WO2020045475A1 - ピラゾロ[3,4-d]ピリミジンの結晶 - Google Patents
ピラゾロ[3,4-d]ピリミジンの結晶 Download PDFInfo
- Publication number
- WO2020045475A1 WO2020045475A1 PCT/JP2019/033647 JP2019033647W WO2020045475A1 WO 2020045475 A1 WO2020045475 A1 WO 2020045475A1 JP 2019033647 W JP2019033647 W JP 2019033647W WO 2020045475 A1 WO2020045475 A1 WO 2020045475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystal
- compound
- crystal according
- measurement
- powder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
Definitions
- the present invention relates to a pyrazolo [3,4-d] pyrimidine compound crystal having excellent storage stability and useful as an antitumor agent, and a pharmaceutical composition containing the crystal.
- the chemical and physical stability of the compound is required to maintain stable quality and / or to facilitate storage control. It is. For this reason, it is preferable that the obtained compound is a stable form crystal, and usually, the most stable form crystal is often selected as a drug substance for pharmaceuticals.
- Patent Document 1 discloses a compound having the following Her formula (I) as a compound having an excellent Her2 inhibitory activity and exhibiting antitumor activity.
- compound (I) hereinafter also referred to as "compound (I)”
- Patent Document 1 does not describe the crystal form of the present compound, and at present, the stable form of compound (I) and its production method are not known.
- An object of the present invention is to provide a stable crystal of compound (I) useful as an antitumor agent.
- compound (I) has three crystal forms (crystal I, crystal II, and crystal III). I found that I was non-hygroscopic and had excellent solid stability, and completed the present invention.
- the present invention provides the following inventions [1] to [13].
- a pharmaceutical composition for oral administration containing the crystal according to any one of [1] to [4].
- An antitumor agent comprising the crystal according to any one of [1] to [4].
- Use of the crystal according to any one of [1] to [4] for producing an antitumor agent [11] The crystal according to any one of [1] to [4], for use as a medicament.
- the crystal according to any one of [1] to [4] for use in treating a tumor.
- a method for treating a tumor comprising administering to a patient in need thereof an effective amount of the crystal according to any one of [1] to [4].
- the crystal of 1H-pyrazolo [3,4-d] pyrimidine-3-carboxamide (crystal I) is compared with other crystal forms, for example, from the viewpoint of handling (lower hygroscopicity) and / or quality controllability. It is a useful form when the compound is used as a drug substance for pharmaceuticals.
- the crystal I of the present invention has a residual solvent of not more than the standard value defined in the Residual Solvent Guideline for Pharmaceuticals in the ICH Guidelines and is safe as a pharmaceutical.
- Example 1 shows a powder X-ray diffraction spectrum of crystal I of compound (I) obtained in Example 1 (the vertical axis represents intensity (counts), and the horizontal axis represents diffraction angle (2 ⁇ )).
- 2 shows a thermogravimetric-differential thermal simultaneous measurement (TG-DTA measurement) curve of crystal I of compound (I) obtained in Example 1.
- 3 shows a powder X-ray diffraction spectrum of crystal II of compound (I) obtained in Comparative Example 1 (vertical axis represents intensity (counts), horizontal axis represents diffraction angle (2 ⁇ )).
- 5 shows a thermogravimetric-differential thermal simultaneous measurement (TG-DTA measurement) curve of crystal II of compound (I) obtained in Comparative Example 1.
- the compound (I) can be synthesized, for example, according to the method described in WO 2017/038838, but is not limited to this method.
- the diffraction angle and the overall pattern are important in determining the identity of the crystal due to the nature of the data. Since the relative intensity of the powder X-ray diffraction pattern can vary somewhat depending on the direction of crystal growth, particle size, and measurement conditions, it should not be strictly understood.
- the numerical value of the diffraction angle (2 ⁇ ) in the powder X-ray diffraction pattern may have a measurement error in a range of about ⁇ 0.2 °.
- thermogravimetric-differential heat simultaneous measurement (TG-DTA measurement) curve may vary depending on the width of temperature rise per minute, the purity of the sample, and the like.
- the term “near” means ⁇ 5.0 ° C.
- the crystal I of the compound (I) has a powder X-ray diffraction spectrum shown in FIG. 1 and a thermogravimetric-differential heat simultaneous measurement (TG-DTA measurement) curve shown in FIG.
- characteristic peaks in the powder X-ray diffraction spectrum of the crystal I of the compound (I) are 6.0 °, 7.7 °, 8.9 °, as diffraction angles (2 ⁇ ⁇ 0.2 °). 10.6 ⁇ , 12.1 ⁇ , 13.1 ⁇ , 14.0 ⁇ , 14.7 ⁇ , 15.5 ⁇ , 15.8 ⁇ , 16.8 ⁇ , 17.7 ⁇ , 18.1 ⁇ , 18.4, 19.4, 23.4, 24.1, 24.7, 25.1, and 25.7.
- the crystal I of the compound (I) according to the present invention is a crystal having at least 6 or more peaks selected from the above peaks, and preferably a crystal having at least 8 or more peaks selected from the above peaks. And more preferably a crystal having at least 10 peaks selected from the above peaks, and particularly preferably a crystal having any of the above peaks.
- thermogravimetric-differential heat simultaneous measurement (TG-DTA measurement) curve of the crystal I of the compound (I) is around 198 ° C to 202 ° C, preferably around 200 ° C.
- the crystal I of the compound (I) according to the present invention is obtained by, for example, dissolving the compound (I) in a solvent (1), and cooling the solution obtained in (1) to obtain a solid compound (I). It can be manufactured by a method including the obtaining step (2).
- the solution obtained in the step (1) is preferably cooled to a room temperature or lower.
- an appropriate amount of the crystal I of the compound (I) or a mixed crystal containing the crystal I may be added as a seed crystal.
- the amount of the seed crystal to be added is 0.01 to 5 (w / v)%, preferably 0.03 to 1 (w / v)% of the solvent amount.
- crystallization may be performed while stirring to shorten the crystallization time and control the particle diameter.
- the crystal I of the compound (I) according to the present invention is obtained by dissolving the compound (I) in a solvent-rich step (3) and adding the solution obtained in the step (3) to the solution (3) / V) can also be produced by a method including a step (4) of obtaining a solid compound (I) by adding a poor solvent.
- the temperature at which the compound (I) is dissolved in the rich solvent can be set as appropriate, but it is 65 ° C. when dissolved in methanol or THF, 65 ° C. or 80 ° C. when dissolved in ethanol and 1-propanol.
- the temperature is preferably 80 ° C. when dissolved in 2-propanol, 50 ° C. when dissolved in acetone, and 40 ° C. when dissolved in DMSO and DMA.
- the compound (I) can be precipitated at the above-mentioned dissolution temperature. However, if the compound (I) does not precipitate at the dissolution temperature, the crystal I can be obtained by cooling to 25 ° C.
- the precipitated crystals can be isolated and purified from a solution or a mixed solution of the crystals by a known separation and purification means such as filtration, washing with water, and drying under reduced pressure.
- the crystal I of the compound (I) according to the present invention is non-hygroscopic and has excellent solid stability (such as storage stability). It is important for a candidate compound for drug development to have solid stability in both industrial operation and quality maintenance. Further, the solvent used in the production of pharmaceuticals may be toxic, and it is desirable from the viewpoint of safety that the solvent remaining in the production process be as small as possible. In addition, the residual solvent is not included more than the regulation value of the ICH (International Conference on Harmonization of Pharmaceuticals for the EU and Japan) guidelines. Therefore, the crystal I of the compound (I) according to the present invention has excellent properties required as a drug or a drug substance.
- the crystal I of the compound (I) according to the present invention has an excellent Her2 inhibitory activity and is useful as an agent for preventing and / or treating a disease associated with Her2, for example, cancer and tumor. Further, it has an extremely excellent selectivity for Her2, and has an advantage that there are few side effects caused by inhibiting other kinases.
- Her2 includes human or non-human mammal Her2, and is preferably human Her2.
- the term “Her2” includes isoforms.
- the “disease involving HER2” includes a disease in which the incidence of HER2 is reduced, the symptoms are ameliorated, alleviated, and / or completely cured by deleting, suppressing, and / or inhibiting the function of HER2.
- diseases include, but are not limited to, for example, malignant tumors. Preferably, it is a malignant tumor having HER2 overexpression, HER2 gene amplification, or HER2 mutation.
- the target "malignant tumor” is not particularly limited, for example, head and neck cancer, esophageal cancer, stomach cancer, colon cancer, rectum cancer, liver cancer, gallbladder / bile duct cancer, biliary tract cancer, pancreatic cancer, lung cancer, breast cancer , Ovarian cancer, cervical cancer, endometrial cancer, renal cancer, bladder cancer, prostate cancer, testicular tumor, bone / soft tissue sarcoma, blood cancer, multiple myeloma, skin cancer, brain tumor, mesothelioma, and the like.
- various forms of administration can be adopted depending on the purpose of prevention or treatment, without grinding the crystal I or without pulverization.
- These pharmaceutical compositions can be produced using a pharmaceutically acceptable carrier by a conventional method known to those skilled in the art.
- Pharmaceutical carriers include various organic or inorganic carrier materials commonly used as formulation materials, excipients in solid formulations, binders, disintegrants, lubricants, coating agents, solvents in liquid formulations, dissolution aids, It is formulated as a suspending agent, isotonic agent, buffer, soothing agent and the like.
- pharmaceutical additives such as preservatives, antioxidants, coloring agents, sweeteners, stabilizers and the like can be used.
- Excipients include lactose, sucrose, D-mannitol, starch, crystalline cellulose, calcium silicate and the like.
- binder examples include hydroxypropylcellulose, methylcellulose, polyvinylpyrrolidone, candy powder, hypromellose and the like.
- Disintegrators include sodium starch glycolate, carmellose calcium, croscarmellose sodium, crospovidone, low-substituted hydroxypropylcellulose, partially pregelatinized starch, and the like.
- examples of the lubricant include talc, magnesium stearate, sucrose fatty acid ester, stearic acid, sodium stearyl fumarate and the like.
- Examples of the coating agent include ethyl cellulose, aminoalkyl methacrylate copolymer RS, hypromellose, and sucrose.
- Examples of the solvent include water, propylene glycol, and physiological saline.
- Examples of the solubilizer include polyethylene glycol, ethanol, ⁇ -cyclodextrin, macrogol 400, polysorbate 80 and the like.
- Suspending agents include carrageenan, crystalline cellulose and carmellose sodium, and polyoxyethylene hydrogenated castor oil.
- Examples of the tonicity agent include sodium chloride, glycerin, potassium chloride and the like.
- Examples of the pH adjuster / buffer include sodium citrate, hydrochloric acid, lactic acid, phosphoric acid, sodium dihydrogen phosphate and the like.
- Examples of the soothing agent include procaine hydrochloride, lidocaine, and the like.
- Preservatives include ethyl paraoxybenzoate, cresol, benzalkonium chloride and the like.
- antioxidants include sodium sulfite, ascorbic acid, natural vitamin E and the like.
- Examples of the coloring agent include titanium oxide, iron sesquioxide, Food Blue No. 1, and copper chlorophyll.
- Flavoring / flavoring agents include aspartame, saccharin, sucralose, l-menthol, mint flavor and the like.
- Examples of the stabilizer include sodium pyrosulfite, sodium edetate, erythorbic acid, magnesium oxide, dibutylhydroxytoluene, and the like.
- an excipient and, if necessary, a binder, a disintegrating agent, a lubricant, a coloring agent, a flavoring / flavoring agent, etc. are added to the crystal I of the compound (I). Tablets, coated tablets, granules, powders, capsules and the like can be produced by the method.
- the amount of the crystal I of the compound (I) to be incorporated in each dosage unit form is not fixed depending on the condition of the patient to which the compound is applied or the dosage form, but generally, the oral dosage form per dosage unit form In the case of injections, the dose is preferably about 0.05 to 1000 mg, for injections about 0.1 to 500 mg, and for suppositories or external preparations about 1 to 1000 mg.
- the daily dose of the crystal I of the compound (I) of the drug having each dosage form varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be determined unconditionally.
- the dose may be about 0.05 to 5000 mg, preferably 0.1 to 1000 mg per day, and it is preferable to administer it once or twice or three times a day.
- Thermogravimetric / differential heat simultaneous measurement (TG-DTA measurement) The TG-DTA measurement was measured according to the following test conditions.
- Example 1 Production of Crystal I of Compound (I) by Cooling Method After suspending Compound (I) (200 mg) obtained by the method described in WO 2017/038838 in 1-propanol (4 mL), It was dissolved by heating to an external temperature of 100 ° C. After cooling to room temperature, the solid obtained by stirring overnight was collected by filtration, and dried at 70 ° C. under reduced pressure to obtain Crystal I (133 mg).
- the 1 H-NMR spectrum of the obtained compound was as follows.
- Example 2 Production of Crystal I of Compound (I) by Poor Solvent Method A rich solvent and a poor solvent shown in Table 1 below were used. Compound (I) was dissolved in a rich solvent. After confirming that it was dissolved at the set temperature, a poor solvent in an amount 3 times (v / v) of the rich solvent was added. When precipitation was confirmed, the dissolution temperature was maintained, and when precipitation was not confirmed, the solution was cooled to 25 ° C. to obtain a crystal I.
- the powder X-ray diffraction spectrum of the precipitated crystal I is shown in FIG. 1, and the characteristic diffraction angles are as follows. Characteristic diffraction angles (2 ⁇ ⁇ 0.2 °): 6.0 °, 7.7 °, 8.9 °, 10.6 °, 12.1 °, 13.1 °, 14.0 °, 14 0.7 ⁇ , 15.5 ⁇ , 15.8 ⁇ , 16.8 ⁇ , 17.7 ⁇ , 18.1 ⁇ , 18.424, 19.4 ⁇ , 23.4 ⁇ , 24.1 ⁇ , 24 0.7, 25.1 and 25.7.
- thermogravimetric-differential thermal measurement of the crystal I are as follows.
- Example 3 Single Crystal Analysis of Crystal I 100 ⁇ L of methanol was added to and dissolved in Compound (I), and then IPE was gradually mixed at room temperature by vapor diffusion. One week later, precipitation of the crystal I was confirmed.
- the obtained crystal I was shaped into 0.30 ⁇ 0.26 ⁇ 0.20 mm, measured under the following measurement conditions, and data processing was performed as follows.
- Apparatus VariMax DW with RAPID (Rigaku Corporation)
- Test Example 1 Thermal Stability Test A thermal stability test was performed using the crystals I and III obtained in the above Examples and Comparative Examples. Note that the crystal II could not be reproduced, and a thermal stability test could not be performed. Powder X-ray diffraction measurement was performed at 25 ° C., and after heating to 50 ° C. over 30 minutes, powder X-ray diffraction measurement was performed. After the temperature was further raised to 200 ° C. at 10 ° C./10 minutes, powder X-ray diffraction measurement was performed. The temperature was lowered to 25 ° C. over 30 minutes, and powder X-ray diffraction measurement was performed.
- Test Example 2 Solid stability test The storage stability of the crystal I obtained in the above example was tested under the following conditions. Storage conditions: 40 ° C./75% RH (open and closed), 60 ° C. (closed), light-shielded Measurement points: 1 month Storage: about 50 mg Storage container: brown glass bottle The powder X-ray diffraction measurement of the sample after storage was measured by the method described above. The change in the amount of related substances (the amount of substances detected other than compound (I)) was determined by weighing about 1 mg of the sample, dissolving it in about 5 mL of a water / acetonitrile mixture (1: 1), and accurately measuring 5 ⁇ L of this liquid. Then, analysis was performed by HPLC according to the following method.
- Crystal I As a result, in the crystal I, no change in the powder X-ray diffraction pattern was observed, and it was found that the crystal was an extremely stable crystal. Further, as shown in Table 2 below, Crystal I had a small amount of related substances and no change in appearance was observed.
- Test Example 3 VTI-SA + (TA Instruments) was used for the dynamic moisture absorption / desorption test .
- About 10 mg of Crystal I was weighed into a pan. The temperature was raised to 60 ° C. once a minute while confirming that the weight fluctuation was within 0.0100% within 5 minutes. If the weight fluctuated, the temperature was maintained for a maximum of 5 hours before proceeding to the next step. Thereafter, the temperature was lowered to 25 ° C., and the humidity was increased from 5% RH to 95% RH, and then decreased to 5% RH. At that time, humidity was applied by 5% RH while confirming that the weight fluctuation was within 0.00100% within 5 minutes. If the weight fluctuated, the humidity was maintained for a maximum of 2 hours before proceeding to the next step.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
(R)-1-(1-アクリロイルピペリジン-3-イル)-4-アミノ-N-(4-(2-(ジメチルアミノ)-2-オキソエチル)-2,3-ジメチルフェニル)-1H-ピラゾロ[3,4-d]ピリミジン-3-カルボキサミドの安定性に優れ、製造及び製剤面で好ましい結晶を提供することを目的とする。 本発明は、粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、6.0゜、7.7゜、8.9゜、10.6゜、12.1゜、13.1゜、14.0゜、14.7゜、15.5゜、15.8゜、16.8゜、17.7゜、18.1゜、18.4゜、19.4゜、23.4゜、24.1゜、24.7゜、25.1゜及び25.7゜に特徴的なピークを有する結晶を提供する。
Description
本発明は、保存安定性に優れ、抗腫瘍剤として有用なピラゾロ[3,4-d]ピリミジン化合物の結晶及び当該結晶を含む医薬組成物に関する。
一般的に、医薬品の有効活性成分として化合物が使用されるとき、品質を安定に保持するために及び/又は保管管理を容易にするために、化合物の化学的及び物理学的な安定性が必要である。このため、得られた化合物は安定形結晶であることが好ましく、通常、医薬品用の原薬としては最安定形結晶が選択される例が多い。
現在、抗腫瘍剤として複数のHer2阻害剤が報告されており、特許文献1には、優れたHer2阻害作用を有し、抗腫瘍活性を示す化合物として、下記式(I)
で表されるピラゾロ[3,4-d]ピリミジン化合物(化学名:(R)-1-(1-アクリロイルピペリジン-3-イル)-4-アミノ-N-(4-(2-(ジメチルアミノ)-2-オキソエチル)-2,3-ジメチルフェニル)-1H-ピラゾロ[3,4-d]ピリミジン-3-カルボキサミド(以下、「化合物(I)」ともいう)が記載されている。
しかしながら、特許文献1には、本化合物の結晶形について記載されておらず、化合物(I)の安定形結晶、及びその製法については現在のところ知られていない。
しかしながら、特許文献1には、本化合物の結晶形について記載されておらず、化合物(I)の安定形結晶、及びその製法については現在のところ知られていない。
本発明は、抗腫瘍剤として有用な化合物(I)の安定形結晶を提供することを目的とする。
本発明者らは、上記の課題を解決すべく鋭意研究を行ったところ、化合物(I)には3つの結晶形(結晶I、結晶II、結晶III)が存在し、その結晶形のうち結晶Iは非吸湿性で優れた固体安定性を有することを見出し、本発明を完成させた。
すなわち、本発明は、以下発明〔1〕~〔13〕を提供するものである。
〔1〕粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、6.0゜、7.7゜、8.9゜、10.6゜、12.1゜、13.1゜、14.0゜、14.7゜、15.5゜、15.8゜、16.8゜、17.7゜、18.1゜、18.4゜、19.4゜、23.4゜、24.1゜、24.7゜、25.1゜及び25.7゜から選択される少なくとも6つ以上のピークを有する(R)-1-(1-アクリロイルピペリジン-3-イル)-4-アミノ-N-(4-(2-(ジメチルアミノ)-2-オキソエチル)-2,3-ジメチルフェニル)-1H-ピラゾロ[3,4-d]ピリミジン-3-カルボキサミドの結晶。
〔2〕粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、6.0゜、7.7゜、8.9゜、10.6゜、12.1゜、13.1゜、14.0゜、14.7゜、15.5゜、15.8゜、16.8゜、17.7゜、18.1゜、18.4゜、19.4゜、23.4゜、24.1゜、24.7゜、25.1゜及び25.7゜にピークを有する〔1〕に記載の結晶。
〔3〕熱重量-示差熱同時測定(TG-DTA測定)におけるピーク温度が200℃付近の吸熱ピークを有する〔1〕又は〔2〕に記載の結晶。
〔4〕単結晶解析による結晶データが以下に示される、〔1〕~〔3〕のいずれかに記載の結晶。
晶系:単結晶系
空間群:P21
格子定数:
a=11.5696(2)Å
b=7.47792(14)Å
c=14.6722(3)Å
β=100.674(7)°
単位格子の体積:V=1247.43(5)Å3
晶系:単結晶系
空間群:P21
格子定数:
a=11.5696(2)Å
b=7.47792(14)Å
c=14.6722(3)Å
β=100.674(7)°
単位格子の体積:V=1247.43(5)Å3
〔5〕〔1〕~〔4〕のいずれかに記載の結晶を含有する医薬組成物。
〔6〕〔1〕~〔4〕のいずれかに記載の結晶を含有する経口投与用の医薬組成物。
〔7〕〔1〕~〔4〕のいずれかに記載の結晶を含有する抗腫瘍剤。
〔8〕医薬組成物を製造するための、〔1〕~〔4〕のいずれかに記載の結晶の使用。
〔9〕経口投与用の医薬組成物を製造するための、〔1〕~〔4〕のいずれかに記載の結晶の使用。
〔10〕抗腫瘍剤を製造するための、〔1〕~〔4〕のいずれかに記載の結晶の使用。
〔11〕医薬として使用するための、〔1〕~〔4〕のいずれかに記載の結晶。
〔12〕腫瘍の治療に使用するための、〔1〕~〔4〕のいずれかに記載の結晶。
〔13〕腫瘍の治療方法であって、それを必要とする患者に、〔1〕~〔4〕のいずれかに記載の結晶の有効量を投与することを含む、方法。
〔7〕〔1〕~〔4〕のいずれかに記載の結晶を含有する抗腫瘍剤。
〔8〕医薬組成物を製造するための、〔1〕~〔4〕のいずれかに記載の結晶の使用。
〔9〕経口投与用の医薬組成物を製造するための、〔1〕~〔4〕のいずれかに記載の結晶の使用。
〔10〕抗腫瘍剤を製造するための、〔1〕~〔4〕のいずれかに記載の結晶の使用。
〔11〕医薬として使用するための、〔1〕~〔4〕のいずれかに記載の結晶。
〔12〕腫瘍の治療に使用するための、〔1〕~〔4〕のいずれかに記載の結晶。
〔13〕腫瘍の治療方法であって、それを必要とする患者に、〔1〕~〔4〕のいずれかに記載の結晶の有効量を投与することを含む、方法。
本発明の(R)-1-(1-アクリロイルピペリジン-3-イル)-4-アミノ-N-(4-(2-(ジメチルアミノ)-2-オキソエチル)-2,3-ジメチルフェニル)-1H-ピラゾロ[3,4-d]ピリミジン-3-カルボキサミドの結晶(結晶I)は、例えば取り扱い性(より低い吸湿性)及び/又は品質管理性等の観点から、他の結晶形と比較して優れているため、該化合物を医薬品用の原薬として使用する際の有用な形態である。
また、本発明の結晶Iは残留溶媒がICHガイドラインにおける医薬品の残留溶媒ガイドラインで定められた基準値以下であり医薬品として安全である。
本明細書中で単に「化合物(I)」と記載した場合は、(R)-1-(1-アクリロイルピペリジン-3-イル)-4-アミノ-N-(4-(2-(ジメチルアミノ)-2-オキソエチル)-2,3-ジメチルフェニル)-1H-ピラゾロ[3,4-d]ピリミジン-3-カルボキサミドを意味し、「非晶質体」、「結晶」のいずれをも含む意味で用いられる。
当該化合物(I)は、例えば国際公開第2017/038838号に記載の方法に従って合成することができるが、この方法に限定されるものではない。
本明細書中、「結晶」、「非晶質体」なる語は、通常の意味で用いられる。
尚、粉末X線回折パターンは、データの性質上、結晶の同一性を認定する際は、回折角及び全体的なパターンが重要である。粉末X線回折パターンの相対強度は結晶成長の方向、粒子の大きさ、測定条件によって多少変動し得るものであるから、厳密に解されるべきではない。
各種パターンから得られる数値は、その結晶成長の方向、粒子の大きさ、測定条件等によって多少の誤差が生じる場合がある。したがって、本明細書中、粉末X線回折パターンにおける回折角(2θ)の数値は、±0.2°程度の範囲で測定誤差を有し得る。
また、熱重量-示差熱同時測定(TG-DTA測定)曲線における吸熱ピークは、1分あたりの昇温の幅、試料の純度等により測定温度が変化することがある。本明細書において「付近」という用語は±5.0℃を意味する。
化合物(I)の結晶Iは、図1に示される粉末X線回折スペクトルを有し、また、図2に示される熱重量-示差熱同時測定(TG-DTA測定)曲線を有する。
ここで、化合物(I)の結晶Iの粉末X線回折スペクトルにおける特徴的なピークは、回折角(2θ±0.2°)として、6.0゜、7.7゜、8.9゜、10.6゜、12.1゜、13.1゜、14.0゜、14.7゜、15.5゜、15.8゜、16.8゜、17.7゜、18.1゜、18.4゜、19.4゜、23.4゜、24.1゜、24.7゜、25.1゜及び25.7゜を挙げることができる。
本発明にかかる化合物(I)の結晶Iは、上記ピークから選択される少なくとも6つ以上のピークを有する結晶であり、好ましくは上記ピークから選択される少なくとも8つ以上のピークを有する結晶であり、より好ましくは上記ピークから選択される少なくとも10つ以上のピークを有する結晶であり、特に好ましくは上記ピークのいずれもを有する結晶である。
また、化合物(I)の結晶Iの熱重量-示差熱同時測定(TG-DTA測定)曲線における吸熱ピークは198℃~202℃付近、好ましくは200℃付近を挙げることができる。
本発明に係る化合物(I)の結晶Iは、例えば、化合物(I)を溶媒に溶解する工程(1)、及び(1)で得られた溶液を冷却し、固体状の化合物(I)を得る工程(2)を含む方法により製造することができる。
工程(1)における晶析溶媒としては、1-プロパノール等を使用することができる。
工程(2)において、工程(1)で得られた溶液の冷却温度は、室温以下まで冷却することが好ましい。
工程(2)において、工程(1)で得られた溶液の冷却温度は、室温以下まで冷却することが好ましい。
結晶Iの晶析を促すため、種晶として適当量の化合物(I)の結晶I又は結晶Iを含む混合結晶を加えてもよい。加える種晶は、溶媒量の0.01~5(w/v)%であり、好ましくは0.03~1(w/v)%である。また、晶析時間の短縮と粒子径のコントロールのために攪拌しながら晶析させてもよい。
本発明に係る化合物(I)の結晶Iは、また、化合物(I)を富溶媒に溶解する工程(3)、及び(3)で得られた溶液に、前記富溶媒の3倍量(v/v)の貧溶媒を加えて、固体状の化合物(I)を得る工程(4)を含む方法によっても製造することができる。
富溶媒と貧溶媒としては、メタノール(富溶媒)と水(貧溶媒)、メタノール(富溶媒)とイソプロピルエーテル(IPE)(貧溶媒)、メタノール(富溶媒)とヘプタン(貧溶媒)、エタノール(富溶媒)とIPE(貧溶媒)、エタノール(富溶媒)とヘプタン(貧溶媒)、1-プロパノール(富溶媒)とIPE(貧溶媒)、1-プロパノール(富溶媒)とヘプタン(貧溶媒)、2-プロパノール(富溶媒)とヘプタン(貧溶媒)、アセトン(富溶媒)とIPE(貧溶媒)、アセトン(富溶媒)とヘプタン(貧溶媒)、ジメチルスルホキシド(DMSO)(富溶媒)と水(貧溶媒)、ジメチルアセトアミド(DMA)(富溶媒)と水(貧溶媒)、テトラヒドロフラン(THF)(富溶媒)とIPE(貧溶媒)、又はTHF(富溶媒)とヘプタン(貧溶媒)等を使用することができる。貧溶媒の量は、富溶媒の3倍量(v/v)がより好ましい。
化合物(I)を富溶媒に溶解する際の温度は、適宜設定することができるが、メタノール、THFに溶解する際は65℃、エタノール及び1-プロパノールに溶解する際は65℃又は80℃、2-プロパノールに溶解する際は80℃、アセトンに溶解する際は50℃、DMSO及びDMAに溶解する際は40℃が好ましい。
工程(4)では、上記の溶解温度にて化合物(I)を析出させることができるが、溶解温度で析出しない場合は、25℃まで冷却することにより結晶Iを得ることができる。
析出した結晶は、例えば、ろ過、水による洗浄、減圧乾燥等の公知の分離精製手段によって、前記結晶の溶解溶液、混合溶液等から単離精製することができる。
後記実施例に示すとおり、本発明に係る化合物(I)の結晶Iは、非吸湿性で優れた固体安定性(保存安定性等)を有する。医薬品の開発候補化合物が固体安定性を備えることは、工業上の操作においても、品質を保つ上でも重要である。
また、医薬品の製造に用いられる溶媒は毒性を有していることがあり、安全性の観点から、製造工程で残留してしまう溶媒はできるだけ少ないことが望ましいところ、化合物(I)の結晶Iは、残留溶媒をICH(日米EU医薬品規制調和国際会議)ガイドラインの規制値以上含まない。
したがって、本発明に係る化合物(I)の結晶Iは、医薬品又は医薬品原薬として必要とされる優れた性質を有する。
また、医薬品の製造に用いられる溶媒は毒性を有していることがあり、安全性の観点から、製造工程で残留してしまう溶媒はできるだけ少ないことが望ましいところ、化合物(I)の結晶Iは、残留溶媒をICH(日米EU医薬品規制調和国際会議)ガイドラインの規制値以上含まない。
したがって、本発明に係る化合物(I)の結晶Iは、医薬品又は医薬品原薬として必要とされる優れた性質を有する。
本発明に係る化合物(I)の結晶Iは、優れたHer2阻害活性を有し、Her2が関与する疾患、例えば癌、腫瘍の予防剤及び/又は治療剤として有用である。また、Her2に対する非常に優れた選択性を有しており、他のキナーゼも阻害してしまうことによる副作用が少ないという利点を有する。
本明細書において「Her2」とは、ヒトまたは非ヒト哺乳動物のHer2を含み、好ましくはヒトHer2である。また、「Her2」の語にはアイソフォームが含まれる。
また、「HER2が関与する疾患」とは、HER2の機能を欠失、抑制及び/又は阻害することによって、発症率の低下、症状の寛解、緩和、及び/又は完治する疾患が挙げられる。このような疾患として、例えば、悪性腫瘍等が挙げられるがこれに限定はされない。好ましくは、HER2過剰発現、HER2遺伝子増幅、又はHER2変異を有する悪性腫瘍である。対象となる前記の「悪性腫瘍」は特に制限はされないが、例えば、頭頚部癌、食道癌、胃癌、結腸癌、直腸癌、肝臓癌、胆嚢・胆管癌、胆道癌、膵臓癌、肺癌、乳癌、卵巣癌、子宮頚癌、子宮体癌、腎癌、膀胱癌、前立腺癌、精巣腫瘍、骨・軟部肉腫、血液癌、多発性骨髄腫、皮膚癌、脳腫瘍、中皮腫等が挙げられる。好ましくは、乳癌、胃癌、食道癌、卵巣癌、肺癌、胆嚢・胆管癌、胆道癌、膀胱癌、結腸癌であり、より好ましくは、乳癌、胃癌、食道癌、胆道癌、卵巣癌、肺癌であり、より好ましくは、乳癌、胃癌である。
また、「HER2が関与する疾患」とは、HER2の機能を欠失、抑制及び/又は阻害することによって、発症率の低下、症状の寛解、緩和、及び/又は完治する疾患が挙げられる。このような疾患として、例えば、悪性腫瘍等が挙げられるがこれに限定はされない。好ましくは、HER2過剰発現、HER2遺伝子増幅、又はHER2変異を有する悪性腫瘍である。対象となる前記の「悪性腫瘍」は特に制限はされないが、例えば、頭頚部癌、食道癌、胃癌、結腸癌、直腸癌、肝臓癌、胆嚢・胆管癌、胆道癌、膵臓癌、肺癌、乳癌、卵巣癌、子宮頚癌、子宮体癌、腎癌、膀胱癌、前立腺癌、精巣腫瘍、骨・軟部肉腫、血液癌、多発性骨髄腫、皮膚癌、脳腫瘍、中皮腫等が挙げられる。好ましくは、乳癌、胃癌、食道癌、卵巣癌、肺癌、胆嚢・胆管癌、胆道癌、膀胱癌、結腸癌であり、より好ましくは、乳癌、胃癌、食道癌、胆道癌、卵巣癌、肺癌であり、より好ましくは、乳癌、胃癌である。
化合物(I)の結晶Iを医薬として用いるにあたっては、当該結晶Iを粉砕するか又は粉砕することなく、予防又は治療目的に応じて各種の投与形態を採用可能であり、該形態としては、例えば、錠剤、カプセル剤、顆粒剤、細粒剤、散剤、ドライシロップ剤等の経口剤;坐剤、吸入剤、点鼻剤、軟膏剤、貼付剤、注射剤等の非経口剤のいずれでもよく、経口剤に利用することが好ましい。これらの医薬組成物は、薬学的に許容される担体を用いて、当業者に公知慣用の製剤方法により製造できる。
薬学的担体としては、製剤素材として慣用の各種有機或いは無機担体物質が用いられ、固形製剤における賦形剤、結合剤、崩壊剤、滑沢剤、コーティング剤、液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤等として配合される。また、必要に応じて防腐剤、抗酸化剤、着色剤、甘味剤、安定化剤等の製剤添加物を用いることもできる。
賦形剤としては、乳糖、白糖、D-マンニトール、デンプン、結晶セルロース、ケイ酸カルシウム等が挙げられる。
結合剤としては、ヒドロキシプロピルセルロース、メチルセルロース、ポリビニルピロリドン、アメ粉、ヒプロメロース等が挙げられる。
崩壊剤としては、デンプングリコール酸ナトリウム、カルメロースカルシウム、クロスカルメロースナトリウム、クロスポビドン、低置換度ヒドロキシプロピルセルロース、部分アルファー化デンプン等が挙げられる。
滑沢剤としては、タルク、ステアリン酸マグネシウム、ショ糖脂肪酸エステル、ステアリン酸、フマル酸ステアリルナトリウム等が挙げられる。
コーティング剤としては、エチルセルロース、アミノアルキルメタクリレートコポリマーRS、ヒプロメロース、白糖等が挙げられる。
溶剤としては、水、プロピレングリコール、生理食塩液が挙げられる。
溶解補助剤としては、ポリエチレングリコール、エタノール、α-シクロデキストリン、マクロゴール400、ポリソルベート80等が挙げられる。
懸濁化剤としては、カラギーナン、結晶セルロース・カルメロースナトリウム、ポリオキシエチレン硬化ヒマシ油が挙げられる。
等張化剤としては、塩化ナトリウム、グリセリン、塩化カリウム等が挙げられる。
pH調節剤・緩衝剤としては、クエン酸ナトリウム、塩酸、乳酸、リン酸、リン酸二水素ナトリウム等が挙げられる。
無痛化剤としては、プロカイン塩酸塩、リドカイン等が挙げられる。
防腐剤としては、パラオキシ安息香酸エチル、クレゾール、ベンザルコニウム塩化物等が挙げられる。
抗酸化剤としては、亜硫酸ナトリウム、アスコルビン酸、天然ビタミンE等が挙げられる。
着色剤としては、酸化チタン、三二酸化鉄、食用青色1号、銅クロロフィル等が挙げられる。
矯味・矯臭剤としてはアスパルテーム、サッカリン、スクラロース、l-メントール、ミントフレーバー等が挙げられる。
安定化剤としては、ピロ亜硫酸ナトリウム、エデト酸ナトリウム、エリソルビン酸、酸化マグネシウム、ジブチルヒドロキシトルエン等が挙げられる。
結合剤としては、ヒドロキシプロピルセルロース、メチルセルロース、ポリビニルピロリドン、アメ粉、ヒプロメロース等が挙げられる。
崩壊剤としては、デンプングリコール酸ナトリウム、カルメロースカルシウム、クロスカルメロースナトリウム、クロスポビドン、低置換度ヒドロキシプロピルセルロース、部分アルファー化デンプン等が挙げられる。
滑沢剤としては、タルク、ステアリン酸マグネシウム、ショ糖脂肪酸エステル、ステアリン酸、フマル酸ステアリルナトリウム等が挙げられる。
コーティング剤としては、エチルセルロース、アミノアルキルメタクリレートコポリマーRS、ヒプロメロース、白糖等が挙げられる。
溶剤としては、水、プロピレングリコール、生理食塩液が挙げられる。
溶解補助剤としては、ポリエチレングリコール、エタノール、α-シクロデキストリン、マクロゴール400、ポリソルベート80等が挙げられる。
懸濁化剤としては、カラギーナン、結晶セルロース・カルメロースナトリウム、ポリオキシエチレン硬化ヒマシ油が挙げられる。
等張化剤としては、塩化ナトリウム、グリセリン、塩化カリウム等が挙げられる。
pH調節剤・緩衝剤としては、クエン酸ナトリウム、塩酸、乳酸、リン酸、リン酸二水素ナトリウム等が挙げられる。
無痛化剤としては、プロカイン塩酸塩、リドカイン等が挙げられる。
防腐剤としては、パラオキシ安息香酸エチル、クレゾール、ベンザルコニウム塩化物等が挙げられる。
抗酸化剤としては、亜硫酸ナトリウム、アスコルビン酸、天然ビタミンE等が挙げられる。
着色剤としては、酸化チタン、三二酸化鉄、食用青色1号、銅クロロフィル等が挙げられる。
矯味・矯臭剤としてはアスパルテーム、サッカリン、スクラロース、l-メントール、ミントフレーバー等が挙げられる。
安定化剤としては、ピロ亜硫酸ナトリウム、エデト酸ナトリウム、エリソルビン酸、酸化マグネシウム、ジブチルヒドロキシトルエン等が挙げられる。
経口用固形製剤を調製する場合は、化合物(I)の結晶Iに賦形剤、必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、矯味・矯臭剤等を加えた後、常法により錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤等を製造することができる。
各投与単位形態中に配合されるべき化合物(I)の結晶Iの量は、これを適用すべき患者の症状により、或いはその剤形等により一定ではないが、一般に投与単位形態あたり、経口剤では約0.05~1000mg、注射剤では約0.1~500mg、坐剤又は外用剤では約1~1000mgとするのが望ましい。
また、各投与形態を有する薬剤の化合物(I)の結晶Iの1日あたりの投与量は、患者の症状、体重、年齢、性別等によって異なり一概には決定できないが、通常成人(体重50kg)1日あたり約0.05~5000mg、好ましくは0.1~1000mgとすればよく、これを1日1回又は2~3回程度に分けて投与するのが好ましい。
以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらによって何ら限定されるものではない。本発明は実施例により十分に説明されているが、当業者により種々の変更及び/又は修飾が可能であろうことは理解される。したがって、そのような変更及び/又は修飾が本発明の範囲を逸脱するものでない限り、それらは本発明に包含される。
実施例で用いた各種試薬は、特に記載の無い限り市販品を使用した。NMRスペクトルは、AL400(400MHz;日本電子(JEOL))を使用し、重溶媒中にテトラメチルシランを含む場合は内部基準としてテトラメチルシランを用い、それ以外の場合には内部基準として、NMR溶媒に残存する非重水素化プロトンピークを用いて測定し、全δ値をppmで示した。
略号の意味を以下に示す。
s:シングレット
d:ダブレット
t:トリプレット
dd:ダブル ダブレット
m:マルチプレット
brs:ブロードシングレット
DMSO-d6:重ジメチルスルホキシド
CDCl3:重クロロホルム
s:シングレット
d:ダブレット
t:トリプレット
dd:ダブル ダブレット
m:マルチプレット
brs:ブロードシングレット
DMSO-d6:重ジメチルスルホキシド
CDCl3:重クロロホルム
粉末X線回折測定
粉末X線回折は、試験物質適量を必要に応じてメノウ製乳鉢で軽く粉砕した後、次のいずれかの試験条件に従って測定した。
粉末X線回折は、試験物質適量を必要に応じてメノウ製乳鉢で軽く粉砕した後、次のいずれかの試験条件に従って測定した。
装置:パナリティカル Empyrean
ターゲット:Cu
X線出力設定:40mA,45kV
走査範囲:2.0~40.0°
ステップサイズ:0.026°
ターゲット:Cu
X線出力設定:40mA,45kV
走査範囲:2.0~40.0°
ステップサイズ:0.026°
装置:リガク MiniFlex II
ターゲット:Cu
X線出力設定:15mA,30kV
走査範囲:2.0~40.0°
ステップサイズ:0.010°
スキャンスピード:5.00°/min.
発散スリット:1.25°
散乱スリット:開放
ターゲット:Cu
X線出力設定:15mA,30kV
走査範囲:2.0~40.0°
ステップサイズ:0.010°
スキャンスピード:5.00°/min.
発散スリット:1.25°
散乱スリット:開放
データ処理を含む装置の取り扱いは、各装置で指示された方法及び手順にしたがった。
なお、各種スペクトルから得られる数値は、その結晶成長の方向、粒子の大きさ、測定条件等によって多少変動する場合がある。したがって、それらの数値は厳密に解されるべきではない。
熱重量-示差熱同時測定(TG-DTA測定)
TG-DTA測定は、次の試験条件に従って測定した。
TG-DTA測定は、次の試験条件に従って測定した。
装置:日立ハイテクサイエンス TG/DTA7200
試料:およそ5mg
試料容器:アルミニウム製
昇温速度:300℃まで10℃/分で昇温
雰囲気ガス:空気
窒素ガス流量:100mL/分
データ処理を含む装置の取り扱いは、各装置で指示された方法及び手順にしたがった。
試料:およそ5mg
試料容器:アルミニウム製
昇温速度:300℃まで10℃/分で昇温
雰囲気ガス:空気
窒素ガス流量:100mL/分
データ処理を含む装置の取り扱いは、各装置で指示された方法及び手順にしたがった。
実施例1 冷却法による化合物(I)の結晶Iの製造
国際公開第2017/038838号に記載の方法にて得られた化合物(I)(200mg)を1-プロパノール(4mL)に懸濁後、外温100℃に加温することにより溶解した。室温まで放冷後、終夜攪拌することにより得られた固体をろ取し、減圧下、70℃にて乾燥させることで結晶I(133mg)を得た。
得られた化合物の1H-NMRスペクトルは以下の通りであった。
1H NMR(400 MHz,DMSO-d6)δ:1.52-1.69(m,1H),1.92-2.03(m,1H),2.06-2.41(m,2H),2.10(s,3H),2.13(s,3H),2.85(s,3H),2.99-3.24(m,1H),3.05(s,3H),3.29-3.85(m,1H),3.33(s,2H),3.99-4.58(m,2H),4.67-4.81(m,1H),5.58-5.73(m,1H),6.05-6.15(m,1H),6.71-6.96(m,1H),6.95(d,J=8.0 Hz,1H),7.10-7.15(m,1H),8.09(br s,1H),8.26(s,1H),8.60(br s,1H),10.11-10.24(m,1H).
国際公開第2017/038838号に記載の方法にて得られた化合物(I)(200mg)を1-プロパノール(4mL)に懸濁後、外温100℃に加温することにより溶解した。室温まで放冷後、終夜攪拌することにより得られた固体をろ取し、減圧下、70℃にて乾燥させることで結晶I(133mg)を得た。
得られた化合物の1H-NMRスペクトルは以下の通りであった。
1H NMR(400 MHz,DMSO-d6)δ:1.52-1.69(m,1H),1.92-2.03(m,1H),2.06-2.41(m,2H),2.10(s,3H),2.13(s,3H),2.85(s,3H),2.99-3.24(m,1H),3.05(s,3H),3.29-3.85(m,1H),3.33(s,2H),3.99-4.58(m,2H),4.67-4.81(m,1H),5.58-5.73(m,1H),6.05-6.15(m,1H),6.71-6.96(m,1H),6.95(d,J=8.0 Hz,1H),7.10-7.15(m,1H),8.09(br s,1H),8.26(s,1H),8.60(br s,1H),10.11-10.24(m,1H).
実施例2 貧溶媒法による化合物(I)の結晶Iの製造
下記の表1に示した富溶媒及び貧溶媒を用いた。化合物(I)を富溶媒に溶解させた。設定した温度で溶解していることを確認した後、富溶媒の3倍量(v/v)の貧溶媒を加えた。析出が確認できた場合は溶解温度を保持し、析出が確認できなかった場合は25℃まで冷却することにより、結晶Iを得た。
下記の表1に示した富溶媒及び貧溶媒を用いた。化合物(I)を富溶媒に溶解させた。設定した温度で溶解していることを確認した後、富溶媒の3倍量(v/v)の貧溶媒を加えた。析出が確認できた場合は溶解温度を保持し、析出が確認できなかった場合は25℃まで冷却することにより、結晶Iを得た。
析出した結晶Iの粉末X線回折スペクトルは、図1に示し、特徴的な回折角は以下の通りである。
特徴的な回折角(2θ±0.2°):6.0゜、7.7゜、8.9゜、10.6゜、12.1゜、13.1゜、14.0゜、14.7゜、15.5゜、15.8゜、16.8゜、17.7゜、18.1゜、18.4゜、19.4゜、23.4゜、24.1゜、24.7゜、25.1゜及び25.7゜。
特徴的な回折角(2θ±0.2°):6.0゜、7.7゜、8.9゜、10.6゜、12.1゜、13.1゜、14.0゜、14.7゜、15.5゜、15.8゜、16.8゜、17.7゜、18.1゜、18.4゜、19.4゜、23.4゜、24.1゜、24.7゜、25.1゜及び25.7゜。
また、結晶Iの熱重量-示差熱同時測定(TG-DTA測定)の結果は、以下の通りである。
熱重量-示差熱同時測定(TG-DTA測定)曲線:図2に示した。
熱重量-示差熱同時測定(TG-DTA測定)曲線における吸熱ピーク:200℃付近。
熱重量-示差熱同時測定(TG-DTA測定)曲線:図2に示した。
熱重量-示差熱同時測定(TG-DTA測定)曲線における吸熱ピーク:200℃付近。
実施例3 結晶Iの単結晶解析
化合物(I)にメタノール100μLを加え溶解後、室温下IPEを蒸気拡散で徐々に混和させた。1週間後に結晶Iの析出を確認した。
結晶の色:無色
結晶形状:板状
化合物(I)にメタノール100μLを加え溶解後、室温下IPEを蒸気拡散で徐々に混和させた。1週間後に結晶Iの析出を確認した。
結晶の色:無色
結晶形状:板状
得られた結晶Iを0.30×0.26×0.20mmに整形し、以下の測定条件にて測定を実施し、データ処理は以下にて行った。
装置:VariMax DW with RAPID(株式会社リガク)
データ測定・処理ソフトウェア:RAPID AUTO
構造解析プログラムパッケージ:CrystalStructure
統合粉末X線解析ソフトウェア:PDXL
X線源:Cu Kα(λ=1.54187Å)
管電圧・管電流:40kV-30mA
測定温度:-180℃(吹付低温装置使用)
コリメーター径:Φ0.5mm
カメラ長:127.4mm
振動角:15°
露光時間:60秒/枚
全測定枚数:156枚(12×13シリーズ)
全測定時間:6時間57分(読み取り時間含む)
装置:VariMax DW with RAPID(株式会社リガク)
データ測定・処理ソフトウェア:RAPID AUTO
構造解析プログラムパッケージ:CrystalStructure
統合粉末X線解析ソフトウェア:PDXL
X線源:Cu Kα(λ=1.54187Å)
管電圧・管電流:40kV-30mA
測定温度:-180℃(吹付低温装置使用)
コリメーター径:Φ0.5mm
カメラ長:127.4mm
振動角:15°
露光時間:60秒/枚
全測定枚数:156枚(12×13シリーズ)
全測定時間:6時間57分(読み取り時間含む)
結晶データを以下に示す。
晶系:単斜晶系
格子型:P
ラウエ群:2/m
空間群:P21
格子定数:
a=11.5696(2)Å
b=7.47792(14)Å
c=14.6722(3)Å
β=100.674(7)°
単位格子の体積:V=1247.43(5)Å3
2θmax:136.4°
観測された反射数:38021
完全性:100.0%
R merge:2.25%
I/sig(I)(lastshell):24.2 (34.1)
晶系:単斜晶系
格子型:P
ラウエ群:2/m
空間群:P21
格子定数:
a=11.5696(2)Å
b=7.47792(14)Å
c=14.6722(3)Å
β=100.674(7)°
単位格子の体積:V=1247.43(5)Å3
2θmax:136.4°
観測された反射数:38021
完全性:100.0%
R merge:2.25%
I/sig(I)(lastshell):24.2 (34.1)
また、得られた構造解析の結果から、X線回折パターンのシミュレーションを行った結果、結晶Iと同様のX線回折パターンであることが確認できた。
比較例1 化合物(I)の結晶IIの製造
国際公開第2017/038838号に記載の方法にて得られた化合物(I)(100mg)をエタノール(9mL)及び水(1mL)の混合溶液に溶解した。その後、40℃にて溶媒を減圧留去した。得られた固体を減圧乾燥させることで結晶IIを得た。
得られた結晶IIの粉末X線回折スペクトル、熱重量-示差熱同時測定(TG-DTA測定)曲線は、以下の通りである。
粉末X線回折スペクトル:図3に示した。
特徴的な回折角(2θ±0.2°): 5.0゜、6.6゜、9.0゜、11.4゜、14.2゜、15.4゜、20.2゜、23.4゜、25.1゜、27.3゜
熱重量-示差熱同時測定(TG-DTA測定)曲線:図4に示した。
国際公開第2017/038838号に記載の方法にて得られた化合物(I)(100mg)をエタノール(9mL)及び水(1mL)の混合溶液に溶解した。その後、40℃にて溶媒を減圧留去した。得られた固体を減圧乾燥させることで結晶IIを得た。
得られた結晶IIの粉末X線回折スペクトル、熱重量-示差熱同時測定(TG-DTA測定)曲線は、以下の通りである。
粉末X線回折スペクトル:図3に示した。
特徴的な回折角(2θ±0.2°): 5.0゜、6.6゜、9.0゜、11.4゜、14.2゜、15.4゜、20.2゜、23.4゜、25.1゜、27.3゜
熱重量-示差熱同時測定(TG-DTA測定)曲線:図4に示した。
比較例2 化合物(I)の結晶IIIの製造
国際公開第2017/038838号に記載の方法にて得られた化合物(I)(100mg)をメタノール(10mL)で溶解した。その後、40℃にて溶媒を減圧留去した。得られた固体を減圧乾燥させることで結晶IIIを得た。
得られた結晶IIIの粉末X線回折スペクトル、熱重量-示差熱同時測定(TG-DTA測定)曲線は、以下の通りである。
粉末X線回折スペクトル:図5に示した。
特徴的な回折角(2θ±0.2°): 5.0゜、10.3゜、10.5゜、12.9゜、13.3゜、15.7゜、16.4゜、21.5゜、25.7゜、26.5゜
熱重量-示差熱同時測定(TG-DTA測定)曲線:図6に示した。
国際公開第2017/038838号に記載の方法にて得られた化合物(I)(100mg)をメタノール(10mL)で溶解した。その後、40℃にて溶媒を減圧留去した。得られた固体を減圧乾燥させることで結晶IIIを得た。
得られた結晶IIIの粉末X線回折スペクトル、熱重量-示差熱同時測定(TG-DTA測定)曲線は、以下の通りである。
粉末X線回折スペクトル:図5に示した。
特徴的な回折角(2θ±0.2°): 5.0゜、10.3゜、10.5゜、12.9゜、13.3゜、15.7゜、16.4゜、21.5゜、25.7゜、26.5゜
熱重量-示差熱同時測定(TG-DTA測定)曲線:図6に示した。
試験例1 熱安定性試験
上記実施例及び比較例で得られた結晶I及び結晶IIIを用いて、熱安定性試験を行った。なお、結晶IIは再現できず、熱安定性試験を行うことができなかった。
25℃で粉末X線回折測定を行い、30分かけて50℃まで昇温後、粉末X線回折測定を行った。さらに10℃/10分で200℃まで昇温後、粉末X線回折測定を行い、30分かけて25℃まで降温し、粉末X線回折測定を行った。
上記実施例及び比較例で得られた結晶I及び結晶IIIを用いて、熱安定性試験を行った。なお、結晶IIは再現できず、熱安定性試験を行うことができなかった。
25℃で粉末X線回折測定を行い、30分かけて50℃まで昇温後、粉末X線回折測定を行った。さらに10℃/10分で200℃まで昇温後、粉末X線回折測定を行い、30分かけて25℃まで降温し、粉末X線回折測定を行った。
その結果、200℃までの加熱下において結晶Iの結晶形の変化は見られず、安定であることが確認できた。一方、結晶IIIは加熱により結晶形が変化し、25℃まで冷却しても結晶IIIに戻ることは無かった。
試験例2 固体安定性試験
上記実施例で得られた結晶Iの保存安定性を以下の条件により試験した。
保存条件:40℃/75%RH(開放系及び閉鎖系)、60℃(閉鎖系)、遮光下
測定ポイント:1ヶ月
保存量:約50mg
保存容器:褐色ガラス瓶
保存後の試料の粉末X線回折測定は前述の方法で測定した。類縁物質量(化合物(I)以外に検出された物質の量)の変化は、試料約1mgを秤量し、水・アセトニトリル混液(1:1)約5mLに溶解させ、この液5μLを正確に測りとって、以下の方法でHPLCにて分析を行った。
上記実施例で得られた結晶Iの保存安定性を以下の条件により試験した。
保存条件:40℃/75%RH(開放系及び閉鎖系)、60℃(閉鎖系)、遮光下
測定ポイント:1ヶ月
保存量:約50mg
保存容器:褐色ガラス瓶
保存後の試料の粉末X線回折測定は前述の方法で測定した。類縁物質量(化合物(I)以外に検出された物質の量)の変化は、試料約1mgを秤量し、水・アセトニトリル混液(1:1)約5mLに溶解させ、この液5μLを正確に測りとって、以下の方法でHPLCにて分析を行った。
カラム:InertSustain C18 HP,4.6×150mm,3μm
カラム温度:40℃
カラム流速:0.8mL/min
移動相:A;10mMリン酸塩緩衝液(pH6.8)/アセトニトリル(17:3),B;アセトニトリル/メタノール(17:3)
検出UV:220nm
グラディエント:
Time(min) A B
0~30 95%→40% 5%→60%
30~40 40% 60%
40~41 40%→95% 60%→5%
41~45 95% 5%
カラム温度:40℃
カラム流速:0.8mL/min
移動相:A;10mMリン酸塩緩衝液(pH6.8)/アセトニトリル(17:3),B;アセトニトリル/メタノール(17:3)
検出UV:220nm
グラディエント:
Time(min) A B
0~30 95%→40% 5%→60%
30~40 40% 60%
40~41 40%→95% 60%→5%
41~45 95% 5%
その結果、結晶Iでは、粉末X線回折パターンの変化は認められず、極めて安定な結晶であることが判明した。また、下記の表2に示すように、結晶Iは類縁物質量が少なく、外観の変化も見られなかった。
試験例3 動的水分吸脱着試験
試験には、VTI-SA+(TA Instruments)を用いた。結晶Iを約10mg秤量してパンに入れた。5分間で重量変動が0.0100%以内であることを確認しながら1分間に1度毎60℃まで昇温させた。重量が変動する場合には、最大5時間その温度を保持した後、次ステップへ進めた。その後、25℃へ降温させ、湿度を5%RHから95%RHまで上げ、その後5%RHまで下げた。その際、5分間で重量変動が0.00100%以内であることを確認しながら5%RHずつ湿度をかけた。重量が変動する場合には、最大2時間その湿度を保持した後、次ステップへと進めた。
試験には、VTI-SA+(TA Instruments)を用いた。結晶Iを約10mg秤量してパンに入れた。5分間で重量変動が0.0100%以内であることを確認しながら1分間に1度毎60℃まで昇温させた。重量が変動する場合には、最大5時間その温度を保持した後、次ステップへ進めた。その後、25℃へ降温させ、湿度を5%RHから95%RHまで上げ、その後5%RHまで下げた。その際、5分間で重量変動が0.00100%以内であることを確認しながら5%RHずつ湿度をかけた。重量が変動する場合には、最大2時間その湿度を保持した後、次ステップへと進めた。
図7に示すように、結晶Iは非吸湿性であることが確認できた。
Claims (13)
- 粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、6.0゜、7.7゜、8.9゜、10.6゜、12.1゜、13.1゜、14.0゜、14.7゜、15.5゜、15.8゜、16.8゜、17.7゜、18.1゜、18.4゜、19.4゜、23.4゜、24.1゜、24.7゜、25.1゜及び25.7゜から選択される少なくとも6つ以上のピークを有する(R)-1-(1-アクリロイルピペリジン-3-イル)-4-アミノ-N-(4-(2-(ジメチルアミノ)-2-オキソエチル)-2,3-ジメチルフェニル)-1H-ピラゾロ[3,4-d]ピリミジン-3-カルボキサミドの結晶。
- 粉末X線回折スペクトルにおいて、回折角(2θ±0.2°)が、6.0゜、7.7゜、8.9゜、10.6゜、12.1゜、13.1゜、14.0゜、14.7゜、15.5゜、15.8゜、16.8゜、17.7゜、18.1゜、18.4゜、19.4゜、23.4゜、24.1゜、24.7゜、25.1゜及び25.7゜にピークを有する請求項1に記載の結晶。
- 熱重量-示差熱同時測定(TG-DTA測定)におけるピーク温度が200℃付近の吸熱ピークを有する請求項1又は2に記載の結晶。
- 単結晶解析による結晶データが以下に示される、請求項1~3のいずれか1項に記載の結晶。
晶系:単結晶系
空間群:P21
格子定数:
a=11.5696(2)Å
b=7.47792(14)Å
c=14.6722(3)Å
β=100.674(7)°
単位格子の体積:V=1247.43(5)Å3 - 請求項1~4のいずれか1項に記載の結晶を含有する医薬組成物。
- 請求項1~4のいずれか1項に記載の結晶を含有する経口投与用の医薬組成物。
- 請求項1~4のいずれか1項に記載の結晶を含有する抗腫瘍剤。
- 医薬組成物を製造するための、請求項1~4のいずれか1項に記載の結晶の使用。
- 経口投与用の医薬組成物を製造するための、請求項1~4のいずれか1項に記載の結晶の使用。
- 抗腫瘍剤を製造するための、請求項1~4のいずれか1項に記載の結晶の使用。
- 医薬として使用するための、請求項1~4のいずれか1項に記載の結晶。
- 腫瘍の治療に使用するための、請求項1~4のいずれか1項に記載の結晶。
- 腫瘍の治療方法であって、それを必要とする患者に、請求項1~4のいずれか1項に記載の結晶の有効量を投与することを含む、方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020539525A JP7282787B2 (ja) | 2018-08-29 | 2019-08-28 | ピラゾロ[3,4-d]ピリミジンの結晶 |
US17/271,424 US20210332056A1 (en) | 2018-08-29 | 2019-08-28 | Crystal of pyrazolo[3,4-d]pyrimidine |
EP19855702.7A EP3845537A4 (en) | 2018-08-29 | 2019-08-28 | PYRAZOLO[3,4-D]PYRIMIDINE CRYSTAL |
CN201980056990.1A CN112638914A (zh) | 2018-08-29 | 2019-08-28 | 吡唑并[3,4-d]嘧啶的结晶 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-159840 | 2018-08-29 | ||
JP2018159840 | 2018-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020045475A1 true WO2020045475A1 (ja) | 2020-03-05 |
Family
ID=69644316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/033647 WO2020045475A1 (ja) | 2018-08-29 | 2019-08-28 | ピラゾロ[3,4-d]ピリミジンの結晶 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210332056A1 (ja) |
EP (1) | EP3845537A4 (ja) |
JP (1) | JP7282787B2 (ja) |
CN (1) | CN112638914A (ja) |
MA (1) | MA53508A (ja) |
WO (1) | WO2020045475A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017038838A1 (ja) | 2015-09-01 | 2017-03-09 | 大鵬薬品工業株式会社 | 新規なピラゾロ[3,4-d]ピリミジン化合物又はその塩 |
-
2019
- 2019-08-28 US US17/271,424 patent/US20210332056A1/en active Pending
- 2019-08-28 EP EP19855702.7A patent/EP3845537A4/en active Pending
- 2019-08-28 MA MA053508A patent/MA53508A/fr unknown
- 2019-08-28 WO PCT/JP2019/033647 patent/WO2020045475A1/ja unknown
- 2019-08-28 CN CN201980056990.1A patent/CN112638914A/zh active Pending
- 2019-08-28 JP JP2020539525A patent/JP7282787B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017038838A1 (ja) | 2015-09-01 | 2017-03-09 | 大鵬薬品工業株式会社 | 新規なピラゾロ[3,4-d]ピリミジン化合物又はその塩 |
Non-Patent Citations (3)
Title |
---|
ASHIZAWA KAZUHIDE : "Passage, Polymorphism and crystallization of the pharmaceutical drugs", POLYMORPHISM AND CRYSTALLIZATION OF THE PHARMACEUTICAL DRUGS, 20 September 2002 (2002-09-20), pages 305 - 317, XP009527171, ISBN: 4-901689-06-1 * |
MATSUOKA MASAKUNI: "Passages; Base & Application of Polymorphic Crystals", BASE & APPLICATION OF POLYMORPHIC CRYSTALS, 22 October 2010 (2010-10-22), pages 105 - 117, 181-191, XP009527172, ISBN: 978-4-7813-0273-7 * |
See also references of EP3845537A4 |
Also Published As
Publication number | Publication date |
---|---|
MA53508A (fr) | 2022-05-11 |
EP3845537A4 (en) | 2022-05-11 |
EP3845537A1 (en) | 2021-07-07 |
JP7282787B2 (ja) | 2023-05-29 |
JPWO2020045475A1 (ja) | 2021-08-10 |
US20210332056A1 (en) | 2021-10-28 |
CN112638914A (zh) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6946194B2 (ja) | キナーゼを調節する化合物の固体形態 | |
CN114728899B (zh) | 新型三苯基化合物盐 | |
US9546140B2 (en) | 2-[[[2-[(hydroxyacetyl)amino]-4-pyridinyl]methyl]thio]-N[4-(trifluoromethoxy)phenyl]-3-pyridinecarboxamide benzenesulfonate, crystal of same, crystal polymorph thereof, and methods for production thereof | |
US10323044B2 (en) | Crystal of imidazo-oxazine, pharmaceutical composition containing said crystal, and method for producing said crystal | |
CN112010839B (zh) | 靶向丝/苏氨酸激酶抑制剂的晶型 | |
EP4337638A1 (en) | Solid forms of salts of 4-[5-[(3s)-3-aminopyrrolidine-1-carbonyl]-2-[2-fluoro-4-(2-hydroxy-2-ethylpropyl)phenyl]phenyl]-2-fluoro-benzonitrile | |
KR102531772B1 (ko) | Cdk4/6 키나아제 억제제를 타겟팅하는 결정형 | |
TW202110827A (zh) | 吡唑化合物之非吸濕性結晶鹽及其醫藥組合物及用途 | |
WO2021143954A2 (zh) | 一种氟伐替尼或其甲磺酸盐的晶型及其制备方法 | |
WO2021047528A1 (zh) | 一个烟醇醚衍生物的马来酸盐及其晶型和应用 | |
WO2020045475A1 (ja) | ピラゾロ[3,4-d]ピリミジンの結晶 | |
JP5888612B2 (ja) | 縮合ピリジン化合物塩の結晶 | |
JP5698741B2 (ja) | 13a−(S)脱酸チロホリニンの塩、医薬組成物と用途 | |
WO2024143236A1 (ja) | 酢酸エステル塩酸塩の結晶 | |
EP4183788A1 (en) | Crystal of pyrimidine compound | |
WO2024009977A1 (ja) | 5H-ピロロ[2,3-d]ピリミジン-6(7H)-オン及びその塩体の結晶 | |
RU2802964C2 (ru) | Твердые формы 2-(5-(4-(2-морфолиноэтокси)фенил)пиридин-2-ил)-n-бензилацетамида | |
TW202434549A (zh) | 乙酸酯鹽酸鹽之結晶 | |
EA042455B1 (ru) | Кристаллическая форма ингибитора, нацеленного на киназу cdk4/6 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19855702 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020539525 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019855702 Country of ref document: EP Effective date: 20210329 |