WO2020048198A1 - 金属负极被绝缘材料覆盖的化学电池及其覆盖方法 - Google Patents

金属负极被绝缘材料覆盖的化学电池及其覆盖方法 Download PDF

Info

Publication number
WO2020048198A1
WO2020048198A1 PCT/CN2019/093538 CN2019093538W WO2020048198A1 WO 2020048198 A1 WO2020048198 A1 WO 2020048198A1 CN 2019093538 W CN2019093538 W CN 2019093538W WO 2020048198 A1 WO2020048198 A1 WO 2020048198A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
metal negative
metal
insulating layer
battery
Prior art date
Application number
PCT/CN2019/093538
Other languages
English (en)
French (fr)
Inventor
王益成
Original Assignee
王益成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王益成 filed Critical 王益成
Publication of WO2020048198A1 publication Critical patent/WO2020048198A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/32Deferred-action cells activated through external addition of electrolyte or of electrolyte components
    • H01M6/34Immersion cells, e.g. sea-water cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of energy resources, and particularly relates to a chemical battery covered by a metal negative electrode with an insulating layer and a covering method thereof.
  • metal fuel cells also called metal-air batteries
  • seawater batteries and so on.
  • the metal fuel cells currently developed are mainly aluminum fuel cells (aluminum-air batteries), magnesium fuel cells (magnesium-air batteries), zinc fuel cells (zinc-air batteries), lithium fuel cells (lithium-air batteries), etc.
  • the seawater batteries currently developed include magnesium seawater batteries, aluminum seawater batteries, zinc seawater batteries, and so on.
  • the metal anode of an aluminum fuel cell is an aluminum alloy
  • the metal anode of a magnesium fuel cell is a magnesium alloy
  • the metal anode of a zinc fuel cell is a zinc alloy
  • the metal anode of a lithium fuel cell is lithium or a lithium alloy.
  • the metal negative electrodes of such chemical batteries all use sheet-shaped or plate-shaped metal materials.
  • the metal negative electrode in the chemical battery faces but does not contact the positive electrode of the battery, and the shape and size of the surface of the metal negative electrode opposite to the positive electrode surface of the battery are the same or substantially the same as the positive electrode of the battery.
  • the electrochemical activity of the metal negative electrode is often better than that of the battery positive electrode. Adopting the same or substantially the same electrode structure of the positive electrode and the negative electrode results in low utilization of the metal negative electrode and serious self-corrosion.
  • the battery discharge process not only generates severe heat but also generates a large amount of hydrogen, which becomes a hidden safety hazard for battery operation.
  • the bottom of the sheet-shaped or plate-shaped metal negative electrode of such chemical batteries currently adopts a horizontal structure.
  • the present invention proposes a chemical battery covered by a metal negative electrode with an insulating material.
  • the chemical battery includes a metal negative electrode and a battery positive electrode installed inside the battery; the metal negative electrode and the battery positive electrode are not in contact with each other.
  • the metal negative electrode includes a metal negative electrode substrate and an insulating layer; the insulating layer covers the metal negative electrode substrate; and a metal that is not covered by the insulating layer is arranged on the opposite side of the metal negative electrode facing the battery positive electrode
  • the metal negative electrode substrate located in the region is exposed in the electrolyte and generates an electric field facing the positive electrode of the battery.
  • the total area of the metal negative electrode base region not covered by the insulating layer in the edge region of the metal negative electrode is smaller than the total area of the metal negative electrode base region not covered by the insulating layer in the middle of the metal negative electrode.
  • the metal negative electrode substrate is formed by using one or two or more metal negative electrode substrates having the same structure or different structures; and the insulating layer is adapted to cover the metal negative electrode substrate formed and formed. On the surface of the metal negative electrode facing the positive electrode of the battery, there is a region of the metal negative electrode substrate that is not covered by the insulating layer.
  • the shape of the metal negative electrode includes a plate type, a column type, a sheet type, a strip type, and a curved surface type; the bottom of the metal negative electrode has a planar or non-planar structure.
  • the structure of the metal negative electrode substrate includes a strip structure, a column structure, a ring structure, a sheet structure, and a plate structure.
  • the material of the insulating layer is all rigid; or only the area that is in contact with the covered metal negative electrode substrate or the conductive connection body of the metal negative electrode is elastic and the rest is rigid, or the whole It is elastic; or the rigid region of the insulation layer gradually transitions to the elastic region in a gradual manner.
  • the electrical output terminal conductor of the metal negative electrode is conductively connected to the metal negative electrode substrate through the conductive connector conductive layer; the electrical output terminal conductor, the conductive connector conductive layer, and the metal negative electrode substrate are made of the same or different materials. production.
  • the present invention proposes a method for covering a metal negative electrode with an insulating material, which is used to install the metal negative electrode and a battery positive electrode adapted to the metal negative electrode inside the battery, and together with the electrolyte, constitute a chemical
  • the battery the metal negative electrode and the battery positive electrode face each other without contact; in particular, the metal negative electrode substrate of the metal negative electrode is covered with an insulating layer; the opposite side of the metal negative electrode facing the battery positive electrode is left uninsulated
  • the region of the metal negative electrode substrate covered by the layer, the metal substrate negative electrode located in the region is exposed in the electrolyte, and an electric field is generated opposite to the positive electrode of the battery.
  • the total area of the metal negative electrode base region not covered by the insulating layer in the edge region of the metal negative electrode is smaller than the total area of the metal negative electrode base region not covered by the insulating layer in the middle of the metal negative electrode.
  • the metal negative electrode substrate is formed by using one or two or more metal negative electrode substrates having the same structure or different structures; and the insulating layer is adapted to cover the metal negative electrode substrate formed and formed. On the surface of the metal negative electrode facing the positive electrode of the battery, there is a region of the metal negative electrode substrate that is not covered by the insulating layer.
  • the shape of the metal negative electrode includes a plate type, a column type, a sheet type, a strip type, and a curved surface type; the bottom of the metal negative electrode has a planar or non-planar structure.
  • the structure of the metal negative electrode substrate includes a strip structure, a column structure, a ring structure, a sheet structure, and a plate structure.
  • all the materials of the insulating layer are completely rigid; or only the area in contact with the covered metal negative electrode substrate or the conductive connection body of the metal negative electrode is elastic and the rest is rigid. Either the whole is elastic or the rigid region of the insulation layer gradually transitions to the elastic region in a gradual manner.
  • the insulating layer covering the metal negative electrode substrate includes two sides adhered together, or the two sides are adhered together, or the two sides are pressed together, or the two sides are close to each other, or the two sides are embedded, or one side is inserted into the other side.
  • one side of the molten state is poured into the structure of the other side and then solidified and formed; it may have both of the above two or more covering methods.
  • the electrical output terminal conductor of the metal negative electrode is conductively connected to the metal negative electrode substrate through the conductive connector conductive layer; the electrical output terminal conductor, the conductive connector conductive layer, and the metal negative electrode substrate are made of the same or different materials. production.
  • the electrical output terminal conductor of the metal negative electrode, the conductive connector conductive layer, and the metal negative electrode substrate are integrated structures; or the electrical output terminal conductor and the conductive connector conductive layer are integrated structures, and the metal negative electrode substrate is installed on the conductive connection.
  • the body conductive layer; or the conductive connector body and the metal negative electrode base body are integrated structure, and the electric output terminal conductor is installed on the conductive connector body conductive layer; or the electric output terminal conductor, the conductive connector conductive layer and the metal negative electrode
  • the bases are independent structures, which are installed together in sequence.
  • the invention proposes a chemical battery covered by an insulating material with a metal negative electrode and a covering method thereof, which can significantly improve the utilization rate of the metal negative electrode material during the battery discharge process, and greatly reduce the heat and hydrogen generated during the battery discharge process and when the battery stops discharging and drains. Precipitation achieves long-term stable and safe discharge of the battery, ensuring the safety when the battery stops discharging.
  • FIG. 1 is a front structural view, a G-G sectional structural schematic view, and a G'-G 'sectional structural schematic view of a plate-shaped metal negative electrode composed of a strip-shaped metal negative electrode base 2-1 in a first preferred embodiment of the present invention.
  • FIG. 2 is a manner of fitting the fence structure insulating layer 3-1 and the strip-shaped metal negative electrode base body 2-1 in FIG. 1 to each other.
  • FIG. 3 is a schematic view of the front structure a, a plan view b, a cross-section H-H and a cross-section I-I of a plate-shaped metal negative electrode composed of a columnar metal negative electrode base 2-2 in a preferred embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of the front structure, the A-A cross-sectional structure, the B-B cross-sectional structure, and a partial cross-sectional enlarged view of a part related to the cylindrical electric output terminal after removing the built-in through-hole and the trench insulation layer 3-2 in FIG.
  • FIG. 5 is a schematic structural diagram of the front surface of the built-in through-hole and trench insulation layer 3-2 in FIG. 3 and a schematic structural diagram of its C-C section.
  • FIG. 6 is a schematic view of a front structure a), a plan view of a top structure b) and a D-D cross-sectional structure of a metal anode with a columnar structure according to a third preferred embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a three-dimensional structure of a curved sheet-type metal negative electrode in a preferred embodiment 4 of the present invention and an E-E cross-sectional structure thereof.
  • FIG. 8 is a schematic structural view of a front view of a flat plate structure metal anode in a fifth preferred embodiment of the present invention and an F-F cross-sectional structure thereof.
  • FIG. 9 is a schematic diagram of a three-dimensional structure of a strip-shaped metal negative electrode base body 2-1, a conductive connection body conductive layer 4-1, and an electrical output terminal conductor 1-1 in a preferred embodiment 6 of the present invention, which are made of the same material.
  • FIG. 10 is a schematic diagram of the three-dimensional structure of the sleeve-shaped insulating layer 3-8 in the sixth preferred embodiment of the present invention.
  • FIG. 11 is a perspective view showing the three-dimensional structure of a plate-shaped metal negative electrode using a sleeve-shaped insulating layer in a preferred embodiment 6 of the present invention.
  • FIG. 12 is a schematic view of a front structure and a MM cross-sectional structure of a conductive connector body in which the conductive layer is embedded in the embedded structure insulating layer 3-7 in the seventh preferred embodiment of the present invention, in which the embedded structure insulating layer 3-7 is provided There are insulating slots 3-4.
  • FIG. 13 is a strip-shaped metal negative electrode base body 2 formed by solidifying a molten metal negative electrode base material in an insulating layer penetration groove 3-4 of the insulating layer 3-7 of the embedded structure in the seventh preferred embodiment of the present invention.
  • -1 and the embedded structure insulation layer 3-7 constitute the plate structure of the metal anode in front view and NN section structure
  • FIG. 14 is a front view and a PP cross-sectional structure diagram of a conductive connector body in which the conductive layer is embedded in the embedded structure insulating layer 3-7 in the eighth preferred embodiment of the present invention, in which the embedded structure insulating layer 3-7 is provided With insulation through hole 3-3
  • FIG. 15 is a schematic view of the front structure of a plate-shaped metal negative electrode formed by inserting a columnar-structure metal negative electrode base 2-2 into the through-hole (3-3) in the insulating layer in FIG. 14 in the eighth preferred embodiment of the present invention and an RR section Schematic
  • 3-1-1 Insulation frame of fence structure
  • 3-8-1 Insulated barrier grid with sleeve structure
  • a chemical battery with a metal negative electrode covered by an insulating layer includes a metal negative electrode and an air electrode installed in the chemical battery; the metal negative electrode and the battery positive electrode face each other without contact, and an electrolyte is interposed therebetween.
  • a plate-shaped metal negative electrode is used.
  • the metal negative electrode includes an electrical output terminal conductor 1-1, a conductive connector conductive layer 4-1, a metal negative electrode substrate 2 and an insulating layer 3; wherein the electrical output terminal conductor 1-1, the conductive connector conductive layer 4-1,
  • the metal negative electrode base body 2 is made of the same metal material in one piece.
  • the metal negative electrode base body 2 includes N strip-shaped metal negative electrode base bodies 2-1, where N ⁇ 2.
  • the strip-shaped metallic negative electrode base body 2-1 is vertically arranged at a distance from the bottom of the conductive layer 4-1 of the conductive connector, and the top of the conductive layer 4-1 is the electrical output terminal conductor 1-1.
  • the conductive body 1-1 of the electrical output terminal and the conductive layer 4-1 of the conductive connector have the same shape without any obvious boundary; the top of the conductive layer 4-1 of the conductive connector is connected to the conductive body 1-1 of the electrical output terminal.
  • the outer edge of the conductive connector body conductive layer 4-1 is covered with the conductive connector body insulation layer 4-2.
  • the widths of the stripe-shaped metal negative electrode bases 2-1 are different. Wherein, when N ⁇ 3, the width W1 of the strip-shaped metal anode base 2-1 arranged on both sides of the metal anode is smaller than the width W2 of the strip-shaped metal anode base 2-1 arranged in the middle of the metal anode, that is, the metal The total area of the metal negative electrode base region not covered by the insulating layer at both edge regions of the negative electrode is smaller than the total area of the metal negative electrode base region not covered by the insulating layer in the middle of the metal negative electrode.
  • the insulation layer 3 is a fence structure insulation layer 3-1 adapted to the metal negative electrode base body 2, and the fence structure insulation layer 3-1 of the fence structure insulation layer outer frame 3-1-1 is a metal negative electrode base body. The bottom and the left and right side walls of 2 are covered by it.
  • the vertical fence structure insulation layer divider grid of the fence structure insulation layer 3-1 is inserted into the space between the metal anode bases of each strip structure. , The fence structure insulating layer 3-1 and the metal negative electrode base body 2 are tightly fitted into one body.
  • the fence structure insulating layer 3-1 is adhered to the left and right sides of the strip-shaped metal negative electrode substrate 2-1 and covers it, and the surface of each strip-shaped metal negative electrode substrate 2-1 that is not covered by the fence structure insulating layer 3-1 The area is opposite the positive electrode in the battery.
  • the insulating layer 3-1 of the fence structure may adopt a rigid insulating material as a whole, or only a part of the area in contact with the strip-shaped metal negative electrode base body 2-1 may adopt an elastic insulating material, and the remaining portion is rigid.
  • FIG. 2 shows a fitting manner between the insulator 3 and the metal negative electrode base 2 in FIG. 1.
  • the chemical battery in this embodiment is basically similar to the first embodiment.
  • the metal negative electrode is also a plate structure.
  • the metal negative electrode is constructed by the metal negative electrode base 2 with a different structure.
  • the metal negative electrode base 2 in this embodiment includes a plurality of columnar metal negative bases 2-2 and a plurality of strip metal negative bases 2-1; the columnar metal negative base 2-2 It is arranged symmetrically with the stripe structure metal negative electrode base body 2-1 in front of and behind the conductive layer 4-1 of the conductive connector.
  • the columnar structure metal negative electrode substrate 2-2, the stripe structure metal negative electrode substrate 2-1 and the conductive connecting body and the conductive layer 4-1 are integrally constructed by using a metal material of the same material.
  • the metal negative electrode substrate 2-1 with a strip structure is located near the edge region of the metal negative electrode
  • the metal negative electrode substrate 2-2 with a column structure is located near the middle region of the metal negative electrode.
  • the metal negative electrode substrate is covered with an insulating layer 3-2 with built-in through-holes and slots.
  • the insulating layer is provided with through-holes 3-3 and through-insulation layers.
  • the shape, size, and arrangement of the slots 3-4, the through-holes 3-3 in the insulating layer, and the through-holes 3-4 in the insulating layer are the same as those of the metal negative electrode base 2 in a columnar structure, the metal negative electrode base 2-2, and the strip-shaped metal
  • the negative electrode base body 2-1 is adapted, and the insulating layer through hole 3-3 and the insulating layer through hole 3-4 in the insulating layer 3-2 with through holes and grooves are respectively sleeved on the columnar structure metal
  • the negative electrode base body 2-2 and the strip-shaped metal negative electrode base 2-1 are exposed, and the end faces of the columnar metal negative electrode base 2-2 and the strip-shaped metal negative electrode base 2-1 are exposed, and are used in the chemical battery.
  • the positive electrodes of the batteries face each other to form an electric field.
  • the insulating layer 3-2 with through-holes and slots, and between the side surfaces of the columnar metal anode base 2-2, the strip-shaped metal anode base 2-1, and the outer surface of the conductive connector 4-1 Cover it snugly.
  • the insulating layer is made of an elastic insulating material.
  • the bottom of the metal negative electrode has a bottom 5-2 of the metal negative electrode with a tapered structure.
  • the metal negative electrode of the chemical battery in this embodiment is a metal anode with a pillar structure.
  • the metal negative electrode base 2 of the metal negative electrode includes a columnar metal negative base 2-2 and M ring-shaped metal negative bases 2-3, where M ⁇ 1; a conductive connecting body, a conductive layer 4-1, and an electrical output end
  • the conductors 1-1 are made of metal copper in one piece; the columnar metal anode base 2-2 and the ring-shaped metal anode base 2-3 are made of different materials from the conductive layer 4-1.
  • the columnar metal anode base 2-2 and the ring-shaped metal anode base 2-3 are mounted on the conductive layer 4-1; the columnar metal anode base 2-2 is located on the conductive body In the middle of layer 4-1, a plurality of ring-shaped metal negative electrode substrates 2-3 are centered on the columnar metal negative electrode substrate 2-2, and are arranged on the conductive connection body in a ring-by-ring manner at a distance from each other.
  • the insulating layer 2 of the metal negative electrode includes M + 1 ring-shaped insulating layers 3-5, and the ring-shaped insulating layers 3-5 are respectively inserted into the ring-shaped metal negative electrode base body of the metal negative electrode basic body 2 Between 2-3, as well as metal structure with ring structure Between the base 2-2.
  • the side walls of the ring-shaped insulating layer 3-5 are in close contact with the side walls of the ring-shaped metal negative electrode base body 2-3, the side walls of the columnar-shaped metal negative electrode base body 2-2, and the upper surface of the conductive connector 4-1. And overwrite it. Only the end surfaces facing the positive electrode of the ring-shaped metal negative electrode base body 2-3 and the columnar-shaped metal negative electrode base body 2-2 are exposed to form an electric field between the battery and the battery positive electrode.
  • the conductive connector body conductive layer 4-1 is provided with an inner hole 4-4 of the conductive connector body conductive layer; the ring-shaped metal negative electrode substrate 2-3 and the columnar metal negative electrode substrate 2-2 are provided with Conductive connection body
  • the metal negative bottom plug 2-4 of the inner hole 4-4 in the conductive layer of the conductive connection body; the metal negative bottom plug 2 of the ring-shaped metal negative base 2-3 and the columnar metal negative base 2-2. 4 is inserted into the inner hole 4-4 of the conductive layer of the conductive connector to realize the conductive connection between the metal negative substrate 2-3 of the ring structure and the metal negative substrate 2-2 of the columnar structure and the conductive layer 4-1 of the conductive connector.
  • the metal negative electrode of the chemical battery in this embodiment is a curved sheet-type metal negative electrode; the metal negative electrode base 2 is composed of a curved sheet-shaped metal negative electrode base 2-5, as shown in FIG. 7.
  • the electrical output terminal conductor 1-1, the conductive connecting body conductive layer 4-1 and the curved sheet metal structure negative electrode substrate 2-5 are made of the same metal material in one piece; the electrical output terminal conductor 1-1 and the conductive body
  • the surface facing the air electrode is provided with a plurality of strip-shaped structural insulating layers 3-9 extending in a zigzag shape.
  • the strip structure insulating layer 3-9 is adhered to the surface of the curved sheet metal structure negative electrode substrate 2-5, and the curved sheet metal structure negative electrode substrate 2-5 of the bonding area is covered.
  • the areas on the curved sheet metal negative substrate 2-5 that are not covered by the strip-shaped insulating layer 3-9 are used to form an electric field between the battery and the positive electrode of the battery.
  • the metal negative electrode of the chemical battery in this embodiment is a metal negative electrode with a flat plate structure, see FIG. 8.
  • the metal negative electrode substrate is a plate-shaped metal negative electrode substrate 2-6; the surface of the plate-shaped metal negative electrode substrate 2-6 facing the air electrode is attached with an insulating layer 3-6 with an irregular permeation groove;
  • Built-in irregular transparent groove insulation layer 3-6 is provided with a plurality of independent and irregularly shaped transparent grooves 3-6-1, which are used to place the plate-shaped metal negative electrode substrate 2-6 in the groove When exposed, it forms an electric field opposite the positive electrode of a battery in a chemical battery.
  • the plate-shaped metal negative electrode substrate 2-6 and the insulating layer 3-6 with irregular permeation grooves are closely adhered together, and the plate-shaped metal negative electrode substrate 2-6 located in the bonded area is covered by the insulating layer. .
  • the bottom of the metal negative electrode has a unidirectional inclined metal negative bottom 5-3.
  • the plate-shaped metallic negative electrode base 2-6, the conductive connecting body conductive layer 4-1, and the electrical output terminal conductive body 1-1 are made of the same metal material, and there is no boundary between the three.
  • Preferred Embodiment 6 A chemical battery with a plate-shaped metal negative electrode.
  • the strip-shaped metal negative electrode base body 2-1 of the metal negative electrode, and the conductive connector conductive layer 4-1 and the electric output terminal conductive body 1-1 are made of the same material and are integrally formed.
  • the sleeve structure insulation layer 3-8 is composed of the sleeve structure insulation layer separation grid 3-8-1 and the sleeve structure insulation layer sleeve inlet 3-8-2.
  • the strip-shaped metallic negative electrode base 2-1 in FIG. 9 is inserted into the sleeve-shaped structural insulating layer through the sleeve-shaped structural insulating layer sleeve inlet 3-8-2 in FIG.
  • the side of the insulating barrier layer 3-8 of the sleeve structure is adhered to the side of the metallic negative electrode base 2-1 of the strip structure and is covered, and the insulating barrier 3-8 of the sleeve structure is not covered.
  • the strip-shaped metal negative electrode substrate 2-1 covered on the side is exposed on the outer surface, and an electric field is formed between the positive electrode in the chemical battery and the battery.
  • Preferred Embodiment Seven A chemical battery with a plate-shaped metal anode and a method for covering an insulating layer.
  • the conductive layer 4-1 of the conductive connection body of the metal negative electrode and the conductive body 1-1 of the electric output terminal are made of separate materials using different materials, and the two are tightly combined to achieve a conductive connection.
  • the conductive layer 4-1 of the conductive connector is embedded in the embedded structure insulating layer 3-7 and tightly bonded therebetween.
  • the embedded structure insulating layer 3-7 on the side of the metal negative electrode facing the positive electrode of the battery is provided with an insulating layer inner through groove 3-4, which is located at the insulating layer 3 through 4
  • the conductive layer 4-1 of the conductive connector is not covered by the embedded structure insulating layer 3-7; the embedded structure insulating layer 3-7 on the other side of the metal negative electrode is a dense and complete structure, and the conductive layer 4-1 of the conductive connector is other Area is completely covered.
  • Embedded structure insulation layer 3-7 is rigid structure and temperature resistant. As shown in FIG.
  • the molten metal negative electrode base material is poured into the transparent groove 3-4 in the insulating layer, and after solidification, a strip-shaped metal negative electrode base 2-1 as shown in FIG. 13 is formed.
  • the bottom of the stripe-shaped metal negative electrode base body 2-1 and the conductive connection body conductive layer 4-1 are tightly connected to realize a conductive connection.
  • the material of the strip-shaped metal negative electrode base body 2-1 is different from that of the conductive connection body conductive layer 4-1 and the electrical output terminal conductor 1-1.
  • the embedded structure insulating layer 3-7 is tightly bonded to the side of the strip-shaped metal negative electrode base body 2-1 and covers it. In a chemical battery, an electric field is formed between the exposed area of the strip-shaped metal negative electrode substrate 2-1 and the positive electrode of the battery.
  • Preferred embodiment eight A chemical battery with a plate-shaped metal anode and a method for covering an insulating layer.
  • the conductive connecting body conductive layer 4-1 of the metal negative electrode and the electrical output-side conductive body 1-1 are made of an integrated structure using the same material.
  • the conductive layer 4-1 of the conductive connector is embedded in the embedded structure insulating layer 3-7 and tightly bonded therebetween.
  • the embedded structure insulating layer 3-7 on the side of the metal negative electrode facing the positive electrode of the battery is provided with an insulating layer through-hole 3-3, which is located in the insulating layer through-hole 3-3.
  • the conductive layer 4-1 of the conductive connector is not covered by the embedded structure insulating layer 3-7.
  • the embedded structure insulation layer 3-7 on the other side of the metal negative electrode is a dense and complete structure, which completely covers the conductive layer 4-1.
  • the insulation layer 3-7 of the embedded structure is a rigid structure as a whole, but has elasticity at the through-holes 3-3 in the insulation layer.
  • the columnar structure metal negative electrode base 2-2 is inserted (embedded) into the through hole 3-3 in the insulating layer to form a plate-shaped metal negative electrode as shown in FIG. 15.
  • the bottom of the columnar metal anode base 2-2 inserted into the through-hole 3-3 in the insulating layer is tightly coupled with the conductive connector conductive layer 4-1 to achieve a conductive connection.
  • the material of the columnar metal negative electrode base 2-2 and the conductive layer conductive layer 4-1 are different.
  • the embedded structure insulating layer 3-7 is tightly bonded to the side surface of the columnar metal negative electrode base body 2-2 and covers it.
  • an electric field is formed between the exposed area of the columnar metal negative electrode substrate 2-2 and the positive electrode of the battery.
  • the area of the columnar metal anode base 2-2 located at the edge region of the plate-shaped metal negative electrode is smaller than the area of the columnar metal anode base 2-2 located at the middle area of the plate-shaped metal anode.
  • the method for covering the metal negative electrode substrate by the insulating layer may be that the two sides are adhered together, or the two sides are adhered together, or the two sides are pressed together, or the two sides are close to each other, or the two sides are embedded in each other. , Or one side is inserted into the other's structure, or the molten one is poured into the other's structure and solidified and formed, or it can have both of the above two or more covering methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种金属负极被绝缘材料覆盖的化学电池,所述化学电池包括安装在电池内部的金属负极和电池正极;所述金属负极与电池正极不接触地相面对,其间存在电解液;所述金属负极包括金属负极基体(2)和绝缘层(3);所述绝缘层覆盖金属负极基体;在与电池正极相面对的金属负极相对面排布有未被绝缘层覆盖的金属负极基体区域,位于该区域的金属负极基体裸露于电解液中,与电池正极相面对产生电场。可显著提高电池放电过程金属负极材料的利用率,大幅度降低电池放电过程以及电池停止放电退液时的发热和氢气析出,实现电池长期稳定安全放电,保证电池停止放电时的安全。

Description

金属负极被绝缘材料覆盖的化学电池及其覆盖方法 技术领域
本发明属于能源领域,特别涉及一种金属负极被绝缘层覆盖的化学电池及其覆盖方法。
背景技术
以金属材料作为负极的化学电池有很多种,包括金属燃料电池(也称为金属-空气电池)、海水电池,等。目前开发的金属燃料电池主要有铝燃料电池(铝-空气电池)、镁燃料电池(镁-空气电池)、锌燃料电池(锌-空气电池)、锂燃料电池(锂-空气电池),等等。目前开发的海水电池主要有镁海水电池、铝海水电池、锌海水电池,等等。铝燃料电池的金属负极为铝合金,镁燃料电池的金属负极为镁合金,锌燃料电池的金属负极为锌合金,锂燃料电池的金属负极为锂或者锂合金。同样,镁海水电池的金属负极为镁合金、铝海水电池的金属负极为铝合金,锌海水电池的金属负极为锌合金。采用金属材料为负极的化学电池的充电方式有机械式充电和采用外加电源充电两种。采用外加电源充电的化学电池也称为可充电电池。对于机械式充电的化学电池(包括金属燃料电池、海水电池等),放电过程金属负极因不断溶解进入电解液而消耗之后,通过补加负极金属材料或者更换新的金属负极,保证放电过程继续进行。对于可充电的化学电池(包括金属燃料电池、海水电池等),放电过程金属负极因不断溶解进入电解液而消耗完之后,需要采用外加电源对电池进行充电,使溶解在电解液中的金属离子重新在负极沉积出原子态的金属,再继续进行放电。目前,这类化学电池的金属负极均采用片状或者板状的金属材料。化学电池中的金属负极与电池正极相面对但不接触,与电池正极表面相对的金属负极表面的形状及尺寸与电池正极的相同或者基本相同。由于这类化学电池的电池正极和金属负极的性能不同,往往金属负极的电化学活性优于电池正极。采用正极和负极相同或者基本相同的电极结构,导致金属负极的利用率低、自腐蚀严重,电池放电过程不仅发热严重而且大量析出氢气,成为电池运行的安全隐患。此外,目前这类化学电池的片状或者板状金属负极的底部均采用水平结构。底部具有水平结构的片状或者板状金属负极在停止放电退液时,因电解液在金属负极表面长时间停留而大量产生氢气,也成为电池运行的安全隐患。
发明内容
针对现有技术存在的不足,本发明提出了一种金属负极被绝缘材料覆盖的化学电 池,所述化学电池包括安装在电池内部的金属负极和电池正极;所述金属负极与电池正极不接触地相对,其间存在电解液;所述金属负极包括金属负极基体和绝缘层;所述绝缘层覆盖金属负极基体;在与电池正极相面对的金属负极相对面排布有未被绝缘层覆盖的金属负极基体区域,位于该区域的金属负极基体裸露于电解液中,与电池正极相面对产生电场。
更佳的是,所述金属负极边缘区域的未被绝缘层覆盖的金属负极基体区域的总面积小于该金属负极中部未被绝缘层覆盖的金属负极基体区域的总面积。
更佳的是,所述金属负极基体是采用一种或两种以上同一结构或不同结构的金属负极基体构建成型;所述绝缘层与所述构建成型的金属负极基体相适配地将其覆盖,在与电池正极相面对的金属负极表面留有未被绝缘层覆盖的金属负极基体区域。
所述金属负极的形状包括板型、柱型、片型、带型和曲面型;所述金属负极的底部为平面或者非平面结构。
所述金属负极基体的结构包括条状结构、柱状结构、环状结构、片状结构和板状结构。
更佳的是,所述绝缘层的材料全部是刚性的;或者仅仅与所覆盖金属负极基体、或者与金属负极的导电连接体相接的区域是具有弹性的而其余部分是刚性的,或者整体是具有弹性的;或者绝缘层的刚性区域是以渐变的方式逐渐过渡到弹性区域的。
所述绝缘层覆盖金属负极基体包括双方粘附在一起,或者是双方贴合在一起,或者是双方挤压在一起,或者是双方相互靠近,或者是双方相互嵌入,或者是一方插入另一方的结构中,或者是熔融态的一方浇注到另一方的结构中后凝固成型;也可以是上述两种或者多种覆盖方式兼有。
所述金属负极的电输出端导电体通过导电连接体导电层与金属负极基体导电连接;所述电输出端导电体、导电连接体导电层和金属负极基体是用相同或不相同材质的金属材料制成。
更佳的是,所述金属负极的电输出端导电体、导电连接体导电层和金属负极基体是一体式结构;或者是电输出端导电体和导电连接体导电层为一体式结构,金属负极基体安装在导电连接体导层;或者是导电连接体导电层和金属负极基体为一体式结构,电输出端导电体安装在导电连接体导层;或者所述电输出端导电体、导电连接体导电 层和金属负极基体各自为独立的结构,依次安装在一起。
本发明为解决现有技术存在的问题,提出了一种金属负极被绝缘材料覆盖的方法,用于将金属负极以及与金属负极相适配的电池正极安装在电池内部,与电解液一起构成化学电池;所述金属负极与电池正极不接触地相面对;尤其是,在所述金属负极的金属负极基体上覆盖绝缘层;与电池正极相面对的金属负极相对面上留有未被绝缘层覆盖的金属负极基体区域,位于该区域的金属基体负极裸露于电解液中,与电池正极相对产生电场。
更佳的是,所述金属负极边缘区域的未被绝缘层覆盖的金属负极基体区域的总面积小于该金属负极中部未被绝缘层覆盖的金属负极基体区域的总面积。
更佳的是,所述金属负极基体是采用一种或两种以上同一结构或不同结构的金属负极基体构建成型;所述绝缘层与所述构建成型的金属负极基体相适配地将其覆盖,在与电池正极相面对的金属负极表面留有未被绝缘层覆盖的金属负极基体区域。
所述金属负极的形状包括板型、柱型、片型、带型和曲面型;所述金属负极的底部为平面或者非平面结构。
所述金属负极基体的结构包括条状结构、柱状结构、环状结构、片状结构和板状结构。
更佳的是,所述绝缘层的材料全部是全刚性的;或者仅仅与所覆盖金属负极基体或者与所述金属负极的导电连接体相接的区域是具有弹性的而其余部分是刚性的,或者整体是具有弹性的,或者绝缘层的刚性区域是以渐变的方式逐渐过渡到弹性区域的。
所述绝缘层覆盖金属负极基体包括双方粘附在一起,或者是双方贴合在一起,或者是双方挤压在一起,或者是双方相互靠近,或者是双方相互嵌入,或者是一方插入另一方的结构中,或者是熔融态的一方浇注到另一方的结构中后凝固成型;也可以是上述两种或者多种覆盖方式兼有。
所述金属负极的电输出端导电体通过导电连接体导电层与金属负极基体导电连接;所述电输出端导电体、导电连接体导电层和金属负极基体是用相同或不相同材质的金属材料制成。
所述金属负极的电输出端导电体、导电连接体导电层和金属负极基体是一体式结构;或者是电输出端导电体和导电连接体导电层为一体式结构,金属负极基体安装在 导电连接体导层;或者是导电连接体导电层和金属负极基体为一体式结构,电输出端导电体安装在导电连接体导层;或者所述电输出端导电体、导电连接体导电层和金属负极基体各自为独立的结构,依次安装在一起。
本发明提出了一种金属负极被绝缘材料覆盖的化学电池及其覆盖方法,可显著提高电池放电过程金属负极材料的利用率,大幅度降低电池放电过程以及电池停止放电退液时的发热和氢气析出,实现电池长期稳定安全放电,保证电池停止放电时的安全。
附图说明
附图1是本发明优选实施例一中由条状结构金属负极基体2-1构成板型结构金属负极的正面结构示图、G-G剖面结构示意图和G’—G’剖面结构示意图。
附图2是附图1中的栅栏结构绝缘层3-1与条状结构金属负极基体2-1之间相互嵌合的方式。
附图3是本发明优选实施二中由柱状结构金属负极基体2-2构成板型结构金属负极的正面结构示意图a、俯视图b、H-H剖面结构示意图和I-I剖面结构示意图。
附图4是图3中去除内设通透孔和槽绝缘层3-2后的正面结构示意图、A-A剖面结构示意图、B-B剖面结构示意图和与圆柱形电输出端相关部分的局部剖面放大示意图。
附图5是图3中的内设通透孔和槽绝缘层3-2的正面结构示意图和其C-C剖面结构示意图。
附图6是本发明优选实施例三中柱型结构金属负极的正视结构示意图a)、俯视结构示意图b)和D-D剖面结构示意图。
附图7是本发明优选实施例四中曲面片型结构金属负极的立体结构示意图和其E-E剖面结构示意图。
附图8是本发明优选实施例五中平面板型结构金属负极的正视结构示意图和其F-F剖面结构示意图。
附图9是本发明优选实施例六中条状结构金属负极基体2-1、导电连接体导电层4-1和电输出端导电体1-1采用相同材质并合为一体的立体结构示意图
附图10是本发明优选实施例六中套形结构绝缘层3-8的立体结构示意图
附图11是本发明优选实施例六中采用套形结构绝缘层形成板型结构金属负极的立体 结构示意图
附图12是本发明优选实施例七中导电连接体导电层被包埋在包埋结构绝缘层3-7内的正视结构示意图及M-M剖面结构示意图,其中包埋结构绝缘层3-7内设置有绝缘层内通透槽3-4。
附图13是本发明优选实施例七中将熔融态金属负极基体材料浇注到包埋结构绝缘层3-7的绝缘层内通透槽3-4中凝固后形成的条状结构金属负极基体2-1与包埋结构绝缘层3-7构成板型结构金属负极的正视结构示意图及N-N剖面结构示意图
附图14是本发明优选实施例八中导电连接体导电层被包埋在包埋结构绝缘层3-7内的正视结构示意图及P-P剖面结构示意图,其中包埋结构绝缘层3-7内设置有绝缘层内通透孔3-3
附图15是本发明优选实施例八中将柱状结构金属负极基体2-2插入图14中的绝缘层内通透孔(3-3)中形成的板型结构金属负极正视结构示意图及R-R剖面结构示意图
符号说明:
1:电输出端
1-1:电输出端导电体
1-2:电输出端绝缘层
2:金属负极基体
2-1:条状结构金属负极基体
2-2:柱状结构金属负极基体
2-3:环状结构金属负极基体
2-4:金属负极底部插头
2-5:曲面片状结构金属负极基体
2-6:板状结构金属负极基体
3:绝缘层
3-1:栅栏结构绝缘层
3-1-1:栅栏结构绝缘层外框
3-1-2:栅栏结构绝缘层分隔栅
3-2:内设通透孔和槽的绝缘层
3-3:绝缘层内通透孔
3-4:绝缘层内通透槽
3-5:环状结构绝缘层
3-6:内设不规则通透槽绝缘层
3-6-1:绝缘层内形状不规则的通透槽
3-7:包埋结构绝缘层
3-8:套形结构绝缘层
3-8-1:套形结构绝缘层分隔栅
3-8-2:套形结构绝缘层套入口
3-9:条状结构绝缘层
4:导电连接体
4-1:导电连接体导电层
4-2:导电连接体绝缘层
4-3:导电连接体导电层内凹槽
4-4:导电连接体导电层内插孔
5:金属负极底部
5-1:锥形双向倾斜金属负极底部
5-2:锥形金属负极底部
5-3:单向倾斜金属负极底部
具体实施方式
下面结合各优选实施例和附图对本发明的化学电池及其金属负极构建方法给出详细说明。
优选实施例一:一种有绝缘层覆盖的金属负极的化学电池,包括安装在化学电池内的金属负极和空气电极;所述金属负极与电池正极不接触地相面对,其间有电解液。如图1和图2所示,本例中是板型结构的金属负极。该金属负极包括电输出端导电体1-1、导电连接体导电层4-1、金属负极基体2和绝缘层3;其中电输出端导电体1-1、导电连接体导电层4-1、金属负极基体2采用相同的金属材质一体式制成,金属负极基体2包括N个 条状结构金属负极基体2-1,其中N≥2。所述条状结构金属负极基体2-1有间距地竖直排布在导电连接体导电层4-1的底部,该导电连接体导电层4-1的顶部是电输出端导电体1-1,本例中电输出端导电体1-1和导电连接体导电层4-1的形状相同,无明显的分界;导电连接体导电层4-1的顶部与电输出端导电体1-1连接为一体,如图1所示。导电连接体导电层4-1的外沿包覆有导电连接体绝缘层4-2。各条状结构金属负极基体2-1的宽度不同。其中,当N≥3时,排列在金属负极两边的条状结构金属负极基体2-1的宽度W1比排列在金属负极中部的条状结构金属负极基体2-1的宽度W2宽小,即金属负极两边缘区域的未被绝缘层覆盖的金属负极基体区域的总面积小于该金属负极中部未被绝缘层覆盖的金属负极基体区域的总面积。所述绝缘层3是与所述金属负极基体2相适配的栅栏结构绝缘层3-1,所述栅栏结构绝缘层3-1的栅栏结构绝缘层外框3-1-1将金属负极基体2的底部及左右两侧壁包覆在其内,栅栏结构绝缘层3-1的竖直的栅栏结构绝缘层分隔栅3-1-2恰好插入各条状结构金属负极基体之间的间距中,使所述栅栏结构绝缘层3-1与金属负极基体2紧密嵌合为一体。栅栏结构绝缘层3-1贴合在条状结构金属负极基体2-1的左右侧面,将其覆盖,未被栅栏结构绝缘层3-1覆盖的各条状结构金属负极基体2-1的表面区域与电池中的正极相对。
所述栅栏结构绝缘层3-1可以整体采用刚性的绝缘材料,也可以仅仅是与条状结构金属负极基体2-1相接触的局部区域采用具有弹性的绝缘材料,其余部分为刚性的。所述金属负极底部,也是所述栅栏结构绝缘层3-1的底部,为锥形双倾斜金属负极底部5-1。图2给出了图1中的绝缘体3与金属负极基体2之间一种相互嵌合的结合方式。
优选实施例二:本实施例中的化学电池,与实施例一基本相似,金属负极也是板型结构,其不同之处在于金属负极是由不同结构的金属负极基体2构建的。参见图3和图4,本实施例中的金属负极基体2包括数个柱状结构金属负极基体2-2和数个条状结构金属负极基体2-1;所述柱状结构金属负极基体2-2和条状结构金属负极基体2-1对称排布在导电连接体导电层4-1的前、后面。所述柱状结构金属负极基体2-2、条状结构金属负极基体2-1和导电连接体导电层4-1采用相同材质的金属材料一体式构建而成。本实施例中,条状结构的金属负极基体2-1位于靠近金属负极的边缘区域,柱状结构金属负极基体2-2位于靠近金属负极的中部区域。
所述导电连接体导电层4-1的顶端连接圆柱形的电输出端导电体1-1,所述圆柱形的电输出端导电体1-1的外侧环绕有电输出端绝缘层1-2。电输出端导电体1-1的材质与导电连接体导电层4-1的不同。导电连接体导电层4-1的上端设置有导电连接体导电层内凹槽4-3。电输出端导电体1-1的下端设置有与该导电连接体导电层内凹槽4-3相匹配的、可插入到导电连接体导电层内凹槽4-3内的结构。电输出端导电体1-1的下端插入到导电连接体导电层内凹槽4-3中,实现电输出端导电体1-1与导电连接体导电层4-1之间的导电连接。
参见图3和图5,所述金属负极基体上覆盖有内设通透孔和槽的绝缘层3-2,该绝缘层上设置有绝缘层内通透孔3-3和绝缘层内通透槽3-4,绝缘层内通透孔3-3和绝缘层内通透槽3-4的形状、尺寸及排布与金属负极基体2的柱状结构金属负极基体2-2和条状结构金属负极基体2-1相适配,所述内设通透孔和槽的绝缘层3-2的绝缘层内通透孔3-3和绝缘层内通透槽3-4各自套在柱状结构金属负极基体2-2和条状结构的金属负极基体2-1上,并将柱状结构金属负极基体2-2和条状结构金属负极基体2-1的端面裸露在外,用于与化学电池中的电池正极相面对形成电场。所述内设通透孔和槽的绝缘层3-2与柱状结构金属负极基体2-2、条状结构金属负极基体2-1的侧面以及导电连接体导电层4-1的外表面之间紧密贴合地将其覆盖。绝缘层采用具有弹性的绝缘材料制成。金属负极的底部具有锥形结构金属负极底部5-2。
优选实施例三:参见图6,本实施例中的化学电池的金属负极是一种柱型结构金属负极。所述金属负极的金属负极基体2包括1个柱状结构金属负极基体2-2和M个环状结构金属负极基体2-3,其中M≥1;导电连接体导电层4-1与电输出端导电体1-1均采用金属铜一体式制成;所述柱状结构金属负极基体2-2和环状结构金属负极基体2-3采用与导电连接体导电层4-1不同的材料制成,相互独立;所述柱状结构金属负极基体2-2和环状结构金属负极基体2-3安装于导电连接体导电层4-1上;所述柱状结构金属负极基体2-2位于导电连接体导电层4-1的中部,多个环状结构金属负极基体2-3以所述柱状结构金属负极基体2-2为中心,彼此有间距地、一环套一环地排布在导电连接体导电层4-1上;所述金属负极的绝缘层2包括M+1个环形结构绝缘层3-5,所述环形结构绝缘层3-5分别插 入金属负极基本体2的环状结构金属负极基体2-3之间,以及环状结构金属负极基体2-3和柱状结构金属负极基体2-2之间。环形结构绝缘层3-5的侧壁与环状结构金属负极基体2-3的侧壁、柱状结构金属负极基体2-2的侧壁以及导电连接体导电层4-1的上表面紧密贴合,并将其覆盖。仅环状结构金属负极基体2-3和柱状结构金属负极基体2-2的与正极相面对的端面暴露在外,用于在电池中与电池正极之间形成电场。
所述导电连接体导电层4-1上设置有导电连接体导电层内插孔4-4;所述环状结构金属负极基体2-3和柱状结构金属负极基体2-2上均设置有与导电连接体导电层内插孔4-4相适配的金属负极底部插头2-4;所述环状结构金属负极基体2-3和柱状结构金属负极基体2-2的金属负极底部插头2-4插入导电连接体导电层内插孔4-4中,实现环状结构金属负极基体2-3和柱状结构金属负极基体2-2与导电连接体导电层4-1之间的导电连接。
优选实施例四:本实施例中的化学电池的金属负极是一种曲面片型结构金属负极;其金属负极基体2由一个曲面片状结构金属负极基体2-5构成,参见图7。其中,电输出端导电体1-1、导电连接体导电层4-1和曲面片状结构金属负极基体2-5采用相同的金属材料一体式制成;电输出端导电体1-1与导电连接体导电层4-1之间无分界,视为一体;导电连接体导电层4-1与曲面片状结构金属基体2-5之间无分界,视为一体;曲面片状结构金属负极基体2-5面对空气电极的表面设置有多个呈折线状延伸的条状结构绝缘层3-9。条状结构绝缘层3-9粘合在曲面片状结构金属负极基体2-5的表面,将粘合区域的曲面片状结构金属负极基体2-5覆盖。曲面片状结构金属负极基体2-5上未被条状结构绝缘层3-9覆盖的区域,用于在电池中与电池正极之间形成电场。
优选实施例五:本实施例中的化学电池的金属负极是一种平面板型结构的金属负极,参见图8。其金属负极基体是一块板状结构金属负极基体2-6;该板状结构金属负极基体2-6的面对空气电极的表面附着有内设不规则通透槽绝缘层3-6;所述内设不规则通透槽绝缘层3-6内设置有多个相互独立且形状不规则的通透的槽3-6-1,用于将位于槽内的板状结构金属负极基体2-6暴露在外,与化学电池中的电池正极相对,形成电场。板状结构金属负极基体2-6与内设不规则通透槽绝缘层3-6之间紧密贴合在一起,位于贴合在一起区域的板状结构金属负极基体2-6被绝缘层覆盖。金属负极的底部具有单向倾斜金属负极底部5-3。本实施例中的板状结构金属负极基体2-6、导电连接体导电层4‐1和电输出端导电体1‐1采用相同的金属材质一体式制成,三者之间无分界。
优选实施例六:一种板型结构金属负极的化学电池。如图9所示,其金属负极的条状结构金属负极基体2‐1、导电连接体导电层4‐1和电输出端导电体1‐1采用相同材质,一体式构成。如图10所示,套形结构绝缘层3‐8由套形结构绝缘层分隔栅3‐8‐1和套形结构绝缘层套入口3‐8‐2构成。将图9中的条状结构金属负极基体2‐1由图10中的套形结构绝缘层套入口3‐8‐2插入套形结构绝缘层,形成图11所示板型结构金属负极。其中,套形结构绝缘层分隔栅3‐8‐1的侧边与条状结构金属负极基体2‐1的侧边相贴合并将其覆盖,未被套形结构绝缘层分隔栅3‐8‐1侧边覆盖的条状结构金属负极基体2‐1裸露在外的表面,在化学电池中与电池正极之间形成电场。
优选实施例七:一种板型结构金属负极的化学电池及绝缘层的覆盖方法。如图12所示,该金属负极的导电连接体导电层4‐1与电输出端导电体1‐1采用不同的材质制成分离的个体,两者再紧密地结合在一起实现导电连接。导电连接体导电层4‐1被包埋在包埋结构绝缘层3‐7中,其间紧密结合。在化学电池中、与电池正极相面对的金属负极一侧的包埋结构绝缘层3‐7中设置有绝缘层内通透槽3‐4,位于绝缘层内通透槽3‐4处的导电连接体导电层4‐1未被包埋结构绝缘层3‐7覆盖;位于金属负极其它侧面的包埋结构绝缘层3‐7均为致密完整结构,将导电连接体导电层4‐1其它区域完整覆盖。包埋结构绝缘层3‐7是刚性结构且耐温。如图12所示,将熔融态金属负极基体材料浇注到绝缘层内通透槽3‐4中,凝固后形成如图13所示的条状结构金属负极基体2‐1。条状结构金属负极基体2‐1的底部与导电连接体导电层4‐1之间紧密结合实现导电连接。条状结构金属负极基体2‐1的材质与导电连接体导电层4‐1和电输出端导电体1‐1均不同。包埋结构绝缘层3‐7与条状结构金属负极基体2‐1的侧面结合紧密并将其覆盖。在化学电池中,条状结构金属负极基体2‐1的暴露在外的区域与电池正极之间形成电场。
优选实施例八:一种板型结构金属负极的化学电池及绝缘层的覆盖方法。如图14所示,所述金属负极的导电连接体导电层4‐1与电输出端导电体1‐1采用相同的材质制成一体式的结构。导电连接体导电层4‐1被包埋在包埋结构绝缘层3‐7中,其间紧密结合。在化学电池中,与电池正极相面对的金属负极一侧的包埋结构绝缘层3‐7中设置有绝缘层内通透孔3‐3,位于绝缘层内通透槽3‐3处的导电连接体导电层4‐1未被包埋结构绝缘层3‐7覆盖。位于金属负极其它侧面的包埋结构绝缘层3‐7均为致密完整结构,将导电连接体导电层4‐1完整覆盖。包埋结构绝缘层3‐7整体是刚性结构,但在绝缘层内通透孔3‐3处具 有弹性。如图14所示,将柱状结构金属负极基体2‐2插入(嵌入)到绝缘层内通透孔3‐3中,形成如图15所示的板型结构金属负极。插入绝缘层内通透孔3‐3中的柱状结构金属负极基体2‐2的底部与导电连接体导电层4‐1之间紧密结合实现导电连接。柱状结构金属负极基体2‐2与导电连接体导电层4‐1的材质不同。包埋结构绝缘层3‐7与柱状结构金属负极基体2‐2的侧面结合紧密并将其覆盖。在化学电池中,柱状结构金属负极基体2‐2的暴露在外的区域与电池正极之间形成电场。其中,位于板型结构金属负极边缘区域的柱状结构金属负极基体2‐2暴露在外的面积小于位于板型结构金属负极中部区域的柱状结构金属负极基体2‐2暴露在外的面积。
上述各例中,所述绝缘层覆盖金属负极基体的方法可以采用双方粘附在一起、或者是双方贴合在一起,或者是双方挤压在一起,或者是双方相互靠近,或者是双方相互嵌入,或者是一方插入另一方的结构中,或者是熔融态的一方浇注到另一方的结构中后凝固成型,也可以是上述二种或者多种覆盖方式兼有。
上述实施例中,只是仅为更清楚地理解本发明原则之目的而制定的可能实施办法的示例,可显著提高化学电池放电过程负极金属材料的利用率,大幅度降低化学电池放电过程的发热和析氢,同时也大幅度降低化学电池停止放电退液时的发热和析氢,保证了这类化学电池能够长期稳定发电,也保证了这类化学电池在长期稳定发电过程中的安全运行。在不违背本发明的宗旨和原则的基本,对本发明的上述实施例可进行多项组合与修正,此类组合和修改应该纳入本发明保护范围。

Claims (18)

  1. 一种金属负极被绝缘材料覆盖的化学电池,所述化学电池包括安装在电池内部的金属负极和电池正极;所述金属负极与电池正极不接触地相面对,其间存在电解液;其特征在于:
    所述金属负极包括金属负极基体(2)和绝缘层(3);所述绝缘层覆盖金属负极基体;在与电池正极相面对的金属负极相对面排布有未被绝缘层覆盖的金属负极基体区域,位于该区域的金属负极基体裸露于电解液中,与电池正极相面对产生电场。
  2. 按照权利要求1所述的化学电池,其特征在于:
    所述金属负极边缘区域的未被绝缘层覆盖的金属负极基体区域的总面积小于该金属负极中部未被绝缘层覆盖的金属负极基体区域的总面积。
  3. 按照权利要求1所述的化学电池,其特征在于:
    所述金属负极基体是采用一种或两种以上同一结构或不同结构的金属负极基体构建成型;所述绝缘层与所述构建成型的金属负极基体相适配地将其覆盖,在与电池正极相面对的金属负极表面留有未被绝缘层覆盖的金属负极基体区域。
  4. 按照权利要求1所述的化学电池,其特征在于:
    所述金属负极的形状包括板型、柱型、片型、带型和曲面型;所述金属负极的底部为平面或者非平面结构。
  5. 按照权利要求4所述的化学电池,其特征在于:
    所述金属负极基体的结构包括条状结构、柱状结构、环状结构、片状结构和板状结构。
  6. 按照权利要求1所述的化学电池,其特征在于:
    所述绝缘层的材料全部是刚性的;或者仅仅与所覆盖金属负极基体、或者与金属负极的导电连接体相接的区域是具有弹性的而其余部分是刚性的,或者整体是具有弹性的;或者绝缘层的刚性区域是以渐变的方式逐渐过渡到弹性区域的。
  7. 按照权利要求1所述的化学电池,其特征在于:
    所述绝缘层覆盖金属负极基体包括双方粘附在一起,或者是双方贴合在一起,或者是双方挤压在一起,或者是双方相互靠近,或者是双方相互嵌入,
    或者是一方插入另一方的结构中,或者是熔融态的一方浇注到另一方的结构中后凝固成型;也可以是上述两种或者多种覆盖方式兼有。
  8. 按照权利要求1所述的化学电池,其特征在于:
    所述金属负极的电输出端导电体通过导电连接体导电层与金属负极基体导电连接;所述电输出端导电体、导电连接体导电层和金属负极基体是用相同的或不相同的金属材料制成。
  9. 按照权利要求1所述的化学电池,其特征在于:
    所述金属负极的电输出端导电体、导电连接体导电层和金属负极基体是一体式结构;或者是电输出端导电体和导电连接体导电层为一体式结构,金属负极基体安装在导电连接体导层;或者是导电连接体导电层和金属负极基体为一体式结构,电输出端导电体安装在导电连接体导层;或者所述电输出端导电体、导电连接体导电层和金属负极基体各自为独立的结构,依次安装在一起。
  10. 一种金属负极被绝缘材料覆盖的方法,用于将金属负极以及与金属负极相适配的电池正极安装在电池内部,与电解液一起构成化学电池;所述金属负极与电池正极不接触地相面对;其特征在于:
    在所述金属负极的金属负极基体上覆盖有绝缘层;在与电池正极相面对的金属负极相对面上留有未被绝缘层覆盖的金属负极基体区域,位于该区域的金属负极基体裸露在电解液中,与电池正极相面对产生电场。
  11. 按照权利要求10所述的金属负极被绝缘材料覆盖的方法,其特征在于:
    所述金属负极边缘区域的未被绝缘层覆盖的金属负极基体区域的总面积小于该金属负极中部未被绝缘层覆盖的金属负极基体区域的总面积。
  12. 按照权利要求10所述的金属负极被绝缘材料覆盖的方法,其特征在于:
    所述金属负极基体是采用一种或两种以上同一结构或不同结构的金属负极基体构建成型;所述绝缘层与所述构建成型的金属负极基体相适配地将其覆盖,在与电池正极相面对的金属负极表面留有未被绝缘层覆盖的金属负极基体区域。
  13. 按照权利要求10所述的金属负极被绝缘材料覆盖的方法,其特征在于:
    所述金属负极的形状包括板型、柱型、片型、带型和曲面型;所述金属 负极的底部为平面或者非平面结构。
  14. 按照权利要求10所述的金属负极被绝缘材料覆盖的方法,其特征在于:
    所述金属负极基体的结构包括条状结构、柱状结构、环状结构、片状结构和板状结构。
  15. 按照权利要求10所述的金属负极被绝缘材料覆盖的方法,其特征在于:
    所述绝缘层的材料全部是全刚性的,或者仅仅与所覆盖金属基体或者与所述金属负极的导电连接体相接的区域是具有弹性的而其余部分是刚性的,或者整体是具有弹性的,或者绝缘层的刚性区域是以渐变的方式逐渐过渡到弹性区域的。
  16. 按照权利要求10所述的金属负极被绝缘材料覆盖的方法,其特征在于:
    所述绝缘层覆盖金属负极基体包括双方粘附在一起,或者是双方贴合在一起,或者是双方挤压在一起,或者是双方相互靠近,或者是双方相互嵌入,或者是一方插入另一方的结构中,或者是熔融态的一方浇注到另一方的结构中后凝固成型;也可以是上述两种或者多种覆盖方式兼有。
  17. 按照权利要求10所述的化学电池,其特征在于:
    所述金属负极的电输出端导电体通过导电连接体导电层与金属负极基体导电连接;所述电输出端导电体、导电连接体导电层和金属负极基体是用相同的或不相同的金属材料制成。
  18. 按照权利要求10所述的化学电池,其特征在于:
    所述金属负极基体的电输出端导电体、导电连接体导电层和金属负极基体是一体式结构;或者是电输出端导电体和导电连接体导电层为一体式结构,金属负极基体安装在导电连接体导层;或者是导电连接体导电层和金属负极基体为一体式结构,电输出端导电体安装在导电连接体导层;或者所述电输出端导电体、导电连接体导电层和金属负极基体各自为独立的结构,依次安装在一起。
PCT/CN2019/093538 2018-09-03 2019-06-28 金属负极被绝缘材料覆盖的化学电池及其覆盖方法 WO2020048198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811021281.3 2018-09-03
CN201811021281.3A CN110875468B (zh) 2018-09-03 2018-09-03 金属负极被绝缘材料覆盖的化学电池及其覆盖方法

Publications (1)

Publication Number Publication Date
WO2020048198A1 true WO2020048198A1 (zh) 2020-03-12

Family

ID=69716732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093538 WO2020048198A1 (zh) 2018-09-03 2019-06-28 金属负极被绝缘材料覆盖的化学电池及其覆盖方法

Country Status (2)

Country Link
CN (1) CN110875468B (zh)
WO (1) WO2020048198A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315420A (zh) * 2010-07-05 2012-01-11 中国科学院上海硅酸盐研究所 具有保护层的金属负极结构及其制备方法
CN108365178A (zh) * 2018-02-11 2018-08-03 珠海光宇电池有限公司 一种锂金属负极的保护方法、锂金属负极及锂电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3953026B2 (ja) * 2003-12-12 2007-08-01 松下電器産業株式会社 リチウムイオン二次電池用極板およびリチウムイオン二次電池並びにその製造方法
CN104347894A (zh) * 2013-08-02 2015-02-11 中国人民解放军63971部队 一种沉积型水系锂离子电池
CN106450512A (zh) * 2016-09-29 2017-02-22 清华大学 一种具有分子筛固体电解质层的金属电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315420A (zh) * 2010-07-05 2012-01-11 中国科学院上海硅酸盐研究所 具有保护层的金属负极结构及其制备方法
CN108365178A (zh) * 2018-02-11 2018-08-03 珠海光宇电池有限公司 一种锂金属负极的保护方法、锂金属负极及锂电池

Also Published As

Publication number Publication date
CN110875468A (zh) 2020-03-10
CN110875468B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
EP2328217B1 (en) Reserve power supply with electrode plates clipping with auxiliary conductors
US20120068667A1 (en) Electrochemical cell system with a progressive oxygen evolving electrode / fuel electrode
CN101777708B (zh) 储供电装置电极板多侧转单侧汇流结构
JP5113058B2 (ja) 区画された電解質を有するリチウム2次電池
CN107204408A (zh) 一种全极耳方形锂电池的及其制备方法
US3972727A (en) Rechargeable battery which combats shape change of the zinc anode
CN101796666A (zh) 锂离子棱柱状电池技术领域
US20190393512A1 (en) Battery grid
EP2875542B1 (en) Gas-shield-electrode and composite bifunctional air-electrode using the same for use in metal-air batteries
EA016661B1 (ru) Устройство для накопления электроэнергии
JP6001717B2 (ja) 燃料電池
WO2020048198A1 (zh) 金属负极被绝缘材料覆盖的化学电池及其覆盖方法
US6979512B2 (en) Colloidal battery
CN216413217U (zh) 锂离子电池
CN210074028U (zh) 基于减少传质和扩散控制的多层电极及储能设备
CN210379255U (zh) 一种二次电池用电极
CN108023108B (zh) 一种大功率液流电池正极一体化结构
CN221176337U (zh) 电极组件、电池及用电设备
CN213959099U (zh) 一种多极耳极组及电池结构
CN217214839U (zh) 一种高倍率圆柱形绿色聚合物电池
US3527612A (en) Electrochemical cell including electrodes provided with elongated recesses therein
CN209963144U (zh) 减少传质或扩散控制或完全无传质或扩散控制的储能设备
CN118610365A (zh) 极片、叠片电芯、电池及用电设备
CN110875466B (zh) 一种化学电池及其金属负极的结构
RU86049U1 (ru) Портативное автономное электрохимическое зарядное устройство

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857051

Country of ref document: EP

Kind code of ref document: A1