WO2020047711A1 - 动力耦合控制系统及车辆 - Google Patents

动力耦合控制系统及车辆 Download PDF

Info

Publication number
WO2020047711A1
WO2020047711A1 PCT/CN2018/103818 CN2018103818W WO2020047711A1 WO 2020047711 A1 WO2020047711 A1 WO 2020047711A1 CN 2018103818 W CN2018103818 W CN 2018103818W WO 2020047711 A1 WO2020047711 A1 WO 2020047711A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating member
control system
linkage
coupling control
armature
Prior art date
Application number
PCT/CN2018/103818
Other languages
English (en)
French (fr)
Inventor
刘磊
钟虎
严忆泉
Original Assignee
舍弗勒技术股份两合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司 filed Critical 舍弗勒技术股份两合公司
Priority to CN201880089748.XA priority Critical patent/CN111788405A/zh
Priority to DE112018007951.1T priority patent/DE112018007951T5/de
Priority to PCT/CN2018/103818 priority patent/WO2020047711A1/zh
Publication of WO2020047711A1 publication Critical patent/WO2020047711A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/118Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with interengaging jaws or gear teeth

Definitions

  • the invention relates to the technical field of vehicles. Specifically, the present invention relates to a dynamic coupling control system and a vehicle including the dynamic coupling control system.
  • the power coupling systems in these devices usually use a dedicated motor as the power source, actuate the shift fork via a ball screw, and then use the shift fork to shift the synchronizer to achieve selective power output.
  • a dedicated motor as the power source
  • actuate the shift fork via a ball screw and then use the shift fork to shift the synchronizer to achieve selective power output.
  • such a system requires a separate motor to drive, and the components of the fork device are numerous and complex in structure, resulting in low reliability and high cost of the overall system.
  • CN 201866218 U discloses a shifting mechanism that drives a ratchet mechanism through an electromagnet to control a cyclic shift of a fork.
  • the electromagnet is arranged perpendicular to the plane of the fork, the overall compactness of the system is low, and the reliability is not high.
  • CN 203876574U discloses a power system assembly of an electric vehicle, which controls the engagement of an armature and a planet carrier through an electromagnetic brake arranged coaxially with a transmission shaft, thereby implementing vehicle braking.
  • the braking device is arranged at one end of the transmission shaft and is arranged side by side with each group of gears in the axial direction, which increases the overall size of the power system and is not conducive to vehicle layout design.
  • the technical problem to be solved by the present invention is to provide a dynamic coupling control system and a vehicle with a compact structure, easy control, and high reliability.
  • the above technical problem is solved by a dynamic coupling control system according to the present invention.
  • the power coupling control system includes a first rotating member, a second rotating member, a sliding joint member, and an actuating device.
  • the sliding joint member and the first rotating member are coaxially sleeved and connected in a torsion-proof manner.
  • the engaging member slides axially relative to the first rotating member, so that the first rotating member and the second rotating member are coupled or decoupled through the sliding engaging member.
  • the above-mentioned actuating device is designed as an electromagnetic actuating device, wherein the electromagnetic actuating device includes a solenoid and an armature sleeved and arranged coaxially with the solenoid, and the armature and the slide
  • the coupling member is coaxially sleeved and can be moved axially relative to the solenoid, and the sliding coupling member is arranged radially on the side of the armature facing away from the solenoid;
  • the electromagnetic actuating device further includes a linkage member and is arranged on the linkage
  • the return spring between the first rotating member and the second rotating member, the linkage member and the sliding joint are coaxially arranged and arranged between the armature and the sliding joint in a radial direction; wherein, when the solenoid is energized, the armature passes The linkage member drives the sliding joint member to slide toward the second rotating member in the axial direction.
  • the linkage member pushes the armature and the sliding joint member to slide in the axial direction toward the first rotating member by means of the return spring.
  • the dynamic coupling control system pushes the sliding joint through an electromagnetic actuating device coaxially sleeved on the outside of the first rotating member, thereby controlling the coupling or decoupling of both the first rotating member and the second rotating member.
  • the power switch can directly control the power transmission, thereby eliminating the need for a complex control system, greatly simplifying the system structure, not only being easy to control, but also improving the reliability of the system.
  • the linkage is made of a non-magnetic material.
  • Non-magnetic linkages cannot be magnetized, avoiding the effect on the armature's movement under the solenoid magnetic field.
  • the first rotating member includes a driving shaft, and the second rotating member is supported on the driving shaft through a bearing.
  • the first rotating member is decoupled from the second rotating member, the second rotating member can rotate relative to the first rotating member through the bearing.
  • a transmission hub is provided between the sliding joint and the drive shaft, and the sliding joint is connected to the drive shaft in a torque-proof manner through the transmission hub.
  • the driving shaft drives the sliding joint to rotate through the transmission hub, and then drives the second rotary member to rotate when the sliding joint is coupled to the second rotary member.
  • a shaft sleeve or a snap ring is provided on the drive shaft, and the shaft sleeve or the snap ring restricts the axial movement of the transmission hub and / or the second rotating member, so that it is fixed in the axial direction.
  • the electromagnetic actuating device is fixed on the housing of the power coupling control system through a bracket, and the bracket is made of a non-magnetic material, which avoids the risk that the bracket is magnetized and interferes with the solenoid magnetic field.
  • a radial end surface of the solenoid facing away from the second rotating member has a flange protruding toward the armature in a radial direction, and the flange can stop the armature from moving away from the axis of the second rotating member To avoid moving the armature away from the electromagnetic actuator due to excessive sliding.
  • one end of the return spring is fixed on the second rotating member, and the other end abuts the linkage member.
  • the return spring can push the sliding engagement member away from the second rotating member when the solenoid is powered off, thereby decoupling the first rotating member and the second rotating member.
  • a spring plate is provided at one end of the return spring engaging the linkage, and the return spring abuts the linkage through the spring plate.
  • the linkage is integrated with the sliding joint, so that the number of components of the system can be reduced, and the compactness and reliability of the structure can be further improved.
  • a vehicle according to the present invention which includes a power coupling control system having the above-mentioned features.
  • FIG. 1 is a cross-sectional view of a power coupling control system according to an embodiment of the present invention.
  • FIG. 1 is a sectional view of a power coupling control system according to an embodiment of the present invention.
  • the power coupling control system controls the coupling or decoupling between the first rotating member and the second rotating member through an electromagnetic actuating device, thereby controlling the power transmission between the two.
  • the first rotating member is a driving component, which includes a driving shaft 12 and a transmission hub 11, wherein the transmission hub 11 is coaxially sleeved on the driving shaft 12 in a torque-proof manner (for example, by a spline), and thus drives The shaft 12 can drive the transmission hub 11 to rotate synchronously.
  • the sliding joint 10 is sleeved coaxially on the transmission hub 11.
  • the sliding joint 10 is connected to the transmission hub 11 in a rotationally fixed manner and can slide axially relative to the transmission hub 11 (for example, by a spline).
  • the second rotating member is an integrated engaging tooth 13 and an output gear 14, both of which are rotatably supported on the driving shaft 12 through a needle bearing 15 and are arranged coaxially with the driving shaft 12.
  • a limiting member extending in the circumferential direction is provided.
  • the drive shaft 12 faces the transmission hub 11 away from the first
  • a circumferentially extending shaft sleeve or snap ring 16 may be provided at a position corresponding to the radial end faces of the two rotating members, and at a position corresponding to the radial end face of the second rotating member facing away from the transmission hub 11 on the driving shaft 12
  • a circumferentially extending shaft sleeve or a snap ring or a shaft shoulder may be provided, and these limiting members abut the corresponding radial end faces of the transmission hub 11 and / or the second rotating member, so that the transmission hub 11 and / or the second rotating member It is positioned axially relative to the drive shaft 12.
  • a coaxially arranged electromagnetic actuator is sleeved on the outside of the first rotating member.
  • the electromagnetic actuating device is a solenoid 1 enclosed in a solenoid case 2, and a solenoid case cover 3 is mounted on one side of the solenoid case.
  • the electromagnetic actuating device is supported by a bracket 4.
  • the bracket 4 is fastened to the housing of the dynamic coupling control system by bolts 5, for example.
  • the electromagnetic actuating device is fixed on the housing of the dynamic coupling control system through the bracket 4.
  • the power source 17 of the solenoid 1 can be connected from the outside, which is not limited in the present invention.
  • the armature 6 of the electromagnetic actuator is coaxially sleeved on the inner side of the solenoid housing 2 and can move axially relative to the solenoid housing 2 under the action of the magnetic field force generated by the solenoid 1.
  • the radial end surface of the solenoid housing 2 facing away from the second rotating member extends radially inwardly to form a flange 18, and the flange 18 stops the armature 6 from moving in the axial direction away from the second rotating member, thereby preventing The armature 6 comes off from the electromagnetic actuator.
  • the armature 6 is coaxially sleeved and arranged outside the sliding joint 10, and a linkage 7 is disposed between the two.
  • the linkage 7 engages the outer periphery of the sliding joint 10 and is relatively fixed in the axial direction.
  • the linkage member 7 can be installed with the sliding joint member 10 in a form-fitting manner, or the linkage member 7 can be integrated with the sliding joint member 10.
  • the linkage 7 and the bracket 4 are preferably made of a non-magnetic material.
  • the non-magnetic linkage 7 and the bracket 4 cannot be magnetized, thereby avoiding interference with the movement of the armature 6 under the magnetic field of the solenoid 1.
  • a return spring 9 is provided on the second rotating member at a position corresponding to the linkage member 7. One end of the return spring 9 is fixed to the second rotating member, and the other end is connected with a spring plate 8.
  • the return spring 9 is non-fixedly abutted by the spring plate 8. Connected to the linkage 7.
  • the generated electromagnetic field applies a magnetic field force to the armature 6, so that the armature 6 moves against the elastic force of the return spring 9 and moves toward the second rotating member in the axial direction.
  • An end of the linking member 7 facing the second rotating member is formed with a flange 19 extending radially outward, for example, and the armature 6 pushes against the flange 19 to drive the linking member 7 to move toward the second rotating member, thereby driving the sliding joint 10 and
  • the engaging teeth 13 of the second rotating member are engaged in a rotationally fixed manner (for example, by a spline). In this way, the torque of the drive shaft 12 can be transmitted to the second rotating member through the sliding joint.
  • the solenoid 1 When the solenoid 1 is de-energized, the magnetic field force acting on the armature 6 disappears, and the linkage member 7 moves away from the second rotating member in the axial direction under the elastic force of the return spring 9, thereby driving the sliding engagement member 10 away from the engagement tooth 13 At the same time, the armature 6 is pushed back to the initial position by the flange 19 of the linkage 7.
  • the linking member 7 and the armature 6 can also be connected by other joining methods, as long as the armature 6 can push the linking member 7 to move to the second rotating member and the linking member 7 can push the armature 6 away from the second rotating member. Yes, it is not limited to the above scheme.
  • the power coupling control system of the present invention can be applied to various occasions where power coupling / disconnection is required, such as a gear shifting device of a vehicle gearbox, an engine clutch, etc., wherein the first rotating member and the second rotating member may have different
  • the structural components are not limited to the examples listed in the present invention.

Abstract

一种动力耦合控制系统及车辆,动力耦合控制系统包括第一和第二转动件、滑动接合件(10)和电磁致动装置,滑动接合件(10)和第一转动件同轴套设且抗扭连接,电磁致动装置驱动滑动接合件(10)相对第一转动件轴向滑动,使得第一和第二转动件通过滑动接合件(10)耦合或者解耦,电磁致动装置包括螺线管(1)、与螺线管(1)同轴线套设布置且能轴向移动的衔铁(6)、联动件(7)和设置在联动件(7)与第二转动件之间的复位弹簧(9),联动件(7)与滑动接合件(10)同轴套设且在径向上设置在衔铁(6)与滑动接合件(10)之间。

Description

动力耦合控制系统及车辆 技术领域
本发明涉及车辆技术领域。具体地,本发明涉及一种动力耦合控制系统及包含该动力耦合控制系统的车辆。
背景技术
在机动车辆的动力系统中,常常需要设置一些具有动力耦合功能的装置来选择性地控制动力的传输,比如离合装置、变速装置或制动装置等等。当前,这些装置中的动力耦合系统通常采用专用的电机作为动力源,通过滚珠丝杠来致动拨叉,再借助拨叉来拨动同步器,进而实现动力的选择性输出。然而,此类系统需要单独的电机来驱动,并且拨叉装置的组件繁多且结构复杂,造成系统整体的低可靠性和高成本。
CN 201866218 U公开了一种换挡机构,该换挡机构通过电磁铁驱动棘轮机构,进而控制拨叉循环换档。其中,电磁铁与拨叉平面垂直布置,系统整体的紧凑性较低,可靠性不高。
CN 203876574 U公开了一种电动汽车的动力系统总成,其通过与传动轴同轴布置的电磁制动器控制衔铁与行星架的接合,从而实现车辆制动。其中,该制动装置设置在传动轴的一端,与各组齿轮沿轴向并列布置,增大了动力系统的整体尺寸,不利于车辆布局设计。
发明内容
因此,本发明需要解决的技术问题是,提供一种结构紧凑、易于控制且可靠性高的动力耦合控制系统及车辆。
上述技术问题通过根据本发明的一种动力耦合控制系统而得到解决。该动力耦合控制系统包括第一转动件、第二转动件、滑动接合件和致动装置,滑动接合件和第一转动件同轴线套设布置且抗扭连接,致动装置用于 驱动滑动接合件相对第一转动件进行轴向滑动,从而使得第一转动件和第二转动件通过滑动接合件耦合或者解耦。根据本发明的技术方案,将上述致动装置设计为电磁致动装置,其中,电磁致动装置包括螺线管和与螺线管同轴线套设布置的衔铁,所述衔铁与所述滑动接合件同轴线套设布置且能够相对于螺线管轴向移动,并且滑动接合件在径向上设置在衔铁的背离螺线管的一侧;电磁致动装置还包括联动件以及设置在联动件和第二转动件之间的复位弹簧,联动件与滑动接合件同轴线套设布置且在径向上设置在衔铁与滑动接合件之间;其中,在螺线管被通电时,衔铁通过联动件带动滑动接合件沿轴向朝向第二转动件滑动,在螺线管被断电时,联动件借助复位弹簧推动衔铁和滑动接合件沿轴向朝向第一转动件滑动。该动力耦合控制系统通过同轴套设在第一转动件外侧的电磁致动装置推动滑动接合件,进而控制第一转动件和第二转动件二者的耦合或解耦,通过电磁致动装置的电源开关可以直接控制动力传递,进而省去了复杂的控制系统,大大简化了系统结构,不仅易于控制,而且提高了系统的可靠性。
根据本发明的一个优选实施例,联动件由非磁性材料构成。非磁性联动件不能被磁化,避免了对衔铁在螺线管磁场下的运动的影响。
根据本发明的另一优选实施例,第一转动件包括驱动轴,第二转动件通过轴承支撑在驱动轴上。当第一转动件与第二转动件解耦时,第二转动件可以通过轴承相对于第一转动件转动。优选地,在滑动接合件和驱动轴之间设有传动毂,滑动接合件通过传动毂与驱动轴抗扭连接。驱动轴通过传动毂带动滑动接合件转动,进而在滑动接合件耦合第二转动件时带动第二转动件转动。其中,在驱动轴上设置轴套或卡环,轴套或卡环限制了传动毂和/或第二转动件的轴向运动,使得其沿轴向固定。
根据本发明的另一优选实施例,电磁致动装置通过支架固定在动力耦合控制系统的壳体上,并且支架由非磁性材料制成,避免了支架被磁化而干扰螺线管磁场的风险。
根据本发明的另一优选实施例,螺线管背向第二转动件的径向端面具有沿径向朝向衔铁突出的凸缘,凸缘能够止挡衔铁沿远离所述第二转动件的轴向移动,避免衔铁因过度滑动而脱离电磁致动装置。
根据本发明的另一优选实施例,复位弹簧的一端固定在第二转动件上,另一端抵接联动件。复位弹簧可以在螺线管断电时推抵滑动接合件远离第二转动件,从而使第一转动件和第二转动件解耦。优选地,复位弹簧接合联动件的一端设有弹簧板,复位弹簧通过弹簧板抵接联动件。当第一转动件和第二转动件解耦时,二者之间存在相对转动,弹簧板可以减小弹簧抵接联动件的一端和联动件之间的摩擦磨损。
根据本发明的另一优选实施例,联动件与滑动接合件集成在一起,如此可以减少系统的部件数量,进一步提高结构的紧凑性和可靠性。
上述问题还通过根据本发明的一种车辆而得到解决,该车辆包括具有上述特征的动力耦合控制系统。
附图说明
以下结合附图进一步描述本发明。图中以相同的附图标记来代表功能相同的元件。其中:
图1是根据本发明的实施例的动力耦合控制系统的剖视图。
具体实施方式
图1是根据本发明实施例的动力耦合控制系统的剖视图。如图1所示,动力耦合控制系统通过电磁致动装置来控制第一转动件和第二转动件之间的耦合或解耦,从而控制二者之间的动力传输。在本实施例中,第一转动件为驱动部件,其包括驱动轴12和传动毂11,其中,传动毂11抗扭地(例如通过花键)同轴套设在驱动轴12上,因而驱动轴12可以带动传动毂11同步转动。滑动接合件10同轴地套设在传动毂11上。滑动接合件10与传动毂11抗扭连接并且能够相对于传动毂11轴向滑动(例如通过花键)。
在本实施例中,第二转动件为集成在一起的接合齿13和输出齿轮14,二者通过滚针轴承15可转动地支撑在驱动轴12上,并与驱动轴12同轴布置。在驱动轴12上与传动毂11和/或第二转动件的径向端面相对应的位置处,设有周向延伸的限位部件,例如,在驱动轴12上与传动毂11背 向第二转动件的径向端面相对应的位置处可以设有周向延伸的轴套或卡环16,在驱动轴12上与第二转动件背向传动毂11的径向端面相对应的位置处可以设有周向延伸的轴套或卡环或轴肩,这些限位部件抵接传动毂11和/或第二转动件相应的径向端面,从而将传动毂11和/或第二转动件相对于驱动轴12沿轴向定位。
在第一转动件外侧套设有同轴布置的电磁致动装置。在本实施例中,电磁致动装置为封装在螺线管壳体2内的螺线管1,螺线管壳体一侧安装有螺线管壳体盖3。电磁致动装置由支架4支撑,支架4例如通过螺栓5紧固在动力耦合控制系统的壳体上,电磁致动装置通过支架4固定在动力耦合控制系统的壳体上。螺线管1的电源17可以从外部接入,本发明对此不做限制。电磁致动装置的衔铁6同轴套设在螺线管壳体2的内侧,并且能够在螺线管1产生的磁场力作用下相对于螺线管壳体2轴向移动。螺线管壳体2背向第二转动件的径向端面沿径向向内延伸而形成凸缘18,凸缘18止挡衔铁6在远离第二转动件方向上的轴向移动,从而防止衔铁6从电磁致动装置上脱落。衔铁6同轴套设布置在滑动接合件10外侧,并且二者之间设置有联动件7,联动件7接合滑动接合件10的外周并与其沿轴向相对固定。优选地,联动件7可以通过形状配合的方式与滑动接合件10安装在一起,或者联动件7可以与滑动接合件10集成在一起。联动件7和支架4优选由非磁性材料制成,非磁性的联动件7和支架4不能被磁化,从而避免了对衔铁6在螺线管1的磁场下运动的干扰。第二转动件上对应联动件7的位置处设有复位弹簧9,复位弹簧9的一端固定在第二转动件上,另一端连接有弹簧板8,复位弹簧9通过弹簧板8非固定地抵接在联动件7上。
当螺线管1通电时,产生的电磁场对衔铁6施加磁场力,使得衔铁6克服复位弹簧9的弹力而沿轴向朝第二转动件移动。联动件7面向第二转动件的一端例如形成有沿径向向外延伸的凸缘19,衔铁6推抵凸缘19,带动联动件7向第二转动件移动,进而带动滑动接合件10与第二转动件的接合齿13抗扭接合(例如通过花键)。如此,可以将驱动轴12的转矩通过滑动接合件传递至第二转动件。当螺线管1断电时,作用于衔铁6的 磁场力消失,联动件7在复位弹簧9的弹力作用下沿轴向移动远离第二转动件,从而带动滑动接合件10与接合齿13脱离,同时衔铁6被联动件7的凸缘19推抵回到初始位置。需要注意的是,联动件7与衔铁6也可以通过其他的接合方式连接,只要使衔铁6能够推动联动件7向第二转动件移动同时联动件7能够推动衔铁6远离第二转动件移动即可,而不限于上述方案。
本发明的动力耦合控制系统可以应用于各种需要动力耦合/断开的场合,比如车辆变速箱的换档装置、发动机离合器等等,其中的第一转动件和第二转动件可以具有不同的结构部件,而不限于本发明中所列举的示例。
虽然在上述说明中示例性地描述了可能的实施例,但是应当理解到,仍然通过所有已知的和此外技术人员容易想到的技术特征和实施方式的组合存在大量实施例的变化。此外还应该理解到,示例性的实施方式仅仅作为一个例子,这种实施例绝不以任何形式限制本发明的保护范围、应用和构造。通过前述说明更多地是向技术人员提供一种用于转化至少一个示例性实施方式的技术指导,其中,只要不脱离权利要求书的保护范围,便可以进行各种改变,尤其是关于所述部件的功能和结构方面的改变。
附图标记
1        螺线管
2        螺线管壳体
3        螺线管壳体盖
4        支架
5        螺栓
6        衔铁
7        联动件
8        弹簧板
9        复位弹簧
10       滑动接合件
11       传动毂
12       驱动轴
13       接合齿
14       输出齿轮
15       轴承
16       卡环
17       电源
18       凸缘
19       凸缘

Claims (10)

  1. 一种动力耦合控制系统,其包括第一转动件、第二转动件、滑动接合件(10)和致动装置,所述滑动接合件(10)和所述第一转动件同轴线套设布置且抗扭连接,所述致动装置用于驱动所述滑动接合件(10)相对所述第一转动件进行轴向滑动,从而使得所述第一转动件和所述第二转动件通过所述滑动接合件(10)耦合或者解耦,
    其特征在于,
    所述致动装置为电磁致动装置,所述电磁致动装置包括螺线管(1)和与所述螺线管(1)同轴线套设布置的、能轴向移动的衔铁(6),所述衔铁(6)与所述滑动接合件(10)同轴线套设布置,并且所述滑动接合件(10)在径向上设置在所述衔铁(6)的背离所述螺线管(1)的一侧;并且
    所述电磁致动装置还包括联动件(7)和设置在所述联动件(7)与所述第二转动件之间的复位弹簧(9),所述联动件(7)与所述滑动接合件(10)同轴线套设布置且在径向上设置在所述衔铁(6)与所述滑动接合件(10)之间,其中,在所述螺线管(1)被通电时,所述衔铁(6)通过所述联动件(7)带动所述滑动接合件(10)沿轴向朝向所述第二转动件滑动;在所述螺线管(1)被断电时,所述联动件(7)借助所述复位弹簧(9)推动所述衔铁(6)和所述滑动接合件(10)沿轴向朝向所述第一转动件滑动。
  2. 根据权利要求1所述的动力耦合控制系统,其特征在于,所述联动件(7)由非磁性材料构成。
  3. 根据权利要求1所述的动力耦合控制系统,其特征在于,所述第一转动件包括驱动轴(12),且所述第二转动件通过轴承(15)支撑在所述驱动轴(12)上。
  4. 根据权利要求3所述的动力耦合控制系统,其特征在于,在所述滑动接合件(10)和所述驱动轴(12)之间设有传动毂(11),所述滑动接合件(10)通过所述传动毂(11)与所述驱动轴(12)抗扭连接,其中, 在所述驱动轴(12)上设置轴套或卡环(16),以用于限制所述传动毂(11)和/或所述第二转动件的轴向运动。
  5. 根据权利要求1所述的动力耦合控制系统,其特征在于,所述电磁致动装置通过支架(4)固定在所述动力耦合控制系统的壳体上,并且所述支架(4)由非磁性材料制成。
  6. 根据权利要求1所述的动力耦合控制系统,其特征在于,所述螺线管(1)背向所述第二转动件的径向端面具有沿径向朝向所述衔铁(6)突出的凸缘(18),所述凸缘(18)用于止挡所述衔铁(6)沿远离所述第二转动件的轴向移动。
  7. 根据权利要求1所述的动力耦合控制系统,其特征在于,所述复位弹簧(9)的一端固定在所述第二转动件上,另一端抵接所述联动件(7)。
  8. 根据权利要求7所述的动力耦合控制系统,其特征在于,所述复位弹簧(9)接合所述联动件(7)的一端设有弹簧板(8),所述复位弹簧(9)通过所述弹簧板(8)抵接所述联动件(7)。
  9. 根据权利要求1-8之一所述的动力耦合控制系统,其特征在于,所述联动件(7)与所述滑动接合件(10)集成在一起。
  10. 一种车辆,包括根据权利要求1-9之一所述的动力耦合控制系统。
PCT/CN2018/103818 2018-09-03 2018-09-03 动力耦合控制系统及车辆 WO2020047711A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880089748.XA CN111788405A (zh) 2018-09-03 2018-09-03 动力耦合控制系统及车辆
DE112018007951.1T DE112018007951T5 (de) 2018-09-03 2018-09-03 Leistungskopplungssteuersystem und Fahrzeug
PCT/CN2018/103818 WO2020047711A1 (zh) 2018-09-03 2018-09-03 动力耦合控制系统及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/103818 WO2020047711A1 (zh) 2018-09-03 2018-09-03 动力耦合控制系统及车辆

Publications (1)

Publication Number Publication Date
WO2020047711A1 true WO2020047711A1 (zh) 2020-03-12

Family

ID=69721997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103818 WO2020047711A1 (zh) 2018-09-03 2018-09-03 动力耦合控制系统及车辆

Country Status (3)

Country Link
CN (1) CN111788405A (zh)
DE (1) DE112018007951T5 (zh)
WO (1) WO2020047711A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657649A (zh) * 2007-04-02 2010-02-24 丰田自动车株式会社 爪式离合器致动器
DE102014203397A1 (de) * 2014-02-25 2015-08-27 Zf Friedrichshafen Ag Elektromagnetisch betätigbare Schaltvorrichtung für eine Zahnrad-Welle-Verbindung
CN105121916A (zh) * 2013-04-16 2015-12-02 丰田自动车株式会社 卡合装置及动力传递装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003278800A (ja) * 2002-03-27 2003-10-02 Ntn Corp 回転伝達装置
DE202006008131U1 (de) * 2006-01-25 2006-09-28 Getrag Innovations Gmbh Schaltkupplungsanordnung für Kraftfahrzeuggetriebe
JP5205878B2 (ja) * 2007-09-03 2013-06-05 トヨタ自動車株式会社 電磁アクチュエータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657649A (zh) * 2007-04-02 2010-02-24 丰田自动车株式会社 爪式离合器致动器
CN105121916A (zh) * 2013-04-16 2015-12-02 丰田自动车株式会社 卡合装置及动力传递装置
DE102014203397A1 (de) * 2014-02-25 2015-08-27 Zf Friedrichshafen Ag Elektromagnetisch betätigbare Schaltvorrichtung für eine Zahnrad-Welle-Verbindung

Also Published As

Publication number Publication date
DE112018007951T5 (de) 2021-06-02
CN111788405A (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
JP3658711B2 (ja) ボールランプ機構及びこれを備えた駆動系クラッチ
US9371869B2 (en) Power transmission apparatus
US10047802B2 (en) Clutch
JP2015087015A (ja) クラッチを備えた駆動アセンブリおよび駆動アセンブリを取り付ける方法
JP6204485B2 (ja) 摩擦ロスを低減したクラッチ装置およびデファレンシャル装置
CN110177956B (zh) 离合器组件及驱动组件
CN112601898B (zh) 用于机动车传动系的离合器结构组合件和机动车传动系
US9816571B1 (en) Bi-directional magnetic clutch
CN108779814B (zh) 离合器系统
WO2020047711A1 (zh) 动力耦合控制系统及车辆
WO2017203831A1 (ja) 駆動力断接装置
RU2360158C2 (ru) Муфта сцепления
US6637569B1 (en) Ball ramp actuator with indexing plates
US6983835B2 (en) Electromagnetically actuated dual clutch-brake combination
WO2022224441A1 (ja) 軸方向駆動アクチュエータ
JPH0464747A (ja) 差動制限装置
CN110107673B (zh) 用于车辆的差速锁装置和车辆
CN219062268U (zh) 可切换的磁性离合器以及离合器装置
CN115052777A (zh) 变速器及两挡电桥驱动系统
US11519468B2 (en) Rotating e-clutch assembly providing four operating modes
US20230417310A1 (en) Differential drive system, more particularly for use in a power train of a motor vehicle
WO2022018820A1 (ja) デファレンシャル装置
JP5371700B2 (ja) デファレンシャル装置
JPH10331873A (ja) 駆動力伝達装置
WO2023200726A1 (en) Controllable clutch assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932793

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18932793

Country of ref document: EP

Kind code of ref document: A1