WO2020048101A1 - 波长转换装置及光源系统 - Google Patents

波长转换装置及光源系统 Download PDF

Info

Publication number
WO2020048101A1
WO2020048101A1 PCT/CN2019/076636 CN2019076636W WO2020048101A1 WO 2020048101 A1 WO2020048101 A1 WO 2020048101A1 CN 2019076636 W CN2019076636 W CN 2019076636W WO 2020048101 A1 WO2020048101 A1 WO 2020048101A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wavelength conversion
thermally conductive
substrate
conversion device
Prior art date
Application number
PCT/CN2019/076636
Other languages
English (en)
French (fr)
Inventor
陈雨叁
简帅
刘莹莹
许颜正
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020048101A1 publication Critical patent/WO2020048101A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the invention relates to a wavelength conversion device and a light source system, and belongs to the technical field of lighting and display.
  • a method of obtaining a wavelength-visible material in each wavelength band by exciting a wavelength conversion material with a solid-state light source such as a blue LD (laser diode) is widely used because of its advantages of high efficiency, low cost, and long life.
  • a solid-state light source such as a blue LD (laser diode)
  • part of the energy of the excitation light will be converted into heat and absorbed by the carrier color wheel substrate in the wavelength conversion material; as the heat continues to accumulate, the temperature of the wavelength conversion material in the color wheel gradually increases, The conversion efficiency then decreases.
  • the user's requirements for the high brightness of the light source continue to increase and the power of the laser light source continues to increase, how to maintain the color wheel temperature within the operating temperature range of the wavelength conversion material is the key to light source technology.
  • the wavelength-converting material is excited mainly at its surface spot, and the high-density heat generated at the excitation spot has a slow lateral conduction. If it cannot be derived in time, the temperature here will rise sharply, resulting in the wavelength-converting material being temperature-dependent. Produces a "heat decay" phenomenon.
  • there are two main cooling methods for the reflective color wheel One is to expose the wavelength conversion material to the air. The color wheel is rotated at high speed by the motor to make the surface layer of the wavelength conversion material conduct heat to the air. The other is wavelength conversion. The heat generated when the material is excited is transferred to the color wheel substrate, and heat is exchanged with the air through the color wheel substrate.
  • the contact surface between the wavelength conversion material and air is small, and the air is a poor conductor of heat. Therefore, the heat dissipation effect of the surface layer of the wavelength conversion material is not good, so that the heat generated during the excitation of the wavelength conversion material is transferred to the color wheel substrate. , The cooling effect is not ideal. How to quickly dissipate the wavelength conversion material is a key technical point to improve the light efficiency of the wavelength conversion material, and it is also an urgent problem to be solved.
  • the technical problem to be solved by the present invention is to provide a wavelength conversion device and a light source system capable of quickly dissipating a wavelength conversion material in view of the shortcomings of the prior art.
  • the invention provides a wavelength conversion device.
  • the wavelength conversion device includes a substrate, a reflective layer, a wavelength conversion layer, and a transparent thermally conductive layer that are sequentially stacked.
  • the thermal conductivity of the substrate and the transparent thermally conductive layer is higher than that of the reflective layer and the wavelength conversion layer.
  • the wavelength conversion device further includes a thermally conductive filling layer sandwiched between the substrate and the transparent thermally conductive layer.
  • the projection of the reflective layer and the thermally conductive filling layer on the substrate coincides with the projection of the transparent thermally conductive layer on the substrate.
  • the substrate is disc-shaped, and the reflection layer, the wavelength conversion layer, the thermally conductive filling layer, and the transparent thermally conductive layer are all circular rings; wherein the centers of the substrate, the reflective layer, the wavelength conversion layer, the thermally conductive filling layer, and the transparent and thermally conductive layer coincide.
  • the inner and outer diameters of the wavelength conversion layer and the reflection layer are the same, and the thickness of the combination of the reflection layer and the wavelength conversion layer is the same as the thickness of the thermally conductive filling layer.
  • the inner circle of the wavelength conversion layer is arranged around the outer circle of the thermally conductive filling layer.
  • the thermally conductive filling layer includes a first thermally conductive filling layer and a second thermally conductive filling layer, wherein the inner circle of the first thermally conductive filling layer is disposed around the outer circle of the wavelength conversion layer, and the outer circle of the second thermally conductive filling layer is Inner circle.
  • the transparent heat-conducting layer further includes a protruding portion disposed outward in the radial direction of the transparent heat-conducting layer, and a filter coating layer is provided on a side of the protruding portion away from the substrate.
  • the thermally conductive filling layer is a graphite thermally conductive pad.
  • the transparent thermally conductive layer is a sapphire ring sheet, and the thickness of the sapphire ring sheet does not exceed 1 mm.
  • the outer surface of the transparent heat-conducting layer is provided with an antireflection coating or a rough structure.
  • the invention also provides a light source system including the wavelength conversion device.
  • the wavelength conversion device of the present invention includes a substrate, a reflective layer, a wavelength conversion layer, and a transparent thermally conductive layer that are sequentially stacked, and the thermal conductivity of the substrate and the transparent thermally conductive layer is higher than the thermal conductivity of the reflective layer and the wavelength conversion layer.
  • the double-sided heat dissipation effect of the wavelength conversion layer is realized.
  • the heat between the substrate and the transparent thermally conductive layer can be conducted to each other, thereby achieving the effect of heat dissipation on both sides of the wavelength conversion layer, and avoiding the wavelength conversion layer due to excessive heat concentration.
  • the local temperature rises sharply, thereby effectively suppressing the "thermal decay" phenomenon of the wavelength conversion material.
  • 1 is a schematic structural diagram of a wavelength conversion device in the prior art
  • FIG. 2 is a schematic structural diagram of a wavelength conversion device according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a wavelength conversion device according to a second embodiment of the present invention.
  • FIG. 4 is a comparison diagram of luminous intensity of a wavelength conversion device
  • FIG. 5 is a schematic structural diagram of a third wavelength conversion device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a four-wavelength conversion device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a fifth light source system according to an embodiment of the present invention.
  • FIG. 8 is a plan view of a wavelength conversion device according to a fifth embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a wavelength conversion device in the prior art.
  • a reflective wavelength conversion device 700 in the prior art includes a substrate 704, a wavelength conversion layer 702, a reflection layer 703, and a driving device 706.
  • the heat is mainly transmitted to the substrate through the reflective layer 703, and then transmitted to the air through the substrate (as shown by the arrow in FIG. 1).
  • FIG. 2 is a schematic structural diagram of a wavelength conversion device according to a first embodiment of the present invention.
  • the wavelength conversion device 800 in this embodiment includes a substrate 804, a reflective layer 803, a wavelength conversion layer 802, a transparent thermally conductive layer 801, and a driving device 806.
  • the thermal conductivity of the substrate 804 and the transparent thermally conductive layer 801 is higher than the thermal conductivity of the reflective layer 803 and the wavelength conversion layer 802.
  • the substrate 804 may be a metal thermal conductive sheet such as aluminum or aluminum alloy, copper or copper alloy, which has a high thermal conductivity, or a thermal conductivity such as alumina ceramic, aluminum nitride ceramic, silicon nitride ceramic, or beryllium ceramic. High ceramic sheets; among these, aluminum or aluminum alloy metal thermal conductive sheets or aluminum nitride ceramic sheets are preferred. Since the thermal conductivity of phosphor or ceramic is generally 10W / m ⁇ k-15W / m ⁇ k, and the thermal conductivity of sapphire is 25W / m ⁇ k-30W / m ⁇ k, the transparent thermal conductive layer 801 is preferably Sapphire ring.
  • the thickness of the sapphire ring sheet is not more than 1 mm, and the sapphire ring sheet is bonded to the wavelength conversion layer through silica gel, and the side of the sapphire ring sheet facing away from the wavelength conversion layer 802 is plated with an AR coating.
  • the wavelength conversion layer 802 is used for absorbing the excitation light and emitting a received laser light having a wavelength different from the excitation light.
  • the wavelength conversion layer 802 may be composed of various materials, for example, it may be composed of phosphor and silica gel or resin; or, the wavelength conversion layer may also be composed of fluorescent glass or fluorescent ceramic, wherein the fluorescent ceramic includes a pure phase fluorescent ceramic (such as YAG: Ce Fluorescent ceramics); Or, a multi-phase fluorescent ceramic (such as alumina transparent ceramics, transparent magnesium alumina spinel ceramics, or aluminum nitride transparent ceramics) composed of a phosphor and a transparent ceramic can also be used as the wavelength conversion layer.
  • the thickness of the wavelength conversion layer 802 is 50 ⁇ m-200 ⁇ m.
  • the reflective layer 803 is used to reflect the laser light and a part of the unconverted excitation light.
  • the reflective layer 803 may be an alumina ceramic ring sheet with high reflectivity, and the alumina ceramic ring sheet may be bonded to the wavelength conversion layer and the substrate through silica gel, respectively.
  • the thickness of the alumina ceramic ring sheet is 50 ⁇ m to 100 ⁇ m.
  • the reflective layer 803 may also be a reflective coating layer, such as a silver-plated reflective film or an aluminum-plated reflective film. The reflective coating layer may be plated on the upper surface of the substrate or the lower surface of the wavelength conversion layer, and then the substrate is glued with the wavelength conversion layer.
  • a transparent thermally conductive layer 801 having a high thermal conductivity is provided on a side of the wavelength conversion layer 802 facing away from the reflective layer 803, thereby increasing the heat dissipation area of the wavelength conversion layer 802, so that the wavelength conversion layer 802 generates
  • the heat, especially the heat at the spot of the surface layer, can be quickly conducted out through the transparent heat-conducting layer 801 to achieve rapid heat dissipation on both sides of the wavelength conversion layer.
  • FIG. 3 is a schematic structural diagram of a wavelength conversion device according to a second embodiment of the present invention.
  • the wavelength conversion device 100 further includes a thermally conductive filling layer 105 sandwiched between the substrate 104 and the transparent thermally conductive layer 101.
  • the thermally conductive filling layer 105 is used to implement heat transfer between the substrate 104 and the transparent thermally conductive layer 101.
  • the projection of the reflective layer 103 (or the wavelength conversion layer 102) and the thermally conductive filling layer 105 on the substrate 104 coincides with the projection of the transparent thermally conductive layer 101 on the substrate 104.
  • projection refers to an orthographic projection. It can be understood that even if the area of the transparent thermally conductive layer 101 is larger than the area of the substrate 104, the projection of the transparent thermally conductive layer 101 on the substrate 104 is smaller than or equal to the area of the substrate 104.
  • the material of the thermally conductive filling layer 105 is required to have a high thermal conductivity and elasticity, so as to ensure that the transparent thermally conductive layer and the substrate can be adhered to each other.
  • a graphite thermal pad is preferred.
  • the thermal conductivity of graphite is as high as 150 W / m ⁇ k.
  • the thermally conductive filling layer has the function of communicating the transparent thermally conductive layer and the substrate so that the two can conduct heat to each other. In other words, the transparent thermally conductive layer and the substrate are filled by thermally conductive filling. Layers of heat transfer channels can achieve the double-sided heat dissipation effect of the wavelength conversion device.
  • the substrate is disc-shaped, and the reflective layer, the wavelength conversion layer, the thermally conductive filling layer, and the transparent thermally conductive layer are all circular rings; wherein the substrate, the reflective layer, the wavelength conversion layer, the thermally conductive filling layer, and The centers of the transparent heat-conducting layers coincide.
  • the inside and outside diameters of the wavelength conversion layer and the reflection layer are the same.
  • the thickness of the combination of the reflection layer and the wavelength conversion layer is the same as the thickness of the thermally conductive filling layer, and the combination of the reflection layer and the wavelength conversion layer is located on the same plane as the thermally conductive filling layer.
  • the inner and outer diameters of the combination of the reflective layer, the wavelength conversion layer, and the thermally conductive filling layer are the same as the inner and outer diameters of the transparent thermally conductive layer.
  • the number of the heat-conducting filling layer 105 is one, and the inner diameter of the wavelength conversion layer 102 is the same as the outer diameter of the heat-conducting filling layer 105, that is, the inner circle of the wavelength conversion layer 102 is arranged around the outer circle of the heat-conducting filling layer 105. .
  • the driving device 106 drives the substrate 104 to rotate, so that the excitation light is transmitted from the transparent thermally conductive layer 101 side to the surface of the wavelength conversion layer 102.
  • the laser light emitted after the wavelength conversion layer 102 is excited is transmitted through the transparent thermally conductive layer 101 directly or diffusely reflected by the reflective layer 103.
  • part of the heat generated when the wavelength conversion layer 102 is excited is transferred indirectly to the substrate 104 through the reflection layer 103, and part of the heat transfer layer 101 is directly transferred to the transparent thermally conductive layer 101.
  • the heat in the transparent heat-conducting layer 101 is then conducted to the air or transferred to the substrate 104 through the heat-conducting filling layer 105, so as to achieve the effect of heat dissipation on both sides (as shown by arrows in FIG. 3).
  • the wavelength conversion device in this embodiment is tested with the wavelength conversion device in the prior art and in the first embodiment under different excitation powers.
  • the test results are shown in FIG. 4, and FIG. 4 is a comparison chart of the luminous intensity of the wavelength conversion device. It can be seen from the figure that under low power conditions, the luminous intensities of the three wavelength conversion devices are almost the same. This is mainly due to the lower power and the less heat generated by the wavelength conversion device during light conversion.
  • the three wavelengths The conversion devices can all have better heat dissipation effects without significant differences; but as the excitation power continues to increase, the heat generated by the wavelength conversion devices continues to increase, and the differences in the heat dissipation effects of the three wavelength conversion devices become apparent.
  • the specific performance is that the luminous intensity of the wavelength conversion device in this embodiment is the highest, followed by the double-sided heat dissipation structure color wheel in the first embodiment, and the single-sided heat dissipation color wheel in the prior art (Comparative Example 1 in FIG. 4) is the worst. It can also be seen from the figure that in this embodiment, the luminous intensity when the wavelength conversion device is excited has a strong linear relationship with the excitation power, its heat dissipation effect is better, and it does not cause thermal decay of the wavelength conversion material in the wavelength conversion layer. ; This is not the case with the comparative example. At high power, the wavelength conversion material begins to exhibit attenuation, which reduces its light conversion efficiency.
  • the wavelength conversion device in this embodiment works, part of the heat generated by the wavelength conversion layer is transferred to the substrate through the reflective layer, and part of it is transferred to the transparent thermally conductive layer. ) At the same time, it can also transfer between the transparent thermally conductive layer and the substrate through the thermally conductive filling layer, and then the substrate and the transparent thermally conductive layer transfer heat to the air. Therefore, the wavelength conversion device of this structure can quickly transfer the heat in the wavelength conversion layer to the substrate and the transparent heat-conducting layer on the upper and lower sides of the wavelength conversion layer. The wavelength conversion layer will not cause the local temperature to rise sharply due to excessive heat concentration, thereby suppressing The "thermal decay" phenomenon of the fluorescent material in the wavelength conversion layer occurs prematurely.
  • An anti-reflection coating or a rough structure may be provided on the outer surface of the transparent thermally conductive layer (the contact surface between the transparent thermally conductive layer and air).
  • FIG. 5 is a schematic structural diagram of a wavelength conversion device 200 according to a third embodiment of the present invention. As shown in FIG. 5, this embodiment is different from the second embodiment in that the reflective coating layer 203 is used instead of the reflective layer 103 in the first embodiment.
  • the reflective coating layer 203 is a silver-plated reflective film, which can be plated.
  • the substrate 204 is then glued to the wavelength conversion layer 202.
  • This embodiment is the same as the other structures in the second embodiment, and details are not described herein again.
  • the driving device 206 drives the substrate 204 to rotate, so that the excitation light is transmitted from the transparent thermally conductive layer 201 side to the surface of the wavelength conversion layer 202.
  • the laser light emitted after the wavelength conversion layer 202 is excited is transmitted through the transparent heat-conducting layer 201 directly or diffusely after being reflected by the reflective coating layer 203.
  • a part of the heat generated when the wavelength conversion layer 202 is excited is transferred indirectly to the substrate 204 through the reflective coating layer 203, and a part is transferred to the transparent thermally conductive layer 201 in direct contact therewith.
  • the heat in the transparent heat-conducting layer 201 is then conducted to the air or transferred to the substrate 204 through the heat-conducting filling layer 205, so as to achieve the effect of heat dissipation on both sides (as shown by arrows in FIG. 5).
  • the reflective coating layer 203 in this embodiment is thinner than the reflective layer 103 in the second embodiment, it is easier to transfer the heat in the wavelength conversion layer 202 to the substrate 204, thereby achieving a better heat dissipation effect.
  • FIG. 6 is a schematic structural diagram of a four-wavelength conversion device 300 according to an embodiment of the present invention. As shown in FIG. 6, compared with the second embodiment, the present embodiment is provided with thermally conductive filling layers 305 on both sides of the wavelength conversion layer 302. Specifically, the number of the thermally conductive filling layers 305 is two, including the first thermally conductive filling.
  • the inner circle of the thermally conductive filling layer 3051 is arranged around the outer circle of the wavelength conversion layer, and the outer circle of the second thermally conductive filling layer 3052 is surrounded by the inner circle of the wavelength conversion layer.
  • the driving device 306 drives the substrate 304 to rotate, so that the excitation light is transmitted from the transparent thermally conductive layer 301 side to the surface of the wavelength conversion layer 302.
  • the laser light emitted after the wavelength conversion layer 302 is excited is transmitted through the transparent heat-conducting layer 301 directly or diffusely after being reflected by the reflective coating layer 303.
  • part of the heat generated when the wavelength conversion layer 302 is excited is transferred indirectly to the substrate 304 through the reflective coating layer 303, and part of it is transferred to the transparent thermally conductive layer 301 in direct contact therewith.
  • the heat in the transparent heat-conducting layer 301 is then conducted to the air or transferred to the substrate 304 through the heat-conducting filling layer 305, so as to achieve the effect of heat dissipation on both sides (as shown by arrows in FIG. 6).
  • the thermally conductive filling layers 305 are provided on both sides of the wavelength conversion layer 302 in this embodiment, the heat between the transparent thermally conductive layer 301 and the substrate 304 can be transmitted through the thermally conductive filling layers 305 on both sides, thereby achieving a better heat dissipation effect. .
  • the light source system includes an exciter 410, a condenser lens 416, a first reflector 411, a first condenser mirror 413, a second reflector 414, a second condenser 415, and a wavelength conversion device 400.
  • a dichroic mirror 412 is provided in the center of the first reflecting mirror 411. The dichroic mirror 412 can transmit excitation light and reflect laser light. In this embodiment, the excitation light is blue light.
  • the transparent thermally conductive layer includes a transparent thermally conductive layer body 401 and a protruding portion 4011 disposed radially outward along the transparent thermally conductive layer body 401, that is, the outer diameter of the transparent heat conductive layer is larger than the outer diameter of the substrate 404.
  • a filter coating layer 407 is provided on a side of the protruding portion 4011 away from the substrate 404, and the filter coating layer 407 is used for modifying a laser beam to improve its light purity. Since the filter coating layer 407 is directly plated on the transparent heat-conducting layer of the wavelength conversion device, there is no need to additionally provide a filter color wheel in the light source system, which simplifies the light source structure.
  • the wavelength conversion layers of different colors are arranged in a segmented manner in the circumferential direction of the substrate 404.
  • the wavelength conversion layer 402 includes a plurality of fan ring color segments of different colors. The center of the circle is the center point, and the protruding portion 4011 is provided with a filter coating layer of the same color within an angle range after each fan ring color segment is rotated by 180 °.
  • the wavelength conversion layer 402 includes a first color Segment 4021, second color segment 4022, third color segment 4023, and fourth color segment 4024.
  • the filter coating layer 407 includes a first coating film 4071, a second coating film 4072, a third coating film 4073, and a fourth coating film 4074.
  • the color segment 4021 is the same color and the same center angle as the first coating 4071
  • the second color segment 4022 is the same color and the same center angle as the second coating 4072
  • the third color segment 4023 is the same color and the center angle as the third coating 4073
  • the fourth color segment 4024 and the fourth coating film 4074 are the same in color and have the same center angle.
  • the driving device 406 drives the substrate 404 to rotate, and the excitation light emitted by the exciter 410 passes through the condenser lens 416, the dichroic mirror 412 disposed at the center of the first reflector 411, and the first condenser 413 and The transparent thermally conductive layer 401 and the excitation wavelength conversion layer 402.
  • the laser light emitted from the wavelength conversion layer 402 is reflected by the reflective layer 403, passes through the first condenser mirror 413, the first reflector 411, the second reflector 414, and the second condenser 415 in order, and then passes through the filter coating layer 407 provided.
  • the convex portion 4011 becomes emitted light.
  • part of the heat generated when the wavelength conversion layer 402 is excited is transferred indirectly to the substrate 404 through the reflective coating layer 403, and part of it is transferred to the transparent thermally conductive layer in direct contact with it.
  • the heat in the transparent thermally conductive layer can also be filled by thermal conductivity.
  • the layer 405 is transferred to the substrate 404, thereby achieving the effect of rapid heat dissipation.
  • the light source system does not need to be provided with a color filter wheel, which simplifies the light source structure.
  • the present invention provides a thermally conductive filling layer between the substrate and the transparent thermally conductive layer, so that the heat between the substrate and the transparent thermally conductive layer can be conducted to each other, thereby realizing the double-sided heat dissipation effect of the wavelength conversion layer and avoiding the wavelength conversion layer Due to the excessive concentration of heat, the local temperature rises sharply, thereby effectively suppressing the "thermal decay" phenomenon of the wavelength conversion material.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Projection Apparatus (AREA)

Abstract

一种波长转换装置及光源系统,波长转换装置包括依次层叠的基板、反射层、波长转换层和透明导热层,基板和透明导热层的导热系数高于反射层和波长转换层的导热系数。可以实现波长转换层的双面散热的效果,避免波长转换层因热量过于集中而导致局部温度急剧上升,从而有效抑制波长转换材料的"热衰"现象。

Description

波长转换装置及光源系统 技术领域
本发明涉及一种波长转换装置及光源系统,属于照明及显示技术领域。
背景技术
随着显示和照明技术的不断发展,传统的卤素灯等光源难以满足高功率和高亮度的需求。通过固态光源如蓝色LD(激光二极管)来激发波长转换材料从而获得各个波段可见光的方法,因其具有高效率、低成本、长寿命的优点而被广泛使用。在波长转换材料受激发过程中,激发光部分能量会转换为热量而被波长转换材料中的承载体色轮基板所吸收;随着热量不断聚集,色轮中波长转换材料的温度逐渐升高,转换效率随之下降。由于用户对光源高亮度的要求不断提高,激光光源功率也不断提高,如何使色轮温度维持在波长转换材料的工作温度区间,是光源技术的关键所在。
波长转换材料受激发的位置主要是在其表层光斑处,激发光斑处产生的高密度热量的横向传导较慢,若无法及时导出,此处的温度会急剧上升,从而导致波长转换材料因温度而产生“热衰”现象。目前,反射式色轮主要有两种散热方式,一种是波长转换材料暴露在空气中,色轮在马达带动下高速转动,使波长转换材料表层向空气进行热传递;另一种是波长转换材料受激发时所产生的热量传递到色轮基板,通过色轮基板与空气进行热交换。然而,波长转换材料与空气间接触面较小,且空气为热不良导体,因此波长转换材料表层的散热效果不佳,致使波长转换材料激发过程中所产生的热量更多地往色轮基板传递,散热效果不够理想。如何快速地对波长转换材料进行散热,是提高波长转换材料光效的一个关键技术点,也是亟待解决的问题。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种能快速地对波长转换材料进行散热的波长转换装置及光源系统。
本发明所要解决的技术问题是通过如下技术方案实现的:
本发明提供一种波长转换装置,该波长转换装置包括依次层叠的基板、反射层、波长转换层和透明导热层,基板和透明导热层的导热系数高于反射层和波长转换层的导热系数。
优选地,波长转换装置还包括夹设在基板和透明导热层之间的导热填充层。
优选地,反射层和导热填充层在基板上的投影与透明导热层在基板上的投影重合。
优选地,基板为圆盘型,反射层、波长转换层、导热填充层以及透明导热层均为圆环形;其中,基板、反射层、波长转换层、导热填充层以及透明导热层的圆心重合,波长转换层和反射层的内外径相同,反射层和波长转换层的组合的厚度与导热填充层的厚度相同。
优选地,波长转换层的内圆环绕导热填充层的外圆设置。
优选地,导热填充层包括第一导热填充层和第二导热填充层,其中第一导热填充层的内圆环绕波长转换层的外圆设置,第二导热填充层的外圆被波长转换层的内圆环绕。
优选地,透明导热层还包含沿透明导热层径向向外设置的凸出部,凸出部远离基板的一侧上设有滤光镀膜层。
优选地,导热填充层为石墨导热垫片。
优选地,透明导热层为蓝宝石环片,蓝宝石环片的厚度不超过1mm。
优选地,透明导热层的外表面设有增透膜或者设有粗糙结构。
本发明还提供一种包括上述波长转换装置的光源系统。
综上所述,本发明的波长转换装置包括依次层叠的基板、反射层、波长转换层和透明导热层,且基板和透明导热层的导热系数高于反射层和波长转换层的导热系数,能够实现波长转换层的双面散热的效果。此外,通过在基板和透明导热层之间设置导热填充层,使得基板和透 明导热层之间的热量可以相互传导,实现波长转换层的双面散热的效果,避免波长转换层因热量过于集中而导致局部温度急剧上升,从而有效抑制波长转换材料的“热衰”现象。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为现有技术中一种波长转换装置的结构示意图;
图2为本发明实施例一波长转换装置的结构示意图;
图3为本发明实施例二波长转换装置的结构示意图;
图4为波长转换装置的发光强度对比图;
图5为本发明实施例三波长转换装置的结构示意图;
图6为本发明实施例四波长转换装置的结构示意图;
图7为本发明实施例五光源系统的结构示意图;
图8为本发明实施例五的波长转换装置的俯视图。
具体实施方式
实施例一
图1为现有技术中一种波长转换装置的结构示意图,如图1所示,现有技术中的反射式波长转换装置700包含基板704,波长转换层702,反射层703以及驱动装置706。在该结构的波长转换装置中,其热量主要是通过反射层703后传递至基板上,再通过基板传递至空气中(如图1中箭头所示)。
图2为本发明实施例一波长转换装置的结构示意图。如图2所示,本实施例中的波长转换装置800包含基板804、反射层803、波长转换层802、透明导热层801以及驱动装置806。其中,基板804和透明导热层801的导热系数高于反射层803和波长转换层802的导热系数。
本实施例中,基板804可以为导热系数较高的铝或铝合金,铜或铜合金等金属导热片,也可以氧化铝陶瓷、氮化铝陶瓷、氮化硅陶瓷或氧化铍陶瓷等导热系数高的陶瓷片;其中优选为铝或铝合金金属导 热片或氮化铝陶瓷片。由于荧光粉或荧光陶瓷的导热系数一般在10W/m·k-15W/m·k,而蓝宝石的导热系数较高,为25W/m·k-30W/m·k,透明导热层801优选为蓝宝石环片。具体地,蓝宝石环片的厚度不超过1mm,并通过硅胶粘结在波长转换层上,蓝宝石环片的背离波长转换层802的一侧镀有增透膜。
波长转换层802用于吸收激发光并出射波长不同于激发光的受激光。波长转换层802可由多种材料组成,例如,其可由荧光粉同硅胶或者树脂等组成;或者,波长转换层也可由荧光玻璃或者荧光陶瓷组成,其中荧光陶瓷包含纯相荧光陶瓷(如YAG:Ce荧光陶瓷);或者,荧光粉同透明陶瓷组成的复相荧光陶瓷(如氧化铝透明陶瓷、透明镁铝尖晶石陶瓷或者氮化铝透明陶瓷)也可作为上述波长转换层。优选地,波长转换层802的厚度为50μm-200μm。
反射层803用于反射受激光和部分未转换的激发光。反射层803可以为反射率较高的氧化铝陶瓷环片,氧化铝陶瓷环片可以通过硅胶分别与波长转换层和基板粘结。优选地,氧化铝陶瓷环片的厚度为50μm-100μm。反射层803还可以为反射镀膜层,例如镀银反射膜或者镀铝反射膜等,反射镀膜层可以镀在基板的上表面或者波长转换层的下表面,随后基板再同波长转换层进行胶合。
本实施例的波长转换装置中,通过在波长转换层802的背离反射层803的一侧设置导热系数高的透明导热层801,增加了波长转换层802的散热面积,从而使得波长转换层802产生的热量,尤其是表层光斑处的热量可以通过透明导热层801迅速传导出去,实现波长转换层的双面快速散热。
实施例二
图3为本发明实施例二波长转换装置的结构示意图。如图3所示,本实施例与实施例一相比,为了进一步提升波长转换装置的散热能力,波长转换装置100还包含夹设在基板104和透明导热层101之间的导热填充层105,导热填充层105用于实现基板104和透明导热层101之间的热量传递。优选地,反射层103(或波长转换层102)和导热填充 层105在基板104上的投影与透明导热层101在基板104上的投影重合。所谓“投影”,是指正投影,可以理解,即使透明导热层101面积大于基板104的面积,透明导热层101在基板104上的投影仍小于等于基板104的面积。
导热填充层105的材质要求导热系数高,且具有弹性,从而确保能分别贴合透明导热层和基板。优选为石墨导热垫片,石墨导热系数高达150W/m·k,导热填充层具有连通透明导热层和基板,使二者能相互传导热量的作用,换句话说,透明导热层与基板通过导热填充层建立的热传递通道,可以实现波长转换装置的双面散热的效果。
优选地,在本实施例中,基板为圆盘型,反射层、波长转换层、导热填充层以及透明导热层均为圆环形;其中,基板、反射层、波长转换层、导热填充层以及透明导热层的圆心重合。波长转换层和反射层的内外径相同,反射层和波长转换层的组合的厚度与导热填充层的厚度相同,且反射层和波长转换层的组合与导热填充层位于同一平面上。反射层、波长转换层以及导热填充层的组合的内外径与透明导热层的内外径相同。
需要说明的是,上述结构并非用来限制本发明的保护范围,对于本领域的普通技术人员来讲,在本发明原理的基础上,显然还可以在不偏离本发明的精神的情况下,想到除了上述结构以外的其它结构,只要其是通过在基板和透明导热层之间设置导热填充层来增强二者之间的热传导便可。
在本实施例中,导热填充层105的设置数量为1个,波长转换层102的内径与导热填充层105的外径相同,即波长转换层102的内圆环绕导热填充层105的外圆设置。
在本实施例中,驱动装置106带动基板104转动,使得激发光从透明导热层101一侧透射至波长转换层102的表面。波长转换层102受激发后发出的受激光直接或经反射层103漫反射后透过透明导热层101。在上述过程中,波长转换层102受激发时所产生的热量一部分通过反射层103间接传递至基板104,一部分传递与其直接接触的透明导热层101。透明导热层101中的热量再传导至空气或通过导热填充层 105传递至基板104,从而达到双面散热的效果(如图3中箭头所示)。
将本实施例中的波长转换装置同现有技术和实施例一的波长转换装置在不同激发功率下进行测试,其测试结果如图4所示,图4为波长转换装置的发光强度对比图。从图中可以看出,在低功率条件下,三种波长转换装置的发光强度相差无几,这主要是由于功率较低,波长转换装置在进行光转换时所产生的热量较少,三种波长转换装置均能有较好的散热效果,无显著性差异;但是当随着激发功率不断的提高,波长转换装置所产生的热量便不断增加,三种波长转换装置的散热效果差异便明显化,具体表现为本实施例中波长转换装置的发光强度最高,其次为实施例一中双面散热结构色轮,而现有技术(图4中对比例一)中单面散热色轮最差。从图中还可看出,本实施例中波长转换装置受激发时的发光强度同激发功率有较强的线性关系,其散热效果较佳,不会引发波长转换层中波长转换材料的热衰;对比例一却非如此,在高功率下波长转换材料便开始出现衰减现象,降低了其光转换效率。
本实施例中的波长转换装置工作时,波长转换层所产生的热量一部分通过反射层传递至基板,一部分传递至透明导热层,热量在透明导热层和基板自身内部快速横向(沿基板所在平面方向)传递的同时,还可以通过导热填充层在以透明导热层和基板之间相互传递,之后基板和透明导热层将热量传递至空气中。因此,该结构的波长转换装置能将波长转换层中的热量快速至波长转换层上下两面的基板和透明导热层中,波长转换层不会因热量过于集中而致使其局部温度急剧上升,从而抑制波长转换层内荧光材料过早出现“热衰”现象。
进一步地,由于空气相对于透明导热层是光疏介质,光从透明导热层到空气时会有全反射现象,为了避免波长转换层出射的光在透明导热层里面发生全反射,影响光效,可以在透明导热层的外表面(透明导热层与空气的接触面)设置镀增透膜或者设置粗糙结构。
实施例三
图5为本发明实施例三波长转换装置200的结构示意图。如图5 所示,本实施例与实施例二相比,其不同之处在于用反射镀膜层203取代了实施例1中的反射层103,反射镀膜层203为镀银反射膜,其可以镀在基板204的上表面或波长转换层202的下表面,随后基板204再同波长转换层202进行胶合。本实施例与实施例二中的其它结构相同,在此不再赘述。
在本实施例中,驱动装置206带动基板204转动,使得激发光从透明导热层201一侧透射至波长转换层202的表面。波长转换层202受激发后发出的受激光直接或经反射镀膜层203漫反射后透过透明导热层201。在上述过程中,波长转换层202受激发时所产生的热量一部分通过反射镀膜层203间接传递至基板204,一部分传递与其直接接触的透明导热层201。透明导热层201中的热量再传导至空气或通过导热填充层205传递至基板204,从而达到双面散热的效果(如图5中箭头所示)。
由于本实施例中的反射镀膜层203较实施例二中的反射层103其厚度更薄,更易于将波长转换层202中的热量传递至基板204去,从而达到更佳的散热效果。
实施例四
图6为本发明实施例四波长转换装置300的结构示意图。如图6所示,本实施例与实施例二相比,波长转换层302两侧均设有导热填充层305,具体来说,导热填充层305的设置数量为2个,包括第一导热填充层3051和第二导热填充层3052,其中第一导热填充层3051的内径与波长转换层302的外径相同,第二导热填充层3052的外径与波长转换层302的内径相同,即第一导热填充层3051的内圆环绕波长转换层的外圆设置,第二导热填充层3052的外圆被波长转换层的内圆环绕。本实施例与实施例二中的其它结构相同,在此不再赘述。
在本实施例中,驱动装置306带动基板304转动,使得激发光从透明导热层301一侧透射至波长转换层302的表面。波长转换层302受激发后发出的受激光直接或经反射镀膜层303漫反射后透过透明导热层301。在上述过程中,波长转换层302受激发时所产生的热量一部 分通过反射镀膜层303间接传递至基板304,一部分传递与其直接接触的透明导热层301。透明导热层301中的热量再传导至空气或通过导热填充层305传递至基板304,从而达到双面散热的效果(如图6中箭头所示)。
由于本实施例中在波长转换层302两侧均设有导热填充层305,这样透明导热层301和基板304间的热量可以通过两侧导热填充层305进行传递,从而达到一个更好的散热效果。
实施例五
图7为本发明实施例五光源系统的结构示意图;图8为本发明实施例五的波长转换装置的俯视图。如图7和图8所示,光源系统包括激发器410、聚光透镜416、第一反射镜411、第一聚光镜413、第二反射镜414、第二聚光镜415和波长转换装置400。其中,第一反射镜411的中心设有二向色镜412,二向色镜412能够透射激发光并反射受激光。本实施例中,激发光为蓝色光。
本实施例与实施例二相比,透明导热层包含透明导热层本体401以及沿透明导热层本体401径向向外设置的凸出部4011,即透明导热层的外径大于基板404的外径。凸出部4011远离基板404的一面设有滤光镀膜层407,滤光镀膜层407用于对受激光进行修饰以提高其光纯度。由于滤光镀膜层407直接镀制在波长转换装置的透明导热层上,使得光源系统中无需另外设置滤光色轮,简化了光源结构。
参照图8,本实施例中不同颜色的波长转换层在基板404的周向上呈分段式排列,具体来说,波长转换层402包含多个不同颜色的扇环色段,以波长转换层402的圆心为中心点,凸出部4011在每个扇环色段旋转180°后的角度范围内对应设有相同颜色的滤光镀膜层,在本实施例中,波长转换层402包含第一色段4021、第二色段4022、第三色段4023以及第四色段4024,滤光镀膜层407包含第一镀膜4071、第二镀膜4072、第三镀膜4073以及第四镀膜4074,其中第一色段4021与第一镀膜4071的颜色相同且圆心角相同,第二色段4022与第二镀膜4072的颜色相同且圆心角相同,第三色段4023与第三镀膜4073的 颜色相同且圆心角相同,第四色段4024与第四镀膜4074的颜色相同且圆心角相同。
在本实施例中,驱动装置406带动基板404转动,激发器410所发出的激发光依次经聚光透镜416、设置在第一反射镜411中心的二向色镜412、以及第一聚光镜413和透明导热层401,激发波长转换层402。波长转换层402发出的受激光被反射层403反射后,依次经过第一聚光镜413、第一反射镜411、第二反射镜414以及第二聚光镜415后,穿过设有滤光镀膜层407的凸出部4011,成为出射光。在上述过程中,波长转换层402受激发时所产生的热量一部分通过反射镀膜层403间接传递至基板404,一部分传递与其直接接触的透明导热层,同时透明导热层中的热量也可通过导热填充层405传递至基板404,从而达到迅速散热的效果。此外,光源系统无需另外设置滤光色轮,简化了光源结构。
综上所述,本发明通过在基板和透明导热层之间设置导热填充层,使得基板和透明导热层之间的热量可以相互传导,实现波长转换层的双面散热的效果,避免波长转换层因热量过于集中而导致局部温度急剧上升,从而有效抑制波长转换材料的“热衰”现象。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种波长转换装置,其特征在于,所述波长转换装置包括依次层叠的基板、反射层、波长转换层和透明导热层,所述基板和所述透明导热层的导热系数高于所述反射层和所述波长转换层的导热系数。
  2. 如权利要求1所述的波长转换装置,其特征在于,所述波长转换装置还包括夹设在所述基板和所述透明导热层之间的导热填充层。
  3. 如权利要求2所述的波长转换装置,其特征在于,所述反射层和所述导热填充层在所述基板上的投影与所述透明导热层在所述基板上的投影重合。
  4. 如权利要求2所述的波长转换装置,其特征在于,所述基板为圆盘型,所述反射层、波长转换层、导热填充层以及透明导热层均为圆环形;其中,所述基板、反射层、波长转换层、导热填充层以及透明导热层的圆心重合,所述波长转换层和反射层的内外径相同,所述反射层和波长转换层的组合的厚度与导热填充层的厚度相同。
  5. 如权利要求4所述的波长转换装置,其特征在于,所述波长转换层的内圆环绕导热填充层的外圆设置。
  6. 如权利要求4所述的波长转换装置,其特征在于,所述导热填充层包括第一导热填充层和第二导热填充层,所述第一导热填充层的内圆环绕所述波长转换层的外圆设置,所述第二导热填充层的的外圆被所述波长转换层的内圆环绕。
  7. 如权利要求2所述的波长转换装置,其特征在于,所述透明导热层还包含沿透明导热层径向向外设置的凸出部,所述凸出部远离基板的一侧上设有滤光镀膜层。
  8. 如权利要求1所述的波长转换装置,其特征在于,所述导热填充层为石墨导热垫片。
  9. 如权利要求1所述的波长转换装置,其特征在于,所述透明导热层为蓝宝石环片,所述蓝宝石环片的厚度不超过1mm。
  10. 如权利要求1所述的波长转换装置,其特征在于,所述透明导热层的外表面设有增透膜或者设有粗糙结构。
  11. 一种光源系统,其特征在于,包括如权利要求1-10中任意一项所述的波长转换装置。
PCT/CN2019/076636 2018-09-03 2019-03-01 波长转换装置及光源系统 WO2020048101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811016878.9A CN110873319A (zh) 2018-09-03 2018-09-03 波长转换装置及光源系统
CN201811016878.9 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020048101A1 true WO2020048101A1 (zh) 2020-03-12

Family

ID=69716433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076636 WO2020048101A1 (zh) 2018-09-03 2019-03-01 波长转换装置及光源系统

Country Status (2)

Country Link
CN (1) CN110873319A (zh)
WO (1) WO2020048101A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11287730B2 (en) 2020-05-07 2022-03-29 Delta Electronics, Inc. Wavelength converting device
CN113970872A (zh) * 2020-07-24 2022-01-25 中强光电股份有限公司 波长转换元件及投影机
CN112133812A (zh) * 2020-09-15 2020-12-25 湖州市汉新科技有限公司 高热导荧光薄膜、制备方法及在led或激光照明的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203733843U (zh) * 2013-12-31 2014-07-23 吴震 波长转换装置和发光装置
CN105737103A (zh) * 2014-12-10 2016-07-06 深圳市绎立锐光科技开发有限公司 波长转换装置及相关荧光色轮和投影装置
CN106030835A (zh) * 2014-05-21 2016-10-12 日本电气硝子株式会社 波长转换部件及使用其的发光器件
CN106206904A (zh) * 2015-04-29 2016-12-07 深圳市光峰光电技术有限公司 一种波长转换装置、荧光色轮及发光装置
US20180173085A1 (en) * 2016-12-19 2018-06-21 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter, projector, and lighting device
CN108231981A (zh) * 2018-03-10 2018-06-29 扬州吉新光电有限公司 一种高效荧光轮及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566230B (zh) * 2010-12-08 2015-05-27 深圳市绎立锐光科技开发有限公司 投影系统、光源系统以及光源组件
CN104566230B (zh) * 2013-10-15 2017-07-11 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN203733829U (zh) * 2013-12-18 2014-07-23 吴震 发光二极管封装结构和发光装置
CN103840067A (zh) * 2013-12-31 2014-06-04 吴震 波长转换装置和发光装置
CN204879969U (zh) * 2015-05-28 2015-12-16 深圳市绎立锐光科技开发有限公司 波长转换装置、光源系统和投影系统
CN105353578B (zh) * 2015-12-07 2017-08-18 杨阳 光源系统及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203733843U (zh) * 2013-12-31 2014-07-23 吴震 波长转换装置和发光装置
CN106030835A (zh) * 2014-05-21 2016-10-12 日本电气硝子株式会社 波长转换部件及使用其的发光器件
CN105737103A (zh) * 2014-12-10 2016-07-06 深圳市绎立锐光科技开发有限公司 波长转换装置及相关荧光色轮和投影装置
CN106206904A (zh) * 2015-04-29 2016-12-07 深圳市光峰光电技术有限公司 一种波长转换装置、荧光色轮及发光装置
US20180173085A1 (en) * 2016-12-19 2018-06-21 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter, projector, and lighting device
CN108231981A (zh) * 2018-03-10 2018-06-29 扬州吉新光电有限公司 一种高效荧光轮及其制作方法

Also Published As

Publication number Publication date
CN110873319A (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
JP6786546B2 (ja) 波長変換装置、発光装置及び投影システム
CN106796387B (zh) 荧光体轮、光源装置与投射型显示装置
US20180158995A1 (en) Wavelength coinventor, fluorescent color wheel, and light-emitting device
WO2020048101A1 (zh) 波长转换装置及光源系统
US11296263B2 (en) Wavelength conversion apparatus
CN110737085B (zh) 波长转换装置
CN109838703B (zh) 波长转换装置
JP5675248B2 (ja) 光源装置および照明装置
US20170137328A1 (en) Method of making a ceramic wavelength converter assembly
JP5949872B2 (ja) 蛍光光源装置
TWI634380B (zh) 色輪模組與光源模組
CN209980000U (zh) 一种新型透射式波长转换装置及其光源结构
CN114815483B (zh) 透射式波长转换部件及激光光源
CN110764352B (zh) 波长转换装置、激光荧光光源及投影设备
CN113701125A (zh) 透射式波长转换装置及其发光装置
CN216526711U (zh) 一种色轮组件和投影装置
CN112068390B (zh) 波长转换元件、光源装置和投影仪
WO2020088160A1 (zh) 波长转换装置及光源系统
JP7269956B2 (ja) 光源システム
WO2019153638A1 (zh) 波长转换装置
JP2022108288A (ja) 波長変換ホイール、光源装置、および投影装置
CN113551203A (zh) 透射式波长转换装置及其发光装置
WO2019136831A1 (zh) 波长转换装置及其光源
CN217131155U (zh) 一种透射型荧光色轮
WO2022007329A1 (zh) 一种光源设备以及投影显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857523

Country of ref document: EP

Kind code of ref document: A1