WO2020047785A1 - 智能电网中电信号处理方法及装置 - Google Patents

智能电网中电信号处理方法及装置 Download PDF

Info

Publication number
WO2020047785A1
WO2020047785A1 PCT/CN2018/104232 CN2018104232W WO2020047785A1 WO 2020047785 A1 WO2020047785 A1 WO 2020047785A1 CN 2018104232 W CN2018104232 W CN 2018104232W WO 2020047785 A1 WO2020047785 A1 WO 2020047785A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
node
master node
master
slave
Prior art date
Application number
PCT/CN2018/104232
Other languages
English (en)
French (fr)
Inventor
陈金雷
孙瑜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/104232 priority Critical patent/WO2020047785A1/zh
Priority to CN201880097092.6A priority patent/CN112639900A/zh
Publication of WO2020047785A1 publication Critical patent/WO2020047785A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems

Definitions

  • the present application relates to the field of smart grid technology, and in particular, to a method and a device for processing electric signals in a smart grid.
  • a power supply area electrical energy is supplied to users through various links in the power grid, including transmission, transformation and distribution.
  • each element of the power network must generate a certain amount of active power loss and electrical energy loss.
  • Line loss power is usually calculated by subtracting the total "power supply” and the total “sold power” measured by the energy meter.
  • the "power supply” in the station area can be directly obtained from the measurement equipment of the power supply company.
  • the "sale of electricity” needs to be calculated according to the results of the division of the Taiwan area, that is, whether the division of the Taiwan area is accurate directly determines the accuracy of the "sale of electricity".
  • the station area may refer to the power supply range or area of the (one) transformer.
  • station identification is generally performed by the following two methods: Method 1. Power frequency carrier signal such as frequency shift keying (FSK) or orthogonal frequency division multiplexing (OFDM) is used. Whether the receiving end belongs to the station area is determined by whether the receiving end can receive the power carrier signal. Method 2: Use a current signal to determine whether the receiving end belongs to the station area based on whether the receiving end can receive the current signal. Specifically, when the above-mentioned power carrier signal or the above-mentioned current signal is used for station identification, it is generally implemented by a host and a handheld terminal. In the prior art, the station identification scheme requires the addition of additional equipment, which has a large cost for manpower and material resources, and the accuracy of the station identification can also be affected due to the quality of the carrier signal or the current signal.
  • Power frequency carrier signal such as frequency shift keying (FSK) or orthogonal frequency division multiplexing (OFDM) is used.
  • FSK frequency shift keying
  • OFDM orthogonal frequency division multiplexing
  • the present application discloses a method and device for processing electric signals in a smart grid, which can effectively reduce the cost of station identification and improve the accuracy of station identification.
  • an embodiment of the present application provides a method for processing electrical signals in a smart grid, including:
  • the first master node obtains slave node data and master node data of at least two master nodes; wherein the master node is a node connected to the concentrator and the slave node is a node connected to a user's electricity meter, and the slave node data is used to characterize all nodes.
  • the electrical signal of the slave node is an electrical signal used by the slave node for data communication in the smart grid; the at least two masters
  • Each master node in the node corresponds to a set of master node data, and each set of master node data is used to characterize related information of at least one of a signal amplitude and a signal frequency of an electric signal of the corresponding master node.
  • the signal is an electric signal used by the corresponding master node for data communication in the smart grid; the first master node determines the similarity between the slave node data and the master node data of each master node; the first A master node determines the master node data with the highest similarity to the slave node data; the first master node compares the master node corresponding to the master node data with the highest similarity to the slave node Confirming that they belong to the same station area; when the first master node confirms that the master node corresponding to the master node data with the highest similarity is the first master node, the first master node and the slave node perform Data communication; when the first master node confirms that the master node corresponding to the most similar master node data is a second master node, the first master node sends an instruction instruction to the slave node, the instruction instruction It is used to instruct the slave node to perform data communication with the second master node.
  • the first master node obtains the similarity between the slave node and the corresponding master node by comparing the similarity between the data of the slave node and the data of each group of master nodes. After the master node data, it can be determined that the master node corresponding to the master node data with the highest similarity and the slave node belong to the same station area. Furthermore, when the master node corresponding to the master node data with the highest similarity is the first master node, data communication may be performed with the slave node, and it is confirmed that the master node corresponding to the master node data with the highest similarity is the second master node.
  • the slave node At this time, an instruction is sent to the slave node, so that the slave node can perform data communication with the second master node.
  • the characteristics of the power line's own signal within the station area are used to realize the station identification between the master node and the slave node, without the need to add additional equipment, which reduces the cost of the station area identification. Further, due to the signal of the power line itself within the station area, The characteristics are not affected by factors such as common ground, common cable trench, and common high voltage, which improves the accuracy of station identification; and the station identification method in the embodiment of the present application can cover the entire station, regardless of the size of the station. Impact.
  • the slave node data includes at least one of voltage data of the slave node and network clock data in a first power frequency period; and each set of master node data includes the At least one of voltage data of the corresponding master node and network clock data in the first power frequency period.
  • the acquiring, by the first master node, the slave node data and the master node data of at least two master nodes includes: obtaining, by the first master node, voltage data of N slave nodes within a first duration. , Where N is a positive integer greater than 1; and respectively obtaining voltage data of N master nodes of each of the at least two master nodes within the first duration; the first master node determines the
  • the similarity between the slave node data and the master node data of each master node includes: calculating, by the first master node, the voltage data of the N slave nodes and N of each of the at least two master nodes The similarity of the master node voltage data, where the N slave node voltage data and the corresponding master node voltage data and the master node voltage data in the N master node voltage data of each master node are voltage data at the same time .
  • the voltage data of the N slave nodes and each of the master nodes may be collected within the first time period, respectively.
  • N master node voltage data For example, the first duration may be divided into N durations, so that slave nodes collect slave node data, and master nodes collect corresponding master node data.
  • the N slave node voltage data has a corresponding relationship with the N master node voltage data of each master node.
  • the acquiring, by the first master node, the slave node data and the master node data of at least two master nodes includes: the first master node obtaining the slave node voltage data at N reference times, where Acquiring voltage data of one slave node at each reference time, where N is a positive integer greater than 1, and acquiring master node voltage data of each of the at least two master nodes at the N reference times, respectively;
  • the determining, by the first master node, the similarity between the slave node data and the master node data of each master node includes: calculating, by the first master node, the slave node voltage data of the N reference moments and the at least Similarity between the master node voltage data of the N reference moments of each master node of the two master nodes; wherein the slave node voltage data of the N reference moments and the master node of the N reference moments of each master node.
  • the corresponding slave node voltage data and the master node voltage data in the node voltage data are voltage data at the same time.
  • the acquiring, by the first master node, the slave node data and the master node data of at least two master nodes includes: obtaining, by the first master node, N numbers of data in the first power frequency period. Voltage data of the slave node's network clock, where N is a positive integer greater than 1, and obtaining the data of the N voltage points of each of the at least two master nodes in the first power frequency cycle Master node network clock data; the first master node determining the similarity between the slave node data and the master node data of each master node includes: the first master node calculates the slave nodes of the N voltage points respectively Network clock data and master node network clock data of N voltage points of each master node of the at least two master nodes; wherein, slave node network clock data of N voltage points in the first power frequency period Among the network clock data of the master node at the N voltage points in the first power frequency period, the network clock data of the slave node and the network clock data of the master node are network clock data at
  • the N is 1000; or the N is 3000.
  • the network clock data of 1000 or 3000 master nodes not only avoids the large amount of data and increases the calculation amount, but also improves the accuracy of the similarity calculation and the accuracy of station identification.
  • the first master node determines the similarity between the slave node data and the master node data of each master node, and the first master node determines the highest similarity with the slave node data.
  • the master node data includes: the first master node determines the slave node data and the master node of each master node according to a variance value of the slave node data and the master node data of each master node.
  • the first master node determines the master node data with the smallest variance value from the slave node data as the master node data with the highest similarity to the slave node data; or, the first master node according to A quantity product of the slave node data and the master node data of each master node determines a similarity between the slave node data and the master node data of each master node, and the first master node determines a similarity with the master node data.
  • the master node data having the largest number of slave node data products is used as the master node data with the highest similarity to the slave node data; or, the first master node is based on the slave node data and the master node of each master node.
  • the correlation coefficient of the point data determines the similarity between the slave node data and the master node data of each master node, and the first master node determines the master node data that has the largest correlation coefficient with the slave node data as the master node data.
  • the data of the master node with the highest similarity of the slave data is the correlation coefficient of the point data.
  • the method further includes: the first master node and the slave node perform a network Clock synchronization, and network synchronization between the first master node and each of the at least two master nodes except the first master node.
  • the slave node synchronizes the network clock with each master node, which can effectively ensure that the data of the slave node and the data of the corresponding master node are collected at the same time. Situation, improving the accuracy of data collection.
  • the method further includes: the first master node broadcasts a station identification instruction, where the station identification instruction includes the first duration or the N reference times.
  • the first master node broadcasts a station identification instruction, and the station identification instruction includes a first duration or N reference times, so that the slave node and other master nodes (excluding at least two master nodes) Master nodes other than the first master node can collect data within the first duration or N reference times, thereby ensuring the accuracy of data collection and improving the accuracy of station identification.
  • the first master node is integrated in a concentrator in a station area, or the first master node exists in an independent form, and the first master node and the centralized ⁇ ⁇ Connected.
  • an embodiment of the present application further provides a method for processing electrical signals in a smart grid, including:
  • the slave node obtains the slave node data and the master node data of at least two master nodes; wherein the master node is a node connected to the concentrator and the slave node is a node connected to the user's electricity meter, and the slave node data is used to characterize the slave node Related information of at least one of a signal amplitude and a signal frequency of an electrical signal of the node, and the electrical signal of the slave node is an electrical signal used by the slave node for data communication in a smart grid; among the at least two master nodes, Each master node corresponds to a set of master node data.
  • Each set of master node data is used to characterize related information of at least one of a signal amplitude and a signal frequency of an electric signal of the corresponding master node.
  • the electric signal of the corresponding master node is The corresponding master node's electrical signal for data communication in the smart grid; the slave node determines the similarity between the slave node data and the master node data of each master node; the slave node determines the The master node data with the highest similarity of the slave node data; the slave node confirms that the master node corresponding to the master node data with the highest similarity and the slave node belong to the same Stage area; said data communication from a master node with the highest node data corresponding to the similarity of the master node.
  • the slave node data includes at least one of voltage data of the slave node and network clock data in a second power frequency period; and each group of master node data includes the At least one of voltage data of a corresponding master node and network clock data in the second power frequency period.
  • the embodiment of the present application does not limit whether the second power frequency period belongs to the same period as the first power frequency period.
  • the obtaining, by the slave node, the slave node data and the master node data of at least two master nodes includes: obtaining, by the slave node, M slave node voltage data within a second duration, and the M Is a positive integer greater than 1; and separately acquires M master node voltage data of each of the at least two master nodes within the second duration; the slave node determines the slave node data and each
  • the similarity of the master node data of the master node includes: calculating, by the slave node, the similarity of the M slave node voltage data with the M master node voltage data of each of the at least two master nodes, The voltage data of the M slave nodes and the voltage data of the master node corresponding to the voltage data of the M master nodes of each master node are voltage data at the same time.
  • M is the same as N or not. That is, this M may be the same as or different from N. It is also not limited whether the second duration is the same as the first duration. For example, the second duration may be the same as the first duration or different from the first duration.
  • the obtaining the slave node data and the master node data of at least two master nodes by the slave node includes: obtaining, by the slave node, voltage data of the slave nodes at M reference times, where each reference Obtain voltage data of one slave node at a time, where M is a positive integer greater than 1; and acquire voltage data of the master node of each of the at least two master nodes at the M reference moments;
  • the slave node Determining the similarity between the data of the slave node and the data of the master node of each master node includes: calculating, by the slave node, the voltage data of the slave nodes at the M reference moments and each master of the at least two master nodes The similarity of the master node voltage data of the M reference moments of the node; wherein the slave node voltage data of the M reference moments and the corresponding slave node of the master node voltage data of the M reference moments of each master node
  • the voltage data and the voltage data of the master node are voltage data at the same time.
  • the obtaining the slave node data and the master node data of at least two master nodes by the slave node includes: obtaining, by the slave node, slaves of M voltage points in the first power frequency period. Node network clock data, where M is a positive integer greater than 1; and obtaining the master node network clock of the M voltage points of each of the at least two master nodes during the first power frequency period, respectively Data; determining, by the slave node, the similarity between the slave node data and the master node data of each master node, including: calculating, by the slave node, the slave node network clock data of the M voltage points and the at least two Master node network clock data of M voltage points of each master node in each of the master nodes; wherein, the clock data of the slave node network at the M voltage points in the first power frequency period and the clock frequency at the first power frequency Among the master node network clock data of M voltage points in the period, the corresponding slave node network clock data and the master node network clock data
  • the M is taken as 1000; or the M is taken as 3000.
  • the slave node determines the similarity between the slave node data and the master node data of each master node, and the slave node determines the master node data with the highest similarity to the slave node data. Including: determining, by the slave node, a similarity between the slave node data and the master node data of each master node according to a variance value of the slave node data and the master node data of each master node, and The slave node determines the master node data having the smallest variance value with the slave node data as the master node data with the highest similarity to the slave node data; or, the slave node according to the slave node data and the each The quantity product of the master node data of the master node determines the similarity between the slave node data and the master node data of each master node, and the slave node determines the master node data with the largest product volume of the slave node data as The master node data with the highest similarity in the slave node data; or the slave no
  • the method before the slave node obtains slave node data and master node data of at least two master nodes, the method further includes: the slave node and each of the at least two master nodes The master nodes perform network clock synchronization.
  • the method further includes: the slave node receiving a station identification instruction, the station identification instruction including the second duration or the M reference times.
  • the slave node performing data communication with the master node corresponding to the master node data with the highest similarity includes: the slave node sends a master node corresponding to the master node data with the highest similarity to the master node.
  • the node sends an application instruction, and the application instruction is used to apply to join a network where the master node corresponding to the master node data with the highest similarity is located.
  • the slave node after the slave node confirms that the master node corresponding to the master node data with the highest similarity belongs to the same station area, the slave node does not join the network of the master node corresponding to the master node with the highest similarity. In this case, the slave node can apply to join the network.
  • the slave node is integrated in a user electricity meter in a station area, or the slave node exists in an independent form, and the slave node is connected to the user electricity meter.
  • a concentrator and at least two user electric meters can be included.
  • an embodiment of the present application further provides a method for processing electrical signals in a smart grid, including:
  • the master node obtains master node data and slave node data of at least two slave nodes; wherein the master node is a node connected to the concentrator and the slave node is a node connected to the user's electricity meter, and the master node data is used to characterize the master node's Related information of at least one of a signal amplitude and a signal frequency of the electric signal, the electric signal of the master node is an electric signal used by the master node for data communication in a smart grid; each of the at least two slave nodes The slave node corresponds to a group of slave node data, and each group of slave node data is used to characterize related information of at least one of a signal amplitude and a signal frequency of a corresponding slave node's electrical signal, and the corresponding slave node's electrical signal is the The corresponding slave node's electrical signal for data communication in the smart grid; the master node determines the similarity between the master node data and the slave node data of each slave node; the
  • the slave node data with the highest similarity belongs to the master node.
  • Taiwan area Using the characteristics of the power line's own signals in the station area to realize the identification of the master node and the slave nodes, without the need to add additional equipment, reducing the cost of the identification of the station area.
  • the signal characteristics of the power line itself in the station area are not subject to common ground,
  • the influence of factors such as common cable trench and common high voltage improves the accuracy of the identification of the station area; and the method for identifying the station area in the embodiment of the present application can cover the entire station area without being affected by the size of the station area.
  • an embodiment of the present application further provides a method for processing electrical signals in a smart grid, including:
  • the first slave node obtains the master node data and the slave node data of at least two slave nodes; wherein the master node is a node connected to the concentrator, the slave node is a node connected to a user's electricity meter, and the master node data is used for Characterizing related information of at least one of a signal amplitude and a signal frequency of an electrical signal of a master node, the electrical signal of the master node is an electrical signal used by the master node for data communication in a smart grid; the at least two slaves Each slave node in the node corresponds to a set of slave node data.
  • Each set of slave node data is used to characterize related information of at least one of a signal amplitude and a signal frequency of a corresponding slave node's electrical signal.
  • the signal is an electric signal used by the corresponding slave node for data communication in the smart grid; the first slave node determines the similarity between the master node data and the slave node data of each slave node; the first A slave node determines the slave node data with the highest similarity to the master node data; the first slave node associates the slave node corresponding to the highest similarity slave node data with the master node Confirming that they belong to the same station area; when the first slave node confirms that the slave node corresponding to the slave node data with the highest similarity is the first slave node, the first slave node and the master node perform Data communication; when the first slave node confirms that the slave node corresponding to the most similar slave node data is a second slave node, the first slave node sends an instruction instruction to the master node, the
  • an embodiment of the present application provides a master node, where the master node is a first master node, and the first master node includes:
  • An obtaining unit configured to obtain slave node data and master node data of at least two master nodes; wherein the master node is a node connected to the concentrator and the slave node is a node connected to a user's electricity meter; the slave node data is used for characterization Relevant information of at least one of a signal amplitude and a signal frequency of the electric signal of the slave node, the electric signal of the slave node is an electric signal used by the slave node for data communication in the smart grid; the at least two Each master node in the master node corresponds to a set of master node data.
  • Each set of master node data is used to characterize related information of at least one of a signal amplitude and a signal frequency of an electric signal of the corresponding master node.
  • the electric signal is an electric signal used by the corresponding master node for data communication in the smart grid;
  • a determining unit is used to determine the similarity between the slave node data and the master node data of each master node; the determination A unit that is also used to determine the master node data that has the highest similarity to the slave node data; a confirmation unit that is used to correspond to the master node that has the highest similarity to the master node data And the slave node is confirmed to belong to the same station area;
  • a data communication unit is configured to, when the confirmation unit confirms that the master node corresponding to the master node data with the highest similarity is the first master node, The slave node performs data communication;
  • the sending unit is configured to send an instruction instruction to the slave node when the confirmation unit confirms that the master node corresponding to the master node
  • the master node is the first master node only for convenience of description or understanding, and the master node provided in the embodiment of the present application should not be construed as limiting.
  • the slave node data includes at least one of voltage data of the slave node and network clock data in a first power frequency period; and each set of master node data includes the At least one of voltage data of the corresponding master node and network clock data in the first power frequency period.
  • the obtaining unit is specifically configured to obtain voltage data of N slave nodes within a first period of time, and obtain each master node of the at least two master nodes in the first time period separately.
  • the determining unit is specifically configured to separately calculate the N slave node voltage data and each of the at least two master nodes Similarity of the voltage data of the N master nodes of the three master nodes, wherein the voltage data of the slave nodes and the voltage data of the master node correspond to the voltage data of the master nodes of the N master nodes Is the voltage data at the same time.
  • the obtaining unit is specifically configured to obtain slave node voltage data at N reference times, where each reference moment obtains one slave node voltage data, and N is a positive integer greater than 1.
  • the corresponding slave node voltage data and the master node voltage data in the master node voltage data at the reference time are voltage data at the same time.
  • the obtaining unit is specifically configured to obtain slave node network clock data of N voltage points in the first power frequency period, where N is a positive integer greater than 1; and Acquiring network clock data of the master node of each of the at least two master nodes at the N voltage points in the first power frequency period; the determining unit is specifically configured to determine the voltages of the master node and the N voltages A set of master node data with the highest similarity in the slave node network clock data; wherein the slave node network clock data at the N voltage points in the first power frequency period and the Among the network clock data of the master node of the N voltage points, the network clock data of the corresponding slave node and the network clock data of the master node are the network clock data of the same voltage point.
  • the N is 1000; or the N is 3000.
  • the determining unit is specifically configured to determine the slave node data and each master node according to a variance value of the slave node data and the master node data of each master node.
  • the first master node further includes: a network clock synchronization unit, configured to perform network clock synchronization with the slave node, and divide the first master node from the at least two master nodes. Every master node other than the master node performs network clock synchronization.
  • the first master node further includes a broadcasting unit for broadcasting a station identification instruction, where the station identification instruction includes the first duration or the N reference times.
  • an embodiment of the present application provides a slave node, including:
  • the obtaining unit is configured to obtain slave node data and master node data of at least two master nodes; wherein the master node is a node connected to the concentrator, the slave node is a node connected to a user's electricity meter, and the slave node data is used for Related information that characterizes at least one of a signal amplitude and a signal frequency of the electrical signal of the slave node, the electrical signal of the slave node is an electrical signal used by the slave node for data communication in a smart grid; the at least Each of the two master nodes corresponds to a set of master node data, and each set of master node data is used to characterize related information of at least one of a signal amplitude and a signal frequency of an electric signal of the corresponding master node, and the corresponding master node
  • the electrical signals of the nodes are electrical signals used by the corresponding master node for data communication in the smart grid; a determination unit is used to determine the similarity between the data of the slave node and the data of the master
  • the slave node data includes at least one of voltage data of the slave node and network clock data in a second power frequency period; and each group of master node data includes the At least one of voltage data of a corresponding master node and network clock data in the second power frequency period.
  • the obtaining unit is specifically configured to obtain voltage data of M slave nodes within a second time period, and to obtain each master node of the at least two master nodes in the second time period separately.
  • the determining unit is specifically configured to separately calculate the M slave node voltage data and each of the at least two master nodes Similarity of the M master node voltage data of the three master nodes, wherein the M slave node voltage data and the corresponding master node voltage data and the master node voltage data of the M master node voltage data of each master node Is the voltage data at the same time.
  • the obtaining unit is specifically configured to obtain slave node voltage data at M reference times, where each reference moment obtains one slave node voltage data, and M is a positive integer greater than 1. And obtaining the master node voltage data of each of the at least two master nodes at the M reference moments respectively; and the determining unit is specifically configured to separately calculate the slave node voltage data of the M reference moments Similarity to the master node voltage data of the M reference moments of each master node of the at least two master nodes; wherein the slave node voltage data of the M reference moments and M of each master node The corresponding slave node voltage data and the master node voltage data in the master node voltage data at the reference time are voltage data at the same time.
  • the obtaining unit is specifically configured to obtain slave node network clock data of M voltage points in the first power frequency period, where M is a positive integer greater than 1; and Acquiring network clock data of the master node of each of the at least two master nodes at the M voltage points in the first power frequency period; and the determining unit is specifically configured to determine the voltages of the master nodes and the M voltages.
  • a set of master node data with the highest similarity in the slave node network clock data wherein the slave node network clock data of the M voltage points in the first power frequency period and the slave node network clock data in the first power frequency period Among the master node network clock data at M voltage points, the corresponding slave node network clock data and the master node network clock data are network clock data at the same voltage point.
  • the M is taken as 1000; or the M is taken as 3000.
  • the determining unit is specifically configured to determine the slave node data and each master node according to a variance value of the slave node data and the master node data of each master node.
  • the slave node further includes: a network clock synchronization unit, configured to perform network clock synchronization with each of the at least two master nodes.
  • the slave node further includes a receiving unit configured to receive a station identification instruction, where the station identification instruction includes the second duration or the M reference times.
  • an embodiment of the present application further provides an electrical signal processing device that can implement the electrical signal processing method in a smart grid according to any one of the first, second, third, and fourth aspects.
  • the electrical signal processing device may be a chip; or the electrical signal processing device may be a device or the like.
  • the electrical signal processing device may implement the foregoing method through software, hardware, or executing corresponding software through hardware.
  • the electrical signal processing device includes: a processor and a memory; the memory is used to store software instructions; and the processor is used to execute The software instructions stored in the memory, when the software instructions are executed, enable the electrical signal processing apparatus to implement the method provided in at least one of the first aspect and the second aspect.
  • the memory may be a physically independent unit, or may be integrated with the processor.
  • the electric signal processing apparatus may be the first master node provided in the fifth aspect, or may be the slave node provided in the sixth aspect.
  • the embodiment of the present application does not limit the electric signal processing apparatus.
  • an embodiment of the present application further provides a system for processing electric signals in a smart grid, including a first master node and a slave node.
  • the slave node may include the slave node in the foregoing embodiment.
  • the first master node may include The master node in the foregoing embodiment.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores program instructions, and when the program instructions are run on a computer or a processor, the computer or The processor executes the method described in at least one of the first aspect, the second aspect, the third aspect, and the fourth aspect.
  • an embodiment of the present application provides a computer program product including a program instruction, and when the program instruction runs on a computer or a processor, the computer or processor executes the first aspect, the second aspect, the first The method according to at least one of the three aspects and the fourth aspect.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a scenario of another network architecture provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a master node according to an embodiment of the present application.
  • 4a is a voltage waveform diagram of any two nodes in different station areas according to an embodiment of the present application.
  • FIG. 4b is a voltage waveform diagram of any two nodes in a same station area according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an electrical signal processing method in a smart grid according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of signaling of a method for processing electric signals in a smart grid according to an embodiment of the present application
  • FIG. 7 is a schematic flowchart of another electrical signal processing method in a smart grid according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of signaling of another method for processing electric signals in a smart grid according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a master node according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another master node according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a slave node according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another slave node according to an embodiment of the present application.
  • At least one (item) means one or more
  • “multiple” means two or more
  • “at least two (items)” means two or three And more than three, "and / or”, used to describe the association relationship of the associated objects, indicating that there can be three kinds of relationships, for example, "A and / or B” can mean: only A, only B, and both A And B, where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are an "or” relationship.
  • “At least one or more of the following” or similar expressions means any combination of these items, including any combination of single or plural items.
  • At least one (a), a, b, or c can represent: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", Where a, b, and c can be single or multiple.
  • Taiwan area in the power system, the Taiwan area can refer to (one) transformer's power supply range or area.
  • Concentrator the central management equipment and control equipment of the remote centralized meter reading system, is responsible for reading terminal data regularly, system command transmission, data communication, network management, event recording, horizontal data transmission and other functions.
  • Smart grid refers to a new type of power grid that is based on the physical power grid and integrates sensor measurement technology, communication technology, information technology, computer technology, and control technology with the physical power grid.
  • the power carrier signal when using the power carrier signal to identify the station area, if the station area covers a large area, the line path load increases with distance, the signal attenuation is serious, and the farther host and terminal cannot communicate, then the power carrier signal is used. It may not be possible to achieve full coverage of the station area. Or, when the current signal is used for station identification, in order to ensure the coverage of the signal, the current sent on the power grid may be several amperes, thereby causing pollution to the power grid.
  • the embodiments of the present application provide a method for processing electrical signals in a smart grid, which not only does not require additional equipment, but also effectively improves the accuracy of station identification.
  • the master node and the slave nodes provided in the embodiments of the present application will be described in detail below.
  • the concentrator can be used to periodically read the data of the terminal, that is, the user's electricity meter, and the concentrator can also be used to perform functions such as data communication, network management, event recording, and horizontal transmission of data.
  • the functions of data communication and network management on the concentrator side can be completed by a first module, which can be called a master node.
  • the functions of data communication and network management on the user's meter side can be completed by a second module, which can be called a slave node. That is, functions such as data communication and data processing on the concentrator side can be performed by the master node, and functions such as data communication and data processing on the terminal side (that is, the user's meter side) can be performed by the slave node.
  • each station area can be divided into a local area network, and each local area network can include a master node and a plurality of slave nodes, such as thousands of slave nodes. That is, in the process of networking, each station can be networked according to the master node.
  • the master node can be installed in the concentrator, and the slave node can be installed in the terminal following the terminal, that is, the user's electricity meter.
  • the master node can be a chip and thus integrated in the concentrator.
  • the slave node can also be a chip, so as to be integrated in the terminal.
  • FIG. 1 is a schematic diagram of a network architecture scenario provided by an embodiment of the present application.
  • two station areas are taken as an example, and one station area may include a local area network. Therefore, as shown in FIG. 1, two local area networks, that is, a network 1 and a network 2 are used as examples to describe the embodiment of the present application. Provided methods, network architecture applied.
  • each station can include a concentrator, each concentrator can be configured with a master node, and each station can include multiple terminals (that is, user meters), each terminal can be configured with one Slave node.
  • a concentrator 101 may be included in the network 1
  • a master node 102 may be integrated in the concentrator 101
  • n terminals may be included in the network 1.
  • a concentrator 201 may be included in the network 2
  • a master node 202 may be integrated in the concentrator 201
  • m terminals may be included in the network 2.
  • the master nodes in different station areas can directly communicate, and can also perform indirect communications by forwarding information from the nodes, and the like is not limited in the embodiments of the present application.
  • more stations may be included.
  • two or more stations may be included. Therefore, the embodiments of the present application further include how many stations are included, and how many stations are further included. And the number of master nodes included is not limited.
  • the master node may also exist in a separate form, that is, the master node may also be a separate device or device, etc., which is not limited in the embodiment of the present application.
  • the master node may be connected to the concentrator through a line (such as a data line), or the master node may be connected to the concentrator through other forms, such as a wireless network, and the like is not limited in the embodiment of the present application.
  • the slave node may also exist in a separate form, such as a separate device or device, etc., which are not limited in the embodiments of the present application.
  • the slave node may be connected to the terminal through a line, or the slave node may be connected to the terminal through other forms, such as a wireless network, and the like is not limited in the embodiment of the present application.
  • FIG. 2 is a schematic diagram of a scenario of another network architecture provided by an embodiment of the present application. As shown in FIG. 2, still taking two stations as an example, the master node 102 may be connected to the concentrator 101 and the slave node 103 may be connected with the terminal.
  • the master node shown in FIG. 1 and FIG. 2 may further include an acquisition chip or an acquisition module, so as to collect the master node data provided in the embodiment of the present application.
  • the slave node shown in FIG. 1 and FIG. 2 may also include a collection chip or a collection module, etc., so as to collect the slave node data provided in the embodiment of the present application.
  • the network architecture shown in FIG. 2 may further include more master nodes and a local area network corresponding to the master nodes. Therefore, the embodiment of the present application does not limit how many master nodes are specifically included.
  • the following uses the master node as an example to describe the structure of the master node and the slave node provided in the embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a master node according to an embodiment of the present application.
  • the master node may include a processor 301, a memory 302, and a transceiver 303.
  • the transceiver 303 is coupled through a connector, and the connector may include various interfaces, transmission lines, or a bus 304, which is not limited in this embodiment.
  • coupling refers to mutual connection in a specific manner, including direct connection or indirect connection through other devices, for example, connection through various interfaces, transmission lines, buses, and the like. .
  • the memory 302 may be used to store computer program instructions, including various types of computer program code including an operating system (OS) and program code for executing the scheme of the present application.
  • the memory 302 includes but is not limited to right and wrong Volatile memory at power-down, such as embedded multimedia card (EMMC), universal flash storage (UFS) or read-only memory (ROM), or can store static Other types of static storage devices for information and instructions can also be volatile memory (volatile memory), such as random access memory (RAM) or other types of dynamic storage devices that can store information and instructions , Can also be electrically erasable programmable read-only memory (electrically erasable, programmable-read-only memory (EEPROM), read-only compact disc (compact disc-read-only memory (CD-ROM)) or other optical disc storage, optical disc storage (including compact discs , Laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), disk storage media, or Other magnetic storage devices, or can be used to carry or store program code in any other computer having the form of
  • the transceiver 303 is used to receive and send data.
  • the transceiver may be used to receive data from a slave node, and the transceiver may also receive data from a master node of other master nodes, and the like, which is not limited in the embodiment of the present application.
  • the processor 301 may be one or more central processing units (CPUs). When the processor 301 is one CPU, the CPU may be a single-core CPU or a multi-core CPU. Optionally, the processor 301 may be a processor group composed of multiple processors, and the multiple processors are coupled to each other through one or more buses.
  • CPUs central processing units
  • the processor 301 may be a processor group composed of multiple processors, and the multiple processors are coupled to each other through one or more buses.
  • the processor 301 may be used to process the data of the slave node and each group of master node data, for example, it may be used to calculate the similarity between the data of the slave node and each group of master node data.
  • the processor 301 may It is used to calculate the variance, correlation coefficient and quantity product of the slave node data and each group of master node data, which are not limited in the embodiments of the present application.
  • the above is only a schematic structural diagram of a master node provided in the embodiment of the present application.
  • the master node may have more or fewer components than the parts shown, and two or more may be combined. Individual components, or different configuration implementations that can have different components, and so on.
  • FIG. 3 only shows a schematic structural diagram of a master node.
  • a structure of a slave node reference may be made to a schematic structural diagram of the master node shown in FIG. 3, which is not described in detail here.
  • FIG. 4a shows voltage waveform diagrams of any two nodes in different station areas
  • FIG. 4b shows voltage waveform diagrams of any two nodes in the same station area. For example, as shown in FIG.
  • FIG. 4a voltage waveform diagrams of the master node and the slave nodes in different station areas may be shown, or voltage waveform diagrams of the slave nodes and slave nodes in different station areas may be represented.
  • FIG. 4b may show voltage waveform diagrams of a master node and a slave node in the same station area, or voltage waveform diagrams of slave nodes and slave nodes in the same station area. From Figure 4a and Figure 4b, the similarity of any two nodes in the same station area is significantly higher than that of any two nodes in different station areas.
  • an embodiment of the present application provides a method for processing electric signals in a smart grid.
  • FIG. 5 is a schematic flowchart of an electrical signal processing method in a smart grid according to an embodiment of the present application.
  • the method for processing electrical signals in a smart grid can be applied to the master node shown in FIG. 1 and FIG. 2, and can also be applied to the master node shown in FIG. 3.
  • the master node shown in FIG. 1 and FIG. 2 may be the first master node
  • the master node shown in FIG. 3 is the first master node.
  • Electric signal processing method in smart grid As shown in FIG. 5, the electrical signal processing method in the smart grid may include:
  • a first master node acquires data of a slave node and data of a master node of at least two master nodes.
  • the master node is a node connected to the concentrator, and the slave node is a node connected to the user's electricity meter.
  • the above-mentioned slave node data is used to characterize at least one of the signal amplitude and signal frequency of the electric signal of the slave node.
  • the electrical signals of the nodes are the electrical signals used by the above-mentioned slave nodes for data communication in the smart grid; each of the at least two master nodes corresponds to a set of master node data, and each set of master node data is used to characterize the corresponding master node
  • the data of the slave node may be used to characterize the related information of the signal amplitude of the electrical signal of the slave node, or the data of the slave node may also be used to characterize the related information of the signal frequency of the electrical signal of the slave node, or the slave Node data can also be used to characterize information about the signal amplitude and signal frequency of the slave's electrical signals.
  • the electrical signal may represent a voltage or current that changes with time. It can be understood that, in the embodiments of the present application, the electrical signal may represent a voltage that changes with time. Therefore, the slave node data may specifically characterize information related to at least one of a voltage amplitude and a voltage frequency of the slave node.
  • the slave node data may include at least one of voltage data of the slave node and network clock data in the first power frequency period.
  • each of the at least two master nodes corresponds to a set of master node data, that is, the master node data of the at least two master nodes may include at least two sets of master node data, where each group The master node data corresponds to a master node.
  • the master node data of the master node includes two sets of master node data.
  • the data of each group of master nodes may be used to characterize related information of signal amplitudes of electric signals of the corresponding master nodes, or information of signal frequencies of electric signals of the corresponding master nodes, or electricity of the corresponding master nodes.
  • Information about signal amplitude and signal frequency For example, if the first master node and the second master node shown above are taken as an example, the data of the master node of the first master node may represent information related to at least one of a signal amplitude and a signal frequency of the electric signal of the first master node. .
  • each group of master nodes may also be used to characterize related information of at least one of a voltage amplitude and a voltage frequency of a corresponding master node.
  • each set of master node data may include at least one of voltage data of a corresponding master node and network clock data in a first power frequency period.
  • the embodiment of the present application provides two embodiments for obtaining data, as follows:
  • the first master node obtaining the slave node data and the master node data of at least two master nodes includes:
  • the first master node obtains voltage data of N slave nodes within a first period of time, and obtains N voltage data of master nodes of each of the at least two master nodes within the first period of time, respectively, where the N Is a positive integer greater than 1.
  • the first master node may separately calculate the similarity between the above N slave node voltage data and the N master node voltage data of each of the at least two master nodes, and the above N
  • the voltage data of the slave nodes and the corresponding slave node data and the master node voltage data of the N master node voltage data of each master node are voltage data at the same time. It can be understood that, as for how to calculate the similarity, reference may be made to the method described in the following embodiment.
  • the first duration may be set by the first master node.
  • the first duration may be set by receiving a setting instruction input by a user, or may be automatically set, which is not limited in the embodiment of the present application. And the embodiment of the present application does not limit how much the first duration specifically includes.
  • the voltage data of the N slave nodes in the first time period are the voltage data of the slave nodes obtained at the first time, the second time, ..., the Nth time, then the voltage of the N master nodes of each master node
  • the data is also the master node voltage data acquired at the first moment, the second moment, ..., the Nth moment.
  • the first time, the second time, ..., the Nth time may be the N-division time within the first time period (that is, the time interval of each time is the same), or it may not be within the first time period.
  • the time of N equal division is not limited in the embodiment of the present application.
  • the first master node obtaining the slave node data and the master node data of at least two master nodes includes:
  • the first master node obtains the slave node voltage data at N reference times, where each reference moment obtains one slave node voltage data, and the N is a positive integer greater than 1;
  • the first master node calculates the voltage data of the slave nodes at the N reference moments and the voltage data of the master node at the N reference moments of each of the at least two master nodes. Similarity; wherein the slave node voltage data at the N reference moments and the master node voltage data at the N reference moments of each master node correspond to the slave node voltage data and the master node voltage data at the same time.
  • Similarity wherein the slave node voltage data at the N reference moments and the master node voltage data at the N reference moments of each master node correspond to the slave node voltage data and the master node voltage data at the same time.
  • the network clock synchronization method can be as follows:
  • Scenario 1 network clock synchronization method between first master node and slave node
  • a slave node may preferentially access a master node that is close to the slave node according to the distance position.
  • the slave node accesses the master node (including the first master node)
  • the network clock synchronization operation is performed.
  • the master node accessed by the slave node may be the master node corresponding to the slave node, that is, the master node and the slave node may belong to the same station area. Alternatively, the master node and the slave node may not belong to the same station area.
  • the method for synchronizing the network clock of the slave node with the first master node if the clock in the first master node or the slave node is generated by a crystal oscillator (referred to as a crystal oscillator), there is a certain deviation in the frequency between different crystal oscillators .
  • a crystal oscillator drives a counter, and the counter accumulates 1 (that is, accumulates a number).
  • the counter deviation between the counter of the first master node and the slave node includes 2 parts: 1 is the frequency deviation. Different crystals have small deviations in frequency. For example, One million cycles differ by dozens of cycles; 2 is the phase deviation, and the initial counting deviation will occur at different power-on times. Over time, the frequency deviation will gradually accumulate and generate counter deviations. The initial counting deviation and the counter caused by the frequency deviation The deviations add up to form a phase deviation.
  • the frequency offset can be obtained by the following formula:
  • phase deviation can be calculated by the following formula:
  • the slave node can estimate the value of the slave node counter when the first master node counter is at a certain value, thereby achieving clock synchronization.
  • Scenario 2 a network clock synchronization method between a first master node and each of the at least two master nodes except the first master node,
  • the method for synchronizing the network clock between the first master node and the second master node can refer to the network clock between the master node and the slave node described in scenario 1.
  • the synchronization method is not detailed here one by one.
  • the voltage data may be understood as voltage-related data.
  • the voltage data may include a voltage value and the like, which are not limited in the embodiment of the present application.
  • the acquiring, by the first master node, the slave node data and the master node data of at least two master nodes includes:
  • the network clock data of the corresponding slave node and the network clock data of the master node are network clock data at the same voltage point.
  • each master node and the slave node can collect network clock data at the same voltage point in the same power frequency cycle.
  • the master node network clock data and the slave node network clock data of each master node are obtained.
  • the master node and the slave node may also collect through a voltage detection circuit, thereby realizing sampling of any voltage point on the power line. Or you can also use an analog-to-digital conversion chip to sample any voltage point on the power line. It can be understood that when using the voltage detection circuit to collect voltage data, all detected voltage values can be set to be the same, and for the analog-to-digital conversion chip, the sampling frequency can be set to be the same.
  • the above N may be taken as 1000; or the above may also be taken as 3000.
  • the N may be 1000 different moments, or 3000 different moments, and the N may also be 1000 different voltage points, or 3000 different voltage points, and so on.
  • the accuracy of station identification may be higher, but when N is 1000, the calculation amount is smaller and accurate station identification results can also be obtained. It can be understood that the specific value of the N is not uniquely limited in the embodiments of the present application.
  • an embodiment of the present application further provides a method for when each master node or a slave node collects data.
  • the foregoing method further includes:
  • the first master node broadcasts a station identification instruction, and the station identification instruction includes the first duration or the N reference times.
  • the first master node belongs to the master node among the at least two master nodes. Therefore, the embodiment of the present application does not limit which master node among the at least two master nodes.
  • the broadcast station area identification instruction may be broadcast.
  • the first master node may directly receive network messages from other master nodes, thereby determining network messages of other master nodes and network messages of the first master node.
  • the first master node may also receive network packets of other master nodes from other slave nodes, and the like is not limited in the embodiment of the present application.
  • the first master node After the first master node determines the network packets of at least two master nodes, the first master node can broadcast the station area identification instruction, so that slave nodes collect slave node data and the at least two master nodes collect master node data. Furthermore, the slave node may send the collected slave node data to the first master node, and other master nodes may also send the collected master node data to the first master node.
  • the first master node determines the similarity between the slave node data and the master node data of each master node, and determines the master node data with the highest similarity to the slave node data.
  • the similarity is used to indicate a degree of similarity between the electrical signal of the slave node and the electrical signal of the corresponding master node. After obtaining the slave node data and each group of master node data, the similarity between the slave node data and each group of master node data can be calculated, so as to determine the master node data with the highest similarity to the slave node data.
  • the embodiment of the present application provides three ways to obtain the similarity between the data of the slave nodes and the data of each group of master nodes, as follows:
  • the determining, by the first master node, the similarity between the slave node data and the master node data of each master node, and determining the master node data with the highest similarity to the slave node data includes:
  • the first master node determines a similarity between the slave node data and the master node data of each master node according to a variance value of the slave node data and the master node data of each master node, and determines the slave node data and the slave node data.
  • the master node data with the smallest variance value is used as the master node data with the highest similarity to the above-mentioned slave node data.
  • n slave data and two sets of n master node data are obtained respectively, and the slave node data of the slave nodes are x 1 , x 2 , ..., x n .
  • At least two master nodes are assumed to include two master nodes as A master node and a second master node, and the master node data of the first master node are y 11 , y 12 , ..., y 1n , and the master node data of the second master node are y 21 , y 22 , ..., y 2n .
  • the first master node and the second master node are only examples, and the specific names of the two master nodes are not limited in the embodiment of the present application.
  • the following method can be used to calculate the variance value of the slave node data and each group of master node data:
  • d 11 x 1 -y 11
  • d 12 x 2 -y 12
  • d 1n x n -y 1n ;
  • d 21 x 1 -y 21
  • d 22 x 2 -y 22
  • ..., d 2n x n -y 2n ;
  • the first master node determines the similarity between the slave node data and the master node data of each master node, and determines the master node data with the highest similarity to the slave node data, including:
  • the first master node determines a similarity between the slave node data and the master node data of each master node according to a correlation coefficient between the slave node data and the master node data of each master node, and determines a correlation with the slave node data.
  • the master node data with the largest coefficient is the master node data with the highest similarity to the above-mentioned slave node data.
  • the slave node slave data is x 1 , x 2 , ..., x n respectively .
  • At least two master nodes are assumed to include two master nodes.
  • the first master node and the second master node, and the master node data of the first master node are y 11 , y 12 , ..., y 1n
  • the master node data of the second master node are y 21 , y 22 , ..., y 2n .
  • the correlation coefficient between the data of the slave nodes and the data of each group of master nodes can be calculated by the following formula:
  • the determining, by the first master node, the similarity between the slave node data and the master node data of each master node, and determining the master node data with the highest similarity to the slave node data includes:
  • the first master node determines the similarity between the slave node data and the master node data of each master node according to a product of the quantity of the slave node data and the master node data of each master node, and determines the quantity of data with the slave node data.
  • the master node data with the largest product is used as the master node data with the highest similarity to the above-mentioned slave node data.
  • the quantity product of the slave node data and each group of master node data may also be referred to as the dot product, inner product, or vector product of the slave node data and each group of master node data.
  • the name of the quantity product is not limited.
  • the slave node slave data is x 1 , x 2 , ..., x n respectively .
  • At least two master nodes are assumed to include two master nodes.
  • the first master node and the second master node, and the master node data of the first master node are y 11 , y 12 , ..., y 1n
  • the master node data of the second master node are y 21 , y 22 , ..., y 2n .
  • a station area may include multiple slave nodes, and if multiple slave nodes are included, The station area can be identified by the method for processing electric signals in a smart grid provided by the embodiments of the present application. Therefore, a slave node shown in the embodiment of the present application should not be construed as limiting the embodiment of the present application.
  • the first master node confirms that the master node corresponding to the master node data with the highest similarity and the slave node belong to the same station area.
  • the master node corresponding to the master node data with the highest similarity to the slave node data determined from at least two master nodes is confirmed to belong to the same station area as the slave node, or the similarity may also be expressed
  • the master node corresponding to the highest master node data is in the same LAN as the slave node.
  • the first master node When the first master node confirms that the master node corresponding to the master node data with the highest similarity is the first master node, the first master node performs data communication with the slave node.
  • the first master node after the first master node obtains the master node data with the highest similarity to the slave node data, the first master node can confirm that the master node and the slave node corresponding to the master node data with the highest similarity belong to the same node. A station area. Therefore, when the master node corresponding to the master node data with the highest similarity is the first master node, the first master node can perform data communication with the slave node. For example, the first master node can continue to maintain a data connection or a network connection with the slave node.
  • the content of data communication between the first master node and the slave node is not limited in the embodiment of the present application. For example, data transmission can be performed, or signaling interaction can also be performed.
  • the first master node When the first master node confirms that the master node corresponding to the master node data with the highest similarity is a second master node, the first master node sends an instruction instruction to the slave node, and the instruction instruction is used to instruct the slave node. Perform data communication with the second master node.
  • the first master node can send an instruction instruction to the slave node to instruct the slave node to perform data communication with the second master node.
  • the first master node may also disconnect the network connection with the slave node, or the first master node may also remove the slave node from the network where the first master node is located, and so on.
  • the similarity between the slave node data and each group of master node data is compared to obtain the similarity between the slave node and the corresponding master node, and then the master node data with the highest similarity to the slave node data is determined. After that, it can be determined that the master node corresponding to the master node data with the highest similarity and the slave node belong to the same station area. Using the characteristics of the power line's own signals in the station area to realize the identification of the master node and the slave nodes, without the need to add additional equipment, reducing the cost of the identification of the station area.
  • the signal characteristics of the power line itself in the station area are not subject to common ground,
  • the influence of factors such as common cable trench and common high voltage improves the accuracy of the identification of the station area; and the method for identifying the station area in the embodiment of the present application can cover the entire station area without being affected by the size of the station area.
  • FIG. 6 is a schematic diagram of a signaling flow of a method for processing electric signals in a smart grid according to an embodiment of the present application.
  • a current master node performs similarity calculation
  • a slave node The data is the voltage data of the slave nodes at the N reference moments
  • each set of master node data is the voltage data of the corresponding master node at the N reference moments as an example.
  • two master nodes including the current master node and other master nodes
  • one slave node are used as an example to describe the information processing method in the current network.
  • the electrical signal processing method in the smart grid may include:
  • the first master node determines that there are master nodes of other networks.
  • the first master node can receive network packets from other networks, it is confirmed that there are other networks around the first master node. It should be understood that the network packet carries an identifier, which is used to distinguish the network. The network to which the packet belongs. For example, if the first master node belongs to the first network and the second master node belongs to the second network, the network packets sent by the first master node and the second master node are different. When there are two or more networks, a station area is required. Identify.
  • the first master node may directly receive the network message sent by the second master node, thereby discovering the master node of other networks, and the first master node may also receive the network message sent by the second master node through the slave node, that is, Discover the master nodes of other networks through the transit nodes.
  • the first master node broadcasts a notification message, where the notification message includes N reference times, and the N reference times are times when data is collected by each node.
  • the time of broadcasting the notification message needs to be before the time of data collection (that is, N reference times), and there must be a certain time interval between the time of broadcasting the notification message and the time of starting data collection, so that the first master
  • the slave nodes of the network where the node is located and other nodes that can communicate can receive the notification message, and the nodes that can communicate include nodes of other networks.
  • the nodes of other networks forward the notification message to the master node of the network.
  • Each network node performs data collection according to the time indicated in the notification message.
  • the first master node collects the master node data of the first master node at the indicated time
  • each slave node collects the slave node data at the indicated time
  • the second master node collects the master node of the second master node at the indicated time. Data, and so on, it should be understood that all network nodes need to ensure that they are collected at the same time and the collection length is the same.
  • the second master node After the data collection is completed by each network node, the second master node sends the master node data of the second master node to the first master node through the intermediate node across the network.
  • the second master node may send the master node data of the second master node to the first master node through an intermediate node across the network, or the second master node may directly send the second master node
  • the master node data is sent to the first master node and so on, which is not limited in the embodiment of the present application.
  • the first master node queries the slave nodes of the network for data.
  • the first master node may query the slave node data of the slave node from the slave node in the network.
  • the first master node determines a station identification result of a slave node of the network.
  • the first master node can calculate the similarity between the slave node of the network and the second master node, and the slave node of the network and the first master node.
  • the slave node and the master node with the highest similarity are determined to belong to the same station area.
  • FIG. 5 For a specific method, refer to the method shown in FIG. 5, which will not be described in detail here.
  • the first master node by determining the station area identification result of the slave node, the first master node can be determined whether the slave node belongs to the same station area as the first master node. For example, if the first master node determines that the slave node belongs to the same station area, the first master node may inform the slave node that the slave node belongs to the same station area by sending an instruction to the slave node. . For another example, if the first master node determines that the slave node does not belong to the same station area, the first master node may notify the slave node that the slave node does not belong to the same station by sending an instruction to the slave node.
  • the slave node can automatically leave the first master node that is connected but does not belong to the same station area.
  • the first master node can also notify the slave node which master node belongs to the same station area by sending an instruction to the slave node, so that the slave node can also send a message to the master node that belongs to the same station area as the slave node.
  • a node initiates a network access application, etc. The embodiment of the present application does not limit the operations performed by the master node after learning the master node that matches the slave node.
  • FIG. 7 is a schematic flowchart of another electrical signal processing method in a smart grid according to an embodiment of the present application.
  • the electrical signal processing method in the smart grid can be applied to the slave nodes shown in FIG. 1 and FIG. 2.
  • the electrical signal processing method in the smart grid may include:
  • a slave node obtains slave node data and master node data of at least two master nodes.
  • the master node is a node connected to the concentrator, the slave node is a node connected to the user's meter, and the slave node data is used to characterize at least one of the signal amplitude and signal frequency of the slave node's electrical signal.
  • the electrical signals of the slave nodes are the electrical signals used by the slave nodes for data communication in the smart grid; each of the at least two master nodes corresponds to a set of master node data, and each set of master node data is used to characterize the corresponding master node.
  • Related information of at least one of a signal amplitude and a signal frequency of the electrical signal of the node, and the electrical signal of the corresponding primary node is an electrical signal used by the corresponding primary node for data communication in the smart grid.
  • the data of the slave node includes at least one of the voltage data of the slave node and network clock data in the second power frequency period; and the data of each group of the master node includes the voltage data of the corresponding master node and the At least one of the network clock data in the second power frequency period.
  • the obtaining of the slave node data and the master node data of at least two master nodes by the slave nodes includes:
  • the slave node obtains the voltage data of the M slave nodes within the second time period, and obtains the voltage data of the M master nodes of each of the at least two master nodes within the second time period, where M is greater than A positive integer of 1.
  • the slave node may separately calculate the similarity between the above M slave node voltage data and the M master node voltage data of each of the at least two master nodes, and the above M slave nodes
  • the node voltage data and the corresponding slave node data and the master node voltage data in the M master node voltage data of each master node are voltage data at the same time.
  • the obtaining of the slave node data and the master node data of at least two master nodes by the slave nodes includes:
  • the above slave node obtains the slave node voltage data at M reference times, wherein each reference moment obtains one slave node voltage data, and the above M is a positive integer greater than 1;
  • the above-mentioned slave nodes respectively calculate the similarity between the voltage data of the slave nodes at the M reference moments and the voltage data of the master node at the M reference moments of each of the at least two master nodes.
  • the voltage data of the slave nodes corresponding to the voltage data of the slave nodes at the M reference times and the voltage data of the master nodes of the M reference times of each master node are voltage data at the same time as the voltage data of the master node.
  • the network clock synchronization has been performed between the slave node and each master node. And each of the at least two master nodes also performs network clock synchronization. It can be understood that, for the method for synchronizing the network clock, reference may be made to the embodiment shown in FIG. 5, which will not be detailed one by one here.
  • the obtaining of the slave node data and the master node data of at least two master nodes by the slave nodes includes:
  • the slave node network clock data of M voltage points in the second power frequency period and the master node network clock data of M voltage points in the second power frequency period correspond to
  • the slave node network clock data and the master node network clock data are network clock data at the same voltage point.
  • the above M may be taken as 1000; or the above may be taken as 3000.
  • the embodiment of the present application also provides a method for when to collect data from a node, as follows:
  • the slave node receives the station identification instruction, and the station identification instruction includes the second time duration or each reference time of the M.
  • the slave node can receive network packets from each of the at least two master nodes respectively, and thus the slave node can determine that there is more than one local area network in the surroundings. Further, the slave node may also send the received network packet to a master node connected to the slave node (that is, a master node among at least two master nodes such as a first master node), so that the first master node
  • the broadcast station area identification instruction further causes the slave node to obtain slave node data and master node data.
  • each of the at least two master nodes may send a network coordination frame at intervals, and the network coordination frame may carry time coordination information.
  • the network coordination frame carrying the time coordination information can be understood as a network message received from a node. It can be understood that the network coordination frame is a form of a network message provided in the embodiment of the present application, but it should not be construed as limiting the embodiment of the present application.
  • the slave node can also receive the station identification instruction broadcast by the first master node.
  • the station identification instruction may include a second duration or M reference times. For example, after the second master node of the at least two master nodes (a master node other than the first master node among the at least two master nodes) receives the station identification instruction, it may be based on the station identification instruction. Collect the master node voltage data for the second duration or M reference moments included, or collect the master node network clock data according to the second power frequency period and M voltage points included in the station identification instruction.
  • the slave node can collect the slave node voltage data according to the second duration or M reference times included in the station identification instruction, or according to the station identification instruction The second power frequency period and M voltage points included in the data are collected from the node network clock data.
  • the master node data may be sent to the first master node first, and then the first master node broadcasts the master node data of the second master node and the first master node.
  • the master node data so that the slave node obtains the master node data of each of the at least two master nodes.
  • the second master node may also directly broadcast the master node data of the second master node; and after the first master node collects the master node data, the first master node The master node directly broadcasts the master node data of the first master node. Therefore, after the slave node obtains the master node data of the second master node and the master node data of the first master node, the method provided in the embodiment of the present application can be executed.
  • the slave node determines the similarity between the slave node data and the master node data of each master node, and determines the master node data with the highest similarity to the slave node data.
  • the method for calculating the similarity between the data of the slave node and the data of the master node of each master node can refer to the implementation manner shown in FIG. 5, which will not be detailed one by one here.
  • the slave node confirms that the master node corresponding to the master node data with the highest similarity and the slave node belong to the same station area.
  • the slave node performs data communication with the master node corresponding to the master node data with the highest similarity.
  • FIG. 7 and FIG. 5 have different focuses, and the implementation manners not described in detail in FIG. 7 may correspond to the implementation manners shown in FIG. 5, which are not described in detail here.
  • FIG. 8 is a schematic diagram of a signaling flow of another method for processing electric signals in a smart grid according to an embodiment of the present application.
  • the method for processing electric signals in a smart grid can be applied to a slave node, and the slave node data is used as a slave Slave voltage data of a node at M reference times, and each set of master node data is the master node voltage data of the corresponding master node at M reference times as an example.
  • an information processing method is described by using two master nodes (for example, including a first master node and a second master node) and a slave node in the current network as an example.
  • the actual situation may have a larger number of master nodes.
  • slave nodes, the number of master nodes and slave nodes is not limited in the embodiment of the present application.
  • the electric signal processing method in the smart grid may include:
  • the first master node determines that there are master nodes in other networks.
  • step 801 For a specific implementation manner of step 801, reference may be made to the method shown in FIG. 6, and details are not described here one by one.
  • step 801 it may also be performed by a slave node, for example, the slave node of the first master node determines that there are master nodes of other networks.
  • the slave node of the local network may send a notification to the first master node, that is, notify that there are two networks around the first master node.
  • the first master node performs step 802.
  • the first master node broadcasts a notification message, where the notification message includes M reference times, and the M reference times are times when data is collected by each node.
  • Each network node performs data collection according to the time indicated in the notification message.
  • the second master node After the data collection is completed by each network node, the second master node sends the master node data of the second master node to the first master node through the intermediate node across the network.
  • the first master node broadcasts the master node data of the first master node and the master node data of the second master node to the slave nodes of the network.
  • the slave node of this network calculates the similarity between the slave node data and the master node data of each master node, and obtains the station identification result according to the similarity result.
  • the slave node after the slave node determines the identification result of the station area, if the slave node determines that the first master node and the slave node do not belong to the same station area, the slave node can avoid the first master node, or The slave node disconnects from the first master node.
  • the slave node may also send an application instruction to the master node that belongs to the same station area as the slave node, and the application instruction may be used to apply to join the network where the master node belongs to the same station area.
  • the slave node when the slave node determines that the first master node and the slave node belong to the same station area, the slave node can maintain a connection with the first master node, or the slave node can also send to the first master node Instruct the instruction so that the first master node knows that the slave node and the first master node belong to the same station area.
  • the embodiment of the present application does not limit the operation after the slave node obtains a master node matching the slave node.
  • FIG. 6 and FIG. 8 respectively show different scenarios. In the embodiment of the present application, whether the first master node and the second master node shown in FIG. 8 are different from the first master node and the second master node shown in FIG. 6.
  • the same master node is not limited.
  • FIG. 9 is a schematic structural diagram of a master node provided by an embodiment of the present application.
  • the master node may be used to execute the electrical signal processing method in the smart grid shown in FIGS. 5 and 6.
  • the master node can include:
  • An obtaining unit 901 is configured to obtain slave node data and master node data of at least two master nodes; wherein the master node is a node connected to the concentrator and the slave node is a node connected to a user's electricity meter, and the above slave node data is used for characterization Related information of at least one of the signal amplitude and the signal frequency of the electrical signal of the slave node, the electrical signal of the slave node is an electrical signal used by the slave node for data communication in the smart grid; each of the at least two master nodes The master node corresponds to a set of master node data, and each set of master node data is used to characterize related information of at least one of a signal amplitude and a signal frequency of an electric signal of the corresponding master node. The electric signals of the corresponding master nodes are the corresponding ones. Electrical signals used by the master node for data communication in the smart grid;
  • a determining unit 902 is configured to determine the similarity between the slave node data and the master node data of each master node, and also determine the master node data with the highest similarity to the slave node data, and the similarity is used to indicate the slave node.
  • a confirmation unit 903 configured to confirm that the master node corresponding to the master node data with the highest similarity and the slave node belong to the same station area;
  • a data communication unit 904 configured to perform data communication with the slave node when the confirmation unit confirms that the master node corresponding to the master node data with the highest similarity is the first master node;
  • a sending unit 905 is configured to send an instruction instruction to the slave node when the confirmation unit confirms that the master node corresponding to the master node data with the highest similarity is the second master node, and the instruction instruction is used to instruct the slave node and the third node.
  • the two master nodes perform data communication.
  • the data of the slave node includes at least one of the voltage data of the slave node and the network clock data in the first power frequency period; each group of the master node data includes the voltage data of the corresponding master node and the At least one of the network clock data in the first power frequency period.
  • the obtaining unit 901 is specifically configured to obtain voltage data of N slave nodes in the first time period, and to obtain voltages of N master nodes of each of the at least two master nodes in the first time period. Data; where N is a positive integer greater than 1;
  • the determining unit 902 is specifically configured to calculate similarities between the voltage data of the N slave nodes and the voltage data of the N master nodes of each of the at least two master nodes, where the voltage data of the N slave nodes and The corresponding slave node voltage data and the master node voltage data among the N master node voltage data of each master node are voltage data at the same time.
  • the obtaining unit 901 is specifically configured to obtain slave node voltage data at N reference times, where each reference moment acquires one slave node voltage data, and the N is a positive integer greater than 1; and the at least two Master node voltage data of each master node at the above N reference moments;
  • the determining unit 902 is specifically configured to respectively calculate similarities between the voltage data of the slave nodes at the N reference moments and the voltage data of the master node at the N reference moments of each of the at least two master nodes;
  • the voltage data of the slave nodes at the N reference moments and the voltage data of the master node at the N reference moments of each master node are voltage data at the same time as the voltage data of the master node.
  • the obtaining unit 901 is specifically configured to obtain slave node network clock data of N voltage points in the first power frequency period, where N is a positive integer greater than 1; and obtaining at least two master nodes respectively Clock data of the master node at the N voltage points of each master node in the first power frequency period;
  • the determining unit 902 is specifically configured to determine a group of master node data with the highest similarity to the clock data of the slave node network at the N voltage points; wherein, the slave node network at the N voltage points in the first power frequency period Among the clock data and the master node network clock data at N voltage points in the first power frequency period, the corresponding slave node network clock data and the master node network clock data are network clock data at the same voltage point.
  • the above N is taken as 1000; or the above N is taken as 3000.
  • the determining unit 902 is specifically configured to determine a similarity between the slave node data and the master node data of each master node according to a variance value of the slave node data and the master node data of each master node, and Determining the master node data with the smallest variance value from the above slave node data as the master node data with the highest similarity to the above slave node data;
  • the determining unit 902 is specifically configured to determine a similarity between the slave node data and the master node data of each master node according to a quantity product of the slave node data and the master node data of each master node, and determine The master node data with the largest product volume of the slave node data is used as the master node data with the highest similarity to the slave node data;
  • the determining unit 902 is specifically configured to determine the similarity between the slave node data and the master node data of each master node according to the correlation coefficient between the slave node data and the master node data of each master node, and determine the The master node data with the largest correlation coefficient of the slave node data is used as the master node data with the highest similarity to the slave node data.
  • the master node may also be referred to as a first master node.
  • the first master node may further include:
  • the network clock synchronization unit 906 is configured to perform network clock synchronization with the slave node, and perform network clock synchronization with each of the at least two master nodes except the first master node.
  • the first master node may further include:
  • the broadcasting unit 907 is configured to broadcast a station identification instruction, where the station identification instruction includes the first duration or the N reference times.
  • each unit may also correspond to the corresponding description of the method embodiments shown in FIG. 5 to FIG. 6.
  • the processor shown in FIG. 3 may also be used to execute functions performed by the obtaining unit, the determining unit, the confirming unit, and the network clock synchronization unit.
  • the transceiver shown in FIG. 3 can also be used to perform functions performed by the sending unit and the broadcasting unit. And the functions performed by the data communication unit can be executed by the processor or the transceiver, etc., which are not limited in the embodiments of the present application.
  • each of the first master node, the second master node, and at least two master nodes mentioned in this application may be the master node in FIG. 9 or FIG. 10.
  • FIG. 11 is a schematic structural diagram of a slave node provided by an embodiment of the present application.
  • the slave node may be used to execute the methods shown in FIG. 7 and FIG. 8.
  • the slave node includes:
  • the obtaining unit 1101 is configured to obtain slave node data and master node data of at least two master nodes.
  • the master node is a node connected to the concentrator, and the slave node is a node connected to a user's electricity meter.
  • the slave node data is used for Characteristic information related to at least one of a signal amplitude and a signal frequency of the electrical signal of the slave node, and the electrical signal of the slave node is an electrical signal used by the slave node for data communication in a smart grid; among the at least two master nodes, Each master node corresponds to a set of master node data, and each set of master node data is used to characterize related information of at least one of a signal amplitude and a signal frequency of an electric signal of the corresponding master node, and the electric signal of the corresponding master node is the above The electrical signal used by the corresponding master node for data communication in the smart grid;
  • a determining unit 1102 configured to determine the similarity between the above-mentioned slave node data and the master node data of each master node;
  • the determining unit 1102 is further configured to determine master node data with the highest similarity to the slave node data;
  • a confirmation unit 1103, configured to confirm that the master node corresponding to the master node data with the highest similarity and the slave node belong to the same station area;
  • the data communication unit 1104 is configured to perform data communication with the master node corresponding to the master node data with the highest similarity.
  • the slave node data includes at least one of the voltage data of the slave node and the network clock data in the second power frequency period;
  • Each group of the master node data includes at least one of the voltage data of the corresponding master node and the network clock data in the second power frequency period.
  • the obtaining unit 1101 is specifically configured to obtain voltage data of M slave nodes in the second time period, and to obtain M master nodes of each of the at least two master nodes in the second time period, respectively. Voltage data; where M is a positive integer greater than 1;
  • the determining unit 1102 is specifically configured to calculate similarities between the voltage data of the M slave nodes and the voltage data of the M master nodes of each of the at least two master nodes respectively, where the voltage data of the M slave nodes and The corresponding slave node voltage data and the master node voltage data among the M master node voltage data of each master node are voltage data at the same time.
  • the above-mentioned obtaining unit 1101 is specifically configured to obtain slave node voltage data at M reference times, where each reference moment obtains one slave node voltage data, and the M is a positive integer greater than 1; Voltage data of the master node of each of the two master nodes at the above M reference times;
  • the determining unit 1102 is specifically configured to calculate similarities between the voltage data of the slave nodes at the M reference moments and the voltage data of the master node at the M reference moments of each of the at least two master nodes;
  • the voltage data of the slave nodes at the M reference times and the voltage data of the master nodes corresponding to the data of the master nodes at the M reference times of each master node are voltage data at the same time.
  • the obtaining unit 1101 is specifically configured to obtain slave node network clock data of M voltage points in the first power frequency period, where M is a positive integer greater than 1, and each of the at least two master nodes is obtained.
  • the determining unit 1102 is specifically configured to determine a group of master node data with the highest similarity to the clock data of the slave node network at the M voltage points; wherein, the slave node network at the M voltage points in the first power frequency period Among the clock data and the master node network clock data of M voltage points in the first power frequency period, the corresponding slave node network clock data and the master node network clock data are network clock data at the same voltage point.
  • M is taken as 1000; or M is taken as 3000.
  • the determining unit 1102 is specifically configured to determine the similarity between the slave node data and the master node data of each master node according to the variance value of the slave node data and the master node data of each master node, and Determining the master node data with the smallest variance value from the above slave node data as the master node data with the highest similarity to the above slave node data;
  • the determining unit 1102 is specifically configured to determine a similarity between the slave node data and the master node data of each master node according to a quantity product of the slave node data and the master node data of each master node, and determine The master node data with the largest product volume of the slave node data is used as the master node data with the highest similarity to the slave node data;
  • the determining unit 1102 is specifically configured to determine the similarity between the slave node data and the master node data of each master node according to the correlation coefficient between the slave node data and the master node data of each master node, and determine the The master node data with the largest correlation coefficient of the slave node data is used as the master node data with the highest similarity to the slave node data.
  • the slave node further includes:
  • the network clock synchronization unit 1105 is configured to perform network clock synchronization with each of the at least two master nodes.
  • the slave node further includes:
  • the receiving unit 1106 is configured to receive a station identification instruction, where the station identification instruction includes the second duration or the M reference times.
  • An embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the method processes shown in FIG. 5 to FIG. 8 are implemented.
  • the embodiment of the present application further provides a computer program product.
  • the computer program product runs on an electric signal processing device, the method flows shown in FIG. 5 to FIG. 8 are implemented.
  • the processes may be completed by a computer program instructing related hardware.
  • the program may be stored in a computer-readable storage medium.
  • When the program is executed, Can include the processes of the method embodiments described above.
  • the foregoing storage media include: ROM or random storage memory RAM, magnetic disks, or optical discs, which can store various program code media.

Abstract

一种智能电网中电信号处理方法及装置,该方法包括:第一主节点获取从节点数据和至少两个主节点的主节点数据(501);该第一主节点确定该从节点数据与每个主节点的主节点数据的相似度以及确定与该从节点数据相似度最高的主节点数据(502);该第一主节点将该相似度最高的主节点数据对应的主节点与该从节点确认为属于同一个台区(503);当该第一主节点确认该相似度最高的主节点数据对应的主节点为该第一主节点时,该第一主节点与该从节点进行数据通信(504);当该第一主节点确认该相似度最高的主节点数据对应的主节点为第二主节点时,该第一主节点向该从节点发送指示指令(505);还提供了对应的装置,可有效提高台区识别的准确度。

Description

智能电网中电信号处理方法及装置 技术领域
本申请涉及智能电网技术领域,尤其涉及一种智能电网中电信号处理方法及装置。
背景技术
在一个供电地区内,电能通过电力网的输电、变电和配电等各个环节供给用户。在电能的输送和分配过程中,电力网的各个元件都要产生一定数量的有功功率损耗和电能损耗。线损电量通常是根据电能表所计量的总“供电量”和总“售电量”相减得出。在低压供电领域,台区内的“供电量”可以由供电公司的计量设备直接得出。而“售电量”则需要根据台区划分结果统计得出,也就是说,台区划分是否准确,直接决定了“售电量”的准确性。其中,电力系统中,台区可指(一台)变压器的供电范围或区域。
现有技术一般通过以下两种方式来进行台区识别:方式一、采用频移键控(frequency shift keying,FSK)或正交频分复用(orthogonal frequency division multiplexing,OFDM)等电力载波信号,通过接收端是否能够接收到该电力载波信号来判断该接收端是否属于该台区。方式二、采用电流信号,通过接收端是否能够接收到该电流信号来判断该接收端是否属于该台区。具体的,在采用上述电力载波信号或上述电流信号进行台区识别时,一般通过主机和手持终端来实现。现有技术中台区识别的方案需要增加额外的设备,对人力和物力都有较大花费,且由于载波信号或电流信号的质量还会影响台区识别的准确度。
如何降低台区识别的成本、提高台区识别的准确度亟待解决。
发明内容
本申请公开了一种智能电网中电信号处理方法及装置,能够有效降低台区识别的成本并提高台区识别的准确度。
第一方面,本申请实施例提供了一种智能电网中电信号处理方法,包括:
第一主节点获取从节点数据和至少两个主节点的主节点数据;其中,主节点为与集中器连接的节点,从节点为与用户电表连接的节点,所述从节点数据用于表征所述从节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述从节点的电信号为所述从节点在智能电网中用于数据通信的电信号;所述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述对应的主节点的电信号为所述对应的主节点在所述智能电网中用于数据通信的电信号;所述第一主节点确定所述从节点数据与每个主节点的主节点数据的相似度;所述第一主节点确定与所述从节点数据相似度最高的主节点数据;所述第一主节点将所述相似度最高的主节点数据对应的主节点与所述从节点确认为属于同一个台区;当所述第一主节点确认所述相似度最高的主节点数据对应的主节点为所述第一主节点时,所述第一主节点与所述从节点进行数据通信;当所述第一主节点确认所述相似度最高的主节点数据对 应的主节点为第二主节点时,所述第一主节点向所述从节点发送指示指令,所述指示指令用于指示所述从节点与所述第二主节点进行数据通信。
本申请实施例中,第一主节点通过比较从节点数据与每组主节点数据的相似度,来得到从节点与对应的主节点的相似度,从而在确定与该从节点数据相似度最高的主节点数据之后,便可确定该相似度最高的主节点数据对应的主节点与该从节点属于同一个台区。进而可在该相似度最高的主节点数据对应的主节点为该第一主节点时,与从节点进行数据通信,而在确认该相似度最高的主节点数据对应的主节点为第二主节点时,向从节点发送指示指令,以使得该从节点可与第二主节点进行数据通信。实施本申请实施例,利用台区内电力线自身信号的特性实现主节点与从节点的台区识别,无需增加额外的设备,降低了台区识别的成本,进一步的,由于台区内电力线自身信号特性不受共地、共电缆沟、共高压等因素的影响,提高了台区识别的准确度;且本申请实施例中的台区识别方法可以做到全台区覆盖,不受台区大小的影响。
在一种可能的实现方式中,所述从节点数据包括所述从节点的电压数据和在第一工频周期内的网络时钟数据中的至少一项;所述每组主节点数据包括所述对应的主节点的电压数据和在所述第一工频周期内的网络时钟数据中的至少一项。
在一种可能的实现方式中,所述第一主节点获取从节点数据和至少两个主节点的主节点数据,包括:所述第一主节点获取第一时长内的N个从节点电压数据,所述N为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述第一时长内的N个主节点电压数据;所述第一主节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:所述第一主节点分别计算所述N个从节点电压数据与所述至少两个主节点中每个主节点的N个主节点电压数据的相似度,其中,所述N个从节点电压数据与所述每个主节点的N个主节点电压数据中对应的从节点电压数据和主节点电压数据为同一时刻的电压数据。
本申请实施例中,从节点在采集从节点数据,以及每个主节点在采集对应的主节点数据的情况下,可以分别在第一时长内采集N个从节点电压数据和每个主节点的N个主节点电压数据。如可以将该第一时长划分为N个时长,从而从节点来采集从节点数据,主节点采集对应的主节点数据等。可理解,在计算从节点数据与每个主节点的主节点数据的相似度时,该N个从节点电压数据与每个主节点的N个主节点电压数据具有对应关系。实施本申请实施例,通过保证从节点数据与对应的主节点数据为同一时刻的电压数据,从而提高确定相似度的准确度,进而提高台区识别的准确度。
在一种可能的实现方式中,所述第一主节点获取从节点数据和至少两个主节点的主节点数据,包括:所述第一主节点获取N个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,所述N为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述N个参考时刻的主节点电压数据;所述第一主节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:所述第一主节点分别计算所述N个参考时刻的从节点电压数据与所述至少两个主节点中每个主节点的所述N个参考时刻的主节点电压数据的相似度;其中,所述N个参考时刻的从节点电压数据与每个主节点的N个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
在一种可能的实现方式中,所述第一主节点获取从节点数据和至少两个主节点的主节 点数据,包括:所述第一主节点获取在所述第一工频周期内N个电压点的从节点网络时钟数据,所述N为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述第一工频周期内所述N个电压点的主节点网络时钟数据;所述第一主节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:所述第一主节点分别计算所述N个电压点的从节点网络时钟数据与所述至少两个主节点中每个主节点的N个电压点的主节点网络时钟数据;其中,在所述第一工频周期内的N个电压点的从节点网络时钟数据与在所述第一工频周期内的N个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与所述主节点网络时钟数据为同一电压点的网络时钟数据。
在一种可能的实现方式中,所述N取1000;或者所述N取3000。
本申请实施例中,通过获取1000或3000个从节点电压数据以及每个主节点的1000或3000个主节点电压数据;或者,通过获取1000或3000个从节点网络时钟数据以及每个主节点的1000或3000个主节点网络时钟数据,不仅避免了数据量太大,增加计算量,而且还可提高相似度计算的准确度,提高台区识别的准确度。
在一种可能的实现方式中,所述第一主节点确定所述从节点数据与每个主节点的主节点数据的相似度,所述第一主节点确定与所述从节点数据相似度最高的主节点数据,包括:所述第一主节点根据所述从节点数据与所述每个主节点的主节点数据的方差值确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述第一主节点确定与所述从节点数据方差值最小的主节点数据作为与所述从节点数据相似度最高的主节点数据;或者,所述第一主节点根据所述从节点数据与所述每个主节点的主节点数据的数量积确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述第一主节点确定与所述从节点数据数量积最大的主节点数据作为与所述从节点数据相似度最高的主节点数据;或者,所述第一主节点根据所述从节点数据与所述每个主节点的主节点数据的相关系数确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述第一主节点确定与所述从节点数据相关系数最大的主节点数据作为与所述从节点数据相似度最高的主节点数据。
在一种可能的实现方式中,所述第一主节点获取从节点数据和至少两个主节点的主节点数据之前,所述方法还包括:所述第一主节点与所述从节点进行网络时钟同步,以及所述第一主节点与所述至少两个主节点中除所述第一主节点之外的每个主节点进行网络时钟同步。
本申请实施例中,从节点与每个主节点进行网络时钟同步,可以有效保证从节点数据与对应的主节点数据为同一时刻采集到的数据,避免由于时间不统一而导致采集数据不准确的情况,提高了数据采集的准确度。
在一种可能的实现方式中,所述方法还包括:所述第一主节点广播台区识别指令,所述台区识别指令包括所述第一时长或所述N个参考时刻。
本申请实施例中,第一主节点通过广播台区识别指令,该台区识别指令中包括第一时长或N个参考时刻,从而使得从节点以及其他主节点(至少两个主节点中除该第一主节点之外的主节点)能够在第一时长内或N个参考时刻采集数据,进而保证了数据采集的准确度,以及提高了台区识别的准确度。
在一种可能的实现方式中,所述第一主节点集成于台区中的集中器中,或者,所述第 一主节点以独立的形式存在,且所述第一主节点与所述集中器连接。
第二方面,本申请实施例还提供了一种智能电网中电信号处理方法,包括:
从节点获取从节点数据和至少两个主节点的主节点数据;其中,主节点为与集中器连接的节点,从节点为与用户电表连接的节点,所述从节点数据用于表征所述从节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述从节点的电信号为所述从节点在智能电网中用于数据通信的电信号;所述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述对应的主节点的电信号为所述对应的主节点在所述智能电网中用于数据通信的电信号;所述从节点确定所述从节点数据与每个主节点的主节点数据的相似度;所述从节点确定与所述从节点数据相似度最高的主节点数据;所述从节点将所述相似度最高的主节点数据对应的主节点与所述从节点确认为属于同一个台区;所述从节点与所述相似度最高的主节点数据对应的主节点进行数据通信。
在一种可能的实现方式中,所述从节点数据包括所述从节点的电压数据和在第二工频周期内的网络时钟数据中的至少一项;所述每组主节点数据包括所述对应的主节点的电压数据和在所述第二工频周期内的网络时钟数据中的至少一项。
可理解,本申请实施例对于该第二工频周期是否与第一工频周期属于同一个周期不作限定。
在一种可能的实现方式中,所述从节点获取从节点数据和至少两个主节点的主节点数据,包括:所述从节点获取第二时长内的M个从节点电压数据,所述M为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述第二时长内的M个主节点电压数据;所述从节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:所述从节点分别计算所述M个从节点电压数据与所述至少两个主节点中每个主节点的M个主节点电压数据的相似度,其中,所述M个从节点电压数据与所述每个主节点的M个主节点电压数据中对应的从节点电压数据和主节点电压数据为同一时刻的电压数据。
可理解,本申请实施例对于该M是否与N相同不作限定。即该M可以与N相同,也可以与N不同。以及该第二时长是否与第一时长相同也不作限定,如该第二时长可以与第一时长相同,也可以与第一时长不同。
在一种可能的实现方式中,所述从节点获取从节点数据和至少两个主节点的主节点数据,包括:所述从节点获取M个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,所述M为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述M个参考时刻的主节点电压数据;所述从节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:所述从节点分别计算所述M个参考时刻的从节点电压数据与所述至少两个主节点中每个主节点的所述M个参考时刻的主节点电压数据的相似度;其中,所述M个参考时刻的从节点电压数据与每个主节点的M个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
在一种可能的实现方式中,所述从节点获取从节点数据和至少两个主节点的主节点数据,包括:所述从节点获取在所述第一工频周期内M个电压点的从节点网络时钟数据,所 述M为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述第一工频周期内所述M个电压点的主节点网络时钟数据;所述从节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:所述从节点分别计算所述M个电压点的从节点网络时钟数据与所述至少两个主节点中每个主节点的M个电压点的主节点网络时钟数据;其中,在所述第一工频周期内的M个电压点的从节点网络时钟数据与在所述第一工频周期内的M个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与所述主节点网络时钟数据为同一电压点的网络时钟数据。
在一种可能的实现方式中,所述M取1000;或者所述M取3000。
在一种可能的实现方式中,所述从节点确定所述从节点数据与每个主节点的主节点数据的相似度,所述从节点确定与所述从节点数据相似度最高的主节点数据,包括:所述从节点根据所述从节点数据与所述每个主节点的主节点数据的方差值确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述从节点确定与所述从节点数据方差值最小的主节点数据作为与所述从节点数据相似度最高的主节点数据;或者,所述从节点根据所述从节点数据与所述每个主节点的主节点数据的数量积确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述从节点确定与所述从节点数据数量积最大的主节点数据作为与所述从节点数据相似度最高的主节点数据;或者,所述从节点根据所述从节点数据与所述每个主节点的主节点数据的相关系数确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述从节点确定与所述从节点数据相关系数最大的主节点数据作为与所述从节点数据相似度最高的主节点数据。
在一种可能的实现方式中,所述从节点获取从节点数据和至少两个主节点的主节点数据之前,所述方法还包括:所述从节点与所述至少两个主节点中的每个主节点进行网络时钟同步。
在一种可能的实现方式中,所述方法还包括:所述从节点接收台区识别指令,所述台区识别指令包括所述第二时长或所述M个参考时刻。
在一种可能的实现方式中,所述从节点与所述相似度最高的主节点数据对应的主节点进行数据通信,包括:所述从节点向所述相似度最高的主节点数据对应的主节点发送申请指令,所述申请指令用于申请加入所述相似度最高的主节点数据对应的主节点所在的网络。
本申请实施例中,在从节点确认与相似度最高的主节点数据对应的主节点属于同一个台区之后,在该从节点未加入该相似度最高的主节点对应的主节点所在的网络的情况下,该从节点便可申请加入该网络。
在一种可能的实现方式中,所述从节点集成于台区中的用户电表中,或者,所述从节点以独立的形式存在,且所述从节点与所述用户电表连接。
可理解,在一个台区中,可以包括一个集中器以及至少两个用户电表。
第三方面,本申请实施例还提供了一种智能电网中电信号处理方法,包括:
主节点获取主节点数据和至少两个从节点的从节点数据;其中,主节点为与集中器连接的节点,从节点为与用户电表连接的节点,所述主节点数据用于表征主节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述主节点的电信号为所述主节点在智能电 网中用于数据通信的电信号;所述至少两个从节点中每个从节点对应一组从节点数据,每组从节点数据用于表征对应的从节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述对应的从节点的电信号为所述对应的从节点在所述智能电网中用于数据通信的电信号;所述主节点确定所述主节点数据与每个从节点的从节点数据的相似度;所述主节点确定与所述主节点数据相似度最高的从节点数据;所述主节点将所述相似度最高的从节点数据对应的从节点与所述主节点确认为属于同一个台区;所述主节点与所述相似度最高的从节点数据对应的从节点进行数据通信。
本申请实施例中,通过确定主节点数据与每组从节点数据的相似度,从而确定与该主节点数据相似度最高的从节点数据之后,便可确定相似度最高的从节点与主节点属于同一个台区。利用台区内电力线自身信号的特性实现主节点与从节点的台区识别,无需增加额外的设备,降低了台区识别的成本,进一步的,由于台区内电力线自身信号特性不受共地、共电缆沟、共高压等因素的影响,提高了台区识别的准确度;且本申请实施例中的台区识别方法可以做到全台区覆盖,不受台区大小的影响。
第四方面,本申请实施例还提供了一种智能电网中电信号处理方法,包括:
第一从节点获取主节点数据和至少两个从节点的从节点数据;其中,主节点为与集中器连接的节点,所述从节点为与用户电表连接的节点,所述主节点数据用于表征主节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述主节点的电信号为所述主节点在智能电网中用于数据通信的电信号;所述至少两个从节点中每个从节点对应一组从节点数据,每组从节点数据用于表征对应的从节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述对应的从节点的电信号为所述对应的从节点在所述智能电网中用于数据通信的电信号;所述第一从节点确定所述主节点数据与每个从节点的从节点数据的相似度;所述第一从节点确定与所述主节点数据相似度最高的从节点数据;所述第一从节点将所述相似度最高的从节点数据对应的从节点与所述主节点确认为属于同一个台区;当所述第一从节点确认所述相似度最高的从节点数据对应的从节点为所述第一从节点时,所述第一从节点与所述主节点进行数据通信;当所述第一从节点确认所述相似度最高的从节点数据对应的从节点为第二从节点时,所述第一从节点向所述主节点发送指示指令,所述指示指令用于指示所述主节点与所述第二从节点进行数据通信。
第五方面,本申请实施例提供了一种主节点,所述主节点为第一主节点,所述第一主节点包括:
获取单元,用于获取从节点数据和至少两个主节点的主节点数据;其中,主节点为与集中器连接的节点,从节点为与用户电表连接的节点,所述从节点数据用于表征所述从节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述从节点的电信号为所述从节点在智能电网中用于数据通信的电信号;所述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述对应的主节点的电信号为所述对应的主节点在所述智能电网中用于数据通信的电信号;确定单元,用于确定所述从节点数据与每个主节点的主节点数据的相 似度;所述确定单元,还用于确定与所述从节点数据相似度最高的主节点数据;确认单元,用于将所述相似度最高的主节点数据对应的主节点与所述从节点确认为属于同一个台区;数据通信单元,用于当所述确认单元确认所述相似度最高的主节点数据对应的主节点为所述第一主节点时,与所述从节点进行数据通信;发送单元,用于当所述确认单元确认所述相似度最高的主节点数据对应的主节点为第二主节点时,向所述从节点发送指示指令,所述指示指令用于指示所述从节点与所述第二主节点进行数据通信。
可理解,本申请实施例中,主节点为第一主节点仅仅是为了便于描述或理解,不应将本申请实施例所提供的主节点理解为具有限定。
在一种可能的实现方式中,所述从节点数据包括所述从节点的电压数据和在第一工频周期内的网络时钟数据中的至少一项;所述每组主节点数据包括所述对应的主节点的电压数据和在所述第一工频周期内的网络时钟数据中的至少一项。
在一种可能的实现方式中,所述获取单元,具体用于获取第一时长内的N个从节点电压数据,以及分别获取所述至少两个主节点中每个主节点在所述第一时长内的N个主节点电压数据;其中,所述N为大于1的正整数;所述确定单元,具体用于分别计算所述N个从节点电压数据与所述至少两个主节点中每个主节点的N个主节点电压数据的相似度,其中,所述N个从节点电压数据与所述每个主节点的N个主节点电压数据中对应的从节点电压数据和主节点电压数据为同一时刻的电压数据。
在一种可能的实现方式中,所述获取单元,具体用于获取N个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,所述N为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述N个参考时刻的主节点电压数据;所述确定单元,具体用于分别计算所述N个参考时刻的从节点电压数据与所述至少两个主节点中每个主节点的所述N个参考时刻的主节点电压数据的相似度;其中,所述N个参考时刻的从节点电压数据与每个主节点的N个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
在一种可能的实现方式中,所述获取单元,具体用于获取在所述第一工频周期内N个电压点的从节点网络时钟数据,所述N为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述第一工频周期内所述N个电压点的主节点网络时钟数据;所述确定单元,具体用于确定与所述N个电压点的从节点网络时钟数据相似度最高的一组主节点数据;其中,在所述第一工频周期内的N个电压点的从节点网络时钟数据与在所述第一工频周期内的N个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与所述主节点网络时钟数据为同一电压点的网络时钟数据。
在一种可能的实现方式中,所述N取1000;或者所述N取3000。
在一种可能的实现方式中,所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的方差值确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据方差值最小的主节点数据作为与所述从节点数据相似度最高的主节点数据;或者,所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的数量积确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据数量积最大的主节点数据作为与所述从节点数据相似度最高的主 节点数据;或者,所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的相关系数确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据相关系数最大的主节点数据作为与所述从节点数据相似度最高的主节点数据。
在一种可能的实现方式中,所述第一主节点还包括:网络时钟同步单元,用于与所述从节点进行网络时钟同步,以及与所述至少两个主节点中除所述第一主节点之外的每个主节点进行网络时钟同步。
在一种可能的实现方式中,所述第一主节点还包括:广播单元,用于广播台区识别指令,所述台区识别指令包括所述第一时长或所述N个参考时刻。
第六方面,本申请实施例提供了一种从节点,包括:
获取单元,用于获取从节点数据和至少两个主节点的主节点数据;其中,主节点为与集中器连接的节点,所述从节点为与用户电表连接的节点,所述从节点数据用于表征所述从节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述从节点的电信号为所述从节点在智能电网中用于数据通信的电信号;所述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述对应的主节点的电信号为所述对应的主节点在所述智能电网中用于数据通信的电信号;确定单元,用于确定所述从节点数据与每个主节点的主节点数据的相似度;所述确定单元,还用于确定与所述从节点数据相似度最高的主节点数据;确认单元,用于将所述相似度最高的主节点数据对应的主节点与所述从节点确认为属于同一个台区;数据通信单元,用于与所述相似度最高的主节点数据对应的主节点进行数据通信。
在一种可能的实现方式中,所述从节点数据包括所述从节点的电压数据和在第二工频周期内的网络时钟数据中的至少一项;所述每组主节点数据包括所述对应的主节点的电压数据和在所述第二工频周期内的网络时钟数据中的至少一项。
在一种可能的实现方式中,所述获取单元,具体用于获取第二时长内的M个从节点电压数据,以及分别获取所述至少两个主节点中每个主节点在所述第二时长内的M个主节点电压数据;其中,所述M为大于1的正整数;所述确定单元,具体用于分别计算所述M个从节点电压数据与所述至少两个主节点中每个主节点的M个主节点电压数据的相似度,其中,所述M个从节点电压数据与所述每个主节点的M个主节点电压数据中对应的从节点电压数据和主节点电压数据为同一时刻的电压数据。
在一种可能的实现方式中,所述获取单元,具体用于获取M个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,所述M为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述M个参考时刻的主节点电压数据;所述确定单元,具体用于分别计算所述M个参考时刻的从节点电压数据与所述至少两个主节点中每个主节点的所述M个参考时刻的主节点电压数据的相似度;其中,所述M个参考时刻的从节点电压数据与每个主节点的M个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
在一种可能的实现方式中,所述获取单元,具体用于获取在所述第一工频周期内M个 电压点的从节点网络时钟数据,所述M为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述第一工频周期内所述M个电压点的主节点网络时钟数据;所述确定单元,具体用于确定与所述M个电压点的从节点网络时钟数据相似度最高的一组主节点数据;其中,在所述第一工频周期内的M个电压点的从节点网络时钟数据与在所述第一工频周期内的M个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与所述主节点网络时钟数据为同一电压点的网络时钟数据。
在一种可能的实现方式中,所述M取1000;或者所述M取3000。
在一种可能的实现方式中,所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的方差值确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据方差值最小的主节点数据作为与所述从节点数据相似度最高的主节点数据;或者,所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的数量积确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据数量积最大的主节点数据作为与所述从节点数据相似度最高的主节点数据;或者,所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的相关系数确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据相关系数最大的主节点数据作为与所述从节点数据相似度最高的主节点数据。
在一种可能的实现方式中,所述从节点还包括:网络时钟同步单元,用于与所述至少两个主节点中的每个主节点进行网络时钟同步。
在一种可能的实现方式中,所述从节点还包括:接收单元,用于接收台区识别指令,所述台区识别指令包括所述第二时长或所述M个参考时刻。
第七方面,本申请实施例还提供了一种电信号处理装置,可以实现上述第一方面、第二方面、第三方面和第四方面中任一项的智能电网中电信号处理方法。例如所述电信号处理装置可以是芯片;或者所述电信号处理装置可以是设备等等。所述电信号处理装置可以通过软件、硬件或通过硬件执行相应的软件实现上述方法。
当上述智能电网中电信号处理方法中的部分或全部通过软件来实现时,该电信号处理装置包括:处理器和存储器;所述存储器,用于存储软件指令;所述处理器,用于执行所述存储器中存储的软件指令,当所述软件指令被执行时,使得所述电信号处理装置可以实现上述第一方面和第二方面中至少一项所提供的方法。
在一种可能的实现方式中,所述存储器可以是物理上独立的单元,也可以与所述处理器集成在一起。
可理解,该电信号处理装置可以为第五方面所提供的第一主节点,也可以为第六方面所提供的从节点,本申请实施例对于该电信号处理装置不作限定。
第八方面,本申请实施例还提供了一种智能电网中电信号处理系统,包括第一主节点和从节点,该从节点可以包括前述实施例中的从节点,该第一主节点可以包括前述实施例中的主节点。
第九方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机或处理器上运行时,使得所述计算机或处理器执行第一方面、第二方面、第三方面和第四方面中至少一项所述的方法。
第十方面,本申请实施例提供了一种包括程序指令的计算机程序产品,当所述程序指令在计算机或处理器上运行时,使得所述计算机或处理器执行第一方面、第二方面第三方面和第四方面中至少一项所述的方法。
附图说明
图1是本申请实施例提供的一种网络架构的场景示意图;
图2是本申请实施例提供的另一种网络架构的场景示意图;
图3是本申请实施例提供的一种主节点的结构示意图;
图4a是本申请实施例提供的一种不同台区中的任意两个节点的电压波形图;
图4b是本申请实施例提供的一种同一台区中的任意两个节点的电压波形图;
图5是本申请实施例提供的一种智能电网中电信号处理方法的流程示意图;
图6是本申请实施例提供的一种智能电网中电信号处理方法的信令流程示意图;
图7是本申请实施例提供的另一种智能电网中电信号处理方法的流程示意图;
图8是本申请实施例提供的另一种智能电网中电信号处理方法的信令流程示意图;
图9是本申请实施例提供的一种主节点的结构示意图;
图10是本申请实施例提供的另一种主节点的结构示意图;
图11是本申请实施例提供的一种从节点的结构示意图;
图12是本申请实施例提供的另一种从节点的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以下将介绍本申请实施例涉及的技术术语。
台区,在电力系统中,台区可以指(一台)变压器的供电范围或区域。
集中器,远程集中抄表系统的中心管理设备和控制设备,负责定时读取终端数据、系统的命令传送、数据通讯、网络管理、事件记录、数据的横向传输等功能。
智能电网,是指以物理电网为基础,将传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网。
在实际操作中,在利用电力载波信号进行台区识别时,如果台区覆盖面积较大,线路路径负载随距离增大,信号衰减严重,较远的主机和终端无法通信,则利用电力载波信号可能会无法实现台区的全覆盖。或者,在利用电流信号进行台区识别时,为了保证信号的覆盖范围,在电网上发送的电流可能为数安培,从而对电网造成污染。
同时地埋电缆铺设于同一电缆沟时还可能会发生耦合串扰,变压器间共地、共高压连接方式也会造成信号串扰,从而导致识别结果不准确。进一步地,利用电力载波信号或电流信号的方法还需要额外增加设备,即专用的发射机和接收机,需要人工对各个节点进行相序识别,也就是说,通过这种方式获取用电节点的台区信息需要花费大量的人力和时间。
因此,本申请实施例提供了一种智能电网中电信号处理方法,不仅不需要额外的设备,而且还可有效提高台区识别的准确性。
以下将详细描述本申请实施例所提供的主节点和从节点。
在智能电网中,集中器可用于定时读取终端也即用户电表的数据,以及该集中器还可用于执行数据通讯、网络管理、事件记录以及数据的横向传输等功能。
其中,集中器侧的数据通信和网络管理的功能可以由第一模块完成,该第一模块可称为主节点。而用户电表侧的数据通信和网络管理的功能可由第二模块完成,该第二模块可以称为从节点。也就是说,在集中器侧的数据通信和数据处理等功能可以由主节点执行,在终端侧(也即用户电表侧)的数据通信和数据处理等功能可以由从节点执行。
进一步地,在宽带智能电网系统中,可以将每个台区划分为一个局域网络,每个局域网络可以包括一个主节点和多个个从节点,如可包括上千个从节点等。即在组网的过程中,每个台区可以根据主节点来进行组网。
可选的,主节点可以安装于集中器中,从节点可以跟随终端即用户电表安装于终端中。也就是说,该主节点可以为芯片,从而集成于集中器中。以及该从节点也可以为芯片,从而集成于终端中。
参见图1,图1是本申请实施例提供的一种网络架构的场景示意图。如图1所示,以两个台区为例,其中,一个台区可以包括一个局域网,因此,如图1所示,以两个局域网即网络1和网络2为例来说明本申请实施例提供的方法,所应用的网络架构。
如图1所示,每个台区中可以包括一个集中器,每个集中器可以配置一个主节点,且每个台区中可以包括多个终端(即用户电表),每个终端可以配置一个从节点。如图1所示,在网络1中可以包括一个集中器101,主节点102可以集成于集中器101中,在网络1可以包括n个终端。在网络2中可以包括一个集中器201,主节点202可以集成于集中器201 中,且在网络2中可以包括m个终端。
可理解,本申请实施例中,不同台区中的主节点可以直接进行通信,也可以通过从节点转发信息进行间接通信等等,本申请实施例不作限定。
可理解,在具体实现中,可能还包括更多的台区,如可以包括两个或大于两个的台区,因此,本申请实施例对于具体包括多少个台区,进一步地包括多少个集中器,以及包括多少个主节点不作限定。
可选的,主节点还可以以单独的形式存在,即该主节点还可以为单独的设备或装置等等,本申请实施例不作限定。如该主节点可以通过线路(如数据线等)与集中器连接,或者,该主节点还可以通过其他形式如无线网络的形式与集中器连接等等,本申请实施例不作限定。以及从节点也可以以单独的形式存在,如为单独的设备或装置等等,本申请实施例不作限定。如该从节点可以通过线路与终端连接,或者,该从节点还可以通过其他形式如无线网络的形式与终端连接等等,本申请实施例不作限定。
参见图2,图2是本申请实施例提供的另一种网络架构的场景示意图,如图2所示,仍以两个台区为例,主节点102可以与集中器101连接,以及从节点103可以与终端进行连接。
可理解,对于图1和图2所示的主节点中还可以包括采集芯片或采集模块,从而来采集本申请实施例中所提供的主节点数据。以及对于图1和图2所示的从节点中也可以包括采集芯片或采集模块等,从而来采集本申请实施例中所提供的从节点数据。
可理解,在具体实现中,图2所示的网络架构中还可以包括更多的主节点,以及与主节点对应的局域网,因此,本申请实施例对于具体包括多少个主节点不作限定。
以下以主节点为例来说明,本申请实施例所提供的主节点和从节点的结构。
参见图3,图3是本申请实施例提供的一种主节点的结构示意图,如图3所示,该主节点可包括处理器301、存储器302和收发器303,该处理器301、存储器302和收发器303通过连接器相耦合,该连接器可包括各类接口、传输线或总线304等,本实施例对此不做限定。应当理解,本申请的各个实施例中,耦合是指通过特定方式的相互联系,包括直接相连或者通过其他设备间接相连,例如可以通过各类接口、传输线、总线等相连。。
存储器302,可用于存储计算机程序指令,包括操作系统(operation system,OS)、以及用于执行本申请方案的程序代码在内的各类计算机程序代码,可选的,存储器302包括但不限于是非掉电易失性存储器,例如是嵌入式多媒体卡(embedded multi media card,EMMC)、通用闪存存储(universal flash storage,UFS)或只读存储器(read-only memory,ROM),或者是可存储静态信息和指令的其他类型的静态存储设备,还可以是掉电易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存 储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他计算机可读存储介质等,该存储器302用于存储相关指令及数据。收发器303用于接收和发送数据,例如该收发器可用于接收从节点数据,以及该收发器还可以接收其他主节点的主节点数据等等,本申请实施例不作限定。
处理器301可以是一个或多个中央处理器(central processing unit,CPU),在处理器301是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。可选的,处理器301可以是多个处理器构成的处理器组,多个处理器之间通过一个或多个总线彼此耦合。
具体的,该处理器301可用于对从节点数据和每组主节点数据进行处理等,例如可以用于计算从节点数据和每组主节点数据的相似度,示例性的,该处理器301可以用于计算从节点数据和每组主节点数据的方差、相关系数以及数量积等,本申请实施例不作限定。
可理解,以上仅为本申请实施例提供的一种主节点的结构示意图,在具体实现中,该主节点可具有比示出的部分更多或更少的部件,可以组合两个或更多个部件,或者可具有不同部件的不同配置实现等等。
可理解,图3仅示出了主节点的结构示意图,关于从节点的结构可参考图3所示的主节点的结构示意图,这里不再一一详述。
以下将详细描述本申请实施例所涉及的原理。
对于低压配电网,由于用户数量、电器类型、走线、负载等原因会在电力线上形成谐波和干扰,使得整个台区的电压波形在50Hz正弦波基础上,叠加不同频率、不同强度的信号。由于不同台区之间的用户数量、电器类型、走线、负载等不可能完全相同,因此在不同的台区内,叠加的信号幅度、频率在时间上会有不同的表现。如图4a和图4b所示,图4a示出的是不同台区中的任意两个节点的电压波形图,图4b示出的是同一个台区中的任意两个节点的电压波形图。示例性的,如图4a可表示不同台区中的主节点和从节点的电压波形图,或表示不同台区中的从节点和从节点的电压波形图。图4b可表示同一个台区中的主节点和从节点的电压波形图,或表示同一个台区中的从节点和从节点的电压波形图。从图4a和图4b来看,同台区的任意两个节点的相似度明显高于不同台区的任意两个节点的相似度。
基于此,本申请实施例提供了一种智能电网中电信号处理方法。
参见图5,图5是本申请实施例提供的一种智能电网中电信号处理方法的流程示意图。该智能电网中电信号处理方法可应用于图1和图2所示的主节点,以及还可应用于图3所示的主节点。可理解,为便于理解或描述,可以图1和图2所示的主节点为第一主节点,以及图3所示的主节点为第一主节点为例来说明本申请实施例所提供的智能电网中电信号处理方法。如图5所示,该智能电网中电信号处理方法可包括:
501、第一主节点获取从节点数据和至少两个主节点的主节点数据。
其中,主节点为与集中器连接的节点,从节点为与用户电表连接的节点,上述从节点数据用于表征从节点的电信号的信号幅度和信号频率中至少一项的相关信息,上述从节点的电信号为上述从节点在智能电网中用于数据通信的电信号;上述至少两个主节点中每个 主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,上述对应的主节点的电信号为上述对应的主节点在智能电网中用于数据通信的电信号。
本申请实施例中,从节点数据可用于表征从节点的电信号的信号幅度的相关信息,或者,该从节点数据还可用于表征从节点的电信号的信号频率的相关信息,或者,该从节点数据还可用于表征从节点的电信号的信号幅度和信号频率的相关信息。具体的,电信号可表示随时间而变化的电压或电流。可理解,本申请实施例中,该电信号可表示随时间而变化的电压。因此,该从节点数据可具体表征从节点的电压幅度和电压频率中至少一项的相关信息。具体的,该从节点数据可以包括从节点的电压数据和在第一工频周期内的网络时钟数据中的至少一项。
本申请实施例中,至少两个主节点中每个主节点对应一组主节点数据,也就是说,该至少两个主节点的主节点数据可包括至少两组主节点数据,其中,每组主节点数据都对应一个主节点。举例来说,至少两个主节点中包括第一主节点和第二主节点,则该第一主节点对应一组主节点数据,该第二主节点对应一组主节点数据,即至少两个主节点的主节点数据包括了两组主节点数据。可理解,以上仅为一种示例,不应理解为对本申请实施例的限定。
具体的,该每组主节点数据可用于表征对应的主节点的电信号的信号幅度的相关信息,或者,对应的主节点的电信号的信号频率的相关信息,或者,对应的主节点的电信号的信号幅度和信号频率的相关信息。如以上述所示的第一主节点和第二主节点为例,则第一主节点的主节点数据可表示该第一主节点的电信号的信号幅度和信号频率中至少一项的相关信息。可理解,本申请实施例中,每组主节点数据也可用于表征对应的主节点的电压幅度和电压频率中至少一项的相关信息。具体的,该每组主节点数据可包括对应的主节点的电压数据和在第一工频周期内的网络时钟数据中的至少一项。
其中,在从节点数据包括从节点的电压数据,以及每组主节点数据包括对应的主节点的电压数据的情况下,本申请实施例提供了两种获取数据的实施例,分别如下所示:
实施例一、
上述第一主节点获取从节点数据和至少两个主节点的主节点数据,包括:
上述第一主节点获取第一时长内的N个从节点电压数据,以及分别获取上述至少两个主节点中每个主节点在上述第一时长内的N个主节点电压数据;其中,上述N为大于1的正整数。
可理解,在计算相似度时,该第一主节点可分别计算上述N个从节点电压数据与上述至少两个主节点中每个主节点的N个主节点电压数据的相似度,且上述N个从节点电压数据与上述每个主节点的N个主节点电压数据中对应的从节点数据和主节点电压数据为同一时刻的电压数据。可理解,至于如何计算相似度可参考下面实施例所描述的方法。
本申请实施例中,第一时长可以由第一主节点设置,如可通过接收用户输入的设置指令设置,也可以自动设置等等,本申请实施例不作限定。以及本申请实施例对于该第一时长具体包括多少时长不作限定。
具体的,该N个从节点电压数据是在第一时长的哪些时刻获取的,该每个主节点的N 个主节点电压数据便也是在第一时长的哪些时刻获取的。举例来说,第一时长内的N个从节点电压数据分别是在第一时刻、第二时刻,…,第N时刻获取的从节点电压数据,则该每个主节点的N个主节点电压数据便也是在第一时刻、第二时刻,…,第N时刻获取的主节点电压数据。可理解,该第一时刻、第二时刻,…,第N时刻可以为第一时长内的N等分时刻(即每个时刻的间隔时长相同),或者,也可以不为该第一时长内的N等分时刻等,本申请实施例不作限定。
实施例二、
上述第一主节点获取从节点数据和至少两个主节点的主节点数据,包括:
上述第一主节点获取N个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,上述N为大于1的正整数;
以及分别获取上述至少两个主节点中每个主节点在上述N个参考时刻的主节点电压数据。
可理解,在计算相似度时,上述第一主节点分别计算上述N个参考时刻的从节点电压数据与上述至少两个主节点中每个主节点的上述N个参考时刻的主节点电压数据的相似度;其中,上述N个参考时刻的从节点电压数据与每个主节点的N个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。具体的实现方式可对应参考下面的实施例。
本申请实施例中,该N个参考时刻具体为哪些时刻,或者,该N个参考时刻的时长范围,本申请实施例不作限定。
本申请实施例中,由于N个从节点电压数据与每个主节点的N个主节点电压数据中对应的从节点数据与主节点数据为同一时刻的电压数据,因此,在获取主节点数据和从节点数据之前,从节点与每个主节点之间已经进行了网络时钟同步。以及至少两个主节点中每个主节点之间也进行了网络时钟同步。该网络时钟同步的方法可如下所示:
场景一、第一主节点与从节点之间的网络时钟同步方法
在具体实现中,从节点可能会根据距离位置来优先接入离该从节点距离近的主节点中。同时,在从节点接入主节点(包括第一主节点)时,进行网络时钟同步操作。可理解,该从节点接入的主节点可能为与该从节点对应的主节点,即该主节点与该从节点可能属于同一个台区。或者,该主节点与该从节点也可以不属于同一个台区。
具体的,该从节点与第一主节点网络时钟同步方法:如该第一主节点或该从节点中的时钟由晶体振荡器(简称晶振)产生,不同的晶振之间的频率存在一定的偏差。每个晶振驱动1个计数器,计数器累加1(即累加1个数),第一主节点的计数器和从节点的计数器偏差包含2部分:1为频偏,不同的晶振,频率存在微小偏差,例如100万个周期相差几十个周期;2为相偏,上电时刻不同会产生初始计数偏差,随着时间的推移,频偏也会逐渐累积产生计数器偏差,初始计数偏差和频偏导致的计数器偏差加在一起,形成相偏。
假设T1时刻,第一主节点将计数器值t1发给从节点,从节点计数器此时数值为t1′,在T2时刻,第一主节点将计数器数值t2发给从节点,从节点此时数值为t2′,通过下述公式可以得出频偏:
Figure PCTCN2018104232-appb-000001
通过下述公式计算可以得出相偏:
o=t2′-t2
通过相偏和频偏,从节点可以估算出第一主节点计数器在某个数值时,该从节点计数器的数值,由此,实现了时钟同步。
场景二、第一主节点与至少两个主节点中除该第一主节点之外的每个主节点之间的网络时钟同步方法,
假设该至少两个主节点中还第二主节点,则该第一主节点和该第二主节点进行网络时钟同步的方法可参考场景一中所描述的主节点与从节点之间的网络时钟同步方法,这里不再一一详述。
可理解,以上仅为本申请实施例提供的一种网络时钟同步的方法,在具体实现中,可能还包括其他方法等等,本申请实施例不作限定。
可理解,本申请实施例中,电压数据可以理解为与电压相关的数据,如该电压数据可以包括电压值等等,本申请实施例不作限定。
可理解,本申请实施例还提供了一种获取数据的实施例,如下所示:
实施例三、
所述第一主节点获取从节点数据和至少两个主节点的主节点数据,包括:
获取在上述第一工频周期内N个电压点的从节点网络时钟数据,上述N为大于1的正整数;
以及分别获取上述至少两个主节点中每个主节点在上述第一工频周期内上述N个电压点的主节点网络时钟数据。
可理解,在计算相似度时,对应的从节点网络时钟数据与所述主节点网络时钟数据为同一电压点的网络时钟数据。
也就是说,每个主节点可以与从节点在同工频周期内的相同电压点处采集网络时钟数据。从而分别得到每个主节点的主节点网络时钟数据和从节点网络时钟数据。
具体的,在每个主节点和从节点分别进行电压数据采集时,该主节点和该从节点还可以通过电压检测电路进行采集,从而实现对电力线任意电压点的采样。或者还可以通过模拟数字转换芯片实现对电力线任意电压点的采样。可理解,在利用电压检测电路采集电压数据时,可以将所有检测电压值设成一致,以及对于模拟数字转换芯片,可以将采样频率设置成一致。
具体的,上述N可以取1000;或者上述也可以N取3000。
为了更进一步地提高台区识别方法,可以通过较长时间的统计得到一定量的数据量。举例来说,该N可以为1000个不同的时刻,也可以为3000个不同的时刻,以及该N也可以为1000个不同的电压点,也可以为3000个不同的电压点等等。其中N为3000的情况下,台区识别的准确度可能会更高,但是N为1000的情况计算量更小且还能获得准确的台区识别结果。可理解,本申请实施例对于该N的具体取值不作唯一性限定。
具体的,本申请实施例还提供了一种每个主节点或从节点何时采集数据的方法,上述 方法还包括:
第一主节点广播台区识别指令,上述台区识别指令包括上述第一时长或上述N个参考时刻。
可理解,该第一主节点属于上述至少两个主节点中的主节点,因此,本申请实施例对于该第一主节点具体为至少两个主节点中的哪个主节点不作限定。
更具体的,还可以在确定至少两个主节点中每个主节点的网络报文,该至少两个主节点中每个主节点的网络报文不同的情况下,广播台区识别指令。
其中,该第一主节点可以直接接收到来自其他主节点的网络报文,从而确定其他主节点的网络报文以及该第一主节点的网络报文。或者,该第一主节点还可以从其他从节点处接收到其他主节点的网络报文等等,本申请实施例不作限定。
在该第一主节点确定至少两个主节点的网络报文之后,该第一主节点便可以广播台区识别指令,从而使得从节点采集从节点数据以及该至少两个主节点采集主节点数据,进而该从节点可将采集到的从节点数据发送给第一主节点,以及其他主节点也可将采集到的主节点数据发送给该第一主节点。
502、上述第一主节点确定上述从节点数据与每个主节点的主节点数据的相似度,以及确定与上述从节点数据相似度最高的主节点数据。
本申请实施例中,上述相似度用于表示上述从节点的电信号和上述对应的主节点的电信号的相似程度。在获取到从节点数据和每组主节点数据之后,便可以计算从节点数据与每组主节点数据的相似度,从而确定与从节点数据相似度最高的主节点数据。
具体的,本申请实施例提供了三种方式来得到从节点数据和每组主节点数据的相似度,分别如下所示:
实现方式一、
上述第一主节点确定上述从节点数据与每个主节点的主节点数据的相似度,以及确定与上述从节点数据相似度最高的主节点数据,包括:
上述第一主节点根据上述从节点数据与上述每个主节点的主节点数据的方差值确定上述从节点数据与上述每个主节点的主节点数据的相似度,以及确定与上述从节点数据方差值最小的主节点数据作为与上述从节点数据相似度最高的主节点数据。
假设分别获取了n个从节点数据和两组n个主节点数据,从节点的从节点数据分别为x 1,x 2,…,x n,至少两个主节点假设包括两个主节点如第一主节点和第二主节点,且该第一主节点的主节点数据分别为y 11,y 12,…,y 1n,第二主节点的主节点数据分别为y 21,y 22,…,y 2n。可理解,该第一主节点和第二主节点仅为一种示例等等,本申请实施例对于该两个主节点的具体名称不作限定。
则可通过如下方法来计算从节点数据与每组主节点数据的方差值:
d 11=x 1-y 11,d 12=x 2-y 12,…,d 1n=x n-y 1n
Figure PCTCN2018104232-appb-000002
其中,
Figure PCTCN2018104232-appb-000003
d 21=x 1-y 21,d 22=x 2-y 22,…,d 2n=x n-y 2n
Figure PCTCN2018104232-appb-000004
其中,
Figure PCTCN2018104232-appb-000005
对于实现方式一,通过比较v1和v2,如v1小于v2,则可以确定与该从节点数据相似度最高的主节点数据为第一主节点的主节点数据。
实现方式二、
上述第一主节点确定上述从节点数据与每个主节点的主节点数据的相似度,确定与上述从节点数据相似度最高的主节点数据,包括:
上述第一主节点根据上述从节点数据与上述每个主节点的主节点数据的相关系数确定上述从节点数据与上述每个主节点的主节点数据的相似度,以及确定与上述从节点数据相关系数最大的主节点数据作为与上述从节点数据相似度最高的主节点数据。
如仍假设分别获取了n个从节点数据和两组n个主节点数据,从节点的从节点数据分别为x 1,x 2,…,x n,至少两个主节点假设包括两个主节点如第一主节点和第二主节点,且该第一主节点的主节点数据分别为y 11,y 12,…,y 1n,第二主节点的主节点数据分别为y 21,y 22,…,y 2n
则可通过如下公式计算从节点数据与每组主节点数据的相关系数:
Figure PCTCN2018104232-appb-000006
Figure PCTCN2018104232-appb-000007
其中,
Figure PCTCN2018104232-appb-000008
即表示y 11,y 12,…,y 1n的平均。
Figure PCTCN2018104232-appb-000009
即表示y 21,y 22,…,y 2n的平均。
对于实现方式二,通过比较c1和c2,如c1小于c2,则可以确定与该从节点数据相似度最高的主节点数据为第二主节点的主节点数据。
实现方式三、
上述第一主节点确定上述从节点数据与每个主节点的主节点数据的相似度,以及确定与上述从节点数据相似度最高的主节点数据,包括:
上述第一主节点根据上述从节点数据与上述每个主节点的主节点数据的数量积确定上 述从节点数据与上述每个主节点的主节点数据的相似度,以及确定与上述从节点数据数量积最大的主节点数据作为与上述从节点数据相似度最高的主节点数据。
可理解,本申请实施例中,从节点数据与每组主节点数据的数量积还可称为从节点数据与每组主节点数据的点积、内积或向量的积等等,本申请实施例对于该数量积的名称不作限定。
如仍假设分别获取了n个从节点数据和两组n个主节点数据,从节点的从节点数据分别为x 1,x 2,…,x n,至少两个主节点假设包括两个主节点如第一主节点和第二主节点,且该第一主节点的主节点数据分别为y 11,y 12,…,y 1n,第二主节点的主节点数据分别为y 21,y 22,…,y 2n
则可通过如下公式计算从节点数据与每组主节点数据的点乘的和:
Figure PCTCN2018104232-appb-000010
Figure PCTCN2018104232-appb-000011
对于实现方式三,通过比较s1和s2,如s1小于s2,则可以确定与该从节点数据相似度最高的主节点数据为第二主节点的主节点数据。
可理解,以上三种实现方式仅为本申请实施例提供的一种示例,在具体实现中,可能还包括其他方法来计算从节点数据与每个主节点数据的相似度,因此,本申请实施例对于如何计算相似度不作限定。
可理解,以上三种实现方式是以一个从节点为例而示出的,在具体实现中,一个台区内,可能会包括多个从节点,且在包括多个从节点的情况下,依然可以通过本申请实施例所提供的智能电网中电信号处理方法来进行台区识别。因此,本申请实施例所示出的一个从节点不应理解为对本申请实施例的限定。
503、上述第一主节点将上述相似度最高的主节点数据对应的主节点与上述从节点确认为属于同一个台区。
本申请实施例中,从至少两个主节点中确定出的与从节点数据相似度最高的主节点数据对应的主节点即确认为与从节点属于同一个台区,或者也可表示该相似度最高的主节点数据对应的主节点与从节点同在一个局域网中。
504、当上述第一主节点确认上述相似度最高的主节点数据对应的主节点为上述第一主节点时,上述第一主节点与上述从节点进行数据通信。
本申请实施例中,在第一主节点获得与从节点数据相似度最高的主节点数据之后,该第一主节点便可确认该相似度最高的主节点数据对应的主节点与从节点属于同一个台区,由此,在该相似度最高的主节点数据对应的主节点为第一主节点时,该第一主节点便可与该从节点进行数据通信。如该第一主节点可继续保持与该从节点的数据连接或网络连接等等。本申请实施例对于该第一主节点与该从节点数据通信的内容不作限定。如可以进行数据的传输,或者也可以进行信令的交互等等。
505、当上述第一主节点确认上述相似度最高的主节点数据对应的主节点为第二主节点时,上述第一主节点向上述从节点发送指示指令,上述指示指令用于指示上述从节点与上述第二主节点进行数据通信。
可理解,在相似度最高的主节点数据对应的主节点为第二主节点时,该第一主节点便可向从节点发送指示指令,指示该从节点与该第二主节点进行数据通信。可选的,该第一主节点还可以断开与该从节点的网络连接,或者该第一主节点还可以将该从节点从该第一主节点所在的网络中剔除等等。
本申请实施例中,通过比较从节点数据与每组主节点数据的相似度,从而来得到从节点与对应的主节点的相似度,进而在确定与该从节点数据相似度最高的主节点数据之后,便可确定该相似度最高的主节点数据对应的主节点与该从节点属于同一个台区。利用台区内电力线自身信号的特性实现主节点与从节点的台区识别,无需增加额外的设备,降低了台区识别的成本,进一步的,由于台区内电力线自身信号特性不受共地、共电缆沟、共高压等因素的影响,提高了台区识别的准确度;且本申请实施例中的台区识别方法可以做到全台区覆盖,不受台区大小的影响。
进一步地,为了更形象的理解图5所示的方法,以下将结合具体实施例来描述。
参见图6,图6是本申请实施例提供的一种智能电网中电信号处理方法的信令流程示意图,在该信息处理的方法中由当前主节点来进行相似度的计算,且以从节点数据为从节点在N个参考时刻的从节点电压数据,每组主节点数据为对应的主节点在N个参考时刻的主节点电压数据为例。且本申请实施例以当前网络存在两个主节点(如包括当前主节点和其他主节点)和一个从节点为例对信息处理的方法进行说明,实际情况可以有更多数量的主节点和从节点,本申请实施例对主节点和从节点的数量不做限制。可理解,该其他主节点即表示两个主节点中除当前主节点之外的另一个主节点。如图6所示,该智能电网中电信号处理方法可包括:
601、第一主节点确定存在其他网络的主节点。
示例性的,如果第一主节点可以接收到其他网络的网络报文,则确认该第一主节点周围存在其他网络,应当理解,网络报文中会携带标识符,该标识符用于区别网络报文所属的网络。例如第一主节点属于第一网络,第二主节点属于第二网络,则第一主节点和第二主节点发送的网络报文不同,当存在两个及以上的网络时,需要进行台区识别。可选的,第一主节点可以直接接受第二主节点发送的网络报文,从而发现其他网络的主节点,第一主节点也可以通过从节点接收第二主节点发送的网络报文,即通过中转节点发现其他网络的主节点。
602、第一主节点广播通知报文,该通知报文包括N个参考时刻,该N个参考时刻即为各节点进行数据采集的时刻。
应当理解,广播通知报文的时刻需要在数据采集时刻(即N个参考时刻)之前,且广播通知报文的时刻与开始数据采集的时刻之间要存在一定的时间间隔,以使得第一主节点所在的网络的从节点和其他可以通信的节点都可以收到该通知报文,该可以通信的节点包括其他网络的节点。
进一步的,其他网络的节点将该通知报文转发给所在网络的主节点。
603、各网络节点根据通知报文中指示的时刻进行数据采集。
示例性的,第一主节点在指示的时刻采集第一主节点的主节点数据,各从节点在指示的时刻采集从节点数据,第二主节点在指示的时刻采集第二主节点的主节点数据,以此类推,应当理解,所有网络节点需保证都在同一时刻采集,且采集长度一致。
604、各网络节点采集数据完成会后,第二主节点通过跨网络的中间节点将第二主节点的主节点数据发送给第一主节点。
本申请实施例中,第二主节点可以通过跨网络的中间节点将该第二主节点的主节点数据发送给第一主节点,或者,该第二主节点也可以直接将该第二主节点的主节点数据发送给第一主节点等等,本申请实施例不作限定。
605、第一主节点向本网络从节点查询数据。
本申请实施例中,该第一主节点可以向本网络中的从节点查询该从节点的从节点数据。
606、第一主节点确定本网络从节点的台区识别结果。
可理解,该第一主节点可计算本网络从节点与第二主节点、以及该本网络从节点与第一主节点的相似度。并将具有最高相似度的从节点和主节点确定为属于同一个台区。具体方法可参考图5所示的方法,这里不再一一详述。
本申请实施例中,通过确定从节点的台区识别结果,可使得第一主节点确定该从节点是否与第一主节点属于同一个台区。举例来说,该第一主节点确定与该从节点属于同一个台区,则该第一主节点可以通过向从节点发送指示指令的方式告知该从节点与第一主节点属于同一个台区。又如,该第一主节点确定与该从节点不属于同一个台区,则第一主节点可以通过向从节点发送指示指令的方式告知该从节点与该第一主节点不属于同一个台区,从而可使得该从节点可自动脱离已连接但不属于同一个台区的第一主节点。或者,第一主节点还可以通过向从节点发送指示指令的方式告知该从节点与哪个主节点属于同一个台区,从而使得该从节点还可以向与该从节点属于同一个台区的主节点发起入网申请等等,本申请实施例对于主节点得知与从节点匹配的主节点后所执行的操作不作唯一性限定。
参见图7,图7是本申请实施例提供的另一种智能电网中电信号处理方法的流程示意图。该智能电网中电信号处理方法可应用于图1和图2所示的从节点。如图5所示,该智能电网中电信号处理方法可包括:
701、从节点获取从节点数据和至少两个主节点的主节点数据。
其中,主节点为与集中器连接的节点,上述从节点为与用户电表连接的节点,上述从节点数据用于表征从节点的电信号的信号幅度和信号频率中至少一项的相关信息,上述从节点的电信号为上述从节点在智能电网中用于数据通信的电信号;上述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,上述对应的主节点的电信号为上述对应的主节点在智能电网中用于数据通信的电信号。
具体的,上述从节点数据包括上述从节点的电压数据和在第二工频周期内的网络时钟数据中的至少一项;以及上述每组主节点数据包括上述对应的主节点的电压数据和在上述 第二工频周期内的网络时钟数据中的至少一项。
可理解,本申请实施例提供了三种获取数据的实施例,分别如下所示:
实施例一、
上述从节点获取从节点数据和至少两个主节点的主节点数据,包括:
上述从节点获取第二时长内的M个从节点电压数据,以及分别获取上述至少两个主节点中每个主节点在上述第二时长内的M个主节点电压数据;其中,上述M为大于1的正整数。
可理解,在计算相似度时,该从节点可分别计算上述M个从节点电压数据与上述至少两个主节点中每个主节点的M个主节点电压数据的相似度,且上述M个从节点电压数据与上述每个主节点的M个主节点电压数据中对应的从节点数据和主节点电压数据为同一时刻的电压数据。
实施例二、
上述从节点获取从节点数据和至少两个主节点的主节点数据,包括:
上述从节点获取M个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,上述M为大于1的正整数;
以及分别获取上述至少两个主节点中每个主节点在上述M个参考时刻的主节点电压数据。
可理解,在计算相似度时,上述从节点分别计算上述M个参考时刻的从节点电压数据与上述至少两个主节点中每个主节点的上述M个参考时刻的主节点电压数据的相似度;其中,上述M个参考时刻的从节点电压数据与每个主节点的M个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
本申请实施例中,由于M个从节点电压数据与每个主节点的M个主节点电压数据中对应的从节点数据与主节点数据为同一时刻的电压数据,因此,在获取主节点数据和从节点数据之前,从节点与每个主节点之间已经进行了网络时钟同步。以及至少两个主节点中每个主节点之间也进行了网络时钟同步。可理解,对于网络时钟同步的方法可参考图5所示的实施例,这里不再一一详述。
实施例三、
上述从节点获取从节点数据和至少两个主节点的主节点数据,包括:
获取在上述第二工频周期内M个电压点的从节点网络时钟数据,上述M为大于1的正整数;
以及分别获取上述至少两个主节点中每个主节点在上述第二工频周期内上述M个电压点的主节点网络时钟数据。
可理解,在计算相似度时,在第二工频周期内的M个电压点的从节点网络时钟数据与在第二工频周期内的M个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与所述主节点网络时钟数据为同一电压点的网络时钟数据。
具体的,上述M可以取1000;或者上述也可以M取3000。
可理解,本申请实施例还提供了一种从节点何时采集数据的方法,如下所示:
上述从节点接收台区识别指令,上述台区识别指令包括上述第二时长或上述M各参考 时刻。
其中,该从节点可分别接收到来自至少两个主节点中每个主节点的网络报文,由此,该从节点便可确定周围存在不止一个局域网。进一步地,该从节点还可以将接收到的网络报文发送给与该从节点连接的主节点(即至少两个主节点中的主节点如第一主节点),从而使得该第一主节点广播台区识别指令,进而使得该从节点获取从节点数据和主节点数据。
具体的,至少两个主节点中每个主节点可每隔一段时间发网络协调帧,该网络协调帧中可以携带时间协调的信息。其中,该携带时间协调信息的网络协调帧便可以理解为从节点接收到的网络报文。可理解,该网络协调帧是本申请实施例提供的一种网络报文的形式,但是不应理解为对本申请实施例的限定。
因此,在确定至少两个主节点中每个主节点的网络报文之后,该从节点还可以接收第一主节点广播的台区识别指令。该台区识别指令可包括第二时长或M个参考时刻。如该至少两个主节点中的第二主节点(该至少两个主节点中除第一主节点之外的主节点)接收到该台区识别指令后,便可以依据该台区识别指令中所包括的第二时长或M个参考时刻采集主节点电压数据,或者依据该台区识别指令中所包括的第二工频周期以及M个电压点采集主节点网络时钟数据。以及该从节点接收到该台区识别指令后,该从节点便可以依据该台区识别指令中所包括的第二时长或M个参考时刻采集从节点电压数据,或者,依据该台区识别指令中所包括的第二工频周期以及M个电压点采集从节点网络时钟数据。
可理解,第二主节点采集到主节点数据之后,可以先将该主节点数据发送给第一主节点,继而使得该第一主节点广播该第二主节点的主节点数据以及第一主节点的主节点数据,从而使得该从节点获取到至少两个主节点中每个主节点的主节点数据。
可选的,在第二主节点采集到主节点数据之后,该第二主节点还可以直接广播该第二主节点的主节点数据;以及第一主节点采集到主节点数据之后,该第一主节点直接广播该第一主节点的主节点数据。从而使得从节点获取到第二主节点的主节点数据以及第一主节点的主节点数据之后,便可以执行本申请实施例所提供的方法。
702、上述从节点确定上述从节点数据与每个主节点的主节点数据的相似度,以及确定与上述从节点数据相似度最高的主节点数据。
可理解,该从节点计算从节点数据与每个主节点的主节点数据的相似度的方法可参考图5所示的实现方式,这里不再一一详述。
703、上述从节点将上述相似度最高的主节点数据对应的主节点与上述从节点确认为属于同一个台区。
704、上述从节点与上述相似度最高的主节点数据对应的主节点进行数据通信。
可理解,图7和图5所示的方法各有侧重,其中图7中未详尽描述的实现方式可对应参考图5所示的实现方式,这里不再一一赘述。
进一步地,为了更形象的理解图7所示的方法,以下将结合具体实施例来描述。
参见图8,图8是本申请实施例提供的另一种智能电网中电信号处理方法的信令流程示意图,该智能电网中电信号处理方法可应用于从节点,且以从节点数据为从节点在M个参考时刻的从节点电压数据,每组主节点数据为对应的主节点在M个参考时刻的主节点电 压数据为例。且本申请实施例以当前网络存在两个主节点(如包括第一主节点和第二主节点)和一个从节点为例对信息处理的方法进行说明,实际情况可以有更多数量的主节点和从节点,本申请实施例对主节点和从节点的数量不做限制。如图8所示,该智能电网中电信号处理方法可包括:
801、第一主节点确定存在其他网络的主节点。
具体的,步骤801的具体实现方式可参考图6所示的方法,这里不再一一详述。
可理解,对于步骤801来说,也可以由从节点来执行,如第一主节点中的本网络从节点确定存在其他网络的主节点。在该本网络从节点确定存在其他网络的主节点的情况下,该本网络从节点可以向第一主节点发送通知,即通知该第一主节点周围存在两个网络。从而使得第一主节点执行步骤802。
802、第一主节点广播通知报文,该通知报文包括M个参考时刻,该M个参考时刻即为各节点进行数据采集的时刻。
803、各网络节点根据通知报文中指示的时刻进行数据采集。
804、各网络节点采集数据完成会后,第二主节点通过跨网络的中间节点将第二主节点的主节点数据发送给第一主节点。
805、第一主节点将第一主节点的主节点数据以及第二主节点的主节点数据广播给本网络从节点。
806、本网络从节点计算从节点数据与每个主节点的主节点数据的相似度,根据相似度结果得出台区识别结果。
可理解,对于图8所示的具体实现方式可参考图6和图7所示的方法,这里不再一一赘述。
本申请实施例中,在从节点确定出台区识别结果后,如该从节点确定第一主节点与该从节点不属于同一个台区,则该从节点可以避开该第一主节点,或者该从节点断开与该第一主节点的连接。又或者,该从节点还可以向与该从节点属于同一个台区的主节点发送申请指令,该申请指令可用于申请加入属于同一个台区的主节点所在的网络。可理解,在该从节点确定第一主节点与该从节点属于同一个台区时,该从节点可以保持与该第一主节点的连接,或者该从节点还可以向该第一主节点发送指示指令,从而使得该第一主节点知道该从节点与该第一主节点属于同一个台区。本申请实施例对于从节点得到与该从节点匹配的主节点之后的操作不作唯一性限定。
可理解,图6和图8分别示出了不同的场景,本申请实施例对于该图8中所示的第一主节点和第二主节点是否与图6中的第一主节点和第二主节点相同不作限定。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
参见图9,图9是本申请实施例提供的一种主节点的结构示意图,该主节点可用于执行图5和图6所示的智能电网中电信号处理方法,如图9所示,该主节点可包括:
获取单元901,用于获取从节点数据和至少两个主节点的主节点数据;其中,主节点为与集中器连接的节点,从节点为与用户电表连接的节点,上述从节点数据用于表征从节点的电信号的信号幅度和信号频率中至少一项的相关信息,上述从节点的电信号为上述从 节点在智能电网中用于数据通信的电信号;上述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,上述对应的主节点的电信号为上述对应的主节点在上述智能电网中用于数据通信的电信号;
确定单元902,用于确定上述从节点数据与每个主节点的主节点数据的相似度,以及还用于确定与上述从节点数据相似度最高的主节点数据,上述相似度用于表示上述从节点的电信号和上述对应的主节点的电信号的相似程度;
确认单元903,用于将上述相似度最高的主节点数据对应的主节点与上述从节点确认为属于同一个台区;
数据通信单元904,用于当上述确认单元确认上述相似度最高的主节点数据对应的主节点为上述第一主节点时,与上述从节点进行数据通信;
发送单元905,用于当上述确认单元确认上述相似度最高的主节点数据对应的主节点为第二主节点时,向上述从节点发送指示指令,上述指示指令用于指示上述从节点与上述第二主节点进行数据通信。
具体的,上述从节点数据包括上述从节点的电压数据和在第一工频周期内的网络时钟数据中的至少一项;上述每组主节点数据包括上述对应的主节点的电压数据和在上述第一工频周期内的网络时钟数据中的至少一项。
具体的,上述获取单元901,具体用于获取第一时长内的N个从节点电压数据,以及分别获取上述至少两个主节点中每个主节点在上述第一时长内的N个主节点电压数据;其中,上述N为大于1的正整数;
上述确定单元902,具体用于分别计算上述N个从节点电压数据与上述至少两个主节点中每个主节点的N个主节点电压数据的相似度,其中,上述N个从节点电压数据与上述每个主节点的N个主节点电压数据中对应的从节点电压数据和主节点电压数据为同一时刻的电压数据。
具体的,上述获取单元901,具体用于获取N个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,上述N为大于1的正整数;以及分别获取上述至少两个主节点中每个主节点在上述N个参考时刻的主节点电压数据;
上述确定单元902,具体用于分别计算上述N个参考时刻的从节点电压数据与上述至少两个主节点中每个主节点的上述N个参考时刻的主节点电压数据的相似度;其中,上述N个参考时刻的从节点电压数据与每个主节点的N个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
具体的,上述获取单元901,具体用于获取在上述第一工频周期内N个电压点的从节点网络时钟数据,上述N为大于1的正整数;以及分别获取上述至少两个主节点中每个主节点在上述第一工频周期内上述N个电压点的主节点网络时钟数据;
上述确定单元902,具体用于确定与上述N个电压点的从节点网络时钟数据相似度最高的一组主节点数据;其中,在上述第一工频周期内的N个电压点的从节点网络时钟数据与在上述第一工频周期内的N个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与上述主节点网络时钟数据为同一电压点的网络时钟数据。
具体的,上述N取1000;或者上述N取3000。
具体的,上述确定单元902,具体用于根据上述从节点数据与上述每个主节点的主节点数据的方差值确定上述从节点数据与上述每个主节点的主节点数据的相似度,以及确定与上述从节点数据方差值最小的主节点数据作为与上述从节点数据相似度最高的主节点数据;
或者,上述确定单元902,具体用于根据上述从节点数据与上述每个主节点的主节点数据的数量积确定上述从节点数据与上述每个主节点的主节点数据的相似度,以及确定与上述从节点数据数量积最大的主节点数据作为与上述从节点数据相似度最高的主节点数据;
或者,上述确定单元902,具体用于根据上述从节点数据与上述每个主节点的主节点数据的相关系数确定上述从节点数据与上述每个主节点的主节点数据的相似度,以及确定与上述从节点数据相关系数最大的主节点数据作为与上述从节点数据相似度最高的主节点数据。
可选的,该主节点还可称为第一主节点,如图10所示,该第一主节点还可以包括:
网络时钟同步单元906,用于与上述从节点进行网络时钟同步,以及与上述至少两个主节点中除上述第一主节点之外的每个主节点进行网络时钟同步。
可选的,如图10所示,该第一主节点还可以包括:
广播单元907,用于广播台区识别指令,上述台区识别指令包括上述第一时长或上述N个参考时刻。
可理解,各个单元的实现还可以对应参照图5至图6所示的方法实施例的相应描述。其中,图3所示的处理器还可用于执行获取单元、确定单元、确认单元和网络时钟同步单元所执行的功能。其中,图3所示的收发器还可用于执行发送单元和广播单元所执行的功能。以及数据通信单元所执行的功能可由处理器执行也可由收发器执行等,本申请实施例不作限定。
应当理解,本申请中提到的第一主节点、第二主节点以及至少两个主节点中的每个主节点都可以为图9或图10中的主节点。
参见图11,图11是本申请实施例提供的一种从节点的结构示意图,该从节点可用于执行图7和图8所示的方法,如图11所示,该从节点包括:
获取单元1101,用于获取从节点数据和至少两个主节点的主节点数据;其中,主节点为与集中器连接的节点,上述从节点为与用户电表连接的节点,上述从节点数据用于表征上述从节点的电信号的信号幅度和信号频率中至少一项的相关信息,上述从节点的电信号为上述从节点在智能电网中用于数据通信的电信号;上述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,上述对应的主节点的电信号为上述对应的主节点在上述智能电网中用于数据通信的电信号;
确定单元1102,用于确定上述从节点数据与每个主节点的主节点数据的相似度;
上述确定单元1102,还用于确定与上述从节点数据相似度最高的主节点数据;
确认单元1103,用于将上述相似度最高的主节点数据对应的主节点与上述从节点确认为属于同一个台区;
数据通信单元1104,用于与上述相似度最高的主节点数据对应的主节点进行数据通信。
具体的,上述从节点数据包括上述从节点的电压数据和在第二工频周期内的网络时钟数据中的至少一项;
上述每组主节点数据包括上述对应的主节点的电压数据和在上述第二工频周期内的网络时钟数据中的至少一项。
可选的,上述获取单元1101,具体用于获取第二时长内的M个从节点电压数据,以及分别获取上述至少两个主节点中每个主节点在上述第二时长内的M个主节点电压数据;其中,上述M为大于1的正整数;
上述确定单元1102,具体用于分别计算上述M个从节点电压数据与上述至少两个主节点中每个主节点的M个主节点电压数据的相似度,其中,上述M个从节点电压数据与上述每个主节点的M个主节点电压数据中对应的从节点电压数据和主节点电压数据为同一时刻的电压数据。
可选的,上述获取单元1101,具体用于获取M个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,上述M为大于1的正整数;以及分别获取上述至少两个主节点中每个主节点在上述M个参考时刻的主节点电压数据;
上述确定单元1102,具体用于分别计算上述M个参考时刻的从节点电压数据与上述至少两个主节点中每个主节点的上述M个参考时刻的主节点电压数据的相似度;其中,上述M个参考时刻的从节点电压数据与每个主节点的M个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
可选的,上述获取单元1101,具体用于获取在上述第一工频周期内M个电压点的从节点网络时钟数据,上述M为大于1的正整数;以及分别获取上述至少两个主节点中每个主节点在上述第一工频周期内上述M个电压点的主节点网络时钟数据;
上述确定单元1102,具体用于确定与上述M个电压点的从节点网络时钟数据相似度最高的一组主节点数据;其中,在上述第一工频周期内的M个电压点的从节点网络时钟数据与在上述第一工频周期内的M个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与上述主节点网络时钟数据为同一电压点的网络时钟数据。
具体的,所述M取1000;或者所述M取3000。
具体的,上述确定单元1102,具体用于根据上述从节点数据与上述每个主节点的主节点数据的方差值确定上述从节点数据与上述每个主节点的主节点数据的相似度,以及确定与上述从节点数据方差值最小的主节点数据作为与上述从节点数据相似度最高的主节点数据;
或者,上述确定单元1102,具体用于根据上述从节点数据与上述每个主节点的主节点数据的数量积确定上述从节点数据与上述每个主节点的主节点数据的相似度,以及确定与上述从节点数据数量积最大的主节点数据作为与上述从节点数据相似度最高的主节点数据;
或者,上述确定单元1102,具体用于根据上述从节点数据与上述每个主节点的主节点数据的相关系数确定上述从节点数据与上述每个主节点的主节点数据的相似度,以及确定与上述从节点数据相关系数最大的主节点数据作为与上述从节点数据相似度最高的主节点数据。
可选的,如图12所示,该从节点还包括:
网络时钟同步单元1105,用于与上述至少两个主节点中的每个主节点进行网络时钟同步。
可选的,如图12所示,上述从节点还包括:
接收单元1106,用于接收台区识别指令,上述台区识别指令包括上述第二时长或上述M个参考时刻。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在电信号处理装置上运行时,图5至图8所示的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在电信号处理装置上运行时,图5至图8所示的方法流程得以实现。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (39)

  1. 一种智能电网中电信号处理方法,其特征在于,包括:
    第一主节点获取从节点数据和至少两个主节点的主节点数据;其中,主节点为与集中器连接的节点,从节点为与用户电表连接的节点,所述从节点数据用于表征所述从节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述从节点的电信号为所述从节点在智能电网中用于数据通信的电信号;所述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述对应的主节点的电信号为所述对应的主节点在所述智能电网中用于数据通信的电信号;
    所述第一主节点确定所述从节点数据与每个主节点的主节点数据的相似度;
    所述第一主节点确定与所述从节点数据相似度最高的主节点数据;
    所述第一主节点将所述相似度最高的主节点数据对应的主节点与所述从节点确认为属于同一个台区;
    当所述第一主节点确认所述相似度最高的主节点数据对应的主节点为所述第一主节点时,所述第一主节点与所述从节点进行数据通信;
    当所述第一主节点确认所述相似度最高的主节点数据对应的主节点为第二主节点时,所述第一主节点向所述从节点发送指示指令,所述指示指令用于指示所述从节点与所述第二主节点进行数据通信。
  2. 根据权利要求1所述的方法,其特征在于,所述从节点数据包括所述从节点的电压数据和在第一工频周期内的网络时钟数据中的至少一项;
    所述每组主节点数据包括所述对应的主节点的电压数据和在所述第一工频周期内的网络时钟数据中的至少一项。
  3. 根据权利要求2所述的方法,其特征在于,所述第一主节点获取从节点数据和至少两个主节点的主节点数据,包括:
    所述第一主节点获取第一时长内的N个从节点电压数据,所述N为大于1的正整数;
    以及分别获取所述至少两个主节点中每个主节点在所述第一时长内的N个主节点电压数据;
    所述第一主节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:
    所述第一主节点分别计算所述N个从节点电压数据与所述至少两个主节点中每个主节点的N个主节点电压数据的相似度,其中,所述N个从节点电压数据与所述每个主节点的N个主节点电压数据中对应的从节点电压数据和主节点电压数据为同一时刻的电压数据。
  4. 根据权利要求2所述的方法,其特征在于,所述第一主节点获取从节点数据和至少两个主节点的主节点数据,包括:
    所述第一主节点获取N个参考时刻的从节点电压数据,其中,每个参考时刻获取一个 从节点电压数据,所述N为大于1的正整数;
    以及分别获取所述至少两个主节点中每个主节点在所述N个参考时刻的主节点电压数据;
    所述第一主节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:
    所述第一主节点分别计算所述N个参考时刻的从节点电压数据与所述至少两个主节点中每个主节点的所述N个参考时刻的主节点电压数据的相似度;其中,所述N个参考时刻的从节点电压数据与每个主节点的N个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
  5. 根据权利要求2所述的方法,其特征在于,所述第一主节点获取从节点数据和至少两个主节点的主节点数据,包括:
    所述第一主节点获取在所述第一工频周期内N个电压点的从节点网络时钟数据,所述N为大于1的正整数;
    以及分别获取所述至少两个主节点中每个主节点在所述第一工频周期内所述N个电压点的主节点网络时钟数据;
    所述第一主节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:
    所述第一主节点分别计算所述N个电压点的从节点网络时钟数据与所述至少两个主节点中每个主节点的N个电压点的主节点网络时钟数据;其中,在所述第一工频周期内的N个电压点的从节点网络时钟数据与在所述第一工频周期内的N个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与所述主节点网络时钟数据为同一电压点的网络时钟数据。
  6. 根据权利要求3至5任意一项所述的方法,其特征在于,所述N取1000;或者所述N取3000。
  7. 根据权利要求1至6任意一项所述的方法,其特征在于,所述第一主节点确定所述从节点数据与每个主节点的主节点数据的相似度,所述第一主节点确定与所述从节点数据相似度最高的主节点数据,包括:
    所述第一主节点根据所述从节点数据与所述每个主节点的主节点数据的方差值确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述第一主节点确定与所述从节点数据方差值最小的主节点数据作为与所述从节点数据相似度最高的主节点数据;
    或者,所述第一主节点根据所述从节点数据与所述每个主节点的主节点数据的数量积确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述第一主节点确定与所述从节点数据数量积最大的主节点数据作为与所述从节点数据相似度最高的主节点数据;
    或者,所述第一主节点根据所述从节点数据与所述每个主节点的主节点数据的相关系数确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述第一主节点确定与所述从节点数据相关系数最大的主节点数据作为与所述从节点数据相似度最高的主节点数据。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,所述第一主节点获取从节点数据和至少两个主节点的主节点数据之前,所述方法还包括:
    所述第一主节点与所述从节点进行网络时钟同步,以及所述第一主节点与所述至少两个主节点中除所述第一主节点之外的每个主节点进行网络时钟同步。
  9. 根据权利要求3至8任意一项所述的方法,其特征在于,所述方法还包括:
    所述第一主节点广播台区识别指令,所述台区识别指令包括所述第一时长或所述N个参考时刻。
  10. 一种智能电网中电信号处理方法,其特征在于,包括:
    从节点获取从节点数据和至少两个主节点的主节点数据;其中,主节点为与集中器连接的节点,从节点为与用户电表连接的节点,所述从节点数据用于表征所述从节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述从节点的电信号为所述从节点在智能电网中用于数据通信的电信号;所述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述对应的主节点的电信号为所述对应的主节点在所述智能电网中用于数据通信的电信号;
    所述从节点确定所述从节点数据与每个主节点的主节点数据的相似度;
    所述从节点确定与所述从节点数据相似度最高的主节点数据;
    所述从节点将所述相似度最高的主节点数据对应的主节点与所述从节点确认为属于同一个台区;
    所述从节点与所述相似度最高的主节点数据对应的主节点进行数据通信。
  11. 根据权利要求10所述的方法,其特征在于,所述从节点数据包括所述从节点的电压数据和在第二工频周期内的网络时钟数据中的至少一项;
    所述每组主节点数据包括所述对应的主节点的电压数据和在所述第二工频周期内的网络时钟数据中的至少一项。
  12. 根据权利要求11所述的方法,其特征在于,所述从节点获取从节点数据和至少两个主节点的主节点数据,包括:
    所述从节点获取第二时长内的M个从节点电压数据,所述M为大于1的正整数;
    以及分别获取所述至少两个主节点中每个主节点在所述第二时长内的M个主节点电压数据;
    所述从节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:
    所述从节点分别计算所述M个从节点电压数据与所述至少两个主节点中每个主节点的M个主节点电压数据的相似度,其中,所述M个从节点电压数据与所述每个主节点的M个主节点电压数据中对应的从节点电压数据和主节点电压数据为同一时刻的电压数据。
  13. 根据权利要求11所述的方法,其特征在于,所述从节点获取从节点数据和至少两个主节点的主节点数据,包括:
    所述从节点获取M个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,所述M为大于1的正整数;
    以及分别获取所述至少两个主节点中每个主节点在所述M个参考时刻的主节点电压数据;
    所述从节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:
    所述从节点分别计算所述M个参考时刻的从节点电压数据与所述至少两个主节点中每个主节点的所述M个参考时刻的主节点电压数据的相似度;其中,所述M个参考时刻的从节点电压数据与每个主节点的M个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
  14. 根据权利要求11所述的方法,其特征在于,所述从节点获取从节点数据和至少两个主节点的主节点数据,包括:
    所述从节点获取在所述第一工频周期内M个电压点的从节点网络时钟数据,所述M为大于1的正整数;
    以及分别获取所述至少两个主节点中每个主节点在所述第一工频周期内所述M个电压点的主节点网络时钟数据;
    所述从节点确定所述从节点数据与每个主节点的主节点数据的相似度,包括:
    所述从节点分别计算所述M个电压点的从节点网络时钟数据与所述至少两个主节点中每个主节点的M个电压点的主节点网络时钟数据;其中,在所述第一工频周期内的M个电压点的从节点网络时钟数据与在所述第一工频周期内的M个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与所述主节点网络时钟数据为同一电压点的网络时钟数据。
  15. 根据权利要求12至14任意一项所述的方法,其特征在于,所述M取1000;或者所述M取3000。
  16. 根据权利要求10至15任意一项所述的方法,其特征在于,所述从节点确定所述从节点数据与每个主节点的主节点数据的相似度,所述从节点确定与所述从节点数据相似度最高的主节点数据,包括:
    所述从节点根据所述从节点数据与所述每个主节点的主节点数据的方差值确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述从节点确定与所述从节点数据方差值最小的主节点数据作为与所述从节点数据相似度最高的主节点数据;
    或者,所述从节点根据所述从节点数据与所述每个主节点的主节点数据的数量积确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述从节点确定与所述从节点数据数量积最大的主节点数据作为与所述从节点数据相似度最高的主节点数据;
    或者,所述从节点根据所述从节点数据与所述每个主节点的主节点数据的相关系数确定所述从节点数据与所述每个主节点的主节点数据的相似度,所述从节点确定与所述从节点数据相关系数最大的主节点数据作为与所述从节点数据相似度最高的主节点数据。
  17. 根据权利要求10至16任意一项所述的方法,其特征在于,所述从节点获取从节点数据和至少两个主节点的主节点数据之前,所述方法还包括:
    所述从节点与所述至少两个主节点中的每个主节点进行网络时钟同步。
  18. 根据权利要求12至17任意一项所述的方法,其特征在于,所述方法还包括:
    所述从节点接收台区识别指令,所述台区识别指令包括所述第二时长或所述M个参考时刻。
  19. 一种主节点,其特征在于,所述主节点为第一主节点,所述第一主节点包括:
    获取单元,用于获取从节点数据和至少两个主节点的主节点数据,所述至少两个主节点包括所述第一主节点;其中,主节点为与集中器连接的节点,从节点为与用户电表连接的节点,所述从节点数据用于表征所述从节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述从节点的电信号为所述从节点在智能电网中用于数据通信的电信号;所述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述对应的主节点的电信号为所述对应的主节点在所述智能电网中用于数据通信的电信号;
    确定单元,用于确定所述从节点数据与每个主节点的主节点数据的相似度;
    所述确定单元,还用于确定与所述从节点数据相似度最高的主节点数据;
    确认单元,用于将所述相似度最高的主节点数据对应的主节点与所述从节点确认为属于同一个台区;
    数据通信单元,用于当所述确认单元确认所述相似度最高的主节点数据对应的主节点为所述第一主节点时,与所述从节点进行数据通信;
    发送单元,用于当所述确认单元确认所述相似度最高的主节点数据对应的主节点为第二主节点时,向所述从节点发送指示指令,所述指示指令用于指示所述从节点与所述第二主节点进行数据通信。
  20. 根据权利要求19所述的主节点,其特征在于,所述从节点数据包括所述从节点的电压数据和在第一工频周期内的网络时钟数据中的至少一项;
    所述每组主节点数据包括所述对应的主节点的电压数据和在所述第一工频周期内的网络时钟数据中的至少一项。
  21. 根据权利要求20所述的主节点,其特征在于,
    所述获取单元,具体用于获取第一时长内的N个从节点电压数据,以及分别获取所述至少两个主节点中每个主节点在所述第一时长内的N个主节点电压数据;其中,所述N为 大于1的正整数;
    所述确定单元,具体用于分别计算所述N个从节点电压数据与所述至少两个主节点中每个主节点的N个主节点电压数据的相似度,其中,所述N个从节点电压数据与所述每个主节点的N个主节点电压数据中对应的从节点电压数据和主节点电压数据为同一时刻的电压数据。
  22. 根据权利要求20所述的主节点,其特征在于,
    所述获取单元,具体用于获取N个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,所述N为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述N个参考时刻的主节点电压数据;
    所述确定单元,具体用于分别计算所述N个参考时刻的从节点电压数据与所述至少两个主节点中每个主节点的所述N个参考时刻的主节点电压数据的相似度;其中,所述N个参考时刻的从节点电压数据与每个主节点的N个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
  23. 根据权利要求20所述的主节点,其特征在于,
    所述获取单元,具体用于获取在所述第一工频周期内N个电压点的从节点网络时钟数据,所述N为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述第一工频周期内所述N个电压点的主节点网络时钟数据;
    所述确定单元,具体用于确定与所述N个电压点的从节点网络时钟数据相似度最高的一组主节点数据;其中,在所述第一工频周期内的N个电压点的从节点网络时钟数据与在所述第一工频周期内的N个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与所述主节点网络时钟数据为同一电压点的网络时钟数据。
  24. 根据权利要求20至23任意一项所述的主节点,其特征在于,所述N取1000;或者所述N取3000。
  25. 根据权利要求19至24任意一项所述的主节点,其特征在于,
    所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的方差值确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据方差值最小的主节点数据作为与所述从节点数据相似度最高的主节点数据;
    或者,所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的数量积确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据数量积最大的主节点数据作为与所述从节点数据相似度最高的主节点数据;
    或者,所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的相关系数确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据相关系数最大的主节点数据作为与所述从节点数据相似度最高的主节点数据。
  26. 根据权利要求19至25任意一项所述的主节点,其特征在于,所述第一主节点还包括:
    网络时钟同步单元,用于与所述从节点进行网络时钟同步,以及与所述至少两个主节点中除所述第一主节点之外的每个主节点进行网络时钟同步。
  27. 根据权利要求21至26任意一项所述的主节点,其特征在于,所述第一主节点还包括:
    广播单元,用于广播台区识别指令,所述台区识别指令包括所述第一时长或所述N个参考时刻。
  28. 一种从节点,其特征在于,包括:
    获取单元,用于获取从节点数据和至少两个主节点的主节点数据;其中,主节点为与集中器连接的节点,所述从节点为与用户电表连接的节点,所述从节点数据用于表征所述从节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述从节点的电信号为所述从节点在智能电网中用于数据通信的电信号;所述至少两个主节点中每个主节点对应一组主节点数据,每组主节点数据用于表征对应的主节点的电信号的信号幅度和信号频率中至少一项的相关信息,所述对应的主节点的电信号为所述对应的主节点在所述智能电网中用于数据通信的电信号;
    确定单元,用于确定所述从节点数据与每个主节点的主节点数据的相似度;
    所述确定单元,还用于确定与所述从节点数据相似度最高的主节点数据;
    确认单元,用于将所述相似度最高的主节点数据对应的主节点与所述从节点确认为属于同一个台区;
    数据通信单元,用于与所述相似度最高的主节点数据对应的主节点进行数据通信。
  29. 根据权利要求28所述的从节点,其特征在于,所述从节点数据包括所述从节点的电压数据和在第二工频周期内的网络时钟数据中的至少一项;
    所述每组主节点数据包括所述对应的主节点的电压数据和在所述第二工频周期内的网络时钟数据中的至少一项。
  30. 根据权利要求29所述的从节点,其特征在于,
    所述获取单元,具体用于获取第二时长内的M个从节点电压数据,以及分别获取所述至少两个主节点中每个主节点在所述第二时长内的M个主节点电压数据;其中,所述M为大于1的正整数;
    所述确定单元,具体用于分别计算所述M个从节点电压数据与所述至少两个主节点中每个主节点的M个主节点电压数据的相似度,其中,所述M个从节点电压数据与所述每个主节点的M个主节点电压数据中对应的从节点电压数据和主节点电压数据为同一时刻的电压数据。
  31. 根据权利要求29所述的从节点,其特征在于,
    所述获取单元,具体用于获取M个参考时刻的从节点电压数据,其中,每个参考时刻获取一个从节点电压数据,所述M为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述M个参考时刻的主节点电压数据;
    所述确定单元,具体用于分别计算所述M个参考时刻的从节点电压数据与所述至少两个主节点中每个主节点的所述M个参考时刻的主节点电压数据的相似度;其中,所述M个参考时刻的从节点电压数据与每个主节点的M个参考时刻的主节点电压数据中对应的从节点电压数据与主节点电压数据为同一时刻的电压数据。
  32. 根据权利要求29所述的从节点,其特征在于,
    所述获取单元,具体用于获取在所述第一工频周期内M个电压点的从节点网络时钟数据,所述M为大于1的正整数;以及分别获取所述至少两个主节点中每个主节点在所述第一工频周期内所述M个电压点的主节点网络时钟数据;
    所述确定单元,具体用于确定与所述M个电压点的从节点网络时钟数据相似度最高的一组主节点数据;其中,在所述第一工频周期内的M个电压点的从节点网络时钟数据与在所述第一工频周期内的M个电压点的主节点网络时钟数据中,对应的从节点网络时钟数据与所述主节点网络时钟数据为同一电压点的网络时钟数据。
  33. 根据权利要求29至32任意一项所述的从节点,其特征在于,所述M取1000;或者所述M取3000。
  34. 根据权利要求28至33任意一项所述的从节点,其特征在于,
    所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的方差值确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据方差值最小的主节点数据作为与所述从节点数据相似度最高的主节点数据;
    或者,所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的数量积确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据数量积最大的主节点数据作为与所述从节点数据相似度最高的主节点数据;
    或者,所述确定单元,具体用于根据所述从节点数据与所述每个主节点的主节点数据的相关系数确定所述从节点数据与所述每个主节点的主节点数据的相似度,以及确定与所述从节点数据相关系数最大的主节点数据作为与所述从节点数据相似度最高的主节点数据。
  35. 根据权利要求28至34任意一项所述的从节点,其特征在于,所述从节点还包括:
    网络时钟同步单元,用于与所述至少两个主节点中的每个主节点进行网络时钟同步。
  36. 根据权利要求30至35任意一项所述的从节点,其特征在于,所述从节点还包括:
    接收单元,用于接收台区识别指令,所述台区识别指令包括所述第二时长或所述M个参考时刻。
  37. 一种电信号处理装置,其特征在于,包括:处理器;所述处理器,用于调用存储器中的软件指令,以执行如权利要求1至9任意一项所述的方法中相应的功能;或者,以执行如权利要求10至18任意一项所述的方法中相应的功能。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机或处理器上运行时,使得所述计算机或处理器执行如权利要求1至9任意一项所述的方法;或者,使得所述计算机或处理器执行如权利要求10至18任意一项所述的方法。
  39. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机或处理器上运行时,使得所述计算机或处理器执行如权利要求1至9任意一项所述的方法;或者,使得所述计算机或处理器执行如权利要求10至18任意一项所述的方法。
PCT/CN2018/104232 2018-09-05 2018-09-05 智能电网中电信号处理方法及装置 WO2020047785A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/104232 WO2020047785A1 (zh) 2018-09-05 2018-09-05 智能电网中电信号处理方法及装置
CN201880097092.6A CN112639900A (zh) 2018-09-05 2018-09-05 智能电网中电信号处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/104232 WO2020047785A1 (zh) 2018-09-05 2018-09-05 智能电网中电信号处理方法及装置

Publications (1)

Publication Number Publication Date
WO2020047785A1 true WO2020047785A1 (zh) 2020-03-12

Family

ID=69722908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104232 WO2020047785A1 (zh) 2018-09-05 2018-09-05 智能电网中电信号处理方法及装置

Country Status (2)

Country Link
CN (1) CN112639900A (zh)
WO (1) WO2020047785A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070013547A1 (en) * 2003-02-14 2007-01-18 Boaz Jon A Automated meter reading system, communication and control network from automated meter reading, meter data collector, and associated methods
CN104092481A (zh) * 2014-07-17 2014-10-08 江苏林洋电子股份有限公司 一种通过电压特征区分台区和相别的方法
CN105389636A (zh) * 2015-12-11 2016-03-09 河海大学 一种低压台区kfcm-svr合理线损预测方法
CN106505593A (zh) * 2016-10-14 2017-03-15 国网信通亿力科技有限责任公司 一种基于大数据的配变三相不平衡分析与负荷调整的方法
CN108257374A (zh) * 2017-12-14 2018-07-06 国网北京市电力公司 户变关系的识别方法和装置
CN207637296U (zh) * 2017-12-14 2018-07-20 国网北京市电力公司 户变关系识别系统的测试装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620391B2 (ja) * 2000-02-23 2005-02-16 日本電気株式会社 指紋入力装置及びそれに用いる画像判定方法並びにその制御プログラムを記録した記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070013547A1 (en) * 2003-02-14 2007-01-18 Boaz Jon A Automated meter reading system, communication and control network from automated meter reading, meter data collector, and associated methods
CN104092481A (zh) * 2014-07-17 2014-10-08 江苏林洋电子股份有限公司 一种通过电压特征区分台区和相别的方法
CN105389636A (zh) * 2015-12-11 2016-03-09 河海大学 一种低压台区kfcm-svr合理线损预测方法
CN106505593A (zh) * 2016-10-14 2017-03-15 国网信通亿力科技有限责任公司 一种基于大数据的配变三相不平衡分析与负荷调整的方法
CN108257374A (zh) * 2017-12-14 2018-07-06 国网北京市电力公司 户变关系的识别方法和装置
CN207637296U (zh) * 2017-12-14 2018-07-20 国网北京市电力公司 户变关系识别系统的测试装置

Also Published As

Publication number Publication date
CN112639900A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN102845004B (zh) 用于配电系统的时间同步和测量的方法和装置
CN110299763A (zh) 一种低压台区线路拓扑自动识别系统及方法
US8712420B2 (en) Generating a network map
CN109639321A (zh) 基于电力线宽带载波通信的台区户变关系识别系统及方法
US20220149623A1 (en) Automatic discovery of electrical supply network topology and phase
CN111446988A (zh) 基于hplc载波通信的低压台区变线户拓扑识别边缘计算方法
US20200204332A1 (en) Measurement gap determination method, user equipment, and network side device
CN102142863A (zh) 数据上报方法及系统
RU2012147810A (ru) Хэндовер с агрегацией несущих
CN109327242B (zh) 电能表所属台区的识别方法及装置
US20210288520A1 (en) Topology and phase detection for electrical supply network
WO2021052423A1 (zh) 生成物理网络拓扑图的方法及装置
CN110475124A (zh) 视频卡顿检测方法及装置
US11881931B2 (en) Data transmission time obtaining method, apparatus, and system
WO2020047785A1 (zh) 智能电网中电信号处理方法及装置
US11575493B2 (en) Time synchronization method and apparatus, and storage medium
CN210323213U (zh) 一种台区分支识别装置
CN106131885B (zh) 一种无线测量报告mr会话关联方法及装置
CN103595636A (zh) 维护实体组端点mac地址获取的方法、装置及系统
CN204392305U (zh) 一种基于gprs通信的dtu数据服务系统
CN106053941B (zh) 一种相位检测方法和装置
EP3313082A1 (en) Method, system and apparatus for detecting a device which is not co-located with a set of devices
CN109462627A (zh) 一种物联网终端的电量管理方法及系统
CN110913284A (zh) 一种电能信息的采集方法及装置
CN115173895A (zh) 台区识别性能检测装置及方法、控制模块及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932529

Country of ref document: EP

Kind code of ref document: A1