WO2020048073A1 - 电机及风力发电机组 - Google Patents

电机及风力发电机组 Download PDF

Info

Publication number
WO2020048073A1
WO2020048073A1 PCT/CN2019/070442 CN2019070442W WO2020048073A1 WO 2020048073 A1 WO2020048073 A1 WO 2020048073A1 CN 2019070442 W CN2019070442 W CN 2019070442W WO 2020048073 A1 WO2020048073 A1 WO 2020048073A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
stator
sleeve
axial direction
rotor
Prior art date
Application number
PCT/CN2019/070442
Other languages
English (en)
French (fr)
Inventor
李锦辉
刘军卫
许文华
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to EP19858460.9A priority Critical patent/EP3819497B1/en
Priority to US16/766,671 priority patent/US11431226B2/en
Priority to AU2019335165A priority patent/AU2019335165B2/en
Publication of WO2020048073A1 publication Critical patent/WO2020048073A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/26Structural association of machines with devices for cleaning or drying cooling medium, e.g. with filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the field of cooling technology, and in particular to a motor and a wind turbine.
  • cooling has been widely used in the field of wind turbine cooling because of its advantages of high reliability, easy maintenance and no pollution.
  • the cooling medium in the cooling circuit depends on power-driven equipment to maintain the circulating flow in the cooling circuit, it can be divided into passive cooling (non-powered driving equipment) and active cooling (powered driving equipment).
  • the passive cooling in the air cooling method can simplify the structure of the wind turbine, but its cooling capacity in a limited space is insufficient. Active cooling gradually occupies the mainstream due to its superior cooling capacity and greater design freedom.
  • the power, volume, weight and cost of active cooling equipment have all increased, and at the same time, it has become more difficult to deploy, install and maintain, and has lower reliability. Therefore, in addition to cost advantages, high-power-density wind turbines often mean greater losses and more self-consumption of active cooling equipment, making it difficult to take into account the overall power generation efficiency.
  • the purpose of the embodiments of the present application is to provide a motor and a wind turbine, which can improve the cooling effect of the motor and improve the power generation efficiency of the entire machine.
  • a motor includes an active cooling circuit and a passive cooling circuit that are isolated from each other and are in communication with the external environment.
  • the active cooling circuit includes a chamber and a motor that are located at two axial ends of the motor and communicate with each other. The air gap between the rotor and the stator and the radial channels distributed along the axial interval of the stator.
  • the active cooling circuit is provided with cooling equipment that communicates with the external environment.
  • the passive cooling circuit includes an axial direction that runs through the stator in the axial direction. Outer surfaces of channels and motors.
  • a wind power generator set includes any one of the motors described above.
  • the motor has an upwind side and a leeward side in the axial direction; a hub is located on the upwind side of the motor and is coaxially disposed with the motor
  • the hub drives the motor to rotate by the rotation of an impeller installed on its outer peripheral side; and the nacelle is located on the leeward side of the motor.
  • the nacelle is provided with an air inlet and an air outlet pipe communicating with the cooling equipment of the motor.
  • the motors and wind turbines provided in the embodiments of the present application provide mutually isolated active cooling circuits and passive cooling circuits. Compared to motors with only passive cooling circuits, the existence of active cooling circuits makes up for the limited layout space. The problem of insufficient internal cooling capacity. Compared with a motor with only an active cooling circuit, a part of the heat loss of the motor is taken away by the passive cooling circuit, which relieves the burden of the active cooling circuit, reduces the power and self-consumption power of the cooling equipment in the active cooling circuit, and thus reduces The volume and weight of the cooling equipment are increased, and the power generation efficiency of the whole machine is improved.
  • FIG. 1 is a partial cross-sectional view of a motor according to an embodiment of the present application
  • FIG. 2 is a partial structural diagram of a stator of the motor shown in FIG. 1;
  • FIG. 3 is a partial structural schematic diagram of an iron core component in the stator shown in FIG. 2;
  • FIG. 4 is a partial sectional view of a stator bracket in the motor shown in FIG. 1;
  • FIG. 5 is a schematic diagram of air flow organization of a chamber of the active cooling circuit shown in FIG. 1;
  • FIG. 6 is a schematic diagram of air flow organization of a radial channel of the active cooling circuit shown in FIG. 1;
  • FIG. 7 is a schematic diagram of air flow organization of an active cooling circuit of the motor shown in FIG. 1;
  • FIG. 8 is a schematic structural diagram of a rotor of the motor shown in FIG. 1;
  • FIG. 9 is a partial sectional view of a rotor of the motor shown in FIG. 1;
  • FIG. 10 is a schematic diagram of air flow organization of the passive cooling circuit of the motor shown in FIG. 1; FIG.
  • FIG. 11 is a schematic diagram of the working principle of the flow guide device and the acceleration device of the rotor shown in FIG. 8;
  • FIG. 12 is a partial cross-sectional view of a wind turbine according to an embodiment of the present application.
  • an embodiment of the present application provides a motor 100 including an active cooling circuit A and a passive cooling circuit B that are isolated from each other and are in communication with the external environment.
  • the active cooling circuit A includes the chambers 11a and 11b which are connected to each other at both ends of the motor in the axial direction X, the air gap 12 between the rotor 10 and the stator 20 of the motor, and the diameters distributed along the axial direction X of the stator 20 To the channel 13, the active cooling circuit A is provided with a cooling device 14 communicating with the external environment, as shown by a solid arrow in FIG.
  • the passive cooling circuit B includes an axial channel 15 penetrating the stator 20 and the outer surface of the motor 100 in the axial direction X, as shown by the dotted arrows in FIG. 1.
  • the motor 100 may have an inner stator structure, that is, the rotor 10 is disposed along the outer periphery of the stator 20; the motor 100 may also be an outer stator structure, that is, the stator 20 is disposed along the outer periphery of the rotor 10.
  • the stator 20 is fixed to a fixed shaft 27c through a stator support 27, the rotor 10 is fixed to a rotating shaft 18a through a rotor support 18, and the rotating shaft 18a and the fixed shaft 27c are supported by bearings and realize relative rotation.
  • the stator bracket 27 and the rotor 10 form a dynamic seal connection, and further form the chambers 11 a and 11 b at both axial ends of the motor 100.
  • the driving method of the motor 100 may be a direct drive, a semi-direct drive, or a double-fed unit, and the details are not described again.
  • the active cooling circuit A is in communication with the external environment, and the cooling medium is air in the external environment.
  • the cooling medium realizes circulating flow through the cooling device 14 in the circuit.
  • This cooling circuit is active for the cooling of the motor 100.
  • the passive cooling circuit B is also in communication with the external environment.
  • the motor 100 provided in the embodiment of the present application is provided with an active cooling circuit A and a passive cooling circuit B that are isolated from each other.
  • the existence of the active cooling circuit makes up for the limited layout space.
  • the problem of insufficient cooling capacity; compared with a motor with only an active cooling circuit, part of the heat loss of the motor is taken away by the passive cooling circuit, which relieves the burden of the active cooling circuit and reduces the power of the cooling device 14 in the active cooling circuit A And self-consumption power, thereby reducing the volume and weight of the cooling device 14, and improving the power generation efficiency of the entire machine.
  • the stator 20 of the motor 100 includes a plurality of iron core assemblies 21 arranged at intervals in the axial direction X.
  • Each iron core assembly 21 is laminated by a plurality of iron core laminations in the axial direction X. Therefore, the radial channel 13 is formed between each two adjacent core assemblies 21.
  • the axial passage 15 includes a stator axial passage 15 a penetrating the plurality of core assemblies 21 in the axial direction X.
  • Each of the core components 21 includes a yoke portion 22 and a tooth portion 23 integrally formed with the yoke portion 22.
  • the teeth portion 23 is provided with a plurality of tooth grooves 23 a at intervals in the circumferential direction Z of the core component 21.
  • the yoke portion 22 is provided with A through-hole 22a corresponding to the cogging 23a, a sleeve 24 communicating with the through-hole 22a is provided between the adjacent core components 21, and the through-hole 22a and the sleeve 24 form a stator axial channel 15a.
  • each tooth groove 23a of the plurality of iron core assemblies 21 correspond to each other and extend in the axial direction X.
  • Each tooth groove 23a is provided with a spacer 25, and the space surrounded by the spacer 25 and the tooth groove 23a is provided.
  • the yoke portion 22 is also provided with at least one mounting groove 22 c for fixing the stator 20 on the stator bracket 27.
  • the cogging 23a is provided corresponding to the through hole 22a, which is beneficial to reduce the resistance of air flow in the radial channel 13, make the heat transfer path between the winding 26 and the through hole 22a relatively short, and improve the heat transfer efficiency of the winding 26.
  • the number of the through-holes 22a is at least one.
  • the at least one through-hole 22a is disposed at intervals in the circumferential direction Z of the core assembly 21, and the at least one through-hole 22a is any one of a square hole, a round hole, and a polygonal hole.
  • the number of the sleeves 24 is also at least one, and the sleeves 24 are provided in one-to-one correspondence with the through holes 22a.
  • the sleeve 24 makes the through-holes 22a of the yoke portions 22 of the plurality of core assemblies 21 constitute a communicating stator axial channel 15a, and also plays a role of supporting and limiting the plurality of core assemblies 21, as shown in FIG. 2 .
  • the tube sleeve 24 may be any one of a square tube, a circular tube, and a polygonal tube.
  • ribs 22b are provided in at least one of the through holes 22a. This arrangement is beneficial to increase the heat dissipation area of the stator axial channel 15a, thereby achieving the purpose of enhancing the cooling effect, as shown in FIG. 3.
  • the axial section of the through hole 22 a constituting the stator axial passage 15 a shown in FIG. 3 is completely constructed in the yoke portion 22 of the core assembly 21.
  • each core assembly 21 includes an attachment portion (not shown in the figure) provided along the radial direction Y and close to the yoke portion 22, and the through hole 22a may also be provided at the attachment portion. At this time, the axial cross-section of the through hole 22 a may be completely constructed outside the yoke portion 22 of the core assembly 21 through the attachment portion.
  • the through hole 22a includes two parts distributed along the radial direction Y, one of which is located at the yoke portion 22 and the other is located at the attachment portion.
  • the axial cross-section of the through hole 22 a may be partly constructed in the yoke portion 22 of the core assembly 21, and the other part may be constructed outside the yoke portion 22 of the core assembly 21 through an attachment portion.
  • the through hole 22a on the yoke portion 22 is located radially inward of the tooth groove 23a
  • the through hole 22a on the yoke portion 22 is located radially outward of the tooth groove 23a.
  • the stator 20 shown in FIG. 2 adopts a distributed forming double-layer winding structure, but the winding structure form applicable to this application may also be, but is not limited to, other winding structures such as concentrated winding, scattered winding, and single-layer winding. form.
  • the following uses the motor as the inner stator structure as an example to describe the structure of the motor's active cooling circuit A and passive cooling circuit B and the cooling process of the motor.
  • the stator 20 is fixed on the fixed shaft 27 c through a stator bracket 27.
  • the stator bracket 27 is composed of some fixing members, annular plates, and accessories mounted on the annular plates.
  • the annular plate member includes a first end plate 27a and a second end plate 27b which are oppositely arranged along the axial direction X.
  • the first end plate 27a is provided with a first sleeve 1 and a second end plate 27b penetrating the first end plate 27a.
  • a second sleeve 2 penetrating through the second end plate 27b is provided thereon, and the axial channel 15 further includes a first sleeve 1 and a second sleeve 2 which communicate with the stator axial channel 15a, and preferably, the first sleeve 1.
  • the second sleeve 2 and the inner wall of the sleeve 24 have the same axial cross-sectional size and shape as the through hole 22a.
  • the passive cooling circuit B is isolated from the active cooling circuit A by the first casing 1, the casing 24, and the second casing 2.
  • the stator bracket 27 further includes a first partition plate 28a and a second partition plate 28b which are coaxially disposed between the first end plate 27a and the second end plate 27b, and the first partition plate 28a and the second partition plate 28b are both connected to the yoke.
  • the portion 22 is hermetically connected and fixed to the fixed shaft 27c.
  • the first end plate 27a and the first partition plate 28a are hermetically connected in the radial direction Y inside the motor 100.
  • a radial direction is provided between the second end plate 27b and the second partition plate 28b.
  • Filter piece 16 is provided between the second end plate 27b and the second partition plate 28b.
  • the first partition 28a is provided with an air inlet 1a
  • the second partition 28b is provided with an air inlet 1b and an air outlet 1c
  • the first partition 28a and the second partition 28b are divided into a first partition by a third partition 29.
  • the air inlet 1c is provided with an axial filter 17.
  • FIG. 5 can be used to describe the air flow in the two chambers at the same time.
  • the airflow entering the chamber 11a first passes through the gap between the first bushings 1 and passes through the first bushing 1, and then passes through the gap between the ends of the winding 26 and passes through the ends of the winding 26 Finally, the air flow in the chamber 11a flows into the air gap 12 from the end inlet of the air gap 12. The air flow in the chamber 11 a cools the end of the winding 26 while flowing through the end of the winding 26.
  • a part of the airflow organization in the chamber 11a is shown by a solid line arrow in FIG. 5.
  • the air flow in the radial channel 13 is shunted from the air gap 12.
  • Each of the divided air flows first passes through the gaps 23 a of the radial channel 13 formed by the gap between the slots in the winding 26, and then After entering the yoke portion 22 of the radial channel 13, the airflow finally exits the radial channel 13 through the gap between the sleeves 24 located in the radial channel 13.
  • the air flow in the radial channel 13 cools both the end of the winding 26 and the core assembly 21 as it flows.
  • FIG. 7 an air flow organization diagram of the active cooling circuit A of the motor 100 is shown.
  • the incoming air C is driven by the cooling device 14 into two branches R1 and R2 and enters the chambers 11 a and 11 b at both ends of the motor 100 in the axial direction.
  • One of the branches R 1 enters the first through the axial filter 17
  • the cavity 29a flows around the first sleeve 1 into the cavity 11a at one end, and the other branch R2 passes through the radial filter 16 into the cavity 11b at the other end and flows around the second sleeve 2 into the cavity.
  • the two branches R1, R2 in 11a and 11b flow through the winding 26, the rotor 10, and the core assembly 21 in sequence along the active cooling circuit A, and then enter the second cavity 29b around the sleeve 24, and are discharged through the cooling device 14. , As shown by the solid arrow in Figure 7.
  • Active cooling circuit A takes away all the stator losses, except for some of the stator losses taken by passive cooling circuit B. At the same time, active cooling circuit A also takes away some of the rotor losses from passive cooling circuit B. The remaining rotor loses heat.
  • the rotor 10 is fixed on the rotating shaft 18a by a rotor bracket 18.
  • the rotor 10 includes a rotor yoke 10a and a permanent magnet 10b mounted on the rotor yoke 10a.
  • the rotor bracket 18 and the rotor yoke A plurality of support ribs 18b are provided at intervals of 10a along the circumferential direction Y.
  • An annular gap is formed between the plurality of support ribs 18b, so that the external air flows from the first end plate 27a side to the second end plate 27b through the annular gap.
  • the support ribs 18b are used to connect the rotor bracket 18 and the rotor yoke 10a, so that the rotor bracket 18 and the rotor yoke 10a can rotate at the same time with the rotating shaft 18a.
  • the motor 100 has a windward side and a leeward side in the axial direction X.
  • the side where the first end plate 27a is located is the windward side, and the side where the second end plate 27b is located is the leeward side.
  • the rotor yoke 10 a is provided along the axial direction X with a guide device 30 located on the same side as the first end plate 27 a. External air flows through the guide device 30 to guide and divide the current.
  • the deflector 30 is an annular thin-walled structure, and its structure conforms to the aerodynamic streamline. Specifically, the flow guiding device 30 is a thin-walled rotating body with a hollow inside to reduce weight.
  • the cross section of the deflector 30 in its radial direction Y includes an outer bus bar 30a and an inner bus bar 30b intersecting each other. The weft circle radius of the outer bus bar 30a gradually decreases along the axial direction X away from the rotor yoke 10a.
  • the weft circle radius gradually increases in the direction in which the axial direction X is away from the rotor yoke 10a.
  • At least one of the outer bus bar 30a and the inner bus bar 30b may be an arc-shaped curve or a straight line.
  • the outer diameter of the side of the outer bus bar 30 a near the rotor yoke 10 a is equal to the outer diameter of the motor 100, so that the outside air flows smoothly through the outer surface of the motor 100.
  • the outer bus bar 30a and the inner bus bar 30b may be arranged symmetrically or asymmetrically, depending on the actual conditions of the external air flow.
  • the rotor yoke 10a is further provided with an acceleration device 40 on the same side as the second end plate 27b in the axial direction X.
  • the acceleration device 40 is a thin-walled rotating body with a hollow inside to reduce weight.
  • the cross section of the acceleration device 40 in the radial direction Y includes an outer bus bar 40a and an inner bus bar 40b intersecting each other.
  • the weft circle radii of the outer bus bar 40a and the inner bus bar 40b gradually increase in the direction away from the rotor yoke 10a in the axial direction X.
  • At least one of the outer bus bar 40a and the inner bus bar 40b may be an arc-shaped curve or a straight line.
  • the outer diameter of the outer bus bar 40 a on the side of the rotor yoke 10 a is equal to the outer diameter of the motor 100, so that outside air flows smoothly through the outer surface of the motor 100.
  • the cooling process of the motor 100 by the passive cooling circuit B will be described below with the motor 100 having both the deflector 30 and the acceleration device 40 as an example.
  • the external air C passes through the deflector 30, it is divided into a first air flow C1 and a second air flow C2.
  • the first air flow C1 enters the axial channel 15 through the annular gap and flows through the stator. After 20, the flow speeds up the acceleration device 40.
  • the second air flow C2 merges with the external air flow C 'on the outer surface of the motor 100 to form a third air flow C3.
  • the acceleration device 40, the first air flow C1 and the third air flow C3 generate a pressure difference ⁇ P inside and outside the acceleration device 40 to drive the first air flow C1 and the second air flow C2 to continue to flow, as shown by the dashed arrows in FIG. 10 .
  • the working principle of the deflector 30 is as follows:
  • the air flowing upstream from the windward side of the motor 100 can be divided into two parts: The incoming air inside the string K of the device 30 and the incoming air outside the string K.
  • the static pressure of the incoming air upstream on the windward side is atmospheric pressure P0.
  • the incoming air upstream of the windward side flows to the inside of the chord line K of the deflector 30, the flowing direction of the incoming air is shifted to form an external air flow C.
  • the external airflow C continues to flow downstream to the vicinity of the deflector 30, it is divided into a first airflow C1 and a second airflow C2.
  • the first airflow C1 flows to the inside of the chord line K, and the second airflow C2 flows to the outside of the chord line K. .
  • the shunted first airflow C1 flows into the axial channel 15 of the motor 100 after passing through the deflector 30, and the shunted second airflow C2 merges with the incoming air C 'outside the chord line K to form a third airflow C3, And it flows along the axial direction X of the outer surface of the rotor yoke 10a.
  • the role of the diversion device 30 in the process of diverting the airflow is as follows: the arc structure inside the chord line K of the diversion device 30 can capture more external airflow C, so that the external airflow C has more sinusoidal lines K Shunts the inner side of the stator 20, so that the stator 20 with more concentrated heat loss gets greater cooling air volume; the arc-shaped structure outside the chord line K can make the second air flow C2 shunting the airflow C to the outside of the chord line K alleviate its sudden change in flow cross-section.
  • the resulting flow separation phenomenon makes the third airflow C3 formed by the airflow C2 and the air C ′ outside the chord line K better adhere to the outer surface of the rotor yoke 10a, so that the rotor 10 is better cooled. effect.
  • the working principle of the acceleration device 40 is as follows: the first air flow C1 flowing out from the axial channel 15 of the motor 100 continues to flow downstream inside the acceleration device 40, The third air flow C3 flowing through the outer surface of the rotor yoke 10 a continues to flow downstream of the acceleration device 40.
  • the flow cross-section gradually expands, and its static pressure gradually rises to P1.
  • the flow cross-section gradually decreases, and its static pressure gradually decreases to P2.
  • a pressure difference ⁇ P P1-P2 is formed between the airflow flowing inside and outside the acceleration device 40 from the inside of the acceleration device 40 to the outside.
  • This pressure difference ⁇ P enhances the driving force of the first airflow C1 in the entire flow process, so that the external airflow C is more diverted to the inner side of the chord line K of the flow guiding device 30, thereby further strengthening the cooling of the stator in the passive cooling circuit B 20 branch cooling capacity.
  • part of the first air flow C1 continues to flow downstream to form a fifth air flow C5, and the other part is deflected to the outside of the acceleration device 40 and merges with the third air flow C3 outside the acceleration device 40 to form a fourth air flow C4.
  • the motor 100 provided in the embodiment of the present application may have only the deflection device 30, only the acceleration device 40, or both the deflection device 30 and the acceleration device 40.
  • the diversion device 30 and the acceleration device 40 constructed at the inlet and outlet of the passive cooling circuit further improve the cooling capacity of the passive cooling circuit in the main and passive cooling circuits.
  • the first airflow C1 in the passive cooling circuit B cools the stator when flowing through the axial passage 15, and takes away part of the stator heat loss generated during the operation of the motor 100.
  • the third airflow C3 cools the rotor 10 when passing through the outer surface of the rotor yoke 10a, and takes away a part of the rotor heat loss generated during the operation of the motor 100.
  • the air flow in the two cooling circuits is isolated from each other by the first sleeve 1, the sleeve 24 and the second sleeve 2, and the first sleeve 1, the sleeve 24
  • the second sleeve 2 is thermally isolated from the air flow in the two cooling circuits.
  • the first sleeve 1 has an inner wall and an outer wall which are heat-conductively arranged. Since the air flow inside and outside the first sleeve 1 does not absorb the heat loss during the operation of the motor 100, both sides are cold air that is directly introduced into the inside and outside of the first sleeve 1 by the external environment. Therefore, even the first sleeve 1 The inner wall and the outer wall of 1 are heat-conducting, and heat exchange does not occur on the inner and outer sides thereof, and this arrangement can reduce the manufacturing cost of the first sleeve 1.
  • the second sleeve 2 has an inner wall and an outer wall which are thermally isolated.
  • the airflow in the second casing 2 is hot air that absorbs part of the stator's heat loss and is about to be discharged to the external environment, and the outside of the second casing 2 is introduced into the motor 100 by the external environment. If the inner and outer walls of the second sleeve 2 are heat-conductive at this time, the outer airflow of the second sleeve 2 will absorb a part of the heat from the inner airflow and bring it into the subsequent cooling of the rotor 10 and the stator 20 In the process.
  • the sleeve 24 has an inner wall and an outer wall that are thermally isolated.
  • the outer air flow is hot air that absorbs part of the stator loss heat and the stator loss heat.
  • the radial channel 13 The airflow in the middle casing 24 is gradually converted from cold to hot air after absorbing part of the stator's heat loss. If the inner and outer walls of the casing 24 are heat conductive at this time, the airflow in the upstream casing 24 will absorb part The heat of the airflow outside the sleeve 24 causes its inner airflow to adversely affect the cooling of the downstream portion of the stator 20 in the following.
  • the inner airflow of the downstream casing 24 may absorb part of the heat of the outer airflow, or it may transfer part of its own heat to the outer airflow.
  • the adverse effect is the same as the situation of the airflow heat outside the interior of the upstream casing 24.
  • the casing 24 and the second casing 2 are provided with inner and outer walls that are thermally isolated, so that the cooling capacity of the main and passive cooling circuits of the motor 100 can be maximized.
  • an embodiment of the present application further provides a wind power generator set, which includes: any one of the motor 100, the hub 200, and the nacelle 300 described above.
  • the motor 100 includes a windward side 110 and a leeward side 120 in the axial direction.
  • the wheel hub 200 is located on the windward side 110 of the motor 100 and is coaxially disposed with the motor 100.
  • the maximum outer diameter of the wheel hub 200 is smaller than the minimum inner diameter of the axial channel 15 of the motor 100, so that outside air can enter the axial channel 15.
  • the hub 200 drives the motor 100 by rotation of an impeller mounted on the outer peripheral side thereof.
  • the nacelle 300 is located on the leeward side 120 of the motor 100.
  • the outer contour of the nacelle 300 is radially separated from the axial channel 15 of the motor 100 by a predetermined distance, so that the hot air that absorbs heat in the axial channel 15 is discharged to the outside environment.
  • the nacelle 300 is provided with an air inlet 310 and an air outlet pipe 320 communicating with the cooling device 14 of the motor 100.
  • a filter element may be provided at the air inlet 310 to exclude impurities in the air flowing from the outside.
  • the wind heat transport potential can be fully tapped during power generation.
  • two active and passive cooling circuits are constructed, which are isolated from each other. This reduces the power and self-consumption of the cooling equipment 14, improves the power generation efficiency of the whole machine, and reduces the cooling equipment 14.
  • the volume and weight save the space of the cabin 300, realize the highly integrated structure of the cooling system and the motor, and reduce the cost of the cooling system.
  • the motor according to the exemplary embodiment described above may be applied to various devices that need to be provided with a motor, such as, but not limited to, a wind turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种电机(100)包括相互隔离且均与外界环境连通的主动冷却回路(A)和被动冷却回路(B);其中,主动冷却回路包括相互连通的位于电机的轴向两端的腔室(11a、11b)、电机的转子(10)与定子(20)之间的气隙(12),以及沿定子(20)的轴向间隔分布的径向通道(13),主动冷却回路(A)中设置有与外界环境连通的冷却设备(14);被动冷却回路(B)包括在轴向上贯穿定子(20)的轴向通道和电机(100)的外表面。还包括一种设置有上述电机的风力发电机组。该电机弥补了有限布局空间内被动冷却回路的冷却能力不足问题,缓解了主动冷却回路的负担,降低了冷却设备的功率和自耗电,进而减小了冷却设备的体积和重量,提高了整机的发电效率。

Description

电机及风力发电机组
相关申请的交叉引用
本申请要求享有于2018年9月6日提交的名称为“电机及风力发电机组”的中国专利申请201811037781.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及冷却技术领域,特别是涉及一种电机及风力发电机组。
背景技术
随着风电市场和国家政策的不断调整,风力发电机组逐渐向着高功率密度的方向发展。风力发电机组所采用的众多冷却方式中,空冷方式由于其具有高可靠、易维护和无污染的优势,在风力发电机冷却领域得到了广泛的应用。根据冷却回路中冷却介质是否依靠动力驱动设备来维持在冷却回路中的循环流动,又可分为被动冷却(无动力驱动设备)和主动冷却(有动力驱动设备)。
空冷方式中的被动冷却可以简化风力发电机组的结构,但其在有限空间内的冷却能力不足。主动冷却由于其具有优越的冷却能力和较大的设计自由度逐渐占据主流地位。随着风力发电机组单机容量的不断提升,主动冷却设备的功率、体积、重量和成本均上涨,同时在布局、安装和维护方面更加困难,可靠性更低。因此,高功率密度的风力发电机组除了具有成本优势外,往往意味着更大的损耗以及更多的主动冷却设备自耗电,从而很难兼顾整机的发电效率。
发明内容
本申请实施例的目的是提供一种电机及风力发电机组,其可以提高电 机的冷却效果,提升整机的发电效率。
根据本申请实施例提出的一种电机,其包括相互隔离且均与外界环境连通的主动冷却回路和被动冷却回路;其中,主动冷却回路包括相互连通的位于电机的轴向两端的腔室、电机的转子与定子之间的气隙,以及沿定子的轴向间隔分布的径向通道,主动冷却回路中设置有与外界环境连通的冷却设备;被动冷却回路包括在轴向上贯穿定子的轴向通道和电机的外表面。
根据本申请实施例提出的一种风力发电机组,其包括如前所述的任一种的电机,电机沿轴向具有迎风侧与背风侧;轮毂,位于电机的迎风侧且与电机同轴设置,轮毂通过安装于其外周侧的叶轮的转动带动电机转动;以及机舱,位于电机的背风侧,机舱上设置有进风口和与电机的冷却设备连通的出风管路。
本申请实施例提供的电机及风力发电机组,通过设置相互隔离的主动冷却回路和被动冷却回路,相对于仅具有被动冷却回路的电机来说,由于主动冷却回路的存在,弥补了在有限布局空间内冷却能力不足的问题。相对于仅具有主动冷却回路的电机来说,电机的一部分损耗热量由被动冷却回路带走,缓解了主动冷却回路的负担,降低了主动冷却回路中冷却设备的功率和自耗电,进而减小了冷却设备的体积和重量,并且提高了整机的发电效率。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请,其中:
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是本申请实施例提供的一种电机的局部剖视图;
图2是图1所示的电机的定子的局部结构示意图;
图3是图2所示的定子中铁芯组件的局部结构示意图;
图4是图1所示的电机中的定子支架的局部剖视图;
图5是图1所示的主动冷却回路的腔室的气流组织示意图;
图6是图1所示的主动冷却回路的径向通道的气流组织示意图;
图7是图1所示的电机的主动冷却回路的气流组织示意图;
图8是图1所示的电机的转子的结构示意图;
图9是图1所示的电机的转子的局部剖视图;
图10是图1所示的电机的被动冷却回路的气流组织示意图;
图11是图8所示的转子的导流装置和加速装置的工作原理示意图;
图12是本申请实施例提供的一种风力发电机组的局部剖视图;
其中:
10-转子;10a-转子磁轭;10b-永磁体;11a,11b-腔室;12-气隙;13-径向通道;14-冷却设备;15-轴向通道;15a-定子轴向通道;16-径向过滤件;17-轴向过滤件;18-转子支架;18a-转动轴;18b-支撑筋;
20-定子;21-铁芯组件;22-轭部;22a-通孔;22b-筋条;22c-安装槽;23-齿部;23a-齿槽;24-套管;25-垫条;26-绕组;27-定子支架;27a-第一端板;27b-第二端板;27c-固定轴;1-第一套管;2-第二套管;28a-第一隔板;28b-第二隔板;1a-进风口;1b-进风口;1c-出风口;29-第三隔板;29a-第一腔体;29b-第二腔体;
30-导流装置;30a-导流装置30的外母线;30b-导流装置30的内母线;40-加速装置;40a-加速装置40的外母线;40b-加速装置40的内母线;100-电机;110-迎风侧;120-背风侧;200-轮毂;300-机舱;310-进风口;320-出风管路;
A-主动冷却回路;B-被动冷却回路;X-轴向;Y-径向;Z-周向;R1,R2-支路;C-外界来流空气;C’-电机外表面的外界气流;C1-第一气流;C2-第二气流;C3-第三气流;C4-第四气流;C5-第五气流;P1,P2-压强;△P-压差。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的 详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。本申请决不限于下面所提出的任何具体配置和算法,而是在不脱离本申请的精神的前提下覆盖了元素、部件和算法的任何修改、替换和改进。在附图和下面的描述中,没有示出公知的结构和技术,以便避免对本申请造成不必要的模糊。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
参阅图1,本申请实施例提供了一种电机100,该电机100包括相互隔离且均与外界环境连通的主动冷却回路A和被动冷却回路B。
其中,主动冷却回路A包括相互连通的位于电机的轴向X两端的腔室11a和11b、电机的转子10与定子20之间的气隙12,以及沿定子20的轴向X间隔分布的径向通道13,主动冷却回路A中设置有与外界环境连通的冷却设备14,如图1中的实线箭头所示。
被动冷却回路B包括在轴向X上贯穿定子20的轴向通道15和电机100的外表面,如图1中的虚线箭头所示。
电机100可以是内定子结构,即转子10沿定子20的外周设置;电机100也可以是外定子结构,即定子20沿转子10的外周设置。定子20通过定子支架27固定于固定轴27c上,转子10通过转子支架18固定于转动轴18a,转动轴18a和固定轴27c通过轴承支撑,并实现相对转动。定子支架27与转子10间形成动密封连接,进而形成电机100的轴向两端的腔室11a、11b。电机100的驱动方式可以为直驱,也可以为半直驱、双馈机组等,不再赘述。
本申请实施例通过对电机100本体结构的构造,构建了两条结构上相互隔离的主动冷却回路A和被动冷却回路B。其中,主动冷却回路A与外界环境是连通的,冷却介质为外界环境中的空气,冷却介质通过回路中的冷却设备14实现循环流动,这条冷却回路对于电机100的冷却来说属于主动的。被动冷却回路B也是与外界环境连通的,通过对电机100的转子10的巧妙构造以及外界环境中空气的自然流动,使得外界环境中的空气被引入到该冷却回路中,对于电机冷却来说属于被动的。结构上相互隔离的主动冷却回路A和被动冷却回路B中的冷却介质同时对电机100进行冷却,并且两条冷却回路间是热隔离的。
本申请实施例提供的电机100,通过设置相互隔离的主动冷却回路A和被动冷却回路B,相对于仅具有被动冷却回路的电机来说,由于主动冷却回路的存在,弥补了在有限布局空间内冷却能力不足的问题;相对于仅具有主动冷却回路的电机来说,电机的一部分损耗热量由被动冷却回路带走,缓解了主动冷却回路的负担,降低了主动冷却回路A中冷却设备14的功率和自耗电,进而减小了冷却设备14的体积和重量,并且提高了整机的发电效率。
下面结合附图进一步详细描述电机100的具体结构。
请一并参阅图2和图3,电机100的定子20包括沿轴向X间隔布置的多个铁芯组件21,每个铁芯组件21由多个铁芯叠片沿轴向X叠压而成,径向通道13形成于每相邻的两个铁芯组件21之间。
轴向通道15包括沿轴向X贯穿多个铁芯组件21的定子轴向通道15a。每个铁芯组件21包括轭部22和与轭部22一体成型的齿部23,齿部23在铁芯组件21的周向Z上间隔设置有多个齿槽23a,轭部22上设置有与齿槽23a对应的通孔22a,相邻的铁芯组件21之间设置有与通孔22a相互连通的套管24,通孔22a与套管24形成定子轴向通道15a。进一步地,多个铁芯组件21的多个齿槽23a一一对应且沿轴向X延伸,每个齿槽23a内设置有垫条25,垫条25与齿槽23a围成的空间内设置有绕组26。轭部22还开设有至少一个安装槽22c,用于将定子20固定于定子支架27上。齿槽23a与通孔22a对应设置,有利于降低径向通道13中空气流动的阻力, 使绕组26与通孔22a之间的传热路径相对较短,提高绕组26的传热效率。
通孔22a的数量为至少一个,至少一个通孔22a在铁芯组件21的周向Z上间隔设置,至少一个通孔22a为方形孔、圆孔和多边形孔中任一者。
同时,套管24的数量也为至少一个,其与通孔22a一一对应设置。套管24使得多个铁芯组件21的轭部22的通孔22a构成一条连通的定子轴向通道15a,同时还对多个铁芯组件21起到支撑限位的作用,如图2所示。管套24可以为方形管,圆形管和多边形管中的任一者。
作为一种可选的实施方式,至少一个通孔22a内设置有筋条22b,如此设置有利于增加定子轴向通道15a的散热面积,进而达到增强冷却效果的目的,如图3所示。
另外,图3所示的构成定子轴向通道15a的通孔22a的轴向截面是完全构建于铁芯组件21的轭部22中。
作为一种可选的实施方式,每个铁芯组件21包括沿径向Y且靠近轭部22设置的附接部(图中未示出),通孔22a也可以设置于附接部。此时通孔22a的轴向截面可以完全通过附接部构建于铁芯组件21的轭部22外。
作为一种可选的实施方式,通孔22a包括沿径向Y分布的两部分,其中一部分位于轭部22,另一部分位于附接部。此时通孔22a的轴向截面可以是一部分构建于铁芯组件21的轭部22中,另一部分通过附接部构建于铁芯组件21的轭部22外。
需要说明的是,对于内定子结构,轭部22上的通孔22a位于齿槽23a的径向内侧,对于外定子结构,轭部22上的通孔22a位于齿槽23a的径向外侧。另外,图2中所示的定子20采用的是分布式成型双层绕组结构,但本申请所适用的绕组结构形式也可以是但不限于集中绕组、散绕绕组和单层绕组等其他绕组结构形式。
下面以电机为内定子结构为例,描述该电机的主动冷却回路A和被动冷却回路B的结构及电机的冷却过程。
参阅图4,定子20通过定子支架27固定于固定轴27c上,定子支架27由一些固定部件、环形板件及在这些环形板件上安装的附件构成。其中环形板件包括沿轴向X相对设置的第一端板27a和第二端板27b,第一端 板27a上设置有贯穿第一端板27a的第一套管1,第二端板27b上设置有贯穿第二端板27b的第二套管2,轴向通道15进一步包括与定子轴向通道15a相互连通的第一套管1和第二套管2,优选地,第一套管1、第二套管2、套管24的内壁与通孔22a的轴向截面尺寸及形状相同。被动冷却回路B通过第一套管1、套管24和第二套管2与主动冷却回路A相互隔离。
定子支架27进一步包括位于第一端板27a和第二端板27b之间且同轴设置的第一隔板28a和第二隔板28b,第一隔板28a和第二隔板28b均与轭部22密封连接并固定于固定轴27c,第一端板27a与第一隔板28a沿电机100的径向Y内侧密封连接,第二端板27b与第二隔板28b之间设置有径向过滤件16。
第一隔板28a上开设有进风口1a,第二隔板28b上开设有进风口1b和出风口1c,第一隔板28a与第二隔板28b之间通过第三隔板29分为第一腔体29a和第二腔体29b,进风口1a,1b与第一腔体29a连通,出风口1c与第二腔体29b连通,冷却设备14设置于出风口1c外侧,第二隔板28b的进风口1c上设置有轴向过滤件17。
参阅图5,由于电机100的端部腔室11a和11b内的气流流动情况较为相近,故采用图5可同时用来描述两个腔室内的气流流动。以腔室11a为例,进入腔室11a的气流首先通过第一套管1间的空隙绕流经过第一套管1,后经过绕组26的端部间的空隙绕流经过绕组26的端部,最终腔室11a内的气流由气隙12的端部入口流入气隙12内。腔室11a内的气流在流经绕组26的端部时对绕组26的端部进行了冷却。腔室11a内的部分气流组织如图5中的实线箭头所示。
参阅图6,径向通道13内的气流由气隙12中分流而来,分流后的各气流首先流经绕组26的槽内部分间的空隙所形成的径向通道13的齿槽23a,后进入径向通道13的轭部22,最终气流通过位于径向通道13中的套管24间的空隙流出径向通道13。径向通道13内的气流在流经绕组26的端部和铁芯组件21时对两者均进行了冷却。
参阅图7,示出了电机100的主动冷却回路A的气流组织示意图。外界来流空气C在冷却设备14的驱动下分两条支路R1,R2分别进入电机 100的轴向两端的腔室11a,11b内,其中一条支路R1通过轴向过滤件17进入第一腔体29a后绕流第一套管1进入一端的腔室11a中,另一条支路R2通过径向过滤件16进入另一端的腔室11b中并绕流第二套管2,进入腔室11a,11b内的两条支路R1,R2沿主动冷却回路A依次流经绕组26、转子10和铁芯组件21后、绕流套管24进入第二腔体29b,并通过冷却设备14排出,如图7中的实线箭头所示。
由此,主动冷却回路A中气流由进入腔室11a、11b到流出径向通道13的流动过程中,分别对绕组26的端部、绕组26的槽内部分、铁芯组件21和转子10进行了冷却。主动冷却回路A带走了除被动冷却回路B所带走的部分定子损耗热量外的其余定子损耗热量,同时主动冷却回路A还带走了除被动冷却回路B所带走的部分转子损耗热量外的其余转子损耗热量。
请一并参阅图8和图9,转子10通过转子支架18固定于转动轴18a上,转子10包括转子磁轭10a和安装于转子磁轭10a上的永磁体10b,转子支架18与转子磁轭10a之间沿周向Y间隔设置有多个支撑筋18b,多个支撑筋18b间形成有环形间隙,以使外界来流空气经环形间隙从第一端板27a一侧流向第二端板27b一侧。支撑筋18b用于连接转子支架18和转子磁轭10a,以使转子支架18和转子磁轭10a能够同时随着转动轴18a转动。
电机100沿轴向X具有迎风侧和背风侧,第一端板27a所在的一侧即为迎风侧,第二端板27b所在的一侧即为背风侧。
转子磁轭10a沿轴向X设置有与第一端板27a位于同侧的导流装置30,外界来流空气通过导流装置30进行导流和分流。导流装置30为环形薄壁结构体,其构造符合空气动力学的流线型。具体来说,导流装置30为内部中空的薄壁回转体,以减轻重量。导流装置30沿自身径向Y的截面包括相交的外母线30a和内母线30b,外母线30a的纬圆半径沿轴向X远离转子磁轭10a一侧的方向逐渐变小,内母线30b的纬圆半径沿轴向X远离转子磁轭10a一侧的方向逐渐变大。外母线30a和内母线30b中的至少一者可以为弧形曲线,也可以为直线。优选的,外母线30a靠近转子磁轭10a一侧的外径尺寸等于电机100的外径尺寸,便于外界空气来流平顺地流经电机100的外表面。外母线30a和内母线30b可以对称设置,也可以 非对称设置,根据外界空气来流的实际情况而定。
进一步地,转子磁轭10a沿轴向X还设置有与第二端板27b位于同侧的加速装置40。加速装置40为内部中空的薄壁回转体,以减轻重量。加速装置40沿自身径向Y的截面包括相交的外母线40a和内母线40b,外母线40a和内母线40b的纬圆半径沿轴向X远离转子磁轭10a一侧的方向均逐渐变大。外母线40a和内母线40b中的至少一者可以为弧形曲线,也可以为直线。优选的,外母线40a靠近转子磁轭10a一侧的外径尺寸等于电机100的外径尺寸,便于外界空气来流平顺地流经电机100的外表面。
下面以电机100同时具有导流装置30和加速装置40为例,说明被动冷却回路B对电机100的冷却过程。
请一并参阅图10和图11,外界来流空气C经过导流装置30时被分流为第一气流C1和第二气流C2,第一气流C1经由环形间隙进入轴向通道15,流经定子20后并绕流加速装置40,第二气流C2与电机100的外表面的外界气流C’汇合后形成第三气流C3,并沿轴向X附着在转子磁轭10a的外表面后并绕流加速装置40,第一气流C1和第三气流C3在加速装置40的内、外侧产生压差△P,以驱动第一气流C1和第二气流C2继续流动,如图10中的虚线箭头所示。
如图11所示,被动冷却回路B对电机100的冷却过程中,导流装置30的工作原理如下所述:电机100的迎风侧上游来流空气可示意性的分为两部分:位于导流装置30的弦线K内侧的来流空气及位于弦线K外侧的来流空气。迎风侧上游来流空气的静压为大气压P0。当迎风侧上游来流空气流动至导流装置30的弦线K内侧时,来流空气的流动方向发生偏移,形成外界气流C。外界气流C继续向下游流动至导流装置30附近时被分流为第一气流C1和第二气流C2,第一气流C1向弦线K的内侧流动,第二气流C2向弦线K的外侧流动。分流后的第一气流C1流经导流装置30后进入电机100的轴向通道15内,分流后的第二气流C2与弦线K外侧的来流空气C’汇合,形成第三气流C3,并沿着转子磁轭10a外表面的轴向X流动。
导流装置30在对气流分流过程中所起到的作用如下:导流装置30的 弦线K内侧的弧形结构能够捕捉更多的外界气流C,使得外界气流C更多的向弦线K的内侧分流,进而使损耗热量更为集中的定子20得到更大的冷却风量;弦线K外侧的弧形结构能够使得气流C向弦线K外侧分流的第二气流C2缓解其因流通截面突变而引起的流动分离现象,使得气流C2和弦线K的外侧来流空气C’汇合形成的第三气流C3更好地附着在转子磁轭10a的外表面流动,从而使转子10得到更好的冷却效果。
进一步地,被动冷却回路B对电机100的冷却过程中,加速装置40的工作原理如下所述:从电机100的轴向通道15内流出的第一气流C1在加速装置40内侧继续向下游流动,而流经过转子磁轭10a外表面的第三气流C3在加速装置40的外侧继续向下游流动。第一气流C1在加速装置40内侧的流动过程中,流通截面逐渐扩大,其静压逐渐升高至P1。第三气流C3在加速装置40外侧的流动过程中,流通截面逐渐减小,其静压逐渐降低至P2。因此,在加速装置40内、外侧流动的气流间形成了一个由加速装置40内侧指向外侧的压差△P=P1-P2。该压差△P增强了第一气流C1在整个流动过程中的驱动力,使得外界气流C更多地向导流装置30的弦线K内侧分流,从而进一步加强被动冷却回路B中用于冷却定子20的支路冷却能力。由于加速装置40的作用,第一气流C1中一部分继续向下游流动,形成第五气流C5,另一部分向加速装置40外侧偏转,并与加速装置40外侧第三气流C3汇合形成第四气流C4。第四气流C4和第五气流C5继续向背风侧下游远处流动的过程中,气流会随着静压的自动调节而逐渐恢复平衡状态,最终背风侧下游远处的气流静压恢复至大气压P0。
可以理解的是,本申请实施例提供的电机100可以只具有导流装置30,也可以只具有加速装置40,也可以同时具有导流装置30和加速装置40。被动冷却回路进、出口处构造的导流装置30和加速装置40,进一步提高了主、被动冷却回路中被动冷却回路的冷却能力。
由此,被动冷却回路B中的第一气流C1在流经轴向通道15时对定子进行了冷却,带走了一部分由于电机100运转过程中产生的定子损耗热量。第三气流C3在经过转子磁轭10a外表面时对转子10进行了冷却,带走了一部分由于电机100运转过程中产生的转子损耗热量。
如前所述,在对电机100冷却的过程中,两条冷却回路内的气流通过第一套管1、套管24和第二套管2相互隔离,而第一套管1、套管24和第二套管2作为两条冷却回路除热源部件外的共有组成部分,其对两条冷却回路中的气流是热隔离的。
优选地,第一套管1具有可导热设置的内壁和外壁。由于第一套管1内外侧的气流没有吸收电机100运转过程中的损耗热量,两侧均是直接由外界环境分别引入至第一套管1内外侧的冷空气,因此,即使第一套管1的内壁和外壁是可导热的,其内外侧也不会发生热交换,而如此设置可以降低第一套管1的制造成本。
优选地,第二套管2具有热隔离设置的内壁和外壁。对于第二套管2来说,第二套管2内的气流是吸收了部分定子损耗热量且即将排出至外界环境中的热空气,而第二套管2外侧为由外界环境引入电机100内的冷空气,若此时第二套管2的内壁和外壁是可导热的,则第二套管2外侧气流将吸收一部分内侧气流的热量,并带入到后续对转子10和定子20的冷却过程中。
优选地,套管24具有热隔离设置的内壁和外壁,对于径向通道13中的套管24来说,其外侧气流是吸收了部分定子损耗热量和定子损耗热量的热空气,径向通道13中的套管24内的气流是逐渐吸收了部分定子损耗热量后由冷转热的空气,若此时套管24的内壁和外壁是可导热的,则上游套管24内的气流会吸收部分套管24外侧气流的热量,从而使其内侧气流在接下来对定子20下游部分的冷却带来不利影响。同时下游套管24内侧气流可能会吸收部分外侧气流的热量,也可能将自身部分热量传递给外侧气流。当下游套管24内侧气流吸收部分外侧气流热量时,产生的不利影响同上游套管24内侧气流吸收部分外则气流热量的情况相同。
由此,将套管24和第二套管2设置为具有热隔离设置的内壁和外壁,可以实现电机100的主、被动冷却回路的冷却能力最大化。
需要说明的是,虽然以上为了方便描述,以电机为内定子结构作为示例进行了描述,但应理解的是,根据本申请的示例性实施例,上述主动冷却回路A和被动冷却回路B的工作原理同样适用于外定子结构的电机。
参阅图12,本申请实施例还提供了一种风力发电机组,其包括:如前所述的任一种电机100、轮毂200和机舱300。
电机100沿轴向具有迎风侧110与背风侧120。轮毂200位于电机100的迎风侧110且与电机100同轴设置,轮毂200的最大外径尺寸小于电机100的轴向通道15的最小内径尺寸,便于外界来流空气进入轴向通道15中。轮毂200通过安装于其外周侧的叶轮的转动带动电机100转动。
机舱300位于电机100的背风侧120,可选的,机舱300的外轮廓在径向上与电机100的轴向通道15相隔预定间距,便于轴向通道15中吸收热量的热空气排出外界环境中。机舱300上设置有进风口310和与电机100的冷却设备14连通的出风管路320。进风口310处可以设置过滤件,以排除外界来流空气中的杂质。
本申请实施例提供的风力发电机组,在发电过程中,除了捕捉风的动能以转化为电能外,还可以充分挖掘风的热量输运潜能。通过对电机100本体结构的构造,构建两条结构上相互隔离的主、被动冷却回路,降低了冷却设备14的功率和自耗电,提升了整机的发电效率,减小了冷却设备14的体积和重量,节省了机舱300的空间,实现了冷却系统与电机的结构高度集成化,降低了冷却系统的成本。
此外,根据以上所述的示例性实施例的电机可被应用到各种需要设置电机的设备中,例如但不限于风力发电机组。
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;不定冠词“一个”不排除多个;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (13)

  1. 一种电机(100),其特征在于,所述电机(100)包括相互隔离且均与外界环境连通的主动冷却回路(A)和被动冷却回路(B);
    其中,所述主动冷却回路(A)包括相互连通的位于所述电机的轴向(X)两端的腔室(11a,11b)、所述电机的转子(10)与定子(20)之间的气隙(12),以及沿所述定子(20)的所述轴向(X)间隔分布的径向通道(13),所述主动冷却回路(A)中设置有与所述外界环境连通的冷却设备(14);
    所述被动冷却回路(B)包括在所述轴向(X)上贯穿所述定子(20)的轴向通道(15)和所述电机(100)的外表面。
  2. 根据权利要求1所述的电机(100),其特征在于,所述定子(20)包括沿所述轴向(X)间隔布置的多个铁芯组件(21),所述径向通道(13)形成于每相邻的两个所述铁芯组件(21)之间;
    所述轴向通道(15)包括沿所述轴向(X)贯穿所述多个铁芯组件(21)的定子轴向通道(15a),每个所述铁芯组件(21)包括轭部(22)和与所述轭部(22)一体成型的齿部(23),所述齿部(23)在所述铁芯组件(21)的周向(Z)上间隔设置有多个齿槽(23a),所述轭部(22)上设置有与所述齿槽(23a)对应的通孔(22a),相邻的所述铁芯组件(21)之间设置有与所述通孔(22a)相互连通的套管(24),所述通孔(22a)与所述套管(24)形成所述定子轴向通道(15a)。
  3. 根据权利要求2所述的电机(100),其特征在于,所述定子(20)通过定子支架(27)固定于固定轴(27c)上,所述定子支架(27)包括沿所述轴向(X)相对设置的第一端板(27a)和第二端板(27b),所述第一端板(27a)上设置有贯穿所述第一端板(27a)的第一套管(1),所述第二端板(27b)上设置有贯穿所述第二端板(27b)的第二套管(2);
    所述轴向通道(15)进一步包括与所述定子轴向通道(15a)相互连通的所述第一套管(1)和所述第二套管(2),且所述被动冷却回路(B)通过所述第一套管(1)、所述套管(24)和所述第二套管(2)与所述主 动冷却回路(A)相互隔离。
  4. 根据权利要求3所述的电机(100),其特征在于,所述定子支架(27)进一步包括位于所述第一端板(27a)和所述第二端板(27b)之间且同轴设置的第一隔板(28a)和第二隔板(28b),所述第一隔板(28a)和所述第二隔板(28b)均与所述轭部(22)密封连接并固定于所述固定轴(27c),所述第一端板(27a)与所述第一隔板(28a)沿所述电机(100)的径向(Y)内侧密封连接,所述第二端板(27b)与所述第二隔板(28b)之间设置有径向过滤件(16);
    所述第一隔板(28a)上开设有进风口(1a),所述第二隔板(28b)上开设有进风口(1b)和出风口(1c),所述第一隔板(28a)与所述第二隔板(28b)之间通过第三隔板(29)分为第一腔体(29a)和第二腔体(29b),所述进风口(1a,1b)与所述第一腔体(29a)连通,所述出风口(1c)与所述第二腔体(29b)连通,所述冷却设备(14)设置于所述出风口(1c)外侧,所述第二隔板(28b)的所述进风口(1c)上设置有轴向过滤件(17)。
  5. 根据权利要求4所述的电机(100),其特征在于,外界来流空气(C)在所述冷却设备(14)的驱动下分两条支路(R1,R2)分别进入所述电机(100)的轴向两端的所述腔室(11a,11b)内,其中一条所述支路(R1)通过所述轴向过滤件(17)进入所述第一腔体(29a)后绕流所述第一套管(1)进入一端的所述腔室(11a)中,另一条所述支路(R2)通过所述径向过滤件(16)进入另一端的所述腔室(11b)中并绕流所述第二套管(2),进入所述腔室(11a,11b)内的所述两条支路(R1,R2)沿所述主动冷却回路(A)依次流经所述绕组(26)、所述转子(10)和所述铁芯组件(21)后、绕流所述套管(24)进入所述第二腔体(29b),并通过所述冷却设备(14)排出。
  6. 根据权利要求3所述的电机(100),其特征在于,所述转子(10)通过转子支架(18)固定于转动轴(18a)上,所述转子(10)包括转子磁轭(10a)和安装于所述转子磁轭(10a)上的永磁体(10b),所述转子支架(18)与所述转子磁轭(10a)之间沿所述周向(Y)间隔设置有多个 支撑筋(18b),所述多个支撑筋(18b)间形成有环形间隙,以使所述外界来流空气经所述环形间隙从所述第一端板(27a)一侧流向所述第二端板(27b)一侧。
  7. 根据权利要求6所述的电机(100),其特征在于,所述转子磁轭(10a)沿所述轴向(X)设置有与所述第一端板(27a)位于同侧的导流装置(30),所述导流装置(30)为内部中空的薄壁回转体,其沿自身径向(Y)的截面包括相交的外母线(30a)和内母线(30b),所述外母线(30a)的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向逐渐变小,所述内母线(30b)的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向逐渐变大。
  8. 根据权利要求7所述的电机(100),其特征在于,所述转子磁轭(10a)沿所述轴向(X)进一步设置有与所述第二端板(27b)位于同侧的加速装置(40),所述加速装置(40)为内部中空的薄壁回转体,其沿自身径向(Y)的截面包括相交的外母线(40a)和内母线(40b),所述外母线(40a)和所述内母线(40b)的纬圆半径沿所述轴向(X)远离所述转子磁轭(10a)一侧的方向均逐渐变大。
  9. 根据权利要求8所述的电机(100),其特征在于,外界来流空气(C)经过所述导流装置(30)时被分流为第一气流(C1)和第二气流(C2),所述第一气流(C1)经由所述环形间隙进入所述轴向通道(15),流经所述定子(20)后并绕流所述加速装置(40);
    所述第二气流(C2)与所述电机(100)的所述外表面的外界气流(C’)汇合后形成第三气流(C3),并沿所述轴向(X)附着在所述转子磁轭(10a)的外表面后绕流所述加速装置(40);
    所述第一气流(C1)和所述第三气流(C3)在所述加速装置(40)的内、外侧产生压差(△P),以驱动所述第一气流(C1)和所述第二气流(C2)继续流动。
  10. 根据权利要求2所述的电机(100),其特征在于,所述通孔(22a)设置于所述轭部(22)上;
    或者,每个所述铁芯组件(21)包括沿所述径向(Y)且靠近所述轭 部(22)设置的附接部,所述通孔(22a)设置于所述附接部;
    或者,所述通孔(22a)包括沿所述径向(Y)分布的两部分,其中一部分位于所述轭部(22),另一部分位于所述附接部。
  11. 根据权利要求2或10任一项所述的电机(100),其特征在于,所述通孔(22a)的数量为至少一个,所述至少一个通孔(22a)在所述铁芯组件(21)的周向(Z)上间隔设置,至少一个所述通孔(22a)为方形孔、圆孔和多边形孔中任一者;或者,至少一个所述通孔(22a)内设置有筋条(22b)。
  12. 根据权利要求3所述的电机(100),其特征在于,所述第一套管(1)具有可导热设置的内壁和外壁,所述第二套管(2)具有热隔离设置的内壁和外壁,所述套管(24)具有热隔离设置的内壁和外壁。
  13. 一种风力发电机组,其特征在于,所述风力发电机组包括:
    如权利要求1-12任一项所述的电机(100),所述电机(100)沿轴向具有迎风侧(110)与背风侧(120);
    轮毂(200),位于所述电机(100)的所述迎风侧(110)且与所述电机(100)同轴设置,所述轮毂(200)通过安装于其外周侧的叶轮的转动带动所述电机(100)转动;以及
    机舱(300),位于所述电机(100)的所述背风侧(120),所述机舱(300)上设置有进风口(310)和与所述电机(100)中的所述冷却设备(14)连通的出风管路(320)。
PCT/CN2019/070442 2018-09-06 2019-01-04 电机及风力发电机组 WO2020048073A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19858460.9A EP3819497B1 (en) 2018-09-06 2019-01-04 Generator and wind turbine
US16/766,671 US11431226B2 (en) 2018-09-06 2019-01-04 Generator and wind turbine
AU2019335165A AU2019335165B2 (en) 2018-09-06 2019-01-04 Generator and wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811037781.6A CN109412339B (zh) 2018-09-06 2018-09-06 电机及风力发电机组
CN201811037781.6 2018-09-06

Publications (1)

Publication Number Publication Date
WO2020048073A1 true WO2020048073A1 (zh) 2020-03-12

Family

ID=65464529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070442 WO2020048073A1 (zh) 2018-09-06 2019-01-04 电机及风力发电机组

Country Status (5)

Country Link
US (1) US11431226B2 (zh)
EP (1) EP3819497B1 (zh)
CN (1) CN109412339B (zh)
AU (1) AU2019335165B2 (zh)
WO (1) WO2020048073A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3557733T3 (da) * 2018-04-18 2021-05-31 Siemens Gamesa Renewable Energy As Spoledannelse i en elektrisk maskine med koncentrerede viklinger
CN109861438B (zh) * 2019-03-13 2020-09-29 浙江大学 控制发电机的轴承连接部件温度的装置及风力发电机
EP4016803A1 (de) 2020-12-18 2022-06-22 Wobben Properties GmbH Generator einer windenergieanlage, statorsegment und stator sowie rotorsegment und rotor eines generators, windenergieanlage, verfahren zur kühlung eines generators
CN114665662A (zh) * 2020-12-23 2022-06-24 新疆金风科技股份有限公司 发电机以及风力发电机组
CN113315276B (zh) * 2021-06-02 2023-07-11 新疆金风科技股份有限公司 定子冷却装置、电机以及风力发电机组
CN113629910B (zh) * 2021-08-12 2022-12-20 哈电风能有限公司 一种风力发电机散热结构及风力发电装置
CN113726096B (zh) * 2021-08-30 2024-03-29 大连日牵电机有限公司 牵引电机带冷却器的双风扇冷却结构
CN116388499B (zh) * 2023-05-26 2023-08-11 山东科技大学 一种定子模块化双边永磁励磁型磁场调制风力发电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473514A (zh) * 2006-06-22 2009-07-01 维奥机电设备有限公司 冷却电机的方法和设备
CN101728901A (zh) * 2008-10-28 2010-06-09 西门子公司 用于冷却电机的装置
CN102265487A (zh) * 2008-12-23 2011-11-30 西门子公司 包含多个冷却流的电机及冷却方法
CN102725945A (zh) * 2009-12-17 2012-10-10 Abb有限公司 用于冷却电机的装置和方法
CN102738913A (zh) * 2011-03-31 2012-10-17 通用电气公司 轴向冷却式发电机
CN103280903A (zh) * 2013-05-17 2013-09-04 曹宇轩 一种电机定子铁心的结构及冷却方法
EP3236065A1 (en) * 2016-04-19 2017-10-25 Siemens Aktiengesellschaft Wind turbine and method for guiding cooling air to an electric machine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU997184A1 (ru) * 1981-08-07 1983-02-15 Ленинградское Производственное Электромашиностроительное Объединение "Электросила" Им.С.М.Кирова Электрическа машина
US4682064A (en) 1986-03-31 1987-07-21 General Electric Company Coolant gas flow separator baffle for a dynamoelectric machine
DE102004018758A1 (de) * 2004-04-16 2005-11-03 Klinger, Friedrich, Prof. Dr.-Ing. Turmkopf einer Windenergieanlage
US7154191B2 (en) * 2004-06-30 2006-12-26 General Electric Company Electrical machine with double-sided rotor
DE102008050848A1 (de) * 2008-10-08 2010-04-15 Wobben, Aloys Ringgenerator
EP2182619B1 (en) 2008-10-28 2012-10-03 Siemens Aktiengesellschaft Arrangement for cooling of an electrical machine
EP2518868B1 (en) 2011-04-27 2014-02-12 Siemens Aktiengesellschaft Cooling arrangement for an electric machine
CN105553182B (zh) * 2016-03-02 2018-09-14 新疆金风科技股份有限公司 一种风力发电机系统及流体输运装置
CN106640554B (zh) 2016-12-12 2019-01-08 北京金风科创风电设备有限公司 风力发电机组散热系统、散热方法及风力发电机组
CN106655564B (zh) * 2016-12-23 2019-05-10 北京金风科创风电设备有限公司 定子铁心单元、定子、电机及风力发电机组
CN107612172B (zh) * 2017-08-21 2020-11-10 北京金风科创风电设备有限公司 电机绕组、电机及风力发电机组
CN207766098U (zh) * 2018-01-24 2018-08-24 杭州径游发电设备有限公司 一种立式水轮发电机组的通风散热系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473514A (zh) * 2006-06-22 2009-07-01 维奥机电设备有限公司 冷却电机的方法和设备
CN101728901A (zh) * 2008-10-28 2010-06-09 西门子公司 用于冷却电机的装置
CN102265487A (zh) * 2008-12-23 2011-11-30 西门子公司 包含多个冷却流的电机及冷却方法
CN102725945A (zh) * 2009-12-17 2012-10-10 Abb有限公司 用于冷却电机的装置和方法
CN102738913A (zh) * 2011-03-31 2012-10-17 通用电气公司 轴向冷却式发电机
CN103280903A (zh) * 2013-05-17 2013-09-04 曹宇轩 一种电机定子铁心的结构及冷却方法
EP3236065A1 (en) * 2016-04-19 2017-10-25 Siemens Aktiengesellschaft Wind turbine and method for guiding cooling air to an electric machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3819497A4 *

Also Published As

Publication number Publication date
AU2019335165B2 (en) 2021-10-21
US20200373812A1 (en) 2020-11-26
EP3819497A4 (en) 2021-07-21
AU2019335165A1 (en) 2020-06-11
EP3819497B1 (en) 2022-12-21
US11431226B2 (en) 2022-08-30
CN109412339B (zh) 2020-04-28
EP3819497A1 (en) 2021-05-12
CN109412339A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020048072A1 (zh) 电机及风力发电机组
WO2020048073A1 (zh) 电机及风力发电机组
US9287747B2 (en) Wind power generator with internal cooling circuit
CN106451866B (zh) 电机转子支架以及电机
EP2182618B1 (en) Arrangement for cooling of an electrical machine
WO2020220836A1 (zh) 冷却装置、电机及风力发电机组
US11073136B2 (en) Cooling arrangement
EP2802774B1 (en) Cooling system of a wind turbine
WO2021027301A1 (zh) 定子分块、定子组件以及定子组件的冷却系统
CN101123380A (zh) 转子空冷定子蒸发冷却的汽轮发电机
US20210013768A1 (en) Electric machine with integrated cooling system
WO2020220834A1 (zh) 冷却系统、电机及风力发电机组
WO2020220835A1 (zh) 冷却系统、电机及风力发电机组
CN217935326U (zh) 一种高散热性能的贯流泵用潜水电机
CN217783801U (zh) 一种高散热性能的大功率潜水贯流泵
CN113931937A (zh) 轴承冷却系统、轴承冷却方法和风力发电机组
CN115360860A (zh) 一种潜水贯流泵配用大功率潜水电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019335165

Country of ref document: AU

Date of ref document: 20190104

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 19 858 460.9

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE