WO2020047858A1 - 用于激光测距的方法和装置 - Google Patents

用于激光测距的方法和装置 Download PDF

Info

Publication number
WO2020047858A1
WO2020047858A1 PCT/CN2018/104677 CN2018104677W WO2020047858A1 WO 2020047858 A1 WO2020047858 A1 WO 2020047858A1 CN 2018104677 W CN2018104677 W CN 2018104677W WO 2020047858 A1 WO2020047858 A1 WO 2020047858A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
sampling
state
modules
transmitting
Prior art date
Application number
PCT/CN2018/104677
Other languages
English (en)
French (fr)
Inventor
刘祥
洪小平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to EP18932407.2A priority Critical patent/EP3848670A4/en
Priority to CN201880009584.5A priority patent/CN111164379A/zh
Priority to PCT/CN2018/104677 priority patent/WO2020047858A1/zh
Publication of WO2020047858A1 publication Critical patent/WO2020047858A1/zh
Priority to US17/194,192 priority patent/US20210208250A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Definitions

  • the present application relates to the field of image processing, and in particular, to a method and device for laser ranging.
  • the ranging circuit In the laser ranging system, in order to ensure the measurement accuracy, the ranging circuit will use high-performance (such as high bandwidth, high slew rate, etc.) analog chips to reduce the loss of signal quality, and high-performance (such as high sampling rate, sampling High precision) digital chip to provide sufficient sampling accuracy.
  • high-performance analog and digital chips usually consume a lot of power and emit a lot of heat during work.
  • the temperature of the chip can be 20 ° C or higher than the ambient temperature, resulting in a severe reduction in the ambient temperature range in which the entire system can work normally. It also increases the design cost of the system cooling solution.
  • the present application provides a method and device for laser ranging, which can reduce the power consumption of the laser ranging device.
  • a method for laser ranging includes: when a target device in the laser ranging device is idle, controlling the target device from a first state to a second state, and the target device is in the The power consumption in the second state is less than the power consumption in the first state, wherein the laser ranging device includes at least one transmitting module, at least one receiving module, at least one sampling module, and at least one arithmetic module.
  • the target device is At least one device in at least one module in the laser ranging device; wherein the transmitting module is configured to send a laser pulse, and the receiving module is configured to receive an optical signal returned by the laser pulse after being reflected by an object, and The optical signal is converted into an electrical signal.
  • the sampling module is configured to: perform sampling processing on the electrical signal to obtain a sampling result.
  • the operation module is configured to: determine a distance from the object according to the sampling result.
  • an apparatus for laser ranging for performing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • the apparatus includes a unit for performing the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • an apparatus for laser ranging including: a storage unit and a processor, where the storage unit is configured to store instructions, the processor is configured to execute instructions stored in the memory, and when the processor executes the When the instructions are stored in the memory, the execution causes the processor to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • a computer-readable medium for storing a computer program, the computer program including instructions for performing the first aspect or the method in any possible implementation of the first aspect.
  • a computer program product including instructions is provided, and when the computer runs the finger of the computer program product, the computer executes the use of the first aspect or any possible implementation manner of the first aspect.
  • the computer program product can be run on the apparatus for laser ranging according to the second aspect.
  • FIG. 1 is a schematic diagram of a laser ranging device according to an embodiment of the present application.
  • FIG. 2 is another schematic diagram of a laser ranging device according to an embodiment of the present application.
  • FIG. 3 is a timing diagram of a single-channel laser ranging device according to an embodiment of the present application.
  • FIG. 4 is a timing diagram of a multi-channel laser ranging device according to an embodiment of the present application.
  • FIG. 5 is another schematic diagram of a laser ranging device according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for laser ranging according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a laser ranging device according to an embodiment of the present application.
  • the invention provides a laser distance measuring device.
  • the laser distance measuring device can be used to measure the distance between the detection object and the laser distance measuring device. Furthermore, the position of the detection object with respect to the laser distance measuring device can also be detected.
  • the laser ranging device may include a radar, such as a lidar.
  • the laser ranging device can detect the distance between the detecting object and the laser ranging device by measuring the time of light propagation between the laser ranging device and the detected object, that is, the time-of-flight (TOF).
  • TOF time-of-flight
  • the laser ranging device may also detect the distance between the detection object and the laser ranging device by other technologies, which is not limited herein.
  • the laser ranging device is a sensing system for the outside world, and can learn the three-dimensional and three-dimensional information of the outside world, and is no longer limited to the plane sensing mode of the outside world such as a camera. Its principle is to actively emit a laser pulse signal to the outside, detect the reflected pulse signal, determine the distance of the measured object based on the time difference between transmission and reception, and combine the light pulse's emission angle information to reconstruct the three-dimensional depth information. .
  • FIG. 1 shows a schematic diagram of a laser ranging device 1000.
  • the laser ranging device 1000 may include at least one transmitting module 1010, at least one receiving module 1020, at least one sampling module 1030, and at least one arithmetic module 1040.
  • the laser ranging device 1000 may further include a control module 1050.
  • the laser ranging device 1000 includes a transmitting module 1010, a receiving module 1020, a sampling module 1030, and a computing module 1040 as an example, but the embodiment of the present application is not limited thereto.
  • the transmitting module 1010 is configured to: send a laser pulse;
  • the receiving module 1020 is configured to: receive the optical signal returned by the laser pulse after being reflected by an object, and convert the optical signal into an electrical signal;
  • the sampling module 1030 is configured to perform sampling processing on the electrical signal to obtain a sampling result, and the operation module 1040 is configured to determine a distance from the object according to the sampling result.
  • FIG. 2 shows a structural diagram of a laser ranging device according to an embodiment of the present application.
  • the laser ranging device includes a transmitting module, a receiving module, a sampling module, an operation module, and a control module. Examples will be described.
  • the laser ranging device transmits a laser pulse sequence through a transmitting module.
  • the transmitting module may include a transmitting circuit, for example, the transmitting circuit includes a PIN photodiode, and a laser pulse of a specific wavelength is transmitted through the transmitting circuit.
  • the laser pulse is reflected / scattered after encountering the object, and the optical signal is returned.
  • the receiving module in the laser ranging device receives the returned optical signal.
  • the receiving module may include a photoelectric conversion circuit.
  • the optical signal is converted into an electrical signal;
  • the receiving module may further include an analog amplification circuit, such as a trans-impedance amplifier (TIA) and an amplifier (AMP).
  • TIA trans-impedance amplifier
  • AMP amplifier
  • the analog amplification circuit amplifies and shapes the electrical signal.
  • the sampling module in the laser ranging device samples the analog signal output by the receiving module to obtain a sampling result.
  • the sampling module can be implemented based on a time-to-digital converter (TDC) measurement method.
  • the sampling module includes a signal comparator and a TDC.
  • the signal comparator may be an analog comparator (COMP), which is used to convert an analog signal into a digital signal.
  • the TDC calculates and outputs the time based on the result of the signal comparator output.
  • the sampling module can also be implemented based on an analog-to-digital converter (ADC) measurement method.
  • ADC analog-to-digital converter
  • the computing module in the laser ranging device determines the distance between the laser ranging device and the object according to the sampling result output by the sampling module. For example, the computing module determines the distance between the transmission and reception of the laser pulse and the speed of light. The distance of the object.
  • the control module in the laser ranging device can be used to control the starting and stopping of each module in the laser ranging device or each device included in each module.
  • the operation module and the control module in the laser ranging device may belong to a digital processing system in the laser ranging device.
  • the digital processing system may be a programmable logic device (PLD), for example, Field programmable gate array (Field-Programmable Gate Array, FPGA), or complex programmable logic device (Complex Programmable Logic Device, CPLD), but the embodiment of the present application is not limited to this.
  • PLD programmable logic device
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • a transmitting module transmits a laser pulse sequence along an emission path;
  • a receiving module can receive the laser pulse sequence of the emission path through the laser reflected by the detected object. Pulse sequence, and photoelectric conversion of the laser pulse sequence to obtain an electric signal, or processing the electric signal;
  • a sampling module can sample the electric signal, and an arithmetic module can calculate the detected signal based on the sampling result The distance between the object and the laser ranging device.
  • a transmitting module emits a laser pulse sequence (that is, a laser pulse sequence of an exit path), and sequentially passes through a receiving module, a sampling module, and a computing module. After processing, the results of this measurement are finally determined.
  • a laser pulse sequence that is, a laser pulse sequence of an exit path
  • the time required from the emission of the laser pulse from the transmitting module to the calculation of the computing module is t.
  • the specific size of t depends on the distance between the object detected by the laser pulse and the laser ranging device. The longer the distance, the greater t. The further the object is from the laser ranging device, the weaker the light signal reflected by the object is. When the reflected optical signal is weak to a certain extent, the laser ranging device cannot detect the optical signal. Therefore, the distance between the object corresponding to the weakest optical signal detected by the laser ranging device and the laser ranging device is referred to as the farthest detection distance of the laser ranging device.
  • the t value corresponding to the farthest detection distance is hereinafter referred to as t0.
  • the duty cycle is greater than t0. In some implementations, the duty cycle is at least 10 times greater than t0. In some implementations, the duty cycle is greater than 15 times t0.
  • the transmitting module transmits a laser pulse sequence at time a1.
  • the operation result is obtained at time b1, and the time between time a1 and time b1 Is t1; then, the transmitting module transmits a laser pulse sequence again at time a2.
  • the operation result is obtained at time b2, and the time between time a2 and time b2 is t2 ; Then, the transmitting module transmits a laser pulse sequence again at time a3.
  • the operation result is obtained at time b3, and the time between time a3 and time b3 is t3.
  • the duration of t1, t2, and t3 is less than or equal to the above t0; a2 is later than b1, and a3 is later than b2; the time between a1 and a2 is P1, and the time between a2 and a3 is P3, which
  • the durations P1 and P2 are the working periods mentioned above.
  • the P1 and P2 can be set to the same value or different values.
  • the laser ranging device shown in FIG. 2 is described by using a single channel as an example, that is, the laser ranging device includes a transmitting module for emitting a laser pulse sequence on an emitting path.
  • the laser ranging device further includes a receiving module, a sampling module, and an operation module, and sequentially processes at least part of the optical signals reflected by the laser pulse sequence emitted by the exit path.
  • the laser ranging device may also be a multi-channel device.
  • the laser ranging device includes multiple transmitting modules, multiple receiving modules, multiple sampling, and multiple computing modules, wherein the multiple transmitting modules, multiple receiving modules, multiple There is a one-to-one correspondence between the sampling module and the plurality of arithmetic modules, so as to realize multi-channel measurement of the laser ranging device. That is, each channel includes a transmitting module, a receiving module, a sampling module, and a computing module corresponding to the channel.
  • the working timing of the channel can be referred to FIG. 3, within a time period between two adjacent laser pulses of the laser ranging device, that is, for the laser measurement
  • the laser pulse is reflected / scattered by the object and then returns to an optical signal
  • the laser pulse belongs to the plurality of receiving modules included in the laser ranging device.
  • the receiving module of the channel receives the optical signal of the channel, and the receiving module converts the received returned optical signal into an electrical signal.
  • the sampling modules belonging to the channel respectively perform sampling processing on the electric signals of the road, and output the sampling results.
  • the computing modules belonging to the channel respectively determine the distance between the object reflecting the laser pulse and the laser ranging device according to the sampling result.
  • the transmitting modules of different channels in the laser ranging device respectively emit laser pulse sequences with different exit paths.
  • the multiple laser pulses can be used to emit laser pulse sequences at different emission angles, or multiple parallel laser pulse sequences can be emitted at the same emission angle.
  • the multiple transmitting modules can emit laser pulses simultaneously, or the multiple transmitting modules can also emit laser pulses at different times.
  • each receiving module of the plurality of receiving modules is configured to receive an optical signal reflected by a laser pulse emitted by a transmitting module of a channel in which the laser pulse is reflected by a detection object.
  • any two adjacent laser pulses emitted by the laser ranging device that is, after any one laser pulse emitted by the laser ranging device and before the next laser pulse is emitted
  • the two adjacent transmissions may be between the two adjacent transmissions of the time of any one transmission module; or, after one transmission of any one transmission module and before the next transmission of the other transmission module; or, the two transmission modules are between Two laser pulses of different angles emitted at the same time.
  • the time between any two adjacent laser pulses emitted by the laser ranging device includes: from the time when a laser module transmits a laser pulse to a receiver module corresponding to the one transmitter module among multiple receiver modules Receive the optical signal returned by the laser pulse after being reflected by the object, and convert the optical signal into an electrical signal; among a plurality of sampling modules in the laser ranging device, a sampling module corresponding to the one transmitting module, and the electrical signal Sampling processing is performed to obtain a sampling result; an operation module corresponding to the one transmitting module among the plurality of operation modules determines a distance from the object according to the sampling result.
  • the relationship between the working timing of different channels can be various.
  • each channel in the multi-channel laser ranging device works in sequence. Because the various modules in the multi-channel laser ranging device are not multiplexed, the different channels are independent of each other. For any one channel, the time interval between the two adjacent laser pulses is called the duty cycle. For example, take the four channels shown in FIG. 4 as an example: after the transmitting circuit of the first channel transmits the laser pulse sequence, the transmitting circuit of the first channel transmits the laser pulse again after an interval of T1, and the interval T1 is the first The duty cycle of one channel; Similarly, the second channel emits laser pulses at a time interval T2. The duty cycle of the second channel is T2, and so on. The duty cycle of the third channel is T3 and the duty cycle of the fourth channel is T4. . Among them, since there are no multiplexed modules between the channels, and the channels are relatively independent, T1, T2, T3, and T4 can be set to different values or to the same value.
  • the optical signal reflected by the furthest object that can be detected will be processed by the receiving circuit, the sampling circuit, and the arithmetic circuit in sequence within the next interval time T, where , T is the duty cycle corresponding to each channel.
  • T is the duty cycle corresponding to each channel.
  • the working period of the channel the period between the start time of the laser pulse sequence emitted by the transmitting circuit and the time when the arithmetic circuit completes the operation.
  • the transmitting circuit of channel 1 transmits a laser pulse sequence at time a1, and the laser pulse sequence is processed by the receiving circuit, sampling circuit, and operation circuit of channel 1 in sequence, and the operation result is obtained at time b1, and time a1
  • the time between time and time b1 is t1, and t1 is the working period; then, the transmitting circuit of channel 2 transmits a laser pulse sequence at time a2, and the laser pulse sequence is processed by the channel 2 receiving circuit, the sampling circuit, and the arithmetic circuit in sequence.
  • the calculation result is obtained at time b2, and the time between time a2 and time b2 is t2; then, the transmitting circuit of channel 3 also emits a laser pulse sequence at time a2, which sequentially passes through the receiving circuit, sampling circuit and After the arithmetic circuit processes, the operation result is obtained at time b2, and the time between time a2 and time b2 is t2; then, the transmitting circuit of channel 4 transmits a laser pulse sequence at time a3, which sequentially passes through the receiving circuit of channel 4, After processing by the sampling circuit and the arithmetic circuit, the operation result is obtained at time b3, and the time length between time a3 and time b3 is t4. Correspondingly, and so on, the time when the laser pulse is emitted for the second time in each channel is shown in FIG. 4, which will not be repeated here.
  • the start times of working periods in different channels may be different, may be the same, or there may be partial overlap of working periods in different channels.
  • a2 is later than b1, that is, the laser ranging is performed between channel 1 and channel 2 in sequence, and the working periods do not overlap at all; channel 2 and channel 3 are also sent at time a2, that is, during the working period of channel 2 and channel 3.
  • the start time is the same, but due to different measurement distances, or other reasons, the length of the working period of the channel 2 and channel 3 may be different, that is, the end time b2 of the end channel 2 is different from the end time b2 'of the channel 3; and the channel 4
  • the start time a3 of is later than the start time a2 of channel 3 and earlier than the end time b2 'of channel 3. Therefore, the start times of the working periods of channel 3 and channel 4 are different, but there are some overlaps in the working periods.
  • working periods in different channels can be completely staggered, or the starting points of working periods in different channels can be the same, which is not limited here.
  • the above description uses the four channels included in the multi-channel laser ranging device as an example.
  • the relationship between the working periods of each channel may include the working periods of the four channels. There are one or more situations in the relationship among them, and the embodiments of the present application are not limited thereto.
  • At least part of the components of the transmitting module may be multiplexed in different channels.
  • the working periods of the channels need to be completely staggered.
  • the laser ranging device may include a transmitting module and a plurality of receiving modules.
  • the transmitting module is used for transmitting laser pulses.
  • the laser ranging device may further include an optical path changing module or a transmitting module in the laser ranging device.
  • a light path changing element is included in the light path changing module / element, which can be used to divide a laser pulse emitted by the transmitting module into at least two laser pulses, and the at least two laser pulses correspond to multiple receiving modules one by one, that is, a receiving module It is used to receive the returned optical signal corresponding to one of the laser pulses, so as to realize the multi-channel application of the laser ranging device.
  • the laser ranging device includes an optical path changing module as an example.
  • the optical path changing module divides one laser pulse sent by the transmitting module into at least two laser pulses, wherein the at least two laser pulses may include laser pulses having different emission angles and / or laser pulses emitted at different times.
  • the optical path changing module may divide one laser pulse sent by the transmitting module into at least two laser pulses with different emission angles.
  • the optical path changing module includes a polygon mirror, and each mirror is located on a path emitted by the transmitting module. Part of the light path of the laser pulse is reflected by different mirrors in different directions.
  • the optical path changing module may also divide one laser pulse sent by the transmitting module into at least two laser pulses at different times.
  • the optical path changing module includes a galvanometer to reflect this laser pulse to different directions at different times. The application examples are not limited to this.
  • the transmitting module includes a laser diode, a switching device of the laser diode, and a driving device of the switching device.
  • Different channels multiplex devices other than laser diodes in the transmitting module.
  • the transmitting module of each channel includes a respective laser diode, and the laser diode of each channel is used to emit a laser pulse sequence.
  • Different channels multiplex the switching devices and / or driving devices in the transmitting module. That is, during the working period of each channel, the multiplexed switching device and / or driving device drives the laser diode in the channel.
  • the different channels can be used for at least some of the components in the receiving module, the sampling module, and the computing module. Multiplexing, that is, the at least part of the device is shared in different channels.
  • the receiving module may include a photoelectric conversion device, the photoelectric conversion device may convert the detected laser pulse sequence into an electrical signal, and the photoelectric conversion device may include a PIN diode or an avalanche photodiode.
  • the receiving module may further include a signal processing circuit, which may implement signal amplification and / or filtering.
  • the signal processing circuit may include an amplifier circuit, which may amplify an electrical signal, and may specifically perform at least one stage. Amplification. The number of stages of amplification can be determined according to the components of the sampling circuit. For example, when the components of the sampling circuit include an ADC, the amplifier circuit of one stage can be sampled for amplification. As another example, when the components of the sampling circuit include a signal comparator (for example, an analog comparator (COMP) can be used to convert an electrical signal to a digital signal) and a time-to-digital converter TDC, two or more stages can be sampled. Amplifying circuits are used to perform amplification.
  • the first-stage amplification circuit may include a transimpedance amplifier, and the second-stage amplifier may include other types of signal amplifiers.
  • the signal processing circuit may also include a filter, and the filter may filter the electric signal.
  • the receiving module may include an amplifier circuit without a filter, or may include a filter circuit without an amplifier circuit, or may include both a filter and an amplifier circuit.
  • the multiplexed receiving module may include multiple photoelectric conversion devices, each of which is used to receive a laser pulse sequence and convert the received laser pulse sequence into an electrical signal.
  • the plurality of photoelectric conversion devices may work in a time-sharing manner, that is, different laser pulse sequences in the multiple laser pulse sequences reach the photoelectric converter at different times.
  • At least two electrical signals in the multiple electrical signals may multiplex at least one device of the receiving module except the photoelectric conversion device.
  • at least two electrical signals may be multiplexed with at least one device included in a signal processing circuit for implementing amplification and / or filtering.
  • the receiving module includes at least two transimpedance amplifiers, wherein each transimpedance amplifier of the at least two transimpedance amplifiers amplifies each of the at least two electrical signals separately. deal with.
  • the at least two transimpedance amplifiers communicate with the next-stage device of the transimpedance amplifier in a time-sharing manner by signal gating, or through a switch, or through a multiplexer.
  • the at least two electrical signals are multiplexed in the receiving module except for the photoelectric conversion device and at least one level downstream device that is continuous downstream of the photoelectric conversion device At least one device other than, wherein the downstream continuous at least one stage device includes a next stage device of the photoelectric conversion device. That is, in the multiplexing of the components of the receiving module, multiple electrical signals may be shunted first (that is, corresponding to different devices) and then multiplexed.
  • the signal amplification circuit and filter can be reused without transimpedance amplification; or, the filter can be multiplexed without restoration Use transimpedance amplifiers and signal amplification circuits.
  • the sampling module in the laser ranging device performs sampling processing on the at least one electrical signal respectively.
  • the computing module in the laser ranging device determines the distance from the object according to the sampling result output by the sampling module.
  • the sampling module and / or the operation module are multiplexed in different channels.
  • different channels of the laser ranging device multiplex the sampling module and the computing module.
  • Different channels in the laser ranging device share a sampling module and a computing module.
  • the receiving modules in the different channels are respectively connected to the same sampling module, and the sampling module is connected to an arithmetic module.
  • the transmitting module in any channel transmits a laser pulse
  • the receiving module in the channel receives the optical signal reflected by the light pulse from the object and outputs the processed electrical signal
  • the sampling module samples the electrical signal in the channel. , And then output the sampling result to the operation module.
  • any kind of laser ranging device is taken as an example to specifically describe the working principle of the laser ranging device, especially the working principle of the multi-channel laser ranging device.
  • the laser ranging device can use a coaxial optical path, that is, the light beam emitted by the laser ranging device and the reflected light beam share at least part of the optical path in the laser ranging device.
  • the laser ranging device may also use an off-axis optical path, that is, the light beam emitted by the laser ranging device and the reflected beam are transmitted along different optical paths in the laser ranging device, respectively.
  • FIG. 5 shows a schematic diagram of a laser ranging device according to an embodiment of the present application.
  • the laser ranging device 100 includes a light transmitting and receiving device 110.
  • the light transmitting and receiving device 110 includes a light source 103, a collimating element 104, a detector 105, and an optical path changing element 106.
  • the optical transceiver device 110 is configured to transmit a light beam, receive the returned light, and convert the returned light into an electrical signal.
  • the light source 103 is used for emitting a light beam, and the light source 103 may belong to the above-mentioned transmitting module. In one embodiment, the light source 103 may emit a laser beam.
  • the light source includes a laser diode package module for emitting a laser pulse in a direction at a certain angle with the first surface of the substrate of the laser diode package module, and the angle is less than or equal to 90 degrees.
  • the laser beam emitted by the light source 103 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 104 is disposed on the exit light path of the light source, and is used to collimate the light beam emitted from the light source 103 and collimate the light beam emitted from the light source 103 into parallel light.
  • the collimating element is also used to focus at least a portion of the reflected light reflected by the probe.
  • the collimating element 104 may be a collimating lens or other elements capable of collimating a light beam.
  • the distance detection device 100 further includes a scanning module 102.
  • the scanning module 102 is placed on the outgoing light path of the optical transceiver 110.
  • the scanning module 102 is used to change the transmission direction of the collimated light beam 119 emitted by the collimating element 104 and project it to the external environment, and project the returning light onto the collimating element 104. .
  • the returned light is focused on the detector 105 via the collimating element 104.
  • the scanning module 102 may include one or more optical elements, such as a lens, a mirror, a prism, a grating, an optical phased array, or any combination thereof.
  • multiple optical elements of the scanning module 102 can rotate around a common axis 109, and each rotating optical element is used to continuously change the propagation direction of the incident light beam.
  • multiple optical elements of the scanning module 102 can be rotated at different rotation speeds.
  • multiple optical elements of the scan module 102 may be rotated at substantially the same rotation speed.
  • multiple optical elements of the scanning module may also rotate around different axes, or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 102 includes a first optical element 114 and a driver 116 connected to the first optical element 114.
  • the driver 116 is configured to drive the first optical element 114 to rotate about the rotation axis 109, so that the first optical element 114 is changed.
  • the first optical element 114 projects the collimated light beam 119 to different directions.
  • the angle between the direction of the collimated light beam 119 after being changed by the first optical element and the rotation axis 109 changes with the rotation of the first optical element 114.
  • the first optical element 114 includes a pair of opposing non-parallel surfaces through which a collimated light beam 119 passes.
  • the first optical element 114 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the first optical element 114 includes a wedge-shaped prism, which is directed toward the straight beam 119 for refraction. In one embodiment, the first optical element 114 is coated with an antireflection coating, and the thickness of the antireflection coating is equal to the wavelength of the light beam emitted by the light source 103, which can increase the intensity of the transmitted light beam.
  • the scanning module 102 further includes a second optical element 115 that rotates around the rotation axis 109.
  • the rotation speed of the second optical element 115 is different from the rotation speed of the first optical element 114.
  • the second optical element 115 is used to change the direction of the light beam projected by the first optical element 114.
  • the second optical element 115 is connected to another driver 117, and the driver 117 drives the second optical element 115 to rotate.
  • the first optical element 114 and the second optical element 115 can be driven by different drivers, so that the rotation speeds of the first optical element 114 and the second optical element 115 are different, so that the collimated light beam 119 is projected into different directions of the external space and can be scanned Large spatial range.
  • the controller 118 controls the drivers 116 and 117 to drive the first optical element 114 and the second optical element 115, respectively.
  • the rotation speeds of the first optical element 114 and the second optical element 115 can be determined according to the area and pattern expected to be scanned in practical applications.
  • Drivers 116 and 117 may include motors or other driving devices.
  • the second optical element 115 includes a pair of opposing non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 115 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the second optical element 115 includes a wedge-shaped prism. In one embodiment, the second optical element 115 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
  • the rotation of the scanning module 102 can project light to different directions, such as directions 111 and 113, so as to scan the space around the detection device 100.
  • directions 111 and 113 are directions that are projected by the scanning module 102 to scan the space around the detection device 100.
  • the scanning module 102 receives the return light 112 reflected by the detection object 101 and projects the return light 112 onto the collimating element 104.
  • the collimating element 104 condenses at least a part of the return light 112 reflected by the probe 101.
  • the collimating element 104 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
  • the detector 105 and the light source 103 are placed on the same side of the collimating element 104. The detector 105 is used to convert at least part of the returned light passing through the collimating element 104 into an electrical signal.
  • the light source 103 may include a laser diode through which laser light in the nanosecond range is emitted.
  • the laser pulse emitted by the light source 103 lasts for 10 ns.
  • the laser pulse receiving time may be determined, for example, the laser pulse receiving time is determined by detecting a rising edge time and / or a falling edge time of an electrical signal pulse. In this way, the distance detection device 100 can calculate the TOF by using the pulse reception time information and the pulse emission time information, thereby determining the distance from the detection object 101 to the distance detection device 100.
  • the distance and orientation detected by the distance detection device 100 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the bandwidth requirement of the analog circuit part in the laser ranging device is relatively high.
  • the photoelectric conversion circuit and the analog amplification circuit are generally tens of MHz to hundreds of MHz.
  • the quiescent current of the analog chip used in the analog circuit is usually relatively large.
  • a quiescent current of about tens of mA will generate hundreds of mW of static power consumption, which will increase the temperature of the analog chip.
  • digital circuits (such as the sampling module and arithmetic module) that achieve high-precision measurements generally have higher operating clock frequencies. Digital circuits are constantly flipped with the system clock, which brings a large amount of power consumption and also increases the temperature of the digital chip. .
  • the analog and digital circuits in the laser ranging device have been in a working state all the time, and both have brought a lot of power consumption. This power consumption will cause a large temperature rise of the laser ranging device.
  • the normal temperature range of the analog chip and the digital chip is determined. The temperature rise will reduce the normal temperature range of the entire system. Especially in multi-channel applications, multi-channel analog and digital chips will increase power consumption multiples, and the system temperature rises sharply.
  • the working period of the components in each channel of a single channel or multiple channels in a working cycle only accounts for a small proportion of the working cycle. . If these components are always working, it will cause a lot of unnecessary waste of power consumption.
  • the embodiment of the present application proposes a method 1000 for laser ranging, which can reduce the power consumption of the laser ranging device.
  • FIG. 6 shows a schematic flowchart of a method 2000 for laser ranging according to an embodiment of the present application.
  • the method 2000 includes: 2010, when the target device in the laser ranging device is idle, controlling the target device from the first state to the second state, and the power consumption of the target device in the second state Less than the power consumption in this first state.
  • the target device may be at least one device in at least one module included in the laser ranging device, that is, the target device may be any one or more devices in the laser ranging device.
  • the laser ranging device may include at least one transmitting module, at least one receiving module, at least one sampling module, and at least one computing module.
  • the laser ranging device may further include one or more other modules. Embodiments of the present application It is not limited to this.
  • the method 2000 may be applied to a laser ranging device.
  • the method 2000 may be applied to any one of the laser ranging devices shown in FIG. 1-5.
  • the target device in the laser ranging device if the target device in the laser ranging device is idle, the target device is controlled to enter the second state from the first state, wherein the target device is at least one module included in the laser ranging device For at least one of the devices, the power consumption of the target device in the second state is less than the power consumption of the target device in the first state.
  • the method 2000 may further include: controlling the target device to enter the first state from the second state.
  • control the target device entering the second state from the first state includes: reducing the static circuit of the target device so that the quiescent current of the target device in the second state is lower than the quiescent current of the first state, that is, the target device enters a low-power state.
  • controlling the target device to enter the first state from the second state includes: adding a static circuit of the target device to restore the target device to a static current in the first state, thereby enabling normal operation to begin.
  • control the target device from the first A state entering the second state includes: lowering the turnover frequency of the target device, so that the turnover frequency of the target device in the second state is lower than the turnover frequency in the first state, that is, the target device enters a low power state and works.
  • the frequency decreases; correspondingly, controlling the target device to enter the first state from the second state includes: increasing the turnover frequency of the target device to restore the target device to the turnover frequency in the first state, so that normal work can be started and work The frequency returns to normal.
  • controlling the target device to enter the second state from the first state may further include: disconnecting the target device from the power supply so that the target device enters a sleep state.
  • the target device may be at least one transmitting module and at least one receiving device. At least one device in the module, when the target device does not need to work, the target device disconnects the power supply to reduce power consumption; correspondingly, controlling the target device to enter the first state from the second state includes: connecting the target device to the power source, Supply power to the target device, so that the target device enters a normal working state.
  • the target device in the laser ranging device in the first state refers to a state in which the target device can work normally, and the target device in the first state does not lose any measurement accuracy.
  • the target device in the second state compared with the first state, the power consumption is reduced, the target device cannot work normally, for example, the target device may not work or the working efficiency is low.
  • the target device includes a device in at least one transmitting module, and when the target device is in the first state, it can normally emit laser pulses.
  • the target device in the first state may be generating a laser pulse, or waiting to emit a laser pulse. If the target device is waiting for the laser pulse to be emitted, the target device is said to be in an idle state.
  • the target device when the target device is in the second state, the target device reduces the quiescent current, thereby reducing power consumption. In the second state, the target device cannot normally emit laser pulses.
  • the target device includes a device in at least one sampling module.
  • the target device When the target device is in the first state, it can normally perform sampling processing on the electrical signal, and the sampling frequency is high.
  • the target device in the first state may be sampling or waiting for sampling. If the target device is waiting for sampling, the target device is said to be idle.
  • the target device when the target device is in the second state, the turnover frequency of the target device is reduced, thereby reducing power consumption.
  • the target device cannot perform sampling processing at the frequency in the first state. For example, the target device may not be able to sample in the second state, or use a lower sampling frequency for sampling.
  • the time when the target device enters the second state from the first state may be determined through various conditions.
  • the interval between two adjacent transmitting laser pulses of the transmitting module is called a duty cycle T, that is, a period of time after the transmitting module transmits one laser pulse and before transmitting the next laser pulse.
  • the following uses a working cycle T in the above-mentioned single-channel laser ranging device as an example to illustrate the time when the target device enters the second state from the first state.
  • one transmitting module emits one laser pulse, which is processed by the receiving module, the sampling module, and the computing module in order, and finally the result of this measurement is determined until the next transmission
  • the module emits a laser pulse again.
  • the time required from the emission of the laser pulse from the transmitting module to the calculation of the computing module is t.
  • the distance between the object corresponding to the weakest optical signal that can be detected by the laser ranging device and the laser ranging device is called the farthest detection distance of the laser ranging device.
  • the t value corresponding to the farthest detection distance is hereinafter referred to as t0.
  • the target device includes at least one of each of a transmitting module, a receiving module, a sampling module, and an operation module in a single-channel laser ranging device.
  • the device can be controlled to enter the second state from the first state, that is, for multiple devices in the target device, according to its After completing the work sequence, sequentially control each device from the first state to the second state; or, when all modules in the laser ranging device have completed their work, control all target devices from the first state to the second state simultaneously.
  • the working order of the modules included in the laser ranging device is from front to back: a transmitting module, a receiving module, a sampling module, and a computing module.
  • the target device includes all devices in the four modules. When any device in any of the four modules completes the work in the current working cycle, it can enter the second state from the first state, that is, each of the four modules is controlled in turn in the order of the transmitting module, receiving module, sampling module, and computing module. The module enters the second state.
  • the devices in the transmitting module can enter the second state from the first state; similarly, the receiving module completes the optical signal conversion after receiving the corresponding returned optical signal
  • the receiving module completes the work
  • the devices in the receiving module can enter the second state from the first state;
  • the sampling module samples the electrical signals output by the receiving module to obtain the sampling result and completes the work.
  • the devices in the sampling module can complete the work.
  • the computing module determines the distance to the object and completes the work according to the sampling result.
  • the device in the computing module can enter the second state from the first state.
  • the four modules simultaneously enter the second state from the first state to wait for the next work cycle.
  • the receiving module receives the corresponding returned optical signal and completes the conversion of the optical signal into an electrical signal; the sampling module performs sampling processing on the electrical signal output by the receiving module to obtain a sampling result, and the operation module According to the sampling result, the distance to the object is determined.
  • the devices in the four modules can enter the second state from the first state.
  • the target device includes at least one device in each of a transmitting module, a receiving module, a sampling module, and a computing module in a single-channel laser ranging device.
  • the devices in the receiving module, the sampling module, and the computing module are controlled from the first state to the second state at the same time.
  • the third preset duration is not less than t0.
  • the target device includes at least one device in each of a transmitting module, a receiving module, a sampling module, and a computing module in a single-channel laser ranging device.
  • the devices in the receiving module, the sampling module, and the arithmetic module are controlled to sequentially enter the second state from the first state.
  • the time interval at which the receiving module, the sampling module, and the computing module enter the second state is preset.
  • the receiving module consistently fails to receive the returned optical signal, indicating that the distance measurement exceeds the maximum measurement distance of the laser ranging device, then it can be controlled
  • the devices in the four modules enter the second state sequentially or simultaneously from the first state, where the third preset time period can be set equal to the working time period t0 corresponding to the maximum measurement distance.
  • a multi-channel laser ranging device is used as an example to illustrate the time when the target device enters the second state from the first state.
  • the first case the multi-channel laser ranging device does not multiplex the devices in the circuit.
  • each channel can be the same as that of the single-channel laser ranging device described above. Multiple channels can be independent of each other.
  • the time points at which the transmitting modules of each channel emit laser pulse sequences are the same, that is, there are multiple channels transmitting laser pulse sequences simultaneously.
  • the multiple channels can simultaneously emit laser pulses in different directions. sequence.
  • the control module can control the devices of the same type in each channel at the same time from the first state to the second state at the same time after the laser pulse is emitted for a third preset time.
  • the control module may also control the same type of devices in each channel at the same time from the first state to the second state after a third preset time period + a certain time interval from the laser pulse emission.
  • the control module can also independently control the devices in each channel to enter the second state.
  • each channel can also work in sequence.
  • the emission time interval between two adjacent laser pulses is called the emission period.
  • the optical signal reflected by the furthest object that can be detected will be processed by the receiving module, sampling module, and computing module in sequence within the next interval T1, T2, or T3. Finish.
  • T1, T2, and T3 may be the same; or may be different.
  • a corresponding time interval T1, T2, or T3 is set.
  • each channel is independent of each other and does not affect each other. It is assumed here that the target device includes each of the transmitting module, the receiving module, the sampling module, and the computing module of any channel in the laser ranging device. At least one device in the module.
  • the time when each device enters the second state from the first state may include: when it is detected that any module in the channel completes the work, controlling the devices in the module to enter from the first state
  • the second state that is, the channel includes a transmitting module, a receiving module, a sampling module, and a computing module, and the four modules complete the work in order, and enter the second state in turn; or, when it is detected that all the modules in the channel have completed their work
  • the second case the multi-channel laser ranging device multiplexes at least part of the devices in the circuit.
  • the transmitting modules of each channel sequentially emit laser pulse sequences.
  • a working cycle of any channel includes: the transmitting module corresponding to the channel transmits a laser pulse sequence, and the receiving module in the channel receives the returned optical signal, and then processes it by the sampling module and the arithmetic module to output the result.
  • the target device includes at least one device in each of a transmitting module, a receiving module, a sampling module, and an operation module corresponding to the channel.
  • the target device may include a part or all of all devices included in the transmission module, the receiving module, the sampling module, and the operation module in the channel, that is, the target device may include multiplexed and non-multiplexed devices.
  • Controlling the moment when the target device enters the second state from the first state includes: when it is detected that any of the target devices has completed its work, controlling the device to enter the second state, that is, the transmitting module, the receiving module, and the sampling module included in the target device And the devices in the arithmetic module, sequentially from the first state to the second state in accordance with the working order; or when all the target devices have completed their work, control the time at which all the target devices simultaneously enter the second state from the first state; or , When reaching the third preset time after transmitting the laser pulse from the transmitting module of the channel where it is located, controlling all target devices from the first state to the second state at the same time, or sequentially controlling each device in the target device from the first state to the second state The time interval at which each target device enters the second state is preset.
  • the above description describes the various situations in which the target device enters the second state from the perspective of the single-channel or multi-channel laser ranging device.
  • the following describes the target device from the perspective of the way the target device enters the second state. From the first state to the second state.
  • controlling the target device to enter the second state from the first state may include: sequentially controlling in the one working cycle Each of the at least two devices enters the second state from the first state, that is, at least two of the at least two devices enter the second state at different times.
  • sequentially controlling each of the at least two devices to enter the second state from the first state may include: controlling the first device to enter the second state from the first state when the first device finishes working, wherein,
  • the first device may be any one of at least two devices, that is, whether the first device enters the second state is based on whether or not the first device completes the work.
  • the target device includes a device in each module of a laser ranging device, a receiving module, a sampling module, and a computing module as an example for description.
  • the first device is controlled to enter the second state from the first state when the first device finishes working.
  • the first device is a device in a transmitting module.
  • the transmitting module transmits a laser pulse
  • the first device is controlled. Entering the second state, reducing the power consumption of the first device, for example, reducing the quiescent current of the first device, or disconnecting the first device from the power supply.
  • sequentially controlling each of the at least two devices to enter the second state from the first state may further include: controlling the at least two after a third preset duration after the time when the transmitting module emits the laser pulse.
  • the second device in the device enters the second state from the first state, wherein the second device may be any one of the at least two devices except the transmitting module, that is, whether the second device enters the second state is based on
  • the third preset duration is determined, and the third preset duration is related to a maximum measurement distance of the laser ranging device.
  • the target device includes a device in each module of a laser ranging device, a receiving module, a sampling module, and a computing module as an example for description.
  • the transmitting module transmits a laser pulse for a third preset time period, if there is still no returned optical signal, the laser pulse is considered to exceed the maximum measurement distance, and the receiving module and the sampling module are controlled
  • the devices in the sum operation module enter the second state.
  • the transmitting module For example, for a device in a transmitting module, within one working cycle, after the transmitting module emits a laser pulse, it is the end of work. After the transmitting module emits a laser pulse, the device in the transmitting module is controlled to enter the second State, reducing power consumption, such as reducing the quiescent current of the device, or disconnecting the device from the power supply.
  • the third preset duration may be different when the second device belongs to different modules.
  • the third preset duration corresponds to when the laser distance measuring device measures the maximum distance. The maximum length of time the sampling module has to wait from the time the laser module transmits the laser pulse to the time when the sampling module performs sampling.
  • the third preset time duration corresponds to when the laser distance measuring device measures the maximum distance from The transmitting module emits laser pulses until the arithmetic module performs calculations. The maximum time that the arithmetic module needs to wait.
  • the third preset duration may also be the same.
  • the third preset duration may be set to the maximum measurement distance in the laser ranging device, and the waiting time is required in all modules
  • the longest waiting time for the longest module for example, the laser ranging device has the longest waiting time in the last step of the computing module used in a working cycle, the laser module will emit laser pulses until the computing module performs the calculation.
  • the computing module needs The maximum waiting time is determined as the third preset time.
  • controlling the target device to enter the second state from the first state may include: transmitting modules in the laser ranging device Between two adjacent laser pulses, at least two devices are controlled to enter the second state from the first state at the same time.
  • controlling at least two devices from the first state to the second state at the same time may include controlling all the at least two devices to enter the second state from the first state when the at least two devices have all finished working, that is, Whether all the devices enter the second state is based on whether all the devices have completed the work.
  • the target device includes a device in each module of a laser ranging device, a receiving module, a sampling module, and a computing module as an example for description. At the time when all the target devices have finished working, all the target devices are controlled to enter the second state from the first state.
  • a laser pulse is emitted by the transmitting module first, that is, the transmitting module ends its work, and then the receiving module receives a return signal, the sampling module performs sampling processing, and the computing module determines the distance to the object.
  • the target device is controlled to enter the second state at the same time, thereby reducing the power consumption of the target device.
  • the target device includes a transmitting module, a receiving module, a sampling module, and an operation module. Devices in each module.
  • the quiescent current of the device can be reduced or disconnected from the power supply; for another example, for a device in which the module is sampled, the device's flip frequency can be reduced or disconnected from the power supply .
  • controlling at least two devices to enter the second state from the first state at the same time may further include: controlling the at least two devices from the first state at the same time after the fourth preset time period after the time when the transmitting module emits the laser pulse.
  • the state enters the second state that is, whether the at least two devices enter the second state is determined according to a fourth preset duration, which is related to a maximum measurement distance of the laser ranging device.
  • the target device includes a device in each module of a laser ranging device, a receiving module, a sampling module, and a computing module as an example for description.
  • the transmitting module transmits a laser pulse
  • the laser pulse is considered to exceed the maximum measurement distance, and the transmitting module and the receiving module are controlled.
  • the devices in the sampling module and the operation module enter the second state.
  • the receiving module may receive a part of the optical signal returned by the laser pulse after the fourth preset time period in this one work cycle, but it still exists Part of the laser pulse does not return the optical signal.
  • the fourth preset time length corresponds to the maximum time required to return the optical signal when the laser ranging device measures the maximum distance, that is, the maximum time that the receiving module needs to wait after the transmitting module transmits the laser pulse.
  • the part of the laser pulse that does not return an optical signal can be considered to have exceeded the maximum measurement distance, that is, it can be considered that the part of the laser pulse has completed its work, and the corresponding receiving module, sampling module and computing module are processing After the returned optical signal has exceeded the fourth preset time period, it is considered that all modules have completed their work within this one work cycle, and all target devices can be controlled to enter the second state to reduce power consumption.
  • the device can reduce the quiescent current of the device, or disconnect the device from the power supply; or, for the device in the sampling module, the frequency of the device's flip can be reduced, or it can be disconnected from the power supply.
  • a laser ranging device with a measurement frequency of 10 kHz and a measurement distance of 450 m is taken as an example. The measurement is performed every 100 us.
  • the transmitting module transmits laser pulses. The time difference between the transmission and reception is only 3 us, and there is more than 90 us During the time, each part of the module is in idle state, no need to transmit and receive laser pulses, and no need to sample.
  • the target device in the laser ranging device is controlled to enter a second state, so that The target devices in this part are in a state of low power consumption for more than 90us, which greatly reduces the power consumption of the laser ranging device.
  • the method 2000 may further include: after the target device enters the second state, correspondingly, the target device may also be controlled to enter the first state from the second state.
  • the target device may also be controlled to enter the first state from the second state.
  • the target device may enter the first state from the second state; or, before the transmitting module in the laser ranging device starts to work, all target devices may be brought into the first state from the second state. Status, ready to work.
  • the target device may enter the first state from the second state before the transmitting module starts to work. For example, considering that it may take a period of time to enter the first state from the second state, the target device may Before the transmitting module starts emitting the laser pulse for a second preset time period, the second module enters the first state from the second state. Specifically, all target devices are currently in the second state. If the transmitting module should emit laser pulses at the first time, all target devices are brought into the first state from the second state at a second time before the first time. , The difference between the first time and the second time is greater than or equal to a second preset duration.
  • the target device in the first state can start working at any time.
  • the transmitting module after entering the first state can emit laser pulses when it needs to emit laser pulses, and then For example, after the operation module enters the first state, the normal operation frequency is restored.
  • the working order of the modules included in the laser ranging device is from front to back: transmitting module, receiving module, sampling module, and computing module.
  • the target device includes At least one device in each of the four modules. If the four modules are in the second state, at the first moment, the device belonging to the transmitting module in the target device needs to emit laser pulses at the first moment, then at the second moment before the first moment, all the target devices The devices all enter the first state from the second state, and a difference between the first time and the second time is greater than or equal to a second preset duration. In order to allow each target device sufficient time to enter the first state, the target device in the first state can start working at any time.
  • the multi-channel laser ranging device includes a case where any of the transmitting module, the receiving module, the sampling module, and the computing module is multiplexed, or the four All modules are not reused.
  • the target device includes at least one device in each of the four modules, which may include multiplexed and non-multiplexed one or more devices. All target devices are in the second state.
  • the devices belonging to the transmitting module in the channel in the target device need to emit laser pulses at the first moment, then at the second moment before the first moment So that all the devices in the target device corresponding to the channel enter the first state from the second state, and the difference between the first time and the second time is greater than or equal to the second preset duration.
  • the target device in the first state can start working at any time.
  • the modules in the multi-channel laser ranging device are not multiplexed.
  • the transmitting module can enter the second state after b1.
  • the transmitting module needs to transmit the laser pulse again, so before the time of a4 and a second preset time from the time of a4, the transmitting module, the receiving module, the sampling module and the computing module in channel 1 are controlled from The second state enters the first state, so that each device in the target device belonging to the channel has enough time to enter the first state, and the target device in the first state can start working at any time.
  • the target device may enter the first state from the second state before it starts to work. For example, considering that it may take a period of time to enter the first state from the second state, the target device may be in Before it starts working for a first preset duration, it enters the first state from the second state. Specifically, since the circuits in the laser ranging device do not need to work at the same time, according to the signal and data flow, each circuit can start to work in a certain sequence, for example, it can start to work according to the transmitting module, receiving module, sampling module, and computing module. .
  • the current target device is currently in the second state. If the transmitting module should emit laser pulses at the first moment, within the working cycle to which the laser pulse is transmitted, it can be determined that each module starts to work correspondingly. time. According to the time that each module may take from the second state to the first state, before the one target device starts to work for the first preset time, the one target device is caused to enter the first state from the second state to facilitate the one The target device has enough time to enter the first state.
  • the time required for the transmitting module to enter the first state may be longer, while for a device in the sampling module, the time required to enter the first state may be shorter, then the transmitting module starts transmitting Before the first preset time of the laser pulse, the device in the transmitting module is brought into the first state from the second state, and the first preset time corresponds to the transmitting module; before the first preset time when the sampling module starts sampling, The device in the sampling module is caused to enter the first state from the second state, the first preset time corresponds to the sampling module, wherein the first preset time corresponding to the transmitting module is greater than the first preset time corresponding to the sampling module.
  • the working order of the modules in the single-channel laser ranging device is a transmitting module, a receiving module, a sampling module, and a computing module in a working cycle. It is assumed that the target device includes at least one device in each of the four modules, and the target device is currently in the second state. If the transmitting module should emit a laser pulse at the first moment, within the working cycle to which the laser pulse is transmitted, the time when each module starts to work can be determined correspondingly.
  • the arbitrary target device is caused to enter the first state from the second state in order to facilitate The one target device has enough time to enter the first state and start working.
  • the device belonging to the transmitting module in the target device first enters the first state to start emitting laser pulses, that is, the device in the transmitting module is first controlled to enter the first state from the second state, and then Among the target devices, the devices that belong to the receiving module, the sampling module, and the operation module, each of the devices sequentially enters the first state from the second state in accordance with their respective working order and a preset time before starting to work.
  • the multi-channel laser ranging device includes a case where any of the transmitting module, the receiving module, the sampling module, and the computing module is multiplexed, or the four All modules are not reused.
  • the target device includes at least one device in each of the four modules, which may include one or more devices that are multiplexed and non-multiplexed. All target devices are in the second state.
  • the device belonging to the transmitting module in the channel in the target device needs to emit laser pulses at the first moment. Within the cycle, the time at which each module starts working can be determined accordingly.
  • the arbitrary target device is caused to enter the first state from the second state in order to facilitate The one target device has enough time to enter the first state and start working.
  • the device in the transmitting module belonging to the channel in the target device must first enter the first state to start emitting laser pulses, that is, the device in the transmitting module is first controlled from The second state enters the first state, followed by the devices in the target device that belong to the receiving module, sampling module, and operation module of the channel. Each device is in turn in accordance with its respective working order, a preset time before starting work, and from the second state. Enter the first state.
  • the target device in the module included in the laser ranging device when the target device in the module included in the laser ranging device is idle, the target device is controlled to enter the second state from the first state, and the function of the second state The power consumption is lower than that of the first state.
  • each device in the laser ranging device does not need to work all the time and does not need to work at the same time, you can control each device to enter the first state in accordance with a certain sequence or at the same time to start the work at any time, or control each device to enter the second state and stop working For example, you can determine the sequence based on the signal and data flow. This kind of control switching in different states, while ensuring the measurement performance of the system, can minimize the working time of each device and further reduce power consumption.
  • the whole machine or some devices can be put into a sleep mode. In this sleep mode, all or part of the device is at the lowest power consumption until the device is woken up again. In this way, the power consumption of the system can be significantly reduced, the temperature rise of the whole machine can be reduced, and the ambient temperature range in which the whole machine can work normally is increased, thereby saving energy to the greatest extent.
  • the method for laser ranging according to the embodiment of the present application is described in detail above with reference to FIGS. 1 to 6.
  • the laser ranging device according to the embodiment of the present application will be described below with reference to FIG. 7.
  • the laser ranging device 3000 includes a control module 3010 and further includes: at least one transmitting module 3020, at least one receiving module 3030, at least one sampling module 3040, and at least one arithmetic module 3050;
  • the optical path changing module 3060 may be further included, and the scanning module 3070 may be further included.
  • control module 3010 is configured to: when the target device in the laser ranging device is idle, control the target device from the first state to the second state, and the power consumption of the target device in the second state is less than that in the second state. Power consumption in a first state, wherein the target device is at least one device in at least one module in the laser ranging device; the transmitting module 3020 is configured to send a laser pulse, and the receiving module 3030 is configured to receive the The optical signal returned by the laser pulse after being reflected by the object and converts the optical signal into an electrical signal.
  • the sampling module 3040 is configured to perform sampling processing on the electrical signal to obtain a sampling result.
  • the arithmetic module 3050 is configured to: As a result, the distance from the object is determined.
  • control module 3010 is further configured to control the target device to enter the first state from the second state.
  • a time when the target device enters the first state is before a first preset duration of a time when the target device starts to work.
  • the time when the target device enters the first state is before the second preset duration of the laser module transmitting the laser pulse.
  • the target device includes at least two devices in the laser ranging device; the control module 3010 is configured to: sequentially control the transmitting module 3020 between two adjacent laser pulses. Each of the at least two devices enters the second state from the first state.
  • control module 3010 is configured to control the first device from the first state to enter the second state when the first of the at least two devices finishes working.
  • control module 3010 is configured to control a second device of the at least two devices from the first after a third preset time period from the moment when the transmitting module 3020 emits the laser pulse.
  • the state enters the second state, and the second device is any one device located in at least one of the receiving module 3030, the sampling module 3040, and the operation module 3050.
  • the target device includes at least two devices in the laser ranging device; the control module 3010 is configured to control the at least two laser pulses emitted by the transmitting module 3020 adjacent to each other. Both devices enter the second state from the first state at the same time.
  • control module 3010 is configured to control the at least two devices from the first state to the second state simultaneously when the at least two devices have finished working.
  • control module 3010 is configured to control the at least two devices to enter the second state from the first state at the same time after the fourth preset duration from the time when the laser module emits the laser pulse. status.
  • the laser ranging device includes a transmitting module 3020, a receiving module 3030, a sampling module 3040, and a computing module 3050.
  • the one transmitting module 3020 is used for: transmitting one laser pulse; the one receiving module 3030 is used for: receiving the one laser pulse The optical signal returned after the object is reflected, and the optical signal is converted into an electrical signal.
  • the one sampling module 3040 is configured to: perform sampling processing on the electrical signal to obtain a sampling result; the one arithmetic module 3050 is configured to: according to the sampling As a result, the distance from the object is determined.
  • the laser ranging device includes an optical path changing module 3060, a transmitting module 3020, and a plurality of receiving modules 3030.
  • the optical path changing module 3060 is configured to: one laser pulse emitted by the one transmitting module 3020 Divided into at least two laser pulses emitted simultaneously along different paths, or changing one laser pulse emitted by the one transmitting module 3020 to at least two laser pulses emitted along different paths at different times; the plurality of receiving modules 3030 and the at least two The two laser pulses correspond one-to-one, and are used to receive the optical signals returned by the corresponding laser pulses after being reflected by the object.
  • one laser pulse emitted by the one transmitting module 3020 is changed by the optical path changing module 3060 to at least two laser pulses emitted along different paths at different times;
  • the laser ranging device further includes a sampling A module 3040 and an arithmetic module 3050.
  • the one sampling module 3040 is configured to: perform sampling processing on the electrical signals output by the multiple receiving modules 3030 at different times to obtain the sampling results corresponding to each electrical signal;
  • the module 3050 is configured to determine the distance between objects corresponding to the sampling result according to each sampling result output by the sampling module 3040 at different times.
  • the laser ranging device further includes a plurality of sampling modules 3040 and a plurality of computing modules 3050, wherein the plurality of receiving modules 3030, the plurality of sampling modules 3040, and the plurality of computing modules 3050 One-to-one correspondence, each of the plurality of sampling modules 3040 is configured to: perform sampling processing on the electrical signals output by the corresponding receiving module 3030 to obtain a sampling result; each of the plurality of computing modules 3050 Used to determine the distance between objects corresponding to the sampling result according to the sampling result output by the corresponding sampling module 3040.
  • the laser ranging device includes multiple transmitting modules 3020 and multiple receiving modules 3030, and the multiple transmitting modules 3020 correspond to the multiple receiving modules 3030 one-to-one.
  • the laser ranging device further includes a sampling module 3040 and an arithmetic module 3050.
  • Different transmitting modules 3020 of the multiple transmitting modules 3020 are configured to: transmit a laser pulse at different times; the Each receiving module 3030 of the multiple receiving modules 3030 is configured to: receive an optical signal returned by a laser pulse emitted by a corresponding transmitting module 3020 after being reflected by an object, and convert the optical signal into an electrical signal; the one sampling module 3040 is used to: sample the electrical signals output by different receiving modules 3030 at different times to obtain sampling results; the one arithmetic module 3050 is used to: determine at different times according to the sampling results output by the sampling module 3040 The distance between the objects corresponding to the sampling results.
  • the laser ranging device further includes a plurality of sampling modules 3040 and a computing module 3050.
  • One corresponding, the one arithmetic module 3050 is connected to the plurality of sampling modules 3040 respectively; different transmitting modules 3020 of the plurality of transmitting modules 3020 are used to: transmit a laser pulse at different times; each of the plurality of receiving modules 3030
  • Each receiving module 3030 is configured to: receive an optical signal returned by a laser pulse emitted by a corresponding transmitting module 3020 after being reflected by an object, and convert the optical signal into an electrical signal;
  • each of the plurality of sampling modules 3040 3040 is used to: perform sampling processing on the electrical signals output by the corresponding receiving module 3030 to obtain a sampling result; the one operation module 3050 is used to: at different times, determine corresponding to the sampling result according to the sampling result output by the sampling module 3040 The distance between objects.
  • the laser ranging device further includes a plurality of sampling modules 3040 and a plurality of arithmetic modules 3050, the plurality of transmitting modules 3020, the plurality of receiving modules 3030, the plurality of sampling modules 3040, and the There is a one-to-one correspondence between multiple computing modules 3050.
  • the multiple transmitting modules 3020 are used to: transmit a laser pulse at the same time or different times respectively; each receiving module 3030 in the multiple receiving modules 3030 is used to: receive correspondence A laser pulse emitted by the transmitting module 3020 is an optical signal returned after being reflected by an object, and the optical signal is converted into an electrical signal; each of the plurality of sampling modules 3040 is used to: for a corresponding receiving module 3030 The output electrical signal is subjected to sampling processing to obtain a sampling result; each of the plurality of computing modules 3050 is configured to: determine, based on the sampling result output by the corresponding sampling module 3040, between objects corresponding to the sampling result distance.
  • the target device is a device located in the transmitting module 3020 and / or the receiving module 3030, and the quiescent current of the target device in the second state is lower than that in the first state. Quiescent Current.
  • the target device is a device located in the sampling module 3040 and / or the arithmetic module 3050, and the target device's flip frequency in the second state is lower than that in the first state. Flip frequency.
  • the target device is disconnected from the power source in the second state.
  • control module 3010 is a programmable logic device PLD.
  • the PLD is a field programmable logic gate array FPGA or a complex programmable logic device CPLD.
  • the transmitting module 3020 includes a laser transmitting circuit.
  • the receiving module 3030 includes at least one of a photoelectric conversion circuit, an analog amplification circuit, and a comparator.
  • the sampling module 3040 includes a time-to-digital converter TDC and / or an analog-to-digital converter ADC.
  • the transmitting module 3020 is configured to transmit a laser pulse sequence; wherein the transmission time interval between two adjacent laser pulses in the laser pulse sequence is a first time interval, and the transmitting module 3020 transmits a laser pulse
  • the interval between the time of the time and the time when the arithmetic module 3050 determines the distance between the objects reflecting the laser pulse is a second time interval, and the first time interval is greater than 10 times the second time interval.
  • the method further includes: a scanning module 3070, configured to change the laser pulse sequence to emit light; and at least a part of the light beam reflected by the detected object passes through the scanning module 3070 and enters the laser ranging. Module.
  • the scanning module 3070 includes at least one prism whose thickness changes in a radial direction, and a motor for driving the prism to rotate; the rotating prism is used to refract the laser pulse sequence to different directions for emission .
  • the laser ranging device in the embodiment of the present application controls the target device from the first state to the second state when the target device in the module included in the module is idle, wherein the power consumption of the second state is lower than the first state.
  • State power consumption Considering that each device in the laser ranging device does not need to work all the time and does not need to work at the same time, you can control each device to enter the first state in accordance with a certain sequence or at the same time to start the work at any time, or control each device to enter the second state and stop working. For example, you can determine the sequence based on the signal and data flow. This kind of control switching in different states, while ensuring the measurement performance of the system, can minimize the working time of each device and further reduce power consumption.
  • the whole machine or some devices can be put into a sleep mode. In this sleep mode, all or part of the device is at the lowest power consumption until the device is woken up again. In this way, the power consumption of the system can be significantly reduced, the temperature rise of the whole machine can be reduced, and the ambient temperature range in which the whole machine can work normally is increased, thereby saving energy to the greatest extent.
  • the devices of the embodiments of the present application may be implemented based on a memory and a processor.
  • Each memory is used to store instructions for executing the method of the embodiments of the present application.
  • the processor executes the foregoing instructions, so that the device executes the embodiments of the present application. Methods.
  • processors mentioned in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits (DSPs).
  • DSPs digital signal processors
  • DSPs application-specific integrated circuits
  • ASIC Application Specific Integrated Circuit
  • FPGA off-the-shelf Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component
  • the memory memory module
  • memory described herein is intended to include, but is not limited to, these and any other suitable types of memory.
  • An embodiment of the present application further provides a computer-readable storage medium having instructions stored thereon.
  • the computer is caused to execute the methods of the foregoing method embodiments.
  • An embodiment of the present application further provides a computing device, where the computing device includes the computer-readable storage medium described above.
  • the embodiments of the present application can be applied in the field of aircraft, especially in the field of drones.
  • circuits, sub-circuits, and sub-units in the embodiments of the present application is merely schematic. Those of ordinary skill in the art may realize that the circuits, sub-circuits, and sub-units of the various examples described in the embodiments disclosed herein can be further split or combined.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (e.g., Coaxial cable, optical fiber, Digital Subscriber Line (DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integrations.
  • Usable media may be magnetic media (for example, floppy disks, hard disks, magnetic tapes), optical media (for example, high-density digital video discs (DVDs)), or semiconductor media (for example, solid state drives (Solid State Disks, SSDs) )Wait.
  • magnetic media for example, floppy disks, hard disks, magnetic tapes
  • optical media for example, high-density digital video discs (DVDs)
  • DVDs digital video discs
  • semiconductor media for example, solid state drives (Solid State Disks, SSDs)
  • an embodiment or “an embodiment” mentioned throughout the specification means that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application.
  • the appearances of "in one embodiment” or “in an embodiment” appearing throughout the specification are not necessarily referring to the same embodiment.
  • the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean determining B based on A alone, but also determining B based on A and / or other information.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种用于激光测距的方法(2000)和装置(3000)。该方法(2000)包括:当激光测距装置(3000)中的目标器件空闲时,控制该目标器件从第一状态进入第二状态,该目标器件处于该第二状态下的功耗小于处于该第一状态下的功耗(2010),其中,该激光测距装置(3000)包括至少一个发射模块(3020)、至少一个接收模块(3030)、至少一个采样模块(3040)和至少一个运算模块(3050),该目标器件为该激光测距装置(3000)中的至少一个模块中的至少一个器件;其中,该发射模块(3020)用于:发送激光脉冲,该接收模块(3030)用于:接收该激光脉冲经过物体反射后返回的光信号,并将该光信号转成电信号,该采样模块(3040)用于:对该电信号进行采样处理,获得采样结果,该运算模块(3050)用于:根据该采样结果,确定与该物体之间的距离。该用于激光测距的方法(2000)和装置(3000),能够降低激光测距装置(3000)的功耗。

Description

用于激光测距的方法和装置
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本申请涉及图像处理领域,尤其涉及一种用于激光测距的方法和装置。
背景技术
在激光测距系统中,为了保证测量的精度,测距电路会选用高性能(如带宽高、压摆率高等)的模拟芯片以减少信号质量的损失,和高性能(如采样率高、采样精度高等)数字芯片以提供足够的采样精度。这些高性能的模拟芯片和数字芯片通常功耗都很大,工作时发出大量的热,芯片的温度可比环境温度高20℃甚至更高,导致整个系统可正常工作的环境温度范围严重缩小,同时还增加了系统散热方案设计成本。
发明内容
本申请提供了一种用于激光测距的方法和装置,可以减小激光测距装置的功耗。
第一方面,提供了一种用于激光测距的方法,该方法包括:当激光测距装置中的目标器件空闲时,控制该目标器件从第一状态进入第二状态,该目标器件处于该第二状态下的功耗小于处于该第一状态下的功耗,其中,该激光测距装置包括至少一个发射模块、至少一个接收模块、至少一个采样模块和至少一个运算模块,该目标器件为该激光测距装置中的至少一个模块中的至少一个器件;其中,该发射模块用于:发送激光脉冲,该接收模块用于:接收该激光脉冲经过物体反射后返回的光信号,并将该光信号转成电信号,该采样模块用于:对该电信号进行采样处理,获得采样结果,该运算模块用于:根据该采样结果,确定与该物体之间的距离。
第二方面,提供了一种用于激光测距的装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第三方面,提供了一种用于激光测距的装置,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第五方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述第一方面或第一方面的任意可能的实现方式中的用于激光测距的方法。具体地,该计算机程序产品可以运行于上述第二方面的用于激光测距的装置上。
附图说明
图1是本申请实施例的一种激光测距装置的示意图。
图2是本申请实施例的一种激光测距装置的另一示意图。
图3是本申请实施例的单通道激光测距装置的时序图。
图4是本申请实施例的多通道激光测距装置的时序图。
图5是本申请实施例的一种激光测距装置的再一示意图。
图6是本申请实施例的一种用于激光测距的方法的示意性流程图。
图7是本申请实施例的一种激光测距装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本发明提供了一种激光测距装置,该激光测距装置可以用来测量探测物到激光测距装置的距离,进一步地,还可以探测到探测物相对激光测距 装置的方位。在一个实施例中,激光测距装置可以包括雷达,例如激光雷达。激光测距装置可以通过测量激光测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到激光测距装置的距离。或者,激光测距装置也可以通过其他技术来探测探测物到激光测距装置的距离,在此不做限制。
应理解,激光测距装置是对外界的感知系统,可以获知外界的立体三维信息,不再局限于相机等对外界的平面感知方式。其原理为主动对外发射激光脉冲信号,探测到反射回来的脉冲信号,根据发射--接收之间的时间差,判断被测物体的距离,结合光脉冲的发射角度信息,便可重建获知三维深度信息。
具体地,图1示出了激光测距装置1000的示意图。该激光测距装置1000可以包括至少一个发射模块1010、至少一个接收模块1020、至少一个采样模块1030和至少一个运算模块1040。可选地,该激光测距装置1000还可以包括控制模块1050。
应理解,在图1中,以该激光测距装置1000包括一个发射模块1010、一个接收模块1020、一个采样模块1030和一个运算模块1040为例示出,但本申请实施例并不限于此。
在该激光测距装置1000中,该发射模块1010用于:发送激光脉冲;该接收模块1020用于:接收该激光脉冲经过物体反射后返回的光信号,并将该光信号转成电信号;该采样模块1030用于:对该电信号进行采样处理,获得采样结果,该运算模块1040用于:根据该采样结果,确定与该物体之间的距离。
具体地,图2示出了根据本申请实施例的激光测距装置的结构图,这里以该激光测距装置包括一个发射模块、一个接收模块、一个采样模块、一个运算模块和一个控制模块为例进行说明。
该激光测距装置通过发射模块发射激光脉冲序列,例如,该发射模块可以包括发射电路,例如发射电路包括PIN光电二极管,通过该发射电路发射特定波长的激光脉冲。
该激光脉冲遇到物体后发生反射/散射后返回光信号,激光测距装置中的接收模块接收该返回的光信号,例如,该接收模块可以包括光电转换电路,该光电转换电路可以将返回的光信号转换为电信号;该接收模块还可以包括 模拟放大电路,例如跨阻放大器(trans-impedance amplifier,TIA)和放大器(AMP)等,该模拟放大电路将电信号进行放大整形处理。
该激光测距装置中的采样模块对接收模块输出的模拟信号进行采样,获得采样结果。例如,该采样模块可以基于时间数字转换器(time-to-digital converter,TDC)测量方法实现。具体的,该采样模块包括信号比较器和TDC。其中,信号比较器可以是模拟比较器(COMP),该比较器用于将模拟信号转换为数字信号。TDC基于信号比较器输出的结果来计算和输出时间。又例如,该采样模块也可以基于模拟数字转换器(analog-to-digital converter,ADC)测量方法实现。
该激光测距装置中的运算模块根据采样模块输出的采样结果,确定该激光测距装置与物体之间的距离,例如,该运算模块根据激光脉冲的发射和接收之间的时间差以及光速,确定物体的距离。
该激光测距装置中的控制模块可以用于控制该激光测距装置中各个模块或者各个模块包括的各个器件的开始工作和停止工作。
可选地,该激光测距装置中的该运算模块与控制模块可以属于该激光测距装置中的数字处理系统,该数字处理系统可以为可编程逻辑器件(programmable logic device,PLD),例如,现场可编程门阵列(Field-Programmable Gate Array,FPGA),或者,复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),但本申请实施例并不限于此。
在如图3所示的单通道测量中,在进行具体的测量时,一个发射模块沿一个出射路径发射激光脉冲序列;一个接收模块可以接收该出射路径的激光脉冲序列经过被探测物反射的激光脉冲序列,并将该激光脉冲序列进行光电转换,得到一路电信号,或者还对该路电信号进行处理;一个采样模块可以对该一路电信号进行采样,一个运算模块可以基于采样结果计算被探测物与激光测距装置的距离。
具体地,在单通道的激光测距装置中,在该一个工作周期内:一个发射模块发射一路激光脉冲序列(也即一个出射路径的激光脉冲序列),依次经过接收模块、采样模块和运算模块处理后,最后确定本次测量的结果。
实际应用中,在一个工作周期内,从发射模块发射激光脉冲到运算模块计算出距离需要时长为t。该t的具体大小取决于该激光脉冲所探测到的物体距离激光测距装置的距离的远近,距离越远,t越大。当物体距离激光 测距装置越远时,经物体反射回的光信号越弱。当反射回的光信号弱到一定程度时,激光测距装置将无法探测到该光信号。因此,激光测距装置所能探测到的最弱的光信号对应的物体,与激光测距装置之间的距离称为激光测距装置的最远探测距离。为描述方便,下文中称该最远探测距离对应的t值为t0。本发明实施例中,工作周期大于t0。一些实现方式中,工作周期大于t0的至少10倍。一些实现方式中,工作周期大于t0的15倍。
例如,如图3所示,发射模块在时刻a1发射激光脉冲序列,该激光脉冲序列依次经过接收模块、采样模块和运算模块处理后,时刻b1得到运算结果,时刻a1与时刻b1之间的时长为t1;然后,发射模块在时刻a2再次发射激光脉冲序列,该激光脉冲序列依次经过接收模块、采样模块和运算模块处理后,时刻b2得到运算结果,时刻a2与时刻b2之间的时长为t2;然后,发射模块在时刻a3再次发射激光脉冲序列,该激光脉冲序列依次经过接收模块、采样模块和运算模块处理后,时刻b3得到运算结果,时刻a3与时刻b3之间的时长为t3。其中,t1、t2和t3的时长分别小于或等于上述t0;a2晚于b1,同样的,a3晚于b2;a1与a2之间的时长为P1,a2与a3之间的时长为P3,该时长P1和P2即为上述提到的工作周期,该P1与P2可以设置为相同值,或者也可以为不同值。
应理解,图2所示的激光测距装置以单通道为例进行说明,也即激光测距装置包括一个发射模块,用于在一个出射路径上出射激光脉冲序列。激光测距装置还包括一个接收模块、一个采样模块和一个运算模块,依次对该出射路径所出射的激光脉冲序列经反射回的至少部分光信号进行处理。
可选地,该激光测距装置还可以为多通道的装置。可选地,作为另一个实施例,该激光测距装置包括多个发射模块、多个接收模块、多个采样和多个运算模块,其中,该多个发射模块、多个接收模块、多个采样模块和多个运算模块之间均为一一对应关系,以实现该激光测距装置的多通道测量。也即每个通道包括该通道对应的发射模块、接收模块、采样模块和运算模块。
具体地,在多通道的每一个通道内,该通道的工作时序可以参考图3所示,在激光测距装置的相邻的两次发射激光脉冲之间的时间段内,即对于该激光测距装置发射的任意一次激光脉冲之后至下一次发射激光脉冲之前,该激光脉冲经过物体反射/散射后返回一路光信号,则通过该激光测距装置包括的多个接收模块中属于该激光脉冲所属的通道的接收模块接收该路光信号, 该接收模块将接收到的返回的光信号转换为电信号。激光测距装置中的多个采样模块中属于该通道的采样模块分别对该路电信号进行采样处理,并输出采样结果。该激光测距装置中的多个运算模块中属于该通道的运算模块分别根据该采样结果,确定反射该激光脉冲的物体与激光测距装置之间的距离。
一种实现方式中,该激光测距装置中的不同通道的发射模块分别以不同的出射路径分别发射激光脉冲序列。具体的,该多路激光脉冲可以分别以不同发射角度出射激光脉冲序列,或者以相同发射角度出射多路平行的激光脉冲序列。可选的,该多个发射模块可以同时出射激光脉冲,或者该多个发射模块也可以分别在不同时刻出射激光脉冲。对应的,该多个接收模块中的每一个接收模块用于接收所在通道的发射模块所出射的激光脉冲经探测物反射回的光信号。
具体地,该激光测距装置中任意相邻的两次发射的激光脉冲的时间之内,也就是该激光测距装置发射的任意一次激光脉冲之后至下一次发射激光脉冲之前,其中,该任意相邻两次发射可以为任意一个发射模块的时间相邻的两次发射之间;或者,任意一个发射模块的一次发射之后和另一个发射模块的下一次发射之前;或者,两个发射模块在同一时刻发射的不同角度的两路激光脉冲。该激光测距装置中任意相邻的两次发射的激光脉冲的时间之内包括:自一个发射模块发射一路激光脉冲之时起,直至多个接收模块中与该一个发射模块对应的一个接收模块接收该激光脉冲经过物体反射后返回的光信号,并将该光信号转成电信号;该激光测距装置中的多个采样模块中与该一个发射模块对应的一个采样模块,对该电信号进行采样处理,获得采样结果;该多个运算模块中与该一个发射模块对应的一个运算模块根据该采样结果,确定与该物体之间的距离为止。
不同通道的工作时序的关系可以有多种。
在一种实现方式中,多通道的激光测距装置中各通道依次工作。由于多通道的激光测距装置中各个模块不复用,所以不同通道之间相互独立,对于任意一个通道,称其中相邻两次激光脉冲的发射时间间隔为工作周期。例如,以如图4所示的四个通道为例:第一通道的发射电路发射激光脉冲序列之后,间隔一个时长T1后该第一通道的发射电路再次发射激光脉冲,该间隔T1即为第一通道的工作周期;同样的,第二通道间隔一个时长T2发射激光脉冲,该第二通道的工作周期为T2,依次类推,第三通道的工作周期为 T3,第四通道的工作周期为T4。其中,由于各通道之间没有复用的模块,各通道之间相对独立,所以T1、T2、T3和T4可以设置为不同值,也可以设置为相同值。
应理解,每个通道在距离发射激光脉冲后,所能探测到的最远物体所反射回的光信号会在接下来的间隔时长T内依次由接收电路、采样电路和运算电路处理完,其中,T为各个通道对应的工作周期。其中,针对其中一个通道,可以将发射电路发射激光脉冲序列的开始时刻到运算电路完成运算的时刻之间的时段称为该通道的工作时段。
例如,如图4所示,通道1的发射电路在时刻a1发射激光脉冲序列,该激光脉冲序列依次经过该通道1的接收电路、采样电路和运算电路处理后,时刻b1得到运算结果,时刻a1与时刻b1之间的时长为t1,该t1为工作时段;然后,通道2的发射电路在时刻a2发射激光脉冲序列,该激光脉冲序列依次经过通道的2接收电路、采样电路和运算电路处理后,时刻b2得到运算结果,时刻a2与时刻b2之间的时长为t2;然后,通道3的发射电路同样在时刻a2发射激光脉冲序列,该激光脉冲序列依次经过通道3的接收电路、采样电路和运算电路处理后,时刻b2得到运算结果,时刻a2与时刻b2之间的时长为t2;然后,通道4的发射电路在时刻a3发射激光脉冲序列,该激光脉冲序列依次经过通道4的接收电路、采样电路和运算电路处理后,时刻b3得到运算结果,时刻a3与时刻b3之间的时长为t4。对应的,依此类推,每个通道第二次发射激光脉冲的时间,如图4所示,在此不再赘述。
如图4所示,不同通道中的工作时段的开始时刻可以不同,可以相同,或者不同通道的工作时段存在部分重叠。具体地,a2晚于b1,也就是通道1与通道2之间为依次进行激光测距,工作时段完全不重合;通道2和通道3同样在a2时刻发送,即通道2和通道3工作时段的开始时间相同,但是由于测量距离的不同,或者其它因此,该通道2和通道3的工作时段的长度可能不同,即结束通道2的结束时刻b2与通道3的结束时刻b2'不同;而通道4的开始时刻a3晚于通道3的开始时间a2且早于通道3的结束时刻b2',因此,通道3和通道4的工作时段的开始时刻不同,但工作时段存在部分重叠。
当然,不同通道中的工作时段可以完全错开,或者,不同通道的工作时段的起点可以相同,在此不做限制。
上述以该多通道的激光测距装置包括的4个通道为例进行说明,对于任 意一个多通道激光测距装置,各个通道之间工作时段之间的关系可以包括上述4个通道的工作时段之间的关系中的一种或者多种情况,本申请实施例并不限于此。
一些实现方式中,激光测距装置中的多通道测量中,在不同的通道可以对发射模块的至少部分器件进行复用。其中,进行复用的各通道中,该各通道的工作时段需完全错开。
可选地,作为一个实施例,激光测距装置中的多通道测量中,不同通道对整个发射模块进行复用。具体的,该激光测距装置可以包括一个发射模块和多个接收模块,该发射模块用于发射激光脉冲,该激光测距装置还可以包括光路改变模块,或者在该激光测距装置的发射模块中包括光路改变元件,该光路改变模块/元件可以用于将发射模块发出的一路激光脉冲分为至少两路激光脉冲,该至少两路激光脉冲与多个接收模块一一对应,即一个接收模块用于接收其中一路激光脉冲对应的返回的光信号,以便于实现该激光测距装置的多通道应用。
为了便于说明,这里以该激光测距装置包括光路改变模块为例进行说明。该光路改变模块将发射模块发送的一路激光脉冲分为至少两路激光脉冲,其中,该至少两路激光脉冲可以包括具有不同发射角度的激光脉冲和/或不同时刻发射的激光脉冲。具体地,该光路改变模块可以将该发射模块发送的一路激光脉冲分为发射角度不同的至少两路激光脉冲,例如,该光路改变模块包括多面反射镜,每一面反射镜位于发射模块发射的一路激光脉冲的部分光路上,不同反射镜分别将部分光反射到不同方向。该光路改变模块也可以将该发射模块发送的一路激光脉冲分为不同时刻的至少两路激光脉冲,例如,该光路改变模块包括振镜,在不同时刻将这一路激光脉冲反射到不同方向,本申请实施例并不限于此。
可选地,作为一个实施例,激光测距装置中的多通道测量中,不同通道对发射模块的部分器件进行复用。例如,发射模块包括激光二极管、激光二极管的开关器件,以及该开关器件的驱动器件。不同通道对发射模块中除激光二极管以外的器件进行复用。具体的,每个通道的发射模块分别包括各自的激光二极管,每个通道的激光二极管用于出射激光脉冲序列。不同通道对发射模块中的开关器件和/或驱动器件进行复用。也即在每个通道的工作时段内,所复用的开关器件和/或驱动器件对该通道内的激光二极管进行驱动。
一些实现方式中,激光测距装置中的多通道测量中,在不同的通道分别在不同时刻出射激光脉冲序列的情况下,不同的通道可以对接收模块、采样模块、运算模块中的至少部分器件进行复用,也即不同通道中共用该至少部分器件。
可选地,作为一个实施例,激光测距装置中的多通道测量中,不同通道对接收模块进行复用。具体地,接收模块可以包括光电装换器件,光电转换器件可以将检测到的激光脉冲序列转换电信号,该光电转换器件可以包括PIN二极管或雪崩光电二极管等。
接收模块还可以包括信号处理电路,该信号处理电路可以实现对信号的放大和/或滤波,该信号处理电路可以包括放大电路,该放大电路可以对电信号进行放大,具体可以进行至少一级的放大,放大的级数可以根据采样电路的器件而定,例如,在采样电路的器件包括ADC时,则可以采样一级的放大电路进行放大。再例如,在采样电路的器件包括信号比较器(例如,可以为模拟比较器(COMP),用于将电信号转换为数字信号)和时间数字转换器TDC时,可以采样两级或多于两级的放大电路进行放大,其中,该一级放大电路可以包括跨阻放大器,该二级放大器可以包括其他类型的信号放大器。可选地,该信号处理电路也可以包括滤波器,该滤波器可以对电信号进行滤波。
应理解,接收模块可以包括放大电路而不包括滤波器,或者,可以包括滤波电路而不包括放大电路,或者,即可以包括滤波器也包括放大电路。
在多通道测量中,复用的该接收模块可以包括多个光电转换器件,每个光电转换器件用于接收一路激光脉冲序列,以及将接收的一路激光脉冲序列转换成电信号。其中,该多个光电转换器件可以是分时工作的,也即说,多路激光脉冲序列中不同的激光脉冲序列是在不同的时刻到达该光电转换器的。
可选地,多路电信号中的至少两路电信号可以复用该接收模块的除该光电转换器件之外的至少一个器件。例如,至少两路电信号可以复用用于实现放大和/或滤波的信号处理电路包括的至少一个器件。
在一种实现方式中,该接收模块包括至少两个跨阻放大器,其中,该至少两个跨阻放大器中的每个跨阻放大器分别对该至少两路电信号中的每 一路电信号进行放大处理。该至少两个跨阻放大器通过信号选通的方式、或通过开关、或通过复用器,分时与该跨阻放大器的下一级器件连通。
可选地,在本申请实施例中,在接收模块中,该至少两路电信号复用该接收模块的除该光电转换器件之外,以及除该光电转换器件的下游连续的至少一级器件之外的至少一个器件,其中,该下游连续的至少一级器件包括该光电转换器件的下一级器件。也就是说,在接收模块的器件的复用中,可以遵循多个电信号先分流(也即对应不同的器件)再复用的方式进行复用。
例如,在包括APD、跨阻放大器、信号放大电路和滤波器的接收模块中,可以复用信号放大电路和滤波器,而不复用跨阻放大;或者,可以复用滤波器,而不复用跨阻放大器和信号放大电路。
应理解,在该激光测距装置中的发射模块相邻的两次发射激光脉冲之间的时间段内,即对于发射模块发射的任意一次激光脉冲之后至下一次发射激光脉冲之前,每一路激光脉冲经过物体反射/散射后返回至少部分光信号,则通过该激光测距装置包括的接收模块接收返回的该至少一路光信号,例如,该接收模块分时接收该至少一路光信号,该接收模块将接收到的返回的光信号分别转换为电信号,则对应输出至少一个电信号。再由激光测距装置中的采样模块对该至少一个电信号分别进行采样处理。该激光测距装置中的运算模块根据采样模块输出的采样结果,确定与物体之间的距离。
可选地,作为一个实施例,激光测距装置中的多通道测量中,不同通道对采样模块和/或运算模块进行复用。
例如,该激光测距装置的不同通道对采样模块和运算模块进行复用。该激光测距装置中的不同通道共用一个采样模块和共用一个运算模块。具体地,该不同通道内的接收模块分别与同一个采样模块连接,该采样模块与一个运算模块连接。在任意一个通道内的发射模块发射激光脉冲,且该通道的接收模块接收到该光脉冲被物体反射回的光信号并输出处理后的电信号后,采样模块对该通道内的电信号进行采样,然后将采样结果输出至运算模块。
下面再以任意一种激光测距装置为例,具体描述激光测距装置的工作原理,尤其是多通道的激光测距装置的工作原理。激光测距装置中可以采用同轴光路,也即激光测距装置出射的光束和经反射回来的光束在激光测距装置内共用至少部分光路。或者,激光测距装置也可以采用异轴光 路,也即激光测距装置出射的光束和经反射回来的光束在激光测距装置内分别沿不同的光路传输。图5示出了根据本申请实施例的激光测距装置的示意图。
激光测距装置100包括光收发装置110,光收发装置110包括光源103、准直元件104、探测器105和光路改变元件106。光收发装置110用于发射光束,且接收回光,将回光转换为电信号。光源103用于发射光束,该光源103可以属于上述的发射模块。在一个实施例中,光源103可发射激光束。其中,所述光源包括激光二极管封装模块,用于以与所述激光二极管封装模块的基板的第一表面呈一定夹角的方向出射激光脉冲,所述夹角小于或等于90度。可选的,光源103发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件104设置于光源的出射光路上,用于准直从光源103发出的光束,将光源103发出的光束准直为平行光。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件104可以是准直透镜或者是其他能够准直光束的元件。
距离探测装置100还包括扫描模块102。扫描模块102放置于光收发装置110的出射光路上,扫描模块102用于改变经准直元件104出射的准直光束119的传输方向并投射至外界环境,并将回光投射至准直元件104。回光经准直元件104汇聚到探测器105上。
在一个实施例中,扫描模块102可以包括一个或多个光学元件,例如,透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。在一些实施例中,扫描模块102的多个光学元件可以绕共同的轴109旋转,每个旋转的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块102的多个光学元件可以以不同的转速旋转。在另一个实施例中,扫描模块102的多个光学元件可以以基本相同的转速旋转。
在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转,或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块102包括第一光学元件114和与第一光学元件114连接的驱动器116,驱动器116用于驱动第一光学元件114绕转动轴109转动,使第一光学元件114改变准直光束119的方向。第一光学元件114将准直光束119投射至不同的方向。在一个实施例中,准直光束 119经第一光学元件改变后的方向与转动轴109的夹角随着第一光学元件114的转动而变化。在一个实施例中,第一光学元件114包括相对的非平行的一对表面,准直光束119穿过该对表面。在一个实施例中,第一光学元件114包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件114包括楔角棱镜,对准直光束119进行折射。在一个实施例中,第一光学元件114上镀有增透膜,增透膜的厚度与光源103发射出的光束的波长相等,能够增加透射光束的强度。
在一个实施例中,扫描模块102还包括第二光学元件115,第二光学元件115绕转动轴109转动,第二光学元件115的转动速度与第一光学元件114的转动速度不同。第二光学元件115用于改变第一光学元件114投射的光束的方向。在一个实施例中,第二光学元件115与另一驱动器117连接,驱动器117驱动第二光学元件115转动。第一光学元件114和第二光学元件115可以由不同的驱动器驱动,使第一光学元件114和第二光学元件115的转速不同,从而将准直光束119投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器118控制驱动器116和117,分别驱动第一光学元件114和第二光学元件115。第一光学元件114和第二光学元件115的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器116和117可以包括电机或其他驱动装置。
在一个实施例中,第二光学元件115包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件115包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件115包括楔角棱镜。在一个实施例中,第二光学元件115上镀有增透膜,能够增加透射光束的强度。
扫描模块102旋转可以将光投射至不同的方向,例如方向111和113,如此对探测装置100周围的空间进行扫描。当扫描模块102投射出的光111打到探测物101时,一部分光被探测物101沿与投射的光111相反的方向反射至探测装置100。扫描模块102接收探测物101反射的回光112,将回光112投射至准直元件104。
准直元件104会聚探测物101反射的回光112的至少一部分。在一个实施例中,准直元件104上镀有增透膜,能够增加透射光束的强度。探测器105与光源103放置于准直元件104的同一侧,探测器105用于将穿 过准直元件104的至少部分回光转换为电信号。
在一些实施例中,光源103可以包括激光二极管,通过激光二极管发射纳秒级别的激光。例如,光源103发射的激光脉冲持续10ns。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,距离探测装置100可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物101到距离探测装置100的距离。
距离探测装置100探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
应理解,为了保证激光测距装置的性能,对该激光测距装置中的模拟电路部分的带宽要求比较高,例如,光电转换电路、模拟放大电路一般为数十MHz到数百MHz。为了满足如此高的带宽要求,模拟电路中选用的模拟芯片的静态电流通常会比较大,大约有几十mA的静态电流,会产生数百mW的静态功耗,使模拟芯片温度升高。同时实现高精度测量的数字电路(例如上述的采样模块和运算模块)的工作时钟频率一般比较高,数字电路随系统时钟不断翻转,带来了大量的功耗,也会使数字芯片温度升高。
该激光测距装置中的模拟电路和数字电路一直处于工作状态,都带来了不小的功耗。该功耗都会使激光测距装置温升较大,模拟芯片和数字芯片可正常工作的温度范围都是确定的,温升将会使整个系统可正常工作的温度范围降低。尤其是在多通道应用中,多通道的模拟和数字芯片将会使功耗呈倍数增加,系统温升剧增。而且,本申请实施例所提供的激光测距装置在很多实现方式中,在一个工作周期内单通道或者多通道中的每个通道中的元器件的工作时段只占该工作周期的较小比例。若这些元器件一直处于工作状态的话,会造成大量不必要的功耗浪费。
因此,本申请实施例提出了一种用于激光测距的方法1000,能够降低该激光测距装置的功耗。
图6示出了根据本申请实施例的用于激光测距的方法2000的示意性流程图。如图6所示,该方法2000包括:2010,当激光测距装置中的目标器件空闲时,控制该目标器件从第一状态进入第二状态,该目标器件处于该第二状态下的功耗小于处于该第一状态下的功耗。其中,该目标器件可以为该激光测距装置中包括的至少一个模块中的至少一个器件,即该目标器件可以 为该激光测距装置中的任意一个或多个器件。该激光测距装置可以包括至少一个发射模块、至少一个接收模块、至少一个采样模块和至少一个运算模块,可选地,该激光测距装置还可以包括其他一个或多个模块,本申请实施例并不限于此。
应理解,该方法2000可以应用于激光测距装置中,例如,该方法2000可以应用于如图1-5所示的任意一个激光测距装置中。
具体地,在该方法2000中,若该激光测距装置中的目标器件空闲,控制该目标器件从第一状态进入第二状态,其中,该目标器件为该激光测距装置包括的至少一个模块中的至少一个器件,该目标器件处于第二状态下的功耗小于处于第一状态下的功耗。对应的,该方法2000还可以包括:控制该目标器件从第二状态进入第一状态。
具体地,当该目标器件为该激光测距装置中包括的模拟电路部分的至少一个器件时,例如,该目标器件为至少一个发射模块和至少一个接收模块中的至少一个器件时,控制该目标器件从第一状态进入第二状态包括:降低该目标器件的静态电路,使该目标器件在第二状态下的静态电流低于第一状态下的静态电流,即该目标器件进入低功耗的状态;对应的,控制该目标器件从第二状态进入第一状态包括:增加该目标器件的静态电路,使该目标器件恢复为在第一状态下的静态电流,从而能够开始正常工作。
当该目标器件为该激光测距装置中包括的数字电路部分的至少一个器件时,例如,该目标器件为至少一个采样模块和至少一个运算模块中的至少一个器件时,控制该目标器件从第一状态进入第二状态包括:降低该目标器件的翻转频率,使该目标器件在第二状态下的翻转频率低于第一状态下的翻转频率,即该目标器件进入低功耗的状态,工作频率降低;对应的,控制该目标器件从第二状态进入第一状态包括:增加该目标器件的翻转频率,使该目标器件恢复为在第一状态下的翻转频率,从而能够开始正常工作,工作频率恢复正常。
可选地,控制该目标器件从第一状态进入第二状态还可以包括:将目标器件与电源断开,使得目标器件进入睡眠状态,例如,该目标器件可以为至少一个发射模块和至少一个接收模块中的至少一个器件,在目标器件不需要工作时,该目标器件断开电源,降低功耗;对应的,控制该目标器件从第二状态进入第一状态包括:将目标器件与电源连接,为该目标器件供电,使该 目标器件进入正常的工作状态。
应理解,激光测距装置中的目标器件在第一状态指的是该目标器件能够正常工作的状态,处于第一状态的目标器件不损失任何测量精度。对应的,当该目标器件处于第二状态时,相较于第一状态的功耗降低,该目标器件不能正常工作,例如该目标器件可能不工作或工作效率较低。
例如,该目标器件包括至少一个发射模块中的器件,该目标器件在第一状态时,能够正常发射激光脉冲。具体地,处于第一状态的目标器件可能正在发生激光脉冲,或者等待发射激光脉冲。若目标器件处于等待发射激光脉冲的状态,则称该目标器件处于空闲态。对应的,当该目标器件处于第二状态时,该目标器件降低静态电流,从而降低功耗。在第二状态下,该目标器件不能正常发射激光脉冲。
再例如,该目标器件包括至少一个采样模块中的器件,该目标器件在第一状态时,能够正常地对电信号进行采样处理,采样频率较高。具体地,处于第一状态的目标器件可能正在进行采样,或者等待采样。若目标器件处于等待采样的状态,则称该目标器件处于空闲态。对应的,当该目标器件处于第二状态时,该目标器件的翻转频率降低,从而降低功耗。在第二状态下,该目标器件不能按照第一状态时的频率进行采样处理,例如,该目标器件处于第二状态可能无法采样,或者采用较低的采样频率进行采样。
在本申请实施例中,可以通过多种条件,确定该目标器件从第一状态进入第二状态的时刻。单通道的激光测距装置中,发射模块相邻两次发射激光脉冲之间称为一个工作周期T,也即发射模块发射一路激光脉冲之后至发射下一路激光脉冲之前的一段时间内。
下面以上述的单通道的激光测距装置中的一个工作周期T为例,对目标器件从第一状态进入第二状态的时刻进行举例说明。
单通道的激光测距装置中,在该一个工作周期T内:一个发射模块发射一路激光脉冲,依次经过接收模块、采样模块和运算模块处理后,最后确定本次测量的结果,直至下次发射模块再次发射激光脉冲。实际应用中,在一个工作周期T内,从发射模块发射激光脉冲到运算模块计算出距离需要时长为t。激光测距装置所能探测到的最弱的光信号对应的物体,与激光测距装置之间的距离称为激光测距装置的最远探测距离。为描述方便,下文中称该最远探测距离对应的t值为t0。
在一种实现方式中,假设该目标器件包括单通道的激光测距装置中发射模块、接收模块、采样模块和运算模块中每个模块中的至少一个器件。在一个工作周期内,当检测到该激光测距装置中目标器件中任一器件完成工作时,可以控制该器件从第一状态进入第二状态,即对于目标器件中的多个器件,按照其完成工作顺序,依次控制各个器件从第一状态进入第二状态;或者,在该激光测距装置中全部模块均完成工作时,同时控制全部目标器件从第一状态进入第二状态。
例如,对于单通道的激光测距装置,在一个工作周期内,激光测距装置中包括的模块的工作顺序从前至后依次为:发射模块、接收模块、采样模块和运算模块。一个实施例中,目标器件包括该四个模块中全部器件。在该四个模块中任意一个模块中任意器件完成当前工作周期内的工作时,就可以从第一状态进入第二状态,即按照发射模块、接收模块、采样模块和运算模块的顺序依次控制各个模块进入第二状态。
也就是说,在发射模块完成激光脉冲的发射后,该发射模块中的器件就可以从第一状态进入第二状态;类似的,接收模块在接收到对应的返回的光信号,完成光信号转换电信号后,该接收模块完成工作,接收模块中的器件可以从第一状态进入第二状态;采样模块对接收模块输出的电信号进行采样处理获得采样结果后完成工作,采样模块中的器件可以从第一状态进入第二状态,运算模块根据该采样结果,确定与该物体之间的距离后完成工作,运算模块中的器件可以从第一状态进入第二状态。
或者,该四个模块也可以在四个模块均完成工作后,即最后一个运算模块完成工作之后,四个模块同时从第一状态进入第二状态,以等待下一个工作周期。
也就是说,在发射模块完成激光脉冲的发射后,接收模块接收到对应的返回的光信号,完成光信号转换电信号;采样模块对接收模块输出的电信号进行采样处理获得采样结果,运算模块根据该采样结果,确定与该物体之间的距离,至此该四个模块全部完成工作,在此之后,该四个模块中的器件即可从第一状态进入第二状态。
在一种实现方式中,该目标器件包括单通道的激光测距装置中发射模块、接收模块、采样模块和运算模块中每个模块中的至少一个器件。在一个工作周期内,当距离发射模块发射激光脉冲之后达到第三预设时长时,控制 接收模块、采样模块和运算模块中的器件同时从第一状态进入第二状态。该第三预设时长不小于t0。
在一种实现方式中,该目标器件包括单通道的激光测距装置中发射模块、接收模块、采样模块和运算模块中每个模块中的至少一个器件。在一个工作周期内,当距离发射模块发射激光脉冲之后达到第三预设时长时,控制接收模块、采样模块和运算模块中的器件依次从第一状态进入第二状态。其中,接收模块、采样模块和运算模块分别进入第二状态的时间间隔是预设的。
例如,在发射模块完成激光脉冲的发射后,经过第三预设时长之后,接收模块一致未接收到返回的光信号,说明该次测距超过该激光测距装置的最大测量距离,则可以控制四个模块中的器件,依次或者同时从第以状态进入第二状态,其中,该第三预设时长可以设置为等于最大测量距离对应的工作时长t0。
下面以多通道的激光测距装置为例,对目标器件从第一状态进入第二状态的时刻进行举例说明。
第一种情况:该多通道的激光测距装置没有对电路中的器件进行复用。
没有复用的情况下,每个通道的工作方式可以和上述的单通道的激光测距装置的工作方式相同。多通道之间可以相互独立。
在一种实现方式中,各通道的发射模块分别发射激光脉冲序列的时间点是相同的,即存在多个通道同时发射激光脉冲序列,例如,可以该多个通道可以同时向不同方向发射激光脉冲序列。在这种实现方式中,可选的,控制模块可以一起控制各通道中同类型器件同时在距离激光脉冲发射第三预设时长之后同时从第一状态进入第二状态。或者,控制模块也可以控制模块可以一起控制各通道中同类型器件同时在距离激光脉冲发射第三预设时长+一定时间间隔之后从第一状态进入第二状态。可选的,控制模块也可以对各通道中器件分别独立控制进入第二状态。
在一种实现方式中,各通道也可以依次工作。这里称相邻两次激光脉冲的发射时间间隔为发射周期。例如,以三个通道为例:第一通道的发射模块发射激光脉冲之后,间隔一个时长T1后第二通道的发射模块发射激光脉冲,再间隔一个时长T2后第三通道的发射模块发射激光脉冲,再间隔一个时长T3后第一通道的发射模块发射激光脉冲。其中,每个通道在距离发射激光 脉冲后,所能探测到的最远物体所反射回的光信号会在接下来的间隔时长T1、T2或T3内依次由接收模块、采样模块和运算模块处理完。其中,T1、T2和T3可以相同;或者也可以不同,例如,可以根据各通道所能探测到的最远物体所反射回的光信号的处理时长,对应设置时间间隔T1、T2或T3。
上面提到的两种实现方式中,每个通道之后相互独立,互不影响,这里假设该目标器件包括激光测距装置中任意一个通道的发射模块、接收模块、采样模块和运算模块中每个模块中的至少一个器件。对于任意一个通道在一个工作周期内的各器件从第一状态进入第二状态的时刻可以包括:,当检测到该通道内的任意模块完成工作时,控制该模块中的器件从第一状态进入第二状态,即该通道包括发射模块、接收模块、采样模块和运算模块,该四个模块依次完成工作,对应的依次进入第二状态;或者,在检测到该通道内全部模块均完成工作时,控制全部模块同时进入第二状态;或者,距离所在通道的发射模块发射激光脉冲达到第三预设时长时,控制该通道内的发射模块、接收模块、采样模块和运算模块同时从第一状态进入第二状态,或依次从第一状态进入第二状态,其中,各个目标器件分别进入第二状态的时间间隔是预设的。
第二种情况:该多通道的激光测距装置对电路中的至少部分器件进行复用。
复用的情况中,各通道的发射模块是依次发射激光脉冲序列。任意通道的一个工作周期包括:该通道对应的发射模块发射激光脉冲序列,该通道内的接收模块接收返回的光信号,再经过采样模块和运算模块进行处理,输出结果。
对于任意一个通道,假设该目标器件包括该通道对应的发射模块、接收模块、采样模块和运算模块中每个模块中的至少一个器件。该目标器件可以包括该通道内的发射模块、接收模块、采样模块和运算模块包括的所有器件中的部分或全部,即目标器件可以包括被复用和不被复用的器件。控制目标器件从第一状态进入第二状态的时刻,包括:当检测到目标器件中任一器件完成工作时,控制该器件进入第二状态,即目标器件包括的发射模块、接收模块、采样模块和运算模块中的器件,按照工作顺序,依次从第一状态进入第二状态;或者,在该目标器件全部完成工作时,控制该全部目标器件同时 从第一状态进入第二状态的时刻;或者,在距离所在通道的发射模块发射激光脉冲之后达到第三预设时长时,控制全部目标器件同时从第一状态进入第二状态,或依次控制目标器件中各器件从第一状态进入第二状态,且各个目标器件分别进入第二状态的时间间隔是预设的。
上文中分别从激光测距装置为单通道或多通道的角度,描述了目标器件从第一状态进入第二状态的各种情况,下面从目标器件进入第二状态的方式的角度,描述目标器件从第一状态进入第二状态。
可选地,作为一个实施例,若该目标器件为激光测距装置中的至少两个器件时,控制该目标器件从第一状态进入第二状态可以包括:在该一个工作周期内,依次控制至少两个器件中的每个器件从第一状态进入第二状态,即该至少两个器件中至少存在两个器件在不同时刻进入第二状态。
可选地,依次控制至少两个器件中的每个器件从第一状态进入第二状态可以包括:在第一器件结束工作时,控制该第一器件从第一状态进入第二状态,其中,该第一器件可以为至少两个器件中的任意一个器件,也就是该第一器件是否进入第二状态是依据其自身是否完成工作。具体地,以该目标器件包括激光测距装置中的发射模块、接收模块、采样模块和运算模块中每个模块中的器件为例进行说明。对于目标器件中的任意一个器件,例如第一器件,在该第一器件结束工作的时刻,控制该第一器件从第一状态进入第二状态。
例如,该第一器件为发射模块中的器件,在一个工作周期内,该发射模块发射一路激光脉冲后,即为结束工作,则在该第一器件发射一路激光脉冲之后,控制该第一器件进入第二状态,降低该第一器件的功耗,例如可以降低该第一器件的静态电流,或者将第一器件与电源断开。
可选地,依次控制至少两个器件中的每个器件从第一状态进入第二状态还可以包括:在发射模块发射激光脉冲的时刻之后的第三预设时长之后,控制所述至少两个器件中的第二器件从第一状态进入第二状态,其中,该第二器件可以为至少两个器件中除发射模块以外的任意一个器件,也就是该第二器件是否进入第二状态是根据第三预设时长确定的,该第三预设时长与该激光测距装置的最大测量距离有关。具体地,以该目标器件包括激光测距装置中的发射模块、接收模块、采样模块和运算模块中每个模块中的器件为例进 行说明。由于在一个工作周期之内,发射模块发射一路激光脉冲之后的第三预设时长后,若仍没有返回的光信号,则认为该路激光脉冲超过了最大测量距离,并控制接收模块、采样模块和运算模块中的器件进入第二状态。
例如,对于发射模块中的器件,在一个工作周期内,该发射模块发射一路激光脉冲后,即为结束工作,则在该发射模块发射一路激光脉冲之后,控制该发射模块中的器件进入第二状态,降低功耗,例如可以降低该器件的静态电流,或者将该器件与电源断开。
应理解,当第二器件属于不同模块时,该第三预设时长可能不同,例如,该第二器件属于采样模块时,该第三预设时长对应为在激光测距装置测量最大距离时,从发射模块发射激光脉冲到采样模块进行采样为止,采样模块需要等待的最大时长;当该第二器件属于运算模块时,该第三预设时长对应为在激光测距装置测量最大距离时,从发射模块发射激光脉冲到运算模块进行运算为止,运算模块需要等待的最大时长。
或者,当第二器件属于不同模块时,该第三预设时长也可能相同,例如,可以将该第三预设时长设置为在激光测距装置中测量距离最大时,所有模块中需要等待时间最长的模块对于的等待时长,例如,激光测距装置在一个工作周期内,最后一步使用的运算模块等待时间最长,则将从发射模块发射激光脉冲到运算模块进行运算为止,运算模块需要等待的最大时长确定为第三预设时长。
可选地,作为一个实施例,若该目标器件为激光测距装置中的至少两个器件时,控制该目标器件从第一状态进入第二状态可以包括:在该激光测距装置的发射模块相邻两次发射激光脉冲之间,控制至少两个器件同时从第一状态进入第二状态。
可选地,同时控制至少两个器件从第一状态进入第二状态可以包括:在该至少两个器件全部结束工作时,控制该全部至少两个器件从第一状态进入第二状态,也就是全部器件是否进入第二状态是依据全部器件是否均完成工作。具体地,以该目标器件包括激光测距装置中的发射模块、接收模块、采样模块和运算模块中每个模块中的器件为例进行说明。在该目标器件全部都结束工作的时刻,控制该全部目标器件从第一状态进入第二状态。
例如,在一个工作周期内,首先由该发射模块发射一路激光脉冲,即为该发射模块结束工作,之后接收模块接收返回信号、采样模块进行采样处理 以及运算模块确定与物体之间距离,在发射模块、接收模块、采样模块和运算模块都结束工作之后,控制该目标器件同时进入第二状态,从而降低该目标器件的功耗,该目标器件包括发射模块、接收模块、采样模块和运算模块中每个模块中的器件。例如,对于其中发射模块的器件,可以降低该器件的静态电流,或者将其与电源断开;再例如,对于其中采样模块的器件,可以降低该器件的翻转频率,或者将其与电源断开。
可选地,控制至少两个器件同时从第一状态进入第二状态还可以包括:在发射模块发射激光脉冲的时刻之后的第四预设时长之后,控制所述至少两个器件同时从第一状态进入第二状态,也就是该至少两个器件是否进入第二状态是根据第四预设时长确定的,该第四预设时长与该激光测距装置的最大测量距离有关。具体地,以该目标器件包括激光测距装置中的发射模块、接收模块、采样模块和运算模块中每个模块中的器件为例进行说明。由于在一个工作周期之内,发射模块发射一路激光脉冲之后的第四预设时长后,若仍没有返回的光信号,则认为该路激光脉冲超过了最大测量距离,并控制发射模块、接收模块、采样模块和运算模块中的器件进入第二状态。
例如,对于发射模块中的器件,在一个工作周期内,该发射模块发射一路激光脉冲后,即为结束工作。由于可能存在光路改变模块,将该一路激光脉冲改变为多路,因此在该一个工作周期内,经过第四预设时长之后,接收模块可能接收了部分激光脉冲的返回的光信号,但仍存在部分激光脉冲未返回光信号,其中,该第四预设时长对应该激光测距装置测量最大距离时返回光信号需要的最大时长,即接收模块在发射模块发射激光脉冲之后需要等待的最大时长。由于超过该第四预设时长,则该部分未返回光信号的激光脉冲可以认为其已经超过最大测量距离,即可以认为该部分激光脉冲完成工作,对应的接收模块、采样模块和运算模块在处理完已返回的光信号且已经超过第四预设时长时,认为在该一个工作周期内,所有模块均已经完成工作,可以控制全部目标器件进入第二状态,降低功耗,例如对于发射模块中的器件,可以降低该器件的静态电流,或者将该器件与电源断开;或者,对于采样模块中的器件,可以降低该器件的翻转频率,或者将其与电源断开。
再例如,以一个测量频率为10千赫兹、测量距离为450m的激光测距装置为例,每100us测量一次,发射模块发射激光脉冲,从该发射到接收的时间差仅为3us,中间有超过90us的时间里各部分模块都处于空闲状态,不需 要发射、接收激光脉冲,也不需要采样等。因此,从发射模块发射激光脉冲之后33us之后,若仍没有返回的光信号,则认为超过该激光测距装置的最大测量距离,则控制该激光测距装置中的目标器件进入第二状态,使得该部分目标器件在该超过90us的时间里,都处于低功耗的状态,大大的减少了该激光测距装置的功耗。
在本申请实施例中,该方法2000还可以包括:在目标器件进入第二状态之后,对应的,还可以控制该目标器件从该第二状态进入第一状态。可选地,可以在该目标器件开始工作之前,从第二状态进入第一状态;或者,还可以在激光测距装置中的发射模块开始工作之前,令全部目标器件从第二状态进入第一状态,准备工作。
可选地,作为一个实施例,该目标器件可以在发射模块开始工作之前,从第二状态进入第一状态,例如,考虑到从第二状态进入第一状态可能需要一段时间,则目标器件可以在发射模块开始发射激光脉冲前的第二预设时长之前,从第二状态进入第一状态。具体地,全部目标器件当前均处于第二状态,若在第一时刻,发射模块应该发射激光脉冲,则在该第一时刻之前的第二时刻,令全部目标器件从第二状态进入第一状态,该第一时刻与第二时刻之间差值大于或者等于第二预设时长。以便于每个目标器件有足够的时间进入第一状态,在第一状态的目标器件可以随时开始工作,例如,进入第一状态后的发射模块,可以在需要发射激光脉冲时发射激光脉冲,再例如运算模块进入第一状态后,恢复正常的运算频率。
例如,对于单通道的激光测距装置,在一个工作周期内,激光测距装置中包括的模块的工作顺序从前至后依次为:发射模块、接收模块、采样模块和运算模块,假设目标器件包括该四个模块中每个模块中的至少一个器件。若该四个模块均处于第二状态,在第一时刻,目标器件中属于发射模块的器件需要在第一时刻发射激光脉冲,则在第一时刻之前的第二时刻,令该目标器件中全部器件均从第二状态进入第一状态,该第一时刻与第二时刻之间差值大于或者等于第二预设时长。以便于每个目标器件有足够的时间进入第一状态,在第一状态的目标器件可以随时开始工作。
再例如,对于多通道的激光测距装置,该多通道的激光测距装置包括对发射模块、接收模块、采样模块和运算模块中任意器件进行复用的情况,或者也可以包括对该四个模块全部不复用的情况。同样,假设目标器件包括该 四个模块中每个模块中的至少一个器件,其中可以包括复用的和不复用的一个或多个器件。全部目标器件处于第二状态,在第一时刻,对于任意一个通道,在目标器件中属于该通道中的发射模块的器件需要在第一时刻发射激光脉冲,则在第一时刻之前的第二时刻,令该目标器件中对应属于该通道中的器件均从第二状态进入第一状态,该第一时刻与第二时刻之间差值大于或者等于第二预设时长。以便于目标器件中属于该通道中的每个器件有足够的时间进入第一状态,在第一状态的目标器件可以随时开始工作。
以图4为例,对于多通道的激光测距装置,假设该多通道的激光测距装置中的模块不复用,对于通道1,假设发射模块在b1之后可以进入第二状态,由于在a4时刻,发射模块需要再次发射激光脉冲,因此在a4时刻之前且距离该a4时刻的第二预设时间的时刻,控制通道1内的发射模块、接收模块、采样模块以及运算模块中的各个器件从第二状态进入第一状态,以便于目标器件中属于该通道中的每个器件有足够的时间进入第一状态,在第一状态的目标器件可以随时开始工作。
可选地,作为一个实施例,该目标器件可以在其开始工作之前,从第二状态进入第一状态,例如,考虑到从第二状态进入第一状态可能需要一段时间,则目标器件可以在其开始工作的第一预设时长之前,从第二状态进入第一状态。具体地,由于激光测距装置中的各个电路无需同时工作,根据信号和数据流向,各个电路可按照一定的先后顺序开始工作,例如可以按照发射模块、接收模块、采样模块和运算模块依次开始工作。
对于任意一个目标器件,当前该一个目标器件处于第二状态,若在第一时刻,发射模块应该发射激光脉冲,则在该次发射激光脉冲所属的工作周期内,可以对应确定每个模块开始工作的时间。根据每个模块从第二状态进入第一状态可能需要的时间,在该一个目标器件开始工作的第一预设时长之前,令该一个目标器件从第二状态进入第一状态,以便于该一个目标器件有足够的时间进入第一状态。
例如,对于发射模块中的器件,该发射模块进入第一状态所需时间可能较长,而对于采样模块中的器件,其进入第一状态所需时间可能较短,则在该发射模块开始发射激光脉冲的第一预设时间之前,令发射模块中的器件从第二状态进入第一状态,该第一预设时间对应于发射模块;在该采样模块开始采样的第一预设时间之前,令采样模块中的器件从第二状态进入第一状 态,该第一预设时间对应于采样模块,其中,发射模块对应的第一预设时间大于采样模块对应的第一预设时间。
具体地,以单通道的激光测距装置为例,在一个工作周期内,该单通道的激光测距装置中模块的工作顺序依次发射模块、接收模块、采样模块和运算模块。假设目标器件包括这四个模块中每个模块中的至少一个器件,该目标器件当前均处于第二状态。若在第一时刻,发射模块应该发射激光脉冲,则在该次发射激光脉冲所属的工作周期内,可以对应确定每个模块开始工作的时间。根据每个模块从第二状态进入第一状态可能需要的时间,对应在任意一个目标器件开始工作的第一预设时长之前,令该任意一个目标器件从第二状态进入第一状态,以便于该一个目标器件有足够的时间进入第一状态并开始工作。
例如,在该一个工作周期内,首先是目标器件中属于发射模块的器件先进入第一状态以开始发射激光脉冲,即先控制该发射模块中的器件从第二状态进入第一状态,之后是目标器件中属于接收模块、采样模块和运算模块的器件,各个器件分别依次按照各自工作顺序,在开始工作之前的预设时间,从第二状态进入第一状态。
类似的,对于多通道的激光测距装置,该多通道的激光测距装置包括对发射模块、接收模块、采样模块和运算模块中任意器件进行复用的情况,或者也可以包括对该四个模块全部不复用的情况。同样,假设目标器件包括该四个模块中每个模块中的至少一个器件,其中可以包括复用的和不复用的一个或多个器件。全部目标器件处于第二状态,在第一时刻,对于任意一个通道,在目标器件中属于该通道中的发射模块的器件需要在第一时刻发射激光脉冲,则在该次发射激光脉冲所属的工作周期内,可以对应确定每个模块开始工作的时间。根据每个模块从第二状态进入第一状态可能需要的时间,对应在任意一个目标器件开始工作的第一预设时长之前,令该任意一个目标器件从第二状态进入第一状态,以便于该一个目标器件有足够的时间进入第一状态并开始工作。
例如,对于任意一个通道,在任意一个工作周期内,首先是目标器件中属于该通道的发射模块中的器件需要先进入第一状态以开始发射激光脉冲,即先控制该发射模块中的器件从第二状态进入第一状态,之后是目标器件中属于该通道的接收模块、采样模块和运算模块的器件,各个器件分别依次按 照各自工作顺序,在开始工作之前的预设时间,从第二状态进入第一状态。
因此,本申请实施例的用于激光测距的方法,在激光测距装置包括的模块中的目标器件空闲时,控制该目标器件从第一状态进入第二状态,其中,第二状态的功耗低于第一状态的功耗。考虑到激光测距装置中各个器件无需一直工作,也无需同时工作,可以按照一定的先后顺序或者同时控制各个器件进入第一状态以便于随时开始工作,或者控制各个器件进入第二状态而停止工作,例如可以根据信号和数据流向确定先后顺序。这种不同状态的控制切换,在保证了系统的测量性能的同时,又能最大化缩短各个器件的工作时间,进一步降低功耗。也就是在激光测距装置不需要感知环境状况时,可以使整机或部分器件处于睡眠模式。在该睡眠模式下,全部或部分器件处在最低功耗下,直到该装置被重新唤醒。这样可以显著降低系统功耗,降低整机的温升,提高整机可正常工作的环境温度范围,从而最大程度上节省能源。
上文中结合图1至图6,详细描述了根据本申请实施例的用于激光测距的方法,下面将结合图7,描述根据本申请实施例的激光测距装置。
如图7所示,根据本申请实施例的激光测距装置3000包括:控制模块3010,还包括:至少一个发射模块3020、至少一个接收模块3030、至少一个采样模块3040和至少一个运算模块3050;可选地,还可以包括光路改变模块3060,还可以包括扫描模块3070。
具体地,该控制模块3010用于:当激光测距装置中的目标器件空闲时,控制该目标器件从第一状态进入第二状态,该目标器件处于该第二状态下的功耗小于处于该第一状态下的功耗,其中,该目标器件为该激光测距装置中的至少一个模块中的至少一个器件;该发射模块3020用于:发送激光脉冲,该接收模块3030用于:接收该激光脉冲经过物体反射后返回的光信号,并将该光信号转成电信号,该采样模块3040用于:对该电信号进行采样处理,获得采样结果,该运算模块3050用于:根据该采样结果,确定与该物体之间的距离。
可选地,作为一个实施例,该控制模块3010还用于:控制该目标器件从该第二状态进入该第一状态。
可选地,作为一个实施例,该目标器件进入该第一状态的时刻在该目标器件开始工作的时刻的第一预设时长之前。
可选地,作为一个实施例,该目标器件进入该第一状态的时刻在该发射 模块3020发射该激光脉冲的第二预设时长之前。
可选地,作为一个实施例,该目标器件包括该激光测距装置中的至少两个器件;该控制模块3010用于:在该发射模块3020相邻两次发射激光脉冲之间,依次控制该至少两个器件中的每个器件从该第一状态进入该第二状态。
可选地,作为一个实施例,该控制模块3010用于:在该至少两个器件中的第一器件结束工作时,控制该第一器件从该第一状态进入该第二状态。
可选地,作为一个实施例,该控制模块3010用于:在距离该发射模块3020发射该激光脉冲时刻的第三预设时长之后,控制该至少两个器件中的第二器件从该第一状态进入该第二状态,该第二器件为位于该接收模块3030、该采样模块3040和该运算模块3050中至少一个模块的任意一个器件。
可选地,作为一个实施例,该目标器件包括该激光测距装置中的至少两个器件;该控制模块3010用于:在该发射模块3020相邻两次发射激光脉冲之间,控制该至少两个器件同时从该第一状态进入该第二状态。
可选地,作为一个实施例,该控制模块3010用于:在该至少两个器件均结束工作时,控制该至少两个器件同时从该第一状态进入该第二状态。
可选地,作为一个实施例,该控制模块3010用于:在距离该发射模块发射该激光脉冲时刻的第四预设时长之后,控制该至少两个器件同时从该第一状态进入该第二状态。
可选地,作为一个实施例,该激光测距装置包括一个发射模块3020、一个接收模块3030、一个采样模块3040和一个运算模块3050。
可选地,作为一个实施例,在该发射模块3020相邻两次发射激光脉冲之间:该一个发射模块3020用于:发射一路激光脉冲;该一个接收模块3030用于:接收该一路激光脉冲经过物体反射后返回的光信号,并将该光信号转成电信号,该一个采样模块3040用于:对该电信号进行采样处理,获得采样结果,该一个运算模块3050用于:根据该采样结果,确定与该物体之间的距离。
可选地,作为一个实施例,该激光测距装置包括光路改变模块3060、一个发射模块3020和多个接收模块3030,该光路改变模块3060用于:将该一个发射模块3020发射的一路激光脉冲分成沿不同路径同时出射的至少两路激光脉冲,或者将该一个发射模块3020发射的一路激光脉冲在不同时刻改 变至沿不同路径出射的至少两路激光脉冲;该多个接收模块3030与该至少两路激光脉冲一一对应,分别用于接收对应的激光脉冲经物体反射后返回的光信号。
可选地,作为一个实施例,该一个发射模块3020发射的一路激光脉冲在不同时刻被该光路改变模块3060改变至沿不同路径出射的至少两路激光脉冲;该激光测距装置还包括一个采样模块3040和一个运算模块3050,该一个采样模块3040用于:在不同时刻分别对该多个接收模块3030分别输出的电信号进行采样处理,分别获得每个电信号对应的采样结果;该一个运算模块3050用于:在不同时刻分别根据该采样模块3040输出的每个采样结果,确定与该采样结果对应的物体之间的距离。
可选地,作为一个实施例,该激光测距装置还包括多个采样模块3040和多个运算模块3050,其中,该多个接收模块3030、该多个采样模块3040和该多个运算模块3050一一对应,该多个采样模块3040中每个采样模块3040用于:对对应的接收模块3030输出的电信号进行采样处理,获得采样结果;该多个运算模块3050中的每个运算模块3050用于:根据对应的采样模块3040输出的采样结果,确定与该采样结果对应的物体之间的距离。
可选地,作为一个实施例,该激光测距装置包括多个发射模块3020和多个接收模块3030,该多个发射模块3020与该多个接收模块3030一一对应。
可选地,作为一个实施例,该激光测距装置还包括一个采样模块3040和一个运算模块3050,该多个发射模块3020中的不同发射模块3020用于:在不同时刻发射一路激光脉冲;该多个接收模块3030中的每个接收模块3030用于:接收对应的发射模块3020所发射的一路激光脉冲经过物体反射后返回的光信号,并将该光信号转成电信号;该一个采样模块3040用于:在不同时刻分别对不同接收模块3030输出的电信号进行采样处理,获得采样结果;该一个运算模块3050用于:在不同时刻分别根据该采样模块3040输出的采样结果,确定与该采样结果对应的物体之间的距离。
可选地,作为一个实施例,该激光测距装置还包括多个采样模块3040和一个运算模块3050,该多个发射模块3020、该多个接收模块3030、该多个采样模块3040之间一一对应,该一个运算模块3050分别于该多个采样模块3040连接;该多个发射模块3020中的不同发射模块3020用于:在不同时刻发射一路激光脉冲;该多个接收模块3030中的每个接收模块3030用于: 接收对应的发射模块3020所发射的一路激光脉冲经过物体反射后返回的光信号,并将该光信号转成电信号;该多个采样模块3040中的每个采样模块3040用于:对对应的接收模块3030输出的电信号进行采样处理,获得采样结果;该一个运算模块3050用于:在不同时刻分别根据该采样模块3040输出的采样结果,确定与该采样结果对应的物体之间的距离。
可选地,作为一个实施例,该激光测距装置还包括多个采样模块3040和多个运算模块3050,该多个发射模块3020、该多个接收模块3030、该多个采样模块3040和该多个运算模块3050之间一一对应,该多个发射模块3020用于:分别在相同时刻或不同时刻发射一路激光脉冲;该多个接收模块3030中的每个接收模块3030用于:接收对应的发射模块3020发射的一路激光脉冲经过物体反射后返回的光信号,并将该光信号转成电信号;该多个采样模块3040中的每个采样模块3040用于:对对应的接收模块3030输出的电信号进行采样处理,获得采样结果;该多个运算模块3050中的每个运算模块3050用于:根据对应的采样模块3040输出的采样结果,确定与该采样结果对应的物体之间的距离。
可选地,作为一个实施例,该目标器件为位于该发射模块3020和/或该接收模块3030中的器件,该目标器件在该第二状态下的静态电流低于在该第一状态下的静态电流。
可选地,作为一个实施例,该目标器件为位于该采样模块3040和/或该运算模块3050中的器件,该目标器件在该第二状态下的翻转频率低于在该第一状态下的翻转频率。
可选地,作为一个实施例,该目标器件在该第二状态下与电源断开。
可选地,作为一个实施例,该控制模块3010为可编程逻辑器件PLD。
可选地,作为一个实施例,该PLD为现场可编程逻辑门阵列FPGA或复杂可编程逻辑器件CPLD。
可选地,作为一个实施例,该发射模块3020包括激光发送电路。
可选地,作为一个实施例,该接收模块3030包括:光电转换电路、模拟放大电路和比较器中的至少一个。
可选地,作为一个实施例,该采样模块3040包括时间数字转换器TDC和/或模数转换器ADC。
可选地,作为一个实施例,该发射模块3020用于发射激光脉冲序列; 其中,该激光脉冲序列中相邻两次激光脉冲的发射时间间隔为第一时间间隔,该发射模块3020发射激光脉冲的时间与该运算模块3050确定反射该激光脉冲的物体之间的距离的时间之间的间隔为第二时间间隔,该第一时间间隔大于该第二时间间隔的10倍。
可选地,作为一个实施例,还包括:扫描模块3070,用于将该激光脉冲序列改变传播方向出射;经被探测物反射回的至少部分光束经过该扫描模块3070后入射至该激光测距模块。
可选地,作为一个实施例,该扫描模块3070包括至少一个厚度沿径向变化的棱镜,以及用于带动该棱镜转动的电机;该转动的棱镜用于将该激光脉冲序列折射至不同方向出射。
因此,本申请实施例的激光测距的装置,在其包括的模块中的目标器件空闲时,控制该目标器件从第一状态进入第二状态,其中,第二状态的功耗低于第一状态的功耗。考虑到激光测距装置中各个器件无需一直工作,也无需同时工作,可以按照一定的先后顺序或者同时控制各个器件进入第一状态以便于随时开始工作,或者控制各个器件进入第二状态而停止工作,例如可以根据信号和数据流向确定先后顺序。这种不同状态的控制切换,在保证了系统的测量性能的同时,又能最大化缩短各个器件的工作时间,进一步降低功耗。也就是在激光测距装置不需要感知环境状况时,可以使整机或部分器件处于睡眠模式。在该睡眠模式下,全部或部分器件处在最低功耗下,直到该装置被重新唤醒。这样可以显著降低系统功耗,降低整机的温升,提高整机可正常工作的环境温度范围,从而最大程度上节省能源。
应理解,本申请各实施例的装置可以基于存储器和处理器实现,各存储器用于存储用于执行本申请个实施例的方法的指令,处理器执行上述指令,使得装置执行本申请各实施例的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失 性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,当指令在计算机上运行时,使得计算机执行上述各方法实施例的方法。
本申请实施例还提供一种计算设备,该计算设备包括上述计算机可读存储介质。
本申请实施例可以应用在飞行器,尤其是无人机领域。
应理解,本申请各实施例的电路、子电路、子单元的划分只是示意性的。本领域普通技术人员可以意识到,本文中所公开的实施例描述的各示例的电路、子电路和子单元,能够再行拆分或组合。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编 程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
应理解,本申请各实施例均是以总位宽为16位(bit)为例进行说明的,本申请各实施例可以适用于其他的位宽。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使 用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (56)

  1. 一种用于激光测距的方法,其特征在于,包括:
    当激光测距装置中的目标器件空闲时,控制所述目标器件从第一状态进入第二状态,所述目标器件处于所述第二状态下的功耗小于处于所述第一状态下的功耗,
    其中,所述激光测距装置包括至少一个发射模块、至少一个接收模块、至少一个采样模块和至少一个运算模块,所述目标器件为所述激光测距装置中的至少一个模块中的至少一个器件;
    其中,所述发射模块用于:发送激光脉冲,
    所述接收模块用于:接收所述激光脉冲经过物体反射后返回的光信号,并将所述光信号转成电信号,
    所述采样模块用于:对所述电信号进行采样处理,获得采样结果,
    所述运算模块用于:根据所述采样结果,确定与所述物体之间的距离。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    控制所述目标器件从所述第二状态进入所述第一状态。
  3. 根据权利要求2所述的方法,其特征在于,所述目标器件进入所述第一状态的时刻在所述目标器件开始工作的时刻的第一预设时长之前。
  4. 根据权利要求2或3所述的方法,其特征在于,所述目标器件进入所述第一状态的时刻在所述发射模块发射所述激光脉冲的第二预设时长之前。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述目标器件包括所述激光测距装置中的至少两个器件;
    所述控制所述目标器件从第一状态进入第二状态,包括:
    在所述发射模块相邻两次发射激光脉冲之间,依次控制所述至少两个器件中的每个器件从所述第一状态进入所述第二状态。
  6. 根据权利要求5所述的方法,其特征在于,所述依次控制所述至少两个器件中的每个器件从所述第一状态进入所述第二状态,包括:
    在所述至少两个器件中的第一器件结束工作时,控制所述第一器件从所述第一状态进入所述第二状态。
  7. 根据权利要求5或6所述的方法,其特征在于,所述依次控制所述 至少两个器件中的每个器件从所述第一状态进入所述第二状态,包括:
    在距离所述发射模块发射所述激光脉冲时刻的第三预设时长之后,控制所述至少两个器件中的第二器件从所述第一状态进入所述第二状态,所述第二器件为位于所述接收模块、所述采样模块和所述运算模块中至少一个模块的任意一个器件。
  8. 根据权利要求1至4中任一项所述的方法,其特征在于,所述目标器件包括所述激光测距装置中的至少两个器件;
    所述控制所述目标器件从第一状态进入第二状态,包括:
    在所述发射模块相邻两次发射激光脉冲之间,控制所述至少两个器件同时从所述第一状态进入所述第二状态。
  9. 根据权利要求8所述的方法,其特征在于,所述控制所述至少两个器件同时从所述第一状态进入所述第二状态,包括:
    在所述至少两个器件均结束工作时,控制所述至少两个器件同时从所述第一状态进入所述第二状态。
  10. 根据权利要求8或9所述的方法,其特征在于,所述控制所述至少两个器件同时从所述第一状态进入所述第二状态,包括:
    在距离所述发射模块发射所述激光脉冲时刻的第四预设时长之后,控制所述至少两个器件同时从所述第一状态进入所述第二状态。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述激光测距装置包括一个发射模块、一个接收模块、一个采样模块和一个运算模块。
  12. 根据权利要求11所述的方法,其特征在于,在所述发射模块相邻两次发射激光脉冲之间,所述方法还包括:
    通过所述一个发射模块发射一路激光脉冲;
    通过所述一个接收模块接收所述一路激光脉冲经过物体反射后返回的光信号,并将所述光信号转成电信号;
    通过所述一个采样模块对所述电信号进行采样处理,获得采样结果;
    通过所述一个运算模块根据所述采样结果,确定与所述物体之间的距离。
  13. 根据权利要求1至10中任一项所述的方法,其特征在于,所述激光测距装置包括光路改变模块、一个发射模块和多个接收模块,所述方法还 包括:
    通过所述光路改变模块将所述一个发射模块发射的一路激光脉冲分成沿不同路径同时出射的至少两路激光脉冲,或者将所述一个发射模块发射的一路激光脉冲在不同时刻改变至沿不同路径出射的至少两路激光脉冲;
    所述多个接收模块与所述至少两路激光脉冲一一对应,分别用于接收对应的激光脉冲经物体反射后返回的光信号。
  14. 根据权利要求13所述的方法,其特征在于,所述一个发射模块发射的一路激光脉冲在不同时刻被所述光路改变模块改变至沿不同路径出射的至少两路激光脉冲;
    所述激光测距装置还包括一个采样模块和一个运算模块,所述方法还包括:
    通过所述一个采样模块在不同时刻分别对所述多个接收模块分别输出的电信号进行采样处理,分别获得每个电信号对应的采样结果;
    通过所述一个运算模块在不同时刻分别根据所述采样模块输出的每个采样结果,确定与所述采样结果对应的物体之间的距离。
  15. 根据权利要求13所述的方法,其特征在于,所述激光测距装置还包括多个采样模块和多个运算模块,其中,所述多个接收模块、所述多个采样模块和所述多个运算模块一一对应,
    所述方法还包括:
    通过所述多个采样模块中每个采样模块,对对应的接收模块输出的电信号进行采样处理,获得采样结果;
    通过所述多个运算模块中的每个运算模块,根据对应的采样模块输出的采样结果,确定与所述采样结果对应的物体之间的距离。
  16. 根据权利要求1至10中任一项所述的方法,其特征在于,所述激光测距装置包括多个发射模块和多个接收模块,所述多个发射模块与所述多个接收模块一一对应。
  17. 根据权利要求16所述的方法,其特征在于,所述激光测距装置还包括一个采样模块和一个运算模块,所述方法还包括:
    在不同时刻通过所述多个发射模块中的不同发射模块发射一路激光脉冲;
    通过所述多个接收模块中的每个接收模块,接收对应的发射模块所发射 的一路激光脉冲经过物体反射后返回的光信号,并将所述光信号转成电信号;
    通过所述一个采样模块在不同时刻分别对不同接收模块输出的电信号进行采样处理,获得采样结果;
    通过所述一个运算模块在不同时刻分别根据所述采样模块输出的采样结果,确定与所述采样结果对应的物体之间的距离。
  18. 根据权利要求16所述的方法,其特征在于,所述激光测距装置还包括多个采样模块和一个运算模块,所述多个发射模块、所述多个接收模块、所述多个采样模块之间一一对应,所述一个运算模块分别于所述多个采样模块连接;
    所述方法还包括:
    在不同时刻通过所述多个发射模块中的不同发射模块发射一路激光脉冲;
    通过所述多个接收模块中的每个接收模块,接收对应的发射模块所发射的一路激光脉冲经过物体反射后返回的光信号,并将所述光信号转成电信号;
    通过所述多个采样模块中的每个采样模块,对对应的接收模块输出的电信号进行采样处理,获得采样结果;
    通过所述一个运算模块在不同时刻分别根据所述采样模块输出的采样结果,确定与所述采样结果对应的物体之间的距离。
  19. 根据权利要求16所述的方法,其特征在于,所述激光测距装置还包括多个采样模块和多个运算模块,所述多个发射模块、所述多个接收模块、所述多个采样模块和所述多个运算模块之间一一对应,
    所述方法还包括:
    通过所述多个发射模块中分别在相同时刻或不同时刻发射一路激光脉冲;
    通过所述多个接收模块中的每个接收模块,接收对应的发射模块发射的一路激光脉冲经过物体反射后返回的光信号,并将所述光信号转成电信号;
    通过所述多个采样模块中的每个采样模块,对对应的接收模块输出的电信号进行采样处理,获得采样结果;
    通过所述多个运算模块中的每个运算模块,根据对应的采样模块输出的 采样结果,确定与所述采样结果对应的物体之间的距离。
  20. 根据权利要求1至19中任一项所述的方法,其特征在于,所述目标器件为位于所述发射模块和/或所述接收模块中的器件,
    所述目标器件在所述第二状态下的静态电流低于在所述第一状态下的静态电流。
  21. 根据权利要求1至20中任一项所述的方法,其特征在于,所述目标器件为位于所述采样模块和/或所述运算模块中的器件,
    所述目标器件在所述第二状态下的翻转频率低于在所述第一状态下的翻转频率。
  22. 根据权利要求1至19中任一项所述的方法,其特征在于,所述目标器件在所述第二状态下与电源断开。
  23. 根据权利要求1至22中任一项所述的方法,其特征在于,所述发射模块包括激光发送电路。
  24. 根据权利要求1至23中任一项所述的方法,其特征在于,所述接收模块包括:光电转换电路、模拟放大电路和比较器中的至少一个。
  25. 根据权利要求1至24中任一项所述的方法,其特征在于,所述采样模块包括时间数字转换器TDC和/或模数转换器ADC。
  26. 根据权利要求1至25中任一项所述的方法,其特征在于,所述发射模块用于发射激光脉冲序列;
    其中,所述激光脉冲序列中相邻两次激光脉冲的发射时间间隔为第一时间间隔,所述发射模块发射激光脉冲的时间与所述运算模块确定反射所述激光脉冲的物体之间的距离的时间之间的间隔为第二时间间隔,所述第一时间间隔大于所述第二时间间隔的10倍。
  27. 一种用于激光测距的装置,其特征在于,包括:
    控制模块,用于当激光测距装置中的目标器件空闲时,控制所述目标器件从第一状态进入第二状态,所述目标器件处于所述第二状态下的功耗小于处于所述第一状态下的功耗,其中,所述激光测距装置包括至少一个发射模块、至少一个接收模块、至少一个采样模块和至少一个运算模块,所述目标器件为所述激光测距装置中的至少一个模块中的至少一个器件;
    所述发射模块用于:发送激光脉冲,
    所述接收模块用于:接收所述激光脉冲经过物体反射后返回的光信号, 并将所述光信号转成电信号,
    所述采样模块用于:对所述电信号进行采样处理,获得采样结果,
    所述运算模块用于:根据所述采样结果,确定与所述物体之间的距离。
  28. 根据权利要求27所述的装置,其特征在于,所述控制模块还用于:
    控制所述目标器件从所述第二状态进入所述第一状态。
  29. 根据权利要求28所述的装置,其特征在于,所述目标器件进入所述第一状态的时刻在所述目标器件开始工作的时刻的第一预设时长之前。
  30. 根据权利要求28或29所述的装置,其特征在于,所述目标器件进入所述第一状态的时刻在所述发射模块发射所述激光脉冲的第二预设时长之前。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,所述目标器件包括所述激光测距装置中的至少两个器件;
    所述控制模块用于:
    在所述发射模块相邻两次发射激光脉冲之间,依次控制所述至少两个器件中的每个器件从所述第一状态进入所述第二状态。
  32. 根据权利要求31所述的装置,其特征在于,所述控制模块用于:
    在所述至少两个器件中的第一器件结束工作时,控制所述第一器件从所述第一状态进入所述第二状态。
  33. 根据权利要求31或32所述的装置,其特征在于,所述控制模块用于:
    在距离所述发射模块发射所述激光脉冲时刻的第三预设时长之后,控制所述至少两个器件中的第二器件从所述第一状态进入所述第二状态,所述第二器件为位于所述接收模块、所述采样模块和所述运算模块中至少一个模块的任意一个器件。
  34. 根据权利要求27至30中任一项所述的装置,其特征在于,所述目标器件包括所述激光测距装置中的至少两个器件;
    所述控制模块用于:
    在所述发射模块相邻两次发射激光脉冲之间,控制所述至少两个器件同时从所述第一状态进入所述第二状态。
  35. 根据权利要求34所述的装置,其特征在于,所述控制模块用于:
    在所述至少两个器件均结束工作时,控制所述至少两个器件同时从所述 第一状态进入所述第二状态。
  36. 根据权利要求34或35所述的装置,其特征在于,所述控制模块用于:
    在距离所述发射模块发射所述激光脉冲时刻的第四预设时长之后,控制所述至少两个器件同时从所述第一状态进入所述第二状态。
  37. 根据权利要求27至36中任一项所述的装置,其特征在于,所述激光测距装置包括一个发射模块、一个接收模块、一个采样模块和一个运算模块。
  38. 根据权利要求37所述的装置,其特征在于,在所述发射模块相邻两次发射激光脉冲之间:
    所述一个发射模块用于:发射一路激光脉冲;
    所述一个接收模块用于:接收所述一路激光脉冲经过物体反射后返回的光信号,并将所述光信号转成电信号,
    所述一个采样模块用于:对所述电信号进行采样处理,获得采样结果,所述一个运算模块用于:根据所述采样结果,确定与所述物体之间的距离。
  39. 根据权利要求27至36中任一项所述的装置,其特征在于,所述激光测距装置包括光路改变模块、一个发射模块和多个接收模块,
    所述光路改变模块用于:将所述一个发射模块发射的一路激光脉冲分成沿不同路径同时出射的至少两路激光脉冲,或者将所述一个发射模块发射的一路激光脉冲在不同时刻改变至沿不同路径出射的至少两路激光脉冲;
    所述多个接收模块与所述至少两路激光脉冲一一对应,分别用于接收对应的激光脉冲经物体反射后返回的光信号。
  40. 根据权利要求39所述的装置,其特征在于,所述一个发射模块发射的一路激光脉冲在不同时刻被所述光路改变模块改变至沿不同路径出射的至少两路激光脉冲;
    所述激光测距装置还包括一个采样模块和一个运算模块,
    所述一个采样模块用于:在不同时刻分别对所述多个接收模块分别输出的电信号进行采样处理,分别获得每个电信号对应的采样结果;
    所述一个运算模块用于:在不同时刻分别根据所述采样模块输出的每个采样结果,确定与所述采样结果对应的物体之间的距离。
  41. 根据权利要求39所述的装置,其特征在于,所述激光测距装置还包括多个采样模块和多个运算模块,其中,所述多个接收模块、所述多个采样模块和所述多个运算模块一一对应,
    所述多个采样模块中每个采样模块用于:对对应的接收模块输出的电信号进行采样处理,获得采样结果;
    所述多个运算模块中的每个运算模块用于:根据对应的采样模块输出的采样结果,确定与所述采样结果对应的物体之间的距离。
  42. 根据权利要求27至36中任一项所述的装置,其特征在于,所述激光测距装置包括多个发射模块和多个接收模块,所述多个发射模块与所述多个接收模块一一对应。
  43. 根据权利要求42所述的装置,其特征在于,所述激光测距装置还包括一个采样模块和一个运算模块,
    所述多个发射模块中的不同发射模块用于:在不同时刻发射一路激光脉冲;
    所述多个接收模块中的每个接收模块用于:接收对应的发射模块所发射的一路激光脉冲经过物体反射后返回的光信号,并将所述光信号转成电信号;
    所述一个采样模块用于:在不同时刻分别对不同接收模块输出的电信号进行采样处理,获得采样结果;
    所述一个运算模块用于:在不同时刻分别根据所述采样模块输出的采样结果,确定与所述采样结果对应的物体之间的距离。
  44. 根据权利要求42所述的装置,其特征在于,所述激光测距装置还包括多个采样模块和一个运算模块,所述多个发射模块、所述多个接收模块、所述多个采样模块之间一一对应,所述一个运算模块分别于所述多个采样模块连接;
    所述多个发射模块中的不同发射模块用于:在不同时刻发射一路激光脉冲;
    所述多个接收模块中的每个接收模块用于:接收对应的发射模块所发射的一路激光脉冲经过物体反射后返回的光信号,并将所述光信号转成电信号;
    所述多个采样模块中的每个采样模块用于:对对应的接收模块输出的电 信号进行采样处理,获得采样结果;
    所述一个运算模块用于:在不同时刻分别根据所述采样模块输出的采样结果,确定与所述采样结果对应的物体之间的距离。
  45. 根据权利要求42所述的装置,其特征在于,所述激光测距装置还包括多个采样模块和多个运算模块,所述多个发射模块、所述多个接收模块、所述多个采样模块和所述多个运算模块之间一一对应,
    所述多个发射模块用于:分别在相同时刻或不同时刻发射一路激光脉冲;
    所述多个接收模块中的每个接收模块用于:接收对应的发射模块发射的一路激光脉冲经过物体反射后返回的光信号,并将所述光信号转成电信号;
    所述多个采样模块中的每个采样模块用于:对对应的接收模块输出的电信号进行采样处理,获得采样结果;
    所述多个运算模块中的每个运算模块用于:根据对应的采样模块输出的采样结果,确定与所述采样结果对应的物体之间的距离。
  46. 根据权利要求27至45中任一项所述的装置,其特征在于,所述目标器件为位于所述发射模块和/或所述接收模块中的器件,
    所述目标器件在所述第二状态下的静态电流低于在所述第一状态下的静态电流。
  47. 根据权利要求27至46中任一项所述的装置,其特征在于,所述目标器件为位于所述采样模块和/或所述运算模块中的器件,
    所述目标器件在所述第二状态下的翻转频率低于在所述第一状态下的翻转频率。
  48. 根据权利要求27至45中任一项所述的装置,其特征在于,所述目标器件在所述第二状态下与电源断开。
  49. 根据权利要求27至48中任一项所述的装置,其特征在于,所述控制模块为可编程逻辑器件PLD。
  50. 根据权利要求49所述的装置,其特征在于,所述PLD为现场可编程逻辑门阵列FPGA或复杂可编程逻辑器件CPLD。
  51. 根据权利要求27至50中任一项所述的装置,其特征在于,所述发射模块包括激光发送电路。
  52. 根据权利要求27至51中任一项所述的装置,其特征在于,所述接 收模块包括:光电转换电路、模拟放大电路和比较器中的至少一个。
  53. 根据权利要求27至52中任一项所述的装置,其特征在于,所述采样模块包括时间数字转换器TDC和/或模数转换器ADC。
  54. 根据权利要求27至53中任一项所述的装置,其特征在于,所述发射模块用于发射激光脉冲序列;
    其中,所述激光脉冲序列中相邻两次激光脉冲的发射时间间隔为第一时间间隔,所述发射模块发射激光脉冲的时间与所述运算模块确定反射所述激光脉冲的物体之间的距离的时间之间的间隔为第二时间间隔,所述第一时间间隔大于所述第二时间间隔的10倍。
  55. 根据权利要求27至54中任一项所述的激光测距装置,其特征在于,还包括:
    扫描模块,用于将所述激光脉冲序列改变传播方向出射;经被探测物反射回的至少部分光束经过所述扫描模块后入射至所述激光测距模块。
  56. 如权利要求55所述的激光测距装置,其特征在于,所述扫描模块包括至少一个厚度沿径向变化的棱镜,以及用于带动所述棱镜转动的电机;
    所述转动的棱镜用于将所述激光脉冲序列折射至不同方向出射。
PCT/CN2018/104677 2018-09-07 2018-09-07 用于激光测距的方法和装置 WO2020047858A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18932407.2A EP3848670A4 (en) 2018-09-07 2018-09-07 METHOD AND DEVICE FOR LASER TELEMETRY
CN201880009584.5A CN111164379A (zh) 2018-09-07 2018-09-07 用于激光测距的方法和装置
PCT/CN2018/104677 WO2020047858A1 (zh) 2018-09-07 2018-09-07 用于激光测距的方法和装置
US17/194,192 US20210208250A1 (en) 2018-09-07 2021-03-05 Laser ranging method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104677 WO2020047858A1 (zh) 2018-09-07 2018-09-07 用于激光测距的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/194,192 Continuation US20210208250A1 (en) 2018-09-07 2021-03-05 Laser ranging method and device

Publications (1)

Publication Number Publication Date
WO2020047858A1 true WO2020047858A1 (zh) 2020-03-12

Family

ID=69722076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104677 WO2020047858A1 (zh) 2018-09-07 2018-09-07 用于激光测距的方法和装置

Country Status (4)

Country Link
US (1) US20210208250A1 (zh)
EP (1) EP3848670A4 (zh)
CN (1) CN111164379A (zh)
WO (1) WO2020047858A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904354B (zh) * 2021-01-22 2024-06-18 西安应用光学研究所 一种高精度激光测距距离模拟装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314774A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 車両用レーザレーダ装置
CN101270985A (zh) * 2007-03-22 2008-09-24 株式会社拓普康 激光测量系统和激光测量系统中的节能控制方法
US20090296070A1 (en) * 2008-05-30 2009-12-03 The Boeing Company Systems and Methods for Targeting Directed Energy Devices
CN105547491A (zh) * 2015-12-17 2016-05-04 科盾科技股份有限公司 一种望远镜式激光测距热像仪的自动节电方法
CN107024677A (zh) * 2016-11-15 2017-08-08 上海乐相科技有限公司 一种虚拟现实定位系统
CN108401444A (zh) * 2017-03-29 2018-08-14 深圳市大疆创新科技有限公司 一种激光雷达以及基于激光雷达的时间测量方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403834A (zh) * 2002-10-11 2003-03-19 清华大学 激光测距方法及其系统
JP2007157193A (ja) * 2005-12-01 2007-06-21 Hitachi Ltd 光ディスク装置、半導体レーザ駆動装置および光ピックアップ装置
WO2008086651A1 (fr) * 2007-01-12 2008-07-24 Zhiqiang Xue Systeme telemetre laser
CN102176004B (zh) * 2011-02-22 2013-06-05 南京理工大学 基于多通道时延估计的激光飞行时间测量装置及其方法
DE102012020288A1 (de) * 2012-10-17 2014-04-17 Valeo Schalter Und Sensoren Gmbh Optoelektronische Detektionseinrichtung mt reduzierter Energieaufnahme, Kraftfahrzeug und entsprechendes Verfahren
CN102901970A (zh) * 2012-11-08 2013-01-30 天津理工大学 一种单调制连续波激光测距装置与测距方法
CN106338725A (zh) * 2016-08-31 2017-01-18 深圳市微觉未来科技有限公司 一种用于低成本激光测距的光学模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314774A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 車両用レーザレーダ装置
CN101270985A (zh) * 2007-03-22 2008-09-24 株式会社拓普康 激光测量系统和激光测量系统中的节能控制方法
US20090296070A1 (en) * 2008-05-30 2009-12-03 The Boeing Company Systems and Methods for Targeting Directed Energy Devices
CN105547491A (zh) * 2015-12-17 2016-05-04 科盾科技股份有限公司 一种望远镜式激光测距热像仪的自动节电方法
CN107024677A (zh) * 2016-11-15 2017-08-08 上海乐相科技有限公司 一种虚拟现实定位系统
CN108401444A (zh) * 2017-03-29 2018-08-14 深圳市大疆创新科技有限公司 一种激光雷达以及基于激光雷达的时间测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3848670A4 *

Also Published As

Publication number Publication date
US20210208250A1 (en) 2021-07-08
EP3848670A4 (en) 2022-03-16
EP3848670A1 (en) 2021-07-14
CN111164379A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
US20220026575A1 (en) Integrated illumination and detection for lidar based 3-d imaging
JP7150112B2 (ja) フルデジタルのモノリシックなフレーム平均化レシーバに関する非結像spadアーキテクチャの集約
JP2021107817A (ja) 統合化されたlidar照明出力制御
WO2021236201A2 (en) Noise filtering system and method for solid-state lidar
US12000963B2 (en) LiDAR device and method of operating the same
WO2020047857A1 (zh) 激光测距模块、装置、方法和移动平台
CN108427109A (zh) 确定与对象的距离的设备和对应方法
WO2022110947A1 (zh) 电子装置的控制方法、电子装置及计算机可读存储介质
US20210333375A1 (en) Time measurement correction method and device
WO2021243612A1 (zh) 测距方法、测距装置和可移动平台
US20210208250A1 (en) Laser ranging method and device
US11579291B2 (en) Optical ranging system having multi-mode operation using short and long pulses
US20240036210A1 (en) Laser radar system, and spatial measurement device and method
WO2020142948A1 (zh) 一种激光雷达设备、专用集成电路及测距装置
US11579290B2 (en) LIDAR system utilizing multiple networked LIDAR integrated circuits
WO2020113564A1 (zh) 一种激光接收电路及测距装置、移动平台
WO2022036714A1 (zh) 激光测距方法、测距装置和可移动平台
WO2023065589A1 (zh) 一种测距系统及测距方法
CN115079193A (zh) 光电检测装置、控制方法、电子设备及存储介质
WO2020142920A1 (zh) 一种信号放大方法及装置、测距装置
WO2020142921A1 (zh) 一种光探测模组及测距装置
WO2020142956A1 (zh) 用于测距装置的放电电路、分布式雷达系统及可移动平台
WO2024114293A1 (zh) 一种探测装置,光环回方法及终端
CN111929662B (zh) 感测装置
KR102462184B1 (ko) 라이다 시스템 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018932407

Country of ref document: EP

Effective date: 20210407