WO2020047857A1 - 激光测距模块、装置、方法和移动平台 - Google Patents

激光测距模块、装置、方法和移动平台 Download PDF

Info

Publication number
WO2020047857A1
WO2020047857A1 PCT/CN2018/104675 CN2018104675W WO2020047857A1 WO 2020047857 A1 WO2020047857 A1 WO 2020047857A1 CN 2018104675 W CN2018104675 W CN 2018104675W WO 2020047857 A1 WO2020047857 A1 WO 2020047857A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
laser
laser ranging
laser pulse
module according
Prior art date
Application number
PCT/CN2018/104675
Other languages
English (en)
French (fr)
Inventor
刘祥
洪小平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880009573.7A priority Critical patent/CN111164457B/zh
Priority to EP18932498.1A priority patent/EP3848726B1/en
Priority to PCT/CN2018/104675 priority patent/WO2020047857A1/zh
Publication of WO2020047857A1 publication Critical patent/WO2020047857A1/zh
Priority to US17/194,291 priority patent/US20210208249A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out

Definitions

  • the present application relates to the field of laser ranging, and more particularly, to a laser ranging module, device, method, and mobile platform.
  • a laser pulse sequence with multiple emission paths can be emitted to ensure the coverage of the detected object.
  • the embodiments of the present application provide a laser ranging module, a device, a method, and a mobile platform, which can reduce the power consumption brought by laser ranging, reduce the cost of laser ranging, and reduce the volume of the laser ranging module or device.
  • a laser ranging module including:
  • a transmitting circuit for transmitting at least two laser pulse sequences, wherein the at least two laser pulse sequences have different emission paths, and the at least two laser pulse sequences are emitted at different times;
  • a receiving circuit configured to receive each laser pulse sequence reflected by the detected object, and perform photoelectric conversion on each laser pulse sequence to obtain each of the at least two electrical signals;
  • a sampling circuit configured to sample each of the electric signals to obtain a sampling result
  • a corresponding drive signal of the at least two laser pulse sequences in the transmitting circuit multiplexes at least one device of the receiving circuit
  • the at least two electrical signals are multiplexed with at least one of the following: at least one device in the receiving circuit, at least one device in the sampling circuit, and at least one device in the operation circuit.
  • a laser ranging device including the laser ranging module according to the first aspect.
  • a laser ranging method including: measuring a distance between the laser ranging device and a detected object by using the laser ranging device according to the second aspect.
  • a laser ranging method including:
  • each detection channel includes a light source, a photoelectric conversion device, a sampling circuit, and an arithmetic circuit; wherein the light source is used to emit a laser pulse sequence, and the photoelectric conversion device is used Receiving a laser pulse sequence reflected by a detected object, and performing photoelectric conversion on the laser pulse sequence to obtain an electrical signal; the sampling circuit is configured to sample the electrical signal separately to obtain a sampling result; the operation A circuit for determining a distance between the laser ranging device and the detected object based on the sampling result; wherein the laser pulse sequences emitted by the at least two detection channels have different exit paths, and At least two detection channels emit laser pulse sequences at different times, respectively, wherein time division multiplexing is performed on at least some of the two detection channels except the light source and at least some of the devices other than the photoelectric conversion device;
  • the distance between the laser ranging device and the detected object is measured using the at least two detection channels.
  • a mobile platform including the laser ranging device described in the second aspect.
  • the mobile platform includes drones, cars or robots.
  • the car includes a self-driving car or a semi-autonomous car.
  • At least two measurement channels of the laser ranging module or device each measurement channel includes a circuit corresponding to a laser pulse sequence of an emission path
  • at least one device is multiplexed, and In the case of ensuring the detection coverage of the detected object, the power consumption caused by laser ranging, reducing the cost of the laser ranging module or device, and reducing the volume of the laser ranging module or device, and reducing the laser ranging module or The circuit complexity of the device.
  • FIG. 1 is a schematic diagram of a laser ranging device according to an embodiment of the present application.
  • FIG. 2 is a timing diagram of a single-channel measurement according to an embodiment of the present application.
  • FIG. 3 is a timing diagram of multi-channel measurement according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a transmitting circuit according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of device multiplexing by a transmitting circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of device multiplexing by a transmitting circuit according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a receiving circuit according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of device multiplexing by a receiving circuit according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of device multiplexing by a receiving circuit according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of device multiplexing by a receiving circuit according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of device multiplexing by a sampling circuit according to an embodiment of the present application.
  • FIG. 12 is a timing diagram of laser ranging according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of channel triggering by a control circuit according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of channel triggering by a control circuit according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of device multiplexing by a laser ranging module according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of an emission direction of a laser pulse sequence according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of device multiplexing by a laser ranging module according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a laser ranging device according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a laser ranging device according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a laser ranging method according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of a drone according to an embodiment of the present application.
  • the laser ranging means that the distance between the detected object and the laser ranging device can be measured by a laser pulse sequence. Further, the position of the detected object with respect to the laser ranging device can also be detected.
  • the laser ranging device can detect the detected object to the laser ranging device by measuring the time of light propagation between the laser ranging device and the detected object, that is, time-of-flight (TOF). distance.
  • TOF time-of-flight
  • the distance can be 150 meters.
  • the laser ranging device may include a radar, such as a lidar.
  • the laser ranging device is a sensing system for the outside world, and can learn the three-dimensional and three-dimensional information of the outside world, and is no longer limited to the plane sensing mode of the outside world such as a camera.
  • the principle is to actively emit a laser pulse sequence to the outside, detect the reflected pulse sequence, determine the distance of the detected object based on the time difference between transmission and reception, and combine the light pulse's emission angle information to reconstruct the three-dimensional depth information.
  • the laser ranging device 100 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130, and an operation circuit 140.
  • the transmitting circuit 110 may transmit a laser pulse sequence.
  • the receiving circuit 120 may receive a laser pulse sequence reflected by the detected object, and perform photoelectric conversion on the laser pulse sequence to obtain an electric signal, and then the electric signal may be output to the sampling circuit 130 after being processed.
  • the sampling circuit 130 may sample the electrical signal to obtain a sampling result.
  • the arithmetic circuit 140 may determine the distance between the laser ranging device 100 and the detected object based on the sampling result of the sampling circuit 130.
  • the laser ranging device 100 may further include a control circuit 150.
  • the control circuit 150 may control other circuits, for example, may control the working time of each circuit and set parameters of each circuit.
  • the laser ranging device shown in FIG. 1 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit
  • the transmitting circuit, the receiving circuit, the sampling circuit, and The number of arithmetic circuits may be plural. It should be noted that multiple cases mentioned in this article include two cases.
  • the laser ranging device 100 may further include a scanning module 160 for changing the laser pulse sequence emitted by the transmitting circuit to change the propagation direction; at least a part of the light beam reflected by the detected object passes through The scanning module 160 enters the receiving circuit.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as a laser The ranging module.
  • the laser ranging module 150 may be independent of other modules, such as the scanning module 160.
  • the transmitting circuit may include only one emitting light source, and the laser pulse sequence emitted by the emitting light source is changed by an optical path changing element (such as a galvanometer) to change an output path, so as to form laser pulses of multiple output paths at different times. Sequence, wherein the laser pulse sequences of the multiple exit paths may be non-parallel.
  • the transmitting circuit may include multiple emitting light sources, respectively, emitting laser pulse sequences along different emission paths.
  • the different exit paths may be different positions and / or directions.
  • the multiple laser pulse sequences emitted by the multiple emitting light sources may be parallel or non-parallel.
  • a laser ranging device (or module) that emits a single emission path can be referred to as a single-line or single-channel laser ranging device (or module), and a laser ranging device (or module) that emits multiple emission paths is referred to as a multi-line Line or multi-channel laser ranging device (or module).
  • the measurement performed by a single-line or single-channel laser ranging device (or module) is called a single-line or single-channel measurement
  • the measurement performed by a multi-line or multi-channel laser ranging device (or module) is called a multi-line or multi-channel measurement.
  • the circuit corresponding to the laser pulse sequence of one emission path (including the transmitting circuit-receiving circuit-sampling circuit-operation circuit) is called a single channel (channel can also be called a measurement channel) or a single line, and the laser pulses of multiple emission paths can be
  • the circuit corresponding to the sequence is called multi-channel or multi-line.
  • a transmitting circuit transmits a laser pulse sequence along an emission path;
  • a receiving circuit can receive the laser pulse sequence of the emission path through the laser pulse sequence reflected by the object to be detected, and The laser pulse sequence is photoelectrically converted to obtain an electrical signal, or the electrical signal is also processed;
  • a sampling circuit can sample the electrical signal, and an arithmetic circuit can calculate the detected object and the laser ranging device based on the sampling result. distance.
  • a transmitting circuit transmits a laser pulse sequence (that is, a laser pulse sequence of an exit path), and then passes through a receiving circuit, a sampling circuit, and an arithmetic circuit in order. After processing, finally determine the results of this measurement.
  • a laser pulse sequence that is, a laser pulse sequence of an exit path
  • the time required for the distance from the emission of the laser pulse by the transmitting circuit to the calculation circuit is t.
  • the specific size of t depends on the distance between the object detected by the laser pulse and the laser ranging device. The longer the distance, the greater t. When the object is farther from the laser ranging device, the light signal reflected by the object is weaker.
  • the t value corresponding to the farthest detection distance is hereinafter referred to as t0.
  • the duty cycle is greater than t0. In some implementations, the duty cycle is at least 5 times greater than t0. In some implementations, the duty cycle is at least 10 times greater than t0. In some implementations, the duty cycle is greater than 15 times t0.
  • the transmitting circuit emits a laser pulse sequence at time a1.
  • the operation result is obtained at time b1, and the time between time a1 and time b1 Is t1; then, the transmitting circuit emits a laser pulse sequence at time a2.
  • the operation result is obtained at time b2, and the time between time a2 and time b2 is t2; Then, the transmitting circuit transmits a laser pulse sequence at time a3.
  • the operation result is obtained at time b3, and the time period between time a3 and time b3 is t3.
  • the durations of t1, t2, and t3 are respectively less than or equal to the above t0; a2 is later than b1, a3 is later than b2; the duration between a1 and a2 and the duration between a2 and a3 are the same duration P, and the duration P is For the work cycle mentioned above.
  • point cloud density and point cloud coverage are usually required to be sufficiently high.
  • the lidar with only one exit path has limited point cloud coverage in a short time, and the scan trajectories of each laser pulse sequence emitted by the lidar with multiple exit paths are different, and the paths complement each other, which can be effective in a short time. Improve point cloud coverage.
  • the laser pulse sequence is emitted from different directions or positions.
  • each point is represented by a point in the three-dimensional space.
  • Many such points are combined to represent the object distribution map in the three-dimensional space. , Call it point cloud.
  • a point cloud in 0.1 seconds can be taken as an image, then multiple images can be obtained in multiple consecutive 0.1 seconds, and multiple images can be synthesized into a video for playback, forming a frame of 10 frames per second. 3D space video.
  • each channel of the multi-channel laser ranging device may be the same as that of the single-channel laser ranging device described above. Among them, multiple channels can be independent of each other.
  • the time points at which the transmitting circuits of the channels respectively emit laser pulse sequences are the same.
  • each channel works in sequence.
  • the emission time interval between two adjacent laser pulses is called the emission period.
  • the optical signal reflected by the furthest object that can be detected will be processed by the receiving circuit, the sampling circuit, and the arithmetic circuit in sequence within the next time period T.
  • the period between the start time of the laser pulse sequence emitted by the transmitting circuit and the time when the arithmetic circuit completes the operation can be referred to as the working period of the channel.
  • the transmitting circuit of channel 1 transmits a laser pulse sequence at time a1, and the laser pulse sequence is processed by the receiving circuit, sampling circuit, and operation circuit of channel 1 in sequence, and the operation result is obtained at time b1, and time a1
  • the time period between time and time b1 is t1; then, the transmitting circuit of channel 2 transmits a laser pulse sequence at time a2, and the laser pulse sequence is processed by the channel 2 receiving circuit, the sampling circuit and the arithmetic circuit in sequence, and the operation result is obtained at time b2.
  • the time between time a2 and time b2 is t2; then, the transmitting circuit of channel 3 transmits a laser pulse sequence at time a3, and the laser pulse sequence is processed by the receiving circuit, sampling circuit and arithmetic circuit of channel 3 in sequence, and time b3 The operation result is obtained.
  • the time between time a3 and time b3 is t3.
  • the transmitting circuit of channel 1 transmits a laser pulse sequence at time a4.
  • the laser pulse sequence is processed by the receiving circuit, sampling circuit, and operation circuit of channel 1 in sequence.
  • the operation result is obtained at time b4, and the time length between time a4 and time b4 is t4.
  • a2 is later than b1
  • a3 is later than b2
  • a4 is later than b3
  • the duration between a2 and a3 and the duration between a3 and a4 are the same duration T.
  • the duration of a3 and a4 may not be equal to T.
  • the duration may be equal to P-2T.
  • the embodiment of the present application proposes that in the measurement of at least two channels included in the laser ranging module, the working periods of different channels are staggered, so that the different channels can multiplex devices of at least one circuit, and can Reduce the complexity, cost, and power consumption of more circuit designs, as well as reduce size.
  • different channels may multiplex at least one element and / or device in at least one of a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit.
  • the components of the transmitting circuit are multiplexed
  • the components of the receiving circuit are multiplexed
  • the components of the sampling circuit are multiplexed
  • the components of the arithmetic circuit are multiplexed.
  • the embodiments of the present application first describe the transmitting circuit.
  • the transmitting circuit may include a laser tube, a switching device, and a driver.
  • the laser tube may be a diode, for example, a positive-intrinsic-negative (PIN) photodiode.
  • the laser tube may emit a laser pulse sequence with a specific wavelength.
  • the laser tube may be called a light source or an emission light source.
  • the switching device is a switching device of a laser tube, which can be connected to the laser tube for controlling the switching of the laser tube.
  • the laser tube When the laser tube is on, the laser pulse sequence can be transmitted, and when the laser tube is off, the A laser pulse sequence is emitted.
  • the driver can be connected to the switching device for driving the switching device.
  • the signal of the driver driving the switching device and the signal of the switching device controlling the laser tube are both referred to as the driving signal, but it should be understood that the signal may also have other names, which are not specifically described in the embodiment of the present application. limited.
  • the switching device may be a metal-oxide-semiconductor (MOS) tube, and the driver may be a MOS driver.
  • MOS metal-oxide-semiconductor
  • the transmitting circuit may include a MOS driver 210, a MOS tube 220, and a laser tube 230.
  • the MOS driver 210 can be used to drive the MOS tube 220, and the MOS tube 220 can control the switch of the laser tube 230.
  • the switching device may also be a Gallium Nitride (GaN) tube, and the driver may be a GaN driver.
  • GaN Gallium Nitride
  • the transmitting circuit includes at least two laser tubes, and different laser tubes can emit laser pulse sequences with different exit paths to achieve the emission of at least two laser pulse sequences.
  • the driving signals corresponding to at least two laser pulse sequences may be multiplexed with at least one device other than the laser tube included in the transmitting circuit, for example, at least one of a switching device and a driver may be multiplexed.
  • the driving signals corresponding to at least two laser pulse sequences can be multiplexed with at least one device other than the laser tube. It can be understood that at least two measurement channels are multiplexed with at least one device other than the laser tube included in the transmitting circuit. .
  • the driving signals corresponding to the at least two laser pulse sequences may multiplex a switching device without a driver, or multiplex a driver without a switching device, or may multiplex a switching device and a driver.
  • the transmitting circuit includes a driver and at least two switching devices, the at least two switching devices are respectively driven by the one driver, and each switching device of the at least two switches is separately controlled
  • One of the at least two laser tubes corresponding to the at least two laser pulse sequences that is, the number of MOS tubes is equal to the number of laser tubes, and there is a one-to-one correspondence between the MOS tubes and the laser tubes
  • the driver is in time-sharing communication with the at least two switching devices through a switch or a multiplexer.
  • At least two MOS transistors 220 may be driven by a MOS driver 210 in a time-sharing manner.
  • a switch 240 and a different MOS transistor 210 may be used, and each of the at least two MOS transistors 220 controls a laser respectively.
  • Switch for tube 230 may be used.
  • the switch 240 is disposed between the MOS driver 210 and the MOS tube 220, but it should be understood that the switch 240 may also be disposed between the MOS tube 220 and the laser tube 230. Alternatively, there may be a part of the switch 240 provided between the MOS driver 210 and the MOS tube 220, and another part of the switch 240 is provided between the MOS tube 220 and the laser tube 230. Among them, at least two switches 240 shown in FIG. 5 may be implemented by a multiplexer.
  • a MOS driver drives the MOS tube through the switch or multiplexer. It can reduce the cost, volume and power consumption of the laser ranging device.
  • the transmitting circuit includes a driver and a switching device, and corresponding driving signals of at least two laser pulse sequences in the transmitting circuit are multiplexed with the one driver and the one switching device.
  • Said one switching device controls at least two laser tubes corresponding to the at least two laser pulse sequences in a time-sharing manner through a switch or a multiplexer.
  • one MOS driver 210 can drive one MOS tube 220, and the one MOS tube 220 can be connected to at least two laser tubes 230 by switching 240 in a time-sharing manner to implement time-sharing control of at least two laser tubes 240.
  • Switch can be implemented by a multiplexer.
  • a switch or multiplexer For a switch or multiplexer, its cost, power consumption and volume are smaller than those of a MOS driver and a MOS tube. At least two measurement channels multiplexing a MOS driver and a MOS tube can reduce the cost, volume and Power consumption.
  • the receiving circuit Before the components that introduce the receiving circuit are multiplexed, the receiving circuit will be described first.
  • the receiving circuit may include a photoelectric conversion device, and the photoelectric conversion device may convert the detected laser pulse sequence into an electrical signal.
  • the photoelectric conversion device may include a PIN diode or an avalanche photodiode.
  • the receiving circuit may include a signal processing circuit, and the signal processing circuit may implement amplification and / or filtering of the electrical signal.
  • the signal processing circuit may include an amplifying circuit, which may amplify an electrical signal, and may specifically perform at least one stage of amplification, and the number of stages of amplification may be determined according to a device of the sampling circuit.
  • an amplifying circuit which may amplify an electrical signal, and may specifically perform at least one stage of amplification, and the number of stages of amplification may be determined according to a device of the sampling circuit.
  • the components of the sampling circuit include an analog-to-digital converter (ADC)
  • ADC analog-to-digital converter
  • a one-stage or at least two-stage amplifier circuit can be used for amplification.
  • the components in the sampling circuit include a signal comparator (for example, an analog comparator (COMP) can be used to convert electrical signals into digital signals) and a time-to-data converter (TDC) ), Two or more stages of amplifier circuits can be sampled for amplification.
  • the TDC can be a TDC chip, or a TDC circuit based on a programmable device such as a Field-Programmable Gate Array (FPGA).
  • FPGA Field-Programmable Gate Array
  • the above-mentioned signal processing circuit may include a first-stage amplifier circuit and a second-stage amplifier circuit, wherein the first-stage amplifier circuit is configured to amplify the electric signal output from the photoelectric conversion device, and the second-stage amplifier circuit It is used for further amplifying the electric signal from the first-stage amplifying circuit.
  • the primary amplifier circuit may include a transimpedance amplifier
  • the secondary amplifier may include other types of signal amplifiers.
  • the signal processing circuit may include other signal processing circuits other than the amplification circuit, for example, a filter circuit, and the filter circuit may filter the electric signal.
  • the transmitting circuit may include an amplification circuit without including other signal processing circuits, or may include other signal processing circuits without including an amplification circuit, or may include other signal processing circuits and also include amplification circuits.
  • the receiving circuit may include an APD 310, a transimpedance amplifier 320, other amplifying circuits 330 as secondary amplifiers, and other signal processing circuits 340.
  • the receiving channel may include at least two photoelectric conversion devices, each of which is used to receive a laser pulse sequence and convert the received laser pulse sequence into an electrical signal.
  • the at least two photoelectric conversion devices may work in a time-sharing manner, that is, different laser pulse sequences in the at least two laser pulse sequences reach the photoelectric converter at different times.
  • At least two electrical signals may multiplex at least one device other than the photoelectric conversion device of the receiving circuit.
  • At least two electrical signals can be multiplexed in the receiving circuit and at least one device other than the photoelectric conversion device can be understood as: at least two measurement channels are multiplexed in the receiving circuit and at least one device other than the photoelectric conversion device.
  • At least two electrical signals may be multiplexed with at least one device included in the signal processing circuit for implementing amplification and / or filtering.
  • At least two electrical signals may be multiplexed with an amplifier circuit and / or a filter circuit.
  • the signal processing circuit includes a primary amplifier circuit and a secondary amplifier circuit.
  • At least two electrical signals may be multiplexed with at least one device other than the photoelectric conversion device and the first-stage amplifier circuit except for the photoelectric conversion device.
  • the first-stage amplifier circuit is in the front end of the receiving circuit (for example, the first-stage amplifier circuit is directly connected to the photoelectric conversion device), it is very sensitive to parasitic capacitance and wiring length. If the first-stage amplifier is multiplexed, the sensitive signals must be switched by switches. Capacitors and long-distance traces brought by switches can worsen noise parameters and bandwidth.
  • the receiving circuit includes at least two transimpedance amplifiers, wherein each transimpedance amplifier of the at least two transimpedance amplifiers separately amplifies each of the at least two electrical signals.
  • At least two transimpedance amplifiers communicate with the next-stage device of the transimpedance amplifier in a time-sharing manner by signal gating, or through a switch, or through a multiplexer.
  • the receiving circuit may include at least two APDs 310, at least two transimpedance amplifiers 320, and a signal amplification circuit 330.
  • the at least two transimpedance amplifiers 320 can communicate with the signal amplification circuit 330 through a switch 350 in a time-sharing manner.
  • the at least two switches 350 may be implemented by a multiplexer.
  • the switch 350 is disposed between the transimpedance amplifier 320 and the signal amplification circuit 330, the switch 350 may also be disposed between the APD 310 and the transimpedance amplifier 320.
  • the switch 350 may be a part of the switch 350 provided between the transimpedance amplifier 320 and the signal amplification circuit 330, and another part of the switch 350 is provided between the transimpedance amplifier 320 and the signal amplification circuit 330.
  • a transimpedance amplifier communicates with other devices through the switch in time sharing, which can reduce the laser measurement. Cost, size and power consumption of the device.
  • the transimpedance amplifier itself can be triggered to be turned on or off by a pulse signal, when at least two transimpedance amplifiers need to communicate with other devices in a time-sharing manner, the signal can be gated by the signal. Way to connect with other devices.
  • the transmitting circuit may include at least two APDs 310, at least two transimpedance amplifiers 320, and a signal amplification circuit 330.
  • the normal output of a transimpedance amplifier 320 can be enabled (as shown in the figure, the input enable signal (EN) is input), and the output end of the unenabled transimpedance amplifier is in a high-impedance state, so that at one moment, one way The electric signal is sent to the subsequent stage for amplification, thereby achieving channel gating and multiplexing subsequent circuit devices.
  • the receiving circuit includes a transimpedance amplifier, wherein at least two photoelectric conversion devices corresponding to at least two electrical signals are connected to the one transimpedance amplifier through a switch or a multiplexer in a time sharing manner.
  • the transmitting circuit may include at least two APDs 310, a transimpedance amplifier 320, and a signal amplifying circuit 340. At least two APDs 310 can be time-shared with the transimpedance amplifier through a switch 350 (also a multiplexer).
  • the number of post-stage circuits of the transimpedance amplifier is one, but it should be understood that the embodiment of the present application is not limited to this.
  • One type of post-stage circuit may also be at least two, which respectively process at least two electrical signals.
  • At least two electrical signal multiplexing receiving circuits are in addition to the photoelectric conversion device and at least one level of the continuous downstream device of the photoelectric conversion device.
  • the multiplexing may be performed in a manner that at least two electrical signals are first shunted (that is, corresponding to different devices) and then multiplexed. Specifically, in the receiving circuit, after at least two electrical signals are multiplexed to one device, all subsequent devices of the device are still multiplexed by the at least two electrical signals.
  • the signal amplifying circuit and the filtering circuit may be multiplexed without transimpedance amplification; or, the filtering circuit may be multiplexed without Multiplexing transimpedance amplifiers and other signal amplification circuits.
  • the sampling circuit is configured to sample an electric signal input by the receiving circuit, and the sampling circuit may have at least two implementation manners.
  • the sampling circuit may include a signal comparator and a time-to-digital converter. Specifically, after the electrical signal output by the receiving circuit passes through the signal comparator, it can enter the time-to-digital converter, and then the time-to-data converter can output an analog signal to the operation circuit.
  • the sampling circuit may include an analog-to-digital converter. Specifically, after the analog signal input from the receiving circuit to the sampling circuit is subjected to analog-to-digital conversion by the ADC, a digital signal can be output to the operation circuit.
  • the sampling circuit may be implemented by a programmable device, and the programmable device may be a Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (Application Specific Integrated Circuit), ASIC) or complex programmable logic device (Complex, Programmable, Logic, Device, CPLD, etc.)
  • the programmable device may include a port, and the signal output by the receiving circuit may be input through the port to a device for sampling, such as an ADC or a signal comparator.
  • the comparator may or may not be on the FPGA.
  • the signal comparator is classified as a sampling circuit, but it should be understood that the embodiment of the present application may also be classified as a device included in the receiving circuit.
  • At least two electrical signals can be time-shared to the sampling circuit. This is because at least two laser pulse sequences are emitted at different times. Reach the sampling circuit at different times. Since at least two electric signals arrive at the sampling circuit in a time-sharing manner, multiplexing of at least one device of the sampling circuit can be realized.
  • the at least two electrical signals may be multiplexed with at least one of a signal comparator and a TDC; or, an ADC may be multiplexed.
  • signal selection can be implemented inside the programmable device to achieve the purpose of multiplexing the sampling circuit.
  • FPGA programmable device
  • a signal comparator and TDC sampling method are used to collect signals
  • the signals of each measurement channel are connected to the FPGA from different ports, a signal is gated inside the FPGA, and then a signal comparator is added to the TDC.
  • this method does not require adding switches or multiplexers.
  • At least two ports are respectively connected to a signal comparator or ADC through a switch or a multiplexer in a time-sharing manner.
  • each of the electrical signals may correspond to a port 430, and the port 420 may communicate with the ADC 410 in a time-sharing manner, and the electrical signal is a signal included in the receiving circuit.
  • the ADC 410 is performed through a corresponding port input.
  • the sampling circuit may include at least two devices directly connected to the ADC (that is, the directly connected devices are not multiplexed), for example, may include at least two signal processing circuits 450.
  • the signal processing circuit 450 can communicate with the same ADC through different ports.
  • the last device directly connected to the sampling circuit at the receiving circuit is multiplexed, at this time, there may be only one port, and at least two electrical signals may be output from the port to the sampling circuit respectively.
  • the last device directly connected to the sampling circuit at the receiving circuit implements multiplexing, at this time, there may also be at least two ports, one to one corresponding to at least two electrical signals, respectively.
  • At least part of the devices of the sampling circuit in each channel and at least part of the devices of the arithmetic circuit in each channel are implemented by the same programmable device. That is, at least a part of the sampling circuit of each channel and at least a part of the arithmetic circuit of each channel are integrated into the same programmable device, and the programmable device is multiplexed.
  • each of the at least two electrical signals is input to the programmable device through one of the at least two ports.
  • At this time, at least part of the devices of the sampling circuit and at least part of the arithmetic circuit may be integrated into the same FPGA or ASCI.
  • the laser ranging module provided in the embodiment of the present application may include:
  • a transmitting circuit for transmitting at least two laser pulse sequences, wherein the at least two laser pulse sequences have different exit paths and emit at different times respectively;
  • a receiving circuit configured to receive each laser pulse sequence reflected by the detected object, and perform photoelectric conversion on each laser pulse sequence to obtain each of the at least two electrical signals;
  • a sampling circuit configured to sample each of the electric signals to obtain a sampling result
  • a corresponding drive signal of the at least two laser pulse sequences in the transmitting circuit multiplexes at least one device of the receiving circuit
  • the at least two electrical signals are multiplexed with at least one of the following: at least one device in the receiving circuit, at least one device in the sampling circuit, at least one device in the arithmetic circuit, and the at least two electrical signals
  • the corresponding laser pulse sequences are emitted at different times.
  • the at least two laser pulse sequences having different exit paths may refer to: the transmitting circuit has at least two laser tubes and can emit laser pulse sequences of at least two exit paths; or the transmitting circuit has one laser tube A laser pulse sequence of one exit path can be emitted, and the laser pulse sequence of the one exit path can be changed by an optical element to form a laser pulse sequence of at least two exit paths.
  • the driving signals corresponding to the at least two laser pulse sequences or the at least two electric signals are multiplexed with the first device
  • the laser detection module may further include a selection element for communicating at least two second devices with the first device in a time-sharing manner, each second device corresponding to a driving signal corresponding to a laser pulse sequence or An electric signal.
  • the laser ranging device there is a first device that is multiplexed, and a second device that needs to communicate with the first device is not multiplexed.
  • the number of the first device may be one, and the number of the second device may be one.
  • the number may be at least two.
  • a selection element may be used to time-connect one first device and at least two second devices.
  • the selection element includes at least one of the following: a switch, a multiplexer, and a port.
  • first device and the second device may be directly connected (that is, no other device is connected between the first device and the second device), or may be indirectly connected (that is, between the first device and the second device) Other devices can be connected).
  • the driving signals corresponding to the at least two laser pulse sequences or the at least two electric signals are multiplexed with a third device, and at least two fourth devices are signal-gated ( It may also be referred to as an enabling manner) in a time-sharing connection with the third device, and each fourth device corresponds to a laser pulse sequence or an electrical signal, respectively.
  • the laser ranging device there is a third device that is multiplexed, and a fourth device that needs to communicate with the third device is not multiplexed.
  • the number of the third device may be one.
  • the number may be at least two, and the first device and the second device need to communicate with each other.
  • a third device may be time-connected with a plurality of fourth devices by signal gating.
  • the third device itself can be turned on or off by being triggered by a pulse signal.
  • the third device may be a Trans-Impedance Amplifier (TIA).
  • TIA Trans-Impedance Amplifier
  • the laser ranging module may further include a control module.
  • the control module may implement the control of the transmitting circuit, the receiving circuit, the sampling circuit, and the arithmetic circuit. Use control logic. Specifically, in the measurement of at least two channels, each channel can be switched to ensure that each channel can work normally without interfering with each other.
  • FIG. 12 shows a timing chart of the control state of each circuit when the laser ranging module is switched to a certain channel and starts to work.
  • the transmitting circuit, receiving circuit, sampling circuit, and arithmetic circuit of channel X can be gated, and each circuit can work, and then the transmitting circuit, receiving circuit, adopting circuit, and arithmetic circuit of channel X can be turned off. It should be understood that if a A circuit device is used for at least two channels. When one channel ends the measurement, the circuit or device will not be turned off for the next channel measurement.
  • FIG. 12 shows that the transmitting circuit, the receiving circuit, the sampling circuit, and the operation circuit start working at the same time, the embodiments of the present application may also have other implementation manners.
  • the startup working time of the transmitting circuit, the receiving circuit, the sampling circuit, and the arithmetic circuit may be different.
  • both the transmitting circuit and the receiving circuit may be started some time before transmitting to reserve a time for the transmitting circuit and the receiving circuit to enter a stable state.
  • sampling circuit and the arithmetic circuit can be started some time before the time when the operation is expected to start, instead of being started when the operation is expected to be performed.
  • signals of other measurement channels may be processed, even if the pre-stage circuit of the specific measurement channel has started to work.
  • the transmitting circuit transmits a laser pulse sequence of a certain exit path
  • the receiving circuit receives the laser pulse sequence of the exit path
  • the laser pulse sequences of other exit paths or corresponding electrical signals may be processed.
  • control module may control other circuits in the following two implementation manners.
  • control module may send trigger signals to the transmitting circuit, the receiving circuit, the sampling circuit, and the arithmetic circuit for each laser pulse sequence in at least two laser pulse sequences, wherein, the transmitting circuit, the receiving circuit, the sampling circuit, and the operation circuit respectively perform processing corresponding to one laser pulse sequence based on the trigger signal.
  • control module can send a set of trigger signals (including trigger signals for the transmitting circuit, the receiving circuit, the adopting circuit and the arithmetic circuit) to trigger the measurement work of one channel. If the measurement work of at least two channels is realized, then Send multiple sets of trigger signals.
  • a set of trigger signals including trigger signals for the transmitting circuit, the receiving circuit, the adopting circuit and the arithmetic circuit
  • trigger signals may be sent separately for triggering the measurement work of the channels. That is to say, only one channel is implemented for each trigger, and the next channel is switched to another channel to start working.
  • the trigger frequency is evenly distributed to each channel.
  • a trigger signal is sent to the transmitting circuit, the receiving circuit, and the sampling circuit, respectively, wherein the transmitting circuit, the receiving circuit, and the Based on the one-time trigger signal, the sampling circuit performs processing corresponding to one laser pulse sequence and then performs processing corresponding to another laser pulse sequence.
  • control module can send a set of trigger signals (including trigger signals for the transmitting circuit, the receiving circuit, the adopting circuit and the arithmetic circuit) to trigger the measurement work of at least two channels. If the work of at least two channels is realized, Send at least two sets of trigger signals.
  • a set of trigger signals including trigger signals for the transmitting circuit, the receiving circuit, the adopting circuit and the arithmetic circuit
  • each time the trigger the work of each channel is realized in sequence. After the work of one channel is completed, it is switched to the other channel immediately or after waiting for a period of time.
  • the trigger frequency is the same.
  • the multiplexed device belongs to one or more of a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit.
  • only the devices present in the transmitting circuit are multiplexed.
  • the devices existing in the receiving circuit, the sampling circuit, and the arithmetic unit are multiplexed. For example, as shown in FIG. 15.
  • the components of the transmitting circuit, the components of the receiving circuit, the components of the sampling circuit, and the components in the arithmetic circuit all have multiplexing conditions.
  • the driving signals corresponding to at least two laser pulse sequences or the electrical signals corresponding to at least two laser pulse sequences have been described above.
  • the combination of the devices in the channels corresponding to the at least two laser pulse sequences may be referred to as a first circuit group, that is, the transmission circuit, the receiving circuit, the sampling circuit, and the operation circuit mentioned above are included.
  • the at least two laser pulse sequences mentioned above may be all or part of the laser pulse sequences emitted by the laser ranging module.
  • the laser ranging module can transmit 6 laser pulse sequences, and the 6 laser pulse sequences have their driving signals multiplexed with at least one device.
  • the laser ranging module can transmit 6 laser pulse sequences, and there can be 3 laser pulse sequences, and the driving signals thereof are multiplexed with at least one device.
  • the driving signals corresponding to the other three laser pulse sequences may multiplex devices with each other, or may not multiplex the devices.
  • the at least two electrical signals mentioned above may be electrical signals corresponding to all or part of a sequence of at least two laser pulse sequences emitted by the laser ranging module.
  • the laser ranging module can transmit 6 laser pulse sequences. After photoelectric conversion, 6 electric signals can be obtained. Then, there can be 3 electric signals in the 6 electric signals, and at least one device can be multiplexed with each other. . Among them, the other three laser pulse sequences may multiplex devices with each other, or may not multiplex devices.
  • the laser ranging module may include a second circuit group in addition to the first circuit group mentioned above, and the second circuit group includes:
  • a transmitting circuit for transmitting at least two laser pulse sequences with different exit paths and different exit times
  • a receiving circuit for receiving and photoelectrically converting each laser pulse sequence reflected by a detected object and transmitted by a transmitting circuit included in the second circuit group to obtain each of the at least two electric signals;
  • a sampling circuit configured to sample each electric signal obtained by the receiving circuits in the second circuit group to obtain a sampling result
  • An arithmetic circuit configured to determine a distance from the detected object based on a sampling result obtained by the arithmetic circuit included in the second circuit group.
  • the number of laser pulse sequences emitted by the first circuit group and the number of laser pulses emitted by the second circuit group may be the same or different.
  • the emission path of the laser pulse sequence corresponding to the first circuit group is different from the emission path of the laser pulse sequence corresponding to the second circuit group.
  • the emission direction of the laser pulse sequence corresponding to the first circuit group is different from the emission direction of the laser pulse sequence corresponding to the second circuit group.
  • each emission direction may be implemented by a circuit group.
  • the multiplexing of devices may be implemented in the first circuit group group and the second circuit group group, or only one circuit group of the first circuit group and the circuit group implements the device. Reuse.
  • the type of the device multiplexed in the first circuit group is the same as the type of the device multiplexed in the second circuit group.
  • the first circuit group and the second circuit group each multiplex the switching device in the transmitting circuit, the secondary amplifier in the receiving circuit, and the sampling circuit in the group.
  • the first circuit group and the second circuit group reuse the same types of devices in the receiving circuit in the group.
  • the first circuit group including the transmitting circuit 1, the transmitting circuit 2, and the transmitting circuit
  • Circuit 3 receiving circuit 1, sampling circuit and arithmetic circuit, which can correspond to the laser pulse sequence in direction 1
  • a second circuit group including transmitting circuit 4, transmitting circuit 5, transmitting circuit 6, receiving circuit 2, sampling circuit and The arithmetic circuit corresponds to the laser pulse sequence in the direction 1).
  • Each circuit group in the circuit separately multiplexes the respective components in the receiving circuit, the sampling circuit, and the arithmetic circuit.
  • the type of the device multiplexed in the first circuit group and the type of the device multiplexed in the second circuit group can mean partly different, or all different.
  • the first circuit group multiplexes the switching device in the transmitting circuit, the secondary amplifier of the receiving circuit, and the sampling circuit in the group; the first circuit group multiplexes the switching device in the transmitting circuit in the group, and the second circuit of the receiving circuit Stage amplifier and other signal processing circuits.
  • the first circuit group multiplexes the switching devices in the transmitting circuit in the group; the first circuit group multiplexes the secondary amplifiers of the receiving circuit and other signal processing circuits in the group.
  • the multiplexing of the devices may also be implemented between at least two circuit groups.
  • At least one of a receiving circuit, a transmitting circuit, a sampling circuit, and an arithmetic circuit may be multiplexed between at least two circuit groups.
  • the first circuit group and the second circuit group multiplex at least part of the devices of the sampling circuit and / or at least part of the devices of the arithmetic circuit.
  • the first circuit group and the second circuit group multiplex the sampling circuit and the arithmetic circuit.
  • the receiving circuits of the first circuit group and the second circuit group may be connected to the sampling circuit in a time-sharing manner by using a switch, a multiplexer, or a port.
  • the laser ranging module is introduced above.
  • An embodiment of the present application further provides a laser ranging device.
  • the laser ranging device 500 may include a laser ranging module 510.
  • the laser ranging device may further include other modules, for example, a scanning module 520.
  • the scanning module 520 is configured to change the propagation direction of the laser pulse sequence emitted by the laser ranging module 510; at least a part of the light beam reflected by the detected object passes through the scanning module and enters the laser ranging module. .
  • the scanning module 520 includes at least one prism whose thickness changes in a radial direction, and a motor for driving the prism to rotate; the rotating prism is used to refract the laser pulse sequence emitted by the laser ranging module. Shoot in different directions.
  • the laser ranging module included in the laser ranging module 510 in the embodiment of the present application may have one laser tube, and the laser pulse sequence emitted by the laser tube may change the exit path through the scanning module 520 to obtain multiple exits. Path of laser pulse sequence.
  • the laser ranging device can use a coaxial optical path, that is, the light beam emitted by the laser ranging device and the reflected light beam share at least part of the optical path in the laser ranging device.
  • the laser ranging device may also use an off-axis optical path, that is, the light beam emitted by the laser ranging device and the reflected beam are transmitted along different optical paths in the laser ranging device, respectively.
  • FIG. 19 shows a schematic diagram of a laser ranging device according to an embodiment of the present application.
  • the laser ranging device 600 includes a light transmitting and receiving device 610, which includes a transmitting circuit 603, a collimating element 604, a detector 605 (which may include a receiving circuit, a sampling circuit, and an arithmetic circuit), and an optical path changing element 606.
  • the optical transceiving device 610 is configured to transmit a light beam, receive the returned light, and convert the returned light into an electrical signal.
  • the transmitting circuit 603 is used for transmitting a light beam.
  • the transmitting circuit 603 may emit a laser beam.
  • the laser beam emitted by the transmitting circuit 603 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 104 is disposed on the outgoing light path of the transmitting circuit, and is used to collimate the light beam emitted from the transmitting circuit 603 and collimate the light beam emitted by the transmitting circuit 603 into parallel light.
  • the collimating element is also used to focus at least a portion of the reflected light reflected by the probe.
  • the collimating element 604 may be a collimating lens or other elements capable of collimating a light beam.
  • the laser ranging device 100 further includes a scanning module 602.
  • the scanning module 602 is placed on the outgoing light path of the optical transceiver 610.
  • the scanning module 602 is used to change the transmission direction of the collimated light beam 619 emitted by the collimating element 604 and project it to the external environment, and project the return light onto the collimating element 604 .
  • the returned light is focused on the detector 605 via the collimating element 604.
  • the scanning module 602 may include one or more optical elements, such as a lens, a mirror, a prism, a grating, an optical phased array, or any combination thereof.
  • multiple optical elements of the scanning module 602 can rotate around a common axis 609, and each rotating optical element is used to continuously change the propagation direction of the incident light beam.
  • multiple optical elements of the scanning module 602 may rotate at different rotation speeds.
  • multiple optical elements of the scan module 602 may rotate at substantially the same speed.
  • multiple optical elements of the scanning module 602 may also rotate around different axes, or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 602 includes a first optical element 614 and a driver 616 connected to the first optical element 614.
  • the driver 616 is used to drive the first optical element 614 to rotate about the rotation axis 609, so that the first optical element 614 changes The direction of the collimated light beam 619.
  • the first optical element 614 projects the collimated light beam 619 to different directions.
  • the angle between the direction of the collimated light beam 619 after being changed by the first optical element and the rotation axis 609 changes as the first optical element 614 rotates.
  • the first optical element 614 includes a pair of opposing non-parallel surfaces through which a collimated light beam 619 passes.
  • the first optical element 614 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the first optical element 614 includes a wedge-shaped prism, which is directed toward the straight beam 619 for refraction. In one embodiment, the first optical element 614 is coated with an antireflection coating, and the thickness of the antireflection coating is equal to the wavelength of the light beam emitted by the transmitting circuit 603, which can increase the intensity of the transmitted light beam.
  • the scanning module 602 further includes a second optical element 615 that rotates about a rotation axis 609, and the rotation speed of the second optical element 615 is different from the rotation speed of the first optical element 614.
  • the second optical element 615 is used to change the direction of the light beam projected by the first optical element 614.
  • the second optical element 615 is connected to another driver 617, which drives the second optical element 615 to rotate.
  • the first optical element 614 and the second optical element 615 can be driven by different drivers, so that the rotation speeds of the first optical element 614 and the second optical element 615 are different, so that the collimated light beam 619 is projected into different directions of the external space and can be scanned Large spatial range.
  • the controller 618 controls the drivers 616 and 617 to drive the first optical element 614 and the second optical element 615, respectively.
  • the rotational speeds of the first optical element 614 and the second optical element 615 can be determined according to the area and pattern expected to be scanned in practical applications.
  • Drivers 616 and 617 may include motors or other driving devices.
  • the second optical element 615 includes a pair of opposing non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 615 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the second optical element 615 includes a wedge-shaped prism. In one embodiment, the second optical element 615 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
  • the rotation of the scanning module 602 can project light into different directions, such as directions 611 and 613, so as to scan the space around the ranging device 600.
  • directions 611 and 613 are directions 611 and 613.
  • the scanning module 602 receives the returning light 612 reflected by the detection object 601 and projects the returning light 612 to the collimating element 604.
  • the collimating element 604 condenses at least a part of the return light 612 reflected by the probe 601.
  • the collimating element 604 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
  • the detector 605 and the transmitting circuit 603 are placed on the same side of the collimating element 604, and the detector 605 is used to convert at least part of the returned light passing through the collimating element 604 into an electrical signal.
  • the transmitting circuit 603 may include a laser diode through which laser light at the nanosecond level is emitted.
  • the laser pulse emitted by the transmitting circuit 603 lasts for 10 ns.
  • the laser pulse receiving time may be determined, for example, the laser pulse receiving time is determined by detecting a rising edge time and / or a falling edge time of an electrical signal pulse. In this way, the laser ranging device 600 can calculate the TOF by using the pulse reception time information and the pulse emission time information, so as to determine the distance between the probe 601 and the laser ranging device 600.
  • the distance and orientation detected by the laser ranging device 100 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the embodiment of the present application provides a laser ranging method, which can use the laser ranging device described above to measure the distance between the laser ranging device and the detected object.
  • the embodiment of the present application provides another laser ranging method 700. As shown in FIG. 20, the method 700 includes at least the following parts.
  • each detection channel includes a light source, a photoelectric conversion device, a sampling circuit, and an arithmetic circuit; wherein the light source is used to emit a laser pulse sequence, and the photoelectricity
  • the conversion device is configured to receive a laser pulse sequence reflected by the detected object, and perform photoelectric conversion on the laser pulse sequence to obtain an electrical signal;
  • the sampling circuit is configured to separately sample the electrical signal to obtain a sampling result
  • the arithmetic circuit is configured to determine the distance between the laser ranging device and the detected object based on the sampling result; wherein the laser pulse sequences emitted by the at least two detection channels have different emission Path, the at least two detection channels emit laser pulse sequences at different times, respectively, wherein at least some of the two detection channels except the light source and the photoelectric conversion device are time-shared use.
  • At least one device other than the light source of the transmitting circuit, and / or at least one device other than the photoelectric converter of the receiving circuit, and / or at least one device of the sampling circuit, and / or of the arithmetic circuit may be multiplexed. At least one device.
  • the distance between the laser ranging device and the detected object is measured using the at least two detection channels.
  • An embodiment of the present application provides a mobile platform including the above-mentioned laser ranging device, and the mobile platform includes a drone, a car, or a robot.
  • the car includes a self-driving car or a semi-autonomous car.
  • the drone 800 may include a power system 810, a flight control system 820, and a laser ranging device 830.
  • the power system 810 provides power to the drone 800 under the control of the flight control system 820.
  • the flight control system 820 can control the power system 810 to provide power to the drone 800, and can control the laser ranging device 830 to perform laser ranging.
  • the laser ranging device 830 may correspond to the above-mentioned laser ranging device. For brevity, details are not described herein again.
  • the laser ranging device 830 and the flight control system 820 may not be physically separated.
  • the control circuit in the laser ranging device 830 may be located in the flight control system 820.
  • the drone 800 may further include other parts, for example, a gimbal and a sensor system, etc., for the sake of brevity, the details will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光测距模块、装置、方法和无人机,可以降低激光测距的功耗和成本。该模块包括:发射电路,用于发射至少两路激光脉冲序列,至少两路激光脉冲序列具有不同的出射路径;接收电路,用于接收反射的每路激光脉冲序列,将每路激光脉冲序列光电转换;采样电路,用于对每路电信号进行采样;运算电路,用于基于采样结果确定与被探测物之间的距离;至少两路激光脉冲序列在发射电路中对应的驱动信号复用发射电路的至少一个器件,至少两路激光脉冲序列分别在不同时刻出射;和/或,至少两路电信号复用以下至少一种:接收电路中的至少一个器件、采样电路的至少一个器件、运算电路中的至少一个器件,至少两路电信号对应的激光脉冲序列分别在不同时刻出射。

Description

激光测距模块、装置、方法和移动平台
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本申请涉及激光测距领域,并且更具体地,涉及一种激光测距模块、装置、方法和移动平台。
背景技术
在激光测距领域中,可以通过发射多个出射路径的激光脉冲序列,以保证被探测物的覆盖率。
然而,在该种情况下,需要较多的器件实现多个出射路径的激光脉冲序列的处理。
由此,这将带来功耗以及成本较高,以及体积较大的问题。
发明内容
本申请实施例提供一种激光测距模块、装置、方法和移动平台,可以降低激光测距带来的功耗,降低激光测距的成本,以及减少激光测距模块或装置的体积。
第一方面,提供了一种激光测距模块,包括:
发射电路,用于发射至少两路激光脉冲序列,其中所述至少两路激光脉冲序列分别具有不同的出射路径,以及所述至少两路激光脉冲序列分别在不同的时刻出射;
接收电路,用于接收经被探测物反射的每路激光脉冲序列,并将所述每路激光脉冲序列进行光电转换,得到至少两路电信号中的每路电信号;
采样电路,用于分别对所述每路电信号进行采样,获得采样结果;
运算电路,用于基于所述采样结果确定与所述被探测物之间的距离;其中,
所述至少两路激光脉冲序列在所述发射电路中对应的驱动信号复用所述接收电路的至少一个器件;
和/或,
所述至少两路电信号复用以下至少一种:所述接收电路中的至少一个器件、所述采样电路的至少一个器件、所述运算电路中的至少一个器件。
第二方面,提供了一种激光测距装置,包括:如第一方面所述的激光测距模块。
第三方面,提供了一种激光测距方法,包括:利用第二方面所述的激光测距装置测量所述激光测距装置与被探测物之间的距离。
第四方面,提供了一种激光测距方法,包括:
构建激光测距装置的至少两个探测通道,其中每个探测通道包括光源、光电转换器件、采样电路和运算电路;其中,所述光源用于发射一路激光脉冲序列,所述光电转换器件用于接收经被探测物反射的激光脉冲序列,并将所述激光脉冲序列进行光电转换,得到一路电信号;所述采样电路用于分别对所述一路电信号进行采样,获得采样结果;所述运算电路用于基于所述采样结果确定所述激光测距装置与所述被探测物之间的距离;其中,所述至少两个探测通道所发射的激光脉冲序列分别具有不同的出射路径,所述至少两个探测通道分别在不同的时刻出射激光脉冲序列,其中,对所述两个探测通道中除所述光源以外以及除所述光电转换器件以外的至少部分器件进行分时复用;
利用所述至少两个探测通道测量所述激光测距装置与被探测物之间的距离。
第五方面,提供了一种移动平台,包括第二方面所述的激光测距装置。该移动平台包括无人机、汽车或者机器人。可选的,该汽车包括自动驾驶汽车或半自动驾驶汽车。
因此,在本申请实施例中,在激光测距模块或装置的至少两个测量通道(每个测量通道包括一个出射路径的激光脉冲序列对应的电路)中,对至少一个器件进行复用,可以在保证被探测物的探测覆盖率的情况下,激光测距带来的功耗,降低激光测距模块或装置的成本,以及减少激光测距模块或装置的体积,以及降低激光测距模块或装置的电路复杂度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的激光测距装置的示意性。
图2是根据本申请实施例的单通道测量的时序图。
图3是根据本申请实施例的多通道测量的时序图。
图4根据本申请实施例的发射电路的示意性图。
图5根据本申请实施例的发射电路进行器件复用的示意性图。
图6根据本申请实施例的发射电路进行器件复用的示意性图。
图7是根据本申请实施例的接收电路的示意性图。
图8根据本申请实施例的接收电路进行器件复用的示意性图。
图9根据本申请实施例的接收电路进行器件复用的示意性图。
图10根据本申请实施例的接收电路进行器件复用的示意性图。
图11根据本申请实施例的采样电路进行器件复用的示意性图。
图12是根据本申请实施例的激光测距的时序图。
图13是根据本申请实施例的控制电路进行通道触发的示意性图。
图14是根据本申请实施例的控制电路进行通道触发的示意性图。
图15是根据本申请实施例的激光测距模块进行器件复用的示意性图。
图16是根据本申请实施例的激光脉冲序列出射方向的示意性图。
图17是根据本申请实施例的激光测距模块进行器件复用的示意性图。
图18是根据本申请实施例的激光测距装置的示意性图。
图19是根据本申请实施例的激光测距装置的示意性图。
图20是根据本申请实施例的激光测距方法的示意性图。
图21是根据本申请实施例的无人机的示意性图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下 所获得的所有其他实施例,都属于本申请保护的范围。
除非另有说明,本申请实施例所使用的所有技术和科学术语与本申请的技术领域的技术人员通常理解的含义相同。本申请中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请的范围。
激光测距是指可以通过激光脉冲序列测量被探测物到激光测距装置的距离,进一步地,还可以探测到被探测物相对激光测距装置的方位。
可选地,激光测距装置可以通过测量激光测距装置和被探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测被探测物到激光测距装置的距离。例如,在激光往返飞行时间为1微秒时,距离可以为150米。
在一个实施例中,激光测距装置可以包括雷达,例如激光雷达。
应理解,激光测距装置是对外界的感知系统,可以获知外界的立体三维信息,不再局限于相机等对外界的平面感知方式。其原理为主动对外发射激光脉冲序列,探测到反射回来的脉冲序列,根据发射与接收之间的时间差,判断被探测物的距离,结合光脉冲的发射角度信息,便可重建获知三维深度信息。
为了便于理解,以下将结合图1所示的激光测距装置100描述激光测距的工作流程。
如图1所示,激光测距装置100可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射激光脉冲序列。接收电路120可以接收经过被探测物反射的激光脉冲序列,并对该激光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定激光测距装置100与被探测物之间的距离。
可选地,该激光测距装置100还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和对各个电路进行参数设置等。
应理解,虽然图1示出的激光测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,但是本申请实施例并不限于此,发射 电路、接收电路、采样电路和/或运算电路的数量也可以是多个。需注意的是,本文中提到的多个包括两个的情况。
还应理解,除了图1所示的电路,激光测距装置100还可以包括扫描模块160,用于将发射电路出射的激光脉冲序列改变传播方向出射;经被探测物反射回的至少部分光束经过扫描模块160后入射至接收电路。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为激光测距模块,该激光测距模块150可以独立于其他模块,例如,扫描模块160。
可选地,在本申请实施例中,发射电路发射的激光脉冲序列的出射路径为多个。
一些实现方式中,发射电路可以只包括一个发射光源,该发射光源发射的激光脉冲序列被光路改变元件(例如振镜)进行出射路径的改变,形成在不同时刻上的多个出射路径的激光脉冲序列,其中,该多个出射路径的激光脉冲序列可以是不平行的。
一些实现方式中,发射电路可以包括多个发射光源,分别沿着不同的出射路径发射激光脉冲序列。其中,该不同的出射路径可以是出射的位置和/或出射的方向不同。该多个发射光源分别发射的多路激光脉冲序列可以是平行的,或者也可以是不平行的。
其中,可以将发射单个出射路径的激光测距装置(或模块)称为单线或单通道激光测距装置(或模块),将发射多个出射路径的激光测距装置(或模块)称为多线或多通道激光测距装置(或模块)。将单线或单通道激光测距装置(或模块)进行的测量称为单线或单通道测量,将多线或多通道激光测距装置(或模块)进行的测量称为多线或多通道测量。将一个出射路径的激光脉冲序列对应的电路(包括发射电路-接收电路-采样电路-运算电路)称为单通道(通道也可以称为测量通道)或单线,可以将多个出射路径的激光脉冲序列对应的电路称为多通道或多线。
在单通道测量中,在进行具体的测量时,一个发射电路沿一个出射路径发射激光脉冲序列;一个接收电路可以接收该出射路径的激光脉冲序列经过被探测物反射的激光脉冲序列,并将该激光脉冲序列进行光电转换,得到一 路电信号,或者还对该路电信号进行处理;一个采样电路可以对该一路电信号进行采样,一个运算电路可以基于采样结果计算被探测物与激光测距装置的距离。
具体地,在单通道的激光测距装置中,在该一个工作周期内:一个发射电路发射一路激光脉冲序列(也即一个出射路径的激光脉冲序列),依次经过接收电路、采样电路和运算电路处理后,最后确定本次测量的结果,。实际应用中,在一个工作周期内,从发射电路发射激光脉冲到运算电路计算出距离需要时长为t。该t的具体大小取决于该激光脉冲所探测到的物体距离激光测距装置的距离的远近,距离越远,t越大。当物体距离激光测距装置越远时,经物体反射回的光信号越弱。当反射回的光信号弱到一定程度时,激光测距装置将无法探测到该光信号。因此,激光测距装置所能探测到的最弱的光信号对应的物体,与激光测距装置之间的距离称为激光测距装置的最远探测距离。为描述方便,下文中称该最远探测距离对应的t值为t0。本发明实施例中,工作周期大于t0。一些实现方式中,工作周期大于t0的至少5倍。一些实现方式中,工作周期大于t0的至少10倍。一些实现方式中,工作周期大于t0的15倍。
例如,如图2所示,发射电路在时刻a1发射激光脉冲序列,该激光脉冲序列依次经过接收电路、采样电路和运算电路处理后,时刻b1得到运算结果,时刻a1与时刻b1之间的时长为t1;然后,发射电路在时刻a2发射激光脉冲序列,该激光脉冲序列依次经过接收电路、采样电路和运算电路处理后,时刻b2得到运算结果,时刻a2与时刻b2之间的时长为t2;然后,发射电路在时刻a3发射激光脉冲序列,该激光脉冲序列依次经过接收电路、采样电路和运算电路处理后,时刻b3得到运算结果,时刻a3与时刻b3之间的时长为t3。其中,t1、t2和t3的时长分别小于或等于上述t0;a2晚于b1、a3晚于b2;a1与a2之间的时长与a2与a3之间的时长为同一时长P,该时长P即为上述提到的工作周期。
通常,在自动驾驶、地图测绘等激光测距应用领域中,为了获取更好的图像质量,方便识别物体,通常要求点云密度和点云覆盖率足够高。只有一个出射路径的激光雷达在短时间内点云覆盖率有限,而多个出射路径的激光雷达发射的每一路激光脉冲序列的扫描轨迹不同,各路之间相互弥补,在短 时间内能够有效提升点云覆盖率。
其中,激光脉冲序列从不同的方向或位置发射出去,根据角度信息和距离信息,在三维空间中以一个点表示每次测量,许多个这样的点组合在一起便表示出三维空间中物体分布图,称之为点云。
例如,可以取0.1秒时间内的点云作为一张图像,则在连续多个0.1秒时间内,可以得到多张图像,多个图像可以合成为视频播放出来,便形成了每秒10帧的三维空间视频。
多通道激光测距装置的每个通道的工作方式可以和上述的单通道的激光测距装置的工作方式相同。其中,多通道之间可以相互独立。
在一种实现方式中,各通道的发射电路分别发射激光脉冲序列的时间点是相同的。
在一种实现方式中,各通道依次工作。称相邻两次激光脉冲的发射时间间隔为发射周期。例如,以三个通道为例:第一通道的发射电路发射激光脉冲序列之后,间隔一个时长T后第二通道的发射电路发射激光脉冲,再间隔一个时长T后第三通道的发射电路发射激光脉冲,再间隔一个时长T后第一通道的发射电路发射激光脉冲。其中,每个通道在距离发射激光脉冲后,所能探测到的最远物体所反射回的光信号会在接下来的时长T内依次由接收电路、采样电路和运算电路处理完。其中,针对其中一个通道,可以将发射电路发射激光脉冲序列的开始时刻到运算电路完成运算的时刻之间的时段称为该通道的工作时段。
例如,如图3所示,通道1的发射电路在时刻a1发射激光脉冲序列,该激光脉冲序列依次经过该通道1的接收电路、采样电路和运算电路处理后,时刻b1得到运算结果,时刻a1与时刻b1之间的时长为t1;然后,通道2的发射电路在时刻a2发射激光脉冲序列,该激光脉冲序列依次经过通道的2接收电路、采样电路和运算电路处理后,时刻b2得到运算结果,时刻a2与时刻b2之间的时长为t2;然后,通道3的发射电路在时刻a3发射激光脉冲序列,该激光脉冲序列依次经过通道3的接收电路、采样电路和运算电路处理后,时刻b3得到运算结果,时刻a3与时刻b3之间的时长为t3;然后,通道1的发射电路在时刻a4发射激光脉冲序列,该激光脉冲序列依次经过通道1的接收电路、采样电路和运算电路处理后,时刻b4得到运算结果, 时刻a4与时刻b4之间的时长为t4。其中,a2晚于b1、a3晚于b2,a4晚于b3;a1与a2之间的时长、a2与a3之间的时长、a3与a4之间的时长均为同一时长T。当然,a3与a4的时长也可以不等于T,例如,单通道的工作周期为P,则该时长可以等于P-2T。
然而,对于多通道激光测距装置而言,如果多通道之间可以相互独立,需要数倍于单通道激光测距装置的电路资源支持,这意味着更复杂的电路设计,更高的成本,以及更高的功耗和更大的体积。
基于此,本申请实施例提出在激光测距模块包括的至少两个通道的测量中,不同的通道的工作时段错开,以使得该不同的通道可以对至少一种电路的器件进行复用,可以降低更电路设计的复杂度,成本以及功耗,以及可以减小体积。
本申请实施例中,不同的通道可以对发射电路、接收电路、采样电路、运算电路中的至少一个电路中的至少一个元件和/或器件进行复用。
为了更加清楚地理解本申请,以下将分别介绍发射电路的器件被复用,接收电路的器件被复用,采样电路的器件被复用,以及运算电路的器件被复用。
在介绍发射电路的器件被复用之前,本申请实施例先对发射电路进行说明。
发射电路可以包括激光管、开关器件和驱动器。
其中,激光管可以是二极管,例如可以是正极本征负极(positive-intrinsic-negative,PIN)光电二极管,该激光管可以发射特定波长的激光脉冲序列,该激光管可以称为光源或发射光源。
开关器件为激光管的开关器件,可以与激光管连接,用于控制激光管的开关,其中,在激光管处于开的状态时,可以发射激光脉冲序列,在激光管处于关的状态时,不发射激光脉冲序列。
驱动器可以与开关器件连接,用于对开关器件进行驱动。
本申请实施例中,将驱动器驱动开关器件的信号,以及将开关器件控制激光管的信号均称为驱动信号,但应理解,该信号还可以具有其他的名称,本申请实施例对此不作具体限定。
可选地,在本本申请实施例中,该开关器件可以是金属氧化物半导体场 效应管((metal-oxide-semiconductor,MOS)管,该驱动器可以MOS驱动器。
例如,如图4所示,该发射电路可以包括MOS驱动器210,MOS管220,以及激光管为230。
其中,该MOS驱动器210可以用于驱动MOS管220,MOS管220可以控制激光管230的开关。
应理解,该开关器件还可以为氮化镓(Gallium nitride,GaN)管,该驱动器可以为GaN驱动器。
在至少两个通道的测量中,发射电路包括至少两个激光管,不同的激光管可以发射不同的出射路径的激光脉冲序列,以实现至少两路激光脉冲序列的发射。
在发射电路中,至少两路激光脉冲序列对应的驱动信号可以复用发射电路包括的除激光管之外的其他至少一个器件,例如,可以复用开关器件和驱动器中的至少一个。
其中,至少两路激光脉冲序列对应的驱动信号可以复用除激光管之外的其他至少一个器件可以理解为:至少两个测量通道复用发射电路包括的除激光管之外的其他至少一个器件。
具体地,该至少两路激光脉冲序列对应的驱动信号可以复用开关器件、而不复用驱动器,或者,复用驱动器而不复用开关器件,或者,可以复用开关器件和驱动器。
在一种实现方式中,发射电路包括一个驱动器以及至少两个开关器件,所述至少两个开关器件分别由所述一个驱动器驱动,以及所述至少两个开关器中的每个开关器件分别控制所述至少两个激光脉冲序列的对应的至少两个激光管中的一个激光管(也即,MOS管的数量等于激光管的数量,MOS管与激光管是一一对应的),其中,所述一个驱动器通过开关或复用器分时与所述至少两个开关器件连通。
例如,在图5中,至少两个MOS管220可以由一个MOS驱动器210分时驱动,具体可以通过开关240与不同的MOS管210,而至少两个MOS管220每个MOS管分别控制一个激光管230的开关。
应理解,在图5中,开关240是设置在了MOS驱动器210与MOS管220之间,但应理解,开关240也可以是设置在MOS管220与激光管230 之间。或者,可以存在部分的开关240是设置在MOS驱动器210与MOS管220之间,以及另一部分的开关240是设置在MOS管220与激光管230之间。其中,图5中所示的至少两个开关240可以由一个复用器实现。
对于开关或复用器而言,其成本、功耗和体积均小于MOS驱动器,因此,在至少两个通道的测量中,一个MOS驱动器通过开关或复用器分时对MOS管器进行驱动,可以降低激光测距装置的成本、体积和功耗。
在另一种实现方式中,发射电路包括一个驱动器以及一个开关器件,至少两路激光脉冲序列在所述发射电路中对应的驱动信号复用所述一个驱动器以及所述一个开关器件,其中,所述一个开关器件通过开关或复用器分时控制所述至少两路激光脉冲序列对应的至少两个激光管。
例如,在图6中,一个MOS驱动器210可以驱动一个MOS管220,以及,该一个MOS管220可以通过开关240分时与至少两个激光管230连接,实现分时控制至少两个激光管240的开关。其中,图6中所示的至少两个开关240可以由一个复用器实现。
对于开关或复用器而言,其成本、功耗和体积均小于MOS驱动器和MOS管,至少两路测量通道复用一个MOS驱动器和一个MOS管,可以降低激光测距装置的成本、体积和功耗。
以上介绍了在至少两个通道的测量中,发射电路的器件的复用,以下将介绍接收电路的器件的复用。
在介绍接收电路的器件被复用之前,首先对接收电路进行说明。
接收电路可以包括光电装换器件,光电转换器件可以将检测到的激光脉冲序列转换为电信号。
可选地,该光电转换器件可以包括PIN二极管或雪崩光电二极管等。
可选地,该接收电路可以包括信号处理电路,该信号处理电路可以实现对电信号的放大和/或滤波。
具体地,该信号处理电路可以包括放大电路,该放大电路可以对电信号进行放大,具体可以进行至少一级的放大,放大的级数可以根据采样电路的器件而定。
例如,在采样电路的器件包括模数转换器(Analog-to-Digital Converter,ADC)时,则可以采用一级或至少两级的放大电路进行放大。
例如,在采样电路的器件包括信号比较器(例如,可以为模拟比较器(analog comparator,COMP),用于将电信号转换为数字信号)和时间数字转换器(Time-to-Data Converter,TDC)时,可以采样两级或多于两级的放大电路进行放大。其中TDC可以是TDC芯片,或者是基于现场可编程门阵列(Field-Programmable Gate Array,FPGA)等可编程器件的TDC电路。
具体地,上述信号处理电路可以包括一级放大电路和二级放大电路,其中,所述一级放大电路用于对来自所述光电转换器件输出的电信号进行放大处理,所述二级放大电路用于对来自所述一级放大电路的电信号进行进一步放大处理。
例如,该一级放大电路可以包括跨阻放大器,该二级放大器可以包括其他类型的信号放大器。
可选地,该信号处理电路可以包括除放大电路以外的其他信号处理电路,例如,滤波电路,该滤波电路可以对电信号进行滤波。
应理解,发射电路可以包括放大电路而不包括其他信号处理电路,或者,可以包括其他信号处理电路而不包括放大电路,或者,即可以包括其他信号处理电路也包括放大电路。
如图7所示,该接收电路可以包括APD310、跨阻放大器320,以及作为二级放大器的其他放大电路330,和其他信号处理电路340。
在至少两个通道的测量中,该接收通道可以包括至少两个光电转换器件,每个光电转换器件用于接收一路激光脉冲序列,以及将接收的一路激光脉冲序列转换成电信号。其中,该至少两个光电转换器件可以是分时工作的,也即说,至少两路激光脉冲序列中不同的激光脉冲序列是在不同的时刻到达该光电转换器的。
可选地,至少两路电信号可以复用接收电路的除光电转换器件之外的至少一个器件。
其中,至少两路电信号可以复用接收电路的除光电转换器件之外的至少一个器件可以理解为:至少两个测量通道复用接收电路的除光电转换器件之外的至少一个器件。
具体地,至少两路电信号可以复用用于实现放大和/或滤波的信号处理电路包括的至少一个器件。
例如,至少两路电信号可以复用放大电路和/或滤波电路。
正如上文所示,在接收电路中,信号处理电路包括一级放大电路和二级放大电路,
可选地,至少两路电信号可以复用接收电路的除光电转换器件之外以及除一级放大电路之外的至少一个器件。由于一级放大电路在接收电路的较前前端(例如一级放大电路直接和光电转换器件连接),对寄生电容和布线长度十分敏感,如果在一级放大复用,要用开关切换这些敏感信号,开关带来的电容和远距离走线会恶化噪声参数和带宽。
在一种实现方式中,接收电路包括至少两个跨阻放大器,其中,所述至少两个跨阻放大器中的每个跨阻放大器分别对至少两路电信号中的每一路电信号进行放大处理。至少两个跨阻放大器通过信号选通的方式、或通过开关、或通过复用器,分时与所述跨阻放大器的下一级器件连通。
例如,如图8所示,该接收电路可以包括至少两个APD310,至少两个跨阻放大器320,以及一个信号放大电路330。该至少两个跨阻放大器320可以通过开关350分时与信号放大电路330连通。其中,该至少两个开关350可以由一个复用器实现。
应理解,在图8中,虽然开关350设置在了跨阻放大器320与信号放大电路330之间,开关350也可以设置在APD310与跨阻放大器320之间。
或者,可以存在部分的开关350是设置在跨阻放大器320与信号放大电路330之间,以及另一部分的开关350是设置在跨阻放大器320与信号放大电路330之间。
其中,对于开关或复用器而言,其成本、功耗和体积均较小,因此,在至少两个通道的测量中,一个跨阻放大器通过开关分时与其他器件连通,可以降低激光测距装置的成本、体积和功耗。
可选地,在本申请实施例中,由于跨阻放大器本身可以被脉冲信号触发打开或关闭,因此在存在至少两个跨阻放大器需要与其他器件分时连通时,则可以通过信号选通的方式与其他器件连接。
例如,如图9所示,该发射电路可以包括至少两个APD310,至少两个跨阻放大器320,以及一个信号放大电路330。可以通过使能一个跨阻放大器320正常输出(如图所示,输入使能信号(EN)),未使能的跨阻放大器输出端为高阻态,由此可以实现在一个时刻,将一路电信号送入后级进行放 大,从而实现通道选通,复用后续的电路器件。
可选地,接收电路包括一个跨阻放大器,其中,至少两个电信号对应的至少两个光电转换器件通过开关或复用器,分时与所述一个跨阻放大器连通。
例如,如图10所示,该发射电路可以包括至少两个APD310,一个跨阻放大器320,以及一个信号放大电路340。可以通过开关350(也可以是复用器)将至少两个APD310分时与跨阻放大器连通。
在图10中虽然示出了接收电路在包括一个跨阻放大器的情况下,该跨阻放大器的后级电路的数量是一个,但应理解,本申请实施例并不限于此,该跨阻放大器的一种类型的后级电路也可以是至少两个,分别处理至少两路电信号。
可选地,在本申请实施例中,在接收电路中,至少两路电信号复用接收电路的除光电转换器件之外,以及除光电转换器件的下游连续的至少一级器件之外的至少一个器件,其中,下游连续的至少一级器件包括光电转换器件的下一级器件。
也就是说,在接收电路的器件的复用中,可以遵循至少两个电信号先分流(也即对应不同的器件)再复用的方式进行复用。具体地,在接收电路中,在至少两个电信号在复用了一个器件之后,该器件的所有后级器件仍然被所述至少两个电信号复用。
例如,在包括APD、跨阻放大器、其他信号放大电路和滤波电路的接收电路中,可以复用信号放大电路和滤波电路,而不复用跨阻放大;或者,可以复用滤波电路,而不复用跨阻放大器和其他信号放大电路。
以下将介绍在至少两个通道的测量中,采样电路的器件的复用。
以下将介绍采样电路的器件的复用之前,首先介绍采样电路。
采样电路用于对接收电路输入的电信号进行采样,采样电路可以具有至少两种实现方式。
在一种实现方式中,采样电路可以包括信号比较器和时间数字转换器。具体地,接收电路输出的电信号经过信号比较器之后,可以进入时间数字转换器,然后时间数据转换器可以输出模拟信号至运算电路。
在一种实现方式中,采样电路可以包括模数转换器。具体地,接收电路向采样电路的输入的模拟信号经过ADC的模数转换之后,可以输出数字信号至运算电路。
可选地,在本申请实施例中,采样电路可以由可编程器件实现,该可编程器件可以现场可编程门阵列(Field-Programmable Gate Array,FPGA)或特定应用集成电路(Application Specific Integrated Circuit,ASIC)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD等。该可编程器件可以包括端口,接收电路输出的信号可以经过端口输入到用于实现采样的器件,例如,ADC或信号比较器。
可选地,如果TDC是基于FPGA等可编程器件的TDC电路,比较器可以在FPGA上,也可以不在FPGA上。
应理解,在本申请实施例中,将信号比较器归类为采样电路,但应理解,本申请实施例还可以将信号比较器归类为接收电路包括的器件。
可选地,在本申请实施例中,在至少两个通道的测量中,可以实现至少两路电信号分时到达采样电路,这是由于至少两路激光脉冲序列在不同的时刻出射的,可以在不同的时刻到达采样电路。由于至少两路电信号分时到达采样电路,则可以实现对采样电路的至少一个器件的复用。
具体地,该至少两路电信号可以复用信号比较器和TDC中的至少一个;或者,可以复用ADC。
当采样电路在可编程器件上实现时,可以在可编程器件内部实现信号选择,达到复用采样电路的目的。比如在可编程器件FPGA上,用信号比较器加TDC采样方法对信号进行采集时,各测量通道的信号从不同的端口接入FPGA,在FPGA内部选通一个信号,再用信号比较器加TDC进行采样,此方法不需要增加开关或复用器。
或者,至少两个端口分别通过开关或复用器分时与信号比较器或ADC连通。
例如,如图11所示,在FPGA中,对于至少两路电信号中的每路电信号分别可以对应有端口430,该端口420可以分时与ADC410连通,则电信号被接收电路包括的信号处理电路450处理之后,通过相应的端口输入进行ADC410。
在图11所示的情况下,采样电路包括的与ADC直接连接的器件可以是至少两个(也即直接连接的器件未被复用),例如,可以包括至少两个信号处理电路450,不同的信号处理电路450可以通过不同的端口与同一ADC连通。
或者,如果在接收电路处的最后一个与采样电路直接连接的器件实现了复用,则此时,可以只存在一个端口,则至少两个电信号可以分别从该端口输出到采样电路中。
当然,如果在接收电路处的最后一个与采样电路直接连接的器件实现了复用,则此时,也可以存在至少两个端口,分别一一对应于至少两个电信号。
可选地,在本申请实施例中,每个通道中的采样电路的至少部分器件和每个通道中的运算电路的至少部分器件均由同一个可编程器件实现。也就是说,每个通道的采样电路的至少部分器件和每个通道的运算电路的至少部分器件集成到同一可编程器件中,对该可编程器件进行复用。
其中,至少两路电信号每路电信号分别通过至少两个端口中的一个端口输入到可编程器件。
此时,采样电路的至少部分器件和运算电路的至少部分器件可以集成到同一FPGA或ASCI中。
综上所述,本申请实施例提供的激光测距模块可以包括:
发射电路,用于发射至少两路激光脉冲序列,其中该至少两路激光脉冲序列分别具有不同的出射路径以及分别在不同的时刻出射;
接收电路,用于接收经被探测物反射的每路激光脉冲序列,并将所述每路激光脉冲序列进行光电转换,得到至少两路电信号中的每路电信号;
采样电路,用于分别对所述每路电信号进行采样,获得采样结果;
运算电路,用于基于所述采样结果确定与所述被探测物之间的距离;其中,
所述至少两路激光脉冲序列在所述发射电路中对应的驱动信号复用所述接收电路的至少一个器件;
和/或,
所述至少两路电信号复用以下至少一种:所述接收电路中的至少一个器件、所述采样电路的至少一个器件、所述运算电路中的至少一个器件,所述至少两路电信号对应的激光脉冲序列分别在不同的时刻出射。
应理解,该至少两路激光脉冲序列分别具有不同的出射路径可以是指:该发射电路具有至少两个激光管,可以发射至少两个出射路径的激光脉冲序列;或者该发射电路具有一个激光管,可以发射一个出射路径的激光脉冲序列,该一个出射路径的激光脉冲序列可以由光学元件进行路径改变,形成至 少两个出射路径的激光脉冲序列。
可选地,在本申请实施例中,所述至少两路激光脉冲序列对应的驱动信号或所述至少两路电信号复用第一器件,
所述激光探测模块还可以包括选择元件,所述选择元件用于将至少两个第二器件分时与所述第一器件连通,每个第二器件对应于一路激光脉冲序列对应的驱动信号或一路电信号。
具体地,在激光测距装置中,存在第一器件被复用,而需要与第一器件连通的第二器件没有被复用,此时第一器件的数量可以为1个,第二器件的数量可以为至少两个,则此时,可以采用选择元件将该一个第一器件与至少两个第二器件分时连通。
其中,所述选择元件包括以下中的至少一种:开关、复用器、端口。
应理解,第一器件与第二器件可以直接连接(也即,第一器件与第二器件之间未连接有其他器件),也可以间接连接(也即,第一器件与第二器件之间可以连接有其他器件)。
可选地,在本申请实施例中,所述至少两路激光脉冲序列对应的驱动信号或所述至少两路电信号复用第三器件,至少两个第四器件通过信号选通的方式(也可以称为使能的方式)与所述第三器件分时连通,每个第四器件分别对应于一路激光脉冲序列或一路电信号。
具体地,在激光测距装置中,存在第三器件被复用,而需要与第三器件连通的第四器件没有被复用,此时第三器件的数量可以为1个,第四器件的数量可以为至少两个,第一器件与第二器件需要进行连通,则可以采用信号选通的方式将该一个第三器件与多个第四器件分时连通。
如果采用该种实现方式,则需要该第三器件本身可以被脉冲信号触发打开或关闭。例如,该第三器件可以是跨阻放大器(Trans-Impedance Amplifier,TIA)。
可选地,在本申请实施例中,如图1所示,激光测距模块还可以包括控制模块,该控制模块可以实现对发射电路、接收电路、采样电路和运算电路的控制,可以包括复用控制逻辑。具体可以实现至少两个通道的测量中,各通道的切换,保证每个通道均能正常工作,且互不干扰。
图12示出了激光测距模块切换至某一通道并开始工作,各电路控制状态时序图。
在图12中,可以选通通道X的发射电路、接收电路、采样电路和运算电路,各电路可以工作,然后关闭通道X的发射电路、接收电路、采用电路和运算电路,应理解,如果某一电路的器件被用于至少两个通道,则在其中的一个通道结束测量时,该电路或器件将不被关闭,以用于下一通道的测量。
应理解,虽然图12示出了发射电路、接收电路、采样电路和运算电路同时启动工作,但是本申请实施例还可以具有其他的实现方式。
例如,针对某一特定测量通道,发射电路、接收电路、采样电路和运算电路的启动工作时间可以是不同的。
可选地,发射电路和接收电路可以都在发射之前的一段时间前启动,以预留给发射电路和接收电路一段时间进入稳定的状态。
同样,采样电路和运算电路可以在预计开始工作的时间点前一段时间启动,而不是在预计要工作时才启动。
可选地,在针对特定测量通道,在某一电路针对特定测量通道开始工作之前,可以处理其他测量通道的信号,即使该特定测量通道的前级电路已开始工作。
例如,在发射电路发射某一出射路径的激光脉冲序列之后,在接收电路接收该出射路径的激光脉冲序列之前,可以处理其他出射路径的激光脉冲序列或对应的电信号。
可选地,在本申请实施例中,控制模块控制其他电路方式可以存在以下两种实现方式。
在一种实现方式中,控制模块可以针对至少两路激光脉冲序列中的每路激光脉冲序列,分别向所述发射电路、所述接收电路、所述采样电路和所述运算电路发送触发信号,其中,所述发射电路、所述接收电路、所述采样电路和所述运算电路分别基于所述触发信号,分别进行一路激光脉冲序列对应的处理。
也就是说,控制模块可以发送一组触发信号(包括针对发射电路、接收电路、采用电路和运算电路的触发信号),来触发一个通道的测量工作,如果实现至少两个通道的测量工作,则发送多组触发信号。
例如,如图13所示,针对至少两个通道,可以分别发送触发信号,用于触发通道的测量工作。也就是说,每次触发时,只实现一个通道的工作,在下次触发时切换到另一通道开始工作,触发频率平均分配到各通道。
在另一种实现方式中,针对至少两路激光脉冲序列,分别向所述发射电路、所述接收电路和所述采样电路发送一次触发信号,其中,所述发射电路、所述接收电路和所述采样电路基于所述一次触发信号,在进行对应一路激光脉冲序列的处理之后,进行对应另一路激光脉冲序列的处理。
也就是说,控制模块可以发送一组触发信号(包括针对发射电路、接收电路、采用电路和运算电路的触发信号),来触发至少两个通道的测量工作,如果实现至少两个通道的工作,则发送至少两组触发信号。
例如,如图14所示,每次触发时,按顺序实现各通道的工作,在其中一个通道工作结束后,立刻或等待一段时间后切换到另一通道开始工作,每个通道的工作频率与触发频率相同。
可选地,在本申请实施例中,在至少两个通道的测量中,复用的器件属于发射电路、接收电路、采样电路和运算电路中的一个或多个。
例如,在至少两个通道的测量中,仅存在发射电路中的器件被复用。
例如,在至少两个通道的测量中,存在接收电路、采样电路和运算单路中的器件被复用。例如,如图15所示。
又例如,在至少两个通道的测量中,发射电路的器件、接收电路的器件、采样电路的器件和运算电路中的器件均存在复用的情况。
以上已经介绍了至少两路激光脉冲序列对应的驱动信号,或者至少两路激光脉冲序列对应的电信号是如何实现复用的。其中,可以将该至少两路激光脉冲序列对应的通道中的器件的组合称为第一电路组,也即包括上述提到的发射电路、接收电路、采样电路和运算电路。
其中,上述提到的至少两路激光脉冲序列可以是激光测距模块发射的全部或部分激光脉冲序列。
例如,激光测距模块可以发射6路激光脉冲序列,该6路激光脉冲序列,其驱动信号相互之间复用至少一个器件。
例如,激光测距模块可以发射6路激光脉冲序列,可以存在3路激光脉冲序列,其驱动信号相互之间复用至少一个器件。其中,其他3路激光脉冲序列对应的驱动信号之间可以相互复用器件,也可以不进行器件的复用。
以及,上述提到的至少两路电信号可以是激光测距模块发射至少两路激光脉冲序列的全部或部分序列对应的电信号。
例如,激光测距模块可以发射6路激光脉冲序列,经过光电转换之后,可以得到6路电信号,则该6路电信号中,可以存在3路电信号,相互之间可以复用至少一个器件。其中,其他3路激光脉冲序列相互之间可以复用器件,也可以不进行器件的复用。
可选地,在本申请实施例中,所述激光测距模块除了包括上述提到的第一电路组之外,还可以包括第二电路组,所述第二电路组包括:
发射电路,用于发射具有不同出射路径和不同出射时刻的至少两路激光脉冲序列;
接收电路,用于接收并光电转换经被探测物反射的且所述第二电路组包括的发射电路发射的每路激光脉冲序列,得到至少两路电信号中的每路电信号;
采样电路,用于分别对所述第二电路组中的接收电路得到的每路电信号进行采样,获得采样结果;
运算电路,用于基于第二电路组包括的运算电路获取的采样结果确定与所述被探测物之间的距离。
应理解,第二电路组中的各个电路包括的器件的类型和/或各类器件的连接关系可以是与第一电路组相同的,为了简洁,在此不再赘述。
可选地,第一电路组发射的激光脉冲序列的数量与第二电路组发射的激光脉冲的数量可以相同,也可以不相同。
其中,所述第一电路组对应的激光脉冲序列的出射路径与所述第二电路组对应的激光脉冲序列的出射路径不同。
可选地,所述第一电路组对应的激光脉冲序列的出射方向与所述第二电路组对应的激光脉冲序列的出射方向不同。
例如,如图16所示,可以存在两个出射方向,每个出射方向可以由一个电路组实现。
可选地,在本申请实施例中,第一电路组组内和第二电路组组内可以均实现了器件的复用,或者第一电路组和电路组仅有一个电路组实现了器件的复用。
在第一电路组与第二电路组组内均实现了器件复用的情况,所述第一电路组内复用的器件的类型与所述第二电路组内复用的器件的类型相同。
例如,第一电路组和第二电路组在组内均复用了发射电路中的开关器件, 接收电路的二级放大器以及采样电路。
例如,第一电路组和第二电路组在组内均复用了接收电路中的相同类型的器件,例如,如图17所示,第一电路组(包括发射电路1、发射电路2、发射电路3、接收电路1、采样电路和运算电路,其可以对应于方向1的激光脉冲序列)和第二电路组(包括发射电路4、发射电路5、发射电路6、接收电路2、采样电路和运算电路,对应于方向1的激光脉冲序列)中每个电路组分别复用了各自的接收电路、采样电路和运算电路中的器件。
或者,在第一电路组与第二电路组组内均实现了器件复用的情况,所述第一电路组内复用的器件的类型与所述第二电路组内复用的器件的类型不同,此处的不同可以指部分不同,或者全部不同。
例如,第一电路组在组内复用了发射电路中的开关器件,接收电路的二级放大器以及采样电路;第一电路组在组内复用了发射电路中的开关器件,接收电路的二级放大器以及其他的信号处理电路。
又例如,第一电路组在组内复用了发射电路中的开关器件;第一电路组在组内复用了接收电路的二级放大器以及其他的信号处理电路。
以上介绍了各个电路组组内的器件的复用情况。在本申请实施例中,至少两个电路组之间也可以实现器件的复用。
具体地,至少两个电路组之间可以复用接收电路、发射电路、采样电路和运算电路中的至少一个器件。
例如,所述第一电路组和所述第二电路组复用所述采样电路的至少部分器件和/或所述运算电路的至少部分器件。例如图17所示,所述第一电路组和所述第二电路组复用了所述采样电路和运算电路。
其中,可以在利用开关、复用器或端口,将所述第一电路组和所述第二电路组的接收电路分时与采样电路连通。
以上介绍了激光测距模块,本申请实施例还提供一种激光测距装置,如图18所示,该激光测距装置500可以包括激光测距模块510。
进一步地,该激光测距装置还可以包括其他的模块,例如,扫描模块520。其中,扫描模块520,用于将所述激光测距模块510出射的激光脉冲序列改变传播方向出射;经被探测物反射回的至少部分光束经过所述扫描模块后入射至所述激光测距模块。
具体地,所述扫描模块520包括至少一个厚度沿径向变化的棱镜,以及 用于带动所述棱镜转动的电机;所述转动的棱镜用于将所述激光测距模块出射的激光脉冲序列折射至不同方向出射。
在该种情况下,本申请实施例中的激光测距模块510包括的发射电路的激光管可以是一个,该激光管发射的激光脉冲序列的经过扫描模块520改变出射路径,可以得到多路出射路径的激光脉冲序列。
下面再以任意一种激光测距装置为例,具体描述激光测距装置的工作原理。激光测距装置中可以采用同轴光路,也即激光测距装置出射的光束和经反射回来的光束在激光测距装置内共用至少部分光路。或者,激光测距装置也可以采用异轴光路,也即激光测距装置出射的光束和经反射回来的光束在激光测距装置内分别沿不同的光路传输。图19示出了根据本申请实施例的激光测距装置的示意图。
激光测距装置600包括光收发装置610,光收发装置610包括发射电路603、准直元件604、探测器605(可以包括接收电路、采样电路和运算电路)和光路改变元件606。光收发装置610用于发射光束,且接收回光,将回光转换为电信号。发射电路603用于发射光束。在一个实施例中,发射电路603可发射激光束。可选的,发射电路603发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件104设置于发射电路的出射光路上,用于准直从发射电路603发出的光束,将发射电路603发出的光束准直为平行光。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件604可以是准直透镜或者是其他能够准直光束的元件。
激光测距装置100还包括扫描模块602。扫描模块602放置于光收发装置610的出射光路上,扫描模块602用于改变经准直元件604出射的准直光束619的传输方向并投射至外界环境,并将回光投射至准直元件604。回光经准直元件604汇聚到探测器605上。
在一个实施例中,扫描模块602可以包括一个或多个光学元件,例如,透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。在一些实施例中,扫描模块602的多个光学元件可以绕共同的轴609旋转,每个旋转的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块602的多个光学元件可以以不同的转速旋转。在另一个实施例中,扫描模块602的多个光学元件可以以基本相同的转速旋转。
在一些实施例中,扫描模块602的多个光学元件也可以是绕不同的轴旋转,或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块602包括第一光学元件614和与第一光学元件614连接的驱动器616,驱动器616用于驱动第一光学元件614绕转动轴609转动,使第一光学元件614改变准直光束619的方向。第一光学元件614将准直光束619投射至不同的方向。在一个实施例中,准直光束619经第一光学元件改变后的方向与转动轴609的夹角随着第一光学元件614的转动而变化。在一个实施例中,第一光学元件614包括相对的非平行的一对表面,准直光束619穿过该对表面。在一个实施例中,第一光学元件614包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件614包括楔角棱镜,对准直光束619进行折射。在一个实施例中,第一光学元件614上镀有增透膜,增透膜的厚度与发射电路603发射出的光束的波长相等,能够增加透射光束的强度。
在一个实施例中,扫描模块602还包括第二光学元件615,第二光学元件615绕转动轴609转动,第二光学元件615的转动速度与第一光学元件614的转动速度不同。第二光学元件615用于改变第一光学元件614投射的光束的方向。在一个实施例中,第二光学元件615与另一驱动器617连接,驱动器617驱动第二光学元件615转动。第一光学元件614和第二光学元件615可以由不同的驱动器驱动,使第一光学元件614和第二光学元件615的转速不同,从而将准直光束619投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器618控制驱动器616和617,分别驱动第一光学元件614和第二光学元件615。第一光学元件614和第二光学元件615的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器616和617可以包括电机或其他驱动装置。
在一个实施例中,第二光学元件615包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件615包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件615包括楔角棱镜。在一个实施例中,第二光学元件615上镀有增透膜,能够增加透射光束的强度。
扫描模块602旋转可以将光投射至不同的方向,例如方向611和613,如此对测距装置600周围的空间进行扫描。当扫描模块602投射出的光 611打到探测物601时,一部分光被探测物601沿与投射的光611相反的方向反射至测距装置600。扫描模块602接收探测物601反射的回光612,将回光612投射至准直元件604。
准直元件604会聚探测物601反射的回光612的至少一部分。在一个实施例中,准直元件604上镀有增透膜,能够增加透射光束的强度。探测器605与发射电路603放置于准直元件604的同一侧,探测器605用于将穿过准直元件604的至少部分回光转换为电信号。
在一些实施例中,发射电路603可以包括激光二极管,通过激光二极管发射纳秒级别的激光。例如,发射电路603发射的激光脉冲持续10ns。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,激光测距装置600可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物601到激光测距装置600的距离。
激光测距装置100探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
本申请实施例提供了一种激光测距方法,可以利用前文所述的激光测距装置测量激光测距装置与被探测物之间的距离。
本申请实施例提供了另一种激光测距方法700。如图20所示,该方法700包括以下部分的至少内容。
在710中,构建激光测距装置的至少两个探测通道,其中每个探测通道包括光源、光电转换器件、采样电路和运算电路;其中,所述光源用于发射一路激光脉冲序列,所述光电转换器件用于接收经被探测物反射的激光脉冲序列,并将所述激光脉冲序列进行光电转换,得到一路电信号;所述采样电路用于分别对所述一路电信号进行采样,获得采样结果;所述运算电路用于基于所述采样结果确定所述激光测距装置与所述被探测物之间的距离;其中,所述至少两个探测通道所发射的激光脉冲序列分别具有不同的出射路径,所述至少两个探测通道分别在不同的时刻出射激光脉冲序列,其中,对所述两个探测通道中除所述光源以外以及除所述光电转换器件以外的至少部分器件进行分时复用。例如,可以复用发射电路的除光源之外的至少一个器件,和/或接收电路的除光电转换器的至少一个器件,和/或复用采样电路的至少一个器件,和/或运算电路的至少一个器件。
在720中,利用所述至少两个探测通道测量所述激光测距装置与被探测物之间的距离。
其中,在方法700中,对所述两个探测通道中除所述光源以外以及除所述光电转换器件以外的至少部分器件进行分时复用的方式可以参考上文的描述,为了见解,在此不再赘述。
本申请实施例提供了一种移动平台,包括上述的激光测距装置,该移动平台包括无人机、汽车或机器人。可选的,该汽车包括自动驾驶汽车或者半自动驾驶汽车。
如图21所示,无人机800可以包括动力系统810、飞控系统820和激光测距装置830。
其中,该动力系统810在飞控系统820的控制下为该无人机800提供动力。
该飞控系统820可以控制动力系统810为该无人机800提供动力,以及可以控制激光测距装置830进行激光测距。
该激光测距装置830可以对应于上文提到的激光测距装置,为了简洁,在此不再赘述。
应理解,该激光测距装置830与飞控系统820可以并非物理上严格分开的,例如,激光测距装置830中的控制电路可以位于飞控系统820内。
还应理解,该无人机800还可以包括其它的部分,例如,云台和传感系统等,为了简洁,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (39)

  1. 一种激光测距模块,其特征在于,包括:
    发射电路,用于发射至少两路激光脉冲序列,其中所述至少两路激光脉冲序列分别具有不同的出射路径,以及所述至少两路激光脉冲序列分别在不同的时刻出射;
    接收电路,用于接收经被探测物反射的每路激光脉冲序列,并将所述每路激光脉冲序列进行光电转换,得到至少两路电信号中的每路电信号;
    采样电路,用于分别对所述每路电信号进行采样,获得采样结果;
    运算电路,用于基于所述采样结果确定与所述被探测物之间的距离;其中,
    所述至少两路激光脉冲序列在所述发射电路中对应的驱动信号复用所述接收电路的至少一个器件;
    和/或,
    所述至少两路电信号复用以下至少一种:所述接收电路中的至少一个器件、所述采样电路的至少一个器件、所述运算电路中的至少一个器件。
  2. 根据权利要求1所述的激光测距模块,其特征在于,所述发射电路包括至少两个激光管,每个激光管分别用于发射一路激光脉冲序列。
  3. 根据权利要求2所述的激光测距模块,其特征在于,所述至少两路激光脉冲序列在所述发射电路中对应的驱动信号复用所述发射电路的除所述激光管之外的至少一个器件。
  4. 根据权利要求3所述的激光测距模块,其特征在于,所述至少两路激光脉冲序列在所述发射电路中对应的驱动信号复用所述发射电路中的以下至少一个器件:所述激光管的开关器件、所述开关器件的驱动器;
    其中,所述开关器件与所述激光管连接,用于控制所述激光管的开关;
    所述驱动器与所述开关器件连接,用于对所述开关器件进行驱动。
  5. 根据权利要求4所述的激光测距模块,其特征在于,所述发射电路包括一个驱动器以及至少两个开关器件,所述至少两个开关器件分别由所述一个驱动器驱动,以及所述至少两个开关器中的每个开关器件分别控制所述至少两个激光脉冲序列的对应的至少两个激光管中的一个激光管,
    其中,所述一个驱动器通过开关或复用器分时与所述至少两个开关器件连通。
  6. 根据权利要求4所述的激光测距模块,其特征在于,所述发射电路包括一个驱动器以及一个开关器件,所述至少两路激光脉冲序列在所述发射电路中对应的驱动信号复用所述一个驱动器以及所述一个开关器件,
    其中,所述一个开关器件通过开关或复用器分时控制所述至少两路激光脉冲序列对应的至少两个激光管。
  7. 根据权利要求4至6中任一项所述的激光测距模块,其特征在于,所述开关器件为金属氧化物半导体场效应晶体管MOS管,所述驱动器为MOS驱动器;或,
    所述开关器件为氮化镓GaN管,所述驱动器为GaN驱动器。
  8. 根据权利要求1至7中任一项所述的激光测距模块,其特征在于,所述接收电路包括至少两个光电转换器件,每个光电转换器件用于接收一路激光脉冲序列,以及将接收的一路激光脉冲序列转换成电信号。
  9. 根据权利要求8所述的激光探测模块,其特征在于,所述至少两路电信号复用所述接收电路的除所述光电转换器件之外的至少一个器件。
  10. 根据权利要求9所述的激光测距模块,其特征在于,所述接收电路还包括信号处理电路,用于对所述光电转换器件输出的电信号进行以下至少一种处理:放大、滤波;
    所述至少两路电信号复用所述信号处理电路中的至少一个器件。
  11. 根据权利要求10所述的激光测距模块,其特征在于,所述信号处理电路包括一级放大电路和二级放大电路,所述一级放大电路用于对来自所述光电转换器件输出的电信号进行放大处理,所述二级放大电路用于对来自所述一级放大电路的电信号进行进一步放大处理。
  12. 根据权利要求11所述的激光测距模块,其特征在于,所述至少两路电信号复用所述接收电路的除所述光电转换器件之外以及除所述一级放大电路之外的至少一个器件。
  13. 根据权利要求11或12所述的激光测距模块,其特征在于,所述一级放大电路包括跨阻放大器。
  14. 根据权利要求11至13中任一项所述的激光测距模块,其特征在于,所述采样电路包括信号比较器和时间数字转换器TDC。
  15. 根据权利要求9至14中任一项所述的激光测距模块,其特征在于,
    所述接收电路包括至少两个跨阻放大器,其中,所述至少两个跨阻放大 器中的每个跨阻放大器分别对所述至少两路电信号中的每一路电信号进行放大处理;
    所述至少两个跨阻放大器通过信号选通的方式、或通过开关、或通过复用器,分时与所述跨阻放大器的下一级器件连通。
  16. 根据权利要求15所述的激光测距模块,其特征在于,所述跨阻放大器的下一级器件包括信号放大电路和/或滤波器。
  17. 根据权利要求9至11和14中任一项所述的激光测距模块,其特征在于,所述接收电路包括一个跨阻放大器,其中,所述至少两个电信号对应的至少两个光电转换器件通过开关或复用器,分时与所述一个跨阻放大器连通。
  18. 根据权利要求9至16中任一项所述的激光测距模块,其特征在于,所述至少两路电信号复用所述接收电路的除所述光电转换器件之外,以及除所述光电转换器件的下游连续的至少一级器件之外的至少一个器件,其中,所述下游连续的至少一级器件包括所述光电转换器件的下一级器件。
  19. 根据权利要求8至18中任一项所述的激光测距模块,其特征在于,所述光电转换器件包括正极本征负极PIN二极管或雪崩光电二极管APD。
  20. 根据权利要求1至19中任一项所述的激光测距模块,其特征在于,所述采样电路的至少部分器件属于可编程器件。
  21. 根据权利要求1至20中任一项所述的激光测距模块,其特征在于,所述至少两路电信号复用所述采样电路中的以下至少一个器件:信号比较器、时间数字转换器TDC;或,
    所述至少两路电信号复用模数转换器ADC。
  22. 根据权利要求1至21中任一项所述的激光测距模块,其特征在于,所述采样电路的至少部分器件和所述运算电路的至少部分器件由同一可编程器件实现。
  23. 根据权利要求20或22所述的激光测距模块,其特征在于,所述至少两路电信号每路电信号分别通过至少两个端口中的一个端口输入到所述可编程器件。
  24. 根据权利要求1至23中任一项所述的激光测距模块,其特征在于,还包括控制模块,用于:
    针对所述至少两路激光脉冲序列中的每路激光脉冲序列,分别向所述发 射电路、所述接收电路、所述采样电路和所述运算电路发送触发信号,其中,所述发射电路、所述接收电路、所述采样电路和所述运算电路分别基于所述触发信号,分别进行一路激光脉冲序列对应的处理。
  25. 根据权利要求1至24中任一项所述的激光测距模块,其特征在于,还包括控制模块,用于:
    针对所述至少两路激光脉冲序列,分别向所述发射电路、所述接收电路、所述采样电路和所述运算电路发送一次触发信号,其中,所述发射电路、所述接收电路、所述采样电路和所述运算电路基于所述一次触发信号,在进行对应一路激光脉冲序列的处理之后,进行对应另一路激光脉冲序列的处理。
  26. 根据权利要求1至25中任一项所述的激光测距模块,其特征在于,所述至少两路激光脉冲序列或所述至少两路电信号复用第一器件,
    所述激光探测模块包括选择元件,所述选择元件用于将至少两个第二器件分时与所述第一器件连通,每个第二器件对应于一路激光脉冲序列或一路电信号。
  27. 根据权利要求26所述的激光测距模块,其特征在于,所述选择元件包括以下中的至少一种:开关、复用器、端口。
  28. 根据权利要求1至27中任一项所述的激光测距模块,其特征在于,所述至少两路激光脉冲序列或所述至少两路电信号复用第三器件,
    至少两个第四器件通过信号选通的方式与所述第三器件分时连通,每个第四器件分别对应于一路激光脉冲序列或一路电信号。
  29. 根据权利要求1至28中任一项所述的激光测距模块,其特征在于,所述发射电路、所述接收电路、所述采样电路和所述运算电路属于所述激光测距模块包括的第一电路组,所述激光测距模块还包括第二电路组;其中,所述第二电路组包括:
    发射电路,用于发射具有不同出射路径和不同出射时刻的至少两路激光脉冲序列;
    接收电路,用于接收并光电转换经被探测物反射的且所述第二电路组包括的发射电路发射的每路激光脉冲序列,得到至少两路电信号中的每路电信号;
    采样电路,用于分别对所述第二电路组中的接收电路得到的每路电信号进行采样,获得采样结果;
    运算电路,用于基于第二电路组包括的运算电路获取的采样结果确定与所述被探测物之间的距离。
  30. 根据权利要求29所述的激光测距模块,其特征在于,所述第一电路组对应的激光脉冲序列的出射方向与所述第二电路组对应的激光脉冲序列的出射方向不同。
  31. 根据权利要求30所述的激光测距模块,其特征在于,所述第一电路组内复用的器件的类型与所述第二电路组内复用的器件的类型相同/或不同。
  32. 根据权利要求29至31任一项所述的激光测距模块,其特征在于,所述第一电路组和所述第二电路组复用所述采样电路的至少部分器件和/或所述运算电路的至少部分器件。
  33. 一种激光测距装置,其特征在于,包括:
    如权利要求1至32中任一项所述的激光测距模块。
  34. 根据权利要求33所述的激光测距装置,其特征在于,还包括:
    扫描模块,用于将所述激光测距模块出射的激光脉冲序列改变传播方向出射;经被探测物反射回的至少部分光束经过所述扫描模块后入射至所述激光测距模块。
  35. 如权利要求34所述的激光测距装置,其特征在于,所述扫描模块包括至少一个厚度沿径向变化的棱镜,以及用于带动所述棱镜转动的电机;
    所述转动的棱镜用于将所述激光测距模块出射的激光脉冲序列折射至不同方向出射。
  36. 一种激光测距方法,其特征在于,包括:
    利用权利要求33至35中任一项所述的激光测距装置测量所述激光测距装置与被探测物之间的距离。
  37. 一种激光测距方法,其特征在于,包括:
    构建激光测距装置的至少两个探测通道,其中每个探测通道包括光源、光电转换器件、采样电路和运算电路;其中,所述光源用于发射一路激光脉冲序列,所述光电转换器件用于接收经被探测物反射的激光脉冲序列,并将所述激光脉冲序列进行光电转换,得到一路电信号;所述采样电路用于分别对所述一路电信号进行采样,获得采样结果;所述运算电路用于基于所述采样结果确定所述激光测距装置与所述被探测物之间的距离;其中,所述至少 两个探测通道所发射的激光脉冲序列分别具有不同的出射路径,所述至少两个探测通道分别在不同的时刻出射激光脉冲序列,其中,对所述两个探测通道中除所述光源以外以及除所述光电转换器件以外的至少部分器件进行分时复用;
    利用所述至少两个探测通道测量所述激光测距装置与被探测物之间的距离。
  38. 一种移动平台,其特征在于,包括根据权利要求33至35中任一项所述的激光测距装置,所述移动平台包括无人机、汽车或者机器人。
  39. 根据权利要求38所述的移动平台,其特征在于,所述汽车包括自动驾驶汽车或半自动驾驶汽车。
PCT/CN2018/104675 2018-09-07 2018-09-07 激光测距模块、装置、方法和移动平台 WO2020047857A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880009573.7A CN111164457B (zh) 2018-09-07 2018-09-07 激光测距模块、装置、方法和移动平台
EP18932498.1A EP3848726B1 (en) 2018-09-07 2018-09-07 Laser distance measurement module, apparatus, and method, and mobile platform
PCT/CN2018/104675 WO2020047857A1 (zh) 2018-09-07 2018-09-07 激光测距模块、装置、方法和移动平台
US17/194,291 US20210208249A1 (en) 2018-09-07 2021-03-07 Laser distance measurement device, apparatus, and method, and mobile platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104675 WO2020047857A1 (zh) 2018-09-07 2018-09-07 激光测距模块、装置、方法和移动平台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/194,291 Continuation US20210208249A1 (en) 2018-09-07 2021-03-07 Laser distance measurement device, apparatus, and method, and mobile platform

Publications (1)

Publication Number Publication Date
WO2020047857A1 true WO2020047857A1 (zh) 2020-03-12

Family

ID=69722112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104675 WO2020047857A1 (zh) 2018-09-07 2018-09-07 激光测距模块、装置、方法和移动平台

Country Status (4)

Country Link
US (1) US20210208249A1 (zh)
EP (1) EP3848726B1 (zh)
CN (1) CN111164457B (zh)
WO (1) WO2020047857A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830532A (zh) * 2020-07-22 2020-10-27 厦门市和奕华光电科技有限公司 一种多模块复用激光雷达及扫地机器人
WO2023169298A1 (zh) * 2022-03-11 2023-09-14 华为技术有限公司 激光雷达及其光发射装置、控制方法和相关装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11867844B2 (en) * 2018-10-05 2024-01-09 GM Global Technology Operations LLC Lidar spectrum analyzer
CN116359885A (zh) * 2021-12-28 2023-06-30 上海禾赛科技有限公司 激光雷达的探测方法以及激光雷达

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201403A (zh) * 2007-04-27 2008-06-18 北京航空航天大学 三维偏振成像激光雷达遥感器
US20150293224A1 (en) * 2013-05-09 2015-10-15 Quanergy Systems, Inc. Solid state optical phased array lidar and method of using same
CN106932783A (zh) * 2017-04-21 2017-07-07 深圳市迈测科技股份有限公司 一种大量程高速高精度激光测距系统
CN106970391A (zh) * 2017-03-31 2017-07-21 成都微光云科技有限公司 一种基于激光测距的uav地形检测系统
CN207408591U (zh) * 2017-10-30 2018-05-25 北京万集科技股份有限公司 一种阵列apd分时复用的三维激光测距装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231405A (en) * 1992-01-27 1993-07-27 General Electric Company Time-multiplexed phased-array antenna beam switching system
JPH0815433A (ja) * 1994-06-27 1996-01-19 Mitsubishi Heavy Ind Ltd レーザ通信兼測距装置
US8355117B2 (en) * 2005-12-21 2013-01-15 Ecole Polytechnique Federale De Lausanne Method and arrangement for measuring the distance to an object
WO2015077614A1 (en) * 2013-11-22 2015-05-28 Schwarz Brent S Lidar scanner calibration
CN103760567B (zh) * 2014-01-27 2016-06-15 中国科学院半导体研究所 一种具有测距功能的被动成像系统及其测距方法
CN103901435B (zh) * 2014-03-11 2016-05-18 北京航空航天大学 一种全光纤光路全波形激光雷达系统
CN105181154B (zh) * 2015-10-10 2018-04-10 中国工程物理研究院激光聚变研究中心 一种多光束宽带调频脉冲激光波形集中测量装置
CN105824029B (zh) * 2016-05-10 2018-09-04 深圳市速腾聚创科技有限公司 多线激光雷达
CN106154281A (zh) * 2016-09-08 2016-11-23 齐龙舟 一种光纤激光雷达系统
CN107817497A (zh) * 2016-09-12 2018-03-20 北京万集科技股份有限公司 三维激光的测距装置及方法
CN106371085A (zh) * 2016-10-27 2017-02-01 上海博未传感技术有限公司 一种基于光纤阵列的激光雷达系统
CN106646494A (zh) * 2016-11-03 2017-05-10 上海博未传感技术有限公司 一种采用发射和接收光路复用结构的激光雷达系统
CN106501791A (zh) * 2016-11-18 2017-03-15 深圳市速腾聚创科技有限公司 相控阵激光雷达及相控阵激光雷达控制方法
CN207623731U (zh) * 2017-12-07 2018-07-17 北京万集科技股份有限公司 一种多路光电转换模块的控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201403A (zh) * 2007-04-27 2008-06-18 北京航空航天大学 三维偏振成像激光雷达遥感器
US20150293224A1 (en) * 2013-05-09 2015-10-15 Quanergy Systems, Inc. Solid state optical phased array lidar and method of using same
CN106970391A (zh) * 2017-03-31 2017-07-21 成都微光云科技有限公司 一种基于激光测距的uav地形检测系统
CN106932783A (zh) * 2017-04-21 2017-07-07 深圳市迈测科技股份有限公司 一种大量程高速高精度激光测距系统
CN207408591U (zh) * 2017-10-30 2018-05-25 北京万集科技股份有限公司 一种阵列apd分时复用的三维激光测距装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830532A (zh) * 2020-07-22 2020-10-27 厦门市和奕华光电科技有限公司 一种多模块复用激光雷达及扫地机器人
WO2023169298A1 (zh) * 2022-03-11 2023-09-14 华为技术有限公司 激光雷达及其光发射装置、控制方法和相关装置

Also Published As

Publication number Publication date
EP3848726A4 (en) 2022-02-16
EP3848726B1 (en) 2023-08-30
US20210208249A1 (en) 2021-07-08
EP3848726A1 (en) 2021-07-14
CN111164457A (zh) 2020-05-15
CN111164457B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2020047857A1 (zh) 激光测距模块、装置、方法和移动平台
US20240045038A1 (en) Noise Adaptive Solid-State LIDAR System
US20180275274A1 (en) High resolution lidar using multi-stage multi-phase signal modulation, integration, sampling, and analysis
US20190257924A1 (en) Receive path for lidar system
CN108627813B (zh) 一种激光雷达
US9007600B2 (en) Laser radar system
US20200191925A1 (en) Systems and methods for an apd array solid-state laser radar
US20170261612A1 (en) Optical distance measuring system and light ranging method
EP3430428A1 (en) Integrated illumination and detection for lidar based 3-d imaging
US20200292681A1 (en) Methods and apparatus for lidar operation with sequencing of pulses
US11448756B2 (en) Application specific integrated circuits for LIDAR sensor and multi-type sensor systems
US20210208250A1 (en) Laser ranging method and device
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
US20220155456A1 (en) Systems and Methods for Real-Time LIDAR Range Calibration
CN111684300B (zh) 一种信号放大方法及装置、测距装置
WO2020142921A1 (zh) 一种光探测模组及测距装置
JP4930742B2 (ja) 位置検出装置
JP3651412B2 (ja) 距離測定装置および距離測定方法
US20230113450A1 (en) Solid state pulse steering in lidar systems
US12032063B2 (en) Application specific integrated circuits for lidar sensor and multi-type sensor systems
WO2024113328A1 (zh) 探测方法、阵列探测器、阵列发射器、探测装置及终端
US11681028B2 (en) Close-range measurement of time of flight using parallax shift
WO2020107250A1 (zh) 一种激光接收电路及测距装置、移动平台
WO2022036714A1 (zh) 激光测距方法、测距装置和可移动平台
KR20230095767A (ko) 모듈형 플래시 라이다 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018932498

Country of ref document: EP

Effective date: 20210407