WO2020047049A1 - Afficheurs électro-optiques polymorphes - Google Patents

Afficheurs électro-optiques polymorphes Download PDF

Info

Publication number
WO2020047049A1
WO2020047049A1 PCT/US2019/048500 US2019048500W WO2020047049A1 WO 2020047049 A1 WO2020047049 A1 WO 2020047049A1 US 2019048500 W US2019048500 W US 2019048500W WO 2020047049 A1 WO2020047049 A1 WO 2020047049A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
layer
polymorphic
pixel
redox
Prior art date
Application number
PCT/US2019/048500
Other languages
English (en)
Inventor
Paul Atkinson
John Rilum
Ben REEVES
Original Assignee
Chromera, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chromera, Inc. filed Critical Chromera, Inc.
Publication of WO2020047049A1 publication Critical patent/WO2020047049A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • G02F2001/1557Side by side arrangements of working and counter electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/62Switchable arrangements whereby the element being usually not switchable
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/38Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using electrochromic devices

Definitions

  • the field of the invention is manufacture and use of electronic displays comprised of electro-optic pixels.
  • a polymorphic display which is a unitary apparatus constructed such that a wide variety of electro-optic functions are enabled.
  • the polymorphic display even when having multiple pixels, enables sharing of selected structures among the pixels.
  • a highly flexible polymorphic display may be construed to satisfy a wide range of display need.
  • transition sequencing is an important benefit of polymorphic displays and as described below, of polymorphic pixels.
  • property of transition sequencing is the ability to selectively and dynamically determine and effect a transition sequence, and therefore the operable properties of a
  • polymorphic pixel or polymorphic display responsive to different electrical signals. And further, where the electrical signals are generated responsive to various conditions, events and actions etc., such as those common to intelligent display devices described later herein.
  • FIG. l is a diagram showing operable states and corresponding optical states for a display in accordance with the present invention.
  • FIG. 2 is a diagram showing operable states and corresponding optical states for a display in accordance with the present invention.
  • FIG. 3 is a diagram showing operable states and corresponding optical states for a display in accordance with the present invention.
  • FIG. 4 is a diagram showing operable states and corresponding optical states for a display in accordance with the present invention.
  • FIG. 5A is a block representative of a display in accordance with the present invention.
  • FIG. 5B is a block representative of a display in accordance with the present invention.
  • FIG. 6A is a block representative of a display in accordance with the present invention.
  • FIG. 6B is a block representative of a display in accordance with the present invention.
  • FIG. 6C is a block representative of a display in accordance with the present invention.
  • FIG. 6D is a block representative of a display in accordance with the present invention.
  • FIG. 6E is a block representative of a display in accordance with the present invention.
  • FIG. 7 is a diagram showing operable states and corresponding optical states for a display in accordance with the present invention.
  • FIG. 8 is a diagram showing operable states and corresponding optical states for a display in accordance with the present invention.
  • FIG. 9A is a block representative of a display in accordance with the present invention.
  • FIG. 9B is a block representative of a display in accordance with the present invention.
  • FIG.10A is a block representative of a display in accordance with the present invention.
  • FIG. 1 OB is a block representative of a display in accordance with the present invention.
  • FIG. 11 is a legend to the stippling used in the Figures.
  • FIG. 12A is a block representative of a display in accordance with the present invention.
  • FIG. 12B is a block representative of a display in accordance with the present invention.
  • FIG. 12C is a block representative of a display in accordance with the present invention.
  • FIG. 12D is a block representative of a display in accordance with the present invention.
  • FIG. 13 is a diagram showing operable states and corresponding optical states for a display in accordance with the present invention.
  • FIG. 14 is a block representative of a display in accordance with the present invention.
  • FIG. 15A is a block representative of a display in accordance with the present invention.
  • FIG. 15B is a block representative of a display in accordance with the present invention.
  • FIG. 15C is a block representative of a display in accordance with the present invention.
  • FIG. 15D is a block representative of a display in accordance with the present invention.
  • FIG. 15E is a block representative of a display in accordance with the present invention.
  • FIG. 16A is a block representative of a display in accordance with the present invention.
  • FIG. 16B is a block representative of a display in accordance with the present invention.
  • FIG. 16C is a block representative of a display in accordance with the present invention.
  • polymorphic electro-optic displays (“polymorphic displays”).
  • Polymorphic displays are unitary apparatus having multiple operable properties. Of particular interest are the operable properties, individually and in combination, of stability, switching and transition sequencing.
  • Polymorphic displays may be constructed to have multiple types of electro-optic display pixels (“pixels”), each type having different operable properties. Polymorphic displays may also be constructed with“polymorphic pixels” described herein, that individually have multiple operable properties, and are independently operable to produce different operating states.
  • the operable properties of a polymorphic display determine its possible operating states, e.g. whether the pixel is stable or volatile, switchable or self-switching from one state to another or not switchable once in a previously switched to state, or the transition sequence is forward, forward-only (irreversible), reverse, or branching, or a combination thereof.
  • the optical state of a polymorphic display’s pixel corresponds to the pixel’s operating state[s] according to the pixel’s optical properties.
  • one polymorphic display pixel may be white in a stable, first state, and dark blue in a volatile, second state, and red in a third, stable state.
  • pixels of conventional electro-optic displays are of the same type.
  • a mono-stable display for example will have only mono-stable pixels while a bi- stable display will have only two stable, electrically switchable pixels.
  • the pixels of common (non cholesteric) LCDs are mono-stable, but each is the same as the others.
  • the pixels of three- color electrophoretic displays are multi-stable, that is they are stable in three states, but the pixels themselves are all the same.
  • Pixels have at least two optical states according to their optical properties that typically include color perceptible to the human eye.
  • the optical state of the pixel may in general be determined by the resulting optical reflectivity, transmission, or polarization, of the pixel (at a specific wavelength or wavelength range of the illuminating source), whereas for an emissive display it may be determined by the intensity, polarization and spectral composition of the emitted light.
  • the optical state of the pixel may, e.g., be determined by a pseudo-color in the sense of a change in reflectivity at electromagnetic wavelengths outside the human visible range.
  • Pixels may be of various sizes, shapes, patterns and configured to stand alone or in groups (e.g. as segments to create alphanumeric characters, or RGB super pixels). Pixels typically comprise an electro-optic layer with electrodes either in direct contact with, or in close proximity to, the electro-optic layer. Depending on desired operable properties of the display pixels, the composition of their electro-optic layers may comprise for example, electrochromic materials, liquid crystals, electrophoretic particles, electrowetting fluids, electro-liquid powder materials, etc.
  • Display pixels may be categorized according to the operable properties associated with them being mono-stable, bi-stable and multi-stable, and polymorphic. Descriptions of the pixel types are described in general below, and later in detail.
  • Mono-stable pixels have one, stable operating state (and corresponding optical state) and a second, volatile operating state (and corresponding optical state). Mono-stable pixels also have the stability operable properties of being reversible and self-switching. That is, they automatically, or“self’, switch from their volatile operating state to back their stable, first operating state when power to the pixel is terminated (or drops below a threshold necessary to maintain the state).
  • a mono-stable pixel’s first, operating state is stable without power. When an electrical switching signal is applied to a mono-stable pixel, the pixel transitions from a stable, first operating state to a volatile, second, operating state. The volatile operating state is maintained as long as a maintenance signal is applied to the pixel.
  • mono-stable displays comprised of mono-stable pixels are common LCDs (liquid crystal displays), EPDs (electrophoretic and ECDs
  • FIG. 1 The operable states and corresponding optical states of an exemplary mono-stable pixel 100 are illustrated in FIG. 1.
  • the first operating state 111 is stable and switchable, and its corresponding optical state (color) is white.
  • FIG. 11 presents a legend for colors-to-pattems, shapes and symbols used in the other figures.
  • the second operating state 113 is volatile, self-switchable (reversible), and its corresponding optical state is purple. When self-switched (power is terminated to the pixel) the pixel transitions back (reverses) to the stable, first operating state 111, and corresponding optical state (white).
  • FIG. 1 Also illustrates a mono-stable pixel 200 similar to mono-stable pixel 100.
  • Mono-stable pixel 200 however has an optional second volatile, self-switching operating state 216, and a corresponding blue optical state.
  • pixel 200 self-switches from the optional second volatile operating state 216 to the stable, first operating state 212 when power to the pixel is terminated or disrupted.
  • the pixel 200 has the transition sequence property (described later) of branching, that is the property whereby the transition sequence depends on the current state of the pixel and the switching signal.
  • a first switching signal transitions the pixel from its stable, switchable first operating state 212 to a first volatile, self-switchable operable state 214, and a corresponding optical state, in this case purple.
  • a second switching signal (different than the first) transitions the pixel to a second volatile, self-switchable operable state 216, and corresponding optical state, in this case blue.
  • Bi-stable and multi-stable pixels have two stable operating states. Switching between the two, stable operating states is accomplished with an electrical switching signal. Once switched, the operating state (and the corresponding optical state) persists when the power is terminated (without a maintenance signal).
  • Bi-stable pixels may be reversible (e.g. EPDs, conventional ECDs, cholesteric, ferroelectric or zenithal bistable LCDs) or irreversible (as described in ETS patent No. 9,030,724 Flexible and Printable Electrooptic Devices).
  • EPDs electronic photosensitive diode
  • Conventional bi-stable pixels are electrically switched and are not self-switching (but always switchable).
  • Some pixels characterized as bi stable however, have limited persistence in one or the other optical states. In other words, some bi-stable pixels are self-switching over time. Such pixels, may therefore be more accurately considered mono-stable with limited persistence in the second operating state (the first being unpowered).
  • FIG. 2 The operable states and corresponding optical states of exemplary bi-stable pixels are illustrated in FIG. 2.
  • Pixel 300 has a first operating state 310 that is stable and switchable, and a corresponding optical state (color) that is white.
  • the second operating state 320 is also stable and switchable (and reversible), and its corresponding optical state is red. Note that a maintenance signal is not required for the pixel to remain in the second operating state once switched from the first operating state. Note further that the second operating state is not self switching, and a switching signal is required to switch from the second, stable operating state, and corresponding optical state, back to the first stable operating state.
  • Pixel 400 is also bi-stable however unlike the pixel 300 in the previous example, once switched from the first stable, switchable operable state 430 to the second, stable operable state 440, pixel 400 is non-switchable (not switchable or self-switching). In the second operable state, pixel 400 is irreversible and permanent. It cannot be switched (transitioned from the second operable state to the first) and has the stability property of being non-switchable and a transition sequence property of being irreversible.
  • multi-stable pixels typically having three, stable states.
  • One example are the pixels in three-color, electrophoretic displays. Each pixel contains three distinct particle types (e.g., pigment or dye particle) corresponding to different colors. Note however that as with conventional mono-stable and bi-stable displays, the operable properties of the pixels are the same.
  • the operable states of a multi-state pixel 500 are illustrated in FIG. 3. In the first operating state 510 pixel 500 is stable, switchable (forward-only, irreversibly) with a
  • the transition sequence is forward-only to the third operating state 530. It cannot be switched to the first stable operating state from the second stable operating state.
  • the third operating state 530 is also stable and switchable, and has a corresponding optical state (color) that is red. Unlike the pixel when in the second operating state 520, when the pixel is in the third stable operating state 530, it can be switched back to its previous operable state 520. And further, unlike the transition from the first operating state to the second, the transitions from the second operating state to the third operating state, and the reverse, are repeatable.
  • the transition sequence therefore comprises three inter-state transitions (described later), one which is forward- only and irreversible, and two that are forward-only, reversible and repeatable.
  • Polymorphic pixels may be constructed to have various combinations of operable properties.
  • Polymorphic pixels have at least two stable operating states, an unpowered, first state and at least one other stable state which may for example be irreversible and permanent as previously described. They also have one or more volatile operating states.
  • FIG. 4 illustrates the operable states of a polymorphic pixel 600.
  • the pixel has two stable operating states 610 and 630 and one volatile operating state 620.
  • Pixel 600 also has two transition sequence branches 601 and 602. The transition sequence branch is selected with a switching signal that determines the next operating state.
  • Branch 601 comprises a first operating state 620 that is stable, switchable with a corresponding optical state (color) that is white.
  • Branch 601 also comprises a second operating state 620 that is volatile, self-switching with a
  • Branch 601 comprises two inter-state transitions which are both reversible and repeatable, until and unless, transition sequence branch 602 is selected with a switching signal that transitions to operating state 630.
  • Branch 602 comprises the same first operating state 620 as branch 601, however unlike branch 601 it has a second operating state 630 that is irreversible and permanent.
  • branch 602 comprises only one inter state transition, a forward, irreversible transition from operating state 620 to operating state 630. Once switched (transitioned) along branch 602 to operating state 630 by an appropriate switching signal, the pixel is no longer switchable (non-switchable). In total the transition sequence property for pixel 600 includes three inter-state transitions (two repeatable, and one irreversible).
  • FIG. 7 illustrates the operable states of another exemplary polymorphic pixel 900.
  • the pixel in this case has two stable operating states 905 and 908 (and two corresponding optical states, white and black respectively).
  • Pixel 900 also has two volatile operating states 906 and 910 (and two corresponding optical states, red and purple respectively).
  • polymorphic pixel 900 has four possible operating states and corresponding optical states (red, white, black and purple).
  • polymorphic pixel 900 has a transition sequence comprising two branches 902 and 903. The branch selected depends on the switching signals and the prior operating states of the pixel.
  • the transition sequence along branch 902 consists of a stable, switchable first operating state and a volatile, self-switching second operating state. Branch 902 is reversible and repeatable until the pixel is operably switched to branch 903.
  • the transition sequence along branch 903 consists of the same first operating state 905, stable, switchable with a corresponding optical state (color) that is white.
  • Branch 903 also comprises a stable, switchable second operating state 908 with a corresponding optical state (color) that is black.
  • the pixel cannot transition back to operating state 905.
  • the transition sequence from 905 to 908 is not reversible (irreversible) and is therefore not repeatable. From operating state 908 the transition sequence is only forward to operating state 910.
  • the third operating state 910 along branch 903 is volatile, self-switching with a corresponding optical state (color) of purple.
  • the inter-state transitions between operating states 908 and 910 are therefore reversible and repeatable.
  • the transition sequence along the entire branch 903 from operating state 905 to operating state 910 includes both forward, irreversible transitions and forward, reversible transitions. Note that the once the polymorphic pixel 900 is switched and transitions to branch 903 (from operating state 905 to operating 908) it cannot be switched, transition to branch 902 and operating state 908. The polymorphic pixel 900 can however effect different operating states along branch 902 and then switch be switched, transition to branch 903.
  • An operable property of pixels is transition sequencing, that is, the property of being able to transition between multiple, different operating states in sequences that include forward, forward-only (irreversible), reverse (reversible), repeatable and non-repeatable and combinations thereof.
  • a transition sequence is comprised of inter-state transitions, that is transitions between two consecutive operable states of a pixel. Exemplary transition sequences are described below and illustrated in embodiments 100, 200, 300, 400, 500, 600, 900, and 1000. Transition sequencing also includes branching. Branching is the property of being able generate different sequences of inter-state transitions from a particular operable state of the pixel. A branch is created by effecting one of a plurality of transitions according to different electrical signals.
  • Embodiment 200 illustrates simple transition sequence including branching for a mono-stable pixel. Of particular interest are complex transitional sequences for polymorphic pixels including branching properties such as those illustrated in embodiments 900 and 1000.
  • polymorphic displays introduce the ability to electrically switch (with a switching signal) or self-switch (by terminating a maintenance signal) the operating state from one to another operating state that is other than the previous one.
  • transition sequencing property of polymorphic pixels can be produced using a variety of different polymers and combinations of them, e.g. with mixtures combining more than one type, or depositing more than one layer of them within the polymorphic pixel.
  • transition sequencing is an important benefit of polymorphic displays and as described below, of polymorphic pixels.
  • property of transition sequencing is the ability to selectively and dynamically determine and effect a transition sequence, and therefore the operable properties of a polymorphic pixel or polymorphic display, responsive to different electrical signals.
  • electrical signals are generated responsive to various conditions, events and actions etc., such as those common to intelligent display devices described later herein.
  • a polymorphic display is an electro-optic display comprising a single polymorphic pixel. More typically however, a polymorphic display is a unitary apparatus constructed having at least two pixels, the pixels having at least some of the following elements in common: structure, materials, circuitry, and optionally a display driver IC. As previously described, the display pixels may be of different types according to their operable properties.
  • the structure of a polymorphic display determines its physical form.
  • the structure comprises for example, substrates, spacers, matrices, separators, spacers, barriers, sealants, transparent/viewing surfaces (e.g.‘windows’) etc. typically, but not always, organized in layers that preferably lend themselves to high volume manufacturing processes (e.g., printing, spray casting, roll-to-roll manufacturing etc.).
  • a polymorphic display’s structure complements that of the electro-optic materials, other materials (e.g. adhesives) and electrical circuitry (including electrodes).
  • the electro-optic layers of different pixel types e.g. electrochromics, LCDs, EPDs etc.
  • a polymorphic display’s electro-optic layer, and the pixels of which they are made, may share common materials. Such materials may for example be constructed as a single, continuous layer across multiple pixels, such as the electrolyte illustrated in FIG. 5 A and 10A. Alternatively, a material (e.g. the electro-optic material 710 of FIG. 5A and 1310 and 1320 of FIG. 10A) may be common to some but not all the pixels, and may be constructed as discrete, spatially separated elements within same physical layer (or the same manufacturing process). Such patterning advantageously allowing for other common materials to be interspersed among them.
  • a pixel comprises an electro-optic layer with electrodes either in direct contact with, or in close proximity to, the electro-optic layer.
  • the electrodes are configured for applying electrical signals to the pixels individually or in groups and are typically formed on common structure (e.g. flexible substrates or layers).
  • the electrodes may be configured in various ways including vertical (e.g. on the top and bottom surfaces of an electro- optic layer, interdigitated (both electrodes are on the same layer), or combinations of both.
  • the electrodes on the side or sides of the electro-optic layer facing the viewing surface or surfaces are transparent e.g. ITO or transparent, conductive silver-inks patterned on PET.
  • the pixel electrodes may be exposed for connection to circuitry of another device such as an intelligent display device describe herein.
  • the electrodes may also be coupled to additional circuitry and components (e.g. display driver IC, backplane etc.) constructed as part of the polymorphic display apparatus (e.g. using common structure), for pixel addressing, signal management/noise reduction, visible verification (such as that described in US patent applications 14,927,098 Symbol Verification for an Intelligent Label Device, and 15/368,622 Optically Determining Messages on a Display) etc.
  • additional circuitry and components e.g. display driver IC, backplane etc.
  • additional circuitry and components e.g. display driver IC, backplane etc.
  • visible verification such as that described in US patent applications 14,927,098 Symbol Verification for an Intelligent Label Device, and 15/368,622 Optically Determining Messages on a Display
  • exemplary display pixels 700, 800 and 1100 are configured with electrodes on the surfaces of the electro-optic layer (e.g. front and back).
  • the electrodes however may be configured as interdigitated pairs located on a single surface.
  • FIG. 10A and 10B is an exemplary four-pixel structure employing interdigitated electrodes and different, patterned material layers to create pixels having different operable (and associated optical) properties. The viewing perspective is from the back of the structure. Note that the illustrations are intended only to focus on certain elements of a polymorphic display and not completed devices. Note further, the common material layers of which some are patterned and some continuous across the pixels.
  • the first layer 1200 of the four-pixel structure (viewed from the back) is a transparent substrate 1230 having interdigitated electrode 1220 and four companion electrodes 1210 (of which only one is numbered). Electrode 1220 is common to the four companion electrodes, all of which are collectively part of the display circuitry. Each of the interdigitated patterns are the foundation for four individual pixels. Structure 1300 shows layer 1200 with printed (or otherwise deposited) polymer 1310 and a different polymer 1320. Polymer 1310 spans two pairs of interdigitated electrodes so the corresponding pixels will have the same operable properties. Polymer 1310 covers a single electrode pair and the corresponding pixel will have operable properties different from the other three.
  • Structure 1400 shows layer 1300 with a printed (or otherwise deposited) opaque electrolyte 1410.
  • Electrolyte 1410 is an opaque EC mix. In this example, all three of the pixels with polymer layers will have the properties of being volatile, self-switchable.
  • the fourth interdigitated electrode pair (the one without a polymer layer) will have the properties of being stable, switchable, irreversible and permanent.
  • Structure 1500 is the same as structure 1400 with a transparent EC mix instead of the opaque EC mix 1410.
  • This integrated, process friendly structure comprises four separately operable pixels, three having the properties of being volatile, self-switching (two of one type, and one of another) and one having the same operable properties of being irreversible and permanent.
  • a signal protocol is used by the processor to manage the different switching signals and maintenance signals according to the types of pixels which comprise the polymorphic display.
  • the signal protocol provides the timing, duration, pattern (e.g. pulse shape, sequence), frequency, voltage or current, polarity etc. required by the processor to generate the appropriate signals.
  • a switching signal is an electrical signal applied to a pixel for setting the operating states of the pixel (e.g. for switching from one operating state to another).
  • a maintenance signal is an electrical signal applied to a pixel in a volatile state (self- switching) to maintain its current operating state.
  • the maintenance signal is often different from the switching signal that switched the pixel to the current volatile operating state that is maintained by the maintenance signal.
  • An intelligence display device is an apparatus comprising a polymorphic display, and some or all of electronics, a power apparatus and appropriate to the application, a communication apparatus, sensors, and actuators.
  • An intelligent display device is typically a unitary apparatus configured to be coupled or combined with a good or its packaging. Often, but not always, the intelligent display device is low cost, often disposable, low power and small in size. In some applications, though the intelligent display device is significantly larger and designed to present high-content messages or messages to be read by humans or machines at a distance. Exemplary configurations include labels, patches, tags, smart-cards, loyalty cards, packaging, containers, seals, caps, documents, test/sensing/monitoring devices, terminals, electronic-shelf labels, free- standing displays, electronics devices etc.
  • intelligent display device includes electronic functions, for example, processor, memory, clock/timer, security, verification, communications and sensors, etc. that may be integrated into a single electronic device or implemented with discrete components.
  • the electronics will also typically include display driver circuitry configured to store and process appropriate data and algorithms (e.g. a signal protocol), temperature compensation etc.to generate the electricals to the polymorphic display and pixels it comprises.
  • the display driver circuitry may be advantageously configured with the processor and memory or one or more separate components. And further, the display driver circuitry may be configured as part of the polymorphic display or as part of the electronic functions of the intelligent display device, or, distributed between the two.
  • the intelligent display device includes one or more power apparatus for powering the electrical functions in the intelligent label including a polymorphic display.
  • Exemplary power apparatus include internal energy storage such as batteries or charged capacitors, wired interfaces capable of receiving electrical energy, wireless energy harvesters, or a combination thereof.
  • the energy harvester for example, may produce electric energy from light (e.g. solar cell), RF energy (e.g., antenna/rectifier), thermal energy (e.g., thermopile), or shock and vibration (e.g. strain gauges, nanogenerators, MEMS devices) that the intelligent label device is subject to.
  • the intelligent display device also has electronics that enable wireless or wired communication to or from the intelligent label.
  • exemplary wireless communication apparatus includes those that support Wi-Fi, Bluetooth, BLE, RFID (e.g. RAIN or NFC), ZigBee and other local area wireless networks, low power wide area (LPWN) and cellular and other wide area networks.
  • Intelligent display devices may include support for portable memory chips, cards, sticks and other portable memory storage devices.
  • An intelligent display device may have one or more sensors sensing the inside or outside environment (outside or inside the intelligent display device), the polymorphic display or other components or systems of the intelligent display device.
  • exemplary sensors include a temperature sensor, a humidity sensor, and altitude sensor, a pressure sensor, an optical sensor, a vibration sensor (including a shock sensor), a humidity sensor, biological or a chemical sensor (including a gas sensor, a pH sensor), a magnetic sensor, a smoke sensor, a radiation sensor etc.
  • an intelligent display device may have one or more actuators.
  • Actuators activate, deactivate or otherwise effect control over electrical functions in the intelligent display device in response to external or internal stimulus, e.g. mechanical action, sensor input, electrical or wireless signals etc.
  • Actuators may be used to activate different electrical functions at different times, e.g. when an item is shipped (the package is sealed) or when an item is received (the package is opened).
  • Actuators may also minimize power consumption, and thereby maximizing the shelf- life/operating life of intelligent display devices having internal power apparatus, by activating electronics only when appropriate to the application. Actuators, in cooperation with timers/clocks may also be used to establish the time/date an event occurs.
  • Exemplary actuators include mechanical switches (e.g. the open or close an electrical circuit), electro-optic, electrochemical, electro-mechanical and electro-acoustic devices, wired connectors (for receiving electrical signals), wireless receivers (for harvesting RF energy, receiving RF signals) etc., and are described in US patent 9,471,862 An Intelligent Label Device and Method.
  • FIG. 5A shows an exemplary configuration of a polymorphic display 700 comprising two pixels, each having different operable properties, in side view and front view. For illustration purposes, only two pixels are shown although it is to be understood that a
  • the polymorphic display may comprise many such pixels.
  • the right pixel 701 is bi-stable, having a bi-stable, permanent and irreversible second operating state (such as 200 in FIG. 2), whereas the left pixel 702 is mono-stable and self-switchable (such as 100 in FIG. 1).
  • bi-stable pixel 701 In regard to bi-stable pixel 701, detailed embodiments of bi-stable, permanent and irreversible display devices and pixels, are disclosed in US patent 9,030,724 Flexible and Printable Electrooptic Devices. For simplicity, only the key aspects pertaining to the
  • Exemplary embodiment 700 consists of an electro-optic layer 703 further including an electropolymerizable monomer, an electrolyte (e.g. ionic liquid), and (optionally) highly reflective particles (e.g. Ti0 2 ) collectively, here and throughout, referred to as an“EC mix” (“electrochromic mixture”).
  • the EC mix as illustrated is of a substantially uniform composition.
  • the electro-optic layer 703, in this example, the EC mixture is sandwiched between a pair of electrodes; a front electrode 704 and a back electrode 705.
  • the front electrode is at least partially transparent (e.g.
  • the back electrode 705 and back substrate/barrier 709 may both either be transparent (for front and back side viewing of the display) or opaque (front side only viewing).
  • Mono-stable pixel 702 uses a conjugated (conductive) polymer film 710 that can switch reversibly between two distinctly different operable states when the polymer is in contact with an electrolyte (such as the one contained in the EC mix 703).
  • the operable states correspond to a conductive (oxidized chemical) state and an insulating (neutral or reduced chemical) state according to the presence of a switching signal followed by a maintenance signal, or the termination or disruption of the maintenance signal.
  • the pixel 702 transitions from a stable, first state to a volatile second state. The pixel remains in the volatile second state for the duration of the maintenance signal.
  • the maintenance signal is terminated (or disrupted for any reason) the pixel self- switches (transitions back) to the stable, first state.
  • the EC mix 703 of pixel 701 comprises an electrolyte that can function as the electrolyte for pixel 702.
  • the monomer and other materials in the EC mix do not prevent the electrolyte from use in both pixels.
  • the two pixels can have in common electrode 705, top and bottom substrates 706, 709, and barrier/protective layer 707. Additionally, they can share a common, patterned electrode layer (and manufacturing process) comprising the pixel’s respective front electrodes 704 and 711. They can also share mask layer 708 described below. Not shown is the structure that would encapsulate the entire apparatus (e.g. the side barrier/protective structure) and the appropriate display driver circuitry with connections to the pixel electrodes.
  • polymorphic display 700 is a unitary apparatus comprising two pixels, each a different type according to their respective operable properties (bi-stable, permanent and irreversible, and mono-stable), and further that have in common, structure, materials and circuitry.
  • the two pixels 701 and 702 share a single, common electrolyte layer.
  • the switching voltages for the polymer films in the mono-stable pixel 702 are typically significantly lower (near IV) than that typically required for electropolymerization (near 3 V) in the bi-stable pixel 701. This provides an upper threshold means to keep the monomer in the EC mix from electropolymerizing yet allowing the self-switching polymer 710 to switch between operating states by applying a switching signal followed by applying and then terminating maintenance signal across the common back electrode layer 705 and the front electrode 711.
  • the front electrodes, 704 and 711, for the two operable pixel types of the polymorphic display 700 can be made of different (transparent conductor) materials, it is preferably made of the same material by patterning a single front electrode layer deposited onto the single substrate 706. Depending on the locations of the address lines/circuitry to the pixel electrodes of the display (not shown in FIG. 5A), while providing a high display contrast (dark background of the pixel openings), it may be advantageous to mask certain areas by an opaque, light absorbing material 708.
  • One group of electrochromic polymers are switchable from a stable, un-powered operating state corresponding to an oxidized chemical state, and a corresponding clear optical state, to a volatile, self-switching operating state corresponding to a neutral chemical state, and a corresponding colored optical state, and self-switching back to the stable, un-powered operating state and corresponding oxidized chemical state, and corresponding clear optical state.
  • Exemplary polymers of this type include dioxythiophenes (e.g. certain XDOT, such as
  • Another group of electrochromic polymers are switchable from a stable, un-powered operating state corresponding to a neutral chemical state, and a corresponding first, colored optical state, to a volatile, self-switching operating state corresponding to an oxidized chemical state, and corresponding second, colored or predominately clear optical state, and self-switching back to the stable, un-powered operating state and corresponding neutral chemical state, and corresponding first, colored optical state.
  • Exemplary polymers of this type include thiophene based polymers (e.g. poly(methylthiophene)).
  • viologen can be adsorbed by a porous material, such as nanoparticle-based Ti0 2 , to form an active layer (e.g. in place of the polymer layer 710), or added to the EC mix 703, and may additionally function or co-function as the electrolyte.
  • an optional layer also known as a charge storage layer
  • a complementary conducting polymer material 714 on the counter (back) electrode 705, to facilitate the self-switching process and/or to add additional material layers to protect the counter (back) electrode 705 from the electrolyte 703.
  • polymers include anodically coloring polymers, such as XDOPs (dioxypyrroles) or alternating copolymers of XDOT and carbazoles such as PEDOT-NMe(Cbz), and cathodically coloring polymer such as XDOTs such as PEDOT or PProDOT, which self-switch to an oxidized state.
  • Cathodic materials may also be deposited to protect a bare counter electrode including derivatives of bipyridinium, such as viologen, and anthraquinone and its derivatives in solution.
  • An opaque or reflective (e.g. Ti0 2 additive) EC mix may mask the electrochromic characteristics of the above materials, or they may be intentionally included in the resulting optical states as seen from the front side or back side (for a two-sided display).
  • Self-switching polymer films are typically prepared by spray casting 5mg/mL polymer solutions in toluene. When cured, the deposited layer may become a film less than sub- micron thick. Self-switching polymers may be deposited onto the electrode using a variety of methods including: spray, spin, or drop casting neutral electrochromic polymer solutions;
  • the properties of self-switching polymer films may further be manipulated through a chemical defunctionalization step rendering the film less soluble, allowing for deposition of additional layers such as the layer of EC mix 703.
  • an individual pixel of the polymorphic display 700 is switched by an electrical signal applied to its corresponding electrode pair (704 and 705 or 711 and 705).
  • both the states of the bi-stable pixel 701 and the mono-stable pixel 702 are stable and each having a first, white optical state, 712 and 713, as determined by the reflective Ti0 2 of the EC mix and the transmissive property of the electrochromic polymer layer 710.
  • the corresponding voltages across each respective electrode pair is 0V (715 and 716).
  • FIG. 5B illustrates the respective optical states 718, 720 of the polymorphic display 700 after application of respective independent switching signals.
  • the switching signal for irreversibly transitioning the bi-stable pixel 701 into an irreversible and permanent operating state can be accomplished through a variety of switching protocols such as those disclosed in US patent 9,030,724 Flexible and Printable Electrooptic Devices and US provisional patent application 14/797,141 Device and Method to Fix a Message on a Display, including e.g. applying a voltage above a certain threshold (as indicated by 719 of e.g. 3 V) for a defined time duration (e.g., 2s).
  • the anode typically is the (front) electrode 704 such that the polymerized monomer 717 is (anodically) formed on or at the electrode, displacing the (white) EC mix and further providing a substantial change of color (e.g. from white to dark blue) as observed from the viewing side.
  • the operable (and optical) state will remain as it is permanent and irreversible.
  • the switching signal for reversibly transitioning the mono-stable pixel 702 into a volatile operating state can be accomplished by, for example, applying a voltage above a certain threshold (as indicated by 721 of e.g. IV) for a defined time duration (e.g., ls).
  • a certain threshold as indicated by 721 of e.g. IV
  • a defined time duration e.g., ls.
  • the cathode is the front electrode 711 in case of electrochromic polymers providing chemically neutral (reduced) volatile states (as shown in FIG. 5B) and oxidized stable states (as shown in FIG.
  • a maintenance signal is applied with the same effective polarity as the switching signal, in order for pixel to maintain its current state. Upon termination or disruption of the maintenance signal the volatile state will self-switch back to its original white state (713 in FIG.
  • electrochromic polymer layer in manufacture of the polymorphic display some cycling (“break- in”) between the reversible states of the self-switching polymer may be advantageous to achieve faster switching times and/or higher color saturation. This is in particular applicable to deposition processes not providing for intercalated electrolyte within the polymer layer.
  • FIG. 6 A illustrates an exemplary embodiment 800 of a polymorphic pixel 801, in side view and front view.
  • the pixel 801 follows the same vertical structure configuration as that of pixel 702 shown in FIG. 5A, and will thus not be described in detail except wherein there are differences that pertain to the polymorphic functionality.
  • the (optional) complementary conducting polymer material 714 is not shown and the EC mix 703, which together with the conducting polymer layer 710 form the electro-optic layer, initially will be assumed to contain highly reflective particles (e.g. Ti0 2 ) as an additive to the otherwise natively transmissive (clear) EC mix. Further, the polymer layer 710 is assumed be self- switchable, comprising an initial stable, clear optical state and a corresponding oxidized chemical state, switchable to a volatile red optical state with a corresponding reduced chemical state.
  • highly reflective particles e.g. Ti0 2
  • a polymer which such characteristics includes, e.g., poly ⁇ 3,4-di(2- ethylhexyl oxy)thi ophene-co-3 , 4-di (m ethoxy )thi ophene ⁇ .
  • the initial (i.e., before any application of an electrical signal to its front 711 and back 705 electrodes) operable state 905 of pixel 801 is stable with a corresponding white optical state 804 (FIG. 6A), as determined by reflected light from the Ti0 2 particles of the EC mix 703 transmitted through the clear polymer layer 710.
  • a switching signal (along branch 902) as indicated by 806 in FIG. 6B
  • the operable state of the pixel switches to a volatile state 906 with a corresponding red optical state 807.
  • this optical state will remain for the duration of the maintenance signal, after which it will self-switch back to its operable state 905.
  • the pixel 801 will remain in a self-switchable state along branch 902 as long as the switching signal level does not exceed the threshold (e.g. 3 V) for electrochemical polymerization of the monomer in the EC mix 703. If, however, the applied voltage reaches the threshold voltage, with the front electrode 711 being the anode, the monomer polymerizes 802 (FIG. 6C) onto (or near) the self-switchable polymer layer 710. Note that during the switching the polymer layer 710 is in an oxidized chemical state, clear optical state, and electrically conductive state, which facilitates the polymerization process.
  • the threshold e.g. 3 V
  • the operable state of the pixel switches irreversibly to a stable state 908 with a corresponding, e.g., dark blue optical state 809.
  • This optical state is determined by the color of the polymerized layer 802. Note that after the switching is complete, the self-switchable polymer layer will remain in a clear state.
  • the pixel is now in a mono-stable and self-switchable operable state, as further applying a switching signal 811 (FIG. 6D) with a continued maintenance signal results in a volatile state 910 with red color of the self-switchable polymer layer 721.
  • the resulting optical state 812 will generally be a combination of 721 (here, red) and 802 (here, dark blue). For instance, and in this particular case, if layer 721 is relatively thick, the optical state will be a predominantly red color; if layer 721 is relatively thin (i.e.
  • the optical state will closely match the dark blue color of layer 802; or, if 721 has a thickness somewhere in the middle, the color may be a compound purple. Again, after removal of the maintenance signal, indicated by 813 in FIG. 6E the pixel will self-switch back to operable state 908 (and corresponding optical state 809).
  • the reflective Ti0 2 particles are not included in the EC mix 703 resulting in a transmissive (clear) optical property. This alters the optical state of the initial operable state 904, depending on the reflective properties of the back electrode 705.
  • the back electrode 705 is presumed light absorbing (e.g. carbon black) resulting in an initial optical state of black as illustrated by 1001 of the operable states of this embodiment 1000 in FIG. 8.
  • the operable and optical states of the other states along branches 1002 and 1003 are the same as those illustrated and discussed in FIG. 7, 902 and 903, respectively (here assuming, for simplicity, that layers 721 and 802 are largely reflective, and the yellow tint of the EC mix 703 does not contribute).
  • this particular embodiment enables additional operable states by analogously polymerizing the monomer of the EC mix onto (or near) the back electrode by applying an opposite polarity of the switching signal onto the pair of electrodes.
  • additional operable states are shown along an extended branch indicated by 1005, as well as, an additional third branch 1004, with operable states as indicated.
  • the volatile optical states 1006 and 1008 are the same as 906, and that the stable optical states of 1010 and 1011 are virtually the same as 908 (ignoring any effect of viewing through the transmissive EC mix).
  • the reflective Ti0 2 particles are again not included in the EC mix 703, but an inert dye (here assumed yellow) is added resulting in a corresponding yellow tint of the EC mix.
  • the back electrode 705 is presumed light reflective.
  • the concentration of the dye is such that light will be reflected through a double pass of the pixel stack yielding, in this case, an initial yellow optical state 1001.
  • states 1010 and 1011 which will have a new optical state of green, resulting from the dark blue polymerized layer on the back electrode viewed through the yellow tinted EC mix.
  • this configuration can exhibit five different optical states, three stable states and two volatile states, with a variety of operable properties including irreversible and mono-stable states.
  • Example 3 Polymorphic Pixel with Non-switchable Operable State
  • FIG. 9A illustrates another exemplary embodiment 1100 of a polymorphic pixel 1101 with a non-switchable operating state, in side view and front view.
  • the pixel 1101 follows the same vertical structure configuration as that of pixel 801 shown in FIG. 6 A, and will thus not be described in detail except wherein there are differences that pertain to the polymorphic functionality.
  • the reflective Ti0 2 particles are not included in the EC mix 703 resulting in a transmissive (clear) optical property.
  • the polymer layer 1102 is again assumed be self-switchable, comprising an initial stable, clear optical state and a corresponding oxidized chemical state, switchable to a volatile red optical state with a corresponding reduced chemical state.
  • the self-switching polymer layer 1102 is present on the back electrode 705 (as opposed to the front electrode 711 as in FIG. 6A). Additionally, the back electrode 705 is reflective or transparent with an additional diffuse reflective layer behind it (not shown in FIG. 9A).
  • the initial (i.e., before any application of an electrical signal to its front 711 and back 705 electrodes) operable state 610 of pixel 1101 is stable with a corresponding white optical state 1103, as determined by reflected light from back electrode 705.
  • the operable state of the pixel switches to a volatile state 620 with a corresponding red optical state 1106.
  • this optical state will remain for the duration of the maintenance signal, after which it will self-switch back to its initial operable state 610.
  • the pixel 1101 will remain in a self-switchable state along branch 601 as long as the switching signal level does not exceed the threshold (e.g. 3 V) for electrochemical polymerization of the monomer in the EC mix 703. If, however, the applied voltage reaches the threshold voltage, with the back electrode 705 being the anode, the monomer polymerizes 1108 (FIG. 9C) onto (or near) the self-switchable polymer layer 1102. Note, again, that during the switching the polymer layer 1102 is in an oxidized chemical state, clear optical state, and electrically conductive state, which facilitates the polymerization process.
  • the threshold e.g. 3 V
  • the operable state of the pixel switches irreversibly to a stable state 630 with a corresponding, e.g., dark blue optical state 1109.
  • This optical state 630 is determined by the color of the polymerized layer 1102 as the EC mix 703 is transmissive. Note, again, that after the switching is complete, the self-switchable polymer layer will remain in a clear state. However, in contrast to Example 1 above, this operable state does not allow for any further switching affecting the corresponding optical state 1109, thus it is in an operable state which is non-switchable.
  • the electrode layers for switching the electro-optic layers have been focused on non-pattemed configurations with either transparent or opaque optical properties. However, in some cases it may be advantageous to use an
  • interdigitated pair of electrodes Such configurations enable a single patterned electrode layer instead of two separate non-patterned electrode layers simplifying the manufacturing process of polymorphic pixels and displays. Furthermore, this allows for two activation surfaces per interdigitated electrode pair in a single layer with a multitude of operable states. Note that such an interdigitated transparent electrode structure (e.g. ITO) can also be employed on both sides of the electro-optic layer, e.g., for a two-sided display.
  • ITO interdigitated transparent electrode structure
  • FIG. 10A shows (in a back side view) a conceptual electrode layout 1200 consisting of four pairs of interdigitated electrodes (corresponding to four pixels of the completed polymorphic display).
  • one digitated electrode of each of the four pairs is (optionally) connected to a common electrode connection 1220.
  • a common electrode connection 1220 can be addressed using the common electrode 1220 and a pixel specific digitated electrode (e.g. 1210).
  • the interdigitated electrode layer is deposited (e.g. directly printed or by patterning of a uniform film using, e.g. photolithography or laser ablation) onto a substrate 1230 (outlined).
  • This process is further followed by deposition (e.g. printing) of one or more self- switching polymers (all in the same layer), such as shown in 1300 by a first self-switching polymer 1310 and a second self-switching polymer 1320. Note that the deposition can continuously span of more than one electrode pair (such as in the case of 1310).
  • the widths and separation of the electrode digits are optimized with respect to the particular properties of the self-switching polymer (e.g. thickness) and switching protocol. However, also depending on these properties, it may be preferable (e.g. for better color contrast) to only deposit (e.g. print) the self-switchable polymer along the electrode digits (i.e. with gaps), and further only on one side of the interdigitated pair (a complementary polymer layer may optionally be deposited on the other side of the interdigitated pair).
  • the self-switching polymer e.g. thickness
  • switching protocol e.g. thickness
  • the EC mix layer can be deposited (e.g. by a further printing process), as shown by layer 1410 in FIG. 10B.
  • the EC mix is opaque (white, containing Ti0 2 particles), however, it may also be transparent (without Ti0 2 particles) as shown in 1500 by layer 1510.
  • the EC mix can also be deposited onto select pixels using different EC mix compositions (e.g. a different monomer polymerizing to a unique color).
  • some pixels may only have an electrolyte printed on top (i.e. no EC mix).
  • the above examples disclose embodiments of polymorphic displays and pixels with various operable states corresponding to optical states determined by reflective properties of the pixels.
  • the method and means can advantageously be extended to transmissive and/or polarization properties.
  • the self-switching polymer or polymerized monomer layers can be designed (with appropriate activation protocols) such that the transmitted light through (the colored layers in) the pixels determine the optical state.
  • both the back electrode and substrate are at least partially transmissive as well.
  • electrochromic materials could be combined with a liquid crystal material to from an electro- optic layer capable of generating both polarization and color changes to transmitted light through the layer (with corresponding operable states).
  • polarizers in front and behind the electro-optic layer e.g. on the outer surface of front (and back, if transmissive) substrate or cover layer, could, e.g., convert the polarization changes to light intensity changes.
  • the above exemplary embodiments primarily working in the visible wavelength range.
  • the embodiments of the current invention also include wavelength outside of the human visible range (e.g. machine reading).
  • electrochromic polymers typically exhibit significant reflectivity changes in the IR
  • wavelengths between the oxidized (conductive) and reduced (non-conductive) states can thus also be utilized for generating operable state changes outside of the visible range for polymorphic pixels and displays.
  • Example 5 Polymorphic Display Fixed-Image Shutter Mode
  • FIG. 12A-D illustrates another embodiment of the current invention in side view and front view, in which the pixels of a polymorphic display 1600 operates in a shutter mode (i.e., a means for either transmitting or reflecting/absorbing light).
  • a shutter mode i.e., a means for either transmitting or reflecting/absorbing light.
  • the EC Mix 703 spanning both the right pixel 1601, with a bi-stable, permanent and irreversible second operating state, and the left pixel 1602, which is monostable and self-switchable, is predominantly transparent (i.e., without any Ti02 in the EC Mix).
  • the complementary conducting polymer material 714 can be patterned appropriately to all or a set of pixels of the polymorphic display. Additionally, the material may be pixel specific according to the intended properties of the corresponding pixel. As presented in FIG. 5A, embodiment 1600 additionally comprises a fixed-image layer 1603 containing fixed-images 1604 (here a“smiley face”) and 1605 (here a “check mark”), which both can be revealed or obscured to the viewing side depending on the transmissive properties of the respective pixels 1601 and 1602. Note that here the polymorphic display is illustrated functionally as an indicator with two pixels large enough to each contain a legible image.
  • the image layer may contain one or more images (also referred to herein as messages) and a polymorphic display may comprise multiple fixed- image layers.
  • fixed-image layer 1603 may include only discrete images (such as 1604 and 1605) with no (printing) layer material in-between, as shown in FIGS. 12A-D.
  • the fixed-images, 1604 and 1605 may e.g. be printed or otherwise constructed or placed directly onto substrate 709 or onto a separate thin substrate or film (not shown) which subsequently is adhered to substrate 709.
  • the back electrode 705 of this embodiment shown in FIG. 12A is transparent such that a fixed-image located on the back-side of the back electrode may be seen from the viewing side.
  • the fixed-image may also be printed or placed directly onto the front side (not shown) of an optionally opaque back electrode 705, for instance, with the fixed-images printed using conductive ink of a favorably different color than the opaque electrode to provide image contrast. In either case the fixed- images may also be printed in full color. Additionally, the fixed image may also be printed or placed directly on the front side of the optional complementary conductive polymer material 714 shown in FIG. 5A), advantageously with an image construction and material which provide for sufficient image contrast and ion conductivity (e.g., porous, containing small holes).
  • fixed images may also include“dynamic” images that are generated after manufacture of the polymorphic display (at a preferable point during the switching cycle).
  • a patterned back electrode 705 e.g., interdigitated pair per Example 4 or segmented
  • a desired image could be generated by polymerization of EC mix 703 onto the corresponding electrode pattern (by respective application of an activation signal across the interdigitated pair of electrodes or back segmented and front electrodes).
  • the self-switching polymer 1606 is different than those previously discussed in Example 7, in that its stable (non- powered) state is colored (e.g. black or blue), whereas its volatile state is transparent or clear (here, for example, in the human visible wavelength range).
  • Exemplary polymers with such characteristic include anodically coloring conductive polymers with low oxidation potentials, such as, PBEDOT-NMeCbz and PProDOP-NPrS.
  • FIG. 12A illustrates the initial state of the polymorphic display 1600 prior to any application of switching signals across electrodes 704 and 705 of pixel 1601 and 711 and 705 of pixel 1602.
  • the vertical structure of pixel 1601 is transparent allowing fixed-image 1604 (“smiley face”) to be seen 1607 from the viewing side (indicated by 1607 in the front view of FIG. 5 A).
  • the self-switchable polymer of pixel 1602 however is colored (and favorably also opaque) in its unpowered stable state, thus the fixed-image 1605 of pixel 1602 is obscured or hidden from the viewing side (indicated by 1608 in the front view of FIG. 5A).
  • a resulting transparent state of the self- switching polymer layer 1607 reveals fixed-image 1605 (“check mark”), as shown by 1610 in FIG. 12B.
  • the fixed-mage 1605 will remain visible for the duration of the maintenance signal (e.g. indicating that device is operating).
  • pixel 1601 is switched by applying a voltage above a certain threshold (e.g. +3V), such that the polymerized monomer layer 1611 is formed at the front electrode 704 of pixel 1601.
  • This switching signal can for instance be in response to an event, e.g., the temperature of the display itself or the good the polymorphic display is attached to, exceeded a set threshold.
  • the polymerized monomer layer 1611 is colored (e.g. dark blue), and advantageously opaque, fixed-image 1604 is now hidden in a permanently and irreversibly hidden or obscured, as indicated by 1612 in FIG. 12C.
  • the self-switchable polymer reverts back to its stable colored state 1606, resulting in both fixed-images being hidden, as indicated by 1608 and 1612 in FIG. 12D.
  • electrochromic conductive polymers which are mono-stable and self-switchable and could be used as layer with either a transparent (clear) state in the stable state (e.g., 710 in FIG. 5A) or self-erasing state (as indicated by 1609 in FIG. 12B).
  • a transparent (clear) state in the stable state e.g., 710 in FIG. 5A
  • self-erasing state as indicated by 1609 in FIG. 12B
  • Such polymers provide for expanded shutter mode functionality. Specifically, the operable states of such a pixel 1700 as shown in FIG. 13, exhibit a first colored stable state 1740 as deposited (e.g. spray casted), and are irreversibly switchable to a second colored or transmissive stable state 1760 after applying a first switching signal, and further switchable to a third colored volatile state 1780 after applying a second switching signal.
  • poly(propylenedioxythiophene) PProDOT(CH 2 OEtHx)2 ⁇ Macromolecules , 2004, 37 (20), pp 7559-7569] (prior to power being applied for the first time) is red 1740, the second stable state corresponding to an oxidized chemical state (after a first switching signal is applied) is transparent (or clear) 1760, and the third volatile state corresponding to a neutral (reduced) chemical state (after a second switching signal followed by a maintenance signal is applied) is blue 1780.
  • the third state is achievable through a phenomenon called“doping induced order” where the expulsion of the electrolyte allows a reorganization of the polymer backbone to a lower energy state.
  • Such an exemplary three-state polymer could advantageously be applied as layer 1606 of pixel 1602 of the polymorphic display shutter structure 1600 in FIG. 12A.
  • pixel 1602 could provide augmented indication (or message), that the display (and associated good) has never been powered up or activated by indication of a stable red state, which is irreversibly switchable to a second clear and stable state (revealing image 1605), followed immediately by a second switching signal transitioning to the third volatile blue state (indicating the power is on). If the maintenance signal in this state is subsequently terminated (for instance, when power is no longer available), it self-switches back to the second clear state revealing image 1605 (which, in this case, may indicate a“no power” symbol).
  • polymers with such characteristics can, for example, also be utilized as material layer 710 of pixel 702 in FIG. 5 A or of pixel 801 in FIG. 6A, to provide for bistable, irreversibly switchable, and self-switchable operable properties in conjunction with appropriately selected switching signals and signal protocol.
  • polymorphic display embodiment 1800 it may be desirable to contain the EC mix or electrolyte material by means of compartments within a common structure as illustrated by polymorphic display embodiment 1800 in FIG. 14. This is, in particular, applicable for cases in which the EC mix or electrolyte is characterized by a relatively high viscosity (e.g., after deposition or printing). However, it is also advantageously utilized for polymorphic displays for which individual pixels require different types of electrolytes (for optimized electrochromic functionality) or comprise distinct electro-optic materials.
  • Such electro-optic materials may comprise any material that can affect reflected, transmitted, or emitted electro-magnetic radiation (e.g., amplitude, intensity, polarization, and/or wavelength) based on an electric input (e.g. switching) signal.
  • electro-optic materials may comprise any material that can affect reflected, transmitted, or emitted electro-magnetic radiation (e.g., amplitude, intensity, polarization, and/or wavelength) based on an electric input (e.g. switching) signal.
  • electro-optic materials examples include liquid crystals (e.g., cholesteric and ferroelectric), electrophoretic (particle systems), electrochromic materials, electrowetting fluids, electro-liquid powder materials, plasmonic nanostructures, optical interference stacks (including those switched by microelectromechanical systems), photonic crystals, and phosphorescent materials, as well as, emissive materials such as LED materials, OLED (and other electroluminescent) materials, quantum dot materials (photo-emissive or electro-emissive), or any combination thereof.
  • emissive materials such as LED materials, OLED (and other electroluminescent) materials, quantum dot materials (photo-emissive or electro-emissive), or any combination thereof.
  • emissive materials such as LED materials, OLED (and other electroluminescent) materials, quantum dot materials (photo-emissive or electro-emissive), or any combination thereof.
  • emissive materials such as LED materials, OLED (and other electroluminescent) materials, quantum dot materials
  • Embodiment 1800 is similar to embodiment 1600 in FIG. 12A without the fixed- image layer 1603, and will not be explained in detail expect where there are differences.
  • the key difference of embodiment 1800 as compared to embodiment 1600 is the integration of a compartmentalized structure (vertically) spanning the front transparent substrate 706 and the back (here common) electrode 705, thus providing containment of the EC mix 703 of pixel 1801 and electrolyte 1803 (e.g. ionic liquid) of pixel 1802.
  • the thickness of the containment wall 1806 in-between pixels may be different (e.g. thinner as shown) as compared to those containing edge pixels of the polymorphic display (here 1804 and 1805).
  • the thicknesses and aspect ratios of the walls are favorably optimized taking into account the compartmentalized structure material (e.g., flexible polymer), rigidity (or viscosity) of the EC mic 703 and electrolyte 1803, flexibility of the display, as well as, functionality and lateral fill factor of the pixels.
  • the compartmentalized structure material e.g., flexible polymer
  • rigidity (or viscosity) of the EC mic 703 and electrolyte 1803 e.g., flexibility of the display, as well as, functionality and lateral fill factor of the pixels.
  • the compartmentalized structure material be made opaque (e.g. by adding a light absorbing dye or ink particles) to enhance the image quality of the completed polymorphic display.
  • the compartmentalized structure may, for instance, be fabricated from a solid uniform film by accordingly removing material (e.g. by laser ablation), before it is applied (with e.g. an adhesive) to the front substrate 706 or back substrate 709 (with transparent of opaque conductive layer 705), or generated in place by a photolithographic process.
  • material e.g. by laser ablation
  • an adhesive e.g. an adhesive
  • the compartmentalized structure may be generated through an embossing process, e.g., by embossing a thermoplastic or photopolymer layer onto conductor layer 705 supported by back substrate 709, with subsequent filling/sealing of the electro-optic material, and attachment to the front substrate 706 (with pixelated transparent conductors).
  • embossing e.g., by embossing a thermoplastic or photopolymer layer onto conductor layer 705 supported by back substrate 709, with subsequent filling/sealing of the electro-optic material, and attachment to the front substrate 706 (with pixelated transparent conductors).
  • Such a structure would enable switching of polymorphic display pixels based on, for example, electro- optic materials that respond to an electric field including, e.g., electrophoretic and liquid crystal materials.
  • back electrode 705 e.g.
  • electro-optic materials requiring low resistive interface to its corresponding electrodes would not switch.
  • electrochromic functionality can be achieved by substituting the front pixel electrode (e.g. 704 or 711) with a pair of interdigitated electrodes (as illustrated in Example 4).
  • FIG. 15A illustrates an embodiment 1900 of such a polymorphic display in its pre-powered state, in side and front views, with two (indicator) pixels comprising a bi-stable electrophoretic right pixel 1901 and a monostable and self-switchable left pixel 1902.
  • the left pixel is functionally similar to pixel 702 illustrated in FIG. 5A, thus only differences will be highlighted.
  • the optional complementary conductive polymer material 714 is not shown.
  • the electrolyte 1803 e.g., ionic liquid
  • pixel 1902 is similar to that of 1802 of embodiment 1800, discussed in Example 6 , with containment walls 1804 and 1806.
  • the indicator output 1912 of pixel 1902 is black, as shown in FIG. 15A.
  • the right pixel 1901 comprises an electrophoretic microencapsulated electro-optic layer of spheres 1920 filled with suspension fluid containing two types of oppositely charged ink particles, white 1921 and black 1922. These particles move in response to an applied electric field between electrodes 704 and 705, such that white ink particles 1921 remain stable at the front surface after application of a switching signal applied to the electrodes (of a specific polarity), whereas the black ink particles 1922 (of opposite charge) remain stable at the back of the electro-optic layer as shown in FIG. 15 A.
  • the resulting indicator output 1911 of pixel 1901 is white.
  • FIG. 15B pixel 1902 is switched (analogously to pixel 1602 in FIG. 12B) to its volatile state (e.g. indicating the display is powered up), resulting in a clear state of polymer layer 1609 and a white state of the indicator output 1914 (here assuming, for example, that electrolyte includes a Ti0 2 coloring additive).
  • the state of indicator will self-switch back to output 1912, as shown in FIG.
  • pixel 1901 can favorably indicate the occurrence of an event (e.g., the temperature of the display or associated good exceeds a set limit) by switching the state of the electrophoretic electro-optical layer such that the black ink particles are now instead at the viewing side, corresponding to a black stable state of the indicator output 1915 as shown in FIG. 15D.
  • an event e.g., the temperature of the display or associated good exceeds a set limit
  • pixel 1902 reverts back to black indicator output state 1912 with the bi-stable indicator output remaining black, as indicated by 1915 in FIG. 15E. Note that in this particular embodiment 1900 both pixels are reversible. Thus after a reset of pixel 1901 (to a white state initial state) the entire sequence can be repeated.
  • electrophoretic microencapsulated electro-optic layers are formed in roll- to-roll processes onto a non-pattemed electrode layer on a support substrate.
  • This allows for prefabrication of the electrophoretic electro-optic layer of pixel 1901 of embodiment 1900 onto back substrate 709 with the non-pattered electrode layer 705 using an adhesive 1915.
  • the area of the prefabricated substrate 709 with exposed electrode 705, commonly used for required electrical connection (e.g. using conductive adhesive), can also be used, and extended if necessary, as a means to form the compartmentalized structure (1804 and 1806) onto.
  • the compartmentalized structure may also be formed onto front substrate 706 facilitating alignment to pixelated electrodes (704 and 711).
  • the electrophoretic electro-optic layer is attached electrode 704 and substrate 706 by a transparent adhesive 1925, whereas the pre-filled electrolyte material 1803 is sealed by the adhesively attached
  • the thickness of the compartmentalized structures 1806 and 1804 may be different than that of the electrophoretic electro-optic layer of pixel 1901, and the structure wall 1806 may be optional.
  • exemplary embodiment 1900 of FIG. 15 A there are many variations of exemplary embodiment 1900 of FIG. 15 A.
  • the non-patterned electrode layer would require the non-patterned electrode layer to be transparent, it would allow the back patterned electrode layer, as well as, the (optionally conductive) adhesive 1925 to be opaque.
  • the self-switching conducting polymer layer could be either printed on the front prefabricated electrode layer or on the back patterned electrode layer. The latter case would preferably include a transparent electrode material 1803, as the polymer layer is viewed through the electrolyte.
  • electrophoretic electro-optic materials may also comprise a multitude of stable states (e.g., a number of stable distinguishable grey levels); or contain three or more types of ink particles and/or a colored suspension fluid with corresponding stable color states.
  • Example 8 (Pixels Constructed with Different Redox and Electrolyte Layers)
  • electro-polymerizable monomer layers are polymerized in-situ , i.e. within the display device.
  • One preferred embodiment is a polymorphic display comprising different sets of pixels, each comprising different redox layers and a shared electrolytic layer that spans multiple pixels - and can provide independent pixel switching.
  • Independent switching is achieved for example with a polymorphic display comprising a permanent and irreversible pixel (constructed with an electropolymerizable monomer layer) and a self-switchable pixel (constructed with a conductive polymer layer), where the two pixels share a common electrolytic layer, even if the respective switching voltage levels are comparable and/or their ranges are overlapping (i.e., not highly non linear with distinct threshold voltages).
  • redox materials for redox layers are those that are solid in the temperature range of interest of the display device (e.g. operating and storage temperature ranges), in contrast to those that form liquids (of various viscosities) suitable for single-layer EC mixtures.
  • the electro- polymerizable monomers (and subsequently polymerized monomers) are preferably insoluble in the electrolyte, which improves compatibility with a large range of electrolytes (e.g. ionic liquids). For example, hydrophobic monomers would be less likely to dissolve/disperse in polar ionic liquid.
  • electro-polymerizable monomers including
  • Electro-polymerizable monomers that oxidize at relatively high potentials (say, for example, at +0. IV vs. Fc/Fc+ or higher) are also advantageous as these are less susceptible to oxidation and therefore more stable in (pre- switched) display devices and thus reducing or eliminating the need for high-performance device barrier layers/encapsulation.
  • a electro-polymerizable monomer layer may be deposited onto the electrode layer (e.g. 704 or 705 of of pixel 701 in FIG. 5 A) using a variety of methods (similar to the conductive polymer layer for self-switchable pixel, see e.g. 710 of pixel 702 in FIG. 5 A), including spray casting, screen or inkjet printing, gravure coating, etc. These deposition methods may further be solution based (solvent assisted) using either polar or non-polar solvent depending on the monomer’s properties, and include other additives such as polystyrene (to increase viscosity) or adhesion promotors (e.g. Silquest 187-A Silane; or EDOT-acid as a separate sub-layer).
  • Exemplary solvents include cyclopentyl methyl ether (CPME), 2-methyltetrahydrofuran, dihydrolevoglucosenone (cyrene), acetonitrile, etc.
  • electro-polymerizable monomer layers may be patterned onto (partially or substantially conforming to) a pixelated electrode, or deposited as a continuous (shared) layer across multiple pixel electrodes (favorably with sufficient spacing between neighbor pixel electrodes).
  • Deposited (and patterned) electro- polymerizable monomer layers may have pixel-specific monomer properties to achieve pixel particular optical states (e.g. colors) and/or pixel specific modalities for polymorphic displays.
  • the redox layer may also contain multiple electropolymerizable monomers to achieve a broader spectrum of optical states, e.g. by blending the monomers in different ratios to form a single solid layer, forming multiple solid sub-layers each with a different polymerizable monomer, or any combination thereof.
  • the multiple monomers may also comprise dissimilar (e.g. distinct or overlapping but shifted ranges of) polymerization activation thresholds to achieve different optical states by application of distinct switching signals/protocols (e.g. voltage levels, durations, etc.) to the addressing electrodes.
  • the electrolyte layer may include solid polymer electrolytes, gel polymer electrolytes, and polyelectrolytes, with green alternatives in gel polymer electrolytes based on e.g. cellulose or lignin, or ionic liquids.
  • the electrolyte may also be deposited using a variety of printing techniques, as previously discussed, and may be a liquid (favorably contained) or (highly) viscous layer (with increased mechanical and interfacial stability by additives including, e.g. zeolites, Al 2 0 3 , MgO, or Si0 2 ), or advantageously made semi-solid or solid with appropriate additives (e.g. thermally or UV curable monomers, microbeads, etc.) to form fully solid device stacks (including the electrode materials).
  • the electrolyte layer may additionally include colorants (e.g., pigments, dyes, or Ti0 2 ).
  • Solid electro-polymerizable monomer layers can provide for a multitude of operable properties for polymorphic display pixels and polymorphic pixels.
  • the polymodal properties and modalities include a first stable state, corresponding to a first optical state (e.g. a first color) as deposited.
  • the first state is irreversibly switchable to a second state (by oxidatively
  • a second optical state e.g. a second color
  • the polymerized (oxidized) monomer may further be switchable to a volatile third state (i.e., analogous to the operable states 1700 shown in FIG. 13), corresponding to a third optical state (e.g. a third color), and remain in this (reduced
  • the polymerized) state for the duration of the maintenance signal (as discussed above).
  • the maintenance signal When the maintenance signal is terminated (or disrupted for any reason) it self-switches (transitions back) to the stable, second state.
  • the electropolymerized monomer remains in this state for the duration of the maintenance signal after which it self- switches to a third stable state, corresponding to a third optical state (e.g. a third color).
  • a third optical state e.g. a third color
  • first, second, and third colors of the solid EC layer may correspond to a transparent, lightly colored semi-transparent, or colored opaque state, which may be non-reflective (absorptive), semi-reflective, or reflective.
  • the pixel color may be different than the monomer layer depending on properties of the layer(s) viewable behind the redox layer (e.g. through intentional color blending by means of a colored electrolyte and/or back electrode/substrate or reflective interference stack effects).
  • the third optical state may also be indistinguishable from that of the second state (e.g. for a wavelength or within a wavelength range).
  • a single electro-polymerizable monomer layer may also be deposited on the back (counter) electrode of a pixel (e.g., instead of the self-switching polymer layer 1102 of polymorphic pixel 1101 in FIG. 9 A), or layers of the same or different monomer properties on each electrode (with the completed display device viewable from one or both sides), to achieve different polymorphic modalities.
  • an irreversible switching modality can be achieved with a separate electro-polymerizable monomer layer in conjunction with an adjacent electrolyte layer
  • an EC mix layer e.g., 703 of embodiment 1100 in FIG. 5 A
  • the electrolyte layer could also be used as the electrolyte layer to achieve additional irreversible transitions, e.g. with the electro- polymerizable monomer layer and the in-mix monomer layer activated at different
  • FIG. 16A shows an exemplary configuration of a polymorphic display 2000 comprising two pixels, each having different operable properties, in side view and front view.
  • the right pixel 2001 comprising a solid monomer (redox) layer 2011, is bi-stable with both self-switchable and irreversibly switchable operable properties (such as 1700 in FIG. 13), whereas the left pixel 2002 is mono-stable and self-switchable (such as 100 in FIG. 1).
  • the left pixel 2002 of FIG. 16A is similar to pixel 702 in FIG. 5 A, thus only differences will be discussed.
  • pixel 2002 (and pixel 2001) comprises a shared electrolyte (without a monomer) which is colored yellow (e.g. ionic liquid with an appropriate pigment or dye).
  • the self- switchable redox layer comprising a conductive polymer 2010 is green in its volatile state and substantially transparent in its stable state [e.g. a spray cast film of ECP-G Chem. Mater. 2012, 24, 255-268]
  • FIG. 16A shows pixel 2002 prior to application of a switching signal (to pixel electrode 711 and common electrode 705), with the pixel having a transparent conductive polymer layer 2010, and a corresponding yellow optical state 2013.
  • 16B shows pixel 2002 after application of a switching signal (and application of a maintenance signal), resulting in a green polymer layer 2021, and a corresponding green optical state 2020.
  • the pixel remains in its volatile state until the maintenance signal is terminated, at which point it self-switches back to its yellow stable state 2013 as shown in FIG. 16C.
  • the right pixel 2001 is similar to pixel 701 in FIG. 5 A, thus only differences will be discussed.
  • this exemplary embodiment comprises a redox layer comprising a solid electro-polymerizable monomer 2011 of fluorenone-thienylene vilylene [TVF] (((2,7-bis(5-[(E)- l,2bis(3-octylthien-2-yl)ethylene])-fluoren-9-one) [“Solution versus solid-state
  • This exemplary electro-polymerizable monomer 2011 is red in its first stable state (prior to power being applied for the first time), with the pixel 2001 having a corresponding red optical state 2012 as shown in FIG. 16A.
  • This operable state is irreversibly switchable, by applying a switching signal across pixel electrodes 704 and 705, to a second stable state, corresponding to a light blue in color (2018 in FIG. 16B). The change in the operable state and optical state (color) occurs by solid-state
  • the light blue polymerized layer 2018 is partially transparent (and reflective) and color blends with the yellow electrolyte layer 2013 to yield an approximately green optical state 2019.
  • the composite color of the optical state 2019 can be tuned, e.g. by selection of monomer layer 2011 thickness, concentration and selection of electrolyte colorant, or activation protocol (e.g. duration of activation signal). For example, it may be desirable to color match the composite optical state 2019 to the optical state 2020 of the volatile state of self-switching pixel 2002.
  • the polymerized layer switches to a volatile third state, which is orange/red 2014 ,with a corresponding orange/red optical state 2015 of pixel 2001, as shown in FIG. 16C (note that the orange/red color and corresponding pattern used in FIG. 16C is not included in the Legend of FIG. 11). Analogous to above, the pixel 2001 will remain in this volatile state (and
  • pixel 2002 could be constructed as pixel 2001 but with a solid monomer comprising a different modality of e.g. a volatile second state and a stable third state.
  • pixel 2002 could be constructed as a display with pixel 2002 having the same modalities as (polymorphic) pixel 2001, however, with a second monomer having different optical properties in one or more states of those corresponding to pixel 2001.
  • pixel 2001 comprises a solid electropolymerizable monomer (redox) layer 2011 in combination with an electrolyte layer 2003 which may be a liquid, semi-solid or solid
  • redox layer 2011 may contain a liquid monomer in a mix (e.g. an EC mix as above) or form a gel or semi-solid layer (e.g. by adding for example zeolites, Al 2 0 3 , MgO, or Si0 2 , or polymer such as polystyrene to the mix, or providing a porous or a printed microscale structure for the layer).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

L'invention concerne un afficheur polymorphe, qui est un appareil unitaire construit de façon à permettre diverses fonctions électro-optiques. L'afficheur polymorphe, même lorsqu'il possède de multiples pixels, permet un partage de structures sélectionnées parmi les pixels. Lors d'une construction à pixels multiples, il existe un ensemble de pixels de l'afficheur qui affichent un ensemble de propriétés exploitables, telles que des propriétés de stabilité, de séquençage et de commutation particulières, et un autre ensemble de pixels différents de ceux du premier ensemble. C'est-à-dire qu'ils affichent des propriétés de stabilité, de séquençage ou de commutation différentes. De cette manière, il est possible de construire un afficheur polymorphe hautement flexible pour satisfaire une large gamme de besoins d'affichage.
PCT/US2019/048500 2018-08-28 2019-08-28 Afficheurs électro-optiques polymorphes WO2020047049A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862723835P 2018-08-28 2018-08-28
US62/723,835 2018-08-28

Publications (1)

Publication Number Publication Date
WO2020047049A1 true WO2020047049A1 (fr) 2020-03-05

Family

ID=69645339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/048500 WO2020047049A1 (fr) 2018-08-28 2019-08-28 Afficheurs électro-optiques polymorphes

Country Status (1)

Country Link
WO (1) WO2020047049A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100202035A1 (en) * 2009-02-11 2010-08-12 Samsung Electronics Co., Ltd. Electrochromic device and method of fabricating the same
US20110199666A1 (en) * 2010-02-12 2011-08-18 Samsung Electronics Co., Ltd. Active matrix electrochromic device array and method of manufacturing the same
US20120139824A1 (en) * 2010-12-07 2012-06-07 Ricoh Company, Ltd. Electrochromic display element, display device and information apparatus
US20130162512A1 (en) * 2011-12-22 2013-06-27 Peter Andersson Ersman Fixed image display device and method of manufacturing the same
US20140307302A1 (en) * 2011-11-07 2014-10-16 Acreo Swedish Ict Ab Vertical electrochromic display
US20170053290A1 (en) * 2008-07-03 2017-02-23 Paul Atkinson Intelligent adaptive label device and method
WO2018145123A1 (fr) * 2017-02-06 2018-08-09 Chromera, Inc. Affichages électro-optiques polymorphes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170053290A1 (en) * 2008-07-03 2017-02-23 Paul Atkinson Intelligent adaptive label device and method
US20100202035A1 (en) * 2009-02-11 2010-08-12 Samsung Electronics Co., Ltd. Electrochromic device and method of fabricating the same
US20110199666A1 (en) * 2010-02-12 2011-08-18 Samsung Electronics Co., Ltd. Active matrix electrochromic device array and method of manufacturing the same
US20120139824A1 (en) * 2010-12-07 2012-06-07 Ricoh Company, Ltd. Electrochromic display element, display device and information apparatus
US20140307302A1 (en) * 2011-11-07 2014-10-16 Acreo Swedish Ict Ab Vertical electrochromic display
US20130162512A1 (en) * 2011-12-22 2013-06-27 Peter Andersson Ersman Fixed image display device and method of manufacturing the same
WO2018145123A1 (fr) * 2017-02-06 2018-08-09 Chromera, Inc. Affichages électro-optiques polymorphes

Similar Documents

Publication Publication Date Title
US20210103196A9 (en) Polymorphic electro-optic displays
US8233211B2 (en) Electrochromic display device and its manufacturing method
US7301687B2 (en) Electrochemical device
Xu et al. Electrochromic smart materials: fabrication and applications
EP1373976B1 (fr) Dispositif de pixel electrochimique
US9709867B2 (en) Display device
US20100265561A1 (en) Electro-optic displays, and methods for driving same
US20190025664A1 (en) Polymorphic electro-optic displays
EP3577512A1 (fr) Affichages électro-optiques polymorphes
WO2012045485A1 (fr) Dispositif d'affichage
US11467433B2 (en) Polymorphic electro-optic displays
US11353693B2 (en) Polymorphic electro-optic displays
WO2020047049A1 (fr) Afficheurs électro-optiques polymorphes
US20230221611A1 (en) Multi-Layer Polymorphic Dashboard
JP4175598B2 (ja) 表示・調光素子、その制御方法およびその製造方法
WO2019156697A1 (fr) Afficheurs électro-optiques polymorphes
WO2021040777A1 (fr) Unités d'affichage électro-optiques émissives/non émissives
Kondo et al. Novel electrochromic polymer for electronic paper
JP2006267831A (ja) カラー表示素子
EP2312386A1 (fr) Dispositif d'affichage électrochrome à matrice passive
US10878726B2 (en) Intelligent container system
US6757457B1 (en) Class of charge-actuated chromogenic structures based on the oxidation and reduction of optical switchable materials in a thin-film electrochemical cell
EP2625565B1 (fr) Dispositif d'affichage électrochrome à matrice passive ayant une tension de seuil
US20220180822A1 (en) Intelligent container system
Kondo et al. P‐101: New Electrochromic Polymer for Electronic Paper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854886

Country of ref document: EP

Kind code of ref document: A1