WO2020045466A1 - Method for producing photoluminescent nanocarbon - Google Patents

Method for producing photoluminescent nanocarbon Download PDF

Info

Publication number
WO2020045466A1
WO2020045466A1 PCT/JP2019/033620 JP2019033620W WO2020045466A1 WO 2020045466 A1 WO2020045466 A1 WO 2020045466A1 JP 2019033620 W JP2019033620 W JP 2019033620W WO 2020045466 A1 WO2020045466 A1 WO 2020045466A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mixed solvent
luminescent
nanocarbon
luminescent nanocarbon
Prior art date
Application number
PCT/JP2019/033620
Other languages
French (fr)
Japanese (ja)
Inventor
忠之 伊左治
一利 小高
祐介 比江嶋
直希 酒井
Original Assignee
日産化学株式会社
国立大学法人金沢大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社, 国立大学法人金沢大学 filed Critical 日産化学株式会社
Publication of WO2020045466A1 publication Critical patent/WO2020045466A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon

Definitions

  • the present invention relates to a method for producing luminescent nanocarbon synthesized from a carbon source compound and a nitrogen source compound as raw materials.
  • Luminescent nanocarbon is a new carbon nanomaterial recently discovered in soot, and has a characteristic of exhibiting strong luminescence, unlike graphene and other nanocarbon materials.
  • organic molecules are used as the carbon source compound, and highly toxic cadmium compounds such as cadmium sulfide (CdS) and cadmium selenide (CdSe) such as semiconductor quantum dots and rare metals such as europium are used as raw materials. Not used.
  • luminescent nanocarbon has been attracting attention as a new luminescent material that can be used as a substitute for semiconductor quantum dots that are toxic.
  • various reports have been made on a method for synthesizing luminescent nanocarbon (for example, Patent Document 1).
  • the optical properties of the luminescent nanocarbon are affected by the composition of the raw material and the reaction temperature. For this reason, when producing luminescent nanocarbons, generally, the optical properties of a plurality of luminescent nanocarbons synthesized by changing the composition of the raw materials are measured, and the raw materials are manufactured so as to obtain luminescent nanocarbons having desired optical properties. A method of adjusting the composition is used.
  • an object of the present invention is to provide a manufacturing method capable of efficiently obtaining luminescent nanocarbon having desired optical characteristics.
  • the present invention is based on the finding that luminescent nanocarbons having different optical characteristics such as excitation and emission wavelengths can be obtained by changing the solvent instead of the raw material in the raw material solution, and has the following configuration.
  • a method for producing a luminescent nanocarbon comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound, wherein the solvent of the raw material solution is a mixed solvent containing two or more solvents.
  • the mixed solvent preferably contains water, a mixed solvent of water and an amide compound, a mixed solvent of water and an alcohol compound, a mixed solvent of water and dimethyl sulfoxide, or water and acetonitrile And a mixed solvent consisting of
  • a luminescent nanocarbon production method comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound, by changing the solvent in the raw material solution in the reaction step, a plurality of luminescent nanocarbons
  • a method for producing a luminescent nanocarbon which comprises producing, evaluating the luminescent properties of the plurality of luminescent nanocarbons, and adjusting the luminescent properties of the luminescent nanocarbon.
  • the luminescent nanocarbon having different optical characteristics such as excitation and emission wavelengths Carbon is obtained.
  • the ratio of components can be adjusted to produce a luminescent nanocarbon having desired optical characteristics. Therefore, since it is not necessary to screen the carbon source compound and the nitrogen source compound for adjusting the optical properties, it is possible to efficiently produce the luminescent nanocarbon having the desired optical properties.
  • Example 6 Graph of absorption spectrum of aqueous dispersion of luminescent nanocarbon (a) Example 1, (b) Example 2, (c) Example 3, (d) Example 4, (e) Example 5, (f) Example 6 Graph of contour plot obtained by measurement of excitation / emission spectrum of luminescent nanocarbon (a) Example 1, (b) Example 2, (c) Example 3, (d) Example 4, (e) Example 5, (f) Example 6 The graph which shows the absorption spectrum of the water dispersion liquid of the light emitting nanocarbon of Examples 7-1 to 7-9 using the mixed solvent of DMF and water.
  • Example 7-1 Example 7-1, (b) Example 7-2, (c) execution Example 7-3, (d) Example 7-4, (e) Example 7-5, (f) Example 7-6, (g) Example 7-7, (h) Example 7-8, (I) Example 7-9 Graph showing FT-IR spectrum measurement results of luminescent nanocarbon using a mixed solvent of DMF and water Graph showing the absorption spectrum of an aqueous dispersion of luminescent nanocarbon using a mixed solvent of methanol and water Graphs of contour plots obtained by excitation / emission spectrum measurement of luminescent nanocarbon using a mixed solvent of methanol and water (a) Example 8-1, (b) Example 8-2, (c) Example 8-3, (d) Example 8-4, (e) Example 8-5, (f) Example 8-6, (g) Example 8-7, (h) Example 8-8, (I) Example 8-9, (j) Example 8
  • the luminescent nanocarbon production method of the present embodiment is a luminescent nanocarbon production method comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound, wherein two or more kinds of solvents for the raw material are used. A mixed solvent containing a solvent is used.
  • Examples of the solvent used as a component of the mixed solvent include N, N dimethylformamide (DMF), formamide, N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), N Amide compounds such as N, N-dimethylacetamide (DMA), alcohol compounds such as methanol, ethanol, 1-propanol, isopropanol, ethylene glycol and propylene glycol, dimethyl sulfoxide (DMSO), acetonitrile (AN) and water.
  • a mixed solvent obtained by mixing a plurality of solvents as a solvent of a reaction solution to be reacted in the reaction step, by changing the type and ratio of the mixed solvent, efficiently producing luminescent nanocarbons having different optical characteristics. Can be.
  • the reaction step is performed by a solvothermal synthesis method for producing luminescent nanocarbon using a high-temperature or high-pressure solvent.
  • the reaction step of reacting the carbon source compound and the nitrogen source compound is hydrothermal synthesis in which the compound is synthesized in the presence of high-temperature and high-pressure water.
  • a mixed solvent containing water a mixed solvent containing water is preferable as the mixed solvent.
  • the other solvent may be N, N-dimethylformamide, formamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazo
  • amide compounds such as lydinone and N, N-dimethylacetamide
  • alcohol compounds such as methanol, ethanol, propanol, ethylene glycol and propylene glycol, dimethyl sulfoxide and acetonitrile.
  • a single solvent can be used when the content of water in the mixed solvent is 0.1% by weight or more and less than 50% by weight.
  • a luminescent nanocarbon having an emission peak that is not recognized may be obtained. In this case, the emission peak disappears when the water content is 50% or more. Therefore, the emission peak can be controlled by adjusting the content of water in the mixed solvent, and the excitation / emission characteristics of the luminescent nanocarbon can be adjusted.
  • organic acids such as hydroxy acids and sugar acids, sugars (glucose), polyvinyl alcohol and the like can be used.
  • Hydroxy acids include citric acid (anhydride and monohydrate), malic acid, tartaric acid, galactaric acid (2,3,4,5-tetrahydroxyadipic acid, mucous acid), quinic acid, glyceric acid, gluconic acid , Glucuronic acid, ascorbic acid, gallic acid and the like.
  • an aliphatic amine an aromatic amine, a hydroxylamine, a polyamine, an amine compound such as a heterocyclic amine, urea, or the like
  • examples of the aliphatic amine include monoamines such as hexylamine, and diamines such as N, N-dimethylethylenediamine and ethylenediamine.
  • examples of the aromatic amine include phenylenediamine.
  • the method for producing luminescent nanocarbon of the present embodiment includes a reaction step of heating a raw material solution in a reaction vessel to cause a reaction at a temperature of 100 to 500 ° C.
  • the raw material solution refers to a solution containing a carbon source compound, a nitrogen source compound and a solvent.
  • the reaction step is a step of heating the raw material solution in a reaction vessel in a sealed state to synthesize luminescent nanocarbon as a reaction product reacted at a reaction temperature of 100 ° C. or more and 500 ° C. or less.
  • the carbon source compound and the nitrogen source compound are reacted in a solvent under a condition where the raw material solution is uniformly present in the reaction vessel, that is, in the raw material solution in a uniform state at a pressure higher than the gas-liquid equilibrium.
  • a homogeneous state is a state in which a stationary interface between the gas phase and the liquid phase does not exist, that is, a state in which the gas phase and the liquid phase are mixed together and no interface exists, or a position where the interface exists but the interface exists. A state that is not constant but fluctuates.
  • a state in which a raw material solution in a reaction vessel forms a supercritical phase (supercritical fluid) having both gas diffusivity and liquid solubility is an example of a uniform state in which no interface exists. .
  • a supercritical phase of the raw material solution can be formed.
  • the temperature in the reaction vessel (reaction temperature) in the reaction step is 100 ° C or more and 500 ° C or less. By setting the reaction temperature to 100 ° C. or higher, a hydrothermal reaction can be promoted. Further, from the viewpoint of improving the conversion rate at which the raw material solution is converted to luminescent nanocarbon in the reaction step and suppressing the generation of insoluble components having lost luminescence, the reaction temperature is more preferably set to 150 ° C. or higher, and more preferably 180 ° C. It is more preferable that the temperature be equal to or higher than ° C.
  • the reaction temperature is generally 500 ° C. or lower, preferably 400 ° C. or lower, and more preferably 300 ° C. or lower in order to further advance the conversion reaction in the reaction step and suppress the generation of insoluble components.
  • the reaction step is a batch reaction (batch type)
  • an amount of the raw material solution in the reaction vessel in which the density becomes higher than the gas-liquid equilibrium state in the reaction step is charged.
  • the reaction vessel is adjusted so that the temperature and pressure at which the raw material solution in the reaction vessel in the reaction step has a density higher than the gas-liquid equilibrium state.
  • This allows the raw material solution in the reaction step to be in a uniform state, that is, a state in which gas and liquid are mixed together in the reaction vessel, so that the reaction can proceed efficiently.
  • it is not necessary to use a combination that forms a salt as the carbon source compound and the nitrogen source compound contained in the raw material solution it is possible to use not only raw materials that form salts such as citric acid and amines, but also combinations of raw materials that do not form salts such as glucose (glucose) and amines.
  • the reaction vessel used in the reaction step has pressure resistance to high temperature and high pressure conditions.
  • the entire reaction vessel in which the raw material solution is charged is heated to set the entire inside of the reaction vessel to a predetermined temperature and pressure, and the reaction step proceeds in the entire reaction vessel.
  • a tubular high-pressure vessel autoclave
  • the reaction step proceeds by charging the reaction vessel into an electric furnace set at a predetermined temperature.
  • the reaction solution containing the reaction product is cooled by removing the tubular high-pressure vessel into room temperature air and air-cooling (cooling step).
  • the reaction step is a batch-type (batch-type) reaction
  • the saturation density of water (liquid phase) the reaction temperature 0.99 ° C., 200 ° C., at 250 ° C. and 300 ° C., this order 0.917g / cm 3, 0.864g / cm 3, 0.799g / cm 3 and 0.712 g / cm 3 . Therefore, when the reaction temperature is set to 200 ° C. to 250 ° C., an amount of the raw material solution that is about 90% (80% to 97%, preferably 85% to 95%) of the volume of the reaction vessel may be charged. preferable. By charging such an amount of the raw material solution, the raw material solution is present in a uniform state in the reaction step, and the reaction efficiency is improved.
  • reaction step is a continuous reaction
  • a pressure-resistant reaction vessel having a continuous long internal space like a long and thin tube.
  • a reaction step is continuously performed in a part of the reaction vessel to perform a reaction step.
  • the pressure in the reaction vessel is adjusted so that the concentration of the raw material solution becomes higher than the saturated vapor pressure at which the gas-liquid equilibrium is reached.
  • the saturated vapor pressure of water is 0.48 MPa at 150 ° C., 1.55 MPa at 200 ° C., 3.98 MPa at 250 ° C., 8.59 MPa at 300 ° C., and 16.53 MPa at 350 ° C. Is adjusted to be equal to or higher than the saturated vapor pressure at the reaction temperature.
  • the raw material solution is present in a uniform state in the reaction step, so that the reaction efficiency is improved.
  • cooling step By cooling the other part communicating with the part where the reaction step is performed (cooling step), luminescent nanocarbon is obtained from the reaction solution.
  • the cooling step is performed by, for example, rapidly cooling a part of the elongated tube as the reaction vessel using an ice bath or a water bath.
  • reaction step and the cooling step are made to proceed in different parts of the reaction vessel, and the part where the reaction step proceeds and the part where the cooling step proceeds are connected, the raw material solution and the reaction solution move in the reaction vessel. By doing so, the reaction step and the cooling step proceed continuously and simultaneously.
  • reaction step is performed in a part of the region and the cooling step is performed in the other region using the above-described reaction container, the reaction step and the cooling step proceed continuously and simultaneously. Can be produced.
  • the present invention provides a method for producing a luminescent nanocarbon, comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound, wherein a plurality of luminescences are obtained by changing a solvent in the raw material solution in the reaction step.
  • the method may be implemented as a method for producing a luminescent nanocarbon by producing luminescent nanocarbon, evaluating the luminescent properties of the plurality of luminescent nanocarbons, and adjusting the luminescent properties of the luminescent nanocarbon.
  • the present invention is based on the finding that luminescent nanocarbons having different excitation / emission wavelengths can be obtained by using different solvents in the reaction step.
  • By performing the reaction step by changing the solvent a plurality of luminescent nanocarbons having different emission characteristics can be produced more efficiently than by performing the reaction step by changing the carbon source compound and the nitrogen source compound.
  • the solvent used for the raw material solution may be a single solvent or a mixed solvent obtained by mixing plural kinds of solvents. However, it is preferable to use a mixed solvent because a plurality of luminescent nanocarbons can be efficiently produced by changing the ratio of the components.
  • a mixed solvent containing water (a mixed solvent containing water) is preferable.
  • a mixed solvent containing water By using a mixed solvent containing water, the magnitude of the emission peak may change continuously with the content of water.
  • the light emitting characteristics of the light emitting nanocarbon can be efficiently adjusted. That is, since the excitation / emission wavelength changes remarkably with a certain tendency depending on the content of water in the mixed solvent, it is possible to efficiently produce a plurality of luminescent nanocarbons having different excitation / emission wavelengths. .
  • ⁇ ⁇ Evaluate the luminescent properties of a plurality of luminescent nanocarbons produced using different solvents, and adjust the luminescent properties of the luminescent nanocarbons with the solvent in the raw material solution.
  • the method of changing the solvent in the raw material solution is easier to adjust the production conditions than the method of screening the carbon source compound and the nitrogen source compound in the raw material solution. It is possible to produce carbon efficiently.
  • Luminescent nanocarbons were produced using formamide, methanol, ethanol, 1-propanol and water, respectively. Each luminescent nanocarbon was solvothermally synthesized by a batch operation using an autoclave.
  • Example 1 Using 2 g of citric anhydride (manufactured by Sigma-Aldrich, carbon source compound), 4 g of urea (manufactured by Tokyo Chemical Industry Co., Ltd., nitrogen source compound), and 41 g of DMF (manufactured by Nacalai Tesque, Inc., solvent), 41 g A solution was prepared. 9 mL of the raw material solution was sealed in an autoclave made of SUS316 having a capacity of about 10 mL, and heated in an electric furnace at 200 ° C. for 1, 3, and 6 hours to produce luminescent nanocarbon by solvothermal synthesis.
  • citric anhydride manufactured by Sigma-Aldrich, carbon source compound
  • 4 g of urea manufactured by Tokyo Chemical Industry Co., Ltd., nitrogen source compound
  • DMF manufactured by Nacalai Tesque, Inc., solvent
  • Example 2 A luminescent nanocarbon was produced in the same manner as in Example 1 except that 120 g of formamide (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a solvent instead of 41 g of DMF.
  • Example 3 A luminescent nanocarbon was produced in the same manner as in Example 1 except that 27 g of methanol (manufactured by Nacalai Tesque, Inc.) was used as a solvent instead of 41 g of DMF.
  • Example 4 The supernatant was used because 60 g of ethanol (manufactured by Nacalai Tesque, Inc.) was used as a solvent instead of 41 g of DMF, and citric anhydride and urea (hereinafter collectively referred to as “raw materials”) were not completely dissolved in the solvent. Except for this, a luminescent nanocarbon was produced in the same manner as in Example 1.
  • Example 5 A luminescent nanoparticle was prepared in the same manner as in Example 1 except that 80 g of 1-propanol (manufactured by Kanto Chemical Co., Ltd.) was used as a solvent instead of 41 g of DMF, and the supernatant was used because the raw material was not completely dissolved in the solvent. Carbon was produced.
  • Example 6 A luminescent nanocarbon was produced in the same manner as in Example 1 except that 38 g of water was used as a solvent instead of 41 g of DMF.
  • Example 1 After collecting the synthesized luminescent nanocarbons of Examples 1 to 6, each was dried and dried in water at 0.01% by weight (Examples 1, 2, and 6) or 0.05% by weight (Examples 3, 2, and 6). Table 1 shows the results of observing the color of the dispersions dispersed in 4) and 5) under room natural light.
  • FIGS. 2A to 2F show contour plots obtained by measurement of excitation and emission spectra of the luminescent nanocarbons of Examples 1 to 6 in which the heating time of the reaction step was set to 3 hours.
  • 3 shows a graph.
  • the horizontal axis indicates the emission wavelength (Emission wavelength / nm)
  • the vertical axis indicates the excitation wavelength (Excitation wavelength / nm)
  • the shading indicates the photoluminescence intensity (PL intensity).
  • the luminescent nanocarbon using DMF, methanol, ethanol and 1-propanol as solvents has an excitation wavelength of around 370 nm. It can be seen that the characteristics of the excitation and emission spectra are similar in that there is a peak near the emission wavelength of 450 nm and that emission can be confirmed even in the longer wavelength range up to the excitation wavelength of 450 nm and the emission wavelength of around 600 nm. .
  • the luminescent nanocarbon using formamide as a solvent shown in FIG. 2B has a peak at an excitation wavelength of 350 nm and an emission wavelength of about 450 nm, and emits light at an excitation wavelength of 300 nm and an emission wavelength of about 350 nm on the shorter wavelength side. It could be confirmed.
  • luminescent nanocarbons having different excitation and emission characteristics can be obtained depending on the type of the solvent of the raw material solution used for the solvothermal synthesis.
  • a luminescent nanocarbon having characteristic excitation and emission characteristics different from those obtained when an amide compound or an alcohol compound was used was obtained.
  • the solvent in the raw material solution was used as a mixed solvent consisting of multiple components, and the effect of the difference in the water content (addition rate) in the mixed solvent on the optical properties of the luminescent nanocarbon obtained by solvothermal synthesis was examined. In order to do this, a luminescent nanocarbon was produced using a mixed solvent.
  • Example 7 mixed solvent (DMF + water)] 0.4 g of citric anhydride (Sigma-Aldrich, carbon source compound) and 0.8 g of urea (Tokyo Kasei Kogyo Co., Ltd., nitrogen source compound) were mixed with DMF (Nacalai Tesque, solvent, solvent). A raw material solution was prepared by adding and dissolving 10 mL of a mixed solvent with water. 9 mL of each raw material solution prepared using the mixed solvent adjusted to the water content shown in Table 2 was sealed in a SUS316 autoclave having a capacity of about 10 mL, and heated in an electric furnace at 200 ° C. for 3 hours. Luminescent nanocarbon was produced by synthesis.
  • Each of the manufactured luminescent nanocarbon solutions was dialyzed for about 20 hours using a regenerated cellulose semipermeable membrane (manufactured by Spectra @ Por) having a MWCO of 100 to 500 Da to remove low molecular components having a molecular weight of less than 100 to 500 Da.
  • Pressure filtration was performed using a nylon syringe filter (manufactured by Rephile Bioscience Ltd.) to remove coarse by-products, and thus the luminescent nanocarbon was purified.
  • TEM Transmission electron microscope
  • the luminescent nanocarbons synthesized by solvothermal using mixed solvents having different water contents were subjected to TEM observation to examine the particle diameter.
  • H-7650 manufactured by Hitachi High-Technologies Corporation was used for TEM observation.
  • As the TEM grid a TEM grid with a supporting film (manufactured by Oken Shoji Co., Ltd.) whose surface was hydrophilized by performing an arc treatment in vacuum for 2 seconds was used.
  • As a measurement sample for TEM observation luminescent nanocarbon before purification was used.
  • the luminescent nanocarbons of Examples 7-1 to 7-9 existed as spherical nanoparticles having a particle diameter of about 1 to 2 nm. Further, the luminescent nanocarbon of each example had a median diameter (d50) of 1.2 nm to 1.4 nm. From these results, it was found that the water content in the mixed solvent of DMF and water did not affect the shape and particle size of the synthesized (produced) luminescent nanocarbon.
  • each of the luminescent nanocarbons was recovered and used for 20 hours using a regenerated cellulose semipermeable membrane (manufactured by Spectra Por) having a MWCO of 100 to 500 Da. Dialysis is performed, low molecular components of less than 100-500 Da are removed, pressure filtration is performed using a nylon syringe filter (manufactured by Rephile Bioscience) having a pore size of 220 nm, and after removing coarse by-products, drying is performed. An aqueous dispersion dispersed in water at 0.01% by weight was prepared.
  • FIG. 3 shows the results of measuring the absorption spectrum of each aqueous dispersion using a spectrophotometer F-2700 manufactured by Hitachi High-Tech Science Corporation.
  • the horizontal axis represents wavelength (Wavelength / nm)
  • the vertical axis represents absorbance (Absorbance /-).
  • the peak of the absorption spectrum is observed around 340 nm and 430 nm in the luminescent nanocarbon using the mixed solvent having the water content of 0.1% by weight to 20% by weight. Among these, it was found that the peak around 430 nm shifted to the shorter wavelength side as the content of water in the mixed solvent increased. Further, it was found that when the content of water in the mixed solvent was 50% by weight or more, the peak of the absorption spectrum around 430 nm was not observed.
  • FIGS. 4A to 4I show graphs of contour plots obtained by measuring the excitation and emission spectra of the luminescent nanocarbons of Examples 7-1 to 7-9.
  • the horizontal axis indicates the emission wavelength (Emission wavelength / nm)
  • the vertical axis indicates the excitation wavelength (Excitation wavelength / nm)
  • the shading indicates the photoluminescence intensity (PL intensity).
  • the emission peaks around 400 nm and 530 nm of the excitation appearing by using the mixed solvent gradually decrease as the content of water increases. It turned out to disappear.
  • the emission peak that appears when the mixed solvent is used changes continuously and gradually as the content of water increases. Therefore, it can be said that a mixed solvent composed of DMF and water is useful for synthesizing a luminescent nanocarbon having desired excitation / emission characteristics.
  • FT-IR spectrum measurement In order to examine the chemical structures of the luminescent nanocarbons of Examples 7-1 to 7-9, FT-IR spectrum measurement was performed by the KBr tablet method. As the measuring device, FT / IR-4200 manufactured by JASCO Corporation was used. A tablet sample for measurement was prepared by pulverizing and mixing about 0.5 mg of a dried luminescent nanocarbon sample and 50 mg (0.05 g) of KBr powder (manufactured by Kanto Chemical Co., Ltd.) in a mortar and using a simple tablet molding machine. Produced.
  • FIG. 5 is a graph showing FT-IR spectra of luminescent nanocarbons solvothermally synthesized in a mixed solvent of DMF and water having different water contents.
  • the horizontal axis of the graph indicates the wave number (Wave number / cm -1 ).
  • the measurement results of the FT-IR spectrum of the starting material (Starting material: citric acid + urea) are shown for comparison.
  • Example 8 mixed solvent (methanol + water) Light emitting nanocarbon was synthesized using methanol instead of DMF of Example 7. For each mixed solvent of methanol and water adjusted to the water content shown in Table 3, luminescent nanocarbon was produced by solvothermal synthesis in the same manner as in Example 7. The manufactured luminescent nanocarbon solution was purified in the same manner as in Example 7.
  • TEM observation Transmission electron microscope (TEM) observation was performed in the same manner as in Example 7 to check the particle size of the luminescent nanocarbon. A luminescent nanocarbon before purification was used as a measurement sample.
  • each of the luminescent nanocarbons was recovered and used for 20 hours using a regenerated cellulose semipermeable membrane (Spectra Por) having a MWCO of 100 to 500 Da. After dialysis, low molecular components of less than 100-500 Da were removed, and pressure filtration was performed using a nylon syringe filter (manufactured by Rephile Bioscience) having a pore size of 220 nm to remove coarse by-products, followed by drying. An aqueous dispersion dispersed in water at 0.025% by weight was prepared.
  • a regenerated cellulose semipermeable membrane Spectra Por
  • a nylon syringe filter manufactured by Rephile Bioscience
  • FIG. 6 shows the results of measuring the absorption spectrum of each aqueous dispersion using a spectrophotometer F-2700 manufactured by Hitachi High-Tech Science Corporation.
  • the horizontal axis represents wavelength (Wavelength / nm)
  • the vertical axis represents absorbance (Absorbance /-).
  • FIGS. 7A to 7J show graphs of contour plots obtained by measuring the excitation and emission spectra of the luminescent nanocarbons of Examples 8-1 to 8-10.
  • the horizontal axis indicates the emission wavelength (Emission wavelength / nm)
  • the vertical axis indicates the excitation wavelength (Excitation wavelength / nm)
  • the shading indicates the photoluminescence (PL intensity).
  • the luminescent nanocarbon synthesized using the mixed solvent having a small water content shows that the shape of the graph shown by the contour plot substantially coincides with the water content of 0.1% by weight to 36% by weight.
  • a mixed solvent having a water content within this range it can be said that luminescent nanocarbons having substantially the same excitation / emission dependence are produced.
  • the emission at around 430 nm was enhanced by excitation with a short wavelength of 400 nm or less.
  • FIG. 8 is a graph showing FT-IR spectra of luminescent nanocarbons solvothermally synthesized in a mixed solvent of methanol and water having different water contents.
  • the horizontal axis of the graph indicates the wave number (Wave number / cm -1 ).
  • the measurement results of the FT-IR spectrum of the starting material (Starting material: citric acid + urea) are shown for comparison.
  • Example 9 mixed solvent (NMP + water) A luminescent nanocarbon was synthesized using N-methyl-2-pyrrolidone (NMP) instead of DMF of Example 7. For each mixed solvent of NMP and water adjusted to the water content shown in Table 4, luminescent nanocarbon was produced by solvothermal synthesis in the same manner as in Example 7. The manufactured luminescent nanocarbon solution was purified in the same manner as in Example 7.
  • NMP N-methyl-2-pyrrolidone
  • Example 9-10 After collecting each of the synthesized luminescent nanocarbons of Example 9-1 to Example 9-10, the color was observed under room natural light of a dispersion obtained by drying and dispersing 0.01% by weight in water. It was found that the yellowish brown color became thinner as the content of water in the mixed solvent increased. In addition, as a result of observing light emission under ultraviolet light, it was found that green light was changed to blue light as the content of water in the mixed solvent was increased.
  • FIG. 9 shows the results of measuring the absorption spectrum of each aqueous dispersion using a spectrophotometer F-2700 manufactured by Hitachi High-Tech Science Corporation.
  • the horizontal axis represents wavelength (Wavelength / nm)
  • the vertical axis represents absorbance (Absorbance /-).
  • FIGS. 10 (a) to 10 (j) show graphs of contour plots obtained by measuring the excitation and emission spectra of the luminescent nanocarbons of Examples 9-1 to 9-10.
  • the horizontal axis indicates the emission wavelength (Emission wavelength / nm)
  • the vertical axis indicates the excitation wavelength (Excitation wavelength / nm)
  • the shading indicates the photoluminescence (PL intensity).
  • the luminescent nanocarbon synthesized using the mixed solvent having a small water content has an emission peak near 350 nm for excitation and 450 nm for emission, and also has a peak for emission near 450 nm and 520 nm for emission. It was found to emit light. As the content of water in the mixed solvent increased, the emission near the excitation of 450 nm and the emission of 520 nm gradually weakened, and it was found that almost no confirmation was possible when the content of water was 50% by weight or more.
  • Example 10 mixed solvent (DMA + water) A luminescent nanocarbon was synthesized using N, N-dimethylacetamide (DMA) instead of DMF of Example 7. Luminescent nanocarbon was produced by solvothermal synthesis in the same manner as in Example 7 for each of the mixed solvents of DMA and water adjusted to the water contents shown in Table 5. The manufactured luminescent nanocarbon solution was purified in the same manner as in Example 7.
  • DMA N, N-dimethylacetamide
  • each of the luminescent nanocarbons was recovered, purified by the same method as in Example 7, and the luminescent nanocarbon was dissolved in water at a concentration of 0.1 mM.
  • An aqueous dispersion dispersed at 01% by weight was prepared.
  • FIG. 11 shows the results of measuring the absorption spectrum of each aqueous dispersion using a spectrophotometer F-2700 manufactured by Hitachi High-Tech Science Corporation.
  • the horizontal axis represents wavelength (Wavelength / nm), and the vertical axis represents absorbance (Absorbance /-).
  • FIGS. 12A to 12J show graphs of contour plots obtained by measuring the excitation and emission spectra of the luminescent nanocarbons of Examples 10-1 to 10-10.
  • the horizontal axis indicates the emission wavelength (Emission wavelength / nm)
  • the vertical axis indicates the excitation wavelength (Excitation wavelength / nm)
  • the shading indicates the photoluminescence (PL intensity).
  • the luminescent nanocarbon synthesized using the mixed solvent having a small water content has an emission peak at around 350 nm and around 450 nm in the example having a low concentration of water in the solvent, and also at around around 450 nm and around 520 nm. It was found to emit light. It was found that the light emission near the excitation of 450 nm and the light emission of 520 nm gradually weakened as the water content in the solvent increased, and was hardly confirmed when the water content was 50% by weight or more.
  • the present invention can be used as a method for producing luminescent nanocarbon used for lighting, displays, optical communication devices, fluorescent probes for living organisms that require low toxicity, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A method for producing a photoluminescent nanocarbon, comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound, wherein a mixed solvent comprising at least two types of solvents is used as a solvent for the raw material solution. It becomes possible to produce photoluminescent nanocarbons having different exciting/emission wavelengths from each other systematically and with high efficiency by varying the contents of the components in the mixed solvent.

Description

発光性ナノカーボン製造方法Method for producing luminescent nanocarbon
 本発明は炭素源化合物および窒素源化合物を原料として合成される発光性ナノカーボンの製造方法に関する。 The present invention relates to a method for producing luminescent nanocarbon synthesized from a carbon source compound and a nitrogen source compound as raw materials.
 発光性ナノカーボン(カーボンドット)は、最近、すすの中から発見された新規炭素ナノ材料であり、グラフェンや他のナノカーボン材料とは異なり、強い発光性を示すという特徴がある。また、炭素源化合物として用いられるのは有機分子であって、半導体量子ドットのように、硫化カドミウム(CdS)やセレン化カドミウム(CdSe)など毒性の高いカドミウム化合物やユーロピウムなどの希少金属が原料として使用されることはない。このため、毒性の懸念がある半導体量子ドットの代替となりうる新しい発光材料として、発光性ナノカーボンが注目されている。発光性ナノカーボンの合成法について近年さまざまな報告がなされている(例えば、特許文献1)。 (4) Luminescent nanocarbon (carbon dots) is a new carbon nanomaterial recently discovered in soot, and has a characteristic of exhibiting strong luminescence, unlike graphene and other nanocarbon materials. In addition, organic molecules are used as the carbon source compound, and highly toxic cadmium compounds such as cadmium sulfide (CdS) and cadmium selenide (CdSe) such as semiconductor quantum dots and rare metals such as europium are used as raw materials. Not used. For this reason, luminescent nanocarbon has been attracting attention as a new luminescent material that can be used as a substitute for semiconductor quantum dots that are toxic. In recent years, various reports have been made on a method for synthesizing luminescent nanocarbon (for example, Patent Document 1).
 特許文献1に記載されているように、発光性ナノカーボンの励起・発光波長等の光学特性は、原料組成や反応温度の影響を受ける。このため、発光性ナノカーボンを製造する際、一般には原料組成を変更して合成した複数の発光性ナノカーボンの光学特性を測定し、所望の光学特性の発光性ナノカーボンが得られるように原料組成を調整する方法が用いられる。 光学 As described in Patent Document 1, the optical properties of the luminescent nanocarbon, such as the excitation and emission wavelengths, are affected by the composition of the raw material and the reaction temperature. For this reason, when producing luminescent nanocarbons, generally, the optical properties of a plurality of luminescent nanocarbons synthesized by changing the composition of the raw materials are measured, and the raw materials are manufactured so as to obtain luminescent nanocarbons having desired optical properties. A method of adjusting the composition is used.
特開2017-43539号公報JP 2017-43539 A
 しかし、原料組成の変更により発光性ナノカーボンの光学特性を制御し、所望の光学特性とすることは容易でない。このため、従来、用途や要求特性が変更するたびに原料のスクリーニングを行う必要があり、所望の光学特性を備えた発光性ナノカーボンを製造するには、多大な時間とコストを要するという問題があった。
 そこで、本発明は、所望の光学特性を備えた発光性ナノカーボンを効率良く得ることができる製造方法の提供を目的としている。
However, it is not easy to control the optical properties of the luminescent nanocarbon by changing the composition of the raw materials to obtain desired optical properties. For this reason, conventionally, it is necessary to screen the raw material every time the use or required characteristics change, and there is a problem that it takes a lot of time and cost to produce a luminescent nanocarbon having desired optical characteristics. there were.
Therefore, an object of the present invention is to provide a manufacturing method capable of efficiently obtaining luminescent nanocarbon having desired optical characteristics.
 本発明は、原料溶液中の原料ではなく溶媒を変えることによって励起・発光波長等の光学特性の異なる発光性ナノカーボンが得られるという知見に基づいており、以下の構成を備えている。 The present invention is based on the finding that luminescent nanocarbons having different optical characteristics such as excitation and emission wavelengths can be obtained by changing the solvent instead of the raw material in the raw material solution, and has the following configuration.
 炭素源化合物および窒素源化合物を含有する原料溶液を反応させる反応ステップを備えた発光性ナノカーボン製造方法において、前記原料溶液の溶媒が二種以上の溶媒を含有する混合溶媒である発光性ナノカーボン製造方法。
 前記混合溶媒は、水を含有していることが好ましく、水とアミド化合物とからなる混合溶媒、水とアルコール化合物とからなる混合溶媒、水とジメチルスルホキシドとからなる混合溶媒、または、水とアセトニトリルとからなる混合溶媒が好ましい。
A method for producing a luminescent nanocarbon comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound, wherein the solvent of the raw material solution is a mixed solvent containing two or more solvents. Production method.
The mixed solvent preferably contains water, a mixed solvent of water and an amide compound, a mixed solvent of water and an alcohol compound, a mixed solvent of water and dimethyl sulfoxide, or water and acetonitrile And a mixed solvent consisting of
 炭素源化合物および窒素源化合物を含有する原料溶液を反応させる反応ステップを備えた発光性ナノカーボン製造方法において、前記反応ステップにおける原料溶液中の溶媒を異ならせることにより、複数の発光性ナノカーボンを製造し、複数の前記発光性ナノカーボンの発光特性を評価し、発光性ナノカーボンの発光特性を調整する発光性ナノカーボンの製造方法。 In a luminescent nanocarbon production method comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound, by changing the solvent in the raw material solution in the reaction step, a plurality of luminescent nanocarbons A method for producing a luminescent nanocarbon, which comprises producing, evaluating the luminescent properties of the plurality of luminescent nanocarbons, and adjusting the luminescent properties of the luminescent nanocarbon.
 本発明の発光性ナノカーボン製造方法によれば、原料溶液中の溶媒を変えることにより、炭素源化合物および窒素源化合物の種類を変えることなく、励起・発光波長等の光学特性の異なる発光性ナノカーボンが得られる。複数種の溶媒を混合した混合溶媒を用いれば、成分比率を調整して所望の光学特性を備えた発光性ナノカーボンを製造することができる。したがって、光学特性を調整するための炭素源化合物および窒素源化合物のスクリーニングが不要となるから、所望の光学特性を備えた発光性ナノカーボンを効率良く製造することが可能である。 According to the method for producing luminescent nanocarbon of the present invention, by changing the solvent in the raw material solution, without changing the type of the carbon source compound and the nitrogen source compound, the luminescent nanocarbon having different optical characteristics such as excitation and emission wavelengths Carbon is obtained. When a mixed solvent obtained by mixing a plurality of types of solvents is used, the ratio of components can be adjusted to produce a luminescent nanocarbon having desired optical characteristics. Therefore, since it is not necessary to screen the carbon source compound and the nitrogen source compound for adjusting the optical properties, it is possible to efficiently produce the luminescent nanocarbon having the desired optical properties.
発光性ナノカーボンの水分散液の吸収スペクトルのグラフ(a)実施例1、(b)実施例2、(c)実施例3、(d)実施例4、(e)実施例5、(f)実施例6Graph of absorption spectrum of aqueous dispersion of luminescent nanocarbon (a) Example 1, (b) Example 2, (c) Example 3, (d) Example 4, (e) Example 5, (f) Example 6 発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフ(a)実施例1、(b)実施例2、(c)実施例3、(d)実施例4、(e)実施例5、(f)実施例6Graph of contour plot obtained by measurement of excitation / emission spectrum of luminescent nanocarbon (a) Example 1, (b) Example 2, (c) Example 3, (d) Example 4, (e) Example 5, (f) Example 6 DMFと水との混合溶媒を用いた実施例7-1から7-9の発光性ナノカーボンの水分散液の吸収スペクトルを示すグラフThe graph which shows the absorption spectrum of the water dispersion liquid of the light emitting nanocarbon of Examples 7-1 to 7-9 using the mixed solvent of DMF and water. DMFと水との混合溶媒を用いた発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフ(a)実施例7-1、(b)実施例7-2、(c)実施例7-3、(d)実施例7-4、(e)実施例7-5、(f)実施例7-6、(g)実施例7-7、(h)実施例7-8、(i)実施例7-9Graphs of contour plots obtained by excitation / emission spectrum measurement of luminescent nanocarbon using a mixed solvent of DMF and water (a) Example 7-1, (b) Example 7-2, (c) execution Example 7-3, (d) Example 7-4, (e) Example 7-5, (f) Example 7-6, (g) Example 7-7, (h) Example 7-8, (I) Example 7-9 DMFと水との混合溶媒を用いた発光性ナノカーボンのFT-IRスペクトル測定結果を示すグラフGraph showing FT-IR spectrum measurement results of luminescent nanocarbon using a mixed solvent of DMF and water メタノールと水との混合溶媒を用いた発光性ナノカーボンの水分散液の吸収スペクトルを示すグラフGraph showing the absorption spectrum of an aqueous dispersion of luminescent nanocarbon using a mixed solvent of methanol and water メタノールと水との混合溶媒を用いた発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフ(a)実施例8-1、(b)実施例8-2、(c)実施例8-3、(d)実施例8-4、(e)実施例8-5、(f)実施例8-6、(g)実施例8-7、(h)実施例8-8、(i)実施例8-9、(j)実施例8-10Graphs of contour plots obtained by excitation / emission spectrum measurement of luminescent nanocarbon using a mixed solvent of methanol and water (a) Example 8-1, (b) Example 8-2, (c) Example 8-3, (d) Example 8-4, (e) Example 8-5, (f) Example 8-6, (g) Example 8-7, (h) Example 8-8, (I) Example 8-9, (j) Example 8-10 メタノールと水との混合溶媒を用いた発光性ナノカーボンのFT-IRスペクトル測定結果を示すグラフGraph showing FT-IR spectrum measurement results of luminescent nanocarbon using a mixed solvent of methanol and water NMPと水との混合溶媒を用いた発光性ナノカーボンの水分散液の吸収スペクトルを示すグラフGraph showing the absorption spectrum of an aqueous dispersion of luminescent nanocarbon using a mixed solvent of NMP and water NMPと水との混合溶媒を用いた発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフ(a)実施例9-1、(b)実施例9-2、(c)実施例9-3、(d)実施例9-4、(e)実施例9-5、(f)実施例9-6、(g)実施例9-7、(h)実施例9-8、(i)実施例9-9、(j)実施例9-10Graphs of contour plots obtained by excitation / emission spectrum measurement of luminescent nanocarbon using a mixed solvent of NMP and water (a) Example 9-1, (b) Example 9-2, (c) execution Example 9-3, (d) Example 9-4, (e) Example 9-5, (f) Example 9-6, (g) Example 9-7, (h) Example 9-8, (I) Example 9-9, (j) Example 9-10 DMAと水との混合溶媒を用いた発光性ナノカーボンの水分散液の吸収スペクトルを示すグラフGraph showing the absorption spectrum of an aqueous dispersion of luminescent nanocarbon using a mixed solvent of DMA and water DMAと水との混合溶媒を用いた発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフ(a)実施例10-1、(b)実施例10-2、(c)実施例10-3、(d)実施例10-4、(e)実施例10-5、(f)実施例10-6、(g)実施例10-7、(h)実施例10-8、(i)実施例10-9、(j)実施例10-10Graphs of contour plots obtained by excitation / emission spectrum measurement of luminescent nanocarbon using a mixed solvent of DMA and water (a) Example 10-1, (b) Example 10-2, (c) Example Example 10-3, (d) Example 10-4, (e) Example 10-5, (f) Example 10-6, (g) Example 10-7, (h) Example 10-8, (I) Example 10-9, (j) Example 10-10
(実施の形態1)
 本実施形態の発光性ナノカーボン製造方法は、炭素源化合物および窒素源化合物を含有する原料溶液を反応させる反応ステップを備えた発光性ナノカーボン製造方法において、前記原料用の溶媒として二種以上の溶媒を含有する混合溶媒を用いるものである。
(Embodiment 1)
The luminescent nanocarbon production method of the present embodiment is a luminescent nanocarbon production method comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound, wherein two or more kinds of solvents for the raw material are used. A mixed solvent containing a solvent is used.
 混合溶媒の成分として用いられる溶媒として、例えば、N,Nジメチルホルムアミド(DMF)、ホルムアミド、N-メチル-2-ピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン(DMI)、N,N-ジメチルアセトアミド(DMA)等のアミド化合物、メタノール、エタノール、1-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール化合物、ジメチルスルホキシド(DMSO)、アセトニトリル(AN)および水等が挙げられる。反応ステップにおいて反応させる反応溶液の溶媒として複数の溶媒を混合した混合溶媒を用いることにより、当該混合溶媒の種類や比率を変化させることによって、光学特性の異なる発光性ナノカーボンを効率よく製造することができる。 Examples of the solvent used as a component of the mixed solvent include N, N dimethylformamide (DMF), formamide, N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), N Amide compounds such as N, N-dimethylacetamide (DMA), alcohol compounds such as methanol, ethanol, 1-propanol, isopropanol, ethylene glycol and propylene glycol, dimethyl sulfoxide (DMSO), acetonitrile (AN) and water. By using a mixed solvent obtained by mixing a plurality of solvents as a solvent of a reaction solution to be reacted in the reaction step, by changing the type and ratio of the mixed solvent, efficiently producing luminescent nanocarbons having different optical characteristics. Can be.
 反応ステップは、高温または高圧の溶媒を用いて発光性ナノカーボンを製造するソルボサーマル合成法により行われる。原料溶液に含まれる混合溶媒が水を含有している場合、炭素源化合物と窒素源化合物とを反応させる反応ステップは、高温高圧の水の存在下で化合物を合成する水熱合成となる。水熱合成において、混合溶媒中の水の含有量を変化させることにより発光性ナノカーボンの光学特性を調整できるから、混合溶媒としては水を含有する混合溶媒(水含有混合溶媒)が好ましい。 The reaction step is performed by a solvothermal synthesis method for producing luminescent nanocarbon using a high-temperature or high-pressure solvent. When the mixed solvent contained in the raw material solution contains water, the reaction step of reacting the carbon source compound and the nitrogen source compound is hydrothermal synthesis in which the compound is synthesized in the presence of high-temperature and high-pressure water. In the hydrothermal synthesis, since the optical properties of the luminescent nanocarbon can be adjusted by changing the content of water in the mixed solvent, a mixed solvent containing water (a mixed solvent containing water) is preferable as the mixed solvent.
 混合溶媒を水と他の溶媒との二成分からなる構成とする場合、他の溶媒としては、N,Nジメチルホルムアミド、ホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルアセトアミド等のアミド化合物や、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコールなどの(低級)アルコール化合物、ジメチルスルホキシド、アセトニトリルが好ましい。 When the mixed solvent is composed of two components of water and another solvent, the other solvent may be N, N-dimethylformamide, formamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazo Preferred are amide compounds such as lydinone and N, N-dimethylacetamide, (lower) alcohol compounds such as methanol, ethanol, propanol, ethylene glycol and propylene glycol, dimethyl sulfoxide and acetonitrile.
 アミド化合物、アルコール化合物、ジメチルスルホキシドまたはアセトニトリルと、水とからなる混合溶媒を用いることにより、混合溶媒中における水の含有量が0.1重量%以上50重量%未満の範囲において、単独の溶媒を用いた場合には認められない発光ピークを有する発光性ナノカーボンが得られることがある。この場合、当該発光ピークは、水の含有量を50%以上とすることにより消失する。このため、混合溶媒中における水の含有量を調整することにより上記発光ピークを制御して、発光性ナノカーボンの励起・発光特性を調整することができる。 By using a mixed solvent consisting of an amide compound, an alcohol compound, dimethyl sulfoxide or acetonitrile, and water, a single solvent can be used when the content of water in the mixed solvent is 0.1% by weight or more and less than 50% by weight. When used, a luminescent nanocarbon having an emission peak that is not recognized may be obtained. In this case, the emission peak disappears when the water content is 50% or more. Therefore, the emission peak can be controlled by adjusting the content of water in the mixed solvent, and the excitation / emission characteristics of the luminescent nanocarbon can be adjusted.
 原料溶液に含まれる炭素源化合物は、ヒドロキシ酸、糖酸等の有機酸、糖(グルコース)、ポリビニルアルコール等を用いることができる。ヒドロキシ酸としては、クエン酸(無水物および一水和物)、リンゴ酸、酒石酸、ガラクタル酸(2,3,4,5-テトラヒドロキシアジピン酸、粘液酸)、キナ酸、グリセリン酸、グルコン酸、グルクロン酸、アスコルビン酸、没食子酸等が挙げられる。 有機 As the carbon source compound contained in the raw material solution, organic acids such as hydroxy acids and sugar acids, sugars (glucose), polyvinyl alcohol and the like can be used. Hydroxy acids include citric acid (anhydride and monohydrate), malic acid, tartaric acid, galactaric acid (2,3,4,5-tetrahydroxyadipic acid, mucous acid), quinic acid, glyceric acid, gluconic acid , Glucuronic acid, ascorbic acid, gallic acid and the like.
 原料溶液に含まれる窒素源化合物は、脂肪族アミン、芳香族アミン、ヒドロキシアミン、ポリアミン、複素環式アミン等のアミン化合物、尿素等を用いることができる。脂肪族アミンとしては、ヘキシルアミン等のモノアミン、N,N-ジメチルエチレンジアミン、エチレンジアミン等のジアミンが挙げられる。芳香族アミンとしては、フェニレンジアミン等が挙げられる。 窒 素 As the nitrogen source compound contained in the raw material solution, an aliphatic amine, an aromatic amine, a hydroxylamine, a polyamine, an amine compound such as a heterocyclic amine, urea, or the like can be used. Examples of the aliphatic amine include monoamines such as hexylamine, and diamines such as N, N-dimethylethylenediamine and ethylenediamine. Examples of the aromatic amine include phenylenediamine.
 本実施形態の発光性ナノカーボンの製造方法は、原料溶液を反応容器中で加熱し、温度100~500℃で反応させる反応ステップを備えている。本発明において、原料溶液とは炭素源化合物、窒素源化合物および溶媒を含有する溶液をいう。 発 光 The method for producing luminescent nanocarbon of the present embodiment includes a reaction step of heating a raw material solution in a reaction vessel to cause a reaction at a temperature of 100 to 500 ° C. In the present invention, the raw material solution refers to a solution containing a carbon source compound, a nitrogen source compound and a solvent.
 反応ステップは、原料溶液を反応容器中に密閉した状態で加熱して、反応温度100℃以上500℃以下で反応させた反応生成物として発光性ナノカーボンを合成する工程である。好ましくは、反応容器中に原料溶液が均一に存在する条件において、すなわち、気液平衡よりも高い圧力とした均一状態の原料溶液中において、炭素源化合物と窒素源化合物とを溶媒中で反応させる。均一状態とは、気相と液相の定常的な界面が存在しない状態、すなわち気相と液相とが混然一体となっており界面が存在しない状態、または、界面は存在するものの位置が一定ではなく変動する状態をいう。 The reaction step is a step of heating the raw material solution in a reaction vessel in a sealed state to synthesize luminescent nanocarbon as a reaction product reacted at a reaction temperature of 100 ° C. or more and 500 ° C. or less. Preferably, the carbon source compound and the nitrogen source compound are reacted in a solvent under a condition where the raw material solution is uniformly present in the reaction vessel, that is, in the raw material solution in a uniform state at a pressure higher than the gas-liquid equilibrium. . A homogeneous state is a state in which a stationary interface between the gas phase and the liquid phase does not exist, that is, a state in which the gas phase and the liquid phase are mixed together and no interface exists, or a position where the interface exists but the interface exists. A state that is not constant but fluctuates.
 例えば、反応容器中の原料溶液が気体の拡散性と液体の溶解性とを併せもつ超臨界相(超臨界流体)を形成した状態は、均一状態のうち、界面が存在しない状態の一例である。反応容器中を臨界温度以上かつ臨界圧力以上とすることにより、原料溶液の超臨界相を形成することができる。 For example, a state in which a raw material solution in a reaction vessel forms a supercritical phase (supercritical fluid) having both gas diffusivity and liquid solubility is an example of a uniform state in which no interface exists. . By setting the temperature in the reaction vessel at a critical temperature or higher and a critical pressure or higher, a supercritical phase of the raw material solution can be formed.
 また、反応容器内の原料溶液中に、少量の気泡が存在する場合などは、界面の位置が一定ではなく変動する状態の一例である。発光性ナノカーボンの合成反応の副反応等によって気体が発生した場合等に原料溶液中に少量の気泡が存在する状態となることがある。 Further, when a small amount of bubbles is present in the raw material solution in the reaction vessel, this is an example of a state where the position of the interface is not constant but fluctuates. When a gas is generated due to a side reaction of the synthesis reaction of the luminescent nanocarbon or the like, a small amount of bubbles may be present in the raw material solution.
 反応ステップにおける反応容器内の温度(反応温度)は、100℃以上500℃以下とする。反応温度を100℃以上とすることにより、水熱反応を促進することができる。また、反応ステップにおいて原料溶液が発光性ナノカーボンに転化する転化率を向上させ、発光性が失われた不溶成分の生成を抑える観点から、反応温度は150℃以上とすることがより好ましく、180℃以上とすることがさらに好ましい。 温度 The temperature in the reaction vessel (reaction temperature) in the reaction step is 100 ° C or more and 500 ° C or less. By setting the reaction temperature to 100 ° C. or higher, a hydrothermal reaction can be promoted. Further, from the viewpoint of improving the conversion rate at which the raw material solution is converted to luminescent nanocarbon in the reaction step and suppressing the generation of insoluble components having lost luminescence, the reaction temperature is more preferably set to 150 ° C. or higher, and more preferably 180 ° C. It is more preferable that the temperature be equal to or higher than ° C.
 反応温度は一般に500℃以下であり、好ましくは400℃以下であり、反応ステップにおける転化反応をさらに進行させて不溶性成分の生成を抑制するために、300℃以下とすることがより好ましい。 (4) The reaction temperature is generally 500 ° C. or lower, preferably 400 ° C. or lower, and more preferably 300 ° C. or lower in order to further advance the conversion reaction in the reaction step and suppress the generation of insoluble components.
 反応ステップを回分式反応(バッチ式)とする場合、反応容器内の原料溶液が反応ステップにおいて気液平衡状態よりも高い密度となる量の原料溶液を仕込む。また、流通式(連続式)反応で製造する場合、反応ステップにおける反応容器内の原料溶液が気液平衡状態よりも高い密度となる温度、圧力となるように反応容器を調整する。これにより、反応ステップにおける原料溶液を均一な状態、すなわち反応容器中で気体と液体が混然一体となった状態とすることができるから、効率よく反応を進行させることができる。また、原料溶液に含有される炭素源化合物と窒素源化合物として、塩を形成する組み合わせとする必要がなくなる。例えば、クエン酸とアミンのような塩を形成する原料に限らず、ブドウ糖(グルコース)とアミンのような塩を形成しない原料の組み合わせを用いることが可能になる。 (4) When the reaction step is a batch reaction (batch type), an amount of the raw material solution in the reaction vessel in which the density becomes higher than the gas-liquid equilibrium state in the reaction step is charged. Further, in the case of production by a flow-type (continuous) reaction, the reaction vessel is adjusted so that the temperature and pressure at which the raw material solution in the reaction vessel in the reaction step has a density higher than the gas-liquid equilibrium state. This allows the raw material solution in the reaction step to be in a uniform state, that is, a state in which gas and liquid are mixed together in the reaction vessel, so that the reaction can proceed efficiently. Further, it is not necessary to use a combination that forms a salt as the carbon source compound and the nitrogen source compound contained in the raw material solution. For example, it is possible to use not only raw materials that form salts such as citric acid and amines, but also combinations of raw materials that do not form salts such as glucose (glucose) and amines.
 反応ステップにおける反応容器は、高温、高圧条件に対する耐圧性を備えたものを用いる。反応ステップを回分式反応とする場合、原料溶液が仕込まれた反応容器全体を加熱して反応容器内部の全体を所定温度および圧力として、反応容器内全体で反応ステップを進行させる。例えば、反応容器として管型高圧容器(オートクレーブ)を用い、所定の温度に設定した電気炉内に投入することにより、反応ステップを進行させる。反応ステップが完了した後、管型高圧容器を室温空気中に取り出して空冷することにより反応生成物を含有する反応溶液を冷却する(冷却ステップ)。 (4) The reaction vessel used in the reaction step has pressure resistance to high temperature and high pressure conditions. When the reaction step is a batch-type reaction, the entire reaction vessel in which the raw material solution is charged is heated to set the entire inside of the reaction vessel to a predetermined temperature and pressure, and the reaction step proceeds in the entire reaction vessel. For example, a tubular high-pressure vessel (autoclave) is used as a reaction vessel, and the reaction step proceeds by charging the reaction vessel into an electric furnace set at a predetermined temperature. After the completion of the reaction step, the reaction solution containing the reaction product is cooled by removing the tubular high-pressure vessel into room temperature air and air-cooling (cooling step).
 反応ステップを回分式(バッチ式)反応とする場合、反応容器内には、気液平衡状態よりも高い密度となる量の原料溶液を仕込むことが好ましい。例えば、水の飽和密度(液相)は、反応温度150℃、200℃、250℃および300℃で、この順に0.917g/cm、0.864g/cm、0.799g/cmおよび0.712g/cmである。したがって、反応温度を200℃~250℃とする場合、反応容器の容積の約90%程度(80%以上97%以下、好ましくは85%以上95%以下)となる量の原料溶液を仕込むことが好ましい。このような量の原料溶液を仕込むことにより、反応ステップにおいて原料溶液が均一な状態で存在することとなって反応効率がよくなる。 When the reaction step is a batch-type (batch-type) reaction, it is preferable to charge an amount of the raw material solution having a density higher than the gas-liquid equilibrium state in the reaction vessel. For example, the saturation density of water (liquid phase), the reaction temperature 0.99 ° C., 200 ° C., at 250 ° C. and 300 ° C., this order 0.917g / cm 3, 0.864g / cm 3, 0.799g / cm 3 and 0.712 g / cm 3 . Therefore, when the reaction temperature is set to 200 ° C. to 250 ° C., an amount of the raw material solution that is about 90% (80% to 97%, preferably 85% to 95%) of the volume of the reaction vessel may be charged. preferable. By charging such an amount of the raw material solution, the raw material solution is present in a uniform state in the reaction step, and the reaction efficiency is improved.
 反応ステップを連続反応とする場合、細長い管のように連続した長い内部空間を備えた耐圧性の反応容器を用いる。細長い管の一方端から原料溶液を供給しつつ、十分な長さを備えた反応容器の一部を加熱することにより、当該一部の領域で反応を連続的に進行させて反応ステップを行うことができる。反応ステップでは、原料溶液の濃度が気液平衡となる飽和蒸気圧よりも高くなるように、反応容器内の圧力を調整する。例えば、水の飽和蒸気圧は、150℃で0.48MPa、200℃で1.55MPa、250℃で3.98MPa、300℃で8.59MPa、350℃で16.53MPaであるから、反応容器内の圧力が反応温度における飽和蒸気圧以上となるように調整する。これにより、反応ステップにおいて原料溶液が均一な状態で存在することとなるから反応効率がよくなる。 場合 When the reaction step is a continuous reaction, use a pressure-resistant reaction vessel having a continuous long internal space like a long and thin tube. By heating a part of a reaction vessel having a sufficient length while supplying a raw material solution from one end of an elongated tube, a reaction step is continuously performed in a part of the reaction vessel to perform a reaction step. Can be. In the reaction step, the pressure in the reaction vessel is adjusted so that the concentration of the raw material solution becomes higher than the saturated vapor pressure at which the gas-liquid equilibrium is reached. For example, the saturated vapor pressure of water is 0.48 MPa at 150 ° C., 1.55 MPa at 200 ° C., 3.98 MPa at 250 ° C., 8.59 MPa at 300 ° C., and 16.53 MPa at 350 ° C. Is adjusted to be equal to or higher than the saturated vapor pressure at the reaction temperature. As a result, the raw material solution is present in a uniform state in the reaction step, so that the reaction efficiency is improved.
 反応ステップを行う部分と連通している他の部分を冷却することで(冷却ステップ)、反応溶液から発光性ナノカーボンが得られる。冷却ステップは、例えば、氷浴または水浴を用いて、反応容器である細長い管の一部を急激に冷却することにより行う。 発 光 By cooling the other part communicating with the part where the reaction step is performed (cooling step), luminescent nanocarbon is obtained from the reaction solution. The cooling step is performed by, for example, rapidly cooling a part of the elongated tube as the reaction vessel using an ice bath or a water bath.
 反応ステップと冷却ステップとを反応容器の異なる部分において進行させ、反応ステップが進行する部分と冷却ステップが進行する部分とが連通された構成とすれば、原料溶液および反応溶液が反応容器内を移動することによって反応ステップと冷却ステップとが連続的かつ同時に進行する。 When the reaction step and the cooling step are made to proceed in different parts of the reaction vessel, and the part where the reaction step proceeds and the part where the cooling step proceeds are connected, the raw material solution and the reaction solution move in the reaction vessel. By doing so, the reaction step and the cooling step proceed continuously and simultaneously.
 上述した反応容器を用いて、一部の領域で反応ステップを行い、他の領域で冷却ステップを行えば、反応ステップと冷却ステップとが連続的かつ同時に進行するから、短時間で、効率よく大量の発光性ナノカーボンを製造することができる。 If the reaction step is performed in a part of the region and the cooling step is performed in the other region using the above-described reaction container, the reaction step and the cooling step proceed continuously and simultaneously. Can be produced.
(実施の形態2)
 本発明は、炭素源化合物および窒素源化合物を含有する原料溶液を反応させる反応ステップを備えた発光性ナノカーボン製造方法において、前記反応ステップにおける原料溶液中の溶媒を異ならせることにより、複数の発光性ナノカーボンを製造し、前記複数の発光性ナノカーボンの発光特性を評価し、発光性ナノカーボンの発光特性を調整する発光性ナノカーボン製造方法として実施することもできる。
(Embodiment 2)
The present invention provides a method for producing a luminescent nanocarbon, comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound, wherein a plurality of luminescences are obtained by changing a solvent in the raw material solution in the reaction step. The method may be implemented as a method for producing a luminescent nanocarbon by producing luminescent nanocarbon, evaluating the luminescent properties of the plurality of luminescent nanocarbons, and adjusting the luminescent properties of the luminescent nanocarbon.
 本発明は、反応ステップにおいて異なる溶媒を用いることにより、励起・発光波長の異なる発光性ナノカーボンが得られるという知見に基づいている。溶媒を変えて反応ステップを行うことにより、炭素源化合物および窒素源化合物を変えて反応ステップを行うよりも、発光特性の異なる複数の発光性ナノカーボンを効率よく製造することができる。 The present invention is based on the finding that luminescent nanocarbons having different excitation / emission wavelengths can be obtained by using different solvents in the reaction step. By performing the reaction step by changing the solvent, a plurality of luminescent nanocarbons having different emission characteristics can be produced more efficiently than by performing the reaction step by changing the carbon source compound and the nitrogen source compound.
 原料溶液に用いられる溶媒は、単独の溶媒でも複数種の溶媒を混合した混合溶媒でも良い。ただし、成分の比率を変化させることで、複数の発光性ナノカーボンを効率的に製造可能であることから、混合溶媒を用いることが好ましい。 溶媒 The solvent used for the raw material solution may be a single solvent or a mixed solvent obtained by mixing plural kinds of solvents. However, it is preferable to use a mixed solvent because a plurality of luminescent nanocarbons can be efficiently produced by changing the ratio of the components.
 混合溶媒を用いる場合、水を含有する混合溶媒(水含有混合溶媒)が好ましい。水を含有する混合溶媒を用いることにより、水の含有量にともなって発光ピークの大きさが連続的に変化することがある。このような水含有混合溶媒を用いることにより、発光性ナノカーボンの発光特性を効率よく調整できる。すなわち、混合溶媒中の水の含有量により、励起・発光波長が一定の傾向をもって顕著に変化することから、励起・発光波長が異なる複数の発光性ナノカーボンを効率良く製造することが可能である。 用 い る When a mixed solvent is used, a mixed solvent containing water (a mixed solvent containing water) is preferable. By using a mixed solvent containing water, the magnitude of the emission peak may change continuously with the content of water. By using such a water-containing mixed solvent, the light emitting characteristics of the light emitting nanocarbon can be efficiently adjusted. That is, since the excitation / emission wavelength changes remarkably with a certain tendency depending on the content of water in the mixed solvent, it is possible to efficiently produce a plurality of luminescent nanocarbons having different excitation / emission wavelengths. .
 異なる溶媒を用いて製造した複数の発光性ナノカーボンの発光特性を評価し、発光性ナノカーボンの発光特性を原料溶液中の溶媒により調整する。原料溶液中の溶媒を変化させる方法は、原料溶液中の炭素源化合物および窒素源化合物をスクリーニングする方法よりも、製造条件の調整が容易であることから、所望の光学特性を備えた発光性ナノカーボンを効率的に製造することが可能である。 評 価 Evaluate the luminescent properties of a plurality of luminescent nanocarbons produced using different solvents, and adjust the luminescent properties of the luminescent nanocarbons with the solvent in the raw material solution. The method of changing the solvent in the raw material solution is easier to adjust the production conditions than the method of screening the carbon source compound and the nitrogen source compound in the raw material solution. It is possible to produce carbon efficiently.
 原料溶液中の溶媒が発光性ナノカーボンの光学特性に与える影響を検討するため、クエン酸および尿素を炭素源化合物および窒素源化合物とする原料溶液の溶媒として、N,Nジメチルホルムアミド(DMF)、ホルムアミド、メタノール、エタノール、1-プロパノールおよび水の六種類を用いて発光性ナノカーボンをそれぞれ製造した。各発光性ナノカーボンは、オートクレーブを用いた回分(バッチ)操作によりソルボサーマル合成した。 In order to examine the effect of the solvent in the raw material solution on the optical properties of the luminescent nanocarbon, N, N dimethylformamide (DMF), Luminescent nanocarbons were produced using formamide, methanol, ethanol, 1-propanol and water, respectively. Each luminescent nanocarbon was solvothermally synthesized by a batch operation using an autoclave.
[実施例1]
 クエン酸無水物(Sigma-Aldrich社製、炭素源化合物)2g、尿素(東京化成工業(株)製、窒素源化合物)4g、およびDMF(ナカライテスク(株)製、溶媒)41gを用いて原料溶液を調製した。原料溶液9mLを容量約10mLのSUS316製オートクレーブに封入し、電気炉にて200℃条件において1時間、3時間および6時間加熱し、ソルボサーマル合成により発光性ナノカーボンを製造した。
[Example 1]
Using 2 g of citric anhydride (manufactured by Sigma-Aldrich, carbon source compound), 4 g of urea (manufactured by Tokyo Chemical Industry Co., Ltd., nitrogen source compound), and 41 g of DMF (manufactured by Nacalai Tesque, Inc., solvent), 41 g A solution was prepared. 9 mL of the raw material solution was sealed in an autoclave made of SUS316 having a capacity of about 10 mL, and heated in an electric furnace at 200 ° C. for 1, 3, and 6 hours to produce luminescent nanocarbon by solvothermal synthesis.
[実施例2]
 DMF41gの代わりにホルムアミド(東京化成工業(株)製)120gを溶媒として用いた以外は、実施例1と同様にして発光性ナノカーボンを製造した。
[実施例3]
 DMF41gの代わりにメタノール(ナカライテスク(株)製)27gを溶媒として用いた以外は、実施例1と同様にして発光性ナノカーボンを製造した。
[Example 2]
A luminescent nanocarbon was produced in the same manner as in Example 1 except that 120 g of formamide (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as a solvent instead of 41 g of DMF.
[Example 3]
A luminescent nanocarbon was produced in the same manner as in Example 1 except that 27 g of methanol (manufactured by Nacalai Tesque, Inc.) was used as a solvent instead of 41 g of DMF.
[実施例4]
 DMF41gの代わりにエタノール(ナカライテスク(株)製)60gを溶媒として用いたこと、クエン酸無水物および尿素(以下これらをまとめて適宜「原料」という)が溶媒に溶けきらなかったため上澄みを使用したこと以外は、実施例1と同様にして発光性ナノカーボンを製造した。
[Example 4]
The supernatant was used because 60 g of ethanol (manufactured by Nacalai Tesque, Inc.) was used as a solvent instead of 41 g of DMF, and citric anhydride and urea (hereinafter collectively referred to as “raw materials”) were not completely dissolved in the solvent. Except for this, a luminescent nanocarbon was produced in the same manner as in Example 1.
[実施例5]
 DMF41gの代わりに1-プロパノール(関東化学(株)製)80gを溶媒として用いたこと、および原料が溶媒に溶け切らなかったため上澄みを使用したこと以外は、実施例1と同様にして発光性ナノカーボンを製造した。
[実施例6]
 DMF41gの代わりに水38gを溶媒として用いたこと以外は、実施例1と同様にして、発光性ナノカーボンを製造した。
[Example 5]
A luminescent nanoparticle was prepared in the same manner as in Example 1 except that 80 g of 1-propanol (manufactured by Kanto Chemical Co., Ltd.) was used as a solvent instead of 41 g of DMF, and the supernatant was used because the raw material was not completely dissolved in the solvent. Carbon was produced.
[Example 6]
A luminescent nanocarbon was produced in the same manner as in Example 1 except that 38 g of water was used as a solvent instead of 41 g of DMF.
 合成した実施例1から実施例6の発光性ナノカーボンそれぞれを回収した後、乾燥させて水中に0.01重量%(実施例1、2および6)または0.05重量%(実施例3、4および5)で分散させた分散液の室内自然光下における色を観察した結果を表1に示す。 After collecting the synthesized luminescent nanocarbons of Examples 1 to 6, each was dried and dried in water at 0.01% by weight (Examples 1, 2, and 6) or 0.05% by weight (Examples 3, 2, and 6). Table 1 shows the results of observing the color of the dispersions dispersed in 4) and 5) under room natural light.
Figure JPOXMLDOC01-appb-T000001

 表1に示すように、ソルボサーマル法により発光性ナノカーボンを合成する場合、原料溶液に用いる溶媒の種類および加熱時間が発光性ナノカーボンの光学特性に影響することがわかった。
Figure JPOXMLDOC01-appb-T000001

As shown in Table 1, when the luminescent nanocarbon was synthesized by the solvothermal method, it was found that the type of the solvent used for the raw material solution and the heating time affected the optical properties of the luminescent nanocarbon.
(吸収スペクトルの測定)
 室内自然光下における色を観察した実施例1から実施例6の各分散液について、日立ハイテクサイエンス社製分光光度計F-2700を用いて吸収スペクトルを測定し、各発光性ナノカーボンの吸光特性を調べた。図1(a)から図1(f)に示す吸収スペクトルのグラフは、横軸が波長(Wavelength/nm)を示し、縦軸が吸光度(Absorbance/-)を示している。
(Measurement of absorption spectrum)
With respect to each of the dispersions of Examples 1 to 6 in which the color was observed under room natural light, the absorption spectrum was measured using a spectrophotometer F-2700 manufactured by Hitachi High-Technologies Corporation, and the absorption characteristics of each luminescent nanocarbon were measured. Examined. In the graphs of the absorption spectra shown in FIGS. 1A to 1F, the horizontal axis indicates the wavelength (Wavelength / nm), and the vertical axis indicates the absorbance (Absorbance / −).
 図1(a)に示すように、DMFを溶媒に用いて合成した発光性ナノカーボンの吸収スペクトルでは、波長350nmから550nmにかけて幅広い吸収が確認された。また、反応時間の増加に伴って、吸光度が大きくなることがわかった。 吸収 As shown in FIG. 1 (a), in the absorption spectrum of the luminescent nanocarbon synthesized using DMF as a solvent, broad absorption was confirmed from a wavelength of 350 nm to 550 nm. In addition, it was found that the absorbance increased as the reaction time increased.
 図1(b)に示すように、ホルムアミドを溶媒に用いて合成した発光性ナノカーボンの吸収スペクトルでは、波長320nm付近に強い吸収ピークが確認され、波長550nm付近にも弱い吸収ピークが確認された。 As shown in FIG. 1 (b), in the absorption spectrum of the luminescent nanocarbon synthesized using formamide as a solvent, a strong absorption peak was confirmed at a wavelength of about 320 nm, and a weak absorption peak was also confirmed at a wavelength of about 550 nm. .
 図1(c)に示すように、メタノールを溶媒に用いて合成した発光性ナノカーボンの吸収スペクトルでは、波長330nm付近に強い吸収ピークが確認され、波長400nm付近および450nm付近にも弱い吸収ピークが確認された。また、反応時間の増加に伴って、吸光度が小さくなることがわかった。 As shown in FIG. 1 (c), in the absorption spectrum of the luminescent nanocarbon synthesized using methanol as a solvent, a strong absorption peak was confirmed at a wavelength of about 330 nm, and weak absorption peaks were also found at a wavelength of about 400 nm and about 450 nm. confirmed. In addition, it was found that the absorbance decreased as the reaction time increased.
 図1(d)に示すように、エタノールを溶媒に用いて合成した発光性ナノカーボンの吸収スペクトルでは、波長350nm付近および390nm付近に強い吸収ピークが確認され、波長450nm付近にもショルダーピークが確認された。また、反応時間の増加に伴って、吸光度が大きくなることがわかった。 As shown in FIG. 1 (d), in the absorption spectrum of the luminescent nanocarbon synthesized using ethanol as a solvent, strong absorption peaks were observed around 350 nm and 390 nm, and a shoulder peak was also observed around 450 nm. Was done. In addition, it was found that the absorbance increased as the reaction time increased.
 図1(e)に示すように、1-プロパノールを溶媒に用いて合成した発光性ナノカーボンの吸収スペクトルでは、波長350nm付近および390nm付近に強い吸収ピークが確認され、波長450nm付近にもショルダーピークが確認された。 As shown in FIG. 1 (e), in the absorption spectrum of the luminescent nanocarbon synthesized using 1-propanol as a solvent, strong absorption peaks were observed at around 350 nm and 390 nm, and a shoulder peak was also observed at around 450 nm. Was confirmed.
 図1(f)に示すように、水を溶媒に用いて合成した発光性ナノカーボンの吸収スペクトルでは、波長330nm付近に強い吸収ピークが確認され、波長400nm付近および600nm付近にも弱い吸収ピークが確認された。 As shown in FIG. 1 (f), in the absorption spectrum of the luminescent nanocarbon synthesized using water as a solvent, a strong absorption peak was confirmed at a wavelength of about 330 nm, and weak absorption peaks were also found at a wavelength of about 400 nm and about 600 nm. confirmed.
 図1(a)から図1(f)に示す吸収スペクトルの比較により、発光性ナノカーボンをソルボサーマル法により合成する場合、原料溶液中の溶媒の種類を変化させることにより、化学構造の異なる発光性ナノカーボンが得られることが示唆された。 By comparing the absorption spectra shown in FIGS. 1 (a) to 1 (f), when the luminescent nanocarbon is synthesized by the solvothermal method, by changing the type of the solvent in the raw material solution, the luminescence having different chemical structures is obtained. It was suggested that conductive nanocarbon could be obtained.
(励起・発光スペクトル測定)
 図2(a)から図2(f)に、実施例1から実施例6の発光性ナノカーボンのうち、反応ステップの加熱時間を3時間としたものの励起・発光スペクトル測定により得られた等高線プロットのグラフを示す。これらのグラフは、横軸が発光波長(Emission wavelength /nm)、縦軸が励起波長(Excitation wavelength /nm)、濃淡がフォトルミネッセンス強度(PL intensity)を示している。
(Excitation / emission spectrum measurement)
FIGS. 2A to 2F show contour plots obtained by measurement of excitation and emission spectra of the luminescent nanocarbons of Examples 1 to 6 in which the heating time of the reaction step was set to 3 hours. 3 shows a graph. In these graphs, the horizontal axis indicates the emission wavelength (Emission wavelength / nm), the vertical axis indicates the excitation wavelength (Excitation wavelength / nm), and the shading indicates the photoluminescence intensity (PL intensity).
 図2(a)、図2(c)、図2(d)および図2(e)のグラフから、DMF、メタノール、エタノールおよび1-プロパノールを溶媒とした発光性ナノカーボンは、励起波長370nm付近、発光波長450nm付近にピークがある点、および励起波長450nm付近、発光波長600nm付近までのより長波長側の範囲でも発光が確認できる点において、励起・発光スペクトルの特性が類似することがわかった。 From the graphs of FIGS. 2 (a), 2 (c), 2 (d) and 2 (e), it can be seen that the luminescent nanocarbon using DMF, methanol, ethanol and 1-propanol as solvents has an excitation wavelength of around 370 nm. It can be seen that the characteristics of the excitation and emission spectra are similar in that there is a peak near the emission wavelength of 450 nm and that emission can be confirmed even in the longer wavelength range up to the excitation wavelength of 450 nm and the emission wavelength of around 600 nm. .
 一方、図2(b)に示す、ホルムアミドを溶媒とした発光性ナノカーボンは、励起波長350nm、発光波長450nm付近にピークがあり、より短波長側の励起波長300nm、発光波長350nm付近まで発光が確認できた。 On the other hand, the luminescent nanocarbon using formamide as a solvent shown in FIG. 2B has a peak at an excitation wavelength of 350 nm and an emission wavelength of about 450 nm, and emits light at an excitation wavelength of 300 nm and an emission wavelength of about 350 nm on the shorter wavelength side. It could be confirmed.
 また、図2(f)に示す、水を溶媒として合成した発光性ナノカーボンは、励起波長350nm、発光波長450nm付近のピークが確認でき、発光を示す波長範囲が狭いことがわかった。 In addition, in the luminescent nanocarbon synthesized using water as a solvent shown in FIG. 2 (f), peaks near an excitation wavelength of 350 nm and an emission wavelength of 450 nm were confirmed, and it was found that the wavelength range in which luminescence was emitted was narrow.
 以上のように、ソルボサーマル合成に用いる原料溶液の溶媒の種類により、励起・発光特性の異なる発光性ナノカーボンが得られることが分かった。特に、溶媒として水を用いることにより、アミド化合物やアルコール化合物を用いた場合とは異なる特徴的な励起・発光特性を備えた発光性ナノカーボンが得られることが分かった。 As described above, it was found that luminescent nanocarbons having different excitation and emission characteristics can be obtained depending on the type of the solvent of the raw material solution used for the solvothermal synthesis. In particular, it was found that by using water as a solvent, a luminescent nanocarbon having characteristic excitation and emission characteristics different from those obtained when an amide compound or an alcohol compound was used was obtained.
 そこで、原料溶液中の溶媒を複数の成分からなる混合溶媒とし、混合溶媒中の水の含有量(添加率)の違いがソルボサーマル合成により得られる発光性ナノカーボンの光学特性に及ぼす影響を検討するために、混合溶媒を用いて発光性ナノカーボンを製造した。 Therefore, the solvent in the raw material solution was used as a mixed solvent consisting of multiple components, and the effect of the difference in the water content (addition rate) in the mixed solvent on the optical properties of the luminescent nanocarbon obtained by solvothermal synthesis was examined. In order to do this, a luminescent nanocarbon was produced using a mixed solvent.
[実施例7 混合溶媒(DMF+水)]
 クエン酸無水物(Sigma-Aldrich社製、炭素源化合物)0.4gおよび尿素(東京化成工業(株)製、窒素源化合物)0.8gに、DMF(ナカライテスク(株)製、溶媒)と水との混合溶媒10mLを加えて溶解させて原料溶液を調製した。
 表2に示す水の含有量に調整した混合溶媒を用いて調製した各原料溶液9mLを容量約10mLのSUS316製オートクレーブに封入し、電気炉にて200℃条件下において3時間加熱し、ソルボサーマル合成により発光性ナノカーボンを製造した。
[Example 7 mixed solvent (DMF + water)]
0.4 g of citric anhydride (Sigma-Aldrich, carbon source compound) and 0.8 g of urea (Tokyo Kasei Kogyo Co., Ltd., nitrogen source compound) were mixed with DMF (Nacalai Tesque, solvent, solvent). A raw material solution was prepared by adding and dissolving 10 mL of a mixed solvent with water.
9 mL of each raw material solution prepared using the mixed solvent adjusted to the water content shown in Table 2 was sealed in a SUS316 autoclave having a capacity of about 10 mL, and heated in an electric furnace at 200 ° C. for 3 hours. Luminescent nanocarbon was produced by synthesis.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 製造した各発光性ナノカーボン溶液は、MWCO100-500Daの再生セルロース半透膜(Spectra Por社製を用いて約20時間透析を行って100-500Da未満の低分子成分を除去した。その後、孔径220nmのナイロン製シリンジフィルター(Rephile Bioscience Ltd.社製)を用いて加圧濾過を行って粗大な副生成物を除去した。このようにして、発光性ナノカーボンを精製した。 Each of the manufactured luminescent nanocarbon solutions was dialyzed for about 20 hours using a regenerated cellulose semipermeable membrane (manufactured by Spectra @ Por) having a MWCO of 100 to 500 Da to remove low molecular components having a molecular weight of less than 100 to 500 Da. Pressure filtration was performed using a nylon syringe filter (manufactured by Rephile Bioscience Ltd.) to remove coarse by-products, and thus the luminescent nanocarbon was purified.
(透過電子顕微鏡(TEM)観察)
 水含有量の異なる混合溶媒を用いてソルボサーマル合成した発光性ナノカーボンについて、TEM観察を行って粒径を調べた。TEM観察には、日立ハイテクノロジーズ製のH-7650を用いた。TEMグリッドには、支持膜付きTEMグリッド(応研商事(株)製)を真空中で2秒間アーク処理することにより表面を親水化したものを用いた。なお、TEM観察の測定試料としては、精製前の発光性ナノカーボンを用いた。
(Transmission electron microscope (TEM) observation)
The luminescent nanocarbons synthesized by solvothermal using mixed solvents having different water contents were subjected to TEM observation to examine the particle diameter. H-7650 manufactured by Hitachi High-Technologies Corporation was used for TEM observation. As the TEM grid, a TEM grid with a supporting film (manufactured by Oken Shoji Co., Ltd.) whose surface was hydrophilized by performing an arc treatment in vacuum for 2 seconds was used. As a measurement sample for TEM observation, luminescent nanocarbon before purification was used.
 TEM観察の結果、実施例7-1から実施例7-9の発光性ナノカーボンはいずれも、粒子径が1~2nm程度の球形のナノ粒子として存在することがわかった。また、各実施例の発光性ナノカーボンは、メジアン径(d50)が1.2nm~1.4nmであった。これらのことから、DMFと水との混合溶媒中の水含有量は、合成(製造)される発光性ナノカーボンの形状および粒径に影響しないことがわかった。 As a result of TEM observation, it was found that all of the luminescent nanocarbons of Examples 7-1 to 7-9 existed as spherical nanoparticles having a particle diameter of about 1 to 2 nm. Further, the luminescent nanocarbon of each example had a median diameter (d50) of 1.2 nm to 1.4 nm. From these results, it was found that the water content in the mixed solvent of DMF and water did not affect the shape and particle size of the synthesized (produced) luminescent nanocarbon.
(吸収スペクトルの測定)
 実施例7-1から7-9の発光性ナノカーボンの吸光特性を調べるため、発光性ナノカーボンそれぞれを回収し、MWCO100-500Daの再生セルロース半透膜(Spectra Por社製)を用いて20時間透析を行い、100-500Da未満の低分子成分を除去し、孔径220nmのナイロン製シリンジフィルター(Rephile Bioscience社製)を用いて加圧ろ過を行い、粗大な副生成物を除去した後に乾燥させ、水中に0.01重量%で分散させた水分散液を調製した。日立ハイテクサイエンス社製分光光度計F-2700を用いて各水分散液の吸収スペクトルを測定した結果を図3に示す。同図に示す吸収スペクトルのグラフでは、横軸が波長(Wavelength/nm)を示し、縦軸が吸光度(Absorbance/-)を示している。
(Measurement of absorption spectrum)
In order to examine the light absorption properties of the luminescent nanocarbons of Examples 7-1 to 7-9, each of the luminescent nanocarbons was recovered and used for 20 hours using a regenerated cellulose semipermeable membrane (manufactured by Spectra Por) having a MWCO of 100 to 500 Da. Dialysis is performed, low molecular components of less than 100-500 Da are removed, pressure filtration is performed using a nylon syringe filter (manufactured by Rephile Bioscience) having a pore size of 220 nm, and after removing coarse by-products, drying is performed. An aqueous dispersion dispersed in water at 0.01% by weight was prepared. FIG. 3 shows the results of measuring the absorption spectrum of each aqueous dispersion using a spectrophotometer F-2700 manufactured by Hitachi High-Tech Science Corporation. In the graph of the absorption spectrum shown in the figure, the horizontal axis represents wavelength (Wavelength / nm), and the vertical axis represents absorbance (Absorbance /-).
 図3に示すように、水の含有量が0.1重量%から20重量%の混合溶媒を用いた発光性ナノカーボンは340nm付近および430nm付近に吸収スペクトルのピークが認められる。このうち、430nm付近のピークは混合溶媒中の水の含有量が大きくなるに伴って、短波長側にシフトしていくことがわかった。また、混合溶媒中の水の含有量が50重量%以上となると430nm付近の吸収スペクトルのピークはみられなくなることがわかった。 発 光 As shown in FIG. 3, the peak of the absorption spectrum is observed around 340 nm and 430 nm in the luminescent nanocarbon using the mixed solvent having the water content of 0.1% by weight to 20% by weight. Among these, it was found that the peak around 430 nm shifted to the shorter wavelength side as the content of water in the mixed solvent increased. Further, it was found that when the content of water in the mixed solvent was 50% by weight or more, the peak of the absorption spectrum around 430 nm was not observed.
 この結果から、DMFと水とを混合溶媒として用いることにより、各単独の溶媒では顕著に認められない吸収スペクトルのピーク(430nm付近、図1(a)、図1(f)参照)が現れること、および当該ピークの大きさは水の含有量によって制御可能であることがわかった。 From these results, it can be seen that by using DMF and water as a mixed solvent, peaks of the absorption spectrum (around 430 nm, see FIGS. 1 (a) and 1 (f)) which are not remarkably recognized with each single solvent appear. , And the magnitude of the peak was found to be controllable by the water content.
(励起・発光スペクトル測定)
 図4(a)から図4(i)に実施例7-1から7-9の発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフを示す。これらグラフは、横軸が発光波長(Emission wavelength /nm)、縦軸が励起波長(Excitation wavelength /nm)、濃淡がフォトルミネッセンス強度(PL intensity)を示している。
(Excitation / emission spectrum measurement)
FIGS. 4A to 4I show graphs of contour plots obtained by measuring the excitation and emission spectra of the luminescent nanocarbons of Examples 7-1 to 7-9. In these graphs, the horizontal axis indicates the emission wavelength (Emission wavelength / nm), the vertical axis indicates the excitation wavelength (Excitation wavelength / nm), and the shading indicates the photoluminescence intensity (PL intensity).
 水の含有量が小さい混合溶媒を用いて合成した発光性ナノカーボンは、励起350nm、発光450nm付近および励起400nm付近、発光530nm付近に二つの発光ピークが確認された。水の含有量が0.5重量%以上10重量%以下で顕著に認められる励起400nm、発光530nm付近の発光ピーク(図4(b)から図4(e)参照)は、DMFまたは水を単独で用いた場合には顕著に認められないものである(図2(a)および図2(f)参照)。このことから、DMFと水とを混合溶媒として用いることにより、各単独の溶媒を用いた場合とは異なる励起発光特性を備えた発光性ナノカーボンが合成されたといえる。そして、混合溶媒を用いることにより現れる励起400nm付近、発光530nm付近の発光ピークは、混合溶媒中の水の含有量が20重量%より大きくなると、水の含有量が大きくなるにともなって徐々に小さくなり消滅することがわかった。このように、混合溶媒とすることにより現れた発光ピークは、水の含有量の増加に伴って連続的かつ徐々に変化する。したがって、所望の励起・発光特性を備えた発光性ナノカーボンを合成するために、DMFと水とからなる混合溶媒は有用であるといえる。 (2) In the light-emitting nanocarbon synthesized using the mixed solvent having a small water content, two light emission peaks were observed at around 350 nm, around 450 nm, around 400 nm, and around 530 nm. The emission peak around 400 nm excitation and 530 nm emission (see FIGS. 4 (b) to 4 (e)), which is remarkably observed when the water content is 0.5% by weight or more and 10% by weight or less, is obtained by using DMF or water alone. (FIG. 2 (a) and FIG. 2 (f)). From this, it can be said that by using DMF and water as a mixed solvent, a luminescent nanocarbon having an excited luminescence characteristic different from the case of using each single solvent was synthesized. When the content of water in the mixed solvent is larger than 20% by weight, the emission peaks around 400 nm and 530 nm of the excitation appearing by using the mixed solvent gradually decrease as the content of water increases. It turned out to disappear. As described above, the emission peak that appears when the mixed solvent is used changes continuously and gradually as the content of water increases. Therefore, it can be said that a mixed solvent composed of DMF and water is useful for synthesizing a luminescent nanocarbon having desired excitation / emission characteristics.
(FT-IRスペクトル測定)
 実施例7-1から実施例7-9の発光性ナノカーボンの化学構造を調べるために、KBr錠剤法による、FT-IRスペクトル測定を行った。測定装置には日本分光社製FT/IR-4200を用いた。測定用の錠剤試料は、乾燥した発光性ナノカーボン試料約0.5mgおよびKBr粉末(関東化学(株)製)50mg(0.05g)を乳鉢にて粉砕混合し、簡易錠剤成型機を用いて作製した。
(FT-IR spectrum measurement)
In order to examine the chemical structures of the luminescent nanocarbons of Examples 7-1 to 7-9, FT-IR spectrum measurement was performed by the KBr tablet method. As the measuring device, FT / IR-4200 manufactured by JASCO Corporation was used. A tablet sample for measurement was prepared by pulverizing and mixing about 0.5 mg of a dried luminescent nanocarbon sample and 50 mg (0.05 g) of KBr powder (manufactured by Kanto Chemical Co., Ltd.) in a mortar and using a simple tablet molding machine. Produced.
 図5は、水含有量が異なるDMFと水との混合溶媒中にてソルボサーマル合成した発光性ナノカーボンのFT-IRスペクトルを示すグラフである。同グラフの横軸は波数(Wave number/cm-1)を示している。出発原料(Starting material:クエン酸+尿素)のFT-IRスペクトルの測定結果は比較対象として示したものである。同図に示すように、混合溶媒中の水含有量が大きくなるにつれて、1400cm-1付近のC-H変角振動に帰属されるピークは増大し、1700cm-1のC=O伸縮振動に帰属されるピークは減少することがわかった。この結果から、混合溶媒中の水含有量を変化させることによって分子構造が変化した結果、合成された発光性ナノカーボンの発光特性が変化したと考えられる。 FIG. 5 is a graph showing FT-IR spectra of luminescent nanocarbons solvothermally synthesized in a mixed solvent of DMF and water having different water contents. The horizontal axis of the graph indicates the wave number (Wave number / cm -1 ). The measurement results of the FT-IR spectrum of the starting material (Starting material: citric acid + urea) are shown for comparison. As shown in the figure, as the water content in the mixed solvent increases, the peak attributable to the CH bending vibration near 1400 cm -1 increases, and the peak belongs to the C = O stretching vibration at 1700 cm -1. Peaks found to decrease. From these results, it is considered that the molecular structure was changed by changing the water content in the mixed solvent, and as a result, the luminescent properties of the synthesized luminescent nanocarbon were changed.
[実施例8 混合溶媒(メタノール+水)]
 実施例7のDMFの代わりにメタノールを用いて、発光性ナノカーボンを合成した。表3に示す水の含有量に調整したメタノールと水との混合溶媒それぞれについて、実施例7と同様にして、ソルボサーマル合成により発光性ナノカーボンを製造した。
製造した発光性ナノカーボン溶液は実施例7と同様にして精製した。
[Example 8 mixed solvent (methanol + water)]
Light emitting nanocarbon was synthesized using methanol instead of DMF of Example 7. For each mixed solvent of methanol and water adjusted to the water content shown in Table 3, luminescent nanocarbon was produced by solvothermal synthesis in the same manner as in Example 7.
The manufactured luminescent nanocarbon solution was purified in the same manner as in Example 7.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(透過電子顕微鏡(TEM)観察)
 発光性ナノカーボンの粒径を調べるために、実施例7と同様にしてTEM観察を行った。測定試料としては、精製前の発光性ナノカーボンを用いた。
(Transmission electron microscope (TEM) observation)
TEM observation was performed in the same manner as in Example 7 to check the particle size of the luminescent nanocarbon. A luminescent nanocarbon before purification was used as a measurement sample.
 TEM観察の結果、実施例8-1から実施例8-10の発光性ナノカーボンはいずれも、粒子径が1~2nm程度の球形のナノ粒子として存在することがわかった。また、各実施例の発光性ナノカーボンは、メジアン径(d50)が1.1~1.4nmであった。これらのことから、メタノールと水との混合溶媒中の水含有量を変化させることにより、製造される発光性ナノカーボンの形状および粒径はほとんど変化しないことがわかった。 As a result of TEM observation, it was found that all the luminescent nanocarbons of Examples 8-1 to 8-10 existed as spherical nanoparticles having a particle diameter of about 1 to 2 nm. Further, the luminescent nanocarbon of each example had a median diameter (d50) of 1.1 to 1.4 nm. From these results, it was found that changing the water content in the mixed solvent of methanol and water hardly changed the shape and particle size of the produced luminescent nanocarbon.
(吸収スペクトルの測定)
 実施例8-1から8-10の発光性ナノカーボンの吸光特性を調べるため、発光性ナノカーボンそれぞれを回収し、MWCO100-500Daの再生セルロース半透膜(Spectra Por社製)を用いて20時間透析を行い、100-500Da未満の低分子成分を除去し、孔径220nmのナイロン製シリンジフィルター(Rephile Bioscience社製)を用いて加圧ろ過を行い、粗大な副生成物を除去した後、乾燥させ水中に0.025重量%で分散させた水分散液を調製した。日立ハイテクサイエンス社製分光光度計F-2700を用いて各水分散液の吸収スペクトルを測定した結果を図6に示す。同図に示す吸収スペクトルのグラフでは、横軸が波長(Wavelength/nm)を示し、縦軸が吸光度(Absorbance/-)を示している。
(Measurement of absorption spectrum)
In order to examine the light absorption properties of the luminescent nanocarbons of Examples 8-1 to 8-10, each of the luminescent nanocarbons was recovered and used for 20 hours using a regenerated cellulose semipermeable membrane (Spectra Por) having a MWCO of 100 to 500 Da. After dialysis, low molecular components of less than 100-500 Da were removed, and pressure filtration was performed using a nylon syringe filter (manufactured by Rephile Bioscience) having a pore size of 220 nm to remove coarse by-products, followed by drying. An aqueous dispersion dispersed in water at 0.025% by weight was prepared. FIG. 6 shows the results of measuring the absorption spectrum of each aqueous dispersion using a spectrophotometer F-2700 manufactured by Hitachi High-Tech Science Corporation. In the graph of the absorption spectrum shown in the figure, the horizontal axis represents wavelength (Wavelength / nm), and the vertical axis represents absorbance (Absorbance /-).
 図6に示すように、水の含有量が0.1重量%の混合溶媒を用いた発光性ナノカーボンは340nm付近および400nm付近に吸収スペクトルのピークが認められる。このうち、400nm付近のピークは混合溶媒中の水の含有量が大きくなるに伴って、徐々に小さくなることがわかった。また、混合溶媒中の水の含有量が50重量%以上となると400nm付近の吸収ピークはみられなくなることがわかった。 発 光 As shown in FIG. 6, in the luminescent nanocarbon using the mixed solvent having a water content of 0.1% by weight, absorption spectrum peaks are observed around 340 nm and 400 nm. Of these, it was found that the peak near 400 nm gradually decreased as the content of water in the mixed solvent increased. Further, it was found that when the content of water in the mixed solvent was 50% by weight or more, an absorption peak near 400 nm was not observed.
(励起・発光スペクトル測定)
 図7(a)から図7(j)に実施例8-1から8-10の発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフを示す。これらグラフは、横軸が発光波長(Emission wavelength /nm)、縦軸が励起波長(Excitation wavelength /nm)、濃淡がフォトルミネッセンス(PL intensity)を示している。
(Excitation / emission spectrum measurement)
FIGS. 7A to 7J show graphs of contour plots obtained by measuring the excitation and emission spectra of the luminescent nanocarbons of Examples 8-1 to 8-10. In these graphs, the horizontal axis indicates the emission wavelength (Emission wavelength / nm), the vertical axis indicates the excitation wavelength (Excitation wavelength / nm), and the shading indicates the photoluminescence (PL intensity).
 水の含有量が小さい混合溶媒を用いて合成した発光性ナノカーボンは、水の含有量0.1重量%から36重量%では、等高線プロットにより示されたグラフの形状が略一致することがわかった。水の含有量がこの範囲内の混合溶媒を用いることにより、略同じ励起・発光依存性をもった発光性ナノカーボンが製造されるといえる。また、混合溶媒中の水の含有量50重量%以上では400nm以下の短波長の励起による430nm付近の発光が強まることがわかった。 The luminescent nanocarbon synthesized using the mixed solvent having a small water content shows that the shape of the graph shown by the contour plot substantially coincides with the water content of 0.1% by weight to 36% by weight. Was. By using a mixed solvent having a water content within this range, it can be said that luminescent nanocarbons having substantially the same excitation / emission dependence are produced. In addition, it was found that when the content of water in the mixed solvent was 50% by weight or more, the emission at around 430 nm was enhanced by excitation with a short wavelength of 400 nm or less.
 メタノールと水との混合溶媒を用いた場合も、メタノールまたは水を単独で用いた場合には顕著に認められない(図2(c)および図2(f)参照)、励起400nm付近、発光530nm付近の発光ピークが認められた(図7(a)~図7(g)参照)。そして、この発光ピークは水の含有量が50重量%以上となると小さくなることがわかった。 Also when using a mixed solvent of methanol and water, methanol or water alone is not remarkably observed (see FIGS. 2 (c) and 2 (f)), excitation around 400 nm, emission 530 nm. Near emission peaks were observed (see FIGS. 7A to 7G). It was found that this emission peak became smaller when the water content was 50% by weight or more.
(FT-IRスペクトル測定)
 実施例8-1から8-10の発光性ナノカーボンの化学構造を調べるために、実施例7と同様にしてFT-IRスペクトル測定を行った。
 図8は、水含有量が異なるメタノールと水との混合溶媒中にてソルボサーマル合成した発光性ナノカーボンのFT-IRスペクトルを示すグラフである。同グラフの横軸は波数(Wave number/cm-1)を示している。出発原料(Starting material:クエン酸+尿素)のFT-IRスペクトルの測定結果を比較対象として示した。同図に示すように、混合溶媒中の水含有量が大きくなるにつれて、1400cm-1付近のC-H変角振動に帰属されるピークおよび1700cm-1のC=O伸縮振動に帰属されるピークが増大するとともに、1600cm-1のN-H変角振動に帰属されるピークが減少することがわかった。この結果から、混合溶媒中の水含有量を変化させることによって分子構造が変化した結果として、光学特性の異なる発光性ナノカーボンが得られたと考えられる。
(FT-IR spectrum measurement)
In order to examine the chemical structures of the luminescent nanocarbons of Examples 8-1 to 8-10, FT-IR spectrum measurement was performed in the same manner as in Example 7.
FIG. 8 is a graph showing FT-IR spectra of luminescent nanocarbons solvothermally synthesized in a mixed solvent of methanol and water having different water contents. The horizontal axis of the graph indicates the wave number (Wave number / cm -1 ). The measurement results of the FT-IR spectrum of the starting material (Starting material: citric acid + urea) are shown for comparison. As shown in the figure, as the water content in the mixed solvent is increased, peak attributed to C = O stretching vibration peak and 1700 cm -1 attributable to C-H bending vibration near 1400 cm -1 It was found that the peak attributed to the NH bending vibration at 1600 cm -1 decreased with increasing. From these results, it is considered that as a result of changing the molecular structure by changing the water content in the mixed solvent, luminescent nanocarbons having different optical properties were obtained.
[実施例9 混合溶媒(NMP+水)]
 実施例7のDMFの代わりにN-メチル-2-ピロリドン(NMP)を用いて、発光性ナノカーボンを合成した。表4に示す水の含有量に調整したNMPと水との混合溶媒それぞれについて、実施例7と同様にして、ソルボサーマル合成により発光性ナノカーボンを製造した。製造した発光性ナノカーボン溶液は実施例7と同様にして精製した。
[Example 9 mixed solvent (NMP + water)]
A luminescent nanocarbon was synthesized using N-methyl-2-pyrrolidone (NMP) instead of DMF of Example 7. For each mixed solvent of NMP and water adjusted to the water content shown in Table 4, luminescent nanocarbon was produced by solvothermal synthesis in the same manner as in Example 7. The manufactured luminescent nanocarbon solution was purified in the same manner as in Example 7.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 合成した実施例9-1から実施例9-10の発光性ナノカーボンそれぞれを回収した後、乾燥させて水中に0.01重量%で分散させた分散液の室内自然光下における色を観察した結果、混合溶媒中の水の含有量の増加に伴って黄褐色が薄くなっていくことがわかった。また、紫外線光下における発光を観察した結果、混合溶媒中の水の含有量の増加に伴って緑色発光から青色発光へと変化することがわかった。 After collecting each of the synthesized luminescent nanocarbons of Example 9-1 to Example 9-10, the color was observed under room natural light of a dispersion obtained by drying and dispersing 0.01% by weight in water. It was found that the yellowish brown color became thinner as the content of water in the mixed solvent increased. In addition, as a result of observing light emission under ultraviolet light, it was found that green light was changed to blue light as the content of water in the mixed solvent was increased.
(吸収スペクトルの測定)
 実施例9-1から9-10の発光性ナノカーボンの吸光特性を調べるため、実施例7と同様の方法で精製し、発光性ナノカーボンを水中に0.01重量%で分散させた水分散液を調製した。日立ハイテクサイエンス社製分光光度計F-2700を用いて各水分散液の吸収スペクトルを測定した結果を図9に示す。同図に示す吸収スペクトルのグラフでは、横軸が波長(Wavelength/nm)を示し、縦軸が吸光度(Absorbance/-)を示している。
(Measurement of absorption spectrum)
In order to examine the light absorption characteristics of the luminescent nanocarbons of Examples 9-1 to 9-10, purification was carried out in the same manner as in Example 7, and the luminescent nanocarbon was dispersed in water at 0.01% by weight in water. A liquid was prepared. FIG. 9 shows the results of measuring the absorption spectrum of each aqueous dispersion using a spectrophotometer F-2700 manufactured by Hitachi High-Tech Science Corporation. In the graph of the absorption spectrum shown in the figure, the horizontal axis represents wavelength (Wavelength / nm), and the vertical axis represents absorbance (Absorbance /-).
 図9に示すように、水の含有量が0.1重量%から20重量%の混合溶媒を用いた発光性ナノカーボンは340nm付近、390nm付近および450nm付近に吸収スペクトルのピークが認められる。混合溶媒中の水の含有量が50重量%以上となると、340nm付近の吸収ピークは大きくなり、450nm付近の吸収ピークは小さくなることがわかった。また、340nm付近の吸収ピークは、水の含有量が大きくなるにつれて、徐々に短波長側にシフトしていることがわかった。 示 す As shown in FIG. 9, in the case of a luminescent nanocarbon using a mixed solvent having a water content of 0.1% by weight to 20% by weight, absorption spectrum peaks are observed at around 340 nm, 390 nm and 450 nm. It was found that when the content of water in the mixed solvent was 50% by weight or more, the absorption peak near 340 nm increased and the absorption peak near 450 nm decreased. Further, it was found that the absorption peak near 340 nm gradually shifted to the shorter wavelength side as the water content increased.
(励起・発光スペクトル測定)
 図10(a)から図10(j)に実施例9-1から9-10の発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフを示す。これらグラフは、横軸が発光波長(Emission wavelength /nm)、縦軸が励起波長(Excitation wavelength /nm)、濃淡がフォトルミネッセンス(PL intensity)を示している。
(Excitation / emission spectrum measurement)
FIGS. 10 (a) to 10 (j) show graphs of contour plots obtained by measuring the excitation and emission spectra of the luminescent nanocarbons of Examples 9-1 to 9-10. In these graphs, the horizontal axis indicates the emission wavelength (Emission wavelength / nm), the vertical axis indicates the excitation wavelength (Excitation wavelength / nm), and the shading indicates the photoluminescence (PL intensity).
 水の含有量が小さい混合溶媒を用いて合成した発光性ナノカーボンは、混合溶媒中の水の含有量が小さいと、励起350nm、発光450nm付近に発光ピークを持ち、励起450nm、発光520nm付近でも発光を示すことがわかった。混合溶媒中の水の含有量の増加に伴って、励起450nm、発光520nm付近の発光は徐々に弱まり、水の含有量50重量%以上ではほとんど確認できなくなることがわかった。 When the content of water in the mixed solvent is small, the luminescent nanocarbon synthesized using the mixed solvent having a small water content has an emission peak near 350 nm for excitation and 450 nm for emission, and also has a peak for emission near 450 nm and 520 nm for emission. It was found to emit light. As the content of water in the mixed solvent increased, the emission near the excitation of 450 nm and the emission of 520 nm gradually weakened, and it was found that almost no confirmation was possible when the content of water was 50% by weight or more.
[実施例10 混合溶媒(DMA+水)]
 実施例7のDMFの代わりにN,N-ジメチルアセトアミド(DMA)を用いて、発光性ナノカーボンを合成した。表5に示す水の含有量に調整したDMAと水との混合溶媒それぞれについて、実施例7と同様にして、ソルボサーマル合成により発光性ナノカーボンを製造した。製造した発光性ナノカーボン溶液は実施例7と同様にして精製した。
[Example 10 mixed solvent (DMA + water)]
A luminescent nanocarbon was synthesized using N, N-dimethylacetamide (DMA) instead of DMF of Example 7. Luminescent nanocarbon was produced by solvothermal synthesis in the same manner as in Example 7 for each of the mixed solvents of DMA and water adjusted to the water contents shown in Table 5. The manufactured luminescent nanocarbon solution was purified in the same manner as in Example 7.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 合成した実施例10-1から実施例10-10の発光性ナノカーボンそれぞれを回収した後、乾燥させて水中に0.01重量%で分散させた分散液の室内自然光下における色を観察した結果、混合溶媒中の水の含有量の増加に伴って黄褐色が薄くなっていくことがわかった。また、紫外線光下における発光を観察した結果、混合溶媒中の水の含有量の増加に伴って緑色発光から青色発光へと変化することがわかった。 After collecting the synthesized luminescent nanocarbons of Examples 10-1 to 10-10, the color of the dispersions dried and dispersed in water at 0.01% by weight was observed under room natural light. It was found that the yellowish brown color became thinner as the content of water in the mixed solvent increased. In addition, as a result of observing light emission under ultraviolet light, it was found that green light was changed to blue light as the content of water in the mixed solvent was increased.
(吸収スペクトルの測定)
 実施例10-1から10-10の発光性ナノカーボンの吸光特性を調べるため、発光性ナノカーボンそれぞれを回収し、実施例7と同様の方法で精製し、発光性ナノカーボンを水中に0.01重量%で分散させた水分散液を調製した。日立ハイテクサイエンス社分光光度計F-2700を用いて各水分散液の吸収スペクトルを測定した結果を図11に示す。同図に示す吸収スペクトルのグラフでは、横軸が波長(Wavelength/nm)を示し、縦軸が吸光度(Absorbance/-)を示している。
(Measurement of absorption spectrum)
In order to examine the light absorption properties of the luminescent nanocarbons of Examples 10-1 to 10-10, each of the luminescent nanocarbons was recovered, purified by the same method as in Example 7, and the luminescent nanocarbon was dissolved in water at a concentration of 0.1 mM. An aqueous dispersion dispersed at 01% by weight was prepared. FIG. 11 shows the results of measuring the absorption spectrum of each aqueous dispersion using a spectrophotometer F-2700 manufactured by Hitachi High-Tech Science Corporation. In the graph of the absorption spectrum shown in the figure, the horizontal axis represents wavelength (Wavelength / nm), and the vertical axis represents absorbance (Absorbance /-).
 図11に示すように、水の含有量0.1重量%から20重量%の混合溶媒を用いた発光性ナノカーボンは340nm付近および410nm付近に吸収スペクトルのピークが認められる。混合溶媒中の水の含有量50重量%以上では、340nm付近のピークは大きくなり、410nm付近のピークは小さくなることがわかった。また、340nm付近のピークは、水の含有量が大きくなるにつれて、徐々に短波長側にシフトすることがわかった。 示 す As shown in FIG. 11, in the luminescent nanocarbon using the mixed solvent having a water content of 0.1% by weight to 20% by weight, absorption spectrum peaks are observed around 340 nm and 410 nm. It was found that when the content of water in the mixed solvent was 50% by weight or more, the peak around 340 nm increased and the peak around 410 nm decreased. Further, it was found that the peak around 340 nm gradually shifted to the shorter wavelength side as the water content increased.
(励起・発光スペクトル測定)
 図12(a)から図12(j)に実施例10-1から10-10の発光性ナノカーボンの励起・発光スペクトル測定により得られた等高線プロットのグラフを示す。これらグラフは、横軸が発光波長(Emission wavelength /nm)、縦軸が励起波長(Excitation wavelength /nm)、濃淡がフォトルミネッセンス(PL intensity)を示している。
(Excitation / emission spectrum measurement)
FIGS. 12A to 12J show graphs of contour plots obtained by measuring the excitation and emission spectra of the luminescent nanocarbons of Examples 10-1 to 10-10. In these graphs, the horizontal axis indicates the emission wavelength (Emission wavelength / nm), the vertical axis indicates the excitation wavelength (Excitation wavelength / nm), and the shading indicates the photoluminescence (PL intensity).
 水の含有量が小さい混合溶媒を用いて合成した発光性ナノカーボンは、溶媒中の水の濃度の低い実施例では、励起350nm、発光450nm付近に発光ピークを持ち、励起450nm、発光520nm付近でも発光を示すことがわかった。励起450nm、発光520nm付近の発光は、溶媒中の水の含有量が大きくなるに伴って徐々に弱まり、水の含有量50重量%以上ではほとんど確認できなくなることがわかった。 The luminescent nanocarbon synthesized using the mixed solvent having a small water content has an emission peak at around 350 nm and around 450 nm in the example having a low concentration of water in the solvent, and also at around around 450 nm and around 520 nm. It was found to emit light. It was found that the light emission near the excitation of 450 nm and the light emission of 520 nm gradually weakened as the water content in the solvent increased, and was hardly confirmed when the water content was 50% by weight or more.
 本発明は、照明やディスプレイ、光通信デバイス、低毒性であることが要求される生体用の蛍光プローブ等に用いられる発光性ナノカーボンの製造方法として利用することができる。 The present invention can be used as a method for producing luminescent nanocarbon used for lighting, displays, optical communication devices, fluorescent probes for living organisms that require low toxicity, and the like.

Claims (9)

  1.  炭素源化合物および窒素源化合物を含有する原料溶液を反応させる反応ステップを備えた発光性ナノカーボン製造方法において、
     前記原料溶液の溶媒が二種以上の溶媒を含有する混合溶媒であることを特徴とする、発光性ナノカーボン製造方法。
    A method for producing a luminescent nanocarbon comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound,
    A method for producing a luminescent nanocarbon, wherein the solvent of the raw material solution is a mixed solvent containing two or more solvents.
  2.  前記混合溶媒が水を含有している、
    請求項1に記載の発光性ナノカーボン製造方法。
    The mixed solvent contains water,
    The method for producing luminescent nanocarbon according to claim 1.
  3.  前記混合溶媒が、水とアミド化合物とからなる混合溶媒、水とアルコール化合物とからなる混合溶媒、水とジメチルスルホキシドとからなる混合溶媒、または、水とアセトニトリルとからなる混合溶媒である、
    請求項1に記載の発光性ナノカーボン製造方法。
    The mixed solvent is a mixed solvent of water and an amide compound, a mixed solvent of water and an alcohol compound, a mixed solvent of water and dimethyl sulfoxide, or a mixed solvent of water and acetonitrile.
    The method for producing luminescent nanocarbon according to claim 1.
  4.  前記アミド化合物がN,Nジメチルホルムアミド、N-メチル-2-ピロリドンまたはN,N-ジメチルアセトアミドであり、
     前記アルコール化合物がメタノールである、
    請求項3に記載の発光性ナノカーボン製造方法。
    The amide compound is N, N dimethylformamide, N-methyl-2-pyrrolidone or N, N-dimethylacetamide;
    The alcohol compound is methanol,
    The method for producing a luminescent nanocarbon according to claim 3.
  5.  前記炭素源化合物がクエン酸であり、前記窒素源化合物が尿素である
    請求項1から4のいずれか一項に記載の発光性ナノカーボン製造方法。
    The method for producing luminescent nanocarbon according to any one of claims 1 to 4, wherein the carbon source compound is citric acid, and the nitrogen source compound is urea.
  6.  前記反応ステップがソルボサーマル合成法により発光性ナノカーボンを合成する、
    請求項1から5のいずれか一項に記載の発光性ナノカーボン製造方法。
    The reaction step synthesizes a luminescent nanocarbon by a solvothermal synthesis method,
    The method for producing a luminescent nanocarbon according to any one of claims 1 to 5.
  7.  炭素源化合物および窒素源化合物を含有する原料溶液を反応容器中で反応させる反応ステップを備えた発光性ナノカーボン製造方法において、
     前記反応ステップにおける原料溶液中の溶媒を異ならせることにより、複数の発光性ナノカーボンを製造し、
     複数の前記発光性ナノカーボンの発光特性を評価し、
     発光性ナノカーボンの発光特性を調整することを特徴とする、発光性ナノカーボン製造方法。
    A method for producing a luminescent nanocarbon comprising a reaction step of reacting a raw material solution containing a carbon source compound and a nitrogen source compound in a reaction vessel,
    By varying the solvent in the raw material solution in the reaction step, to produce a plurality of luminescent nanocarbon,
    Evaluate the luminescent properties of the plurality of luminescent nanocarbons,
    A method for producing a luminescent nanocarbon, comprising adjusting the luminescent properties of the luminescent nanocarbon.
  8.  前記原料溶液中の前記溶媒が、水を含む混合溶媒であり、
     前記反応ステップにおける前記混合溶媒中の水の含有量を異ならせることにより、複数の発光性ナノカーボンを製造する、
    請求項7に記載の発光性ナノカーボン製造方法。
    The solvent in the raw material solution is a mixed solvent containing water,
    By varying the content of water in the mixed solvent in the reaction step, to produce a plurality of luminescent nanocarbon,
    A method for producing a luminescent nanocarbon according to claim 7.
  9.  前記原料溶液中の前記溶媒が、水とN,Nジメチルホルムアミドとからなる混合溶媒、水とN-メチル-2-ピロリドンとからなる混合溶媒、水とN,N-ジメチルアセトアミドとからなる混合溶媒または水とメタノールとからなる混合溶媒であり、
     前記反応ステップにおける前記混合溶媒中の水の含有量50重量%未満として、励起400nm付近、発光530nm付近の発光ピークを有する発光性ナノカーボンを合成し、
     前記反応ステップにおける前記混合溶媒中の水の含有量50重量%以上として、励起400nm付近、発光530nm付近の発光ピークを有さない発光性ナノカーボンを合成する、
    請求項8に記載の発光性ナノカーボン製造方法。
     
    The solvent in the raw material solution is a mixed solvent of water and N, N-dimethylformamide, a mixed solvent of water and N-methyl-2-pyrrolidone, and a mixed solvent of water and N, N-dimethylacetamide Or a mixed solvent consisting of water and methanol,
    Assuming that the content of water in the mixed solvent in the reaction step is less than 50% by weight, a luminescent nanocarbon having an emission peak around 400 nm and emission around 530 nm is synthesized.
    Assuming that the content of water in the mixed solvent in the reaction step is 50% by weight or more, a luminescent nanocarbon having no emission peak near 400 nm in excitation and about 530 nm in emission is synthesized.
    A method for producing a luminescent nanocarbon according to claim 8.
PCT/JP2019/033620 2018-08-31 2019-08-28 Method for producing photoluminescent nanocarbon WO2020045466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-163016 2018-08-31
JP2018163016A JP2021183548A (en) 2018-08-31 2018-08-31 Luminescent nano-carbon production method

Publications (1)

Publication Number Publication Date
WO2020045466A1 true WO2020045466A1 (en) 2020-03-05

Family

ID=69643012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033620 WO2020045466A1 (en) 2018-08-31 2019-08-28 Method for producing photoluminescent nanocarbon

Country Status (3)

Country Link
JP (1) JP2021183548A (en)
TW (1) TW202023939A (en)
WO (1) WO2020045466A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735098A (en) * 2020-05-29 2021-12-03 中国石油天然气股份有限公司 Nitrogen-doped carbon nanoring, and preparation method and application thereof
CN114214063A (en) * 2021-12-17 2022-03-22 华东师范大学 Preparation method of single-matrix white light emitting carbon dot fluorescent powder
CN115404074A (en) * 2022-09-05 2022-11-29 南华大学 Fluorescence detection nano probe, preparation method and application
CN115818621A (en) * 2022-11-28 2023-03-21 山西医科大学 Biomass-derived carbon nanoparticles with near-infrared two-zone light emission characteristic and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713608A (en) * 2016-01-27 2016-06-29 太原理工大学 Preparation method of size-controllable nitrogen-doped carbon quantum dots
JP2017043539A (en) * 2015-08-25 2017-03-02 国立大学法人金沢大学 Production method of luminescent nanocarbon
CN106566543A (en) * 2016-11-10 2017-04-19 中国科学院长春光学精密机械与物理研究所 Carbon nano dot with adjustable light emission in visible-region whole spectral coverage and preparation method thereof
CN107163935A (en) * 2017-06-13 2017-09-15 温州大学 A kind of method for synthesizing full light carbon point and its carbon point application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043539A (en) * 2015-08-25 2017-03-02 国立大学法人金沢大学 Production method of luminescent nanocarbon
CN105713608A (en) * 2016-01-27 2016-06-29 太原理工大学 Preparation method of size-controllable nitrogen-doped carbon quantum dots
CN106566543A (en) * 2016-11-10 2017-04-19 中国科学院长春光学精密机械与物理研究所 Carbon nano dot with adjustable light emission in visible-region whole spectral coverage and preparation method thereof
CN107163935A (en) * 2017-06-13 2017-09-15 温州大学 A kind of method for synthesizing full light carbon point and its carbon point application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKAI, NAOKI ET AL.: "Solvent effects of carbon nanodot on solvothermal synthesis", LECTURE PROGRAMS OF THE 83RD ANNUAL RESEARCH PRESENTATION OF THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN, 13 March 2018 (2018-03-13) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735098A (en) * 2020-05-29 2021-12-03 中国石油天然气股份有限公司 Nitrogen-doped carbon nanoring, and preparation method and application thereof
CN113735098B (en) * 2020-05-29 2023-08-22 中国石油天然气股份有限公司 Nitrogen-doped carbon nano ring, and preparation method and application thereof
CN114214063A (en) * 2021-12-17 2022-03-22 华东师范大学 Preparation method of single-matrix white light emitting carbon dot fluorescent powder
CN115404074A (en) * 2022-09-05 2022-11-29 南华大学 Fluorescence detection nano probe, preparation method and application
CN115818621A (en) * 2022-11-28 2023-03-21 山西医科大学 Biomass-derived carbon nanoparticles with near-infrared two-zone light emission characteristic and preparation method and application thereof
CN115818621B (en) * 2022-11-28 2024-04-05 山西医科大学 Biomass-derived carbon nano particle with near infrared two-region light emission characteristic and preparation method and application thereof

Also Published As

Publication number Publication date
TW202023939A (en) 2020-07-01
JP2021183548A (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2020045466A1 (en) Method for producing photoluminescent nanocarbon
Wu et al. Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs
Zong et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors
Luo et al. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance
JP2018035035A (en) Method for producing carbon quantum dot and carbon quantum dot obtained by the method
CN109097038B (en) Solid yellow fluorescent carbon quantum dot and preparation method thereof
JP2021088477A (en) Carbon quantum dot, and method of manufacturing the same
WO2017033973A1 (en) Manufacturing method of luminous nanocarbon
KR101636131B1 (en) process for preparing carbon quantum dots with high quality photoluminescence
Guo et al. A facile and green approach to prepare carbon dots with pH-dependent fluorescence for patterning and bioimaging
Wei et al. Revealing graphitic nitrogen participating in p–π conjugated domain as emissive center of red carbon dots and applied to red room-temperature phosphorescence
Chen et al. Dual mode emission of core–shell rare earth nanoparticles for fluorescence encoding
CN110922967A (en) Method for synthesizing high-fluorescence boron-nitrogen co-doped graphene quantum dots by one-pot hydrothermal method
Xu et al. Efficient visible and near-infrared photoluminescent attapulgite-based lanthanide one-dimensional nanomaterials assembled by ion-pairing interactions
CN110817843B (en) Eutectic solvent, application thereof, carbon quantum dot and preparation method thereof
CN110980690B (en) Method for preparing narrow-band red fluorescent carbon quantum dots by using titanyl phthalocyanine
CN109704312B (en) Preparation method of water-soluble blue-green fluorescent graphene quantum dots
CN108659835B (en) Low-temperature preparation method of red light emitting carbon quantum dots
CN112521534B (en) Preparation method of cluster-induced high-fluorescence non-conjugated polymer
Chen et al. Preparation and luminescence of europium-doped lanthanum fluoride–benzoic acid hybrid nanostructures
Wang et al. Biocompatible carbon dots with diverse surface modification
WO2021054462A1 (en) Method for producing luminescent nanocarbons
KR20200103603A (en) Graphene-based compound and manufacturing method thereof and composition for graphene-based manufacturing compound and graphene quantum dot
CN108251106B (en) Preparation method of red fluorescent carbon dot powder
CN111573679B (en) Method for preparing water-soluble fluorescent silicon quantum dots by microwave method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP