WO2020045409A1 - Optical device and heater substrate having conductive film attached thereto - Google Patents

Optical device and heater substrate having conductive film attached thereto Download PDF

Info

Publication number
WO2020045409A1
WO2020045409A1 PCT/JP2019/033471 JP2019033471W WO2020045409A1 WO 2020045409 A1 WO2020045409 A1 WO 2020045409A1 JP 2019033471 W JP2019033471 W JP 2019033471W WO 2020045409 A1 WO2020045409 A1 WO 2020045409A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
bus bar
transparent substrate
bar electrode
substrate
Prior art date
Application number
PCT/JP2019/033471
Other languages
French (fr)
Japanese (ja)
Inventor
伊村 正明
道幸 中村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2020539482A priority Critical patent/JPWO2020045409A1/en
Publication of WO2020045409A1 publication Critical patent/WO2020045409A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields

Definitions

  • the present invention relates to an optical device including a heater substrate with a conductive film in which a conductive film is disposed on a transparent substrate, and a heater substrate with a conductive film used for the optical device.
  • heater substrates with a conductive film have been used for in-vehicle applications such as in-vehicle cameras and in-vehicle displays, and in security cameras and the like.
  • Such a heater substrate with a conductive film is used, for example, in a vehicle-mounted camera or the like as a heater for preventing condensation on a cover glass.
  • a liquid crystal display device such as an in-vehicle display is used to maintain a response speed when used in a low-temperature environment.
  • Patent Literature 1 discloses a square heater formed by uniformly depositing a conductive thin film material on a substrate.
  • bus bar electrodes having opposing sides parallel to each other are provided on two opposing sides of a square heater so as to cause a predetermined voltage drop. Further, connection terminals for power supply are provided at both ends of these bus bar electrodes.
  • Patent Document 2 discloses a current-carrying glass in which a transparent conductive film and a pair of busbar electrodes for supplying a current to the transparent conductive film are provided on a glass plate.
  • a transparent conductive film is provided on the surface of a glass plate, and a pair of bus bar electrodes is provided thereon.
  • a conductive part of the bus bar electrode to the transparent conductive film is formed to face the transparent conductive film with the transparent conductive film interposed therebetween.
  • Patent Literature 1 or Patent Literature 2 when heating an object to be heated such as a cover glass of a vehicle-mounted camera or a liquid crystal display panel of a liquid crystal display device, the substrate is locally heated, In some cases, heating could not be performed uniformly. Therefore, a problem such as an increase in resistance may occur due to long-term use, and it has been difficult to enhance reliability.
  • An object of the present invention is to provide an optical device and a heater substrate with a conductive film used for the optical device, which can be used stably for a long time and can improve reliability.
  • An optical device includes a transparent substrate, a first busbar electrode and a second busbar electrode which are disposed on the transparent substrate and face each other, and which are disposed on the transparent substrate.
  • An optical device comprising: a heater substrate provided with a conductive film, which is in contact with the first bus bar electrode and the second bus bar electrode, a conductive substrate, and a sensor, a camera, or a display device.
  • the heater substrate with a conductive film is provided with a rectangular light transmitting area in a plan view, wherein the light transmitting area is a sensor area, an imaging area, or a display area, and the first bus bar electrode
  • the ratio D / W is within the range of 1.15 ⁇ D / W ⁇ 2.1. It is characterized by.
  • An optical device is a transparent substrate, a first busbar electrode and a second busbar electrode which are disposed on the transparent substrate and face each other, and which are disposed on the transparent substrate.
  • An optical device comprising: a heater substrate provided with a conductive film, which is in contact with the first bus bar electrode and the second bus bar electrode, a conductive substrate, and a sensor, a camera, or a display device.
  • the heater substrate with a conductive film is provided with a rectangular light transmitting area in a plan view, wherein the light transmitting area is a sensor area, an imaging area, or a display area, and the first bus bar electrode
  • the length L1 is L1 and the length of the light transmitting region is L2
  • the ratio L1 / L2 is in the range of 0.8 ⁇ L1 / L2 ⁇ 1.5.
  • the transparent substrate is a glass substrate.
  • the first bus bar electrode and the second bus bar electrode is covered with the conductive film.
  • an anti-reflection film is further laminated on the main surface of the conductive film disposed on the transparent substrate.
  • an antireflection film is laminated on the main surface of the transparent substrate opposite to the conductive film.
  • the conductive film is a transparent conductive film.
  • the conductive film is formed of an oxide containing indium as a main component.
  • a heater substrate with a conductive film according to a third invention of the present application includes a transparent substrate, a first busbar electrode and a second busbar electrode that are disposed on the transparent substrate and face each other, and the transparent substrate
  • a heater substrate with a conductive film comprising: a conductive film disposed on the first bus bar electrode and the second bus bar electrode, the conductive substrate being in contact with the first bus bar electrode and the second bus bar electrode, wherein the length of the first bus bar electrode is Is L1, and when the length of the conductive film is L3, the ratio L3 / L1 is in the range of 1 ⁇ L3 / L1 ⁇ 1.75.
  • an optical device and a heater substrate with a conductive film used for the optical device which can be used stably for a long time and can improve reliability.
  • FIG. 1 is a schematic plan view showing a heater substrate with a conductive film constituting an optical device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of a portion along the line AA in FIG.
  • FIG. 3 is a graph showing the relationship between the ratio D / W and the heat generation density ratio in the heater substrate with a conductive film constituting the optical device according to the first embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing a heater substrate with a conductive film constituting an optical device according to a second embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the ratio L1 / L2 and the heat density ratio in the heater substrate with a conductive film constituting the optical device according to the second embodiment of the present invention.
  • FIG. 1 is a schematic plan view showing a heater substrate with a conductive film constituting an optical device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of a portion along the line
  • FIG. 6 is a schematic plan view showing a heater substrate with a conductive film according to the third embodiment of the present invention.
  • FIG. 7 is a graph showing the relationship between the ratio L3 / L1 and the heat generation density ratio in the heater substrate with a conductive film according to the third embodiment of the present invention.
  • FIG. 8 is a schematic sectional view showing a heater substrate with a conductive film according to the fourth embodiment of the present invention.
  • FIG. 9 is a schematic sectional view showing a heater substrate with a conductive film according to a fifth embodiment of the present invention.
  • FIG. 10 is a schematic sectional view showing a heater substrate with a conductive film according to a sixth embodiment of the present invention.
  • FIG. 11 is a schematic plan view showing a heater substrate with a conductive film according to the seventh embodiment of the present invention.
  • FIG. 12 is a schematic plan view showing a heater substrate with a conductive film according to the eighth embodiment of the present invention.
  • the optical device includes a heater substrate with a conductive film, a sensor, a camera, or a display device.
  • the heater substrate with a conductive film is provided with a rectangular light transmitting region in a plan view.
  • the light transmission area is an area corresponding to a sensor area, an imaging area, or a display area.
  • FIG. 1 is a schematic plan view showing a heater substrate with a conductive film constituting an optical device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of a portion along the line AA in FIG.
  • the heater substrate 1 with a conductive film includes a transparent substrate 2, a first busbar electrode 3 and a second busbar electrode 4, and a conductive film 5.
  • the transparent substrate 2 has a rectangular plate shape.
  • the transparent substrate 2 is a glass substrate in the present embodiment.
  • “transparent” means that the film is transparent in any wavelength region of a visible region, an infrared region, or an ultraviolet region, that is, the light transmittance is 30% or more.
  • the transparent substrate 2 has a first main surface 2a and a second main surface 2b facing each other.
  • first bus bar electrode 3 and a second bus bar electrode 4 are provided on the first main surface 2a of the transparent substrate 2.
  • the first busbar electrode 3 and the second busbar electrode 4 have an elongated rectangular shape in plan view.
  • the length direction in which the first bus bar electrode 3 and the second bus bar electrode 4 extend is defined as the x direction.
  • the direction connecting the first bus bar electrode 3 and the second bus bar electrode 4 in the width direction of the first bus bar electrode 3 and the second bus bar electrode 4 is defined as the y direction.
  • the x direction and the y direction are orthogonal.
  • a conductive film 5 is further provided on the first main surface 2a of the transparent substrate 2.
  • the conductive film 5 has a rectangular shape in plan view.
  • the length direction of the conductive film 5 is a direction along the x direction.
  • the width direction of the conductive film 5 is a direction along the y direction.
  • the conductive film 5 is disposed so as to extend outward from both ends of the first bus bar electrode 3 and the second bus bar electrode 4 in the x direction.
  • the conductive film 5 is provided in a region connecting the first bus bar electrode 3 and the second bus bar electrode 4 in the y direction.
  • the conductive film 5 is provided so as to extend from the first main surface 2 a of the transparent substrate 2 to a part of the main surface 3 a of the first bus bar electrode 3 and a part of the main surface 4 a of the second bus bar electrode 4. I have. Therefore, the conductive film 5 covers a part of the main surface 3a of the first bus bar electrode 3 and a part of the main surface 4a of the second bus bar electrode 4.
  • the light transmitting region 6 is provided on the heater substrate 1 with the conductive film.
  • the light transmission region 6 has a rectangular shape in plan view. Note that the length direction of the light transmission region 6 is a direction along the x direction. The length of the light transmission region 6 along the x direction can be, for example, 36 mm.
  • the width direction of the light transmission region 6 is a direction along the y direction. The width of the light transmission region 6 along the y direction can be, for example, 24 mm.
  • the light transmission region 6 is a region corresponding to an imaging area when the heater substrate 1 with a conductive film is used for a camera such as a vehicle-mounted camera, for example.
  • a liquid crystal display device such as an in-vehicle display
  • it is an area corresponding to the display area of the liquid crystal display device.
  • a sensor it is a sensor area.
  • the distance along the y direction between the first bus bar electrode 3 and the second bus bar electrode 4 is D
  • the width of the light transmission region 6 along the y direction is W.
  • the ratio D / W is in the range of 1.15 ⁇ D / W ⁇ 2.1.
  • FIG. 3 is a graph showing the relationship between the ratio D / W and the heat generation density ratio in the heater substrate 1 with the conductive film constituting the optical device according to the first embodiment of the present invention.
  • the solid line indicates the maximum value of the heat generation density ratio
  • the broken line indicates the minimum value of the heat generation density ratio.
  • the maximum value of the heat density ratio is a ratio obtained by dividing the maximum value of the heat density in each cell of the light transmission region 6 by the average value of the heat density in each cell of the light transmission region 6.
  • the minimum value of the heat generation density ratio is a ratio obtained by dividing the minimum value of the heat generation density in each cell of the light transmission region 6 by the average value of the heat generation density in each cell of the light transmission region 6.
  • the heat generation density which is the heat generation amount per unit area, was determined by the following procedure.
  • a current-carrying region composed of the first busbar electrode 3 and the second busbar electrode 4 and the conductive film 5 is modeled, and the current-carrying region is divided into a plurality of cells.
  • the potential distribution when applied to the first bus bar electrode 3) and the negative electrode (in the present embodiment, the second bus bar electrode 4) was determined by the finite volume method. It should be noted that when electricity is supplied to the conductive film 5 through the first bus bar electrode 3 and the second bus bar electrode 4, almost no electricity flows to the transparent substrate 2, so the transparent substrate 2 was not modeled.
  • the potential in a cell is set to an unknown value, and a potential equation is obtained by solving a simultaneous equation composed of a discretized governing equation with each element by an iterative method. Further, a simulation was performed on the assumption that a DC current was supplied, and it was assumed that the Laplace equation was established as a governing equation.
  • the potential is ⁇ and the conductivity is ⁇
  • the heat generation density distribution was calculated from the obtained potential distribution.
  • the heat density Q of each cell is calculated by the following equation (1).
  • A is the area of the surface surrounding the cell, A in bold is the outward normal vector of the surface.
  • ⁇ ⁇ and ⁇ are the electric field and potential on the surface, and It was calculated by interpolation using the obtained potential of each cell.
  • the heat generation density ratio is calculated by dividing the heat generation density of each cell in the light transmission region 6 by the average value of the heat generation density in each cell of the light transmission region 6. The smaller the difference between the maximum value and the minimum value of the heat density ratio, the smaller the difference between the heat densities in the area, that is, the state is close to uniform heating.
  • Resistance change rate (R 1000 ⁇ R ini ) / R ini (2)
  • R ini is the initial inter-terminal resistance.
  • R 1000 is the inter-terminal resistance after applying electricity for 1000 hours at a constant applied power. The applied power is 7.1 W, (The initial resistance is 9 ⁇ and the voltage is 8V.)
  • the heater substrate 1 with the conductive film becomes relatively large with respect to the size of the light transmitting region 6, and the camera and the display or the like are significantly increased in size.
  • the heater substrate 1 with a conductive film when the ratio D / W is in the range of 1.15 ⁇ D / W ⁇ 2.1, local overheating is unlikely to occur and uniform heating can be performed. In addition, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. Therefore, the heater substrate 1 with a conductive film can be suitably used for in-vehicle applications such as in-vehicle cameras and in-vehicle displays, and for security cameras and sensors. Therefore, the optical device including such a heater substrate 1 with a conductive film can be used stably for a long time, and the reliability can be improved.
  • the ratio D / W is preferably 1.2 or more and 1.8 or less, more preferably 1.2 or more and 1.1 or less, from the viewpoint of making local overheating more difficult to occur and further enhancing reliability. More preferably, it is 5 or less.
  • FIG. 4 is a schematic plan view showing a heater substrate with a conductive film constituting an optical device according to a second embodiment of the present invention.
  • the heater substrate 21 with the conductive film when the length of the first bus bar electrode 3 is L1 and the length of the light transmission region 6 is L2, 0.8 ⁇ L1 / L2 ⁇ 1.5.
  • the length L1 of the first bus bar electrode 3 is the length of the side facing the second bus bar electrode 4.
  • the above ratio D / W may be in the range of 1.15 ⁇ D / W ⁇ 2.1, and the ratio D / W of 1.15 ⁇ D / W ⁇ 2.1. It may be outside the range. However, from the viewpoint of making local overheating more difficult to occur, it is preferable that the ratio is in the range of 1.15 ⁇ D / W ⁇ 2.1.
  • the other points are the same as in the first embodiment.
  • the ratio L1 / L2 is within the above range, local overheating is unlikely to occur, and uniform heating can be performed. Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. This will be specifically described below with reference to FIG.
  • FIG. 5 is a graph showing the relationship between the ratio L1 / L2 and the heat generation density ratio.
  • the solid line indicates the maximum value of the heat density ratio
  • the broken line indicates the minimum value of the heat density ratio.
  • the maximum value and the minimum value of the heat generation density ratio were obtained by the same method as in the first embodiment.
  • the ratio L1 / L2 was determined by fixing L2 to 36 mm and changing L1.
  • the heater substrate 21 with a conductive film when the ratio L1 / L2 is in the range of 0.8 ⁇ L1 / L2 ⁇ 1.5, local overheating is unlikely to occur and uniform heating can be performed. In addition, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. Therefore, the heater substrate 21 with a conductive film can be suitably used for in-vehicle applications such as an in-vehicle camera and an in-vehicle display, and for security cameras and sensors. Therefore, the optical device including the heater substrate 21 with the conductive film can be used stably for a long time, and the reliability can be improved.
  • the ratio L1 / L2 is preferably 0.9 or more and 1.4 or less.
  • FIG. 6 is a schematic plan view showing a heater substrate with a conductive film according to the third embodiment of the present invention.
  • the ratio L3 / L1 of the length L1 of the first bus bar electrode 3 to the length L3 of the conductive film 5 is 1 ⁇ L3 / L1 ⁇ 1. 75.
  • the above-mentioned ratio D / W may be in the range of 1.15 ⁇ D / W ⁇ 2.1, and the ratio D / W of 1.15 ⁇ D / W ⁇ 2.1. It may be outside the range.
  • the ratio is in the range of 1.15 ⁇ D / W ⁇ 2.1.
  • the above-mentioned ratio L1 / L2 may be in the range of 0.8 ⁇ L1 / L2 ⁇ 1.5, or may be out of the range of 0.8 ⁇ L1 / L2 ⁇ 1.5.
  • the ratio be in the range of 0.8 ⁇ L1 / L2 ⁇ 1.5. The other points are the same as in the first embodiment.
  • the ratio L3 / L1 is within the above range, local overheating is unlikely to occur and uniform heating can be performed. Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. This will be specifically described below with reference to FIG.
  • FIG. 7 is a diagram showing the relationship between the ratio L3 / L1 and the maximum and minimum values of the heat generation density ratio.
  • the solid line indicates the maximum value of the heat generation density ratio
  • the broken line indicates the minimum value of the heat generation density ratio.
  • the ratio L3 / L1 was determined by fixing L1 to 36 mm and changing L3.
  • the end of the conductive film 5 may be erroneously positioned inside the light transmitting region 6, and a problem may occur in a camera image or a display image.
  • the ratio L3 / L1 is in the range of 1 ⁇ L3 / L1 ⁇ 1.75, local overheating is unlikely to occur, and uniform heating can be performed. In addition, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. Therefore, it can be suitably used for in-vehicle applications such as in-vehicle cameras and in-vehicle displays, and in applications such as security cameras.
  • the ratio L3 / L1 is preferably 1.0 or more and 1.4 or less.
  • FIG. 8 is a schematic sectional view showing a heater substrate with a conductive film according to the fourth embodiment of the present invention.
  • the conductive film 5 is provided on the first main surface 2 a of the transparent substrate 2.
  • the first bus bar electrode 3 and the second bus bar electrode 4 are provided on the conductive film 5.
  • the other points are the same as in the first embodiment. This configuration may be applied to the second embodiment and the third embodiment.
  • the ratio D / W, the ratio L1 / L2, and the ratio L3 / L1 is within the above range, local overheating is unlikely to occur, and uniform heating can be performed. . Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved.
  • FIG. 9 is a schematic sectional view showing a heater substrate with a conductive film according to a fifth embodiment of the present invention.
  • the antireflection film 52 is provided on the main surface 5 a of the conductive film 5 disposed on the first main surface 2 a of the transparent substrate 2.
  • the other points are the same as in the first embodiment. This configuration may be applied to the second embodiment and the third embodiment.
  • FIG. 10 is a schematic sectional view showing a heater substrate with a conductive film according to the sixth embodiment of the present invention.
  • an antireflection film 62 is also provided on the second main surface 2 b of the transparent substrate 2.
  • the other points are the same as in the fifth embodiment. Note that this configuration may also be applied to the second embodiment and the third embodiment.
  • the ratio D / W, the ratio L1 / L2, and the ratio L3 / L1 is within the above range, local overheating is unlikely to occur and uniformity is achieved. Can be heated. Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved.
  • the antireflection films 52 and 62 are further provided, so that the light transmittance can be further increased.
  • an antifouling film may be provided on the second main surface 2b of the transparent substrate 2 to prevent fingerprints from adhering and impart water and oil repellency.
  • an antifouling film can be formed on the antireflection film 62.
  • FIG. 11 is a schematic plan view showing a heater substrate with a conductive film according to the seventh embodiment of the present invention.
  • the conductive film 5 extends outward from both ends of the first bus bar electrode 3 and the second bus bar electrode 4 even in the width direction along the y direction. Are located. Therefore, in the heater substrate 71 with a conductive film, the conductive film 5 is provided so as to cover the first bus bar electrode 3 and the second bus bar electrode 4. However, a part of one end in the length direction (X direction) of the first bus bar electrode 3 and the second bus bar electrode 4 is an exposed portion 3b, 4b to which a lead wire can be attached. The other points are the same as in the third embodiment. This configuration may be applied to the first embodiment and the second embodiment.
  • the seventh embodiment since at least one of the ratio D / W, the ratio L1 / L2, and the ratio L3 / L1 is within the above range, local overheating hardly occurs and uniform heating can be performed. . Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved.
  • the conductive film 5 is provided so as to cover the first bus bar electrode 3 and the second bus bar electrode 4, the first bus bar electrode 3 and the second bus bar electrode 4 are provided. Can be improved in durability. Further, in the seventh embodiment, the conductive film 5 is in close contact with the transparent substrate 2 outside both ends of the first bus bar electrode 3 and the second bus bar electrode 4 also in the width direction (Y direction). .
  • the adhesion between the conductive film 5 and the transparent substrate 2 is larger than the adhesion between the conductive film 5 and the first busbar electrode 3 and the second busbar electrode 4. Therefore, the adhesion of the conductive film 5 can be improved.
  • FIG. 12 is a schematic plan view showing a heater substrate with a conductive film according to the eighth embodiment of the present invention.
  • the transparent substrate 2 in the heater substrate 81 with a conductive film, the transparent substrate 2 has a disk shape.
  • a conductive film 5 is provided on the first main surface 2a of the transparent substrate 2.
  • the conductive film 5 is provided so as to overlap the transparent substrate 2 in a plan view, and has a circular shape in a plan view.
  • a first bus bar electrode 3 and a second bus bar electrode 4 are provided on the conductive film 5.
  • Each of the first bus bar electrode 3 and the second bus bar electrode 4 has a semi-elliptical shape in plan view.
  • the arc portions of the first bus bar electrode 3 and the second bus bar electrode 4 are provided along the outer peripheral edges of the transparent substrate 2 and the conductive film 5 in plan view.
  • the other points are the same as in the first embodiment. This configuration may be applied to the second embodiment and the third embodiment.
  • the eighth embodiment since at least one of the ratio D / W, the ratio L1 / L2, and the ratio L3 / L1 is within the above range, local overheating is unlikely to occur and uniform heating can be performed. . Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved.
  • the first bus bar electrode 3 Is the length of the side on the side facing the second bus bar electrode 4.
  • the length L3 of the conductive film 5 is the diameter of the conductive film 5.
  • the transparent substrate is preferably a glass substrate.
  • the transparent substrate 2 may be a Si substrate or a Ge substrate.
  • the material of the glass substrate is not particularly limited, and examples thereof include soda-lime glass, borosilicate glass, alkali-free glass, crystallized glass, and quartz glass. Further, aluminosilicate glass used as tempered glass may be used.
  • the thickness of the transparent substrate is not particularly limited, but may be, for example, 30 ⁇ m or more and 5 mm or less.
  • the first bus bar electrode and the second bus bar electrode are electrodes through which electricity flows, and the material constituting them is not particularly limited.
  • the material constituting them is not particularly limited.
  • Ag is preferable.
  • the first bus bar electrode and the second bus bar electrode may be formed of one material in a single layer, or may be formed by stacking a plurality of materials to form a stacked body.
  • each of the first bus bar electrode and the second bus bar electrode can be, for example, 10 mm or more and 300 mm or less.
  • Each width of the first bus bar electrode and the second bus bar electrode can be, for example, 1 mm or more and 10 mm or less.
  • the distance between the first busbar electrode and the second busbar electrode can be, for example, not less than 5 mm and not more than 320 mm.
  • the thickness of each of the first bus bar electrode and the second bus bar electrode can be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the conductive film is preferably a transparent conductive film.
  • the conductive film include oxides containing indium as a main component such as indium tin oxide (ITO), indium titanium oxide (ITO), and indium zinc oxide (IZO), aluminum zinc oxide (AZO), and gallium.
  • a transparent conductive film formed of a conductive composite oxide thin film such as zinc oxide (GZO), fluorine tin oxide (FTO), and antimony tin oxide (ATO) can be used.
  • the conductive film 5 is preferably an oxide containing indium as a main component, and in the case where light transmitted through the conductive film is from ultraviolet light to visible light, indium tin oxide (ITO) may be used. More preferably, when the light transmitted through the conductive film is from visible light to infrared light, indium titanium oxide (ITO) is more preferable.
  • the length of the conductive film can be, for example, not less than 10 mm and not more than 300 mm.
  • the width of the conductive film can be, for example, 15 mm or more and 320 mm or less.
  • the thickness of the conductive film can be, for example, not less than 20 nm and not more than 850 nm.
  • the antireflection film is not particularly limited, but may be, for example, a single layer or a multilayer made of SiO 2 , Al 2 O 3 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 , SiN, SiON, AlN, AlON, or the like. Dielectric film can be used.
  • the antifouling film preferably contains a fluorine-containing silane compound in the composition for forming an antifouling layer, and can be prepared by coating a silane compound solution having a fluoroalkyl group or a fluoroalkyl ether group.
  • the fluorine-containing silane compound is preferably silazane or alkoxysilane.
  • the fluoroalkyl group in the silane compound is bonded to Si atoms at a ratio of one or less to one Si atom, and Is preferably a silane compound which is a hydrolyzable group or a siloxane bonding group.
  • the hydrolyzable group referred to here is, for example, a group such as an alkoxy group, and becomes a hydroxyl group by hydrolysis, whereby the silane compound can form a polycondensate.
  • the heater substrate 1 with a conductive film can be manufactured, for example, as follows.
  • the first busbar electrode 3 and the second busbar electrode 4 are formed on the transparent substrate 2 by using, for example, a screen printing method, an inkjet printing method, an evaporation method, a sputtering method, a CVD method, or the like.
  • a bus bar electrode is formed by performing photolithography or using a metal mask. Subsequently, a portion other than the portion where the conductive film 5 is formed is metal-masked.
  • the conductive film 5 is formed.
  • the method for forming the conductive film 5 is not particularly limited, and for example, an evaporation method, a sputtering method, a CVD method, or the like can be used.
  • the heater substrate 1 with a conductive film in which a part of the first bus bar electrode 3 and a part of the second bus bar electrode 4 are exposed can be obtained. Note that when a metal mask is not used, a similar structure can be obtained by using lithography or the like.
  • a plurality of first bus bar electrodes 3 and a plurality of second bus bar electrodes 4 were previously formed on a base material of a large-sized transparent substrate 2, and a conductive film 5 was formed thereon. Afterwards, the pieces may be cut into individual pieces.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

Provided is an optical device that can be used stably for an extended time period and that can enhance reliability. The present invention is an optical device provided with: a heater substrate 1 having a conductive film attached thereto, said heater substrate 1 comprising a transparent substrate 2, a first busbar electrode 3 and a second busbar electrode 4 that are disposed on the transparent substrate 2 and that face each other, and a conductive film 5 that is disposed on the transparent substrate 2 and that is in contact with the first busbar electrode 3 and the second busbar electrode 4; and a sensor, a camera, or a display device. The heater substrate 1 having the conductive film attached thereto is provided with a light transmission region 6 that is rectangular in plan view. The light transmission region 6 is a sensor area, an image acquisition area, or a display area. The ratio D/W falls within the range of 1.15 ≤ D/W ≤ 2.1, where D is the distance between the first busbar electrode 3 and the second busbar electrode 4, and W is the width of the light transmission region 6.

Description

光学装置及び導電膜付きヒーター基板Optical device and heater substrate with conductive film
 本発明は、透明基板上に導電膜が配置された導電膜付きヒーター基板を備える光学装置及び該光学装置に用いられる導電膜付きヒーター基板に関する。 The present invention relates to an optical device including a heater substrate with a conductive film in which a conductive film is disposed on a transparent substrate, and a heater substrate with a conductive film used for the optical device.
 従来、車載カメラ、車載ディスプレイ等の車載用途や、防犯カメラ等に導電膜付きヒーター基板が用いられている。このような導電膜付きヒーター基板は、例えば、車載カメラ等においては、カバーガラスの結露防止用ヒーターとして用いられている。また、車載ディスプレイ等の液晶表示装置においては、低温環境下における使用時の応答速度を維持するために用いられている。 ヒ ー タ ー Conventionally, heater substrates with a conductive film have been used for in-vehicle applications such as in-vehicle cameras and in-vehicle displays, and in security cameras and the like. Such a heater substrate with a conductive film is used, for example, in a vehicle-mounted camera or the like as a heater for preventing condensation on a cover glass. In addition, a liquid crystal display device such as an in-vehicle display is used to maintain a response speed when used in a low-temperature environment.
 このような導電膜付きヒーター基板の一例として、下記の特許文献1には、基板上に導電性の薄膜材料を一様に付着して形成した四角形状のヒーターが開示されている。特許文献1では、四角形状のヒーターの相対する二辺に、各々の相対向する一辺を互いに平行にしたバスバー電極をそれぞれ所定の電圧降下を生じるように設けられている。そして、これらのバスバー電極の両端側にそれぞれ電力供給用の接続端子が設けられている。 As an example of such a heater substrate with a conductive film, Patent Literature 1 below discloses a square heater formed by uniformly depositing a conductive thin film material on a substrate. In Patent Literature 1, bus bar electrodes having opposing sides parallel to each other are provided on two opposing sides of a square heater so as to cause a predetermined voltage drop. Further, connection terminals for power supply are provided at both ends of these bus bar electrodes.
 また、下記の特許文献2には、透明導電膜と、透明導電膜に通電する一対のバスバー電極がガラス板上に設けられてなる通電加熱ガラスが開示されている。特許文献2では、ガラス板の表面上に透明導電膜が設けられており、その上に一対のバスバー電極が設けられている。また、バスバー電極の透明導電膜への通電部は、透明導電膜を間に挟んで対向するように形成されている。 Patent Document 2 below discloses a current-carrying glass in which a transparent conductive film and a pair of busbar electrodes for supplying a current to the transparent conductive film are provided on a glass plate. In Patent Document 2, a transparent conductive film is provided on the surface of a glass plate, and a pair of bus bar electrodes is provided thereon. In addition, a conductive part of the bus bar electrode to the transparent conductive film is formed to face the transparent conductive film with the transparent conductive film interposed therebetween.
特開平7-99081号公報JP-A-7-99081 特開2001-122643号公報JP 2001-122643 A
 しかしながら、特許文献1や特許文献2のような導電膜付きヒーター基板では、車載カメラのカバーガラスや、液晶表示装置の液晶表示パネル等の被加熱物を加熱する際に、局所的に過熱され、均一に加熱できない場合があった。そのため、長時間の使用により抵抗が増大するなどの不具合が発生することがあり、信頼性を高めることが困難であった。 However, in a heater substrate with a conductive film as disclosed in Patent Literature 1 or Patent Literature 2, when heating an object to be heated such as a cover glass of a vehicle-mounted camera or a liquid crystal display panel of a liquid crystal display device, the substrate is locally heated, In some cases, heating could not be performed uniformly. Therefore, a problem such as an increase in resistance may occur due to long-term use, and it has been difficult to enhance reliability.
 本発明の目的は、長時間安定して使用することができ、信頼性を高めることができる、光学装置及び該光学装置に用いられる導電膜付きヒーター基板を提供することにある。 An object of the present invention is to provide an optical device and a heater substrate with a conductive film used for the optical device, which can be used stably for a long time and can improve reliability.
 本願の第1の発明に係る光学装置は、透明基板と、前記透明基板上に配置されており、対向し合っている第1のバスバー電極及び第2のバスバー電極と、前記透明基板上に配置されており、前記第1のバスバー電極及び前記第2のバスバー電極に接触している、導電膜とを備える、導電膜付きヒーター基板と、センサー、カメラ、又は表示デバイスと、を備える、光学装置であって、前記導電膜付きヒーター基板に、平面視で矩形の光透過領域が設けられており、前記光透過領域が、センサーエリア、撮像エリア、又は表示領域であり、前記第1のバスバー電極及び前記第2のバスバー電極間の距離をDとし、前記光透過領域の幅をWとしたときに、比D/Wが、1.15≦D/W≦2.1の範囲内にあることを特徴としている。 An optical device according to a first aspect of the present invention includes a transparent substrate, a first busbar electrode and a second busbar electrode which are disposed on the transparent substrate and face each other, and which are disposed on the transparent substrate. An optical device, comprising: a heater substrate provided with a conductive film, which is in contact with the first bus bar electrode and the second bus bar electrode, a conductive substrate, and a sensor, a camera, or a display device. Wherein the heater substrate with a conductive film is provided with a rectangular light transmitting area in a plan view, wherein the light transmitting area is a sensor area, an imaging area, or a display area, and the first bus bar electrode And when the distance between the second bus bar electrodes is D and the width of the light transmitting region is W, the ratio D / W is within the range of 1.15 ≦ D / W ≦ 2.1. It is characterized by.
 本願の第2の発明に係る光学装置は、透明基板と、前記透明基板上に配置されており、対向し合っている第1のバスバー電極及び第2のバスバー電極と、前記透明基板上に配置されており、前記第1のバスバー電極及び前記第2のバスバー電極に接触している、導電膜とを備える、導電膜付きヒーター基板と、センサー、カメラ、又は表示デバイスと、を備える、光学装置であって、前記導電膜付きヒーター基板に、平面視で矩形の光透過領域が設けられており、前記光透過領域が、センサーエリア、撮像エリア、又は表示領域であり、前記第1のバスバー電極の長さをL1とし、前記光透過領域の長さをL2としたときに、比L1/L2が、0.8≦L1/L2≦1.5の範囲内にあることを特徴としている。 An optical device according to a second invention of the present application is a transparent substrate, a first busbar electrode and a second busbar electrode which are disposed on the transparent substrate and face each other, and which are disposed on the transparent substrate. An optical device, comprising: a heater substrate provided with a conductive film, which is in contact with the first bus bar electrode and the second bus bar electrode, a conductive substrate, and a sensor, a camera, or a display device. Wherein the heater substrate with a conductive film is provided with a rectangular light transmitting area in a plan view, wherein the light transmitting area is a sensor area, an imaging area, or a display area, and the first bus bar electrode Where the length L1 is L1 and the length of the light transmitting region is L2, the ratio L1 / L2 is in the range of 0.8 ≦ L1 / L2 ≦ 1.5.
 本発明においては、前記透明基板が、ガラス基板であることが好ましい。 に お い て In the present invention, it is preferable that the transparent substrate is a glass substrate.
 本発明においては、前記第1のバスバー電極及び前記第2のバスバー電極の少なくとも一部が、前記導電膜により覆われていることが好ましい。 In the present invention, it is preferable that at least a part of the first bus bar electrode and the second bus bar electrode is covered with the conductive film.
 本発明においては、前記透明基板上に配置されている前記導電膜の主面上に、さらに反射防止膜が積層されていることが好ましい。 In the present invention, it is preferable that an anti-reflection film is further laminated on the main surface of the conductive film disposed on the transparent substrate.
 本発明においては、前記透明基板の前記導電膜とは反対側の主面上に、反射防止膜が積層されていることが好ましい。 に お い て In the present invention, it is preferable that an antireflection film is laminated on the main surface of the transparent substrate opposite to the conductive film.
 本発明に係る光学装置では、前記導電膜が、透明導電膜であることが好ましい。 で は In the optical device according to the present invention, it is preferable that the conductive film is a transparent conductive film.
 本発明に係る光学装置では、前記導電膜が、インジウムを主成分とする酸化物により構成されていることが好ましい。 で は In the optical device according to the present invention, it is preferable that the conductive film is formed of an oxide containing indium as a main component.
 本願の第3の発明に係る導電膜付きヒーター基板は、透明基板と、前記透明基板上に配置されており、対向し合っている第1のバスバー電極及び第2のバスバー電極と、前記透明基板上に配置されており、前記第1のバスバー電極及び前記第2のバスバー電極に接触している、導電膜とを備える、導電膜付きヒーター基板であって、前記第1のバスバー電極の長さをL1とし、前記導電膜の長さをL3としたときに、比L3/L1が、1≦L3/L1≦1.75の範囲内にあることを特徴としている。 A heater substrate with a conductive film according to a third invention of the present application includes a transparent substrate, a first busbar electrode and a second busbar electrode that are disposed on the transparent substrate and face each other, and the transparent substrate A heater substrate with a conductive film, comprising: a conductive film disposed on the first bus bar electrode and the second bus bar electrode, the conductive substrate being in contact with the first bus bar electrode and the second bus bar electrode, wherein the length of the first bus bar electrode is Is L1, and when the length of the conductive film is L3, the ratio L3 / L1 is in the range of 1 ≦ L3 / L1 ≦ 1.75.
 以下、本願の第1~第3の発明を総称して、本発明と称する場合があるものとする。 Hereinafter, the first to third inventions of the present application are sometimes collectively referred to as the present invention.
 本発明によれば、長時間安定して使用することができ、信頼性を高めることができる、光学装置及び該光学装置に用いられる導電膜付きヒーター基板を提供することができる。 According to the present invention, it is possible to provide an optical device and a heater substrate with a conductive film used for the optical device, which can be used stably for a long time and can improve reliability.
図1は、本発明の第1の実施形態に係る光学装置を構成する導電膜付きヒーター基板を示す模式的平面図である。FIG. 1 is a schematic plan view showing a heater substrate with a conductive film constituting an optical device according to the first embodiment of the present invention. 図2は、図1のA-A線に沿う部分の模式的断面図である。FIG. 2 is a schematic sectional view of a portion along the line AA in FIG. 図3は、本発明の第1の実施形態に係る光学装置を構成する導電膜付きヒーター基板において、比D/Wと、発熱密度比との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the ratio D / W and the heat generation density ratio in the heater substrate with a conductive film constituting the optical device according to the first embodiment of the present invention. 図4は、本発明の第2の実施形態に係る光学装置を構成する導電膜付きヒーター基板を示す模式的平面図である。FIG. 4 is a schematic plan view showing a heater substrate with a conductive film constituting an optical device according to a second embodiment of the present invention. 図5は、本発明の第2の実施形態に係る光学装置を構成する導電膜付きヒーター基板において、比L1/L2と、発熱密度比との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the ratio L1 / L2 and the heat density ratio in the heater substrate with a conductive film constituting the optical device according to the second embodiment of the present invention. 図6は、本発明の第3の実施形態に係る導電膜付きヒーター基板を示す模式的平面図である。FIG. 6 is a schematic plan view showing a heater substrate with a conductive film according to the third embodiment of the present invention. 図7は、本発明の第3の実施形態に係る導電膜付きヒーター基板において、比L3/L1と、発熱密度比との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the ratio L3 / L1 and the heat generation density ratio in the heater substrate with a conductive film according to the third embodiment of the present invention. 図8は、本発明の第4の実施形態に係る導電膜付きヒーター基板を示す模式的断面図である。FIG. 8 is a schematic sectional view showing a heater substrate with a conductive film according to the fourth embodiment of the present invention. 図9は、本発明の第5の実施形態に係る導電膜付きヒーター基板を示す模式的断面図である。FIG. 9 is a schematic sectional view showing a heater substrate with a conductive film according to a fifth embodiment of the present invention. 図10は、本発明の第6の実施形態に係る導電膜付きヒーター基板を示す模式的断面図である。FIG. 10 is a schematic sectional view showing a heater substrate with a conductive film according to a sixth embodiment of the present invention. 図11は、本発明の第7の実施形態に係る導電膜付きヒーター基板を示す模式的平面図である。FIG. 11 is a schematic plan view showing a heater substrate with a conductive film according to the seventh embodiment of the present invention. 図12は、本発明の第8の実施形態に係る導電膜付きヒーター基板を示す模式的平面図である。FIG. 12 is a schematic plan view showing a heater substrate with a conductive film according to the eighth embodiment of the present invention.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, a preferred embodiment will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. In the drawings, members having substantially the same function may be referred to by the same reference numerals.
 本発明に係る光学装置は、導電膜付きヒータ基板と、センサー、カメラ、又は表示デバイスと、を備える。上記導電膜付きヒータ基板には、平面視で矩形の光透過領域が設けられている。なお、本発明において、上記光透過領域は、センサーエリア、撮像エリア、又は表示領域に相当する領域であるものとする。 The optical device according to the present invention includes a heater substrate with a conductive film, a sensor, a camera, or a display device. The heater substrate with a conductive film is provided with a rectangular light transmitting region in a plan view. In the present invention, the light transmission area is an area corresponding to a sensor area, an imaging area, or a display area.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る光学装置を構成する導電膜付きヒーター基板を示す模式的平面図である。図2は、図1のA-A線に沿う部分の模式的断面図である。
(First embodiment)
FIG. 1 is a schematic plan view showing a heater substrate with a conductive film constituting an optical device according to the first embodiment of the present invention. FIG. 2 is a schematic sectional view of a portion along the line AA in FIG.
 図1及び図2に示すように、導電膜付きヒーター基板1は、透明基板2と、第1のバスバー電極3及び第2のバスバー電極4と、導電膜5とを備える。 As shown in FIGS. 1 and 2, the heater substrate 1 with a conductive film includes a transparent substrate 2, a first busbar electrode 3 and a second busbar electrode 4, and a conductive film 5.
 透明基板2は、本実施形態では、矩形板状の形状を有している。透明基板2は、本実施形態では、ガラス基板である。なお、本明細書において、「透明」とは、可視域、赤外域、又は紫外域のいずれかの波長領域で透明であること、すなわち光透過率が30%以上であることをいう。また、透明基板2は、対向している第1の主面2a及び第2の主面2bを有する。 In the present embodiment, the transparent substrate 2 has a rectangular plate shape. The transparent substrate 2 is a glass substrate in the present embodiment. In the present specification, “transparent” means that the film is transparent in any wavelength region of a visible region, an infrared region, or an ultraviolet region, that is, the light transmittance is 30% or more. The transparent substrate 2 has a first main surface 2a and a second main surface 2b facing each other.
 透明基板2の第1の主面2a上には、第1のバスバー電極3及び第2のバスバー電極4が設けられている。第1のバスバー電極3及び第2のバスバー電極4は、平面視で細長い矩形形状である。 On the first main surface 2a of the transparent substrate 2, a first bus bar electrode 3 and a second bus bar electrode 4 are provided. The first busbar electrode 3 and the second busbar electrode 4 have an elongated rectangular shape in plan view.
 図1において、第1のバスバー電極3及び第2のバスバー電極4が延びる長さ方向をx方向とする。第1のバスバー電極3及び第2のバスバー電極4の幅方向であり、第1のバスバー電極3及び第2のバスバー電極4を結ぶ方向をy方向とする。また、x方向及びy方向は、直交しているものとする。 In FIG. 1, the length direction in which the first bus bar electrode 3 and the second bus bar electrode 4 extend is defined as the x direction. The direction connecting the first bus bar electrode 3 and the second bus bar electrode 4 in the width direction of the first bus bar electrode 3 and the second bus bar electrode 4 is defined as the y direction. The x direction and the y direction are orthogonal.
 また、透明基板2の第1の主面2a上には、さらに導電膜5が設けられている。導電膜5は、平面視で矩形形状である。導電膜5の長さ方向は、x方向に沿う方向である。また、導電膜5の幅方向は、y方向に沿う方向である。 導電 膜 Further, on the first main surface 2a of the transparent substrate 2, a conductive film 5 is further provided. The conductive film 5 has a rectangular shape in plan view. The length direction of the conductive film 5 is a direction along the x direction. The width direction of the conductive film 5 is a direction along the y direction.
 導電膜5は、x方向において、第1のバスバー電極3及び第2のバスバー電極4の両端より外側に延びるように配置されている。導電膜5は、y方向において、第1のバスバー電極3及び第2のバスバー電極4を結ぶ領域に設けられている。また、導電膜5は、透明基板2の第1の主面2aから、第1のバスバー電極3の主面3a及び第2のバスバー電極4の主面4aの一部に至るように設けられている。従って、導電膜5は、第1のバスバー電極3の主面3a及び第2のバスバー電極4の主面4aの一部を覆っている。 The conductive film 5 is disposed so as to extend outward from both ends of the first bus bar electrode 3 and the second bus bar electrode 4 in the x direction. The conductive film 5 is provided in a region connecting the first bus bar electrode 3 and the second bus bar electrode 4 in the y direction. The conductive film 5 is provided so as to extend from the first main surface 2 a of the transparent substrate 2 to a part of the main surface 3 a of the first bus bar electrode 3 and a part of the main surface 4 a of the second bus bar electrode 4. I have. Therefore, the conductive film 5 covers a part of the main surface 3a of the first bus bar electrode 3 and a part of the main surface 4a of the second bus bar electrode 4.
 第1のバスバー電極3及び第2バスバー電極4の主面3a,4aにおいて、導電膜5により覆われていない領域は、露出部3b,4bである。導電膜付きヒーター基板1では、この露出部3b,4bに、例えば、リード線を取り付けることができる。リード線を通じて、第1のバスバー電極3及び第2バスバー電極4間に電圧を印加することにより、導電膜付きヒーター基板1を加熱することができる。 (4) In the main surfaces 3a, 4a of the first bus bar electrode 3 and the second bus bar electrode 4, regions not covered by the conductive film 5 are exposed portions 3b, 4b. In the heater substrate 1 with a conductive film, for example, a lead wire can be attached to the exposed portions 3b and 4b. By applying a voltage between the first bus bar electrode 3 and the second bus bar electrode 4 through the lead wire, the heater substrate 1 with a conductive film can be heated.
 本実施形態において、導電膜付きヒーター基板1には、光透過領域6が設けられている。光透過領域6は、平面視で矩形形状である。なお、光透過領域6の長さ方向は、x方向に沿う方向である。この光透過領域6のx方向に沿う長さは、例えば、36mmとすることができる。また、光透過領域6の幅方向は、y方向に沿う方向である。この光透過領域6のy方向に沿う幅は、例えば、24mmとすることができる。 に お い て In the present embodiment, the light transmitting region 6 is provided on the heater substrate 1 with the conductive film. The light transmission region 6 has a rectangular shape in plan view. Note that the length direction of the light transmission region 6 is a direction along the x direction. The length of the light transmission region 6 along the x direction can be, for example, 36 mm. The width direction of the light transmission region 6 is a direction along the y direction. The width of the light transmission region 6 along the y direction can be, for example, 24 mm.
 光透過領域6は、例えば、導電膜付きヒーター基板1を車載カメラ等のカメラに用いる場合は、撮像エリアに相当する領域である。また、車載ディスプレイ等の液晶表示装置に用いる場合は、液晶表示装置の表示領域に相当する領域である。また、センサーに用いる場合は、センサー領域である。 The light transmission region 6 is a region corresponding to an imaging area when the heater substrate 1 with a conductive film is used for a camera such as a vehicle-mounted camera, for example. When used for a liquid crystal display device such as an in-vehicle display, it is an area corresponding to the display area of the liquid crystal display device. When used for a sensor, it is a sensor area.
 また、本実施形態の導電膜付きヒーター基板1では、第1のバスバー電極3及び第2のバスバー電極4間のy方向に沿う距離をDとし、光透過領域6のy方向に沿う幅をWとしたときに、比D/Wが、1.15≦D/W≦2.1の範囲内にある。 Further, in the heater substrate 1 with a conductive film according to the present embodiment, the distance along the y direction between the first bus bar electrode 3 and the second bus bar electrode 4 is D, and the width of the light transmission region 6 along the y direction is W. , The ratio D / W is in the range of 1.15 ≦ D / W ≦ 2.1.
 導電膜付きヒーター基板1では、比D/Wが上記範囲内にあるので、局所的な過熱が生じ難く、均一に加熱することができる。そのため、長時間の使用により抵抗が増大するなどの不具合が発生し難く、信頼性を高めることができる。これを、以下、図3を参照して具体的に説明する。 (4) In the heater substrate 1 with a conductive film, since the ratio D / W is within the above range, local overheating is unlikely to occur, and uniform heating can be performed. Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. This will be specifically described below with reference to FIG.
 図3は、本発明の第1の実施形態に係る光学装置を構成する導電膜付きヒーター基板1において、比D/Wと、発熱密度比との関係を示すグラフである。図3においては、実線で発熱密度比の最大値を示しており、破線で発熱密度比の最小値を示している。また、発熱密度比の最大値とは、光透過領域6の各セルにおける発熱密度の最大値を、光透過領域6の各セルにおける発熱密度の平均値で除することにより求めた割合である。発熱密度比の最小値は、光透過領域6の各セルにおける発熱密度の最小値を、光透過領域6の各セルにおける発熱密度の平均値で除することにより求めた割合である。 FIG. 3 is a graph showing the relationship between the ratio D / W and the heat generation density ratio in the heater substrate 1 with the conductive film constituting the optical device according to the first embodiment of the present invention. In FIG. 3, the solid line indicates the maximum value of the heat generation density ratio, and the broken line indicates the minimum value of the heat generation density ratio. The maximum value of the heat density ratio is a ratio obtained by dividing the maximum value of the heat density in each cell of the light transmission region 6 by the average value of the heat density in each cell of the light transmission region 6. The minimum value of the heat generation density ratio is a ratio obtained by dividing the minimum value of the heat generation density in each cell of the light transmission region 6 by the average value of the heat generation density in each cell of the light transmission region 6.
 なお、単位面積当たりの発熱量である発熱密度は、以下の手順で求めた。 発 熱 The heat generation density, which is the heat generation amount per unit area, was determined by the following procedure.
 まず、第1のバスバー電極3及び第2のバスバー電極4と導電膜5で構成される通電領域をモデル化し、通電領域を複数のセルに分割し、所定の電力となるような電位を正極(本実施形態では、第1のバスバー電極3)と負極(本実施形態では、第2のバスバー電極4)に与えた時の電位分布を有限体積法で求めた。なお、第1のバスバー電極3及び第2のバスバー電極4を介した導電膜5への通電時、透明基板2へ電気はほとんど流れないため、透明基板2はモデル化しなかった。 First, a current-carrying region composed of the first busbar electrode 3 and the second busbar electrode 4 and the conductive film 5 is modeled, and the current-carrying region is divided into a plurality of cells. In the present embodiment, the potential distribution when applied to the first bus bar electrode 3) and the negative electrode (in the present embodiment, the second bus bar electrode 4) was determined by the finite volume method. It should be noted that when electricity is supplied to the conductive film 5 through the first bus bar electrode 3 and the second bus bar electrode 4, almost no electricity flows to the transparent substrate 2, so the transparent substrate 2 was not modeled.
 有限体積法では、セル内の電位を未知数としており、離散化された支配方程式を各要素で連立させて構成される連立方程式を、反復法により解くことで電位分布を得た。また、直流通電状態を前提としてシミュレーションを実施し、支配方程式としてラプラス方程式が成立すると仮定した。電位をφ、導電率をγとすると、-▽・(γ▽φ)=0である。なお、γを定数と仮定しているので、上記の式は▽φ=0となる。 In the finite volume method, the potential in a cell is set to an unknown value, and a potential equation is obtained by solving a simultaneous equation composed of a discretized governing equation with each element by an iterative method. Further, a simulation was performed on the assumption that a DC current was supplied, and it was assumed that the Laplace equation was established as a governing equation. When the potential is φ and the conductivity is γ, − ▽ · (γ ▽ φ) = 0. Since γ is assumed to be a constant, the above equation becomes ▽ 2 φ = 0.
 得られた電位分布から発熱密度分布を計算した。各セルの発熱密度Qは次式(1)で計算される。 発 熱 The heat generation density distribution was calculated from the obtained potential distribution. The heat density Q of each cell is calculated by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (式(1)中、Aはセルを囲む面の面積であり、太文字のAは上記面の外向き法線ベクトルである。▽φ及びφは、上記面における電場及び電位であり、既に得られている各セルの電位を用いて補間により計算した。) (In the formula (1), A is the area of the surface surrounding the cell, A in bold is the outward normal vector of the surface. ▽ φ and φ are the electric field and potential on the surface, and It was calculated by interpolation using the obtained potential of each cell.)
 また、発熱密度比は、光透過領域6の各セルの発熱密度を、光透過領域6の各セルにおける発熱密度の平均値で除することにより計算される。この発熱密度比の最大値と最小値の差が小さいほど、該領域内での発熱密度の差が小さいことを意味しており、すなわち均一な加熱に近い状態にある。 発 熱 The heat generation density ratio is calculated by dividing the heat generation density of each cell in the light transmission region 6 by the average value of the heat generation density in each cell of the light transmission region 6. The smaller the difference between the maximum value and the minimum value of the heat density ratio, the smaller the difference between the heat densities in the area, that is, the state is close to uniform heating.
 図3より、比D/Wが大きいほど、発熱密度比の最大値及び最小値が、平均値である100%に近づいていることがわかる。すなわち、比D/Wが大きいほど、局所的な過熱が生じ難く、均一に加熱できることがわかる。 From FIG. 3, it can be seen that as the ratio D / W is larger, the maximum and minimum values of the heat generation density ratio are closer to the average value of 100%. In other words, it can be seen that as the ratio D / W is larger, local overheating is less likely to occur and uniform heating can be performed.
 また、比D/Wと、抵抗変化率との関係を求めた。抵抗変化率は、次式(2)から求めた。 Also, the relationship between the ratio D / W and the rate of change in resistance was determined. The resistance change rate was obtained from the following equation (2).
 抵抗変化率=(R1000-Rini)/Rini…(2) Resistance change rate = (R 1000 −R ini ) / R ini (2)
 (式(2)中、Riniは、初期端子間抵抗である。R1000は、印加電力一定で1000時間通電した後の端子間抵抗である。また、印加電力は、7.1Wであり、初期抵抗9Ω、電圧8Vである。) (In the formula (2), R ini is the initial inter-terminal resistance. R 1000 is the inter-terminal resistance after applying electricity for 1000 hours at a constant applied power. The applied power is 7.1 W, (The initial resistance is 9Ω and the voltage is 8V.)
 結果を下記の表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、発熱密度比の最大値と最小値の差が60%以下のとき、すなわち比D/Wが1.17以上のとき抵抗変化率が低められていることがわかる。また、発熱密度比の最大値と最小値の差が82%以上のとき、すなわち比D/Wが1.08以下のとき抵抗変化率が高くなっていることがわかる。 From Table 1, it can be seen that when the difference between the maximum value and the minimum value of the heat density ratio is 60% or less, that is, when the ratio D / W is 1.17 or more, the resistance change rate is reduced. Also, it can be seen that when the difference between the maximum value and the minimum value of the heat generation density ratio is 82% or more, that is, when the ratio D / W is 1.08 or less, the resistance change rate is high.
 なお、比D/Wが大きすぎると、光透過領域6の大きさに対して導電膜付きヒーター基板1が相対的に大きくなり、ひいてはカメラやディスプレイ等が著しく大型化してしまうという問題を生じる。 If the ratio D / W is too large, the heater substrate 1 with the conductive film becomes relatively large with respect to the size of the light transmitting region 6, and the camera and the display or the like are significantly increased in size.
 よって、導電膜付きヒーター基板1では、比D/Wが、1.15≦D/W≦2.1の範囲内にあるとき、局所的な過熱が生じ難く、均一に加熱することができる。また、長時間の使用により抵抗が増大するなどの不具合が発生し難く、信頼性を高めることができる。そのため、導電膜付きヒーター基板1は、車載カメラ、車載ディスプレイ等の車載用途や、防犯カメラ、センサー等の用途に好適に用いることができる。よって、このような導電膜付きヒーター基板1を備える光学装置は、長時間安定して使用することができ、信頼性を高めることができる。 Therefore, in the heater substrate 1 with a conductive film, when the ratio D / W is in the range of 1.15 ≦ D / W ≦ 2.1, local overheating is unlikely to occur and uniform heating can be performed. In addition, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. Therefore, the heater substrate 1 with a conductive film can be suitably used for in-vehicle applications such as in-vehicle cameras and in-vehicle displays, and for security cameras and sensors. Therefore, the optical device including such a heater substrate 1 with a conductive film can be used stably for a long time, and the reliability can be improved.
 なお、局所的な過熱をより一層生じ難くし、信頼性をより一層高める観点から、比D/Wは、1.2以上、1.8以下であることが好ましく、1.2以上、1.5以下であることがより好ましい。 The ratio D / W is preferably 1.2 or more and 1.8 or less, more preferably 1.2 or more and 1.1 or less, from the viewpoint of making local overheating more difficult to occur and further enhancing reliability. More preferably, it is 5 or less.
 (第2の実施形態)
 図4は、本発明の第2の実施形態に係る光学装置を構成する導電膜付きヒーター基板を示す模式的平面図である。図4に示すように、導電膜付きヒーター基板21では、第1のバスバー電極3の長さをL1とし、光透過領域6の長さをL2としたときに、0.8≦L1/L2≦1.5の範囲内にある。なお、第1のバスバー電極3の長さL1は、第2のバスバー電極4と対向している側の辺の長さとする。また、導電膜付きヒーター基板21では、上述の比D/Wが、1.15≦D/W≦2.1の範囲内にあってもよく、1.15≦D/W≦2.1の範囲外にあってもよい。もっとも、局所的な過熱をより一層生じ難くする観点からは、1.15≦D/W≦2.1の範囲内にあることが好ましい。その他の点は、第1の実施形態と同様である。
(Second embodiment)
FIG. 4 is a schematic plan view showing a heater substrate with a conductive film constituting an optical device according to a second embodiment of the present invention. As shown in FIG. 4, in the heater substrate 21 with the conductive film, when the length of the first bus bar electrode 3 is L1 and the length of the light transmission region 6 is L2, 0.8 ≦ L1 / L2 ≦ 1.5. Note that the length L1 of the first bus bar electrode 3 is the length of the side facing the second bus bar electrode 4. Further, in the heater substrate 21 with a conductive film, the above ratio D / W may be in the range of 1.15 ≦ D / W ≦ 2.1, and the ratio D / W of 1.15 ≦ D / W ≦ 2.1. It may be outside the range. However, from the viewpoint of making local overheating more difficult to occur, it is preferable that the ratio is in the range of 1.15 ≦ D / W ≦ 2.1. The other points are the same as in the first embodiment.
 本実施形態では、比L1/L2が上記範囲内にあるので、局所的な過熱が生じ難く、均一に加熱することができる。そのため、長時間の使用により抵抗が増大するなどの不具合が発生し難く、信頼性を高めることができる。これを、以下、図5を参照して具体的に説明する。 In the present embodiment, since the ratio L1 / L2 is within the above range, local overheating is unlikely to occur, and uniform heating can be performed. Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. This will be specifically described below with reference to FIG.
 図5は、比L1/L2と、発熱密度比との関係を示すグラフである。図5においては、実線で発熱密度比の最大値を示しており、破線で発熱密度比の最小値を示している。また、発熱密度比の最大値及び最小値は、第1の実施形態と同様の方法により求めた。なお、比L1/L2は、L2を36mmに固定し、L1を変化させることにより求めた。 FIG. 5 is a graph showing the relationship between the ratio L1 / L2 and the heat generation density ratio. In FIG. 5, the solid line indicates the maximum value of the heat density ratio, and the broken line indicates the minimum value of the heat density ratio. Further, the maximum value and the minimum value of the heat generation density ratio were obtained by the same method as in the first embodiment. The ratio L1 / L2 was determined by fixing L2 to 36 mm and changing L1.
 図5より、比L1/L2が大きいほど、発熱密度比の最大値及び最小値が、平均値である100%に近づいており、局所的な過熱が生じ難く、均一に加熱できることがわかる。特に、比L1/L2が0.8以上のとき、発熱密度比の最大値及び最小値の差が上述した60%以下となるので、長時間の使用により抵抗が増大するなどの不具合が発生し難いことがわかる。 よ り From FIG. 5, it can be seen that as the ratio L1 / L2 is larger, the maximum and minimum values of the heat generation density ratio are closer to the average value of 100%, so that local overheating is less likely to occur and uniform heating is possible. In particular, when the ratio L1 / L2 is 0.8 or more, the difference between the maximum value and the minimum value of the heat generation density ratio is 60% or less as described above. It turns out to be difficult.
 なお、比L1/L2が大きすぎると、光透過領域6の大きさに対して導電膜付きヒーター基板21が相対的に大きくなり、引いてはカメラやディスプレイ等が著しく大型化してしまうという問題を生じる。 If the ratio L1 / L2 is too large, there is a problem that the heater substrate 21 with the conductive film becomes relatively large with respect to the size of the light transmission region 6, and the size of the camera or the display becomes extremely large. Occurs.
 よって、導電膜付きヒーター基板21では、比L1/L2が、0.8≦L1/L2≦1.5の範囲内にあるとき、局所的な過熱が生じ難く、均一に加熱することができる。また、長時間の使用により抵抗が増大するなどの不具合が発生し難く、信頼性を高めることができる。そのため、導電膜付きヒーター基板21は、車載カメラ、車載ディスプレイ等の車載用途や、防犯カメラ、センサー等の用途に好適に用いることができる。よって、このような導電膜付きヒーター基板21を備える光学装置は、長時間安定して使用することができ、信頼性を高めることができる。 Therefore, in the heater substrate 21 with a conductive film, when the ratio L1 / L2 is in the range of 0.8 ≦ L1 / L2 ≦ 1.5, local overheating is unlikely to occur and uniform heating can be performed. In addition, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. Therefore, the heater substrate 21 with a conductive film can be suitably used for in-vehicle applications such as an in-vehicle camera and an in-vehicle display, and for security cameras and sensors. Therefore, the optical device including the heater substrate 21 with the conductive film can be used stably for a long time, and the reliability can be improved.
 なお、局所的な過熱をより一層生じ難くし、信頼性をより一層高める観点から、比L1/L2は、0.9以上、1.4以下であることが好ましい。 比 From the viewpoint of making local overheating even more difficult and further improving reliability, the ratio L1 / L2 is preferably 0.9 or more and 1.4 or less.
 (第3の実施形態)
 図6は、本発明の第3の実施形態に係る導電膜付きヒーター基板を示す模式的平面図である。図6に示すように、導電膜付きヒーター基板31では、第1のバスバー電極3の長さL1と、導電膜5の長さL3との比L3/L1が、1≦L3/L1≦1.75の範囲内にある。なお、導電膜付きヒーター基板31では、上述の比D/Wが、1.15≦D/W≦2.1の範囲内にあってもよく、1.15≦D/W≦2.1の範囲外にあってもよい。もっとも、局所的な過熱をより一層生じ難くする観点からは、1.15≦D/W≦2.1の範囲内にあることが好ましい。また、上述の比L1/L2が、0.8≦L1/L2≦1.5の範囲内にあってもよく、0.8≦L1/L2≦1.5の範囲外にあってもよい。もっとも、局所的な過熱をより一層生じ難くする観点からは、0.8≦L1/L2≦1.5の範囲内にあることが好ましい。その他の点は、第1の実施形態と同様である。
(Third embodiment)
FIG. 6 is a schematic plan view showing a heater substrate with a conductive film according to the third embodiment of the present invention. As shown in FIG. 6, in the heater substrate 31 with a conductive film, the ratio L3 / L1 of the length L1 of the first bus bar electrode 3 to the length L3 of the conductive film 5 is 1 ≦ L3 / L1 ≦ 1. 75. In the heater substrate 31 with a conductive film, the above-mentioned ratio D / W may be in the range of 1.15 ≦ D / W ≦ 2.1, and the ratio D / W of 1.15 ≦ D / W ≦ 2.1. It may be outside the range. However, from the viewpoint of making local overheating more difficult to occur, it is preferable that the ratio is in the range of 1.15 ≦ D / W ≦ 2.1. Further, the above-mentioned ratio L1 / L2 may be in the range of 0.8 ≦ L1 / L2 ≦ 1.5, or may be out of the range of 0.8 ≦ L1 / L2 ≦ 1.5. However, from the viewpoint of making local overheating more difficult to occur, it is preferable that the ratio be in the range of 0.8 ≦ L1 / L2 ≦ 1.5. The other points are the same as in the first embodiment.
 本実施形態では、比L3/L1が上記範囲内にあるので、局所的な過熱が生じ難く、均一に加熱することができる。そのため、長時間の使用により抵抗が増大するなどの不具合が発生し難く、信頼性を高めることができる。これを、以下、図7を参照して具体的に説明する。 In the present embodiment, since the ratio L3 / L1 is within the above range, local overheating is unlikely to occur and uniform heating can be performed. Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. This will be specifically described below with reference to FIG.
 図7は、比L3/L1と、発熱密度比の最大値及び最小値との関係を示す図である。図7においては、実線で発熱密度比の最大値を示しており、破線で発熱密度比の最小値を示している。また、発熱密度比の最大値及び最小値は、第1の実施形態と同様の方法により求めた。なお、比L3/L1は、L1を36mmに固定し、L3を変化させることにより求めた。 FIG. 7 is a diagram showing the relationship between the ratio L3 / L1 and the maximum and minimum values of the heat generation density ratio. In FIG. 7, the solid line indicates the maximum value of the heat generation density ratio, and the broken line indicates the minimum value of the heat generation density ratio. Further, the maximum value and the minimum value of the heat generation density ratio were obtained by the same method as in the first embodiment. The ratio L3 / L1 was determined by fixing L1 to 36 mm and changing L3.
 図7より、比L3/L1が小さいほど、発熱密度比の最大値及び最小値が、平均値である100%に近づいており、局所的な過熱が生じ難く、均一に加熱できることがわかる。特に、L3/L1が1.75以下のとき、発熱密度比の最大値及び最小値の差が上述した60%以下となるので、長時間の使用により抵抗が増大するなどの不具合が発生し難いことがわかる。 よ り From FIG. 7, it can be seen that, as the ratio L3 / L1 is smaller, the maximum value and the minimum value of the heat generation density ratio are closer to the average value of 100%, local overheating is less likely to occur, and uniform heating can be performed. In particular, when L3 / L1 is 1.75 or less, the difference between the maximum value and the minimum value of the heat generation density ratio is 60% or less as described above, so that problems such as an increase in resistance due to long-term use are unlikely to occur. You can see that.
 なお、比L3/L1が小さすぎると、誤って導電膜5の端部が光透過領域6の内部に位置してしまい、カメラ映像やディスプレイ映像に不具合を生じる恐れがある。 If the ratio L3 / L1 is too small, the end of the conductive film 5 may be erroneously positioned inside the light transmitting region 6, and a problem may occur in a camera image or a display image.
 よって、比L3/L1が、1≦L3/L1≦1.75の範囲内にあるとき、局所的な過熱が生じ難く、均一に加熱することができる。また、長時間の使用により抵抗が増大するなどの不具合が発生し難く、信頼性を高めることができる。そのため、車載カメラ、車載ディスプレイ等の車載用途や、防犯カメラ等の用途に好適に用いることができる。 Therefore, when the ratio L3 / L1 is in the range of 1 ≦ L3 / L1 ≦ 1.75, local overheating is unlikely to occur, and uniform heating can be performed. In addition, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved. Therefore, it can be suitably used for in-vehicle applications such as in-vehicle cameras and in-vehicle displays, and in applications such as security cameras.
 なお、局所的な過熱をより一層生じ難くし、信頼性をより一層高める観点から、比L3/L1は、1.0以上、1.4以下であることが好ましい。 (4) From the viewpoint of making local overheating more difficult to occur and further improving reliability, the ratio L3 / L1 is preferably 1.0 or more and 1.4 or less.
 (第4の実施形態)
 図8は、本発明の第4の実施形態に係る導電膜付きヒーター基板を示す模式的断面図である。図8に示すように、導電膜付きヒーター基板41では、透明基板2の第1の主面2a上に、導電膜5が設けられている。そして、導電膜5上に、第1のバスバー電極3及び第2のバスバー電極4が設けられている。その他の点は、第1の実施形態と同様である。なお、この構成は、第2の実施形態及び第3の実施形態に適用してもよい。
(Fourth embodiment)
FIG. 8 is a schematic sectional view showing a heater substrate with a conductive film according to the fourth embodiment of the present invention. As shown in FIG. 8, in the heater substrate 41 with a conductive film, the conductive film 5 is provided on the first main surface 2 a of the transparent substrate 2. The first bus bar electrode 3 and the second bus bar electrode 4 are provided on the conductive film 5. The other points are the same as in the first embodiment. This configuration may be applied to the second embodiment and the third embodiment.
 第4の実施形態においても、比D/W、比L1/L2、及び比L3/L1のうち少なくとも1つが上記範囲内にあるので、局所的な過熱が生じ難く、均一に加熱することができる。そのため、長時間の使用により抵抗が増大するなどの不具合が発生し難く、信頼性を高めることができる。 Also in the fourth embodiment, since at least one of the ratio D / W, the ratio L1 / L2, and the ratio L3 / L1 is within the above range, local overheating is unlikely to occur, and uniform heating can be performed. . Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved.
 (第5の実施形態及び第6の実施形態)
 図9は、本発明の第5の実施形態に係る導電膜付きヒーター基板を示す模式的断面図である。図9に示すように、導電膜付きヒーター基板51では、透明基板2の第1の主面2a上に配置されている導電膜5の主面5a上に、反射防止膜52が設けられている。その他の点は、第1の実施形態と同様である。なお、この構成は、第2の実施形態及び第3の実施形態に適用してもよい。
(Fifth Embodiment and Sixth Embodiment)
FIG. 9 is a schematic sectional view showing a heater substrate with a conductive film according to a fifth embodiment of the present invention. As shown in FIG. 9, in the heater substrate 51 with a conductive film, the antireflection film 52 is provided on the main surface 5 a of the conductive film 5 disposed on the first main surface 2 a of the transparent substrate 2. . The other points are the same as in the first embodiment. This configuration may be applied to the second embodiment and the third embodiment.
 また、図10は、本発明の第6の実施形態に係る導電膜付きヒーター基板を示す模式的断面図である。図10に示すように、導電膜付きヒーター基板61では、透明基板2の第2の主面2b上にも反射防止膜62が設けられている。その他の点は、第5の実施形態と同様である。なお、この構成も、第2の実施形態及び第3の実施形態に適用してもよい。 FIG. 10 is a schematic sectional view showing a heater substrate with a conductive film according to the sixth embodiment of the present invention. As shown in FIG. 10, in the heater substrate 61 with a conductive film, an antireflection film 62 is also provided on the second main surface 2 b of the transparent substrate 2. The other points are the same as in the fifth embodiment. Note that this configuration may also be applied to the second embodiment and the third embodiment.
 第5の実施形態及び第6の実施形態においても、比D/W、比L1/L2、及び比L3/L1のうち少なくとも1つが上記範囲内にあるので、局所的な過熱が生じ難く、均一に加熱することができる。そのため、長時間の使用により抵抗が増大するなどの不具合が発生し難く、信頼性を高めることができる。 Also in the fifth embodiment and the sixth embodiment, since at least one of the ratio D / W, the ratio L1 / L2, and the ratio L3 / L1 is within the above range, local overheating is unlikely to occur and uniformity is achieved. Can be heated. Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved.
 また、第5の実施形態及び第6の実施形態では、さらに反射防止膜52,62が設けられているので、より一層光線透過率を高めることができる。 In the fifth and sixth embodiments, the antireflection films 52 and 62 are further provided, so that the light transmittance can be further increased.
 なお、透明基板2の第2の主面2b上に、指紋の付着を防止し、撥水性、撥油性を付与するための防汚膜を設けてもよい。透明基板2の第2の主面2b上に反射防止膜62が設けられている場合は、反射防止膜62の上に防汚膜を形成することができる。 In addition, an antifouling film may be provided on the second main surface 2b of the transparent substrate 2 to prevent fingerprints from adhering and impart water and oil repellency. When the antireflection film 62 is provided on the second main surface 2b of the transparent substrate 2, an antifouling film can be formed on the antireflection film 62.
 (第7の実施形態)
 図11は、本発明の第7の実施形態に係る導電膜付きヒーター基板を示す模式的平面図である。図11に示すように、導電膜付きヒーター基板71では、導電膜5は、y方向に沿う幅方向においても、第1のバスバー電極3及び第2のバスバー電極4の両端より外側に延びるように配置されている。従って、導電膜付きヒーター基板71では、導電膜5が、第1のバスバー電極3及び第2のバスバー電極4を覆うように設けられている。もっとも、第1のバスバー電極3及び第2のバスバー電極4の長さ方向(X方向)における一端の一部は、リード線を取り付けることができる露出部3b,4bとされている。その他の点は、第3の実施形態と同様である。なお、この構成は、第1の実施形態及び第2の実施形態に適用してもよい。
(Seventh embodiment)
FIG. 11 is a schematic plan view showing a heater substrate with a conductive film according to the seventh embodiment of the present invention. As shown in FIG. 11, in the heater substrate 71 with a conductive film, the conductive film 5 extends outward from both ends of the first bus bar electrode 3 and the second bus bar electrode 4 even in the width direction along the y direction. Are located. Therefore, in the heater substrate 71 with a conductive film, the conductive film 5 is provided so as to cover the first bus bar electrode 3 and the second bus bar electrode 4. However, a part of one end in the length direction (X direction) of the first bus bar electrode 3 and the second bus bar electrode 4 is an exposed portion 3b, 4b to which a lead wire can be attached. The other points are the same as in the third embodiment. This configuration may be applied to the first embodiment and the second embodiment.
 第7の実施形態においても、比D/W、比L1/L2、及び比L3/L1のうち少なくとも1つが上記範囲内にあるので、局所的な過熱が生じ難く、均一に加熱することができる。そのため、長時間の使用により抵抗が増大するなどの不具合が発生し難く、信頼性を高めることができる。 Also in the seventh embodiment, since at least one of the ratio D / W, the ratio L1 / L2, and the ratio L3 / L1 is within the above range, local overheating hardly occurs and uniform heating can be performed. . Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved.
 また、第7の実施形態では、導電膜5が、第1のバスバー電極3及び第2のバスバー電極4を覆うように設けられているので、第1のバスバー電極3及び第2のバスバー電極4の耐久性を向上させることができる。さらに、第7の実施形態において、導電膜5は、幅方向(Y方向)においても、第1のバスバー電極3及び第2のバスバー電極4の両端より外側において、透明基板2と密着されている。ここで、導電膜5と透明基板2との密着力は、導電膜5と第1のバスバー電極3及び第2のバスバー電極4との密着力よりも大きい。よって、導電膜5の密着性を高めることもできる。 In the seventh embodiment, since the conductive film 5 is provided so as to cover the first bus bar electrode 3 and the second bus bar electrode 4, the first bus bar electrode 3 and the second bus bar electrode 4 are provided. Can be improved in durability. Further, in the seventh embodiment, the conductive film 5 is in close contact with the transparent substrate 2 outside both ends of the first bus bar electrode 3 and the second bus bar electrode 4 also in the width direction (Y direction). . Here, the adhesion between the conductive film 5 and the transparent substrate 2 is larger than the adhesion between the conductive film 5 and the first busbar electrode 3 and the second busbar electrode 4. Therefore, the adhesion of the conductive film 5 can be improved.
 (第8の実施形態)
 図12は、本発明の第8の実施形態に係る導電膜付きヒーター基板を示す模式的平面図である。図12に示すように、導電膜付きヒーター基板81では、透明基板2が円盤状である。透明基板2の第1の主面2a上に、導電膜5が設けられている。導電膜5は、平面視において透明基板2と重なるように設けられており、平面視において円状の形状を有している。また、導電膜5上に、第1のバスバー電極3及び第2のバスバー電極4が設けられている。第1のバスバー電極3及び第2のバスバー電極4の形状は、それぞれ、平面視において半楕円状の形状を有している。第1のバスバー電極3及び第2のバスバー電極4の円弧部分は、平面視において透明基板2及び導電膜5の外周縁に沿うように設けられている。その他の点は、第1の実施形態と同様である。なお、この構成は、第2の実施形態及び第3の実施形態に適用してもよい。
(Eighth embodiment)
FIG. 12 is a schematic plan view showing a heater substrate with a conductive film according to the eighth embodiment of the present invention. As shown in FIG. 12, in the heater substrate 81 with a conductive film, the transparent substrate 2 has a disk shape. On the first main surface 2a of the transparent substrate 2, a conductive film 5 is provided. The conductive film 5 is provided so as to overlap the transparent substrate 2 in a plan view, and has a circular shape in a plan view. Further, a first bus bar electrode 3 and a second bus bar electrode 4 are provided on the conductive film 5. Each of the first bus bar electrode 3 and the second bus bar electrode 4 has a semi-elliptical shape in plan view. The arc portions of the first bus bar electrode 3 and the second bus bar electrode 4 are provided along the outer peripheral edges of the transparent substrate 2 and the conductive film 5 in plan view. The other points are the same as in the first embodiment. This configuration may be applied to the second embodiment and the third embodiment.
 第8の実施形態においても、比D/W、比L1/L2、及び比L3/L1のうち少なくとも1つが上記範囲内にあるので、局所的な過熱が生じ難く、均一に加熱することができる。そのため、長時間の使用により抵抗が増大するなどの不具合が発生し難く、信頼性を高めることができる。 Also in the eighth embodiment, since at least one of the ratio D / W, the ratio L1 / L2, and the ratio L3 / L1 is within the above range, local overheating is unlikely to occur and uniform heating can be performed. . Therefore, troubles such as an increase in resistance due to long-term use hardly occur, and reliability can be improved.
 なお、第8の実施形態のように、第1のバスバー電極3及び第2のバスバー電極4の形状が、それぞれ、平面視において半楕円状の形状である場合においても、第1のバスバー電極3の長さL1は、第2のバスバー電極4と対向している側の辺の長さとする。また、導電膜5が平面視において円状の形状を有している場合、導電膜5の長さL3は、導電膜5の直径であるものとする。 Note that, even when the first bus bar electrode 3 and the second bus bar electrode 4 each have a semi-elliptical shape in plan view as in the eighth embodiment, the first bus bar electrode 3 Is the length of the side on the side facing the second bus bar electrode 4. When the conductive film 5 has a circular shape in a plan view, the length L3 of the conductive film 5 is the diameter of the conductive film 5.
 以下、第1~第8の実施形態で説明した導電膜付きヒーター基板を構成する各材料の詳細について説明する。 Hereinafter, the details of each material constituting the heater substrate with a conductive film described in the first to eighth embodiments will be described.
 透明基板;
 透明基板は、ガラス基板であることが好ましい。もっとも、透明基板2は、Si基板やGe基板であってもよい。ガラス基板の材料としては、特に限定されず、例えば、ソーダ石灰ガラス、ホウ珪酸ガラス、無アルカリガラス、結晶化ガラス、石英ガラス等が挙げられる。また、強化ガラスとして用いられるアルミノシリケートガラスであってもよい。
Transparent substrate;
The transparent substrate is preferably a glass substrate. However, the transparent substrate 2 may be a Si substrate or a Ge substrate. The material of the glass substrate is not particularly limited, and examples thereof include soda-lime glass, borosilicate glass, alkali-free glass, crystallized glass, and quartz glass. Further, aluminosilicate glass used as tempered glass may be used.
 透明基板の厚みとしては、特に限定されないが、例えば、30μm以上、5mm以下とすることができる。 厚 み The thickness of the transparent substrate is not particularly limited, but may be, for example, 30 μm or more and 5 mm or less.
 第1のバスバー電極及び第2のバスバー電極;
 第1のバスバー電極及び第2のバスバー電極は、電気を流す電極であり、これを構成する材料としては、特に限定されないが、例えば、Ag、Al、Cu、Pt、Au、Ir、Ti、Ni、Cr、Mo、W、Sn等の金属又はこれらの金属の合金を用いることができる。なかでも、Agであることが好ましい。第1のバスバー電極及び第2のバスバー電極は、1つの材料を単層で形成してもよいし、複数の材料を積層して積層体を形成してもよい。
A first busbar electrode and a second busbar electrode;
The first bus bar electrode and the second bus bar electrode are electrodes through which electricity flows, and the material constituting them is not particularly limited. For example, Ag, Al, Cu, Pt, Au, Ir, Ti, Ni , Cr, Mo, W, Sn and the like, or alloys of these metals. Among them, Ag is preferable. The first bus bar electrode and the second bus bar electrode may be formed of one material in a single layer, or may be formed by stacking a plurality of materials to form a stacked body.
 第1のバスバー電極及び第2のバスバー電極におけるそれぞれの長さは、例えば、10mm以上、300mm以下とすることができる。第1のバスバー電極及び第2のバスバー電極におけるそれぞれの幅は、例えば、1mm以上、10mm以下とすることができる。第1のバスバー電極及び第2のバスバー電極間の距離は、例えば、5mm以上、320mm以下とすることができる。また、第1のバスバー電極及び第2のバスバー電極におけるそれぞれの厚みは、例えば、0.1μm以上、100μm以下とすることができる。 そ れ ぞ れ The length of each of the first bus bar electrode and the second bus bar electrode can be, for example, 10 mm or more and 300 mm or less. Each width of the first bus bar electrode and the second bus bar electrode can be, for example, 1 mm or more and 10 mm or less. The distance between the first busbar electrode and the second busbar electrode can be, for example, not less than 5 mm and not more than 320 mm. Further, the thickness of each of the first bus bar electrode and the second bus bar electrode can be, for example, 0.1 μm or more and 100 μm or less.
 導電膜;
 導電膜は、透明導電膜であることが好ましい。導電膜としては、例えば、インジウム錫酸化物(ITO)やインジウムチタン酸化物(ITiO)やインジウム亜鉛酸化物(IZO)等のインジウムを主成分とする酸化物、アルミニウム亜鉛酸化物(AZO)、ガリウム亜鉛酸化物(GZO)、フッ素錫酸化物(FTO)、アンチモン錫酸化物(ATO)などの導電性を有する複合酸化物薄膜からなる透明導電膜を用いることができる。なかでも、導電膜5としては、インジウムを主成分とする酸化物であることが好ましく、導電膜を透過させる光が紫外光~可視光の場合は、インジウム錫酸化物(ITO)であることがより好ましく、導電膜を透過させる光が可視光~赤外光の場合は、インジウムチタン酸化物(ITiO)であることがより好ましい。
Conductive film;
The conductive film is preferably a transparent conductive film. Examples of the conductive film include oxides containing indium as a main component such as indium tin oxide (ITO), indium titanium oxide (ITO), and indium zinc oxide (IZO), aluminum zinc oxide (AZO), and gallium. A transparent conductive film formed of a conductive composite oxide thin film such as zinc oxide (GZO), fluorine tin oxide (FTO), and antimony tin oxide (ATO) can be used. In particular, the conductive film 5 is preferably an oxide containing indium as a main component, and in the case where light transmitted through the conductive film is from ultraviolet light to visible light, indium tin oxide (ITO) may be used. More preferably, when the light transmitted through the conductive film is from visible light to infrared light, indium titanium oxide (ITO) is more preferable.
 導電膜の長さは、例えば、10mm以上、300mm以下とすることができる。導電膜の幅は、例えば、15mm以上、320mm以下とすることができる。また、導電膜の厚みは、例えば、20nm以上、850nm以下とすることができる。 The length of the conductive film can be, for example, not less than 10 mm and not more than 300 mm. The width of the conductive film can be, for example, 15 mm or more and 320 mm or less. The thickness of the conductive film can be, for example, not less than 20 nm and not more than 850 nm.
 反射防止膜;
 反射防止膜としては、特に限定されないが、例えば、SiO、Al、TiO、Nb、Ta、SiN、SiON、AlN、AlON等から構成される単層または多層の誘電体膜を用いることができる。
Anti-reflective coating;
The antireflection film is not particularly limited, but may be, for example, a single layer or a multilayer made of SiO 2 , Al 2 O 3 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 , SiN, SiON, AlN, AlON, or the like. Dielectric film can be used.
 防汚膜;
 防汚膜は、フッ素含有シラン化合物を防汚層形成用組成物に含有することが好ましく、フルオロアルキル基またはフルオロアルキルエーテル基を有するシラン化合物溶液をコーティングして作製することができる。特に、フッ素含有シラン化合物がシラザンもしくはアルコキシシランであることが好ましい。また、上記フルオロアルキル基またはフルオロアルキルエーテル基を有するシラン化合物のなかでも、シラン化合物中のフルオロアルキル基が、Si原子1つに対し、1つ以下の割合でSi原子と結合されており、残りは加水分解性基もしくはシロキサン結合基であるシラン化合物が好ましい。ここでいう加水分解性基としては、例えばアルコキシ基等の基であり、加水分解によりヒドロキシル基となり、それにより上記シラン化合物は重縮合物を形成することができる。
Antifouling membrane;
The antifouling film preferably contains a fluorine-containing silane compound in the composition for forming an antifouling layer, and can be prepared by coating a silane compound solution having a fluoroalkyl group or a fluoroalkyl ether group. In particular, the fluorine-containing silane compound is preferably silazane or alkoxysilane. Further, among the silane compounds having a fluoroalkyl group or a fluoroalkyl ether group, the fluoroalkyl group in the silane compound is bonded to Si atoms at a ratio of one or less to one Si atom, and Is preferably a silane compound which is a hydrolyzable group or a siloxane bonding group. The hydrolyzable group referred to here is, for example, a group such as an alkoxy group, and becomes a hydroxyl group by hydrolysis, whereby the silane compound can form a polycondensate.
 以下、第1~第7の実施形態で説明した導電膜付きヒーター基板の製造方法の一例として導電膜付きヒーター基板1の製造方法について詳細に説明する。 Hereinafter, a method for manufacturing the heater substrate 1 with a conductive film will be described in detail as an example of the method for manufacturing the heater substrate with a conductive film described in the first to seventh embodiments.
 製造方法;
 導電膜付きヒーター基板1は、例えば、以下のようにして製造することができる。
Production method;
The heater substrate 1 with a conductive film can be manufactured, for example, as follows.
 まず、透明基板2上に、例えば、スクリーン印刷法、インクジェット印刷法、蒸着法、スパッタリング法、CVD法等を用いて、第1のバスバー電極3及び第2のバスバー電極4を形成する。蒸着法、スパッタリング法、CVD法等を用いた場合は、フォトリソグラフィー処理をしたり、メタルマスクを用いたりすることにより、バスバー電極を形成する。続いて、導電膜5を形成する以外の部分をメタルマスクする。 First, the first busbar electrode 3 and the second busbar electrode 4 are formed on the transparent substrate 2 by using, for example, a screen printing method, an inkjet printing method, an evaporation method, a sputtering method, a CVD method, or the like. When an evaporation method, a sputtering method, a CVD method, or the like is used, a bus bar electrode is formed by performing photolithography or using a metal mask. Subsequently, a portion other than the portion where the conductive film 5 is formed is metal-masked.
 次に、導電膜5を成膜する。導電膜5の成膜方法としては、特に限定されないが、例えば、蒸着法、スパッタリング法、CVD法等を用いることができる。成膜後、メタルマスクを除去することにより、第1のバスバー電極3及び第2のバスバー電極4の一部が露出した導電膜付きヒーター基板1を得ることができる。なお、メタルマスクを用いない場合は、リソグラフィー処理等を用いることにより同様の構造を得ることができる。 Next, the conductive film 5 is formed. The method for forming the conductive film 5 is not particularly limited, and for example, an evaporation method, a sputtering method, a CVD method, or the like can be used. By removing the metal mask after the film formation, the heater substrate 1 with a conductive film in which a part of the first bus bar electrode 3 and a part of the second bus bar electrode 4 are exposed can be obtained. Note that when a metal mask is not used, a similar structure can be obtained by using lithography or the like.
 なお、導電膜付きヒーター基板1は、大寸法の透明基板2の母材上に予め複数の第1のバスバー電極3及び第2のバスバー電極4を形成し、その上に導電膜5を形成した後に、カットすることにより個片化してもよい。 In the heater substrate 1 with a conductive film, a plurality of first bus bar electrodes 3 and a plurality of second bus bar electrodes 4 were previously formed on a base material of a large-sized transparent substrate 2, and a conductive film 5 was formed thereon. Afterwards, the pieces may be cut into individual pieces.
1,21,31,41,51,61,71,81…導電膜付きヒーター基板
2…透明基板
2a…第1の主面
2b…第2の主面
3…第1のバスバー電極
3a,4a,5a…主面
3b,4b…露出部
4…第2のバスバー電極
5…導電膜
6…光透過領域
52,62…反射防止膜
1, 21, 31, 41, 51, 61, 71, 81 ... heater substrate 2 with conductive film ... transparent substrate 2a ... first main surface 2b ... second main surface 3 ... first bus bar electrodes 3a, 4a, 5a, main surfaces 3b, 4b, exposed portions 4, second bus bar electrodes 5, conductive films 6, light transmitting regions 52, 62, antireflection films

Claims (9)

  1.  透明基板と、前記透明基板上に配置されており、対向し合っている第1のバスバー電極及び第2のバスバー電極と、前記透明基板上に配置されており、前記第1のバスバー電極及び前記第2のバスバー電極に接触している、導電膜とを備える、導電膜付きヒーター基板と、
     センサー、カメラ、又は表示デバイスと、
    を備える、光学装置であって、
     前記導電膜付きヒーター基板に、平面視で矩形の光透過領域が設けられており、
     前記光透過領域が、センサーエリア、撮像エリア、又は表示領域であり、
     前記第1のバスバー電極及び前記第2のバスバー電極間の距離をDとし、前記光透過領域の幅をWとしたときに、比D/Wが、1.15≦D/W≦2.1の範囲内にある、光学装置。
    A transparent substrate, a first busbar electrode and a second busbar electrode disposed on the transparent substrate and facing each other, and disposed on the transparent substrate, the first busbar electrode and the second busbar electrode; A heater substrate with a conductive film, comprising: a conductive film in contact with the second bus bar electrode;
    A sensor, camera, or display device;
    An optical device comprising:
    The heater substrate with the conductive film is provided with a rectangular light transmission region in a plan view,
    The light transmission area is a sensor area, an imaging area, or a display area,
    When the distance between the first bus bar electrode and the second bus bar electrode is D and the width of the light transmitting region is W, the ratio D / W is 1.15 ≦ D / W ≦ 2.1. Optical device within the range of.
  2.  透明基板と、前記透明基板上に配置されており、対向し合っている第1のバスバー電極及び第2のバスバー電極と、前記透明基板上に配置されており、前記第1のバスバー電極及び前記第2のバスバー電極に接触している、導電膜とを備える、導電膜付きヒーター基板と、
     センサー、カメラ、又は表示デバイスと、
    を備える、光学装置であって、
     前記導電膜付きヒーター基板に、平面視で矩形の光透過領域が設けられており、
     前記光透過領域が、センサーエリア、撮像エリア、又は表示領域であり、
     前記第1のバスバー電極の長さをL1とし、前記光透過領域の長さをL2としたときに、比L1/L2が、0.8≦L1/L2≦1.5の範囲内にある、光学装置。
    A transparent substrate, a first busbar electrode and a second busbar electrode disposed on the transparent substrate and facing each other, and disposed on the transparent substrate, the first busbar electrode and the second busbar electrode; A heater substrate with a conductive film, comprising: a conductive film in contact with the second bus bar electrode;
    A sensor, camera, or display device;
    An optical device comprising:
    The heater substrate with the conductive film is provided with a rectangular light transmission region in a plan view,
    The light transmission area is a sensor area, an imaging area, or a display area,
    When the length of the first bus bar electrode is L1 and the length of the light transmitting region is L2, the ratio L1 / L2 is in the range of 0.8 ≦ L1 / L2 ≦ 1.5. Optical device.
  3.  前記透明基板が、ガラス基板である、請求項1又は2に記載の光学装置。 The optical device according to claim 1 or 2, wherein the transparent substrate is a glass substrate.
  4.  前記第1のバスバー電極及び前記第2のバスバー電極の少なくとも一部が、前記導電膜により覆われている、請求項1~3のいずれか1項に記載の光学装置。 4. The optical device according to claim 1, wherein at least a part of the first bus bar electrode and the second bus bar electrode are covered with the conductive film.
  5.  前記透明基板上に配置されている前記導電膜の主面上に、さらに反射防止膜が積層されている、請求項1~4のいずれか1項に記載の光学装置。 (5) The optical device according to any one of (1) to (4), wherein an anti-reflection film is further laminated on a main surface of the conductive film disposed on the transparent substrate.
  6.  前記透明基板の前記導電膜とは反対側の主面上に、反射防止膜が積層されている、請求項1~5のいずれか1項に記載の光学装置。 (6) The optical device according to any one of (1) to (5), wherein an antireflection film is laminated on a main surface of the transparent substrate opposite to the conductive film.
  7.  前記導電膜が、透明導電膜である、請求項1~6のいずれか1項に記載の光学装置。 (7) The optical device according to any one of (1) to (6), wherein the conductive film is a transparent conductive film.
  8.  前記導電膜が、インジウムを主成分とする酸化物により構成されている、請求項1~7のいずれか1項に記載の光学装置。 (8) The optical device according to any one of (1) to (7), wherein the conductive film is made of an oxide containing indium as a main component.
  9.  透明基板と、前記透明基板上に配置されており、対向し合っている第1のバスバー電極及び第2のバスバー電極と、前記透明基板上に配置されており、前記第1のバスバー電極及び前記第2のバスバー電極に接触している、導電膜とを備える、導電膜付きヒーター基板であって、
     前記第1のバスバー電極の長さをL1とし、前記導電膜の長さをL3としたときに、比L3/L1が、1≦L3/L1≦1.75の範囲内にある、導電膜付きヒーター基板。
    A transparent substrate, a first busbar electrode and a second busbar electrode disposed on the transparent substrate and facing each other, and disposed on the transparent substrate, the first busbar electrode and the second busbar electrode; A heater substrate with a conductive film, comprising a conductive film in contact with the second bus bar electrode,
    When the length of the first bus bar electrode is L1 and the length of the conductive film is L3, the ratio L3 / L1 is within a range of 1 ≦ L3 / L1 ≦ 1.75. Heater substrate.
PCT/JP2019/033471 2018-08-29 2019-08-27 Optical device and heater substrate having conductive film attached thereto WO2020045409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539482A JPWO2020045409A1 (en) 2018-08-29 2019-08-27 Optical device and heater substrate with conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018159922 2018-08-29
JP2018-159922 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020045409A1 true WO2020045409A1 (en) 2020-03-05

Family

ID=69644267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033471 WO2020045409A1 (en) 2018-08-29 2019-08-27 Optical device and heater substrate having conductive film attached thereto

Country Status (2)

Country Link
JP (1) JPWO2020045409A1 (en)
WO (1) WO2020045409A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184064U (en) * 1984-11-07 1986-06-03
JPH03172820A (en) * 1989-12-01 1991-07-26 Canon Inc Panel heater and liquid crystal device with panel heater
JPH0451790U (en) * 1990-09-04 1992-04-30
JP2002352939A (en) * 2001-05-22 2002-12-06 Kyocera Corp Panel heater and liquid crystal display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184064U (en) * 1984-11-07 1986-06-03
JPH03172820A (en) * 1989-12-01 1991-07-26 Canon Inc Panel heater and liquid crystal device with panel heater
JPH0451790U (en) * 1990-09-04 1992-04-30
JP2002352939A (en) * 2001-05-22 2002-12-06 Kyocera Corp Panel heater and liquid crystal display

Also Published As

Publication number Publication date
JPWO2020045409A1 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6021523B2 (en) Variable transmittance element, optical system and optical device using electrochromic material
TWI281746B (en) Liquid crystal display and method of manufacturing the same
TWI653670B (en) Transparent body with single substrate and anti-refelection and/or anti-fingerprint coating and method of manufacturing thereof
TWI408404B (en) Imaging device
JP2012500499A5 (en)
CN105144045A (en) Conductive structure and preparation method therefor
JP5621184B2 (en) Transparent electrode
KR20170067156A (en) Conductive structure body, method for manufacturing thereof and electrode comprising conductive structure body
TWI553523B (en) Conductive structure body precursor, conductive structure body and method for manufacturing the same,and touch screen panel
WO2020045409A1 (en) Optical device and heater substrate having conductive film attached thereto
WO2020045410A1 (en) Heater substrate having conductive film attached thereto and optical device
KR20200037547A (en) Planar-type heating film and manufacturing method thereof
CN107660279B (en) Conductive structure and method for manufacturing same
CN215819070U (en) Transparent cover plate and electronic equipment
JP6019903B2 (en) Method for manufacturing liquid crystal element and liquid crystal element
US20060023131A1 (en) Conductive anti-reflection coating
CN109427911B (en) Flexible thin film transistor and preparation method thereof
CN105845752A (en) Transparent conductive film applied to flexible photoelectric device and preparation method thereof
JP2021026861A (en) Heater substrate with conductive film
JP3592830B2 (en) Display element substrate
JP2007316107A (en) Infrared light cut filter, method of manufacturing the same and optical component having infrared cut filer
WO2012043104A1 (en) Planar heat generation body and heating device
US20160126421A1 (en) Composite electrode, array substrate and display device
CN204044388U (en) A kind of optical filter with anti-fog and antifrost function
WO2020095723A1 (en) Bandpass filter and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853378

Country of ref document: EP

Kind code of ref document: A1