WO2020048239A1 - 一种高功率光纤激光器增益光纤散热装置 - Google Patents

一种高功率光纤激光器增益光纤散热装置 Download PDF

Info

Publication number
WO2020048239A1
WO2020048239A1 PCT/CN2019/096322 CN2019096322W WO2020048239A1 WO 2020048239 A1 WO2020048239 A1 WO 2020048239A1 CN 2019096322 W CN2019096322 W CN 2019096322W WO 2020048239 A1 WO2020048239 A1 WO 2020048239A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
fiber
circular
gain fiber
semi
Prior art date
Application number
PCT/CN2019/096322
Other languages
English (en)
French (fr)
Inventor
杨润兰
郝丽云
杨磊
Original Assignee
南京先进激光技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京先进激光技术研究院 filed Critical 南京先进激光技术研究院
Publication of WO2020048239A1 publication Critical patent/WO2020048239A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages

Definitions

  • the invention relates to a gain fiber heat sink device, in particular to a high-power fiber laser gain fiber heat sink device.
  • fiber lasers In recent years, the application of fiber lasers has developed from low-power marking and engraving to high-power cutting and welding of heavy metals. In the face of the continuous expansion of the application fields of high-power fiber lasers, research on high-power fiber lasers has attracted greater attention. Because of the large cross-sectional area of the fiber, fiber lasers have better heat dissipation characteristics than traditional solid-state lasers. Especially in high-power laser applications, fiber lasers are generally used. Fiber lasers mostly use rare-earth ion-doped fibers as gain media. The gain fiber absorbs a large amount of pump light and converts the pump light into signal light. Therefore, the power density of the gain fiber is high, and a large amount of heat is accumulated on the fiber surface. Especially at the melting point of the gain fiber, the power density suddenly increases, and the temperature also increases sharply, so the temperature at the melting point needs to be dealt with.
  • the first is to coil the gain fiber on a cylindrical heat sink, and the second is to coil the gain fiber on a flat heat sink.
  • Gain fiber coiled on the flat heat sink makes the bend radius of the gain fiber different, and it is impossible to control the high-order mode generated by the high-power large-mode-field fiber.
  • This coiling method will cause the gain fiber to cross overlap, which is not conducive to the heat dissipation of the gain fiber and the system stability.
  • Some special structural designs based on the planar coiling method can make the gain fiber coiling radius the same and do not cross, but the structure design is complicated, the operability is poor, and the space is large, which is not conducive to system integration. Therefore, a cylindrical planar heat sink is used to dissipate the gain fiber in most cases.
  • the present invention proposes a high-power fiber laser gain fiber heat dissipation device, which has a good heat dissipation effect on the gain fiber.
  • the technical solution adopted by the present invention is: a high-power fiber laser gain fiber heat sink, comprising a circular base heat sink and a cylindrical heat sink, and the gain fiber is coiled on the cylindrical heat sink After the input energy-transmitting optical fiber and the output energy-transmitting optical fiber are fused with the gain fiber, a thermally conductive silicone grease is coated on the cylindrical surface of the gain fiber.
  • the packaging device further comprises a packaging device, wherein the packaging device has two semi-circular structures.
  • the heat sink of the cylindrical surface is a hollow cylinder with a threaded hole at the top; the outer diameters of the two semi-circular packaging devices are the same as the outer diameters of the heat sinks of the circular base.
  • the top is provided with an arc-shaped hole, and the semi-circular structure packaging device can be fixed on the top of the cylindrical heat sink by screws.
  • an arc-shaped hole is provided on the outer side of the heat sink of the circular base, and a circular hole is provided in the center.
  • the heat sink of the circular base can be fixed on the system base plate by screws.
  • cylindrical surface heat sink is integrated with the circular base heat sink, and the outer diameter is slightly smaller than the circular base heat sink.
  • each of the two semi-circular packaging devices includes four U-shaped holes, which are respectively located above and below the two edges of the semi-cylindrical column. After the packaging is completed, two approximately elliptical holes are formed.
  • the input and output energy-transmitting optical fibers may be on the same side of the semi-circular packaging structure, or on both sides of the semi-circular packaging structure.
  • the selected thermally conductive silicone grease is a solid-liquid mixed state colloid with good thermal conductivity.
  • the input welding point is coiled on the lower side of the cylindrical surface heat sink, and the output welding point is coiled on the upper side of the cylindrical surface heat sink.
  • the structure of the present invention is simple to manufacture, low in cost, strong in operability, and has a good heat dissipation effect on the gain fiber, and because of the special packaging technology, the coiling of the gain fiber has great flexibility, and the gain fiber is coiled in the same by stress.
  • a cylindrical surface effectively controls the beam quality of the large-mode-field fiber output laser; the special packaging device of the gain fiber disk also ensures the long-term reliability of the heat-conducting effect of thermally conductive silicone grease, which has a high stability on the system stability and reliability of high-power fiber amplifiers. Great improvement.
  • Figure 1 is a top view of the entire device
  • Figure 2 is a front view of the chassis and body of the gain fiber disk
  • Fig. 3 is a front view of a gain fiber packaging device.
  • the high-power fiber laser gain fiber cooling device of the present invention includes a circular base heat sink 1, a cylindrical surface heat sink 2, a packaging device 3, an energy transmission fiber 4, and a gain fiber 5.
  • the gain fiber is coiled on a cylindrical surface heat sink with a circular base having an outer diameter slightly smaller than that of a cylindrical base.
  • the circular base heat sink has a fixed function inside; after the fusion of the gain fiber and the energy transfer fiber is completed, there is a gain on the disk.
  • the cylindrical surface of the optical fiber is coated with thermally conductive silicone grease with a high thermal conductivity effect, so that the gain fiber is in good contact with the thermally conductive silicone grease and the entire heat sink device.
  • the heat is dissipated into the air or on the system floor through the heat sink to achieve a good heat dissipation effect.
  • the energy transmission fiber is a matching fiber for the amplifier system, and the fiber parameters of the gain fiber are matched with the connected energy transmission fiber.
  • the thermal conductive silicone grease is easy to air dry and lose thermal conductivity during long-term operation or storage, and the exposed optical fiber disk coated with thermally conductive silicone grease is easily contaminated and increases gain.
  • the hot spots of optical fibers are not conducive to the long-term reliability of the heat sink. Therefore, the entire gain fiber disk is packaged with two semi-circular structures to ensure the long-term effectiveness and reliability of the thermally conductive silicone grease.
  • the heat sink of the round base of the gain fiber is a circular heat sink with an arc-shaped fixing groove; the cylindrical heat sink and the round base heat sink are an integrated structure, and the cylindrical heat sink plate is a heat sink with good heat dissipation with a certain thickness.
  • the outer diameter is slightly smaller than the outer diameter of the base.
  • the gain fiber packaging device has two semi-circular structures. The outer diameter of the semi-circular structure is the same as that of the gain fiber base.
  • the top of the gain fiber packaging device is provided with an arc-shaped mounting groove. The threaded hole at the top of the cylindrical heat sink is fixed correspondingly.
  • the circular base is provided with three arc-shaped holes inside, and the circular disk is provided with a circular hole in the center.
  • the circular base that can be flexibly rotated is fixed to the fixed threaded hole of the system base plate with a screw; the cylindrical surface is integrated with the circular base.
  • the outer diameter is slightly smaller than the circular base.
  • the gain fiber is coiled on the cylindrical heat sink with a certain stress, so that it is in close contact with the heat sink on the cylindrical surface.
  • the thermal conductive silicone grease is evenly coated on the gain fiber;
  • the top of the cylinder is provided with threaded holes; the outer diameter of the two semi-circular packaging devices is the same as the outer diameter of the cylindrical base.
  • the top of the semi-circular packaging device is provided with two hollow arc-shaped holes.
  • the packaging device with the shape structure is fixed on the top of a hollow cylinder composed of a cylindrical surface.
  • the two semi-circular packaging devices include four U-shaped holes, one at each of the upper and lower positions of the two edges of the semi-cylindrical column, forming two approximately elliptical holes for the gain fiber.
  • the gain fiber disk is fixed to the threaded holes 101, 102, 103, and 104 on the bottom plate of the system through an arc-shaped groove 11 on a circular base.
  • the cylindrical gain optical fiber disk body with the gain optical fiber is coated with thermally conductive silicone grease with good thermal conductivity; the two semicircular structures 3 are fixed to the thread on the top of the cylindrical heat sink 2 through the arc groove 31 designed thereon. Holes 201, 202, 203, 204.
  • the gain fiber 5 is coiled on the cylindrical heat sink 2 with a certain stress, so that the gain fiber is in close contact with the cylindrical body, and the coiled gain fiber is fixed to the cylindrical surface gain fiber with copper tape.
  • the disk body is fused to the input energy-transmitting fiber and the output energy-transmitting fiber to the gain fiber.
  • the input fusion point 61 is coiled on the lower side of the cylindrical heat sink, and the output fusion point 62 is coiled on the upper side of the cylindrical heat sink.
  • the input energy-transmitting optical fiber 41 and the output energy-transmitting optical fiber 42 may be located on the same side of the semi-circular packaging structure or on both sides of the semi-circular packaging structure, and may be flexibly adjusted according to the winding direction of the optical fiber and the length of the energy-transmitting optical fiber.
  • the coiling of the gain fiber 5 should be performed before the gain fiber and the energy transmission fiber are fused. Before the coiling, the gain light cylindrical heat sink 2 and the gain fiber 5 should be cleaned with alcohol to avoid contamination of the gain fiber; attention should be paid when coiling to avoid damage to the gain fiber. .
  • the direction and position of the gain fiber disk can be flexibly rotated with the length of the energy transmission fiber and the coiling direction to ensure the consistency of the direction of the input and output energy transmission fibers. At the same time, the input and output energy transmission fibers should not have stress.
  • Thermally conductive silicone grease is a solid-liquid mixed state gel with good thermal conductivity.
  • the thermally conductive silicone grease can be dissolved in alcohol, so the gain optical fiber coated with thermally conductive silicone grease can be reused, which is convenient for system maintenance.
  • the invention is suitable for a high-power fiber laser gain fiber cooling device. It can flexibly adjust the direction and position as the fiber length changes. It is simple to operate and can provide the same coiled diameter of the gain fiber to effectively control excitation in large mode field fibers.
  • the high-order mode optimizes the beam quality of the output laser; the semi-circular package structure is flexible and clever, which not only ensures the long-term operational reliability of the gain fiber, but also the entire device has a compact structure and low cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lasers (AREA)

Abstract

一种高功率光纤激光器增益光纤散热装置,整个装置呈圆形结构,包括圆形底座热沉(1)和圆柱面热沉(2),圆柱体的外径略小于圆形底座,及两个外径与圆形底座相同的半圆形结构封装模块(3)。制作简单,成本低,可操作性强,对增益光纤的散热效果良好,且由于特殊封装技术,增益光纤的盘绕具有很大的灵活性,通过应力将增益光纤盘绕在同一个圆柱面上有效控制了大模场光纤输出激光的光束质量;增益光纤盘的特殊封装装置也保证了导热硅脂的导热效果长期可靠性,对高功率光纤放大器的系统稳定性及可靠性有很大的提升。

Description

一种高功率光纤激光器增益光纤散热装置 技术领域
本发明涉及一种增益光纤散热装置,尤其涉及一种高功率光纤激光器增益光纤散热装置。
背景技术
近年来,光纤激光器的应用从低功率的打标雕刻向高功率的重金属的切割焊接发展,面对高功率光纤激光器的应用领域不断扩展,高功率光纤激光器的研究引起了更大的关注。由于光纤具有较大的横截面积,光纤激光器相比于传统固体激光器具有更好的散热特性,尤其是在高功率激光器应用上,一般采用光纤激光器。光纤激光器大多是以掺稀土离子的光纤作为增益介质,增益光纤吸收大量泵浦光,并将泵浦光转换为信号光,因此增益光纤中功率密度较高,有较大的热量积累在光纤表面,尤其在增益光纤的熔入点处,功率密度突然剧增,温度也随之剧增,因此需要对该熔点处的温度着重处理。
常见的增益光纤散热方法有两种,第一种是将增益光纤盘绕在圆柱形面热沉上,第二种是将增益光纤盘绕在平面热沉上。增益光纤盘绕在平面热沉上使得增益光纤的弯曲半径不同,无法控制高功率大模场光纤产生的高阶模式,且此盘绕方式将会导致增益光纤交叉重叠,不利于增益光纤的散热及系统稳定性。一些基于平面盘绕方式的特殊结构设计,可以使增益光纤盘绕半径相同,且不交叉,但是该结构设计复杂,可操作性差,且占用空间大,不利于系统的集成。因此,大多数情况下采用圆柱形平面热沉来对增益光纤进行散热。
将增益光纤盘绕在圆柱形热沉上散热也有不同的方法,但目前报道的大多是低功率情况下的盘绕散热方法,包括用双面胶将增益光纤粘在圆柱面形热沉上,或者在圆柱面上刻螺旋槽等,这些方法操作复杂,且不适用于高功率大模场增益光纤的散热及输出模式控制。考虑到高功率光纤激光器中放大器模块的非线性效应,放大器模块通常采用大模场光纤,大模场增益光纤与传能光纤间的熔接通常存在熔点温度过高以及高阶模运行问题,解决此问题对提升高功率光纤激光器的输出功率、光束质量及系统稳定性有着至关重要的作用。
发明内容
发明目的:针对以上问题,本发明提出一种高功率光纤激光器增益光纤散热装置,对增益光纤的散热效果良好。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种高功率光纤激光器增益光纤散热装置,包括圆形底座热沉和圆柱面热沉,增益光纤盘绕在圆柱面热沉上,将输入传能光纤和输出传能光纤与增益光纤熔接后,在盘有增益光纤的圆柱面上涂覆导热硅脂。
进一步地,还包括封装装置,所述封装装置为两个半圆形结构。
进一步地,所述圆柱面热沉为空心圆柱体,顶部设有螺纹孔;所述两个半圆形结构的封装装置外径与圆形底座热沉外径相同,半圆形结构封装装置的顶部设有弧形孔,可通过螺钉将半圆形结构封装装置固定于圆柱面热沉顶部。
进一步地,圆形底座热沉外侧设有弧形孔,中心设有圆形孔,可通过螺钉将圆形底座热沉固定于系统底板上。
进一步地,所述圆柱面热沉与圆形底座热沉为一体,外径略小于圆形底座热沉。
进一步地,所述两个半圆形结构的封装装置各包括四个U型孔,分别位于半圆柱的两个棱边上下位置,封装完成后形成两个近似椭圆的孔位。
进一步地,输入与输出传能光纤可以处于半圆形封装结构的同侧,也可以处于半圆形封装结构的两侧。
进一步地,所选导热硅脂为导热性能良好的固液混合状态胶体。
进一步地,输入熔接点盘绕在圆柱面热沉的下侧,输出熔接点盘绕在圆柱面热沉的上侧。
有益效果:本发明结构制作简单,成本低,可操作性强,对增益光纤的散热效果良好,且由于特殊封装技术,增益光纤的盘绕具有很大的灵活性,通过应力将增益光纤盘绕在同一个圆柱面上有效控制了大模场光纤输出激光的光束质量;增益光纤盘的特殊封装装置也保证了导热硅脂的导热效果长期可靠性,对高功率光纤放大器的系统稳定性及可靠性有很大的提升。
附图说明
图1是整个装置的俯视图;
图2是增益光纤盘底盘和盘身的前视图;
图3是增益光纤封装装置的前视图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
如图1所示,本发明的高功率光纤激光器增益光纤散热装置,该包括圆形底座热沉1、圆柱面热沉2、封装装置3、传能光纤4、增益光纤5。
将增益光纤盘绕在带圆形底座的外径略小于圆柱底座的圆柱面热沉上,此圆形底座热沉内部带有固定作用;在增益光纤与传能光纤熔接完成后,在盘有增益光纤的圆柱面上涂上具有高导热效果的导热硅脂,让增益光纤与导热硅脂、整个热沉装置完好接触,这样,增益光纤及增益光纤与传能光纤的熔接点热量能够均匀的散到热沉上,通过热沉将热量散到空气中或系统底板上,达到良好的散热效果。传能光纤为放大器系统匹配的光纤,增益光纤的光纤参数与相连接的传能光纤匹配。
考虑到涂上导热硅脂的增益光纤盘处于裸露状态,长时间运行或存储时,导热硅脂易风干,失去导热性能,且涂上导热硅脂的增益光纤盘裸露极易被污染,增加增益光纤的热点,不利于散热装置的长期可靠性,因此,用两个半圆形结构将整个增益光纤盘进行封装,保证了导热硅脂长期的有效性及可靠性。
增益光纤圆形底座热沉为带弧形固定槽的圆形热沉;圆柱面热沉与圆形底座热沉为一体结构,圆柱面热沉盘身为具有一定厚度的散热良好的热沉,外径略小于底座外径,增益光纤封装装置为两个半圆形结构,半圆形结构的外径与增益光纤底座相同;增益光纤封装装置的顶部设有弧形的安装槽,通过与环形圆柱面热沉顶部的螺纹孔对应固定。
圆形底座内部设有三段弧形孔,圆形盘中心设有一个圆形孔,用螺钉将可以灵活转动的圆形底座固定在系统底板上的固定螺纹孔;圆柱面与圆形底座为一体,外径略小于圆形底座,将增益光纤施加一定应力盘绕在圆柱面热沉上,使其与圆柱面热沉紧密接触,将导热硅脂均匀的涂在增益光纤上;圆柱面组成的空心圆柱体顶部设有螺纹孔;两个半圆形结构的封装装置外径与圆柱形底座外径相同,半圆形结构封装装置的顶部设有两段空心的弧形孔,用螺钉将半圆形结构封装装置固定在圆柱面组成的空心圆柱体顶部。
如图3所示,两个半圆形结构的封装装置均包括四个U型孔,分别在半圆柱的两个棱边上下位置各一个,形成两个近似椭圆的孔位,作为与增益光纤连接的传能光纤的输入或输出端端口32、33;增益光纤盘中心为空。
如图1所示,将增益光纤盘通过圆形底座上的弧形槽11固定在系统底板上的螺纹孔101、102、103、104上。将盘有增益光纤的圆柱形增益光纤盘盘身涂上导热性能良好的导热硅脂;将两个半圆形结构3通过其上设计的弧形槽31固定在圆柱面热沉2顶部的螺纹孔201、202、203、204上。
如图2所示,将增益光纤5施加一定的应力盘绕在圆柱面热沉2上,使增益光纤与圆柱面盘身紧密接触,用铜胶带将盘好的增益光纤固定在圆柱面形增益光纤盘盘身;将输入传能光纤和输出传能光纤与增益光纤熔接,输入熔接点61盘绕在圆柱面形热沉的下侧,输出熔接点62盘绕在圆柱面形热沉的上侧。
输入传能光纤41与输出传能光纤42可以处于半圆形封装结构的同侧,也可处于半圆形封装结构的两侧,可随光纤的盘绕方向和传能光纤的长度灵活调整。
增益光纤5的盘绕应在增益光纤与传能光纤熔接前,盘绕前应对增益光圆柱面热沉2和增益光纤5用酒精清洁,避免增益光纤污染;盘绕时应注意力度,避免增益光纤的损伤。增益光纤盘的方向、位置可随传能光纤长度以及盘绕方向而灵活的转动,保证输入及输出传能光纤的方向一致性,同时,输入及输出传能光纤应不具有应力。
导热硅脂为导热性能良好的固液混合状态胶体,该导热硅脂可以溶于酒精,因此涂完导热硅脂的增益光纤可反复利用,便于系统的维修。
本发明适用于高功率的光纤激光器增益光纤散热装置,可以随着光纤长度的变化灵活的调整方向和位置,操作简单,且可提供增益光纤相同的盘绕直径,有效的控制大模场光纤中激发的高阶模式,优化了输出激光的光束质量;半圆形封装结构灵活巧妙,既保证了增益光纤的长期运行可靠性,同时,整个装置结构紧凑,成本低。

Claims (9)

  1. 一种高功率光纤激光器增益光纤散热装置,其特征在于,包括圆形底座热沉和圆柱面热沉,增益光纤盘绕在圆柱面热沉上,将输入传能光纤和输出传能光纤与增益光纤熔接后,在盘有增益光纤的圆柱面上涂覆导热硅脂。
  2. 根据权利要求1所述的高功率光纤激光器增益光纤散热装置,其特征在于,还包括封装装置,所述封装装置为两个半圆形结构。
  3. 根据权利要求2所述的高功率光纤激光器增益光纤散热装置,其特征在于,所述圆柱面热沉为空心圆柱体,顶部设有螺纹孔;
    所述两个半圆形结构的封装装置外径与圆形底座热沉外径相同,半圆形结构封装装置的顶部设有弧形孔,可通过螺钉将半圆形结构封装装置固定于圆柱面热沉顶部。
  4. 根据权利要求1所述的高功率光纤激光器增益光纤散热装置,其特征在于,圆形底座热沉外侧设有弧形孔,中心设有圆形孔,可通过螺钉将圆形底座热沉固定于系统底板上。
  5. 根据权利要求1所述的高功率光纤激光器增益光纤散热装置,其特征在于,所述圆柱面热沉与圆形底座热沉为一体,外径略小于圆形底座热沉。
  6. 根据权利要求3所述的高功率光纤激光器增益光纤散热装置,其特征在于,所述两个半圆形结构的封装装置各包括四个U型孔,分别位于半圆柱的两个棱边上下位置,封装完成后形成两个近似椭圆的孔位。
  7. 根据权利要求6所述的高功率光纤激光器增益光纤散热装置,其特征在于,输入与输出传能光纤可以处于半圆形封装结构的同侧,也可以处于半圆形封装结构的两侧。
  8. 根据权利要求1所述的高功率光纤激光器增益光纤散热装置,其特征在于,所选导热硅脂为导热性能良好的固液混合状态胶体。
  9. 根据权利要求1所述的高功率光纤激光器增益光纤散热装置,其特征在于,输入熔接点盘绕在圆柱面热沉的下侧,输出熔接点盘绕在圆柱面热沉的上侧。
PCT/CN2019/096322 2018-09-05 2019-07-17 一种高功率光纤激光器增益光纤散热装置 WO2020048239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811030667.0A CN109066277A (zh) 2018-09-05 2018-09-05 一种高功率光纤激光器增益光纤散热装置
CN201811030667.0 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020048239A1 true WO2020048239A1 (zh) 2020-03-12

Family

ID=64758424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096322 WO2020048239A1 (zh) 2018-09-05 2019-07-17 一种高功率光纤激光器增益光纤散热装置

Country Status (2)

Country Link
CN (1) CN109066277A (zh)
WO (1) WO2020048239A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109066277A (zh) * 2018-09-05 2018-12-21 南京先进激光技术研究院 一种高功率光纤激光器增益光纤散热装置
CN112490831A (zh) * 2020-11-20 2021-03-12 北方激光研究院有限公司 一种光纤应力长期保持装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738691A (zh) * 2012-06-29 2012-10-17 西北大学 全光纤结构的938nm半导体制冷光纤激光器
CN102798939A (zh) * 2011-05-26 2012-11-28 欧姆龙株式会社 光纤保持件及光纤激光装置
CN102891423A (zh) * 2012-09-25 2013-01-23 中国科学院半导体研究所 集成光纤激光器
US20150117473A1 (en) * 2013-10-30 2015-04-30 Raytheon Company Method and apparatus for high-power raman beam-combining in a multimode optical fiber
CN105826797A (zh) * 2016-05-16 2016-08-03 南京先进激光技术研究院 一种光纤散热装置和激光器
CN109066277A (zh) * 2018-09-05 2018-12-21 南京先进激光技术研究院 一种高功率光纤激光器增益光纤散热装置
CN208690712U (zh) * 2018-09-05 2019-04-02 南京先进激光技术研究院 一种高功率光纤激光器增益光纤散热装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798939A (zh) * 2011-05-26 2012-11-28 欧姆龙株式会社 光纤保持件及光纤激光装置
CN102738691A (zh) * 2012-06-29 2012-10-17 西北大学 全光纤结构的938nm半导体制冷光纤激光器
CN102891423A (zh) * 2012-09-25 2013-01-23 中国科学院半导体研究所 集成光纤激光器
US20150117473A1 (en) * 2013-10-30 2015-04-30 Raytheon Company Method and apparatus for high-power raman beam-combining in a multimode optical fiber
CN105826797A (zh) * 2016-05-16 2016-08-03 南京先进激光技术研究院 一种光纤散热装置和激光器
CN109066277A (zh) * 2018-09-05 2018-12-21 南京先进激光技术研究院 一种高功率光纤激光器增益光纤散热装置
CN208690712U (zh) * 2018-09-05 2019-04-02 南京先进激光技术研究院 一种高功率光纤激光器增益光纤散热装置

Also Published As

Publication number Publication date
CN109066277A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020048239A1 (zh) 一种高功率光纤激光器增益光纤散热装置
US7957623B2 (en) Deformable thermal pads for optical fibers
CN100479274C (zh) 一种标准具控温装置
JPH03135082A (ja) 集積レーザダイオードポンプレーザ装置
JP2012014173A (ja) スケーラブルなクラッド・モード・ストリッパ装置
CN106099636A (zh) 高功率二极管激光器封装中的光学损耗管理
TWM366286U (en) Heat dissipation structure of communication case
CN105720464B (zh) 一种用于棒状光纤的整体冷却装置
US20140270668A1 (en) Removing unwanted light from high-power optical systems
JP2001274489A (ja) 光ファイバ放熱装置
CN105826797A (zh) 一种光纤散热装置和激光器
CN203340527U (zh) 散热装置、激光器及激光投影机
CN111262118A (zh) 一种适用于近地空间环境的器件散热结构
CN204760747U (zh) 一种l型热管激光器散热装置
CN210899087U (zh) 一种有效散热的功率放大器
JP2005043853A (ja) 光学部品及びこの光学部品を備える光アイソレータ
CN106936056B (zh) 一种热容冷却液体激光器
CN208690712U (zh) 一种高功率光纤激光器增益光纤散热装置
CN111076584B (zh) 一种航天器用桁架热管和环路热管耦合传热组件
CN211958246U (zh) 一种大功率短波半导体激光照明器
CN203324523U (zh) 一种应用于高功率激光光纤耦合的光纤装夹结构
CN103246025B (zh) 一种应用于高功率激光光纤耦合的光纤装夹结构
CN110417282A (zh) 一种散热性能好的电源适配器
CN220874006U (zh) 一种ppln波导器件及其光纤散热结构
TWM587174U (zh) 熱相變儲熱模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856569

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19856569

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19856569

Country of ref document: EP

Kind code of ref document: A1