it. In this way, the requirement that the positions of the spreading blocks of multiple users must be aligned can be met, and plural symbols are not discarded, thereby ensuring the detection performance of the spreading blocks.
  • the example in FIG. 2b and FIG. 2c is still used.
  • the spreading factor can be adjusted to 3
  • the spreading factor 2 is generated by using the spreading factor 3.
  • the complex symbols of the spreading block 2 are mapped to RE4, RE6, and RE7, respectively. In this way, it can meet the alignment requirements when multiple users send spreading block 2. (In NOMA technology, the RE boundary when each user sends spreading block 2 cannot exceed RE7, or each user sends spreading block 2 at RE4 to In RE7), the complex symbols are not discarded, which ensures the performance of the spreading block.
  • the present application provides a communication method.
  • the execution subject of steps S401 and S402 in the communication method may be a network device, and the execution subject of step S403 may be a terminal device.
  • steps S401 and S401 in the communication method may be executed.
  • the execution subject of step S402 may be a terminal device, and the execution subject of step S403 may be a network device.
  • the execution subject of steps S401 and S402 is a network device
  • the execution subject of step S403 is a terminal device, for example.
  • the functions of the network device may also be implemented by other devices or modules, for example, by a chip applied to the network device; the functions of the terminal device may also be implemented by other devices or modules. For example, it can be implemented by a chip applied to a terminal device.
  • Step S401 The network device determines a spreading block according to a first spreading factor M, where M is determined according to an available resource element RE in a time-frequency resource block, and the time-frequency
  • the resource block may be specifically a resource block corresponding to the second spreading factor N, or the time-frequency resource block may be a mapping unit corresponding to the second spreading factor N, etc., where M and N are integers, and M is less than N.
  • the process of determining the first spreading factor M according to the number of available resource elements RE in the time-frequency resource block may be: the network device sets the first spreading factor M to be in the time-frequency resource block.
  • the number of available resource elements RE is equal.
  • the available RE may be an RE that can be used to map data in a spreading block.
  • the network device determines a second spreading factor N and an available resource element M in the time-frequency resource block. When N is less than or equal to M, the network device adjusts the spreading factor from the second spreading factor N to the first spreading factor M, otherwise, no operation is performed. Alternatively, when the ratio of M to N is greater than or equal to the first threshold, the spreading factor is adjusted from the second spreading factor N to the first spreading factor M, otherwise, no operation is performed.
  • N is less than M, and the ratio of M to N is greater than or equal to the first threshold, which is only used as an example of adjusting the spreading factor for the network device, and not for adjusting the network device.
  • Limitation of the spreading factor may also adjust the spreading factor when the number of all available resource elements RE in the time-frequency resource block cannot be divided by the second spreading factor N.
  • the second spreading factor N may be pre-configured by the network device.
  • the network device may configure the second spreading factor for the terminal device through radio resource control (radio resource control (RRC)) signaling or downlink control information (downlink control information (DCI)).
  • RRC radio resource control
  • DCI downlink control information
  • the terminal device may determine the second spreading factor according to the configuration information of the network device.
  • the network device may send configuration information, and the configuration information may be used to configure a second spreading factor N.
  • the terminal device may receive configuration information and determine a second spreading factor N according to the configuration information.
  • the configuration information sent by the network device may be carried in broadcast information, system information, RRC signaling, media access control (MAC) control element (CE), or DCI.
  • MAC media access control
  • CE media access control element
  • Step S402 The network device sends a spreading block, and the spreading block is mapped to the available RE of the time-frequency resource block.
  • the network device sends the spreading block, which may also be referred to as the network device mapping the spreading block to an available RE of the time-frequency resource block for sending.
  • Step S403 The terminal device receives a spreading block, where the spreading block is mapped to an available resource element RE of a time-frequency resource block, and a spreading factor of the spreading block is a first spreading factor M, where M is It is determined according to the available REs in the time-frequency resource block that the time-frequency resource block is a resource block corresponding to a second spreading factor N, the M and N are integers, and M is less than N.
  • receiving a spreading block by a terminal device may also be referred to as receiving a spreading block on an available resource element RE of a time-frequency resource block by the terminal device.
  • the sender can perform data grouping on the input data to obtain one or more groups of data. For any one of the above one or more sets of data, the following operations can be performed. For the convenience of description, any of the foregoing groups of data may be referred to as target group data.
  • the transmitting end determines the second spreading factor N and the number M of available resource elements in the time-frequency resource block. If M is less than N, or the ratio of M to N is greater than or equal to the first threshold, the spreading factor is adjusted to the first spreading factor M.
  • the sender can use the multiple access signature corresponding to the first spreading factor M to spread and modulate the target group data to obtain the target spreading block; the sender can map the target spreading block to the time-frequency resource block.
  • Send on available resource element M For example, as shown in FIG. 3, after spreading and modulating the target group data, a second spreading block can be obtained, and the second spreading block can be mapped to the available resource elements RE4, RE6, and RE7.
  • the second spreading factor is set to N, and the time-frequency resource block corresponding to the second spreading factor N includes M available resource elements RE. If N is less than or equal to M, the solution described in FIG. 4 may be executed. Alternatively, the following solution may be performed: determining that the time-frequency resource block corresponding to the second spreading factor is not used for time-frequency resource mapping, and may also be referred to as not using the time-frequency resource block corresponding to the second spreading factor N for uplink / downlink transfer data. With this solution, interference with other multiplexed users can be reduced.
  • the present application further provides a communication method.
  • the execution subject of steps S501 to S504 may be a network device, and the execution subject of step S505 may be a terminal device.
  • the execution subject of steps S501 to S504 in the communication method may be a terminal device, and the execution subject of step S505 may be a network device.
  • the execution subject of steps S501 to S504 is a network device, and the execution subject of step S505 may be a terminal device, for example.
  • the process can be specifically:
  • Step S501 The network device obtains a second spreading block according to the second spreading factor N.
  • the second spreading factor N is pre-configured, or the network equipment configures the terminal equipment through signaling.
  • the network device may send configuration information, the configuration information is used to configure the second spreading factor N, and the terminal device may receive the configuration information, and determine the second spreading factor N according to the configuration information.
  • the signaling may include semi-static signaling and dynamic signaling.
  • Semi-static signaling can be RRC signaling, broadcast messages, system messages, or MAC CE.
  • the broadcast message may include a remaining minimum system message (RMSI).
  • the dynamic signaling may be physical layer signaling.
  • Physical layer signaling may be signaling carried by a physical control channel or signaling carried by a physical data channel.
  • the physical control channel may be a physical downlink control channel (PDCCH), an enhanced physical downlink control channel (EPDCCH), a narrowband physical downlink control channel (NPDCCH), or a narrowband physical downlink control channel (NPDCCH) or Machine type physical downlink control channel (MTC) physical downlink control channel (MPDCCH).
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • NPDCCH narrowband physical downlink control channel
  • NPDCCH narrowband physical downlink control channel
  • MTC Machine type physical downlink control channel
  • the signaling carried by the PDCCH or EPDCCH may also be referred to as downlink control information (downlink control information).
  • the physical control channel may also be a physical secondary link control channel (physical sidelink control channel), and the signaling carried by the physical secondary link control channel may also be called sidelink control information (sidelink control information) (SCI).
  • SCI sidelink control information
  • Step S502 if the number of available resource elements RE in the time-frequency resource block is less than the N, the network device discards the second spreading block, and the time-frequency resource block is a resource corresponding to the second spreading factor N Piece.
  • step S502 may also be described as not sending the second spreading block.
  • step S502 may also be: setting the available resource element in the time-frequency resource block to M, and if the ratio of M to M is less than or equal to the first threshold, the network device discards the second spreading block .
  • Step S503 The network device obtains a first spreading block according to the first spreading factor M, the M is determined according to the available REs in the time-frequency resource block, the M and N are integers, and M Less than N.
  • the implementation process of steps S502 and S503 may be specifically: determining a time-frequency resource block corresponding to the second spreading factor N.
  • the number M of available REs in the time-frequency resource block is determined.
  • the second spreading block may be discarded or the second spreading block may not be sent, and according to the available time-frequency resource block
  • the number of REs determines the first spreading factor M.
  • the first spreading factor M is used to obtain a first spreading block.
  • Step S504 The network device sends the first spreading block, and the first spreading block is mapped to the available RE of the time-frequency resource block.
  • the network device sends the first spreading block, which may also be referred to as the network device sending the first spreading block on the available RE of the time-frequency resource block.
  • Step S505 The terminal device receives the first spread spectrum block.
  • the terminal device receiving the first spreading block may also be referred to as the terminal device receiving the first spreading block on the available RE of the time-frequency resource block.
  • the spreading factor of the first spreading block is a second spreading factor M.
  • the M is determined according to the available REs in the time-frequency resource block, and the time-frequency resource may be specifically the first The spreading block corresponding to the two spreading factors N.
  • the sender can perform data grouping on the input data to obtain one or more groups of data. For any one of the above one or more sets of data, the following operations can be performed. For the convenience of description, any of the foregoing groups of data may be referred to as target group data.
  • the second spreading block is discarded, and the first spreading factor is determined according to available resource elements in the time-frequency resource block.
  • the spreading factor may be adjusted from the second spreading factor N to the first spreading factor.
  • Frequency factor M Use the multiple access signature corresponding to the first spreading factor M to spread and modulate the target data group to obtain a first spreading block, and map the first spreading block to the available resources of the time-frequency resource block Send on element.
  • time-frequency resource mapping before time-frequency resource mapping is performed on a group of data, it can be determined whether the current spreading block can be completely mapped. If the current spreading block cannot be completely mapped, the spreading block is discarded, and Adjust the spreading factor, and then use the adjusted spreading factor to re-spread and modulate the data. If it can be completely mapped, send the spreading block.
  • the process of determining whether the spreading block can be completely mapped may be: each spreading block performs time-frequency resource mapping according to a second spreading factor N. In the process of time-frequency resource mapping, if the spreading block is If there are unavailable resource elements RE in the corresponding N resource elements RE, then the network device may consider that the spreading block cannot be mapped completely, otherwise it is considered that the spreading block can be mapped completely.
  • the second spreading factor is set to N, and the time-frequency resource block corresponding to the second spreading factor N includes M available resource elements. If N is less than or equal to M, the solution described in FIG. 5 may be executed. Alternatively, the following scheme may be performed: the second spreading block is discarded, and the second spreading block is generated according to the second spreading factor N. With this solution, unnecessary transmission energy can be saved, and it is possible to reduce interference to other multiplexed users.
  • An embodiment of the present application further provides a communication method, and an execution subject of the communication method may be a network device or a terminal device, which is not limited in the embodiment of the present application.
  • the communication method may be: determining a second spread spectrum A time-frequency resource block corresponding to the factor N; determining the number M of available REs in the time-frequency resource block.
  • the ratio of M to N is greater than or equal to the first threshold, the solution described in the flow of FIG. 4 is adopted; otherwise, it is determined that the time-frequency resource block corresponding to the second spreading factor is no longer used for time-frequency resources. Mapping.
  • the ratio of M to N is greater than or equal to the first threshold, the solution described in the flow of FIG. 5 is adopted; otherwise, the second spreading block is discarded according to the second spreading Determined by factor N.
  • the solution described in FIG. 2c is adopted, otherwise the second spreading block is discarded.
  • the size of the spreading factor is also adjusted, which is different from the embodiment described in FIG. 4 or FIG. 5 Yes, in the solution described in FIG. 2c, the multiple-access signature corresponding to the pre-adjusted spreading factor is used to process the data.
  • the multiple access signature corresponding to the adjusted spreading factor that is, the first spreading factor
  • the multiple access signature corresponding to the adjusted spreading factor is used to process the data. Using multiple access signatures corresponding to the adjusted spreading factor to process the data will optimize the performance of the entire non-orthogonal multiple access system.
  • the value of the first threshold is not limited.
  • the value of the first threshold may be 0.5.
  • the present invention may be applied to, but not limited to, the following scenario 1, scenario 2, and scenario 3, as follows:
  • Scenario 1 Multiple users perform multiplexed transmission through non-orthogonal multiple-access technology, and only certain REs of some users cannot transmit data.
  • a network device indicates that certain orthogonal frequency division multiplexing (OFDM) symbols of some users need to send sounding reference signals (SRS), or a network device indicates that some users' RE To send a phase tracking reference signal (PT-RS), or a network device instructs some users' RE to send a demodulation reference signal (Demodulation Reference Signal, DMRS), or a base station instructs some users
  • SRS sounding reference signals
  • PT-RS phase tracking reference signal
  • DMRS demodulation Reference Signal
  • the RE is used to send uplink control signals, or the base station indicates that certain OFDM symbols cannot be used to transmit uplink data.
  • user 1 user 2 and user 3 are set, and three users use non-orthogonal multiple access technology to perform uplink data transmission in the same time-frequency resource block, and set user 1 Some of the OFDM symbols are used to transmit SRS. Then, when the user 1 is performing time-frequency resource mapping, if the RE corresponding to the unavailable OFDM symbol is encountered, the user 1 may use the solution described in FIG. 4 or FIG. 5 to adjust the spreading factor.
  • the preset spreading factor is 4, if user 1 encounters the RE corresponding to the unavailable OFDM symbol during time-frequency resource mapping, and the number of the unavailable RE is one, At this time, the number of available REs corresponding to the spreading factor 4 is three, so the user 1 can modulate the spreading factor to 3, and use a multiple access signature with the spreading factor of 3 to process the data. And user 2 and user 3 can continue to use the multiple access signature with a spreading factor of 4 to process the data.
  • Scenario 2 The terminal device uses non-orthogonal multiple access technology to perform repeated transmission in repeated subframes, and the subframes transmitted twice use the same time-frequency resource. Relative to the subframe transmitted for the first time, some OFDM symbols in the repeatedly transmitted subframe cannot be used for uplink data transmission. Then, the terminal device can automatically adjust the spreading factor of the repeated transmission subframe by using the solution described in FIG. 4 or FIG. 5.
  • the subframe used for the first transmission and the subframe transmission for repeated transmission use the same time-frequency resource, and the configured spreading factor SF is 4.
  • some OFDM symbols cannot be used for uplink data transmission.
  • RS reference signal
  • an RB can include 12 REs
  • Multiple-access signatures process data such as modulation and spread spectrum.
  • Scenario 4 When performing time-frequency resource mapping, if the number of available REs in the time or frequency domain cannot be divided by the spreading factor SF, the solution described in FIG. 4 or FIG. 5 may be used to adjust the spreading factor.
  • the time-frequency resource mapping method may be frequency-domain-first or time-domain-first.
  • Example 2 As shown in FIG. 8c, it is set to allocate 1 RB for non-orthogonal multiple access transmission, and the mapping method is frequency priority.
  • the mapping method is frequency priority.
  • an unavailable RE is encountered, and the number of available REs in the frequency domain is encountered.
  • Example 3 As shown in FIG. 8d, 11 OFDM symbols are allocated for non-orthogonal multiple access transmission.
  • the mapping mode is time domain first.
  • the number of available REs in the time domain is 11.
  • the number of REs available in the time domain cannot be divided by SF.
  • Scenario 5 All available RE numbers cannot divide the spreading factor SF during a transmission. At this time, the last spreading block cannot perform complete resource mapping. You can use the solution described in Figure 4 or Figure 5 to adjust the spreading factor. .
  • this application further provides a communication method.
  • the execution subject of step S901 in the communication method may be a network device, and the execution subject of step S902 may be a terminal device.
  • the execution subject of step S901 in the communication method may be It may be a terminal device, and the execution subject of step S902 may be a network device.
  • the execution subject of step S901 is a network device, and the execution subject of step S902 is a terminal device, for example.
  • the process can be specifically:
  • Step S901 The network device sends a spread spectrum block.
  • Step S902 The terminal device receives the spread spectrum block.
  • the spreading blocks may be mapped in a time-domain-first manner, or may be mapped in a frequency-domain-first manner.
  • the spreading block may be mapped to a resource element RE on an OFDM symbol, or may be mapped to a resource element RE on a single-carrier frequency-division multiple access (SC-FDMA) symbol.
  • the resource element RE may be an available resource element, and the available resource element may be an allocated resource element for data transmission.
  • the resource elements described in the following embodiments may be specifically available resource elements, which will not be described one by one in the following.
  • the available resource element may be an available resource element described in the above embodiment.
  • the method described in FIG. 9 may be used in combination with the method described in FIG. 4 or FIG. 5.
  • the method of mapping the spreading block may be specifically: the spreading block may be mapped at least to the first On the i OFDM symbol and the i + 1th OFDM symbol, the first complex symbol in the spreading block is mapped onto the resource element RE of the i-th OFDM symbol along the first direction in the frequency domain.
  • the second complex symbol in the spreading block is mapped onto the RE of the i + 1th OFDM symbol in the frequency domain along a second direction, the first direction is opposite to the second direction, and the i Is an integer.
  • Each of the first complex symbol and the second complex symbol may include one or more symbols.
  • the number of symbols included in the first plural number symbol and the second plural number symbol may be the same or different, which is not limited in this application.
  • the first direction may be a direction in which the frequency domain increases, and the second direction may be a direction in which the frequency domain decreases.
  • the first direction is a direction in which the frequency domain is reduced, and the second direction is a direction in which the frequency domain is increased.
  • the method of mapping the spreading block may be specifically: the spreading block is mapped to at least the i-th subcarrier and the i + th On one subcarrier, the third complex symbol in the spreading block is mapped to the RE of the i-th subcarrier along the third direction in the time domain, and the fourth complex symbol in the spreading block is at The domain is mapped onto the RE of the i + 1th subcarrier along a fourth direction, the third direction is opposite to the fourth direction, and i is a positive integer.
  • Each of the third and fourth plural symbols may include one or more symbols. The number of symbols included in the third complex symbol and the fourth complex symbol may be the same or different, which is not limited in this application.
  • the third direction is a direction in which the time domain increases, and the fourth direction is a direction in which the time domain decreases; or, as shown in FIG. 13a or FIG. 13b. It is shown that the third direction is a direction in which the time domain decreases, and the fourth direction is a direction in which the time domain increases.
  • the complex symbol of the spreading block may be specifically mapped to the available REs in the time-frequency resource block.
  • adjust the spreading factor and skip the unavailable REs For the manner of adjusting the spreading factor, refer to the solution described in FIG. 4 or FIG. 5 described above. For details, see FIG. 10b, FIG. 11b, FIG. 12b, or FIG. 13b.
  • the foregoing manner is adopted to ensure that the complex symbols of the same spreading block are mapped to adjacent RE positions. Therefore, it meets the requirements of the prior art for the non-orthogonal multiple access technology "the complex symbols in the same spreading block are mapped to the REs in adjacent positions as much as possible". Because the channel characteristics of adjacent REs are similar, the spreading performance of the spreading block can be guaranteed.
  • an execution subject of the method may be a network device or a terminal device.
  • a terminal device is used as an execution subject for example description. The process can be specifically:
  • Step S141 The terminal device determines a spreading block according to the first spreading factor M.
  • M is determined according to an available resource element RE in a time-frequency resource block
  • the time-frequency resource block is a resource block corresponding to a second spreading factor N
  • the M and N are integers, and M is less than N ;
  • Step S142 When the ratio of M to N is less than a first threshold, the terminal device discards the spreading block.
  • step S142 may also be replaced in the following manner: when M is less than N, the terminal device discards the spreading block.
  • the present application further provides a data processing method.
  • the method may be executed by a network device or a terminal device.
  • a terminal device is used as an execution subject for example description.
  • the process can be specifically:
  • Step S151 The terminal device determines the number of available resource elements RE in the time-frequency resource block, where the time-frequency resource block is a resource block corresponding to a spreading factor N.
  • Step S152 If the number of available REs in the time-frequency resource block is less than N, the terminal device determines that the time-frequency resource block is not used for mapping a spreading block or is not used for transmitting a spreading block.
  • the transmission spreading block may be a transmitting spreading block or a receiving spreading block.
  • step S152 may also be replaced in the following manner: When the ratio of M to N is less than the first threshold, the terminal device determines that the time-frequency resource is not used for mapping the spreading block or is not used for transmitting the spreading block. .
  • the network device and the terminal device may include a hardware structure and / or a software module, and implement the foregoing functions in the form of a hardware structure, a software module, or a hardware structure and a software module. Whether one of the above functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application of the technical solution and design constraints.
  • the present application further provides a device 1600, which may include a processing unit 1601 and a transceiving unit 1602.
  • the apparatus 600 may be a network device, or may be a device capable of supporting a network device to implement the functions of the network device in the method mentioned in FIG. 4, FIG. 5, or FIG. 9.
  • the device may be a device in a network device (such as a chip or a chip system).
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the processing unit 1601 may determine a spreading block according to a first spreading factor M, where M is determined according to an available resource element RE in a time-frequency resource block, and the time-frequency resource block is a second spreading A resource block corresponding to the frequency factor N, the M and N are integers, and M is less than N.
  • the transceiver unit 1602 may send the spreading block, and the spreading block is mapped to the available RE of the time-frequency resource block.
  • the processing unit 1601 can obtain a second spreading block according to the second spreading factor N. If the number of available resource elements RE in the time-frequency resource block is less than N, the second spreading block is discarded, and A first spreading factor M is obtained as a first spreading block, wherein the time-frequency resource block is a resource block corresponding to the second spreading factor N, and M is based on the time-frequency resource block. It can be determined by RE, the M and N are integers, and M is less than N.
  • the transceiver unit 1602 may send the first spreading block, and the first spreading block is mapped to the available RE of the time-frequency resource block.
  • the processing unit 1601 may generate a spreading block.
  • the transceiver unit 1602 may send a spreading block, where the spreading block is mapped to at least the ith orthogonal frequency division multiplexed OFDM symbol and the i + 1th OFDM symbol, and the first A complex symbol is mapped onto the resource element RE of the i-th OFDM symbol in the frequency domain along a first direction, and a second complex symbol in the spreading block is mapped to the resource element RE along the second direction in the frequency domain.
  • the first direction and the second direction are opposite; or the spreading block is mapped to at least the ith subcarrier and the i + 1th subcarrier, so The third complex symbol in the spreading block is mapped onto the RE of the i-th subcarrier in the third direction in the time domain, and the fourth complex symbol in the spreading block is in the fourth direction in the time domain.
  • the third direction is opposite to the fourth direction, and i is a positive integer.
  • the apparatus 1600 may be a terminal device, or may be a device capable of supporting the terminal device to implement the functions of the terminal device in the method mentioned in FIG. 4, FIG. 5, FIG. 9, FIG. Device.
  • the device may be a device (such as a chip or a chip system) in a terminal device.
  • the transceiver unit 1602 may receive a spreading block, which is mapped onto an available resource element RE of a time-frequency resource block, and a spreading factor of the spreading block is a first spreading factor M, so The M is determined according to the available REs in the time-frequency resource block, the time-frequency resource block is a resource block corresponding to a second spreading factor N, the M and N are integers, and M is less than N.
  • the processing unit 1601 may process the received spreading block, such as processing such as demodulation and despreading.
  • the transceiver unit 1602 may receive a first spreading block, where the first spreading block is mapped to an available resource element RE of a time-frequency resource block, and a spreading factor of the first spreading block is a second A spreading factor M, where M is determined according to the available REs in the time-frequency resource block, the time-frequency resource block is a resource block corresponding to a second spreading factor N, and M and N are An integer, and M is less than N.
  • the processing unit 1601 may process the first spreading block, such as processing such as demodulation and despreading.
  • Transceiving unit 1602 can receive a spreading block, where the spreading block is mapped to at least the ith orthogonal frequency division multiplexed OFDM symbol and the i + 1th OFDM symbol, and the spreading block The first complex symbol in is mapped on the resource element RE of the i-th OFDM symbol in the frequency domain along a first direction, and the second complex symbol in the spreading block is along the second direction in the frequency domain.
  • the third complex symbol in the spreading block is mapped to the RE of the i-th subcarrier along the third direction in the time domain, and the fourth complex symbol in the spreading block is along the time domain.
  • a fourth direction is mapped onto the RE of the i + 1th subcarrier, the third direction is opposite to the fourth direction, and i is a positive integer.
  • the processing unit 1601 may process the spreading block, such as demodulation and despreading.
  • the apparatus 1700 may be a network device or a network device capable of supporting the network device to implement the network device involved in FIG. 4, FIG. 5, or FIG.
  • the device 1700 may be a device (such as a chip or a chip system) in a network device.
  • the device 1700 may be a terminal device, and may be a device capable of supporting the terminal device to implement the terminal device mentioned in FIG. 4, FIG. 5, or FIG. 9.
  • the device 1700 may be a device in the terminal device (such as Chip or chip system).
  • the device 1700 may include at least one processor 1701, which is configured to implement the functions of the communication method provided in FIG. 4, FIG. 5, or FIG. 9.
  • the above apparatus 1700 may further include at least one memory 1702 for storing program instructions and / or data.
  • the memory 1702 and the processor 1701 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be electrical, mechanical or other forms for information exchange between devices, units or modules.
  • the processor 1701 may operate in cooperation with the memory 1702.
  • the processor 1701 may execute program instructions stored in the memory 1702. At least one of the at least one memory 1702 may be included in the processor 1701.
  • the above apparatus 1700 may further include a communication interface 1703, and the apparatus 1700 may perform information interaction with other devices through the communication interface 1703.
  • the communication interface 1703 may be a circuit, a bus, a transceiver, or any other device that can be used for information exchange.
  • the other device may be another terminal device or a network device.
  • the processor 1701 may use the communication interface 1703 to send and receive data.
  • the communication interface 1703 is used to send a spread spectrum block.
  • the embodiment of the present application is not limited to the specific connection medium between the communication interface 1703, the processor 1701, and the memory 1702.
  • a memory 1702, a processor 1701, and a communication interface 1703 are connected by a bus in FIG. 17.
  • the bus is indicated by a thick line in FIG. 17.
  • the connection modes of other components are only schematically illustrated. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 17, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or The disclosed methods, steps and logic block diagrams in the embodiments of the present application are executed.
  • a general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • the memory may also be, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and / or data.
  • FIG. 18 provides a schematic structural diagram of a terminal device.
  • the terminal device may correspond to the terminal device shown in FIG. 4, FIG. 5, FIG. 9, FIG. 14, or FIG. 15.
  • FIG. 18 shows only the main components of the terminal device.
  • the terminal device 1800 may include a processor, a memory, a control circuit, an antenna, and an input-output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire user equipment, executing software programs, and processing the number of software programs.
  • the memory is mainly used to store software programs and data, such as the codebook described in the foregoing embodiment.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user.
  • the processor may read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 18 shows only one memory and a processor. In an actual user equipment, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiment of the present invention.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control and execute the entire user equipment.
  • the processor in FIG. 18 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the user equipment may include multiple baseband processors to adapt to different network standards, the user equipment may include multiple central processors to enhance its processing capabilities, and various components of the user equipment may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having a transmitting and receiving function may be regarded as the transmitting and receiving unit 1801 of the terminal device 1800, and the processor having the processing function may be regarded as the processing unit 1802 of the terminal device 1800.
  • the terminal device 1800 may include a transceiver unit 1801 and a processing unit 1802.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device used to implement the receiving function in the transceiver unit 1801 can be regarded as the receiving unit, and the device used to implement the transmitting function in the transceiver unit 1801 can be regarded as the transmitting unit, that is, the transceiver unit 801 includes an example of the receiving unit and the transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit.
  • FIG. 19 shows a schematic structural diagram of a network device, for example, a structural schematic diagram of a base station.
  • the base station 1900 may include one or more radio frequency units, such as a remote radio unit (RRU) 1901 and one or more baseband units (BBU) (also known as a digital unit, DU). 1902.
  • RRU remote radio unit
  • BBU baseband units
  • the RRU1901 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 19011 and a radio frequency unit 19012.
  • the RRU1901 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals to base station signals, for example, for sending to the terminal the radio frequency block transmission in the foregoing embodiment.
  • the BBU1902 is mainly used for base station processing and control of the base station.
  • the RRU1901 and the BBU1902 may be physically located together or physically separated, such as a distributed base station.
  • the BBU 1902 may be composed of one or more boards, and multiple boards may jointly support a single access indication wireless access network (such as an LTE network), or may separately support different access systems. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1902 also includes a memory 19021 and a processor 19022.
  • the memory 19021 is used to store necessary instructions and data.
  • the memory 19021 stores an instruction for determining a spreading block according to the first spreading factor M in the foregoing embodiment.
  • the processor 19022 is configured to control the base station to perform necessary actions, for example, it is used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 19021 and the processor 19022 may serve one or more single boards. That is, the memory and processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • an embodiment of the present invention further provides a communication system, which includes the foregoing terminal device and network device.
  • an embodiment of the present application further provides a computer storage medium.
  • a software program is stored in the storage medium, and the software program can implement any one or more of the foregoing when read and executed by one or more processors.
  • the computer storage medium may include various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • an embodiment of the present application further provides a chip system, and the chip system includes a processor for implementing functions involved in any one or more of the foregoing embodiments, for example, acquiring or processing involved in the foregoing methods. Information or messages.
  • the chip further includes a memory, and the memory is configured to execute necessary program instructions and data executed by the processor.
  • the chip may be composed of a chip, or may include a chip and other discrete devices.
  • the processor may be a central processing unit (“CPU”), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and special-purpose integrations. Circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory may include read-only memory and random access memory, and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the bus system may also include a power bus, a control bus, and a status signal bus.
  • a power bus may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as a bus system in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the module division of the device is a logical function division, and there may be another division manner in actual implementation.
  • each functional module of the device may be integrated into one module, or each functional module may exist separately, or two or more functional modules may be integrated into one module.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present invention are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal, or another programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integrations.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, an SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法和装置,该方法的原理为:根据时频资源块中的可用资源元素RE,调整扩频块的扩频因子,然后,利用调整后的扩频因子,生成扩频块,最后将生成的扩频块映射至时频资源块的可用资源元素上,进行发送。如此,可满足"多个用户的扩频块位置必须对齐"的要求,且不丢弃复数符号,保证扩频块的检测性能。

Description

一种通信方法和装置
相关申请的交叉引用
本申请要求在2018年09月06日提交国家知识产权局、申请号为201811039016.8、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法和装置。
背景技术
非正交多址接入(non-orthogonal multiple access,NOMA)技术是一种允许多个终端设备在相同的时频资源上,以非正交的方式发送或接收数据的多址接入技术。相比于正交频分多址接入(orthogonal frequency division multiple access,OFDMA)技术,非正交多址接入技术可以显著提升系统中可同时接入的终端设备的数量、吞吐量、以及频谱效率等,因此,被认为是第五代(5th generation,5G)移动通信系统中重要的备选多址接入技术,目前正在5G新空口(new radio,NR)标准中讨论。
发明内容
本申请提供一种通信方法、装置及计算机可读存储介质,用以提供调整扩频因子的方案。
第一方面,本申请提供一种通信方法,该通信方法包括:根据第一扩频因子M确定扩频块,发送所述扩频块;其中,所述M是根据时频资源块中的可用资源元素RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N,所述扩频块被映射至所述时频资源块的所述可用RE上。
在本申请实施例中,所述第二扩频因子N所对应的时频资源块,可但不限于以下解释:
网络设备可为终端设备配置时频资源块和第二扩频因子N,终端设备可根据第二扩频因子N,在时频资源中确定一个或多个资源元素RE组。其中,一个资源元素RE组中可包括N个RE,所述RE组可用于映射一个长度为N的扩频块,该RE组还可以称为第二扩频因子N所对应的时频资源块。
在一种可能的实现中,终端设备在根据第二扩频因子N,确定资源元素RE组时,可以跳过终端设备不可用的RE,也可以不跳过终端设备不可用的RE,即RE组中可包括不可用RE。对于包括不可用RE的RE组,会出现RE组中包含的可用RE个数小于N的情况。例如,一终端设备在确定RE组时,虽然跳过所有终端设备的公共的不可用RE,但没有跳过部分终端设备的特定的不可用RE。或者,目标终端设备在确定RE组时,采用不跳过不可用RE的方式。
在一种可能的实现中,终端设备可以时域优先的方式在时频资源中确定一个或多个RE组,对于时域优先的方式,时域可用RE的数量可能不能整除N,会出现部分RE组包含的RE个数小于N的情况。示例性地,一个RE组中的RE对应于相同的子载波。
在一种可能的实现中,所述终端设备可以频域优先的方式在时频资源中确定一个或为多个RE组。同理,对于频域优先的方式,频域可用RE的数量可能不能整除N,会出现部分RE组包含的RE个数小于N的情况。示例性地,一个RE组中的RE对应于相同的符号。在一种可能的实现中,所述M可等于所述时频资源块中的所述可用RE的个数。
在一种可能的实现中,所述M与N的比值大于或等于第一门限,或者,M小于或等于N。所述第二扩频因子可为网络设备配置的。
在本申请实施例中,当M与N的比值大于或等于第一门限时,可以认为当前时频资源块中的可用资源元素RE的数量较多,此时将扩频因子调整为第一扩频因子M,可以保证非正交多址接入系统的解调性能。否则,当M与N的比值小于第一门限时,所生成的扩频块可能受损明显,解调性能可能受到影响。采用本申请实施例所提供的方法,可节省发射功能,降低对其它用户的干扰。
可以看出,在第一方面实施方式中,根据时频资源块中的可用资源元素,调整扩频因子,发送根据调整后的扩频因子所生成的第一扩频块。相对于,现有技术方案中,直接利用预先配置的扩频因子,生成扩频块,可保证所生成的扩频块可进行完整的时频资源映射,且不用改变扩频块的映射位置,进一步可保证扩频块的检测性能,降低多用户干扰。
第二方面,本申请还提供一种通信方法,包括:接收扩频块,所述扩频块被映射至时频资源块的可用资源元素RE上,所述扩频块的扩频因子为第一扩频因子M,所述M是根据所述时频资源块中的所述可用RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
在一种可能的实现,所述M可等于所述时频资源块中的所述可用RE的个数。所述M与N的比值大于或等于第一门限,或者,所述M小于或等于N。所述第二扩频因子可根据网络设备的配置所设置的。
第三方面,本申请提供一种通信方法,包括:根据第二扩频因子N得到第二扩频块;如果时频资源块中的可用资源元素RE个数小于所述N,丢弃所述第二扩频块;根据第一扩频因子M得到第一扩频块,发送所述第一扩频块,所述第一扩频块被映射至所述时频资源块的所述可用RE上。其中,所述M是根据所述时频资源块中的所述可用RE确定的,所述M和N为整数,且M小于N,所述时频资源块是所述第二扩频因子N对应的资源块。
在一种可能的实现中,所述M可等于所述时频资源块中的所述可用RE的个数。所述M与N的比值大于或等于第一门限,或者,M小于或等于N。所述第二扩频因子可为网络设备配置的。
可以看出,在第三方面实施方式中,根据第二扩频因子,生成第二扩频块,如果第二扩频块在时频资源映射时可完整映射,则发送该第二扩频块,否则丢弃该第二扩频块,且根据时频资源块中的可用资源元素,重新调整扩频因子,得到第一扩频因子,发送根据第一扩频因子生成的第一扩频块。相对于,现有技术方案中,直接利用预先配置的扩频因子,生成扩频块,可保证所生成的扩频块可进行完整的时频资源映射,进一步可保证扩频块的检测性能,降低多用户干扰。
第四方面,本申请提供一种通信方法,该通信方法包括:接收第一扩频块,所述第一扩频块被映射至时频资源块的可用资源元素RE上,所述第一扩频块的扩频因子是第二扩频因子M,所述M是根据所述时频资源块中的所述可用RE所确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
在一种可能的实现中,所述M可等于所述时频资源块中的所述可用RE的个数。所述M与N的比值大于或等于第一门限,或者,M小于或等于N。所述第二扩频因子可为网络设备配置的。
第五方面,提供一种通信方法,包括:发送扩频块;其中,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
在一种可能的实现方式中,所述第一方向是频域增加的方向,所述第二方向是频域减小的方向;或者所述第一方向是频域减小的方向,所述第二方向是频域增加的方向。
在一种可能的实施方式中,所述第三方向是时域增加的方向,所述第四方向是时域减小的方向;或者所述第三方向是时域减小的方向,所述第四方向是时域增加的方向。
可以看出,在第五方面所提供的实施方式中,可保证扩频块在映射至第i个OFDM符号和第i+1个OFDM上的可用资源元素是相邻的,从而可满足“正交频分复用系统中同一扩频块中的复数符号映射至相邻资源元素”的要求。由于相邻资源元素的信道特性相近,采用第五方面所提供的实施方式,可保证扩频块的扩频性能。
第六方面,提供一种通信方法,可包括:接收扩频块;其中,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
在一种可能的实现方式中,所述第一方向是频域增加的方向,所述第二方向是频域减小的方向;或者所述第一方向是频域减小的方向,所述第二方向是频域增加的方向。
在一种可能的实施方式中,所述第三方向是时域增加的方向,所述第四方向是时域减小的方向;或者所述第三方向是时域减小的方向,所述第四方向是时域增加的方向。
基于上述第一方面的发明构思,第七方面,本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第一方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第一方面方法的装置(比如芯片),可包括:
处理单元,用于根据第一扩频因子M确定扩频块,其中,所述M是根据时频资源块中的可用资源元素RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N;
收发单元,用于发送所述扩频块,所述扩频块被映射至所述时频资源块的所述可用RE上。
在一种可能的实现方式中,关于M的大小可参见上述第一方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述M与N的大小关系,可参见上述第一方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述收发单元,还用于发送配置信息,所述配置信息的说明,可参见上述第一方面的记载,此处不再具体限定。
基于上述第一方面的发明构思,第八方面,第本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第一方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第一方面方法的装置(比如芯片)可包括:
通信接口;
存储器,用于存储程序指存;
处理器,用于调用并执行所述存储器中存储的程序指令,实现以下功能:根据第一扩频因子M确定扩频块,且利用通信接口发送所述扩频块。
其中,所述扩频块被映射至时频资源块的可用资源元素RE上,所述扩频块的扩频因子为第一扩频因子M,所述M是根据所述时频资源块中的所述可用RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
在一种可能的实现方式中,关于M的大小可参见上述第一方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述M与N的大小关系,可参见上述第一方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述收发单元,还用于发送配置信息,所述配置信息的说明,可参见上述第一方面的记载,此处不再具体限定。
基于上述第二方面的发明构思,第九方面,本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第二方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第二方面方法的装置(比如芯片),可包括:
收发单元,用于接收扩频块,所述扩频块被映射至时频资源块的可用资源元素RE上,所述扩频块的扩频因子为第一扩频因子M,所述M是根据所述时频资源块中的所述可用RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
处理单元,用于对接收的扩频块进行处理,比如解扩频或解调等处理。
在一种可能的实现方式中,关于M的大小可参见上述第二方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述M与N的大小关系可参见上述第二方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述收发单元,还用于接收配置信息;所述处理单元,还用于根据所述配置信息,配置所述第二扩频因子N。
基于上述第二方面的发明构思,第十方面,本申请提供一种装置,本申请提供一种装 置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第二方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第二方面方法的装置(比如芯片),可包括:
通信接口;
存储器,用于存储程序指存;
处理器,用于调用并执行所述存储器中存储的程序指令,实现以下功能:通过所述通信接口接收所述扩频块,且对所述扩频块进行处理。
其中,所述扩频块被映射至时频资源块的可用资源元素RE上,所述扩频块的扩频因子为第一扩频因子M,所述M是根据所述时频资源块中的所述可用RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
在一种可能的实现方式中,关于M的大小可参见上述第二方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述M与N的大小关系可参见上述第二方式的记载,此处不再具体限定。
在一种可能的实现方式中,所述收发单元,还用于接收配置信息;所述处理单元,还用于根据所述配置信息,配置所述第二扩频因子N。
基于上述第三方面的发明构思,第十一方面,本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第三方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第三方面方法的装置(比如芯片),可包括:
处理单元,用于根据第二扩频因子N得到第二扩频块、在时频资源块中的可用资源元素RE个数小于所述N时,丢弃所述第二扩频块、以及根据第一扩频因子M得到第一扩频块。
其中,所述时频资源块是所述第二扩频因子N对应的资源块,所述M是根据所述时频资源块中的所述可用RE确定的,所述M和N为整数,且M小于N;
收发单元,用于发送所述第一扩频块,所述第一扩频块被映射至所述时频资源块的所述可用RE上。
在一种可能的实现方式中,所述M的大小可参见上述第三方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述M与N的大小关系可参见上述第三方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述收发单元,还用于发送配置信息,关于所述配置信息的作用,可参见上述第三方面的记载,在此不再具体限定。
基于上述第三方面的发明构思,第十二方面,本申请提供一种装置,本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第三方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第三方面方法的装置(比如芯片),可包括:
通信接口;
存储器,用于存储程序指存;
处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现以下功能:根据第二扩频因子N得到第二扩频块,如果时频资源块中的可用资源元素RE个数小于N,丢弃所述第二扩频块,以及根据第一扩频因子M,得到第一扩频块,以及通过通信接口接收所述第一扩频块。
其中,所述时频资源块是所述第二扩频因子N对应的资源块,所述M是根据所述时频资源块中的所述可用RE确定的,所述M和N为整数,且M小于N。
在一种可能的实现方式中,所述M的大小可参见上述第三方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述M与N的大小关系可参见上述第三方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述收发单元,还用于发送配置信息,关于所述配置信息的说明,可参见上述第三方面的记载,在此不再具体限定。基于上述第四方面的发明构思,第十三方面,本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第四方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第四方面方法的装置(比如芯片),可包括:
收发单元,用于接收第一扩频块;处理单元,用于对所述第一扩频块进行处理。
其中,所述第一扩频块被映射至时频资源块的可用资源元素RE上,所述第一扩频块的扩频因子是第二扩频因子M,所述M是根据所述时频资源块中的所述可用RE所确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
处理单元,用于对第一扩频块进行处理,比如解扩频以及解调等处理。
在一种可能的实现方式中,所述M的大小可参见上述第四方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述M与N的大小关系可参见上述第四方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述收发单元,还用于接收配置信息;所述处理单元还用
于根据所述配置信息,配置所述第二扩频因子N。
基于上述第四方面的发明构思,第十四方面,本申请提供一种装置,本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第四方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第四方面方法的装置(比如芯片),可包括:
通信接口;
存储器,用于存储程序指存;
处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现以下功能:通过通信接口接收第一扩频块,对所述第一扩频块进行处理(比如,解调或解扩频等)。
在一种可能的实现方式中,所述M的大小可参见上述第四方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述M与N的大小关系可参见上述第四方面的记载,此处不再具体限定。
在一种可能的实现方式中,所述处理器还用于通过所述通信接口接收配置信息,以及 根据所述配置信息,配置第二扩频因子N。
基于上述第五方面的发明构思,第十五方面,本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第五方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第五方面方法的装置(比如芯片),可包括:
处理单元,用于生成扩频块;
收发单元,用于发送扩频块;
其中,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者
所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
关于第一方向、第二方面、第三方向或第四方向的介绍,可参见上述第五方面的介绍,
此处不再具体限定。
基于上述第五方面的发明构思,第十六方面,本申请提供一种装置,本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第五方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第五方面方法的装置(比如芯片),可包括:
通信接口;
存储器,用于存储程序指存;
处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现以下功能:生成扩频块,且通过通信接口发送所述扩频块。
其中,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者
所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
关于第一方向、第二方向、第三方向或第四方向的介绍,可参见上述第五方面的记载,此处不再具体限定。
基于上述第六方面的发明构思,第十七方面,本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第六方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第六方面方法的装置(比如芯片),可包括:
收发单元,用于接收扩频块;
其中,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者
所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
处理单元,用于对扩频块进行处理。
关于第一方向、第二方向、第三方向或第四方向的介绍,可参见上述第六方面的记载,此处不再具体限定。
基于上述第六方面的发明构思,第十八方面,本申请提供一种装置,本申请提供一种装置,该装置可以为网络设备,也可以为能够支持网络设备实现上述第六方面方法的装置(比如芯片),或者,该装置可以为终端设备,也可以为能够支持终端设备实现上述第六方面方法的装置(比如芯片),可包括:
通信接口;
存储器,用于存储程序指存;
处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现以下功能:通过通信接口接收扩频块,对所述扩频块进行处理。
其中,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者
所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。关于第一方向、第二方向、第三方向或第四方向的介绍,可参见上述第六方面的记载,此处不再具体限定。
第十九方面,本申请提供一种计算机存储介质,所述计算机介质存储有计算机指令,当其在计算机上运行时,使得所述计算机执行上述第一方面至第六方面任一方面所述的方法。
第二十方面,本申请提供一种计算机程序,所述计算机程序包括计算机指令,当所述计算机指令被计算机执行时,使得所述计算机执行第一方面至第六方面任一项所述的方法。
第二十一方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第六方面任一方面所述的方法。
第二十二方面,本申请实施例提供了一种芯片系统,该芯片系统中包括处理器,还可以包括存储器,用于实现上述第一方面至第六方面任一方面所述的方法。
第二十三方面,本申请提供了一种通信系统,包括上述第七方面至第十八方面任一方面所述的装置。
附图说明
图1为本申请实施例提供的发送端采用非正交多址接入技术发送数据的一流程;
图2a、图2b和图2c为本申请实施例提供的时频资源映射的一示意图;
图3为本申请实施例提供的时频资源映射的另一示意图;
图4为本申请实施例提供的通信方法的一流程示意图;
图5为本申请实施例提供的通信方法的另一流程示意图;
图6、图7、图8a、图8b、图8c、图8d以及图8e为本申请实施例提供的通信方法的应用场景;
图9为本申请实施例提供的通信方法的又一流程示意图;
图10a和图10b为本申请实施例提供的时域优先映射的一示意图;
图11a和图11b为本申请实施例提供的时域优先映射的另一示意图;
图12a和图12b为本申请实施例提供的频域优先映射的一示意图;
图13a和图13b为本申请实施例提供的频域优先映射的另一示意图;
图14和图15为本申请实施例提供的数据处理方法的流程示意图;
图16为本申请实施例提供的装置的一种结构示意图;
图17为本申请实施例提供的装置的另一种结构示意图;
图18为本申请实施例提供的终端设备的一种结构示意图;
图19为本申请实施例提供的网络设备的一种结构示意图。
具体实施方式
为了便于理解,示例性的给出了与本申请实施例相关的概念的说明,以供参考,如下所示:
1)非正交多址接入(non-orthogonal multiple access,NOMA)技术:是一种允许多个终端设备在相同的时频资源上发送或接收数据的多址接入技术。对于NOMA系统,多个终端设备可在相同的时频资源上同时传输数据,为了让接收端可以区分多个终端设备的信号,系统会为每个终端设备分配NOMA多址接入签名(multiple access signature,MA signature),当然在本申请中实施例中也可以由终端设备自主选择NOMA多址接入签名。具体的,在上行传输中,每个终端设备可根据各自的多址接入签名,对输入数据进行扩频和调制等操作,且发送扩频和调制后的数据。在下行传输中,每个终端设备可根据各自的多址接入签名,对接收的数据,进行解扩频和解调等操作。
本申请实施例中的非正交多址接入,可包括但不限于以下技术:稀疏码多址接入(sparse code multiple access,SCMA)、多用户共享接入(multi-user shared access,MUSA)、图样分割多址接入(pattern division multiple access,PDMA)、交织格栅多址接入(interleave-grid multiple access,IGMA)、资源扩展多址接入(resource spreading multiple access,RSMA)、非正交编码多址接入(non-orthogonal coded multiple access,NCMA)以及非正交编码接入(non-orthogonal coded access,NOCA)等。
2)多址接入签名,又称为NOMA签名,或NOMA多址签名。各种类型的非正交多址接入技术,可对应其相应的多址接入签名。
3)复数符号:可表示为a+bj的形式。其中,a为实部,b为虚部,j为虚数单位。在 本申请实施例的复数符号中,a与b的取值可均非零,或者,a的取值为零,b的取值非零,或者,a的取值非零,b的取值为零,或者,a与b的取值均为零。
4)网络设备,可以是网络中将终端设备接入到无线网络的设备。所述网络设备可以为无线接入网中的节点,又可以为基站,还可以为无线接入网(radio access network,RAN)节点(或设备)。目前,一些网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或WiFi接入点(access point,AP)等。另外,在一种网络结构中,所述网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
5)终端设备,包括用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面将结合附图,对本申请的技术方案进行介绍。
如图1所示,本申请提供一种应用场景,该应用场景可为利用非正交多址接入技术进行通信的一示例。如图1所示的场景仅为示例性的说明,并不作为对本申请技术方案的限定。
如图1所示,如果两个设备采用非正交多址接入技术进行通信,发送端对数据的处理过程一般为:首先对输入数据进行分组,获得一组或多组数据。针对每组数据,可采用多址接入签名,对每组数据进行调制和扩频,获得一个扩频块。每组数据对应一个扩频块,多组数据对应多个扩频块。最后对每个扩频块进行时频资源映射,发送至接收端。比如,可将输入数据每两个比特分为一组,即一组数据包括2个比特。然后,一组数据经过调制和扩频,可得到4个复数符号,组成一个扩频块。其中,可将扩频块的长度称为扩频因子(spreading factor,SF)的大小,比如,一个扩频块的长度为4,包括4个复数符号,那么该扩频块所对应的扩频因子SF的大小可为4。
在本申请实施例中,例如,对于稀疏码多址接入SCMA技术,决定其多址接入签名的两个因素为稀疏模式(sparse pattern)和稀疏模式中非零位置的取值集合,也可称为稀疏码多址接入SCMA技术的多址接入签名是根据稀疏模式和稀疏模式中非零位置的预设取值集合所确定的。比如,对于长度为4且稀疏度为50%的稀疏码,可共有以下6种稀疏模式:
Figure PCTCN2019100742-appb-000001
稀疏模式中非零位置的取值可以是根据输入数据比特的取值和预定义的规定生成的。比如,4个比特为1组,则输入数据比特和非零位置取值的关系可通过下述表1的规定确定:
Figure PCTCN2019100742-appb-000002
表1
需要说明是,上述表1仅为示例性的说明,并不作为对SCMA的定义进行限定,对于不同用户、数据比特与非零位置取值的对应关系可以相同,也可以不同。
再如,对于多用户共享接入MUSA、图样分割多址接入PDMA、非正交编码接入NOCA、非正交编码多址接入NCMA和资源扩展多址接入RSMA等多址接入技术,可使用线性扩频序列(linear spreading sequence)作为多址接入签名。
具体的,输入数据比特组经星座调制(或称为星座映射)后,可使用线性扩频序列进行扩频,星座调制后的调制符号与线性扩频序列相乘生成输出符号序列。其中,扩频因子可等于线性扩频序列的长度。比如输入数据比特经星座调制后的调制符号为α,若扩频序列为
Figure PCTCN2019100742-appb-000003
则扩频后的输出符号序列可为
Figure PCTCN2019100742-appb-000004
再如,对于交织格栅多址接入IGMA可使用格栅映射模式(grid mapping pattern)作为多址接入签名。扩频因子等于格栅映射模式的长度。例如、长度为4且稀疏度为0.5的格栅映射模式,可有如下6种格栅映射模式:
Figure PCTCN2019100742-appb-000005
在本申请实施例中,当使用其中一格栅映射模式作为多址接入签名来处理数据时,格栅映射模式中的每个非零位置映射一个经星座调制后的调制符号,例如,使用格栅映射模式
Figure PCTCN2019100742-appb-000006
时,数据比特经星座调制后的调制符号α和β分别映射到格栅映射模式中的非零位置, 即映射后的输出符号序列为
Figure PCTCN2019100742-appb-000007
需要说明的是,在本申请实施例中,不同用户的多址接入签名可正交,也可不正交。两个多址接入签名是否正交,可采用以下方式进行定义:
定义一:如果多址接入签名A与多址接入签名B的共轭转置的乘积为零,可认为多址接入签名A与多址接入签名B正交,否则认为多址接入签名A与多址接入签名B不正交。
定义二:如果多址接入签名A的共轭转置与多址接入签名B的乘积为零,也认为多址接入签名A与多址接入签名B正交,否则认为多址接入签名A与多址接入签名B不正交。
例如,对于稀疏码多址接入SCMA中的多址接入签名(又称为稀疏模式)
Figure PCTCN2019100742-appb-000008
Figure PCTCN2019100742-appb-000009
间是正交的,多址接入签名
Figure PCTCN2019100742-appb-000010
Figure PCTCN2019100742-appb-000011
间是不正交的;对于多用户共享接入MUSA的多址接入签名(又称为线性扩频序列)
Figure PCTCN2019100742-appb-000012
Figure PCTCN2019100742-appb-000013
间是正交的,
Figure PCTCN2019100742-appb-000014
Figure PCTCN2019100742-appb-000015
间是不正交的。具体的,仍可参照图1,在对扩频块进行时频资源映射时,一般是以扩频块中的复数符号为单位进行的,通常一个复数符号,映射到时频资源中的一个资源元素(resource element,RE)上。比如,如图2a、图2b、图2c或图3所示,预先分配1个资源块(resource block,RB)用于数据传输。其中,一个RB可包括12个RE。发送端经对输入数据进行扩频和调制后,可获得2个扩频块,每个扩频块包括4个复数符号。正常情况下,如图2a所示,扩频块1的复数符号0至复数符号3,可分别映射到RE0至RE3,扩频块2的复数符号0至复数符号3,可分别映射至RE4至RE7。但是,如果遇到RE0至RE7中的一RE不可用的情况,可以采用以下两种方案:
第一种方案:跳过该不可用的RE,如图2b所示,设定RE5不可用。那么,可将扩频块1的复数符号0至复数符号3,同样映射至RE0至RE3。针对扩频块2,可将复数符号0映射至RE4,将复数符号1至复数符号3,分别映射至RE6至RE8。可以看出,对于扩频块2,其包括的复数符号,分别映射到RE4、RE6、RE7以及RE8。由于在非正交多址接入技术中,会有多个发送端在RE4至RE7上发送扩频块,如果仅仅因为一个发送端的RE5不可用,即将该发送端的扩频块的时频资源调整至RE4、RE6、RE7和RE8,那么将不能满足非正交多址接入技术对于“多个用户的扩频块位置必须对齐”的要求。
第二种方案:丢弃原本应映射到不可用RE的复数符号,也称为打孔(Puncture)。如图2c所示,设定RE5不可用。那么,可将扩频块1中的复数符号0至复数符号3,同样映射至RE0至RE3。将扩频块2中的复数符号0映射至RE4,扩频块2的复数符号2和复数符号3,分别映射至RE6和RE7,丢弃扩频块2中的复数符号1。由于复数符号1被丢弃,将会导致扩频块的检测性能下降,影响整体性能。
基于以上,本申请提供一种通信方法,该方法的原理为:根据时频资源块中的可用资源元素RE,调整扩频块的扩频因子,利用调整后的扩频因子,生成扩频块,并将生成的扩频块映射至时频资源块的可用资源元素上,进行发送。如此,可满足“多个用户的扩频 块位置必须对齐”的要求,且不丢弃复数符号,保证扩频块的检测性能。
比如,仍沿用上述图2b和图2c中的举例。如图3所示,设定时频资源块RB中的资源元素RE5不可用,那么可将扩频因子调整为3,然后利用扩频因子3生成扩频块2。最后将扩频块2的复数符号,分别映射至RE4、RE6以及RE7。如此既能满足多个用户发送扩频块2时的对齐要求(在NOMA技术中,每个用户发送扩频块2时的RE边界不能超过RE7,或者每个用户发送扩频块2位于RE4至RE7中),又没有丢弃复数符号,保证了扩频块的性能。
如图4所示,本申请提供一种通信方法,该通信方法中步骤S401和步骤S402的执行主体可为网络设备,步骤S403的执行主体可为终端设备,或者,该通信方法中步骤S401和步骤S402的执行主体可为终端设备,步骤S403的执行主体可为网络设备。在图4所示流程中,以步骤S401和步骤S402的执行主体为网络设备,步骤S403的执行主体为终端设备为例,进行举例说明。
可以理解的是,在本申请实施例中,网络设备的功能也可以通过其它设备或者模块实现,例如可以通过应用于网络设备的芯片来实现;终端设备的功能也可以通过其它设备或者模块实现,例如可以通过应用于终端设备的芯片来实现。
图4所示的流程可具体为:步骤S401:网络设备根据第一扩频因子M,确定扩频块,所述M是根据时频资源块中的可用资源元素RE确定的,所述时频资源块可具体为第二扩频因子N所对应的资源块,或者,所述时频资源块可具体为第二扩频因子N对应的映射单元等,所述M和N均为整数,且M小于N。
在本申请实施例中,根据时频资源块中的可用资源元素RE个数,确定第一扩频因子M的过程可为:网络设备将第一扩频因子M设置为与时频资源块中的可用资源元素RE的个数相等。可用RE可以是能够用于映射扩频块中的数据的RE。
在本申请的一示例中,以时频资源块中的可用资源元素的个数为M为例,详细说明所述网络设备确定第一扩频因子M的过程:
网络设备确定第二扩频因子N和时频资源块中的可用资源元素M。当N小于或等于M时,网络设备将扩频因子由第二扩频因子N,调整为第一扩频因子M,否则,不执行任何操作。或者,当M与N的比值大于或等于第一门限时,将扩频因子由第二扩频因子N,调整为第一扩频因子M,否则,不执行任何操作。
需要说明的是,在本申请实施例中,N小于M,以及M与N的比值大于或等于第一门限,仅作为对网络设备调整扩频因子的一种示例,并不作为对网络设备调整扩频因子的限定,比如,在本申请实施例中,网络设备也可在时频资源块中的所有可用资源元素RE个数不能整除第二扩频因子N时,调整扩频因子。
在本申请实施例中,第二扩频因子N可以为网络设备预先配置的。比如,网络设备可通过无线资源控制(radio resource control,RRC)信令,或下行控制信息(downlink control information,DCI)为终端设备配置第二扩频因子。相应的,终端设备可根据网络设备的配置信息,确定第二扩频因子。具体的,在本申请实施例中:网络设备可发送配置信息,所述配置信息可用于配置第二扩频因子N。终端设备可接收配置信息,且根据配置信息,确定第二扩频因子N。具体的,网络设备所发送的配置信息可承载于广播信息、系统信息、RRC信令、媒体接入控制(media access control,MAC)控制元素(control element,CE)或DCI中。
步骤S402:网络设备发送扩频块,所述扩频块被映射至所述时频资源块的所述可用RE上。
可替代的,网络设备发送扩频块,也可称为网络设备将扩频块映射至时频资源块的可用RE上进行发送。
步骤S403:终端设备接收扩频块,所述扩频块被映射至时频资源块的可用资源元素RE上,所述扩频块的扩频因子为第一扩频因子M,所述M是根据所述时频资源块中的所述可用RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
具体的,终端设备接收扩频块,也可称为终端设备在时频资源块的可用资源元素RE上接收扩频块。
在本申请实施例中,结合图1所示的应用场景,详细介绍上述图4所提供的方法,具体如下:
发送端可对输入的数据进行数据分组,获得一组或多组数据。针对上述一组或多组数据中的任一组数据,可执行以下操作。为了方便描述,可将上述任一组数据称为目标组数据。发送端确定第二扩频因子N,以及时频资源块中的可用资源元素的个数M。如果M小于N,或者,M与N的比值大于或等于第一门限,则将扩频因子调整为第一扩频因子M。发送端可利用第一扩频因子M所对应的多址接入签名,对目标组数据进行扩频和调制,获得目标扩频块;发送端可以将目标扩频块映射至时频资源块的可用资源元素M上进行发送。比如,如图3所示,对于目标组数据,经扩频和调制后,可得到第二扩频块,第二扩频块可映射至可用资源元素RE4、RE6、以及RE7上。
可以看出,在图4所提供的方案中,针对一组数据进行调制和扩频前,可以判断是否调整扩频因子,如果需要调整,则根据调整后的扩频因子M对数据进行扩频和调制,否则根据原扩频因子N对数据进行扩频和调制。
在本申请实施例中,设定第二扩频因子为N,第二扩频因子N所对应的时频资源块中包括M个可用资源元素RE。如果N小于或等于M,可执行上述图4所记载的方案。或者,可执行以下方案:确定第二扩频因子所对应的时频资源块不用于时频资源映射,也可称为不利用第二扩频因子N所对应的时频资源块进行上行/下行传输数据。采用该方案,可减少对其它复用用户的干扰。
如图5所示,本申请还提供一种通信方法,该通信方法中步骤S501至步骤S504的执行主体可为网络设备,步骤S505的执行主体可为终端设备。或者,该通信方法中步骤S501至步骤S504的执行主体可为终端设备,步骤S505的执行主体可为网络设备。在图5所示的流程中,以步骤S501至步骤S504的执行主体为网络设备,步骤S505的执行主体可为终端设备为例,进行举例说明。该流程可具体为:
步骤S501:网络设备根据第二扩频因子N,得到第二扩频块。
在本申请实施例中,所述第二扩频因子N为预配置的,或者网络设备通过信令为终端设备配置的。比如,网络设备可发送配置信息,所述配置信息用于配置所述第二扩频因子N,终端设备可接收配置信息,且根据所述配置信息,确定所述第二扩频因子N。
在本申请实施例中,信令可以包括半静态信令和动态信令。半静态信令可以是RRC信令、广播消息、系统消息、或MAC CE。其中,广播消息可以包括剩余最小系统消息(remaining minimum system information,RMSI)。在本申请实施例中,动态信令可以是物 理层信令。物理层信令可以是物理控制信道携带的信令或者物理数据信道携带的信令。其中,物理控制信道可以是物理下行控制信道(physical downlink control channel,PDCCH)、增强物理下行控制信道(enhanced physical downlink control channel,EPDCCH)、窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)或机器类通信物理下行控制信道(machine type communication(MTC)physical downlink control channel,MPDCCH)。其中,PDCCH或EPDCCH携带的信令还可以称为下行控制信息(downlink control information,DCI)。物理控制信道还可以是物理副链路控制信道(physical sidelink control channel),物理副链路控制信道携带的信令还可以称为副链路控制信息(sidelink control information,SCI)。
步骤S502:如果时频资源块中的可用资源元素RE个数小于所述N,网络设备丢弃所述第二扩频块,所述时频资源块是所述第二扩频因子N对应的资源块。
可替代的,步骤S502中的“丢弃所述第二扩频块”还可以描述为:不发送所述第二扩频块。
可替代的,步骤S502的实现过程,还可以为:设定时频资源块中的可用资源元素为M,如果M与M的比值小于或等于第一门限时,网络设备丢弃第二扩频块。
步骤S503:网络设备根据第一扩频因子M,得到第一扩频块,所述M是根据所述时频资源块中的所述可用RE确定的,所述M和N为整数,且M小于N。
在本申请实施例中,针对步骤S502和步骤S503的实现过程可具体为:确定第二扩频因子N所对应的时频资源块。确定所述时频资源块中的可用RE个数M。当M小于或等于N时,或者,可当M与N的比值小于或等于第一门限时,可丢弃第二扩频块或者不发送第二扩频块,且根据时频资源块中的可用RE个数,确定第一扩频因子M。利用第一扩频因子M,得到第一扩频块。
步骤S504:网络设备发送所述第一扩频块,所述第一扩频块被映射至所述时频资源块的所述可用RE上。
在本申请实施例中,网络设备发送所述第一扩频块,也可称为网络设备在时频资源块的所述可用RE上发送第一扩频块。
步骤S505:终端设备接收第一扩频块。
在本申请实施例中,终端设备接收第一扩频块,也可称为终端设备在时频资源块的所述可用RE上接收第一扩频块。其中,所述第一扩频块的扩频因子是第二扩频因子M,所述M是根据所述时频资源块中的所述可用RE确定的,所述时频资源可具体为第二扩频因子N对应的扩频块。
在本申请实施例中,结合图1所示的应用场景,详细介绍上述图5所提供的方法,具体如下:
发送端可对输入的数据进行数据分组,获得一组或多组数据。针对上述一组或多组数据中的任一组数据,可执行以下操作。为了方便描述,可将上述任一组数据称为目标组数据。利用第二扩频因子N所对应的多址接入签名,对目标组数据进行调制和扩频,获得第二扩频块。在对目标扩频块进行时频资源映射前,执行以下操作:确定第二扩频因子N与时频资源块中的可用资源元素M。当M小于或等于N时,或者,M与N的比值大于或等于第一门限时,丢弃第二扩频块,且根据时频资源块中的可用资源元素,确定第一扩频因子。具体的,在本申请实施例中,可当M小于或等于N,或者,M与N的比值大于或等 于第一门限时,可将扩频因子由第二扩频因子N调整为第一扩频因子M。利用第一扩频因子M所对应的多址接入签名,对上述目标数据组进行扩频和调制,获取第一扩频块,且将第一扩频块映射至时频资源块的可用资源元素上进行发送。
可以看出,在图5所提供的方案中,是在针对一组数据进行时频资源映射前,可以判断一下当前扩频块是否可完整映射,如果不能完整映射,丢弃该扩频块,且调整扩频因子,然后利用调整后的扩频因子,对数据重新进行扩频和调制,如果可完整映射,则发送该扩频块。所述扩频块是否可进行完整映射的判断过程可为:每个扩频块按照第二扩频因子N进行时频资源映射,在进行时频资源映射的过程中,如果该扩频块所对应的N个资源元素RE中存在不可用的资源元素RE,那么网络设备可认为该扩频块不能完整映射,否则认为该扩频块可完整映射。
在本申请实施例中,设定第二扩频因子为N,且第二扩频因子N所对应的时频资源块中包括M个可用资源元素。如果N小于或等于M,可执行上述图5所记载的方案。或者,可执行以下方案:丢弃第二扩频块,所述第二扩频块是根据第二扩频因子N所生成的。采用该方案,可节约不必要的发射能量,且有可能减少对其它复用用户的干扰。
本申请实施例,还提供一种通信方法,该通信方法的执行主体可以为网络设备,也可以为终端设备,在本申请实施例中不加限定,该通信方法可为:确定第二扩频因子N所对应的时频资源块;确定所述时频资源块中的可用RE的数量M。
在一种示例中,如果M与N的比值大于或等于第一门限,则采用图4流程所记载的方案,否则确定第二扩频因子所对应的时频资源块不再用于时频资源映射。
在一种示例中,如果M与N的比值大于或等于第一门限,则采用图5流程所记载的方案,否则丢弃第二扩频块,所述第二扩频块是根据第二扩频因子N所确定的。
在一种示例中,如果M与N的比值大于或等于第一门限,则采用图2c所记载的方案,否则丢弃第二扩频块。在图2c所记载的方案中,当扩频因子所对应的时频资源块中存在不可用RE时,也会对扩频因子的大小进行调整,与图4或图5所记载实施例不同的是,在图2c所记载的方案中,会采用调整前扩频因子所对应的多址接入签名对数据进行处理。而在图4或图5所记载的实施例中,会采用调整后的扩频因子(即第一扩频因子)所对应的多址接入签名对数据进行处理。采用调整后的扩频因子所对应的多址接入签名对数据进行处理,会优化整个非正交多址接入系统的性能。
需要说明的是,在本申请所有实施例中,并不限定第一门限的取值,比如,第一门限的取值可为0.5。
在本申请实施例所提供的上述图4或图5所记载的技术方案中,可但不限于应用于以下场景1、场景2以及场景3中,具体如下:
场景1:多个用户通过非正交多址接入技术进行复用传输,其中仅有部分用户的某些RE不能传输数据。例如,网络设备指示某些用户的某个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号需要发送探测参考信号(sounding reference signal,SRS),或者,网络设备指示某些用户的RE用来发送相位跟踪参考信号(phase tracking reference signal,PT-RS),或者,网络设备指示某些用户的RE用来发送解调参考信号(Demodulation Reference Signal,DMRS),或者,基站指示某些用户的RE用来发送上行控制信号,或者,基站指示某些OFDM符号不能用于传输上行数据。
比如,如图6所示,设定用户1、用户2以及用户3,3个用户采用非正交多址接入技 术,在相同的时频资源块中进行上行数据传输,且设定用户1中的某些OFDM符号用于传输SRS。那么当用户1在进行时频资源映射时,如果遇到上述不可用OFDM符号所对应的RE时,用户1可采用上述图4或图5所记载的方案调整扩频因子。
比如,对于上述3个用户预设的扩频因子为4,如果用户1在进行时频资源映射时,遇到上述不可用OFDM符号所对应的RE,且该不可用RE的数量为1个,此时扩频因子4所对应的可用RE的数量为3个,那么用户1可将扩频因子调制为3,且利用扩频因子为3的多址接入签名,对数据进行处理。而用户2和用户3可继续利用扩频因子为4的多址接入签名对数据进行处理。
场景2:终端设备采用非正交多址接入技术,在重复的子帧中进行重复传输,且两次传输的子帧利用相同的时频资源。相对于首次传输的子帧,重复传输的子帧中某些OFDM符号不能用于上行数据传输。那么终端设备可利用上述图4或图5所记载的方案,自动调整重复传输子帧的扩频因子。
如图7所示,比如用于首次传输的子帧与用于重复传输的子帧传输利用相同的时频资源,且配置的扩频因子SF为4。在重复传输的子帧的时频资源中,某些OFDM符号不能用于上行数据传输。在用于首次传输的子帧中传输时,终端设备可利用SF=4所对应的多址接入签名,对数据进行处理。而在用于重复传输的子帧中传输时,如果终端设备在时频资源映射时遇到该不可用OFDM符号所对应的RE,且设置该不可用RE的数量为1,即扩频因子SF=4所对应的时频资源块中的可用RE的数量为3,那么,终端设备可采用SF=3所对应的多址接入签名,对数据进行处理。
场景3:如图8a所示,一用户采用非正交多址接入技术进行数据传输,且分配一个资源块(resource block,RB)用于数据传输,扩频因子SF=4,且资源映射方式为频域优先,在该RB中预分配一个RE用于发送参考信号(reference signal,RS)(比如,PT-RS信号)。由于一个RB可包括12个RE,预分配一个RE用于发送RS,也就是说,在该RB仅有11个RE可用于数据传输,设定上述11个可用RE的编号为RE0至RE10,那么,在进行RE0至RE7的时频资源映射时,SF=4,在进行RE8至RE10的时频资源映射时,将扩频因子调整为SF=3,且利用扩频因子SF=3所对应的多址接入签名对数据进行调制和扩频等处理。
场景4:在进行时频资源映射时,若时域或频域可用RE的个数不可整除扩频因子SF,可采用图4或图5所记载的方案,进行扩频因子调整。所述时频资源映射方式可为频域优先,也可为时域优先。
示例一,如图8b所示,设定分配1个RB用于非正交多址接入传输,且映射方式为频域优先,频域可用的RE数量为12个,扩频因子SF=5,则频域可用的RE数不能整除SF。
示例二:如图8c所示,设定分配1个RB用于非正交多址接入传输,且映射方式为频优先,在上述RB中遇到一个不可用RE,频域可用的RE个数为11个,扩频因子SF=4,则频域可用的RE数不能整除SF。
示例三:如图8d所示,设定分配11个OFDM符号用于非正交多址接入传输,映射方式为时域优先,时域可用的RE个数为11,扩频因子SF=4,则时域可用的RE数不能整除SF。
示例四:如图8e所示,设定分配12个OFDM符号用于非正交多址接入传输,映射方式为时域优先。若遇到一个不可用RE,那么时域可用的RE数=11,SF=4,则时域可用的RE数不能整除SF。
场景5:一次传输过程中所有可用RE数不能整除扩频因子SF,此时最后一个扩频块将无法进行完整资源映射,可采用上述图4或图5所记载的方案,进行扩频因子调整。
比如,一次传输过程中,给终端设备分配2个RB进行上行数据传输,且上述2个RB中共包括24个RE,SF=5,则一次传输过程中可用RE的个数不能整除扩频因子。
在本申请实施例中,通过调整扩频因子,可改变映射方式,从而降低多用户干扰,节约发射能量,提高资源利用率,最终提高非正交多址接入的系统性能。如图9所示,本申请还提供一种通信方法,该通信方法中步骤S901的执行主体可为网络设备,步骤S902的执行主体可为终端设备,或者,该通信方法中步骤S901的执行主体可为终端设备,步骤S902的执行主体可为网络设备。在图9所示的流程中,以步骤S901的执行主体为网络设备,步骤S902的执行主体为终端设备为例,进行举例说明。该流程可具体为:
步骤S901:网络设备发送扩频块。
步骤S902:终端设备接收扩频块。
在本申请实施例中,所述扩频块可按照时域优先的方式进行映射,也可按照频域优先的方式进行映射。所述扩频块可映射至OFDM符号上的资源元素RE上,也可映射至单载波频分多址接入(single-carrier frequency-division multiple access,SC-FDMA)符号上的资源元素RE上。所述资源元素RE可具体为可用资源元素,所述可用资源元素具体为分配的用于数据传输的资源元素。需要说明的是,下述实施例所记载的资源元素可具体为可用资源元素,后续不再一一说明。示例性地,所述可用资源元素可以是上述实施例中描述的可用资源元素。例如,图9描述的方法可以和图4或图5描述的方法结合使用。
在本申请的一示例中,当扩频块按照频域优先的方式进行映射,且映射至OFDM符号上时,扩频块映射的方式可具体为:所述扩频块可至少被映射至第i个OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反,所述i为整数。第一复数符号和第二复数符号中可以包括各自一个或多个符号。第一复数符号和第二复数符号中包括的符号的个数可以相同,也可以不同,本申请不做限制。
在本申请实施例中,如图10a和图10b所示,所述第一方向可以是频域增加的方向,所述第二方向可以是频域减小的方向。或者,如图11a和图11b所示,所述第一方向是频域减小的方向,所述第二方向是频域增加的方向。在本申请的另一示例中,当扩频块按照时域优先的方式进行映射时,扩频块映射的方式可具体为:所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。第三复数符号和第四复数符号中可以包括各自一个或多个符号。第三复数符号和第四复数符号中包括的符号的个数可以相同,也可以不同,本申请不做限制。
在本申请实施例中,如图12a或图12b所示,所述第三方向是时域增加的方向,所述第四方向是时域减小的方向;或者,如图13a或图13b所示,所述第三方向是时域减小的方向,所述第四方向是时域增加的方向。
需要说明的是,在本申请实施例中,在进行时频资源映射时,所述扩频块的复数符号可具体映射到时频资源块中的可用RE上,如果在映射过程中,遇到不可用的RE,则调整 扩频因子,跳过该不可用RE。关于调整扩频因子的方式,可参见上述图4或图5所记载的方案。具体可参见,图10b、图11b、图12b或图13b所示。
在本申请实施例中,采用上述方式,可保证同一扩频块的复数符号映射到相邻的RE位置上。从而满足现有技术中对于非正交多址接入技术“同一扩频块中的复数符号尽可能映射到相邻位置上的RE”要求。由于相邻RE的信道特性相近,可保证扩频块的扩频性能。
如图14所示,本申请还提供一种数据处理方法,该方法的执行主体可以为网络设备,也可以为终端设备。在图14所示的流程中,以终端设备为执行主体进行示例性说明。该流程可具体为:
步骤S141:终端设备根据第一扩频因子M,确定扩频块。
其中,所述M是根据时频资源块中的可用资源元素RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N;
步骤S142:当所述M与N的比值小于第一门限时,终端设备丢弃所述扩频块。
可选的,步骤S142也可以采用以下方式进行替代:当所述M小于N时,终端设备丢弃所述扩频块。
在本申请实施例中,关于终端设备根据第一扩频因子,确定扩频块的过程,可参见上述图4或图5的介绍,在此不再说明。
如图15所示,本申请还提供一种数据处理方法,该方法的执行主体可以为网络设备,也可以为终端设备。在图15所示的流程中,以终端设备为执行主体进行示例性说明。该流程可具体为:
步骤S151:终端设备确定时频资源块中的可用资源元素RE的个数,所述时频资源块是扩频因子N对应的资源块。
步骤S152:如果所述时频资源块中的可用RE的个数小于N,则终端设备确定所述时频资源块不用于映射扩频块,或者不用于传输扩频块。其中,传输扩频块可以是发送扩频块,也可以是接收扩频块。
可选的,步骤S152也可以采用以下方式进行替代:当所述M与N的比值小于第一门限时,终端设备确定所述时频资源不用于映射扩频块,或者不用于传输扩频块。
关于图15具体实施例的介绍,可参见图4或图5所示流程的介绍,在此不再说明。
在上述记载的实施例中,对本申请实施例提供的方法进行了介绍。为了实现本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
与上述构思相同,如图16所示,本申请还提供一种装置1600,该装置1600可包括处理单元1601和收发单元1602。
在一种可能的实现方式中,该装置600可以是网络设备,也可以是能够支持网络设备实现上述图4、图5或图9所涉及的方法中网络设备的功能的装置。示例性地,该装置可以是网络设备中的装置(比如芯片或芯片系统)。需要说明的是,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
示例一:处理单元1601,可根据第一扩频因子M确定扩频块,其中,所述M是根据时频资源块中的可用资源元素RE确定的,所述时频资源块是第二扩频因子N对应的资源 块,所述M和N为整数,且M小于N。收发单元1602,可发送所述扩频块,所述扩频块被映射至所述时频资源块的所述可用RE上。
示例二:处理单元1601,可根据第二扩频因子N得到第二扩频块,如果时频资源块中的可用资源元素RE个数小于所述N,丢弃所述第二扩频块,根据第一扩频因子M得到第一扩频块,其中,所述时频资源块是所述第二扩频因子N对应的资源块,所述M是根据所述时频资源块中的所述可用RE确定的,所述M和N为整数,且M小于N。收发单元1602,可发送所述第一扩频块,所述第一扩频块被映射至所述时频资源块的所述可用RE上。
示例三:处理单元1601,可生成扩频块。收发单元1602,可发送扩频块;其中,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者,所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
在一种可能的实现方式中,该装置1600可以是终端设备,也可以是能够支持终端设备实现上述图4、图5、图9、图14或图15所涉及的方法中终端设备的功能的装置。示例性地,该装置可以是终端设备中的装置(如芯片或芯片系统)。
示例一:收发单元1602,可接收扩频块,所述扩频块被映射至时频资源块的可用资源元素RE上,所述扩频块的扩频因子为第一扩频因子M,所述M是根据所述时频资源块中的所述可用RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。处理单元1601,可对所接收的扩频块进行处理,比如解调和解扩频等处理。
示例二:收发单元1602,可接收第一扩频块,所述第一扩频块被映射至时频资源块的可用资源元素RE上,所述第一扩频块的扩频因子是第二扩频因子M,所述M是根据所述时频资源块中的所述可用RE所确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。处理单元1601,可对所述第一扩频块进行处理,比如解调和解扩频等处理。
示例三:收发单元1602,可接收扩频块,其中,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者,所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。所述处理单元1601,可对所述扩频块进行处理,比如解调和解扩频等。
基于相同的构思,如图17所示,本申请还提供一种装置1700,该装置1700,可以是网络设备,也可以是能够支持网络设备实现上述图4、图5或图9所涉及网络设备的装置, 示例性的,该装置1700可以是网络设备内的装置(如芯片或芯片系统)。或者,该装置1700,可以是终端设备,可以是能够支持终端设备实现上述图4、图5或图9所涉及终端设备的装置,示例性的,该装置1700可以是终端设备内的装置(如芯片或芯片系统)。
上述装置1700可包括至少一个处理器1701,用于实现上述图4、图5或图9所提供的通信方法的功能。
上述装置1700中还可以包括至少一个存储器1702,用于存储程序指令和/或数据。存储器1702和处理器1701耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1701可能和存储器1702协同操作。处理器1701可能执行存储器1702中存储的程序指令。所述至少一个存储器1702中的至少一个可以包括于处理器1701中。
上述装置1700还可以包括通信接口1703,装置1700可以通过通信接口1703和其它设备进行信息交互。通信接口1703可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置。其中,示例性地,该其它设备可以是其它终端设备或网络设备。处理器1701可以利用通信接口1703收发数据,示例的,通信接口1703用于发送扩频块。
本申请实施例中不限定上述通信接口1703、处理器1701以及存储器1702之间的具体连接介质。本申请实施例在图17中以存储器1702、处理器1701以及通信接口1703之间通过总线连接,总线在图17中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
图18提供了一种终端设备的结构示意图。该终端设备可对应于图4、图5、图9、图14或图15中所示的终端设备。为了便于说明,图18仅示出了终端设备的主要部件。如图18所示,终端设备1800可包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个用户设备进行控制,执行软件程序,处理软件程序的数。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
在本申请实施例中,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基 带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图18仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个用户设备进行控制,执行软件程序,处理软件程序的数据。图18中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,用户设备可以包括多个基带处理器以适应不同的网络制式,用户设备可以包括多个中央处理器以增强其处理能力,用户设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在发明实施例中,可以将具有收发功能的天线和控制电路视为终端设备1800的收发单元1801,将具有处理功能的处理器视为终端设备1800的处理单元1802。如图18所示,终端设备1800可包括收发单元1801和处理单元1802。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1801中用于实现接收功能的器件视为接收单元,将收发单元1801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图19示出了网络设备的一种结构示意图,如可以为基站的结构示意图。如图19所示,该基站可应用于图4、图5或图9所示的方法流程中,执行上述流程中网络设备的功能。基站1900可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1901和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1902。所述RRU1901可称为收发单元、收发机、收发电路,或者收发器等等,其可以包括至少一个天线19011和射频单元19012。所述RRU1901部分主要用于射频信号的收发以及射频信号与基站信号的转换,例如用于向终端发送上述实施例中所述射频块的发送。所述BBU1902部分主要用于进行基站处理,对基站进行控制等。所述RRU1901和BBU1902可以物理上设置在一起,也可以物理上分离设置的,比如分布式基站。
在一个实例中,所述BBU 1902可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1902还包括存储器19021和处理器19022,所述存储器19021用于存储必要的指令和数据。例如存储器19021存储上述实施例中的根据第一扩频因子M,确定扩频块的指令。所述处理器19022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器19021和处理器19022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理 器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
根据本申请实施例提供的方法,本发明实施例还提供一种通信系统,其包括前述的终端设备和网络设备。
基于以上实施例,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。所述计算机存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种芯片系统,该芯片系统中包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如获取或处理上述方法中所涉及的信息或者消息。可选地,所述芯片还包括存储器,所述存储器,用于处理器所执行必要的程序指令和数据。该芯片,可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,在本发明实施例中,处理器可以是中央处理单元(central processing unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本申请的装置实施例中,装置的模块划分是一种逻辑功能划分,实际实现时可以有另外的划分方式。例如,装置的各功能模块可以集成于一个模块中,也可以是各个功能模块单独存在,也可以两个或两个以上功能模块集成在一个模块中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质 集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上各实施例仅用以说明本申请的技术方案,并不用于限定其保护范围。凡在本申请的技术方案的基础上所做的修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (54)

  1. 一种通信方法,其特征在于,包括:
    根据第一扩频因子M确定扩频块,其中,所述M是根据时频资源块中的可用资源元素RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N;
    发送所述扩频块,所述扩频块被映射至所述时频资源块的所述可用RE上。
  2. 根据权利要求1所述的方法,其特征在于,所述M是根据时频资源块中的可用资源元素RE确定的,包括:
    所述M等于所述时频资源块中的所述可用RE的个数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述M与N的比值大于或等于第一门限。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    发送配置信息,所述配置信息用于配置所述第二扩频因子N。
  5. 一种通信方法,其特征在于,包括:
    接收扩频块,所述扩频块被映射至时频资源块的可用资源元素RE上,所述扩频块的扩频因子为第一扩频因子M,所述M是根据所述时频资源块中的所述可用RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
  6. 根据权利要求5所述的方法,其特征在于,所述M是根据所述时频资源块中的可用RE确定的,包括:
    所述M等于所述时频资源块中的所述可用RE的个数。
  7. 根据权利要求5或6所述的方法,其特征在于,所述M与N的比值大于或等于第一门限。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,所述方法还包括:
    接收配置信息;
    根据所述配置信息,配置所述第二扩频因子N。
  9. 一种通信方法,其特征在于,包括:
    根据第二扩频因子N得到第二扩频块;
    如果时频资源块中的可用资源元素RE个数小于所述N,丢弃所述第二扩频块,其中,所述时频资源块是所述第二扩频因子N对应的资源块;
    根据第一扩频因子M得到第一扩频块,其中,所述M是根据所述时频资源块中的所述可用RE确定的,所述M和N为整数,且M小于N;
    发送所述第一扩频块,所述第一扩频块被映射至所述时频资源块的所述可用RE上。
  10. 根据权利要求9所述的方法,其特征在于,所述M是根据所述时频资源块中的可用RE确定的,包括:
    所述M等于所述时频资源块中的所述可用RE的个数。
  11. 根据权利要求9或10所述的方法,其特征在于,所述M与N的比值大于或等于第一门限。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述方法还包括:
    发送配置信息,所述配置信息用于配置所述第二扩频因子N。
  13. 一种通信方法,其特征在于,包括:
    接收第一扩频块,所述第一扩频块被映射至时频资源块的可用资源元素RE上,所述第一扩频块的扩频因子是第二扩频因子M,所述M是根据所述时频资源块中的所述可用RE所确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
  14. 根据权利要求13所述的方法,其特征在于,所述M是根据所述时频资源块中的可用RE所确定的,包括:
    所述M等于所述时频资源块中的所述可用RE的个数。
  15. 根据权利要求13或14所述的方法,其特征在于,所述M与N的比值大于或等于第一门限。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,所述方法还包括:
    接收配置信息;
    根据所述配置信息,配置所述第二扩频因子N。
  17. 一种通信方法,其特征在于,包括:
    发送扩频块;
    其中,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者
    所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
  18. 根据权利要求17所述的方法,其特征在于,
    所述第一方向是频域增加的方向,所述第二方向是频域减小的方向;或者
    所述第一方向是频域减小的方向,所述第二方向是频域增加的方向。
  19. 根据权利要求17所述的方法,其特征在于,
    所述第三方向是时域增加的方向,所述第四方向是时域减小的方向;或者
    所述第三方向是时域减小的方向,所述第四方向是时域增加的方向。
  20. 一种通信方法,其特征在于,包括:
    接收扩频块;
    其中,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者
    所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
  21. 根据权利要求20所述的方法,其特征在于,
    所述第一方向是频域增加的方向,所述第二方向是频域减小的方向;或者
    所述第一方向是频域减小的方向,所述第二方向是频域增加的方向。
  22. 根据权利要求20所述的方法,其特征在于,
    所述第三方向是时域增加的方向,所述第四方向是时域减小的方向;或者
    所述第三方向是时域减小的方向,所述第四方向是时域增加的方向。
  23. 一种装置,其特征在于,用于实现权利要求1至4任一项所述的方法。
  24. 一种装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1至4任一项所述的方法。
  25. 一种装置,其特征在于,包括处理器、存储器和通信接口;
    其中,所述存储器,用于存储程序指令;
    所述处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现权利要求1至4任一项所述的方法。
  26. 一种装置,其特征在于,包括处理器和通信接口;
    所述处理器用于根据第一扩频因子M确定扩频块,其中,所述M是根据时频资源块中的可用资源元素RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N;
    所述处理器利用所述通信接口发送所述扩频块,所述扩频块被映射至所述时频资源块的所述可用RE上。
  27. 一种装置,其特征在于,包括:
    处理单元,用于根据第一扩频因子M确定扩频块,其中,所述M是根据时频资源块中的可用资源元素RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N;
    收发单元,用于发送所述扩频块,所述扩频块被映射至所述时频资源块的所述可用RE上。
  28. 一种装置,其特征在于,用于实现权利要求5至8任一项所述的方法。
  29. 一种装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求5至8任一项所述的方法。
  30. 一种装置,其特征在于,包括处理器、存储器和通信接口;
    其中,所述存储器,用于存储程序指令;
    所述处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现权利要求5至8任一项所述的方法。
  31. 一种装置,其特征在于,包括处理器和通信接口;
    所述处理器利用所述通信接口接收扩频块,所述扩频块被映射至时频资源块的可用资源元素RE上,所述扩频块的扩频因子为第一扩频因子M,所述M是根据所述时频资源块中的所述可用RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
  32. 一种装置,其特征在于,包括:
    收发单元,用于接收扩频块,所述扩频块被映射至时频资源块的可用资源元素RE上,所述扩频块的扩频因子为第一扩频因子M,所述M是根据所述时频资源块中的所述可用RE确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M 小于N。
  33. 一种装置,其特征在于,用于实现权利要求9至12任一项所述的方法。
  34. 一种装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求9至12任一项所述的方法。
  35. 一种装置,其特征在于,包括处理器、存储器和通信接口;
    其中,所述存储器,用于存储程序指令;
    所述处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现权利要求9至12任一项所述的方法。
  36. 一种装置,其特征在于,所述处理器和通信接口;
    所述处理器用于根据第二扩频因子N得到第二扩频块,在时频资源块中的可用资源元素RE个数小于所述N时,丢弃所述第二扩频块,根据第一扩频因子M得到第一扩频块;其中,所述时频资源块是所述第二扩频因子N对应的资源块,所述M是根据所述时频资源块中的所述可用RE确定的,所述M和N为整数,且M小于N;
    所述处理器利用所述通信接口发送所述第一扩频块,所述第一扩频块被映射至所述时频资源块的所述可用RE上。
  37. 一种装置,其特征在于,包括:
    处理单元,用于根据第二扩频因子N得到第二扩频块,在时频资源块中的可用资源元素RE个数小于所述N时,丢弃所述第二扩频块,根据第一扩频因子M得到第一扩频块;其中,所述时频资源块是所述第二扩频因子N对应的资源块,所述M是根据所述时频资源块中的所述可用RE确定的,所述M和N为整数,且M小于N;
    收发单元,用于发送所述第一扩频块,所述第一扩频块被映射至所述时频资源块的所述可用RE上。
  38. 一种装置,其特征在于,用于实现权利要求13至16任一项所述的方法。
  39. 一种装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求13至16任一项所述的方法。
  40. 一种装置,其特征在于,包括处理器、存储器和通信接口;
    其中,所述存储器,用于存储程序指令;
    所述处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现权利要求13至16任一项所述的方法。
  41. 一种装置,其特征在于,包括处理器和通信接口;
    所述处理器利用所述通信接口接收第一扩频块,所述第一扩频块被映射至时频资源块的可用资源元素RE上,所述第一扩频块的扩频因子是第二扩频因子M,所述M是根据所述时频资源块中的所述可用RE所确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
  42. 一种装置,其特征在于,包括:
    收发单元,用于接收第一扩频块,所述第一扩频块被映射至时频资源块的可用资源元素RE上,所述第一扩频块的扩频因子是第二扩频因子M,所述M是根据所述时频资源块中的所述可用RE所确定的,所述时频资源块是第二扩频因子N对应的资源块,所述M和N为整数,且M小于N。
  43. 一种装置,其特征在于,用于实现权利要求17至19任一项所述的方法。
  44. 一种装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于执行权利要求17至19任一项所述的方法。
  45. 一种装置,其特征在于,包括处理器、存储器和通信接口;
    所述存储器,用于存储程序指令;
    所述处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现权利要求17至19任一项所述的方法。
  46. 一种装置,其特征在于,包括处理器和通信接口;
    所述处理器利用所述通信接口发送扩频块,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者,所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
  47. 一种装置,其特征在于,包括:
    收发单元,用于发送扩频块,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者,所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
  48. 一种装置,其特征在于,用于实现权利要求20至22任一项所述的方法。
  49. 一种装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于执行权利要求20至22任一项所述的方法。
  50. 一种装置,其特征在于,包括处理器、存储器和通信接口;
    其中,所述存储器,用于存储程序指令;
    所述处理器,用于调用并执行所述存储器中存储的程序指令,通过所述通信接口接收和/或发送数据,实现权利要求20至22任一项所述的方法。
  51. 一种装置,其特征在于,包括处理器和通信接口;
    所述处理器利用所述通信接口接收扩频块,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
  52. 一种装置,其特征在于,包括:
    收发单元,用于接收扩频块,所述扩频块至少被映射至第i个正交频分复用OFDM符号和第i+1个OFDM符号上,所述扩频块中的第一复数符号在频域沿着第一方向被映射至所述第i个OFDM符号的资源元素RE上,所述扩频块中的第二复数符号在频域沿着第二方向被映射至所述第i+1个OFDM符号的RE上,所述第一方向和所述第二方向相反;或者所述扩频块至少被映射至第i个子载波和第i+1个子载波上,所述扩频块中的第三复数符号在时域沿着第三方向被映射至所述第i个子载波的RE上,所述扩频块中的第四复数符号在时域沿着第四方向被映射至所述第i+1个子载波的RE上,所述第三方向和所述第四方向相反,所述i为正整数。
  53. 一种通信系统,其特征在于,包括权利要求23-27任一项所述的装置和权利要求28-32任一项所述的装置,或者包括权利要求33-37任一项所述的装置和权利要求38-42任一项所述的装置,或者包括权利要求43-47任一项所述的装置和权利要求48-52任一项所述的装置。
  54. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1至22任一项所述的方法。
PCT/CN2019/100742 2018-09-06 2019-08-15 一种通信方法和装置 WO2020048302A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19857596.1A EP3840281A4 (en) 2018-09-06 2019-08-15 COMMUNICATION PROCESS AND APPARATUS
US17/193,225 US20210195568A1 (en) 2018-09-06 2021-03-05 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811039016.8A CN110890955B (zh) 2018-09-06 2018-09-06 一种通信方法和装置
CN201811039016.8 2018-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/193,225 Continuation US20210195568A1 (en) 2018-09-06 2021-03-05 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020048302A1 true WO2020048302A1 (zh) 2020-03-12

Family

ID=69722770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100742 WO2020048302A1 (zh) 2018-09-06 2019-08-15 一种通信方法和装置

Country Status (4)

Country Link
US (1) US20210195568A1 (zh)
EP (1) EP3840281A4 (zh)
CN (1) CN110890955B (zh)
WO (1) WO2020048302A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116545596A (zh) * 2022-01-25 2023-08-04 华为技术有限公司 一种数据处理方法、装置及相关设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458459A (zh) * 2012-05-31 2013-12-18 联发科技股份有限公司 通信方法
WO2014053064A1 (en) * 2012-10-05 2014-04-10 Sierra Wireless, Inc. Enhancement for lte communication systems

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1627663A (zh) * 2003-12-12 2005-06-15 西门子(中国)有限公司 一种在无线通信系统中传输信号的方法和装置
CN101232484B (zh) * 2007-01-26 2011-08-17 电信科学技术研究院 信号传输方法、装置及通信系统
KR100913090B1 (ko) * 2007-06-13 2009-08-21 엘지전자 주식회사 통신 시스템에서 확산 신호를 송신하는 방법
CN101374031B (zh) * 2007-08-24 2011-08-10 中兴通讯股份有限公司 码道整合方法和码道整合装置
KR101829831B1 (ko) * 2010-05-06 2018-02-19 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
CN102404838B (zh) * 2010-09-10 2014-06-04 普天信息技术研究院有限公司 一种上行资源分配方法及上行资源分配装置
CN103107854B (zh) * 2011-11-14 2015-11-25 中磊电子(苏州)有限公司 下行链路的正交可变扩频因子码的分配方法和基站系统
WO2013113140A1 (en) * 2012-01-30 2013-08-08 Nokia Siemens Networks Oy Method and apparatus for realizing enhanced physical downlink control channel
US9031115B2 (en) * 2013-02-01 2015-05-12 Qualcomm Incorporated Apparatus and method for memory resource allocation based on virtual minimum spreading factor
CN104168092B (zh) * 2013-05-17 2019-02-15 中兴通讯股份有限公司 增强物理混合自动重传请求指示信道的传输方法及装置
CN106850163B (zh) * 2015-12-03 2020-08-07 华为技术有限公司 一种phich反馈信息的传输方法和相关设备
CN108111990B (zh) * 2016-11-11 2020-12-25 中国电信股份有限公司 用于提升上行容量的信息传输方法和系统
WO2018236078A1 (ko) * 2017-06-19 2018-12-27 엘지전자 주식회사 무선통신시스템에서 직교 또는 비직교 부호 다중 접속 기법을 사용하여 통신을 수행하는 방법 및 장치
KR102420721B1 (ko) * 2017-09-08 2022-07-18 삼성전자 주식회사 통신 또는 방송 시스템에서 전송블록 크기 결정 방법 및 장치
CN110401980B (zh) * 2018-04-25 2022-12-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458459A (zh) * 2012-05-31 2013-12-18 联发科技股份有限公司 通信方法
WO2014053064A1 (en) * 2012-10-05 2014-04-10 Sierra Wireless, Inc. Enhancement for lte communication systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CMCC: "Considerations on Rel-15 NoMA Usage Scenarios, Design Targets and Principles", 3GPP TSG RAN WG1 MEETING #92, R1-1802047, 2 March 2018 (2018-03-02), XP051397143 *
HUAWEI ET AL.: "Discussion on the Design of SCMA", 3GPP TSG RAN WG1 MEETING #93, R1-1805907, 25 May 2018 (2018-05-25), pages 1 - 9, XP051441126 *
See also references of EP3840281A4 *

Also Published As

Publication number Publication date
EP3840281A4 (en) 2021-10-20
CN110890955A (zh) 2020-03-17
US20210195568A1 (en) 2021-06-24
EP3840281A1 (en) 2021-06-23
CN110890955B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US11057943B2 (en) Random access method, terminal, and network device
JP7148208B2 (ja) 伝送方法、端末デバイス、コンピュータ可読記憶媒体及びプログラム
US11665736B2 (en) Control channel position determining method, device, and processor-readable storage medium
CN108632193B (zh) 一种资源指示方法及网络设备、终端设备
WO2020238992A1 (zh) 一种通信方法及装置
EP3866530B1 (en) Uplink signal transmission method and device
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
WO2019029348A1 (zh) 数据传输方法、终端和基站
WO2018082043A1 (zh) 通信方法、终端和网络设备
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
EP3506694B1 (en) Signal transmission method, terminal device, and network device
WO2019129253A1 (zh) 一种通信方法及装置
WO2020048302A1 (zh) 一种通信方法和装置
WO2019137299A1 (zh) 通信的方法和通信设备
WO2019095927A1 (zh) 随机接入方法、网络设备及终端
JP2023517980A (ja) 通信方法および装置
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
WO2022001638A1 (zh) 通信方法及装置
WO2022036617A1 (zh) 信道资源的确定方法和终端设备
US20220159680A1 (en) Control channel transmission method and apparatus
JP6790275B2 (ja) 信号送信方法および基地局
JP2023544285A (ja) 物理アップリンク制御チャネル送信方法、受信方法、および通信装置
WO2020047789A1 (zh) 一种pucch的传输方法及装置
KR20230156774A (ko) 정보 송신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019857596

Country of ref document: EP

Effective date: 20210319