WO2020045472A1 - トリコデルマ・リーセイの変異株およびそれを用いたタンパク質の製造方法 - Google Patents

トリコデルマ・リーセイの変異株およびそれを用いたタンパク質の製造方法 Download PDF

Info

Publication number
WO2020045472A1
WO2020045472A1 PCT/JP2019/033642 JP2019033642W WO2020045472A1 WO 2020045472 A1 WO2020045472 A1 WO 2020045472A1 JP 2019033642 W JP2019033642 W JP 2019033642W WO 2020045472 A1 WO2020045472 A1 WO 2020045472A1
Authority
WO
WIPO (PCT)
Prior art keywords
mutation
amino acid
seq
acid sequence
sequence represented
Prior art date
Application number
PCT/JP2019/033642
Other languages
English (en)
French (fr)
Inventor
雄介 加川
悠香 齋藤
紳吾 平松
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980055327.XA priority Critical patent/CN112639073A/zh
Priority to CA3111168A priority patent/CA3111168A1/en
Priority to AU2019329357A priority patent/AU2019329357A1/en
Priority to EP19854125.2A priority patent/EP3845630A4/en
Priority to US17/271,940 priority patent/US20210324018A1/en
Priority to BR112021003459-5A priority patent/BR112021003459A2/pt
Priority to JP2019559121A priority patent/JP7388194B2/ja
Publication of WO2020045472A1 publication Critical patent/WO2020045472A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/34Sugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/885Trichoderma

Definitions

  • the present invention relates to a Trichoderma reesei mutant strain having improved protein-producing ability and a method for producing a protein using the mutant strain.
  • Trichoderma reesei is known to have a high protein-producing ability, and the production of proteins using Trichoderma reesei has been studied so far. Trichoderma reesei has excellent ability to produce cellulase, which is particularly classified as a saccharifying enzyme among proteins. For example, in order to further improve the amount of cellulase production, overexpression or deletion of a factor that controls cellulase production, or cellulase production The study of culture conditions has been carried out.
  • Non-Patent Document 1 a mutant of Trichoderma reesei having a high cellulase-producing ability is obtained by reducing the function of Cre1, which is a transcription factor that suppresses the production of cellulase, among the factors that control the production of cellulase of Trichoderma reesei. Have been.
  • Non-Patent Document 2 describes a method of culturing Trichoderma reesei in a medium to which glucose or lactose is added as a method for improving the production of Trichoderma reesei cellulase.
  • the transcription factor that is one of the factors controlling protein production of Trichoderma reesei has been elucidated, but this is considered to be only a part of the control mechanism. Therefore, in the present invention, a novel mechanism for controlling the production of Trichoderma reesei protein is searched for, a mutant strain of Trichoderma reesei with further enhanced protein production ability is obtained, and a method for producing a protein using the mutant strain of Trichoderma reesei is provided. The task is to
  • the present inventor thought that if a gene capable of increasing the production amount of a protein, which had not been known before, could be identified, the production amount of Trichoderma reesei protein could be further improved.
  • culturing a mutant strain of Trichoderma reesei in which the function of one or more polypeptides selected from the polypeptides consisting of the amino acid sequences represented by any of Nos. have found that they can be improved, and have completed the present invention.
  • the present invention includes the following (1) to (15).
  • (1) A mutant strain of Trichoderma reesei having a mutation in which the function of a polypeptide consisting of the amino acid sequence represented by any one of SEQ ID NOs: 4 to 6 is deleted or reduced.
  • (2) The mutant strain according to (1), wherein the mutation is a mutation in which the HSF-type DNA-binding domain of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4 is deleted.
  • the mutant strain according to (2), wherein the mutation is a frameshift mutation accompanying a mutation in a region N-terminal to the HSF-type DNA-binding domain.
  • the mutation according to (6), wherein the mutation is a frameshift mutation caused by mutating the third glutamine residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 5 to an amino acid residue other than glutamine. Mutants.
  • a method for producing cellulase comprising a step of culturing the mutant strain according to any one of (1) to (10) in a medium containing at least lactose.
  • a method for producing sugar comprising a step of producing cellulase by the method of producing cellulase according to (13) or (14) and a step of saccharifying cellulose-containing biomass using the cellulase obtained in the step.
  • the mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by any one of SEQ ID NOs: 4 to 6 has been deleted or reduced has improved protein production ability as compared to the parent strain before the introduction of the mutation.
  • the protein to be produced is cellulase, an unexpected effect of improving various specific activities of cellulase is also obtained.
  • the present invention is characterized by further increasing the protein-producing ability by introducing a mutation into a parent strain of Trichoderma reesei, a microorganism originally excellent in protein-producing ability.
  • the present invention relates to a mutant strain of Trichoderma reesei, which is characterized in that it has a mutation in which the function of a polypeptide consisting of the amino acid sequence represented by any one of SEQ ID NOs: 4 to 6 is deleted or reduced. I have.
  • the parent strain of Trichoderma reesei used in the present invention is not limited to a wild-type strain, and a mutant strain that has been improved so as to enhance protein production ability can also be preferably used as a parent strain.
  • mutation treatment with a mutagen or ultraviolet irradiation can be used.
  • the mutant strain with improved protein productivity can be used as the parent strain.
  • Specific examples of the mutant strain used as the parent strain include known mutant strains belonging to Trichoderma reesei, QM6a strain (NBRC31326), QM9123 strain (ATCC24449), QM9414 strain (NBRC31329), PC-3-7 strain (ATCC66589), and QM9123.
  • NBRC31327 RutC-30 strain (ATCC56765), CL-847 strain (Enzyme.Microbiol.Technol. 10, 341-346 (1988)), MCG77 strain (Biotechnol. Bioeng. Symp. 8, 89 (1978)). And MCG80 strain (Biotechnol. Bioeng. 12, 451-459 (1982)).
  • the QM6a strain, QM9414 strain and QM9123 strain can be obtained from NBRC (NITE Biological Resource Center), and PC-3-7 strain and RutC-30 strain can be obtained from ATCC (American Type Culture Collection).
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4 is a polypeptide belonging to Trichoderma reesei, and in National Center Center for Biotechnology Information, is also registered as a predicated R45 protein in Trichoderma reesei strain QM6a (Reg. .
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4 is a polypeptide of which function is unknown, but according to the National Center for Biotechnology Information, Censored Domain, Architecture, Retriever, Toolbox, the 86th to 186th amino acid residues from the N-terminal side.
  • the group is disclosed as a heat ⁇ shock ⁇ factor (HSF) -type ⁇ DNA-binding domain.
  • HSF heat ⁇ shock ⁇ factor
  • HSF-type @ DNA-binding domain has a function of binding to the upstream region of a gene encoding HSF which is a transcription factor that controls the expression of heat shock protein (Cell, 65 (3), 363). -366 (1991)).
  • a specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4 includes the base sequence represented by SEQ ID NO: 1.
  • Methods for deficient or reducing the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4 include a total deletion of the HSF-type DNA-binding domain, a partial deletion of the HSF-type DNA-binding domain, And a method for introducing a mutation that causes a total deletion of the polypeptide consisting of the amino acid sequence represented by the following. Specifically, a gene sequence encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4 And a method of introducing a frameshift mutation or a stop codon mutation by deletion, insertion, substitution or the like of a base.
  • ⁇ HSF-type ⁇ Deletion of a DNA-binding domain refers to the loss of all domains, the loss of some domains, all changes to different amino acids, some changes to different amino acids, or a combination thereof. More specifically, it indicates that the amino acid sequence represented by SEQ ID NO: 4 has a sequence identity of 80% or less with the amino acid sequence of the HSF-type DNA-binding domain shown above, and preferably 50% or less. Yes, more preferably 20% or less, further preferably 10% or less, more preferably 5% or less, further preferably 3% or less, further preferably 1% or less, and most preferably 0%.
  • Mutation such as deletion, substitution, or addition in the amino acid sequence located in the HSF-type @ DNA-binding domain results in loss or reduction of the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4.
  • Examples include mutations in the amino acid sequence represented by SEQ ID NO: 4 in which a part or the entirety of the 86th to 186th region from the N-terminal side corresponding to the HSF-type DNA-binding domain is deleted. .
  • a specific example of such a mutation includes a mutation that causes a frame shift in which one base of guanine is inserted at the 85th position in the base sequence represented by SEQ ID NO: 1, and the mutation is represented by SEQ ID NO: 4
  • the 30th amino acid residue from the N-terminal side of the amino acid sequence changes from histidine to threonine, and as a result of the frame shift, translation ends at the 90th amino acid residue from the N-terminal side, and HSF-typeHDNA-binding.
  • the amino acid sequence constituting the domain disappears.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is a polypeptide belonging to Trichoderma reesei, and in National Center for Biotechnology Information, is also registered as a predicated EG5 strain in Trichoderma reesei strain QM6a as a registered trademark of EG47 strain.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is a polypeptide whose function is unknown, but according to the National Center for Biotechnology Information, Censured Domain, Architecture, Retriever, Tool, the 362nd to 553rd amino acids from the N-terminal to the 553rd residue from the N-terminal side.
  • the group is disclosed as a TLD domain.
  • the TLD domain is of unknown function.
  • a specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 includes a base sequence represented by SEQ ID NO: 2.
  • Methods for reducing the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 include a total deletion of the TLD domain, a partial deletion of the TLD domain, and a total deletion of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5.
  • a method for introducing a mutation that causes deletion is mentioned. Specifically, a gene sequence encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is deleted, inserted, or substituted with a base. Examples include a method of introducing a frameshift mutation or a stop codon mutation.
  • ⁇ ⁇ Deficiency in a TLD domain refers to the loss of all, part of the domain, all changes to different amino acids, some changes to different amino acids, or a combination thereof. More specifically, it indicates that the amino acid sequence represented by SEQ ID NO: 5 has a sequence identity of 80% or less with the amino acid sequence of the TLD domain shown above, preferably 50% or less, and more preferably 50% or less. It is 20% or less, more preferably 10% or less, more preferably 5% or less, further preferably 3% or less, further preferably 1% or less, and most preferably 0%.
  • polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is lost by mutation, such as deletion, substitution, or addition, occurring in the amino acid sequence located in the TLD domain.
  • mutation in which the region at positions 362 to 553 from the N-terminal side corresponding to the TLD domain is partially or entirely deleted.
  • a specific example of such a mutation is a frameshift mutation in which 46 bases represented by SEQ ID NO: 27 are inserted into the base sequence represented by SEQ ID NO: 2 at the sixth position. Due to the mutation, the third glutamine residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 5 is changed to arginine, translation ends at that position, and the amino acid sequence constituting the TLD domain disappears.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 6 is a polypeptide belonging to Trichoderma reesei, and is registered in National Center for Biotechnology Information as a predicated PG4 strain, which is also a registered strain of Trichoderma reesei QM6a as a registered strain of QM6a.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 6 is a polypeptide of unknown function, but according to the National Center for Biotechnology Information, Censured Domain, Architecture, Retriever, Toolle, the 130th to 172nd amino acid residues from the N-terminal side. The group is disclosed as an F-box domain.
  • the F-box domain is known to be a domain found in proteins that control the cell cycle (Proc. Natl. Acad. Sci., 95, 2417-2422 (1998)).
  • a specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 6 includes a base sequence represented by SEQ ID NO: 3.
  • Methods for reducing the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 6 include the entire deletion of the F-box domain, the partial deletion of the F-box domain, and the amino acid sequence represented by SEQ ID NO: 6.
  • a method for introducing a mutation that causes a total deletion of the polypeptide is mentioned. Specifically, a base deletion or insertion into a gene sequence encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 6 And a method of introducing a frameshift mutation or a stop codon mutation by substitution or the like.
  • Deletion of the F-box domain refers to the loss of all, part of the domain, all changes to different amino acids, some changes to different amino acids, or a combination thereof. More specifically, it indicates that the amino acid sequence represented by SEQ ID NO: 6 has a sequence identity of 80% or less, and preferably 50% or less, with the amino acid sequence of the F-box domain shown above. It is preferably 20% or less, more preferably 10% or less, further preferably 5% or less, more preferably 3% or less, further preferably 1% or less, and most preferably 0% or less. is there.
  • Specific examples in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 6 is lost due to mutation, such as deletion, substitution, or addition, occurring in the amino acid sequence located in the F-box domain include: In the base sequence represented by No. 3, there is a frameshift mutation in which the 499th cytosine is deleted by one base. Due to the mutation, the 167th amino acid residue from the N-terminal side of the amino acid sequence represented by SEQ ID NO: 6 is changed from alanine to arginine, and thereafter, as a result of the frame shift, translation ends at the 193rd position from the N-terminal side. Therefore, the amino acid sequence constituting the F-box domain disappears.
  • the function of the polypeptide comprising the amino acid sequence represented by any of SEQ ID NOs: 4 to 6 may be reduced by reducing the expression level of the polypeptide or introducing a mutation that eliminates the expression. Specifically, it may be due to a decrease or disappearance of the expression level of the polypeptide due to a mutation in the promoter or terminator region of the gene encoding the amino acid sequence represented by any of SEQ ID NOs: 4 to 6.
  • a promoter and a terminator region correspond to a region of several hundred bases before and after a gene involved in transcription.
  • Mutation into the above-mentioned gene can be performed by using a known gene mutation method, such as mutation treatment using a mutagen or ultraviolet irradiation known to those skilled in the art, gene recombination such as homologous recombination using a selection marker, or mutation using a transposon. Can be used.
  • the mutant strain of the present invention may be a polypeptide comprising the amino acid sequence of SEQ ID NO: 4 to 6 as long as at least one or more of the polypeptides has a defective or reduced function. All functions may be missing or reduced.
  • the combination of polypeptides whose function is deficient or reduced is not particularly limited.
  • mutant strain of Trichoderma reesei whose function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4 or 5 is deficient or reduced
  • SEQ ID NO: 4 or 6 A mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented is deficient or reduced, and a mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 or 6 is deficient or reduced. Both are included in the mutant strain of the present invention.
  • the mutant strain of the present invention may be a mutant strain in which the functions of all three polypeptides consisting of the amino acid sequences represented by SEQ ID NOs: 4 to 6 are deleted or reduced. Mutants in which all functions of the polypeptide consisting of the amino acid sequences represented by SEQ ID NOs: 4 to 6 have been deleted or reduced are compared with the parent strain Trichoderma reesei spores by nitrosoguanidine (NTG) and ethyl methanesulfonic acid. (EMS), by performing a gene mutation treatment using ultraviolet light or the like, analyzing the gene of the obtained mutant, and screening for a mutant having the above mutation.
  • NTG nitrosoguanidine
  • EMS ethyl methanesulfonic acid.
  • the mutant strain of the present invention Since the mutant strain of the present invention has improved protein-producing ability as compared to the parent strain before the introduction of the mutation, the culture solution of the mutant strain of the present invention is obtained under the same culture conditions before the introduction of the mutation.
  • the protein concentration is increased as compared to the culture of the parent strain.
  • the protein is an enzyme, the specific activity of the enzyme increases.
  • the rate of increase in the protein concentration or the rate of increase in the specific activity of the enzyme is not particularly limited as long as it increases, but is preferably 20% or more.
  • the mutant strain of the present invention may be a protein having the amino acid sequence of SEQ ID NOs: 4 to 6, in addition to a mutation in which the function is deficient or reduced, as well as an increase in protein production and / or a decrease in the viscosity of the culture solution. You may have the mutation which suppresses the fall of dissolved oxygen saturation. Specifically, a gene mutation that reduces the function of the polypeptide represented by any one of SEQ ID NOs: 7, 9, and 11 can be given.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 is a polypeptide belonging to Trichoderma reesei, and in National Center for Biotechnology Information, is a registered PG50 strain of Trimoderma reesei strain QM6a, which is registered as a predicated R50 strain in the strain QM6a.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 is a polypeptide of unknown function, but according to the National Center for Biotechnology Information, Censated Domain, Architecture, Retriever, Toolbox, the 95th to 277th amino acid residues from the N-terminal side.
  • MIF4G domain ⁇ eukaryotic ⁇ initiation ⁇ factor ⁇ 4G domain
  • MA-3 domain ⁇ eukaryotic ⁇ initiation ⁇ factor ⁇ 4G domain
  • MIF4G and MA are disclosed.
  • -3 are known to have a function of binding to DNA or RNA (Bi Chem .. 44, 12265-12272 (2005), Mol. Cell. Biol. 1, 147-156 (2007) .
  • a specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7 includes the base sequence represented by SEQ ID NO: 8.
  • the gene mutation that reduces the function of EGR50654 is defined as a total deletion of the MIF4G domain and / or the MA-3 domain of EGR50654, a partial deletion of the MIF4G domain and / or the MA-3 domain, and a difference between the MIF4G domain and the MA-3 domain.
  • the function of the polypeptide can also be reduced by introducing a mutation that reduces or eliminates the expression level of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 7.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is a polypeptide belonging to Trichoderma reesei, and in National Center Center for Biotechnology Information, is a registered EGRP4 strain which is a registered strain of Trimoderma reesei strain QM6a and which is registered as a pre-registered EG44 strain of EG44.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is a polypeptide whose function is unknown, but according to the National Center for Biotechnology Information, Censured Domain, Architecture, Retriever, Toolbox, the 26-th to 499-th amino acids from the N-terminal residue.
  • the group is disclosed as having a "Sugar (and other) @Transporter domain.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is capable of transporting sugar at least between the inside and outside of the bacterial body. It is presumed to be involved.
  • a specific example of a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 includes the base sequence represented by SEQ ID NO: 10.
  • the gene mutation that reduces the function of EGR44419 is defined as a total deletion of the Sugar (and other) @Transporter domain, a partial deletion of the Sugar (and @ other) @Transporter domain, and a change in the configuration of the Sugar (and @ other) @Transporter domain of EGR44419.
  • the function of the polypeptide can also be reduced by introducing a mutation that reduces or eliminates the expression level of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9.
  • a specific example in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 9 is deficient is a mutation in which 11 bases are inserted at the 1415th position in the base sequence represented by SEQ ID NO: 10.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 is a polypeptide belonging to Trichoderma reesei, and in National Center for Biotechnology Information, is a beta-adaptinRegger which is registered as a beta-adaptinRegulin in the strain of Trichoderma reesei QM6a as a member of the strain QM6a.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 constitutes an adapter protein that forms a vesicle involved in intracellular and extracellular transport that binds to clathrin, which is widely conserved in eukaryotes. It is one of the proteins (Proc. Nati. Acad. Sci. USA. 101, 14108-14113 (2004)).
  • a specific example of the gene encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 11 includes the base sequence represented by SEQ ID NO: 12.
  • the EGR48910 gene mutation includes a mutation of cytosine, which is the 1080th base in the base sequence represented by SEQ ID NO: 12, to adenine.
  • the present invention also relates to a method for producing a protein, comprising a step of culturing the mutant strain.
  • the ability to produce a protein is further improved by culturing the mutant strain in a medium containing an inducer.
  • the inducer that improves the productivity of cellulase include lactose, glucose, cellulose, cellobiose, and xylan. Of these, lactose and / or glucose are preferred, and lactose is particularly preferred.
  • the inducer When the inducer is added to the medium, it may be added at any timing, such as at the start of the culture or during the culture, but especially when lactose or glucose is added as the inducer, the protein is produced by the addition during the culture. This is preferable because the effect of improving the ability can be continued during the culture.
  • the amount of lactose added is preferably about 1 g to 50 g per liter of culture solution per day, more preferably about 3 to 25 g, and particularly preferably about 6 to 20 g.
  • the amount of added glucose is preferably about 1 to 200 g, more preferably about 5 to 100 g, particularly preferably about 20 to 80 g per liter of the culture solution per day.
  • biomass containing them may be added as an inducer.
  • biomass include plants such as seed plants, fern plants, moss plants, algae, and aquatic plants, as well as waste building materials.
  • Seed plants are classified into gymnosperms and angiosperms, both of which can be preferably used.
  • Angiosperms are further classified into monocotyledons and dicotyledons, and specific examples of monocotyledons include bagasse, switchgrass, napier grass, Elianthus, corn stover, corn cob, rice straw, straw, and the like.
  • dicotyledonous plants beet pulp, eucalyptus, oak, birch and the like are preferably used.
  • a pretreated one may be used.
  • the pretreatment method is not particularly limited, and for example, a known method such as an acid treatment, a sulfuric acid treatment, a dilute sulfuric acid treatment, an alkali treatment, a hydrothermal treatment, a subcritical treatment, a fine pulverizing treatment, and a steaming treatment can be used. Pulp may be used as biomass containing pretreated cellulose and xylan.
  • the composition of the medium used in the step of culturing the mutant strain of Trichoderma reesei of the present invention is not particularly limited as long as the medium composition allows Trichoderma reesei to produce a protein, and a well-known medium composition of filamentous fungi of the genus Trichoderma is employed. can do.
  • a well-known medium composition of filamentous fungi of the genus Trichoderma is employed. can do.
  • the nitrogen source for example, polypeptone, broth, CSL, soybean meal and the like can be used.
  • the above-mentioned inducer for producing a protein may be added to the medium.
  • the culture method is not particularly limited, and for example, the culture can be performed by liquid culture using a centrifuge tube, flask, jar fermenter, tank, or the like, or solid culture using a plate or the like.
  • Trichoderma reesei is preferably cultured under aerobic conditions, and among these culture methods, a jar fermenter or a deep submerged culture in which aeration and stirring are performed in a tank are particularly preferable.
  • the ventilation rate is preferably about 0.1 to 2.0 vvm, more preferably 0.3 to 1.5 vvm, and particularly preferably 0.5 to 1.0 vvm.
  • the cultivation temperature is preferably about 25 to 35 ° C, more preferably 25 to 31 ° C.
  • the pH condition in the culture is preferably pH 3.0 to 7.0, and more preferably pH 4.0 to 6.0.
  • the cultivation is performed under conditions that produce the protein until a recoverable amount of the protein is accumulated. Usually, it is 24 to 288 hours, preferably 24 to 240 hours, more preferably 36 to 240 hours, even more preferably 36 to 192 hours.
  • the protein produced by the present invention is not particularly limited, but can efficiently produce a protein secreted outside the cells, and is preferably an enzyme, more preferably a cellulase, an amylase, an invertase, a chitinase, and a pectinase. And more preferably cellulase.
  • the cellulase produced by the present invention contains various hydrolases, including enzymes having a decomposing activity on xylan, cellulose, and hemicellulose.
  • hydrolases including enzymes having a decomposing activity on xylan, cellulose, and hemicellulose.
  • cellobiohydrolase EC 3.2.1.91
  • endoglucanase EC43.2.1.4
  • ⁇ -glucosidase which hydrolyzes cellooligosaccharides and cellobiose
  • xylanase characterized by acting on hemicellulose and particularly xylan
  • xylooligosaccharide ⁇ -xylosidase which hydrolyzes
  • Trichoderma reesei mutant of the present invention has improved protein-producing ability and improved cellulase specific activity compared to the parent strain can be obtained by culturing the mutant strain and the parent strain under the same conditions. The culture was confirmed by comparing the protein concentration measured by the following method and the specific activity of at least one selected from the group consisting of ⁇ -glucosidase specific activity, ⁇ -xylosidase specific activity and cellobiohydrolase specific activity. I do.
  • the protein concentration was determined by centrifuging the cultures of the mutant strain and the parent strain at 15,000 ⁇ g for 10 minutes, and adding a cellulase solution diluted with 250 ⁇ L of Quick Start Protein Bradford Protein Assay (Bio-Rad) to the supernatant. Add 5 ⁇ L and measure the absorbance at 595 nm after standing at room temperature for 15 minutes. Using the bovine serum albumin solution as a standard solution, the concentration of the protein contained in the saccharifying enzyme solution is calculated based on the calibration curve.
  • the ⁇ -glucosidase specific activity was determined by adding 10 ⁇ L of the enzyme diluent to 90 ⁇ L of 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -glucopyranoside (Sigma-Aldrich Japan) to the culture supernatant. The reaction was allowed to proceed at 10 ° C. for 10 minutes, then 10 ⁇ L of 2M sodium carbonate was added and mixed well to stop the reaction, and the increase in absorbance at 405 nm was measured. Finally, the specific activity is calculated based on the activity of releasing 1 ⁇ mol of p-nitrophenol per minute as 1 U.
  • ⁇ -xylosidase specific activity was determined by adding 10 ⁇ L of enzyme diluent to 90 ⁇ L of 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -xylopyranoside (manufactured by Sigma-Aldrich Japan) to the culture supernatant. For 30 minutes, then add 10 ⁇ L of 2M sodium carbonate and mix well to stop the reaction, and measure the increase in absorbance at 405 nm. Finally, the specific activity is calculated based on the activity of releasing 1 ⁇ mol of p-nitrophenol per minute as 1 U.
  • the specific activity of cellobiohydrolase was determined by adding 10 ⁇ L of enzyme diluent to 90 ⁇ L of 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -lactopyranoside (Sigma-Aldrich Japan) to the culture supernatant. Reaction was carried out at 60 ° C. for 60 minutes, then 10 ⁇ L of 2M sodium carbonate was added and mixed well to stop the reaction, and the increase in absorbance at 405 nm was measured. Finally, the specific activity is calculated based on the activity of releasing 1 ⁇ mol of p-nitrophenol per minute as 1 U.
  • the method of recovering the protein contained in the culture solution in which the mutant strain is cultured is not particularly limited, but the protein can be recovered by removing the cells of the mutant strain from the culture solution.
  • Examples of the method for removing cells include a centrifugal separation method, a membrane separation method, a filter press method and the like.
  • the mutant is used as a protein lysate without removing the cells from the culture solution in which the mutant has been cultured, it is preferable to treat the mutant so that the mutant cannot grow in the culture.
  • the method for treating cells so that they cannot grow include heat treatment, chemical treatment, acid / alkali treatment, and UV treatment.
  • the culture solution that has been treated so that the cells are not removed or grown as described above can be used as it is as the enzyme solution.
  • a sugar can be produced by saccharifying cellulose-containing biomass using the cellulase.
  • the cellulase obtained by culturing the mutant strain has a higher specific activity of ⁇ -glucosidase than the cellulase obtained by culturing the parent strain before the introduction of the mutation.
  • a sugar solution having a high glucose concentration can be obtained, and more sugar can be obtained.
  • the same biomass as the biomass containing cellulose described as the inducer or the pretreated biomass can be used.
  • the conditions of the saccharification reaction are not particularly limited, but the temperature of the saccharification reaction is preferably in the range of 25 to 60 ° C, more preferably in the range of 30 to 55 ° C.
  • the saccharification reaction time is preferably in the range of 2 to 200 hours.
  • the pH of the saccharification reaction is preferably in the range of pH 3.0 to 7.0, more preferably in the range of pH 4.0 to 6.0. In the case of a cellulase derived from the genus Trichoderma, the optimum pH for the reaction is 5.0. is there. Furthermore, since the pH changes during the hydrolysis process, it is preferable to add a buffer to the reaction solution or to carry out the reaction while maintaining a constant pH using an acid or an alkali.
  • the saccharified solution can be filtered through an ultrafiltration membrane or the like and collected on the non-permeate side. You may remove it.
  • the recovered enzyme can be used again for the saccharification reaction.
  • Protein concentration measurement reagent used Quick Start Bradford protein assay (manufactured by Bio-Rad) Measurement conditions Measurement temperature: room temperature Protein concentration measurement reagent: 250 ⁇ L Culture solution of filamentous fungi: 5 ⁇ L Reaction time: 5 minutes Absorbance: 595 nm Standard product: BSA.
  • the enzyme solution was added so that the protein concentration was 0.8 mg, and the solution was made up with sterilized water so as to be 1 mL in total, and placed in a 2 mL tube.
  • the saccharification reaction was performed at 50 ° C. for 24 hours, the supernatant obtained by centrifuging the saccharified product was collected as a saccharified solution, and 1/10 of a 1N NaOH solution of the collected saccharified solution was added to carry out the enzyme reaction. Stopped.
  • the glucose concentration in the saccharified solution after the termination of the reaction was measured by UPLC shown below.
  • Glucose was quantitatively analyzed using the ACQUITY UPLC system (Waters) under the following conditions. Quantitative analysis was performed based on a calibration curve prepared using a glucose standard.
  • Example 1 Preparation of mutant strain of Trichoderma reesei defective in function of polypeptide consisting of amino acid sequence represented by SEQ ID NO: 4 (method of preparing mutant strain)
  • a mutant of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4 is deficient, has a gene represented by SEQ ID NO: 1 encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4 It is destroyed by replacing with acetamide as a selection marker and acetamidase (AmdS) gene (amdS) which can degrade acetamide as a selection marker gene.
  • AmdS acetamidase
  • a DNA fragment consisting of the gene sequence represented by SEQ ID NO: 13 was prepared, and the DNA fragment was transformed into Trichoderma reesei ATCC 66589 strain.
  • a mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 4 is deleted is prepared. According to this method, a mutant of Trichoderma reesei lacking the nucleotide sequence represented by SEQ ID NO: 1 is obtained.
  • PCR was performed using genomic DNA extracted from Trichoderma rereei strain QM9414 according to a standard method and oligo DNAs represented by SEQ ID NOs: 14 and 15, and the resulting amplified fragment was treated with restriction enzymes AflII and NotI. The fragment is referred to as an upstream DNA fragment.
  • PCR was performed using the oligo DNAs represented by SEQ ID NOs: 16 and 17, and the obtained amplified fragment was treated with restriction enzymes MluI and SpeI to obtain a downstream DNA fragment.
  • the upstream and downstream DNA fragments are introduced into the plasmid into which amdS has been inserted using AflII and NotI and MluI and SpeI restriction enzymes, respectively, to construct a mutation-introducing plasmid.
  • the mutation-introducing plasmid is treated with restriction enzymes AflII and SpeI, and the obtained DNA fragment represented by SEQ ID NO: 13 is used to transform Trichoderma reesei ATCC 66589 strain.
  • the molecular biological technique is performed as described in Molecular Cloning, Laboratory Manual, 1st, 2nd, 3rd (1989). Transformation is performed using the protoplast-PEG method, which is a standard technique, specifically as described in Gene, 61, 165-176 (1987).
  • Trichoderma reesei mutant obtained according to the method described above was used as the Trichoderma reesei mutant I in the following protein production tests and experiments for measuring protein concentration and cellulase specific activity.
  • Example 2 Preparation of mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is deficient (Method for preparing mutant strain)
  • a mutant of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is deficient, has a gene represented by SEQ ID NO: 2 encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 It is destroyed by replacing with acetamide as a selection marker and acetamidase (AmdS) gene (amdS) which can degrade acetamide as a selection marker gene.
  • AmdS acetamidase
  • a DNA fragment consisting of the gene sequence represented by SEQ ID NO: 18 was prepared, and the DNA fragment was transformed into Trichoderma reesei ATCC 66589 strain.
  • a mutant strain of Trichoderma reesei that lacks the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 5 is prepared. According to this method, a mutant of Trichoderma reesei lacking the nucleotide sequence represented by SEQ ID NO: 2 is obtained.
  • a DNA fragment obtained by treating the synthesized DNA fragment represented by SEQ ID NO: 19 with restriction enzymes AflII and NotI is defined as an upstream DNA fragment.
  • PCR was performed using genomic DNA extracted from Trichoderma reesei QM9414 strain according to a conventional method and oligo DNAs represented by SEQ ID NOs: 20 and 21, and the resulting amplified fragment was subjected to downstream a DNA fragment treated with restriction enzymes MluI and SpeI. DNA fragments. Then, the upstream and downstream DNA fragments are introduced into the plasmid into which amdS has been inserted using AflII and NotI and MluI and SpeI restriction enzymes, respectively, to construct a mutation-introducing plasmid.
  • the plasmid for mutation introduction is treated with restriction enzymes AflII and SpeI, and the resulting DNA fragment represented by SEQ ID NO: 18 is used to transform Trichoderma reesei ATCC 66589 strain.
  • the molecular biological technique is performed as described in Molecular Cloning, Laboratory Manual, 1st, 2nd, 3rd (1989). Transformation is performed using the protoplast-PEG method, which is a standard technique, specifically as described in Gene, 61, 165-176 (1987).
  • Trichoderma reesei mutant obtained by the above-described method was used as the Trichoderma reesei mutant II in the following protein production tests and experiments for measuring protein concentration and cellulase specific activity.
  • Example 3 Preparation of Trichoderma reesei Mutant Deficient in Function of Polypeptide Consisting of Amino Acid Sequence Represented by SEQ ID NO: 6
  • a mutant of Trichoderma reesei which lacks the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 6, has a gene represented by SEQ ID NO: 3 which encodes the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 6 It is destroyed by replacing with acetamide as a selection marker and acetamidase (AmdS) gene (amdS) which can degrade acetamide as a selection marker gene.
  • AmdS acetamidase
  • a DNA fragment consisting of the gene sequence represented by SEQ ID NO: 22 was prepared, and the DNA fragment was transformed into Trichoderma reesei ATCC 66589 strain.
  • a mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 6 is deficient, is prepared. According to this method, a mutant of Trichoderma reesei lacking the nucleotide sequence represented by SEQ ID NO: 3 is obtained.
  • PCR was performed using genomic DNA extracted from Trichoderma rereei strain QM9414 according to a standard method and oligo DNAs represented by SEQ ID NOS: 23 and 24, and the resulting amplified fragment was treated with restriction enzymes AflII and NotI. The fragment is referred to as an upstream DNA fragment.
  • PCR was performed using the oligo DNAs represented by SEQ ID NOS: 25 and 26, and the obtained amplified fragment was treated with restriction enzymes MluI and XhoI to obtain a downstream DNA fragment.
  • the upstream and downstream DNA fragments are introduced into the plasmid into which amdS has been inserted using AflII and NotI, and MluI and XhoI restriction enzymes, respectively, to construct a mutation-introducing plasmid.
  • the plasmid for mutation introduction is treated with restriction enzymes AflII and SpeI, and the obtained DNA fragment represented by SEQ ID NO: 22 is used to transform Trichoderma reesei ATCC 66589 strain.
  • the molecular biological technique is performed as described in Molecular Cloning, Laboratory Manual, 1st, 2nd, 3rd (1989). Transformation is performed using the protoplast-PEG method, which is a standard technique, specifically as described in Gene, 61, 165-176 (1987).
  • Trichoderma reesei mutant obtained according to the method described above was used as the Trichoderma reesei mutant III in the following protein production tests and in experiments for measuring protein concentration and cellulase specific activity.
  • Example 4 Protein production test using Trichoderma reesei mutant (preculture) Each of the spores of the mutant strain of Trichoderma reesei prepared in Examples 1 to 3 was diluted with physiological saline to a concentration of 1.0 ⁇ 10 7 / mL, and 2.5 mL of the diluted spore solution was added to 1 L shown in Table 1. The cells are inoculated into 250 mL of a preculture medium placed in a baffled flask, and cultured in a shaking incubator at 28 ° C. and 120 rpm for 72 hours. Using Trichoderma reesei ATCC 66589 strain as a control, the same experimental operation is performed.
  • Arbocel (registered trademark) B800 is added to the main culture medium shown in Table 2, and the submerged culture is examined using a 5 L jar fermenter (Biot).
  • the culture conditions after inoculating the preculture medium into the main culture medium, deep culture is performed while controlling the pH to 5.0 under the culture conditions of 28 ° C, 700 rpm, and aeration rate of 100 mL / min.
  • Trichoderma reesei ATCC 66589 strain which is the parent strain of the mutant strains I to III before the introduction of the mutation, was cultured for 120 hours in accordance with the above-mentioned method as a comparison target.
  • Mutant strain II 1.2
  • mutant strain III 1.1
  • ⁇ -xylosidase specific activity was 1.1 for both Trichoderma reesei mutants I, II, and III
  • cellobiohydrolase specific activity was also: Mutants I, II, and III were 1.1, and it was confirmed that an unexpected effect of improving various specific activities of cellulase was obtained.
  • saccharification reaction test According to the method described in Reference Example 3, a saccharification reaction test of cellulose-containing biomass was performed using a culture solution of Trichoderma reesei mutant I, mutant II, and mutant III 120 hours after the start of flask culture as cellulase. Arbocel® B800 or powdered bagasse was used as the cellulose-containing biomass.
  • Example 5 Preparation of mutant strain of Trichoderma reesei in which the function of the polypeptide consisting of the amino acid sequence represented by SEQ ID NOS: 4, 5, and 6 was deficient
  • the strain QM9414-A which is a transgenic strain of Trichoderma reesei QM9414
  • spores of the QM9414-A strain were inoculated so as to have a density of 1.0 ⁇ 10 5 spores per 1 mL of the preculture medium shown in Table 1, and 15 mL of the preculture medium was cultured for half a day, followed by centrifugation. Collected.
  • the collected spores are suspended in a trismaleic acid buffer (pH 6.0) so as to form a 10 mL spore solution, and dissolved therein with a trismaleic acid buffer (pH 6.0) so as to be 1.0 g / L.
  • a gene mutation treatment was performed at 28 ° C. for 100 minutes.
  • the spores subjected to the gene mutation treatment were collected by centrifugation, washed three times with a tris-maleic acid buffer (pH 6.0), and finally suspended in 10 mL of a tris-maleic acid buffer (pH 6.0). The spores were treated with gene mutation.
  • the spores treated with the gene mutation are added to an agar medium prepared by adding microcrystalline cellulose, and the halo size of the QM9414-B strain having a large halo is determined using the size of the halo, which is the region of microcrystalline cellulose degradation by cellulase generated around the colony as an index. Was selected.
  • Example 6 Protein production test using Trichoderma reesei strain QM9414-B With respect to the mutant strain QM9414-B obtained in Example 5, (pre-culture), (main culture), ( Culture was carried out according to (addition of liquid sugar during main culture) and (collection of culture solution), and the protein concentration was measured under the conditions of Reference Example 1. As a control, the parent strain QM9414-A was used and cultured in the same manner as QM9414-B, and the protein concentration was measured under the conditions of Reference Example 1.
  • the relative value of the QM9414-B strain was improved by 1.2 times compared to the QM9414-A strain.
  • the protein concentration of the QM9414-A strain did not change compared to the 120 hours after the start of the culture, but the protein concentration of the QM9414-B strain was This was 1.3 times higher than the protein concentration at 120 hours.
  • the relative value of the protein concentration of the QM9414-B strain was 1.8 when the protein concentration of the QM9414-A strain at 120 hours from the start of culture was 1, and the protein concentration of the QM9414-A strain at 185 hours after the start of culture was 1. Assuming that the concentration was 1, the relative value of the protein concentration of the QM9414-B strain was 2.7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、配列番号4~6のいずれかで表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下しているTrichoderma reeseiの変異株および当該変異株をラクトースを含む培地で培養することによりタンパク質を高生産する方法である。

Description

トリコデルマ・リーセイの変異株およびそれを用いたタンパク質の製造方法
 本発明は、タンパク質製造能が向上するTrichoderma reesei変異株および当該変異株を用いたタンパク質の製造方法に関する。
 Trichoderma reeseiは、高いタンパク質製造能を有していることが知られており、これまでTrichoderma reeseiを用いたタンパク質の製造の検討が行われてきた。Trichoderma reeseiは、タンパク質の中でも特に糖化酵素に分類されるセルラーゼを製造する能力に優れており、例えばセルラーゼ製造量をさらに向上させるため、セルラーゼ製造を制御する因子の過剰発現や欠損、セルラーゼ製造のための培養条件の検討などが行われている。
 非特許文献1では、Trichoderma reeseiのセルラーゼの製造を制御する因子の中でも、セルラーゼの製造を抑制する転写因子であるCre1の機能を低下させることにより高いセルラーゼ製造能を有するTrichoderma reeseiの変異株が取得されている。
 また、Trichoderma reeseiのセルラーゼの生産量を向上させる方法として、非特許文献2には、グルコースやラクトースを添加した培地でTrichoderma reeseiを培養する方法が記載されている。
Juliano P,Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan,Bioscience, Biotechnology, and Biochemistry, Volume 77,2013,Issue 3,P534-543 Antonella A,Rugulation of cellulase and hemicellulase gene expression in fungi,Current genomics,Volume 14,2013,P230-249
 上記のとおり、Trichoderma reeseiのタンパク質製造を制御する因子の一つである転写因子が解明されているが、これは制御機構の一部にすぎないと考える。そこで本発明では、Trichoderma reeseiのタンパク質製造を制御する新規機構を探索し、タンパク質製造能がさらに強化されたTrichoderma reeseiの変異株の取得および当該Trichoderma reeseiの変異株を用いたタンパク質の製造方法を提供することを課題とする。
 本発明者は、これまで知られていなかったタンパク質の生産量を増やすことが可能な遺伝子を特定できれば、Trichoderma reeseiのタンパク質の製造量をさらに向上させることができると考え、鋭意検討した結果、配列番号4、5、6のいずれかで表されるアミノ酸配列からなるポリペプチドから選ばれる1つ以上のポリペプチドの機能が欠損または低下したTrichoderma reeseiの変異株を培養することにより、タンパク質製造能を向上させることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の(1)~(15)で構成される。
(1)配列番号4~6のいずれかで表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下する変異を有する、Trichoderma reeseiの変異株。
(2)前記変異が、配列番号4で表されるアミノ酸配列からなるポリペプチドのHSF-type DNA-bindingドメインが欠損する変異である、(1)に記載の変異株。
(3)前記変異が、HSF-type DNA-bindingドメインよりもN末端側の領域での変異に伴うフレームシフト変異である、(2)に記載の変異株。
(4)前記変異が、配列番号4で表されるアミノ酸配列のN末端側から30番目のヒスチジン残基がヒスチジン以外のアミノ酸残基に変異することによるフレームシフト変異である、(3)に記載の変異株。
(5)前記変異が、配列番号5で表されるアミノ酸配列からなるポリペプチドのTLDドメインが欠損する変異である、(1)に記載の変異株。
(6)前記変異が、TLDドメインよりもN末端側の領域での変異に伴うフレームシフト変異である、(5)に記載の変異株。
(7)前記変異が、配列番号5で表されるアミノ酸配列のN末端側から3番目のグルタミン残基がグルタミン以外のアミノ酸残基に変異することによるフレームシフト変異である、(6)に記載の変異株。
(8)前記変異が、配列番号6で表されるアミノ酸配列からなるポリペプチドのF-boxドメイン領域のアミノ酸配列の変異である、(1)に記載の変異株。
(9)前記変異が、F-boxドメイン領域のアミノ酸配列の変異に伴うフレームシフト変異によって生じる配列番号6で表されるアミノ酸配列からなるポリペプチドの欠損である、(8)に記載の変異株。
(10)前記変異が、配列番号6で表されるアミノ酸配列においてN末端側から167番目のアラニン残基がアラニン以外のアミノ酸残基に変異することによるフレームシフト変異である、(9)に記載の変異株。
(11)(1)から(10)のいずれかに記載の変異株を培養する工程を含む、タンパク質の製造方法。
(12)(1)から(10)のいずれかに記載の変異株を少なくともラクトースを含む培地で培養する工程を含む、タンパク質の製造方法。
(13)(1)から(10)のいずれかに記載の変異株を培養する工程を含む、セルラーゼの製造方法。
(14)(1)から(10)のいずれかに記載の変異株を少なくともラクトースを含む培地で培養する工程を含む、セルラーゼの製造方法。
(15)(13)または(14)に記載のセルラーゼの製造方法によりセルラーゼを製造する工程および前記工程で得られたセルラーゼを用いてセルロース含有バイオマスを糖化する工程を含む、糖の製造方法。
 配列番号4~6のいずれかで表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下したTrichoderma reeseiの変異株は、当該変異導入前の親株と比較して、タンパク質の製造能が向上し、タンパク質を高生産することが可能となる。さらに、製造されるタンパク質がセルラーゼの場合には、セルラーゼの各種比活性も向上するという予想外の効果も得られる。
 本発明は、もともとタンパク質の製造能に優れる微生物であるTrichoderma reeseiの親株に変異を導入することによって、さらにタンパク質製造能を高めることを特徴としている。具体的には、本発明はTrichoderma reeseiの変異株に関するものであり、配列番号4~6のいずれかで表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下する変異を有することを特徴としている。
 本発明で用いるTrichoderma reeseiの親株は野生株には制限されず、タンパク質製造能が高まるように改良された変異株も親株として好ましく用いることができ、例えば、変異剤や紫外線照射などで変異処理を施し、タンパク質の製造性が向上した変異株を上記親株として利用することができる。上記親株として用いる変異株の具体例は、Trichoderma reeseiに属する公知の変異株であるQM6a株(NBRC31326)、QM9123株(ATCC24449)、QM9414株(NBRC31329)、PC-3-7株(ATCC66589)、QM9123株(NBRC31327)、RutC-30株(ATCC56765)、CL-847株(Enzyme.Microbiol.Technol.10,341-346(1988))、MCG77株(Biotechnol.Bioeng.Symp.8, 89(1978))、MCG80株(Biotechnol.Bioeng.12,451-459(1982))などが挙げられる。なお、QM6a株、QM9414株、QM9123株はNBRC(NITE Biological Resource Center)より、PC-3-7株、RutC-30株はATCC(American Type Culture Collection)より入手することができる。
 配列番号4で表されるアミノ酸配列からなるポリペプチドは、Trichoderma reeseiが有するポリペプチドであり、National Center for Biotechnology Informationでは、Trichoderma reesei QM6a株が持つpredicted protein,partial(EGR45828)としても登録されている。配列番号4で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から86番目~186番目のアミノ酸残基はheat shock factor(HSF)-type DNA-bindingドメインと開示されている。HSF-type DNA-bindingドメインは、ヒートショックプロテインの発現を制御する転写因子であるHSFをコードする遺伝子の上流域に結合する機能を有することが知られている(Cell,65(3),363-366(1991))。配列番号4で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号1で表される塩基配列が挙げられる。
 配列番号4で表されるアミノ酸配列からなるポリペプチドの機能を欠損または低下させる方法としては、HSF-type DNA-bindingドメインの全欠損、HSF-type DNA-bindingドメインの一部欠損、配列番号4で表されるアミノ酸配列からなるポリペプチドの全欠損させるような変異を導入する方法が挙げられ、具体的には、配列番号4で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子配列に対して、塩基の欠失、挿入、置換などによりフレームシフト変異やストップコドン変異を導入する方法が挙げられる。
 HSF-type DNA-bindingドメインの欠損とは、そのドメインが全てなくなる、一部が無くなる、全てが異なるアミノ酸に変わる、一部が異なるアミノ酸に変わる、またはそれらの組み合わせのことを指す。さらに具体的には配列番号4で表されるアミノ酸配列において、上記に示したHSF-type DNA-bindingドメインのアミノ酸配列と配列同一性が80%以下になることを指し、好ましくは50%以下であり、さらに好ましくは20%以下であり、さらに好ましくは10%以下であり、さらに好ましくは5%以下であり、さらに好ましくは3%以下であり、さらに好ましくは1%以下であり、最も好ましくは0%である。
 HSF-type DNA-bindingドメイン内に位置するアミノ酸配列に欠失、置換、または付加などの変異がおこることによって、配列番号4で表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下する具体例としては、配列番号4で表されるアミノ酸配列にてHSF-type DNA-bindingドメインに相当するN末端側から86番目~186番目の領域の一部または全部が欠損するような変異が挙げられる。このような変異の具体例としては、配列番号1で表される塩基配列において、85番目にグアニン1塩基が挿入するフレームシフトを引き起こす変異が挙げられ、当該変異により、配列番号4で表されるアミノ酸配列のN末端側から30番目のアミノ酸残基が、ヒスチジンからスレオニンへ変化し、以降フレームシフトの結果、N末端側から90番目のアミノ酸残基で翻訳は終了し、HSF-type DNA-bindingドメインを構成するアミノ酸配列は消失する。
 配列番号5で表されるアミノ酸配列からなるポリペプチドは、Trichoderma reeseiが有するポリペプチドであり、National Center for Biotechnology Informationでは、Trichoderma reesei QM6a株が持つpredicted protein(EGR47155)としても登録されている。配列番号5で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から362番目~553番目のアミノ酸残基はTLDドメインと開示されている。TLDドメインは機能未知である。配列番号5で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号2で表される塩基配列が挙げられる。
 配列番号5で表されるアミノ酸配列からなるポリペプチドの機能を低下させる方法としては、TLDドメインの全欠損、TLDドメインの一部欠損、配列番号5で表されるアミノ酸配列からなるポリペプチドの全欠損させるような変異を導入する方法が挙げられ、具体的には、配列番号5で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子配列に対して、塩基の欠失、挿入、置換などによりフレームシフト変異やストップコドン変異を導入する方法が挙げられる。
 TLDドメインの欠損とは、そのドメインが全てなくなる、一部が無くなる、全てが異なるアミノ酸に変わる、一部が異なるアミノ酸に変わる、またはそれらの組み合わせのことを指す。さらに具体的には配列番号5で表されるアミノ酸配列において、上記に示したTLDドメインのアミノ酸配列と配列同一性が80%以下になることを指し、好ましくは50%以下であり、さらに好ましくは20%以下であり、さらに好ましくは10%以下であり、さらに好ましくは5%以下であり、さらに好ましくは3%以下であり、さらに好ましくは1%以下であり、最も好ましくは0%である。
 TLDドメイン内に位置するアミノ酸配列に欠失、置換、または付加などの変異がおこることによって、配列番号5で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号5で表されるアミノ酸配列にてTLDドメインに相当するN末端側から362~553番目の領域が一部または全部欠損するような変異が挙げられる。このような変異の具体例としては、配列番号2で表される塩基配列において、6番目に配列番号27で表される46塩基が挿入するフレームシフト変異が挙げられる。当該変異により、配列番号5で表されるアミノ酸配列のN末端側より3番目のグルタミン残基がアルギニンに変化し、当該位置で翻訳が終了し、TLDドメインを構成するアミノ酸配列は消失する。
 配列番号6で表されるアミノ酸配列からなるポリペプチドは、Trichoderma reeseiが有するポリペプチドであり、National Center for Biotechnology Informationでは、Trichoderma reesei QM6a株が持つpredicted protein(EGR48056)としても登録されている。配列番号6で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から130番目~172番目のアミノ酸残基はF-boxドメインと開示されている。F-boxドメインは、細胞周期を制御するタンパク質内に見られるドメインであることが知られている(Proc.Natl.Acad.Sci.,95,2417-2422(1998))。配列番号6で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号3で表される塩基配列が挙げられる。
 配列番号6で表されるアミノ酸配列からなるポリペプチドの機能を低下させる方法としては、F-boxドメインの全欠損、F-boxドメインの一部欠損、配列番号6で表されるアミノ酸配列からなるポリペプチドの全欠損させるような変異を導入する方法が挙げられ、具体的には、配列番号6で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子配列に対して、塩基の欠失、挿入、置換などによりフレームシフト変異やストップコドン変異を導入する方法が挙げられる。
 F-boxドメインの欠損とは、そのドメインが全てなくなる、一部が無くなる、全てが異なるアミノ酸に変わる、一部が異なるアミノ酸に変わる、またはそれらの組み合わせのことを指す。さらに具体的には配列番号6で表されるアミノ酸配列において、上記に示したF-boxドメインのアミノ酸配列と配列同一性が80%以下になることを指し、好ましくは50%以下であり、さらに好ましくは20%以下であり、さらに好ましくは10%以下であり、さらに好ましくは5%以下であり、さらに好ましくは3%以下であり、さらに好ましくは1%以下であり、最も好ましくは0%である。
 F-boxドメイン内に位置するアミノ酸配列に欠失、置換、または付加などの変異がおこることによって、配列番号6で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号3で表される塩基配列において、499番目のシトシンが一塩基欠損するフレームシフト変異が挙げられる。当該変異により、配列番号6で表されるアミノ酸配列のN末端側から167番目のアミノ酸残基が、アラニンからアルギニンに変化し、以降フレームシフトの結果、N末端側から193番目で翻訳は終了するため、F-boxドメインを構成するアミノ酸配列は消失する。
 その他、配列番号4~6のいずれかで表されるアミノ酸配列からなるポリペプチドの発現量を低下させる、または発現を消失させる変異を導入することによっても当該ポリペプチドの機能を低下させてもよく、具体的には、配列番号4~6のいずれかで表されるアミノ酸配列をコードする遺伝子のプロモーターやターミネーター領域の変異によるポリペプチドの発現量の低下または消失によるものであってもよい。一般的に、プロモーターとターミネーター領域は、転写に関与する遺伝子の前後数百塩基の領域に相当する。
 上記の遺伝子への変異導入は、当業者にとって公知の変異剤または紫外線照射などによる変異処理、選択マーカーを用いた相同組換えなどの遺伝子組換え、あるいはトランスポゾンによる変異など、既存の遺伝子変異方法を用いることができる。
 本発明の変異株は、配列番号4~6アミノ酸配列からなるポリペプチドのうち、少なくとも1種以上のポリペプチドの機能が欠損または低下していればよいが、これらのポリペプチドの2種以上またはすべての機能が欠損または低下していてもよい。機能が欠損または低下したポリペプチドの組み合わせは特に限定されず、配列番号4および5で表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下したTrichoderma reeseiの変異株、配列番号4および6で表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下したTrichoderma reeseiの変異株、配列番号5および6で表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下したTrichoderma reeseiの変異株のいずれも本発明の変異株に含まれる。
 また、本発明の変異株は、配列番号4~6で表されるアミノ酸配列からなる3種類全てのポリペプチドの機能が欠損または低下した変異株であってもよい。配列番号4~6で表されるアミノ酸配列からなるポリペプチドのすべての機能が欠損または低下したした変異株は、親株となるTrichoderma reeseiの胞子に対して、ニトロソグアニジン(NTG)、エチルメタンスルホン酸(EMS)、紫外線などを用いて遺伝子変異処理を行い、得られた変異株の遺伝子を解析して、上記の変異を有する変異株をスクリーニングすることで取得できる。
 本発明の変異株は、当該変異導入前の親株と比較し、タンパク質の製造能が向上するため、本発明の変異株の培養液は、同一の培養条件にて得られた当該変異導入前の親株の培養液と比較して、タンパク濃度が増加する。また、タンパク質が酵素の場合には、酵素の比活性が増加する。ここで、タンパク質濃度の増加率や酵素の比活性の増加率は、増加していれば特に限定はされないが、20%以上であることが好ましい。
 本発明の変異株は、配列番号4~6のアミノ酸配列からなるポリペプチドの機能が欠損または低下する変異以外にも、タンパク質製造量の向上および/または培養液の粘度が低下し培養液中の溶存酸素飽和度の低下が抑制される変異を有していてもよい。具体的には、配列番号7、9、11のいずれかで表されるポリペプチドの機能が低下する遺伝子変異が挙げられる。
 配列番号7で表されるアミノ酸配列からなるポリペプチドは、Trichoderma reeseiが有するポリペプチドであり、National Center for Biotechnology Informationでは、Trichoderma reesei QM6a株が持つpredicted proteinのEGR50654として登録されている。配列番号7で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から95番目~277番目のアミノ酸残基は「Middle domain of eukaryotic initiation factor 4Gドメイン(以降MIF4Gドメインと記載する。)、N末端側から380番目~485番目のアミノ酸残基はMA-3ドメインを有すると開示されている。MIF4GおよびMA-3の両ドメインは、DNAまたはRNAに結合する機能を有することが知られている(Biochem.44,12265-12272(2005)、Mol.Cell.Biol.1,147-156(2007))。これらの記載により配列番号7で表されるアミノ酸配列からなるポリペプチドは、少なくともDNAおよび/またはRNAに結合する機能を有すると推定される。
 配列番号7で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号8で表される塩基配列が挙げられる。EGR50654の機能が低下する遺伝子変異とは、EGR50654が有するMIF4Gドメインおよび/またはMA-3ドメインの全欠損、MIF4Gドメインおよび/またはMA-3ドメインの一部欠損、MIF4GドメインとMA-3ドメインとの立体配置関係の変化する遺伝子変異が挙げられる。さらに、配列番号7で表されるアミノ酸配列からなるポリペプチドの発現量の低下や消失させる変異を導入することによっても当該ポリペプチドの機能を低下させることができる。配列番号7で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号8で表される塩基配列において、1039番目から1044番目のいずれかの塩基が欠失する変異が挙げられる。
 配列番号9で表されるアミノ酸配列からなるポリペプチドは、Trichoderma reeseiが有するポリペプチドであり、National Center for Biotechnology Informationでは、Trichoderma reesei QM6a株が持つpredicted proteinのEGR44419として登録されている。配列番号9で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのCenserved Domain Architecture Retrieval Toolによれば、N末端側から26番目~499番目のアミノ酸残基は「Sugar(and other) Transporterドメインを有すると開示されている。この記載により配列番号9で表されるアミノ酸配列からなるポリペプチドは、少なくとも菌体の内側と外側の間における糖の輸送に関与していると推定される。
 配列番号9で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号10で表される塩基配列が挙げられる。EGR44419の機能が低下する遺伝子変異とは、EGR44419が有するSugar(and other) Transporterドメインの全欠損、Sugar(and other) Transporterドメインの一部欠損、Sugar(and other) Transporterドメインの立体配置関係の変化する遺伝子変異が挙げられる。さらに、配列番号9で表されるアミノ酸配列からなるポリペプチドの発現量の低下や消失させる変異を導入することによっても当該ポリペプチドの機能を低下させることができる。配列番号9で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号10で表される塩基配列において、1415番目に11塩基が挿入する変異が挙げられる。
 配列番号11で表されるアミノ酸配列からなるポリペプチドは、Trichoderma reeseiが有するポリペプチドであり、National Center for Biotechnology Informationでは、Trichoderma reesei QM6a株が持つbeta-adaptin large subunitのEGR48910として登録されている。配列番号11で表されるアミノ酸配列からなるポリペプチドは、真核生物に広く保存されているクラスリンと結合する細胞内外や菌体内外の輸送に関与する小胞を構成するアダプタープロテインを構成するタンパク質のひとつである(Proc.Nati.Acad.Sci.USA.101,14108-14113(2004))。
 配列番号11で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号12で表される塩基配列が挙げられる。EGR48910の遺伝子変異とは、配列番号12で表される塩基配列において、1080番目の塩基であるシトシンがアデニンへの変異が挙げられる。
 また、本発明は前記変異株を培養する工程を含むタンパク質の製造方法に関する。
 本発明のタンパク質の製造方法においては、前記変異株を誘導剤を含む培地で培養することにより、タンパク質の生産能がさらに向上する。特にセルラーゼの生産性を向上させる誘導剤としては、ラクトース、グルコース、セルロース、セロビオース、キシランなどが挙げられる。これらのうち、ラクトースおよび/またはグルコースが好ましく、特にラクトースが好ましい。
 誘導剤を培地に添加する場合、培養開始時や培養途中など、いずれのタイミングで添加してもよいが、特にラクトースやグルコースを誘導剤として添加する場合、培養途中に添加することで、タンパク質生産能の向上効果を培養中継続させることができるため好ましい。ラクトースの添加量は、1日につき培養液1Lあたり1g~50g程度が好ましく、3~25g程度がより好ましく、6~20g程度が特に好ましい。また、グルコース添加量は、1日につき培養液1Lあたり1~200g程度が好ましく、5~100g程度がより好ましく、20~80g程度が特に好ましい。
 セルロース、セロビオースまたはキシランを誘導剤として添加する場合は、これらをを含むバイオマスを誘導物質として添加してもよい。バイオマスの具体例としては、種子植物、シダ植物、コケ植物、藻類、水草などの植物の他、廃建材なども用いることができる。種子植物は、裸子植物と被子植物に分類されるが、どちらも好ましく用いることができる。被子植物はさらに単子葉植物と双子葉植物に分類されるが、単子葉植物の具体例としては、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、コーンコブ、稲わら、麦わらなどが挙げられ、双子葉植物の具体例としては、ビートパルプ、ユーカリ、ナラ、シラカバなどが好ましく用いられる。
 前記バイオマスを誘導剤として使用する場合は、前処理されたものを用いてもよい。前処理方法は特に限定されないが、例えば、酸処理、硫酸処理、希硫酸処理、アルカリ処理、水熱処理、亜臨界処理、微粉砕処理、蒸煮処理、など公知の手法を用いることができる。このような前処理をされたセルロールやキシランを含むバイオマスとして、パルプを用いてもよい。
 本発明のTrichoderma reeseiの変異株の培養工程に用いる培地の組成は、Trichoderma reeseiがタンパク質を製造できるような培地組成となっていれば特に制限はなく、トリコデルマ属糸状菌の周知の培地組成を採用することができる。窒素源としては、例えば、ポリペプトン、肉汁、CSL、大豆かすなどを用いることができる。また、培地には、タンパク質を製造させるための上記誘導物質を添加してもよい。
 培養方法は特に限定されず、例えば遠沈管、フラスコ、ジャーファーメンター、タンクなどを用いた液体培養や、プレートなどを用いた固体培養などで培養することができる。Trichoderma reeseiは、好気的条件で培養することが好ましく、これらの培養方法の中でも、特にジャーファーメンターや、タンク内に通気や撹拌を行いながら培養する深部培養が好ましい。通気量は、0.1~2.0vvm程度が好ましく、0.3~1.5vvmがより好ましく、0.5~1.0vvmが特に好ましい。培養温度は、25~35℃程度が好ましく、25~31℃がより好ましい。培養におけるpHの条件は、pH3.0~7.0が好ましく、pH4.0~6.0がより好ましい。培養時間は、タンパク質が生産される条件で、回収可能な量のタンパク質が蓄積されるまで行う。通常、24~288時間、好ましくは24~240時間、より好ましくは36~240時間、さらに好ましくは36~192時間である。
 本発明で製造するタンパク質は特に制限はないが、菌体外に分泌されるタンパク質を効率的に製造することができ、中でも好ましくは酵素であり、より好ましくはセルラーゼ、アミラーゼ、インベルターゼ、キチナーゼ、ペクチナーゼ等の糖化酵素であり、さらに好ましくはセルラーゼである。
 本発明で製造されるセルラーゼには、様々な加水分解酵素が含まれており、キシラン、セルロース、ヘミセルロースに対する分解活性を持つ酵素などが含まれている。具体例としては、セルロース鎖の加水分解によりセロビオースを製造するセロビオハイドラーゼ(EC 3.2.1.91)、セルロース鎖の中央部分から加水分解するエンドグルカナーゼ(EC 3.2.1.4)、セロオリゴ糖およびセロビオースを加水分解するβ-グルコシダーゼ(EC 3.2.1.21)、ヘミセルロースや特にキシランに作用することを特徴とするキシラナーゼ(EC 3.2.1.8)、キシロオリゴ糖を加水分解するβ-キシロシダーゼ(EC 3.2.1.37)などが挙げられる。
 本発明のTrichoderma reesei変異株が親株と比較してタンパク質の製造能が向上していることや、セルラーゼの比活性が向上していることは、変異株および親株を同じ条件で培養して得られる培養液を以下の方法により測定されるタンパク質濃度やβ-グルコシダーゼ比活性、β-キシロシダーゼ比活性およびセロビオハイドロラーゼ比活性からなる群から選択されるいずれか1種以上の比活性の比較により確認する。
 タンパク質濃度は、変異株および親株の培養液を15,000×gで10分間遠心分離して得られた上清に、Quick Start Bradford プロテインアッセイ(Bio-Rad社製)250μLに希釈したセルラーゼ溶液を5μL添加し、室温で15分間静置後の595nmで用いる吸光度を測定する。牛血清アルブミン溶液を標準液とし、検量線に基づいて糖化酵素溶液に含まれるタンパク質濃度を算出する。
 β-グルコシダーゼ比活性は、前記培養液上清に、まず、1mMのp-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加して30℃で10分間反応させ、次に2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとして比活性を算出する。
 β-キシロシダーゼ比活性は、前記培養液上清に、まず、1mMのp-ニトロフェニル-β-キシロピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で30分間反応させ、次に、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとして比活性を算出する。
 セロビオハイドロラーゼ比活性は、前記培養液上清に、まず、1mMのp-ニトロフェニル-β-ラクトピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で60分間反応させ、次に、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に、1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとして比活性を算出する。
 前記変異株を培養した培養液に含まれるタンパク質を回収する方法は特に限定されないが、前記変異株の菌体を培養液から除去し、タンパク質を回収することができる。菌体の除去方法としては、遠心分離法、膜分離法、フィルタープレス法などが例として挙げられる。
 また、前記変異株を培養した培養液から菌体を除去せずに、タンパク質の溶解液として利用する場合には、培養液中で前記変異株が生育できないように処理することが好ましい。菌体が生育できないように処理する方法としては、熱処理、薬剤処理、酸・アルカリ処理、UV処理などが挙げられる。
 タンパク質が酵素の場合には、上記のように菌体を除去又は生育していないように処理した培養液を、そのまま酵素液として利用することができる。
 また、製造対象であるタンパク質がセルラーゼの場合には、当該セルラーゼを用いて、セルロース含有バイオマスを糖化して糖を製造することができる。また、前記変異株を培養して得られるセルラーゼは、前記変異導入前の親株を培養して得られるセルラーゼと比較して特にβ-グルコシダーゼの比活性が高いため、効率的にセルロース含有バイオマスを分解してグルコース濃度の高い糖液を得ることができ、より多くの糖を得ることができる。
 本発明で用いるセルロース含有バイオマスは、上記の誘導剤として記載したセルロースを含むバイオマスと同様のバイオマスや、前処理されたバイオマスを用いることができる。
 糖化反応の条件は、特に限定されないが、糖化反応の温度は、25~60℃の範囲であることが好ましく、特に30~55℃の範囲であることがより好ましい。糖化反応の時間は、2~200時間の範囲であることが好ましい。糖化反応のpHは、pH3.0~7.0の範囲が好ましく、pH4.0~6.0の範囲であることがさらに好ましく、トリコデルマ属由来セルラーゼの場合、その反応最適pHは5.0である。さらに、加水分解の過程でpHの変化が起きるため、反応液に緩衝液を添加する、あるいは酸やアルカリを用いて一定pHを保持しながら実施することが好ましい。
 糖化液から酵素を分離回収する場合には、糖化液を限外ろ過膜などでろ過し、非透過側に回収することができる、必要に応じてろ過の前工程として、糖化液から固形分を取り除いておいてもよい。回収した酵素は、再び糖化反応に用いることができる。
 以下に実施例を挙げて本発明を具体的に説明する。
 <参考例1>タンパク質濃度測定条件
 使用するタンパク質濃度測定試薬:Quick Start Bradfordプロテインアッセイ(Bio-Rad製)
測定条件
測定温度:室温
タンパク質濃度測定試薬:250μL
糸状菌の培養液:5μL
反応時間:5分
吸光度:595nm
標準品:BSA。
 <参考例2>セルラーゼの比活性の測定条件
 (β-グルコシダーゼ比活性の測定条件)
基質:p-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)
反応液:1mMのp-ニトロフェニル-β-グルコピラノシドを含有する50mM酢酸バッファー90μL
酵素希釈液:10μL
反応温度:30℃
反応時間:10分間
反応停止剤:2M炭酸ナトリウム10μL
吸収度:405nm。
 (β-キシロシダーゼ比活性の測定条件)
基質:p-ニトロフェニル-β-キシロピラノシド(シグマアルドリッチジャパン社製)
反応液:1mMのp-ニトロフェニル-β-キシロピラノシドを含有する50mM酢酸バッファー90μL
酵素希釈液:10μL
反応温度:30℃
反応時間:10分間
反応停止剤:2M炭酸ナトリウム10μL
吸収度:405nm。
 (セロビオハイドロラーゼ比活性の測定条件)
基質:p-ニトロフェニル-β-ラクトピラノシド(シグマアルドリッチジャパン社製)
反応液:1mMのp-ニトロフェニル-β-ラクトピラノシドを含有する50mM酢酸バッファー90μL
酵素希釈液:10μL
反応温度:30℃
反応時間:10分間
反応停止剤:2M炭酸ナトリウム10μL
吸収度:405nm。
 <参考例3>セルロース含有バイオマスの糖化試験
 セルロース含有バイオマスとして、Arbocel(登録商標) B800(レッテンマイヤー社製)または平均粒径100μmに粉末化したバガスを用いた。酵素液としてはTrichoderma reeseiの変異導入前の親株または変異株の培養液を1ml採取して遠心分離し、菌体を除去した上清を回収し、さらに0.22μmのフィルターでろ過したろ液を用いた。
 (糖化反応)
 糖化反応の緩衝液として1M 酢酸ナトリウムバッファー100μL、雑菌の繁殖防止として50g/L エリスロマイシン溶液2μL、糖化対象物として、Arbocel(登録商標) B800(レッテンマイヤー株式会社製)または平均粒径100μmに粉末化したバガスをそれぞれ0.1g用いた。また、酵素液は、Arbocel(登録商標) B800を用いたフラスコ培養に得られた酵素液は150μL、ラクトースを用いたフラスコ培養により得られた酵素液は300μL、5Lジャーファーメンター培養により得られた酵素液は、タンパク質濃度で0.8mgになるようそれぞれ添加し、計1mLになるよう滅菌水でメスアップしたものを2mLチューブに入れた。50℃の温度条件で24時間糖化反応を行い、糖化物を遠心分離した上清を糖化液として回収し、回収した糖化液の10分の1量の1N NaOH溶液を添加して、酵素反応を停止させた。反応停止後の糖化液中のグルコース濃度を下記に示すUPLCで測定した。
 (グルコース濃度の測定)
 グルコースは、ACQUITY UPLC システム(Waters)を用いて、以下の条件で定量分析した。グルコースの標品で作製した検量線をもとに、定量分析した。
カラム:AQUITY UPLC BEH Amide 1.7μm 2.1×100mm Column
分離法:HILIC
移動相:移動相A:80%アセトニトリル、0.2%TEA水溶液、移動相B:30%アセトニトリル、0.2%TEA水溶液とし、下記グラジエントに従った。グラジエントは下記の時間に対応する混合比に到達する直線的なグラジエントとした。
開始条件:(A99.90%、B0.10%)、開始2分後:(A96.70%、B3.30%)、開始3.5分後:(A95.00%、B5.00%)、開始3.55分後:(A99.90%、B0.10%)、開始6分後:(A99.90%、B0.10%)。
検出方法:ELSD(蒸発光散乱検出器)
流速:0.3mL/min
温度:55℃。
 <実施例1>配列番号4で表されるアミノ酸配列からなるポリペプチドの機能が欠損したTrichoderma reeseiの変異株の作製
 (変異株の作製方法)
 配列番号4で表されるアミノ酸配列からなるポリペプチドの機能が欠損したTrichoderma reeseiの変異株は、配列番号4で表されるアミノ酸配列からなるポリペプチドをコードする配列番号1で表される遺伝子を選択マーカーとしてアセトアミド、選択マーカー遺伝子としてアセトアミドを分解することができるアセトアミダーゼ(AmdS)遺伝子(amdS)と置き換えることで破壊する。配列番号4で表されるアミノ酸配列からなるポリペプチドの機能を欠損させるため、配列番号13で表される遺伝子配列からなるDNA断片を作製し、当該DNA断片をTrichoderma reesei ATCC66589株に形質転換して、配列番号4で表されるアミノ酸配列からなるポリペプチドの機能が欠損したTrichoderma reeseiの変異株を作製する。この方法により、配列番号1で表される塩基配列が欠損したTrichoderma reeseiの変異株が得られる。amdSを含むDNA配列の上流および下流に、上記の配列番号1で表される塩基配列からなるDNA断片を導入するために、Trichoderma reesei QM9414株の遺伝子配列と相同的な部分を付加するように変異導入用プラスミドを作製する。
 具体的には、Trichoderma reesei QM9414株から定法に従って抽出したゲノムDNAと配列番号14および15で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素AflIIとNotIで処理したDNA断片を上流DNA断片とする。また、配列番号16および17で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素MluIとSpeIで処理したDNA断片を下流DNA断片とする。そして、上流及び下流DNA断片をAflIIとNotI、MluIとSpeIの制限酵素をそれぞれ用いてamdSが挿入されたプラスミドへ導入し、変異導入用プラスミドを構築する。そして、変異導入用プラスミドを制限酵素AflIIとSpeIで処理し、配列番号13で示す得られたDNA断片でTrichoderma reesei ATCC66589株を形質転換する。分子生物学的手法は、Molecular cloning,laboratory manual,1st,2nd,3rd(1989)の記載通りに行う。また、形質転換は、標準的な手法であるプロトプラスト-PEG法を用い、具体的にはGene,61,165-176(1987)の記載通りに行う。
 (変異株の作製・評価)
 前述の方法に従って取得したTrichoderma reeseiの変異株をTrichoderma reesei 変異株Iとして、以下のタンパク質製造試験並びにタンパク質濃度およびセルラーゼ比活性測定の実験に用いた。
 <実施例2>配列番号5で表されるアミノ酸配列からなるポリペプチドの機能が欠損したTrichoderma reeseiの変異株の作製
 (変異株の作製方法)
 配列番号5で表されるアミノ酸配列からなるポリペプチドの機能が欠損したTrichoderma reeseiの変異株は、配列番号5で表されるアミノ酸配列からなるポリペプチドをコードする配列番号2で表される遺伝子を選択マーカーとしてアセトアミド、選択マーカー遺伝子としてアセトアミドを分解することができるアセトアミダーゼ(AmdS)遺伝子(amdS)と置き換えることで破壊する。配列番号5で表されるアミノ酸配列からなるポリペプチドの機能を欠損させるため、配列番号18で表される遺伝子配列からなるDNA断片を作製し、当該DNA断片をTrichoderma reesei ATCC66589株に形質転換して、配列番号5で表されるアミノ酸配列からなるポリペプチドの機能が欠損したTrichoderma reeseiの変異株を作製する。この方法により、配列番号2で表される塩基配列が欠損したTrichoderma reeseiの変異株が得られる。amdSを含むDNA配列の上流および下流に、上記の配列番号2で表される塩基配列からなるDNA断片を導入するために、Trichoderma reesei QM9414株の遺伝子配列と相同的な部分を付加するように変異導入用プラスミドを作製する。
 具体的には、配列番号19で示す合成したDNA断片を制限酵素AflIIとNotI処理したDNA断片を上流DNA断片とする。また、Trichoderma reesei QM9414株から定法に従って抽出したゲノムDNAと配列番号20および21で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素MluIとSpeIで処理したDNA断片を下流DNA断片とする。そして、上流及び下流DNA断片をAflIIとNotI、MluIとSpeIの制限酵素をそれぞれ用いてamdSが挿入されたプラスミドへ導入し、変異導入用プラスミドを構築する。そして、変異導入用プラスミドを制限酵素AflIIとSpeIで処理し、配列番号18で示す得られたDNA断片でTrichoderma reesei ATCC66589株を形質転換する。分子生物学的手法は、Molecular cloning,laboratory manual,1st,2nd,3rd(1989)の記載通りに行う。また、形質転換は、標準的な手法であるプロトプラスト-PEG法を用い、具体的にはGene,61,165-176(1987)の記載通りに行う。
 (変異株の作製・評価)
 前述の方法により取得したTrichoderma reeseiの変異株をTrichoderma reesei 変異株IIとして、以下のタンパク質製造試験並びにタンパク質濃度およびセルラーゼ比活性測定の実験に用いた。
 <実施例3>配列番号6で表されるアミノ酸配列からなるポリペプチドの機能が欠損したTrichoderma reeseiの変異株の作製
 (変異株の作製方法)
 配列番号6で表されるアミノ酸配列からなるポリペプチドの機能が欠損したTrichoderma reeseiの変異株は、配列番号6で表されるアミノ酸配列からなるポリペプチドをコードする配列番号3で表される遺伝子を選択マーカーとしてアセトアミド、選択マーカー遺伝子としてアセトアミドを分解することができるアセトアミダーゼ(AmdS)遺伝子(amdS)と置き換えることで破壊する。配列番号6で表されるアミノ酸配列からなるポリペプチドの機能を欠損させるため、配列番号22で表される遺伝子配列からなるDNA断片を作製し、当該DNA断片をTrichoderma reesei ATCC66589株に形質転換して、配列番号6で表されるアミノ酸配列からなるポリペプチドの機能が欠損したTrichoderma reeseiの変異株を作製する。この方法により、配列番号3で表される塩基配列が欠損したTrichoderma reeseiの変異株が得られる。amdSを含むDNA配列の上流および下流に、上記の配列番号3で表される塩基配列からなるDNA断片を導入するために、Trichoderma reesei QM9414株の遺伝子配列と相同的な部分を付加するように変異導入用プラスミドを作製する。
 具体的には、Trichoderma reesei QM9414株から定法に従って抽出したゲノムDNAと配列番号23および24で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素AflIIとNotIで処理したDNA断片を上流DNA断片とする。また、配列番号25および26で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素MluIとXhoIで処理したDNA断片を下流DNA断片とする。そして、上流及び下流DNA断片をAflIIとNotI、MluIとXhoIの制限酵素をそれぞれ用いてamdSが挿入されたプラスミドへ導入し、変異導入用プラスミドを構築する。そして、変異導入用プラスミドを制限酵素AflIIとSpeIで処理し、配列番号22で示す得られたDNA断片でTrichoderma reesei ATCC66589株を形質転換する。分子生物学的手法は、Molecular cloning,laboratory manual,1st,2nd,3rd(1989)の記載通りに行う。また、形質転換は、標準的な手法であるプロトプラスト-PEG法を用い、具体的にはGene,61,165-176(1987)の記載通りに行う。
 (変異株の作製・評価)
 前述の方法に従って取得したTrichoderma reeseiの変異株をTrichoderma reesei 変異株IIIとして、以下のタンパク質製造試験並びにタンパク質濃度およびセルラーゼ比活性測定の実験に用いた。
 <実施例4>Trichoderma reesei 変異株を用いたタンパク質の製造試験
 (前培養)
 実施例1~3で作製するTrichoderma reeseiの変異株の胞子をそれぞれ1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液2.5mLを表1に示した1Lバッフル付フラスコへ入れた250mLの前培養培地へ接種させ、振盪培養機にて28℃、120rpmの条件にて72時間培養を行う。コントロールとして、Trichoderma reesei ATCC66589株を用い、以下同様の実験操作を行う。
Figure JPOXMLDOC01-appb-T000001
 (本培養)
 Arbocel(登録商標) B800を表2で示した本培養培地に添加し、5Lジャーファーメンター(バイオット社)を用い、深部培養検討を行う。
 Trichoderma reesei ATCC66589株および実施例1、2、3で作製したTrichoderma reesei変異株の前培養液200mLをArbocel(登録商標) B800が添加された本培養培地2Lに接種する。
 培養条件は、本培養培地に前培養培地を接種後、28℃、700rpm、通気量100mL/minの培養条件にて、pH5.0に制御しながら深部培養を行う。
Figure JPOXMLDOC01-appb-T000002
 (本培養途中における液糖の添加)
 本培養開始40時間目に、表3で示した液糖培地を1日につき本培養液へ250mLずつ添加し続ける。
Figure JPOXMLDOC01-appb-T000003
 (培養液の採取)
 実施例1~3で作製するTrichoderma reeseiの変異株の本培養液を、培養開始より経時的に各時点で20mLの培養液を採取する。採取した培養液の1部は、15,000×g、4℃の条件下で10分間遠心分離を行い、上清を得る。その上清を0.22μmのフィルターでろ過し、そのろ液をセルラーゼ溶液として、以下の実験に用いる。
 (タンパク質濃度の測定)
 経時的に採取した実施例1~3の培養液のタンパク質濃度を、参考例1の条件で、測定する。その結果、Trichoderma reesei ATCC66589株と比較して、実施例1~3で作製したTrichoderma reeseiの変異株は、相対値で培養液中のタンパク質濃度が高くなる。
 (酵素活性の測定)
 経時的に採取した実施例1~3の培養液を酵素液として、参考例2の条件で、β-グルコシダーゼ、β-キシロシダーゼ、セロビオハイドラーゼの比活性をそれぞれ測定する。比活性は、405nmの吸光度の増加を測定し、1分間あたり1μmolの基質を遊離する活性を1Uとして算出する。その結果、Trichoderma reesei ATCC66589株と比較して、実施例1~3で作製したTrichoderma reeseiの変異株培養液における上記3種類の比活性は高くなる。
 (フラスコ培養)
 実施例1~3で作製したTrichoderma reesei 変異株I~IIIのそれぞれの胞子を、1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液0.1mLを表4に示したArbocel(登録商標) B800またはラクトースが含まれる50mLバッフル付フラスコへ入れた10mLのフラスコ培地へ接種させ、振盪培養機にて28℃、120rpmの条件にて120時間培養を行った。
 また、変異株I~IIIの変異導入前の親株であるTrichoderma reesei ATCC66589株についてもそれぞれの比較対象として前述の方法に従って120時間培養を行った。
Figure JPOXMLDOC01-appb-T000004
 (培養液の採取)
 フラスコ培養開始120時間後に1mL培養液を採取した。培養液を15,000×g、4℃の条件下で10分間遠心分離を行い、上清を得た。その上清を0.22μmのフィルターでろ過し、そのろ液を以下の各種実験に用いた。
 (タンパク質濃度の測定)
 Arbocel(登録商標) B800を用いたフラスコ培養では、Trichoderma reesei ATCC66589株を培養した培養液に含まれるタンパク質濃度を1とした場合、Trichoderma reesei 変異株I、変異株II、変異株IIIの培養液に含まれるタンパク質濃度の相対値は全て1.1であり、変異株のタンパク質製造能は親株よりも向上することを確認した。
 ラクトースを用いたフラスコ培養でも、Trichoderma reesei ATCC66589株を培養した培養液に含まれるタンパク質濃度を1とした場合、Trichoderma reesei 変異株I:1.2、変異株II:1.3、変異株III:1.2であり、変異株のタンパク質製造能は親株よりも向上することを確認した。。
 (セルラーゼ各種比活性の測定)
 Arbocel(登録商標) B800を用いたフラスコ培養では、Trichoderma reesei ATCC66589株を培養した培養液のセルラーゼの各種比活性を1とした場合、β-グルコシダーゼ比活性は、Trichoderma reesei 変異株I:1.1、変異株II:1.2、変異株III:1.1であり、β-キシロシダーゼ比活性は、Trichoderma reesei 変異株I、II、III共に1.1であり、セロビオハイドロラーゼ比活性も、変異株I、II、III共に1.1であり、セルラーゼの各種比活性も向上するという予想外の効果が得られることを確認した。
 ラクトースを用いたフラスコ培養でも、Trichoderma reesei ATCC66589株を培養した培養液のセルラーゼの各種比活性を1とした場合、β-グルコシダーゼ比活性は、Trichoderma reesei 変異株I:1.1、変異株II:1.2、変異株III:1.4であり、β-キシロシダーゼ比活性は、Trichoderma reesei 変異株I:1.1、変異株II:1.4、変異株III:1.4であり、セロビオハイドロラーゼ比活性は、変異株I:1.2、変異株II:1.1、変異株III:1.1であり、セルラーゼの各種比活性も向上するという予想外の効果が得られることを確認した。
 (糖化反応試験)
 参考例3で記載した手法に従い、Trichoderma reesei 変異株I、変異株IIおよび変異株IIIのフラスコ培養開始から120時間目の培養液をセルラーゼとして用いて、セルロース含有バイオマスの糖化反応試験を行った。セルロース含有バイオマスとして、Arbocel(登録商標) B800または粉末バガスを用いた。
 その結果、Arbocel(登録商標) B800を糖化対象物とした場合の糖化反応において、ラクトースを用いてフラスコ培養することにより得られたTrichoderma reesei ATCC66589株のセルラーゼを用いた場合の糖化液に含まれるグルコース濃度を1とした場合、Trichoderma reesei 変異株Iのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.2、変異株IIのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.3、変異株IIIのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.1であった。また、Arbocel(登録商標) B800を用いてフラスコ培養することにより得られたTrichoderma reesei ATCC66589株のセルラーゼを用いた場合の糖化液に含まれるグルコース濃度を1とした場合、Trichoderma reesei 変異株Iのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.1、変異株IIのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.2、変異株IIIのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.1であった。
 粉末バガスを糖化対象物とした場合の糖化反応において、ラクトースを用いてフラスコ培養することにより得られたTrichoderma reesei ATCC66589株のセルラーゼを用いた場合の糖化液に含まれるグルコース濃度を1とした場合、Trichoderma reesei 変異株Iのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.3、変異株IIのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.3、変異株IIIのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.1であった。また、Arbocel(登録商標) B800を用いてフラスコ培養することにより得られたTrichoderma reesei ATCC66589株のセルラーゼを用いた場合の糖化液に含まれるグルコース濃度を1とした場合、Trichoderma reesei 変異株Iのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.2、変異株IIのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.3、変異株IIIのセルラーゼを用いた場合の糖化液のグルコース濃度の相対値は1.1であった。
 これらの結果から、Trichoderma reesei 変異株I~IIIが生産するセルラーゼは、いずれも親株が生産するセルラーゼよりも酵素活性に優れ、それによりセルロース含有バイオマスからのグルコースを製造する能力が優れることを確認した。
 <実施例5>配列番号4、5および6で表されるアミノ酸配列からなるポリペプチドの機能が欠損したTrichoderma reeseiの変異株の作製
 Trichoderma reesei QM9414株の経代株であるQM9414-A株に対し、遺伝子変異処理を行って変異株であるQM9141-B株を取得した。遺伝子変異処理は、QM9414-A株の胞子を表1に示す前培養培地1mLあたり1.0×10胞子になるよう接種し、前培養培地15mLを半日培養した後に遠心分離を行い、胞子を回収した。そして、回収した胞子をトリスーマレイン酸バッファー(pH6.0)にて10mLの胞子溶液になるよう懸濁し、そこへトリスーマレイン酸バッファー(pH6.0)で1.0g/Lになるよう溶解させたNTG溶液を0.5mL添加し、28℃、100分間、遺伝子変異処理を行った。遺伝子変異処理した胞子は、遠心分離にて回収した後に、トリスーマレイン酸バッファー(pH6.0)で3回洗浄し、最終的にトリスーマレイン酸バッファー(pH6.0)10mLにて懸濁したものを遺伝子変異処理胞子とした。続いて遺伝子変異処理胞子を、結晶セルロースを添加して調製した寒天培地へ添加し、コロニー周囲に生じるセルラーゼによる結晶セルロース分解領域であるハロの大きさを指標とし、ハロの大きかったQM9414-B株を選抜した。
 QM9414-B株の遺伝子解析を行ったところ、配列番号1、2、3で表される塩基配列に以下の変異が生じていることが確認された。
 配列番号1で表される塩基配列には、85番目にグアニン1塩基が挿入されていた。当該変異は、配列番号4で表されるアミノ酸配列のN末端側から30番目のアミノ酸残基を、ヒスチジンからスレオニンへ変化させ、以降フレームシフトの結果N末端側から90番目のアミノ酸残基で翻訳は終了させるものであった。
 配列番号2で表される塩基配列には、6番目に配列番号27で表される46塩基が挿入されていた。当該変異は、配列番号5で表されるアミノ酸配列のN末端側より3番目のグルタミン残基をアルギニンに変化させ、当該位置で翻訳を終了させるものであった。
 配列番号3で表される塩基配列には、499番目のシトシンが一塩基欠損していた。当該変異は、配列番号6で表されるアミノ酸配列のN末端側から167番目のアミノ酸残基を、アラニンからアルギニンに変化させ、以降フレームシフトの結果、N末端側から193番目で翻訳を終了させるものであった。
 <実施例6>Trichoderma reesei QM9414-B株を用いたタンパク質の製造試験
 実施例5で取得した変異株のQM9414-B株について、実施例4に記載の(前培養)、(本培養)、(本培養途中における液糖の添加)および(培養液の採取)に準じて培養を行い、参考例1の条件でタンパク質濃度を測定した。コントロールには親株であるQM9414-A株を用いてQM9414-B株と同様に培養し、参考例1の条件でタンパク質濃度を測定した。
 培養開始120時間目のタンパク質生産濃度を測定した結果、QM9414-A株よりQM9414-B株の方が相対値で1.2倍に向上した。また、同様に培養開始200時間目のタンパク質濃度を測定した結果、QM9414-A株は培養開始120時間目と比べてタンパク質濃度が変化しなかったが、QM9414―B株のタンパク質濃度は、培養開始120時間目のタンパク質濃度と比べて1.3倍に向上した。
 また、培養開始120時間目のQM9414-A株のタンパク質濃度を1とした場合のQM9414-B株のタンパク質濃度の相対値は1.8であり、培養開始185時間目のQM9414-A株のタンパク質濃度を1とした場合のQM9414-B株のタンパク質濃度の相対値は2.7であった。

Claims (15)

  1.  配列番号4~6のいずれかで表されるアミノ酸配列からなるポリペプチドの機能が欠損または低下する変異を有する、Trichoderma reeseiの変異株。
  2.  前記変異が、配列番号4で表されるアミノ酸配列からなるポリペプチドのHSF-type DNA-bindingドメインが欠損する変異である、請求項1に記載の変異株
  3.  前記変異が、HSF-type DNA-bindingドメインよりもN末端側の領域での変異に伴うフレームシフト変異である、請求項2に記載の変異株。
  4.  前記変異が、配列番号4で表されるアミノ酸配列のN末端側から30番目のヒスチジン残基がヒスチジン以外のアミノ酸残基に変異することによるフレームシフト変異である、請求項3に記載の変異株。
  5.  前記変異が、配列番号5で表されるアミノ酸配列からなるポリペプチドのTLDドメインが欠損する変異である、請求項1に記載の変異株。
  6.  前記変異が、TLDドメインよりもN末端側の領域での変異に伴うフレームシフト変異である、請求項5に記載の変異株。
  7.  前記変異が、配列番号5で表されるアミノ酸配列のN末端側から3番目のグルタミン残基がグルタミン以外のアミノ酸残基に変異することによるフレームシフト変異である、請求項6に記載の変異株。
  8.  前記変異が、配列番号6で表されるアミノ酸配列からなるポリペプチドのF-boxドメイン領域のアミノ酸配列の変異である、請求項1に記載の変異株。
  9.  前記変異が、F-boxドメイン領域のアミノ酸配列の変異に伴うフレームシフト変異によって生じる配列番号6で表されるアミノ酸配列からなるポリペプチドの欠損である、請求項8に記載の変異株。
  10.  前記変異が、配列番号6で表されるアミノ酸配列においてN末端側から167番目のアラニン残基がアラニン以外のアミノ酸残基に変異することによるフレームシフト変異である、請求項9に記載の変異株。
  11.  請求項1から10のいずれかに記載の変異株を培養する工程を含む、タンパク質の製造方法。
  12.  請求項1から10のいずれかに記載の変異株を少なくともラクトースを含む培地で培養する工程を含む、タンパク質の製造方法。
  13.  請求項1から10のいずれかに記載の変異株を培養する工程を含む、セルラーゼの製造方法。
  14.  請求項1から10のいずれかに記載の変異株を少なくともラクトースを含む培地で培養する工程を含む、セルラーゼの製造方法。
  15.  請求項13または14に記載のセルラーゼの製造方法によりセルラーゼを製造する工程および前記工程で得られたセルラーゼを用いてセルロース含有バイオマスを糖化する工程を含む、糖の製造方法。
     
PCT/JP2019/033642 2018-08-29 2019-08-28 トリコデルマ・リーセイの変異株およびそれを用いたタンパク質の製造方法 WO2020045472A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980055327.XA CN112639073A (zh) 2018-08-29 2019-08-28 里氏木霉的突变株和使用该突变株的蛋白质的制造方法
CA3111168A CA3111168A1 (en) 2018-08-29 2019-08-28 Mutant strain of trichoderma reesei and method for producing protein using same
AU2019329357A AU2019329357A1 (en) 2018-08-29 2019-08-28 Mutant strain of trichoderma reesei and method for producing protein using same
EP19854125.2A EP3845630A4 (en) 2018-08-29 2019-08-28 TRICHODERMA REESEI VARIANT, AND METHOD FOR MAKING PROTEIN USING THE SAME
US17/271,940 US20210324018A1 (en) 2018-08-29 2019-08-28 Mutant strain of trichoderma reesei and method of producing protein using same
BR112021003459-5A BR112021003459A2 (pt) 2018-08-29 2019-08-28 cepa mutante de trichoderma reesei e métodos para produzir uma proteína, para produzir uma celulase e para produzir um açúcar
JP2019559121A JP7388194B2 (ja) 2018-08-29 2019-08-28 トリコデルマ・リーセイの変異株およびそれを用いたタンパク質の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-160156 2018-08-29
JP2018160156 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020045472A1 true WO2020045472A1 (ja) 2020-03-05

Family

ID=69644318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033642 WO2020045472A1 (ja) 2018-08-29 2019-08-28 トリコデルマ・リーセイの変異株およびそれを用いたタンパク質の製造方法

Country Status (8)

Country Link
US (1) US20210324018A1 (ja)
EP (1) EP3845630A4 (ja)
JP (1) JP7388194B2 (ja)
CN (1) CN112639073A (ja)
AU (1) AU2019329357A1 (ja)
BR (1) BR112021003459A2 (ja)
CA (1) CA3111168A1 (ja)
WO (1) WO2020045472A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3094606A1 (en) 2018-03-26 2019-10-03 Toray Industries, Inc. Trichoderma reesei mutant and protein production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512611A (ja) * 2012-01-05 2015-04-30 ノバルティス アーゲー プロテアーゼ欠損糸状菌細胞及びその使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216844B2 (en) * 2006-08-29 2012-07-10 Danisco Us Inc. Compositions and methods for improved protein production
CN102311951B (zh) * 2011-07-13 2013-03-20 深圳大学 里氏木霉组成型表达盒、表达载体、重组菌株及其应用
JP2014150745A (ja) * 2013-02-06 2014-08-25 Nagaoka Univ Of Technology トリコデルマ属に属する微生物の変異株および該変異株の使用
CN103614303B (zh) * 2013-11-26 2015-12-02 青岛蔚蓝生物集团有限公司 一种表达糖化酶的里氏木霉菌株
FR3018522B1 (fr) * 2014-03-17 2018-02-02 IFP Energies Nouvelles Souches mutantes de trichoderma reesei
WO2017170918A1 (ja) * 2016-03-31 2017-10-05 東レ株式会社 変異型bxl1遺伝子を有するトリコデルマ属真菌及びそれを使用したキシロオリゴ糖とグルコースの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512611A (ja) * 2012-01-05 2015-04-30 ノバルティス アーゲー プロテアーゼ欠損糸状菌細胞及びその使用方法

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"Molecular cloning, laboratory manual", 1989
ANTONELLA A: "Rugulation of cellulase and hemicellulase gene expression in fungi", CURRENT GENOMICS, vol. 14, 2013, pages 230 - 249
BIOCHEM., vol. 44, 2005, pages 12265 - 12272
BIOTECHNOL. BIOENG. SYMP., vol. 8, 1978, pages 89
BIOTECHNOL. BIOENG., vol. 12, 1982, pages 451 - 459
CELL, vol. 65, no. 3, 1991, pages 363 - 366
DATABASE Protein [online] 23 March 2015 (2015-03-23), "hypothetical protein M419DRAFT_98837 [Trichoderma reesei RUT C-30]", XP055696770, retrieved from ncbi Database accession no. ETS02047 *
DATABASE Protein [online] 25 July 2016 (2016-07-25), "predicted protein [Trichoderma reesei QM6a]", XP055511662, retrieved from ncbi Database accession no. EGR47155 *
DATABASE Protein [online] 25 July 2016 (2016-07-25), "predicted protein, partial [Trichoderma reesei QM6a]", XP055696782, retrieved from ncbi Database accession no. EGR45828 *
ENZYME. MICROBIOL. TECHNOL., vol. 10, 1988, pages 341 - 346
GENE, vol. 61, 1987, pages 165 - 176
JULIANO P: "Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan", BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 77, no. 3, 2013, pages 534 - 543
KAGAWA, YUSUKE; SAITO, HARUKA; HIRAMATSU, SHINGO; YAMADA, KATSUSHIGE: "3C7a06 Acquirement of a cellulase Hyper-Producing mutant strain of Trichoderma reesei ", ANNUAL MEETING OF THE JAPAN SOCIETY OF BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2019 (JSBBA 2019), vol. 2019, 5 March 2019 (2019-03-05), pages 3C7a06, XP009526049 *
MOL. CELL. BIOL., vol. 1, 2007, pages 147 - 156
PROC. NATI. ACAD. SCI. USA, vol. 101, 2004, pages 14108 - 14113
PROC. NATL. ACAD. SCI., vol. 95, 1998, pages 2417 - 2422
See also references of EP3845630A4

Also Published As

Publication number Publication date
EP3845630A1 (en) 2021-07-07
US20210324018A1 (en) 2021-10-21
EP3845630A4 (en) 2022-06-15
JP7388194B2 (ja) 2023-11-29
JPWO2020045472A1 (ja) 2021-08-10
CN112639073A (zh) 2021-04-09
CA3111168A1 (en) 2020-03-05
AU2019329357A1 (en) 2021-03-18
BR112021003459A2 (pt) 2021-05-11

Similar Documents

Publication Publication Date Title
CN112513249B (zh) 木霉属丝状菌的突变株和蛋白质的制造方法
JP7388195B2 (ja) トリコデルマ・リーセイ変異株およびタンパク質の製造方法
WO2020045472A1 (ja) トリコデルマ・リーセイの変異株およびそれを用いたタンパク質の製造方法
JP7400468B2 (ja) トリコデルマ属糸状菌変異株およびタンパク質の製造方法
JPWO2020075787A1 (ja) トリコデルマ・リーセイ変異株およびタンパク質の製造方法
JP7334620B2 (ja) トリコデルマ・リーセイ変異株およびタンパク質の製造方法
CN112805366A (zh) 里氏木霉的突变株和蛋白质的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019559121

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2101001133

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 3111168

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021003459

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019329357

Country of ref document: AU

Date of ref document: 20190828

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021104645

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019854125

Country of ref document: EP

Effective date: 20210329

ENP Entry into the national phase

Ref document number: 112021003459

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210224