WO2020045339A1 - Method for producing polymer latex - Google Patents

Method for producing polymer latex Download PDF

Info

Publication number
WO2020045339A1
WO2020045339A1 PCT/JP2019/033270 JP2019033270W WO2020045339A1 WO 2020045339 A1 WO2020045339 A1 WO 2020045339A1 JP 2019033270 W JP2019033270 W JP 2019033270W WO 2020045339 A1 WO2020045339 A1 WO 2020045339A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
emulsion
polymer
pressure
polymer latex
Prior art date
Application number
PCT/JP2019/033270
Other languages
French (fr)
Japanese (ja)
Inventor
吉隆 佐藤
小出村 順司
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020217004897A priority Critical patent/KR20210049800A/en
Priority to BR112021003445-5A priority patent/BR112021003445B1/en
Priority to JP2020539439A priority patent/JP7342871B2/en
Priority to CN201980050373.0A priority patent/CN112513147A/en
Publication of WO2020045339A1 publication Critical patent/WO2020045339A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/02Chemical or physical treatment of rubber latex before or during concentration
    • C08C1/075Concentrating
    • C08C1/12Concentrating by evaporation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/20Concentration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated

Definitions

  • the present invention relates to a method for producing a polymer latex, and more particularly, to a method for producing a polymer latex that can be produced in a short time while achieving a high yield.
  • a film molded product such as a dip molded product obtained by dip molding a latex composition containing a latex of natural rubber or synthetic rubber has been suitably used as a nipple, a balloon, a glove, a balloon, a sack and the like.
  • Patent Literature 1 as a method for producing a synthetic rubber latex, an emulsion is obtained by mixing a solution of a synthetic rubber in which a synthetic rubber is dissolved in an organic solvent and an aqueous solution of an emulsifier. A method for removing an organic solvent by heating an obtained emulsion at a temperature higher than the boiling point of the organic solvent under reduced pressure conditions is disclosed.
  • the technique of Patent Document 1 has a problem that it takes a long time to remove the organic solvent, and thus the productivity is poor.
  • An object of the present invention is to provide a method for producing a polymer latex that can be produced in a short time while realizing a high yield.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, a polymer solution or dispersion obtained by dissolving or dispersing a polymer in an organic solvent and an aqueous solution of an emulsifier were obtained.
  • the organic solvent is distilled off from the emulsion, the above-mentioned object can be achieved by performing the distillation of the organic solvent from the emulsion in a vessel adjusted to a pressure condition of 0.02 MPa or more at a gauge pressure. And completed the present invention.
  • the organic solvent is distilled off from the emulsion obtained by mixing the polymer solution or dispersion obtained by dissolving or dispersing the polymer in the organic solvent and the aqueous solution of the emulsifier.
  • a method for producing a polymer latex comprising: There is provided a method for producing a polymer latex, in which the organic solvent is distilled off from the emulsion in a vessel adjusted to a pressure condition of 0.02 MPa or more at a gauge pressure.
  • the content of the organic solvent in the emulsion before the organic solvent is distilled off is preferably 30 to 60% by weight.
  • the organic solvent is preferably distilled off from the emulsion in a vessel adjusted to a gauge pressure of 0.02 to 0.18 MPa.
  • the organic solvent is an organic solvent selected from cyclohexane, normal hexane, cyclopentane, and normal pentane.
  • the distillation of the organic solvent is performed by heating by a method in which steam whose pressure is adjusted is charged into a jacket provided in the container.
  • the polymer is preferably a synthetic polyisoprene and / or a styrene-isoprene-styrene copolymer.
  • the content of the emulsifier in the emulsion before removing the organic solvent is 0.1 to 30 parts by weight based on 100 parts by weight of the polymer. Preferably, there is.
  • FIG. 1 is a diagram illustrating an example of an emulsifying apparatus used in the method for producing a polymer latex of the present invention.
  • the method for producing the polymer latex of the present invention comprises: A polymer solution or dispersion obtained by dissolving or dispersing the polymer in an organic solvent, and an emulsion obtained by mixing an aqueous solution of an emulsifier, comprising a step of distilling off the organic solvent, The organic solvent is distilled off from the emulsion in a container adjusted to a pressure condition of 0.02 MPa or more at a gauge pressure.
  • the emulsion used in the production method of the present invention is obtained by mixing a polymer solution or dispersion obtained by dissolving or dispersing a polymer in an organic solvent with an aqueous solution of an emulsifier.
  • the polymer solution or dispersion is not particularly limited as long as it is a solution or dispersion in which the polymer is dissolved or dispersed in an organic solvent.
  • the polymer is not particularly limited and various polymers can be used without limitation. Examples thereof include natural rubber; homopolymers of conjugated diene monomers such as synthetic polybutadiene, synthetic polyisoprene, and synthetic polychloroprene; Copolymers: styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-isoprene-styrene block copolymer, acrylonitrile-butadiene copolymer, acrylonitrile-isoprene copolymer, acrylonitrile-butadiene-isoprene copolymer And a conjugated diene monomer such as butyl acrylate-butadiene copolymer and another monomer copolymerizable therewith; an acrylate (co) polymer; Among these, natural rubber, synthetic polyisoprene, and styrene-isoprene-
  • the polymer constituting the solution or dispersion of the polymer used in the production method of the present invention is a synthetic polyisoprene and / or a styrene-isoprene-styrene block copolymer
  • the polymer solution or dispersion used in the method is not limited to the solution or dispersion of the synthetic polyisoprene and / or styrene-isoprene-styrene block copolymer.
  • the synthetic polyisoprene may be a homopolymer of isoprene or a copolymer of isoprene and another ethylenically unsaturated monomer copolymerizable with isoprene.
  • the content of the isoprene unit in the synthetic polyisoprene is preferably 70% by weight or more based on all the monomer units, since a film molded body such as a dip molded body having flexibility and excellent tensile strength can be easily obtained.
  • the content is more preferably 90% by weight or more, further preferably 95% by weight or more, and particularly preferably 100% by weight (a homopolymer of isoprene).
  • ethylenically unsaturated monomers copolymerizable with isoprene include, for example, conjugated diene monomers other than isoprene such as butadiene, chloroprene and 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ - Ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth) acrylate (meaning "methyl acrylate and / or methyl methacrylate” And ethyl (meth) acrylate), ethylenically unsaturated carboxylic acid ester monomers such as ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate; Is mentioned.
  • Synthetic polyisoprene can be prepared in a known manner, for example, using a Ziegler-based polymerization catalyst comprising trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium in an organic solvent using isoprene. And, by solution-polymerizing another copolymerizable ethylenically unsaturated monomer used as needed, a synthetic polyisoprene obtained by dissolving a synthetic polyisoprene in an organic solvent can be obtained as a solution of a synthetic polyisoprene. .
  • the solution of the synthetic polyisoprene obtained by the solution polymerization may be used as it is in the emulsification step, but after taking out the solid synthetic polyisoprene from the solution obtained by the solution polymerization, the solution is dissolved in an organic solvent. , May be used.
  • organic solvent used for the polymerization examples include, for example, aromatic hydrocarbon solvents such as benzene, toluene, and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane, and cyclohexene; butane, normal pentane, normal hexane, and the like. Suitable examples include aliphatic hydrocarbon solvents such as heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride. In addition, even when solid synthetic polyisoprene is taken out of a solution obtained by solution polymerization and then dissolved again in an organic solvent, these organic solvents can be suitably used.
  • aromatic hydrocarbon solvents such as benzene, toluene, and xylene
  • alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane, and cyclohe
  • the isoprene units in the synthetic polyisoprene there are four types of cis-bond units, trans-bond units, 1,2-vinyl-bond units, and 3,4-vinyl-bond units, depending on the bonding state of isoprene.
  • the content ratio of the cis-bond unit in the isoprene unit contained in the synthetic polyisoprene is preferably at least 70% by weight based on all the isoprene units, It is more preferably at least 90% by weight, further preferably at least 95% by weight.
  • the weight average molecular weight of the synthetic polyisoprene is preferably 10,000 to 5,000,000, more preferably 500,000 to 5,000,000, and still more preferably, in terms of standard polystyrene by gel permeation chromatography analysis. Is from 800,000 to 3,000,000.
  • the weight average molecular weight of the synthetic polyisoprene is in the above range, the tensile strength of the obtained film molded body in the case of a film molded body such as a dip molded body is improved, and the synthetic polyisoprene latex is easily manufactured. Tend.
  • the polymer Mooney viscosity (ML1 + 4, 100 ° C) of the synthetic polyisoprene is preferably 50 to 80, more preferably 60 to 80, and further preferably 70 to 80.
  • Styrene-isoprene-styrene block copolymer is a block copolymer of styrene and isoprene.
  • the content ratio of the styrene unit to the isoprene unit in the styrene-isoprene-styrene block copolymer is not particularly limited, but is usually from 1:99 to 90:10, preferably from 3 to 9, based on the weight ratio of “styrene unit: isoprene unit”. : 97 to 70:30, more preferably 5:95 to 50:50, even more preferably 10:90 to 30:70.
  • the styrene-isoprene-styrene block copolymer can be prepared by a conventionally known method, for example, using a Ziegler-based polymerization catalyst composed of trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium.
  • a Ziegler-based polymerization catalyst composed of trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium.
  • a styrene-isoprene-styrene block copolymer solution obtained by dissolving a styrene-isoprene-styrene block copolymer in an organic solvent can be obtained. it can.
  • the styrene-isoprene-styrene block copolymer solution obtained by the block copolymerization may be used as it is in the emulsification step, but the solid styrene-isoprene-styrene block is obtained from the solution obtained by the block copolymerization.
  • the copolymer After taking out the copolymer, the copolymer may be dissolved in an organic solvent and used. Examples of the organic solvent used for the polymerization include the same ones as the above-mentioned synthetic isoprene.
  • the content ratio of the cis-bond unit in the isoprene unit contained in the styrene-isoprene-styrene block copolymer is, with respect to all the isoprene units, from the viewpoint of improving the tensile strength of the obtained film-formed body such as the dip-formed body. It is preferably at least 90% by weight, more preferably at least 95% by weight, even more preferably at least 98% by weight.
  • the weight average molecular weight of the styrene-isoprene-styrene block copolymer is preferably from 10,000 to 1,000,000, more preferably from 50,000 to 500, in terms of standard polystyrene by gel permeation chromatography analysis. 000, more preferably 100,000 to 300,000.
  • the weight average molecular weight of the styrene-isoprene-styrene block copolymer within the above range, when a film molded product such as a dip molded product is obtained, the tensile strength of the obtained film molded product is improved, and styrene-isoprene is obtained.
  • -Styrene block copolymer latex tends to be easily produced.
  • the polymer Mooney viscosity (ML1 + 4, 100 ° C.) of the styrene-isoprene-styrene block copolymer is preferably 50 to 80, more preferably 60 to 80, and even more preferably 70 to 80.
  • the content of the polymer in the polymer solution or dispersion used in the production method of the present invention is not particularly limited, but is preferably 3 to 30% by weight, more preferably 5 to 20% by weight, and further preferably It is 7 to 15% by weight.
  • the emulsifier constituting the aqueous solution of the emulsifier used in the production method of the present invention is not particularly limited, but an anionic emulsifier can be preferably used.
  • the anionic emulsifier include fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, sodium rosinate, potassium rosinate; sodium dodecylbenzenesulfonate, dodecylbenzenesulfonate Alkylbenzene sulfonates such as potassium, sodium decylbenzenesulfonate, potassium decylbenzenesulfonate, sodium cetylbenzenesulfonate, potassium cetylbenzenesulfonate; sodium di (2-ethylhexyl) sulfosuccinate, di (2-ethylhexyl) sulfosuccinate Alkyl s
  • fatty acid salts, alkyl benzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates are preferred, and the generation of aggregates in the resulting polymer latex is more appropriate.
  • fatty acid salts and alkylbenzene sulfonates are more preferable, fatty acid salts are more preferable, and sodium rosinate and potassium rosinate are preferable. Particularly preferred. It is also preferable to use a combination of a fatty acid salt and an alkylbenzene sulfonate.
  • the content of the emulsifier in the aqueous solution of the emulsifier used in the production method of the present invention is not particularly limited, but is preferably 0.1 to 5% by weight, more preferably 0.3 to 3% by weight, and still more preferably 0 to 3% by weight. 0.5 to 2% by weight.
  • a polymer solution or dispersion obtained by dissolving or dispersing such a polymer in an organic solvent, and an aqueous solution of an emulsifier are supplied to a mixing device, and mixed.
  • An emulsion can be obtained.
  • the solution or dispersion of the polymer and the aqueous solution of the emulsifier are continuously supplied to a mixing device to obtain an emulsion continuously.
  • FIG. 1 is a diagram showing an example of an emulsifying apparatus used in the method for producing a polymer latex of the present invention.
  • the emulsifying apparatus shown in FIG. 1 includes a polymer tank 10, an emulsifier tank 20, a mixing apparatus 30, a storage tank 40, a distillation pipe 60, a condenser 70, And a solvent recovery tank 80.
  • the polymer solution or dispersion from the polymer tank 10 and the aqueous solution of the emulsifier from the emulsifier tank 20 are continuously sent to the mixing device 30, respectively.
  • the mixing device 30 By continuously mixing the solution or dispersion of the polymer and the aqueous solution of the emulsifier in 30, an emulsion can be obtained continuously.
  • the emulsified liquid thus continuously obtained is continuously supplied to the storage tank 40.
  • the supply ratio thereof is not particularly limited, but the emulsification of the polymer is allowed to proceed more appropriately.
  • the volume ratio is preferably 1: 2 to 1: 0.3, more preferably 1: 1.5 to 1: 0.5. , More preferably 1: 1 to 1: 0.7.
  • the method for continuously feeding the polymer solution or dispersion and the aqueous solution of the emulsifier from the polymer tank 10 and the emulsifier tank 20 to the mixing device 30 is not particularly limited.
  • the aqueous solution of the emulsifier may be directly sent to the mixing device 30 by a pump, or a premixing device such as a line mixer may be provided upstream of the mixing device 30 to provide a premixing device.
  • the pre-mixing may be performed in such a manner that the pre-mixed state is sent to the mixing device 30 in the pre-mixed state.
  • the mixing device 30 is not particularly limited, but is preferably a mixing device capable of continuously mixing, for example, a product name “TK Pipeline Homomixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.), and a product name “ Colloid mill “(manufactured by Shinko Pantech), trade name” Slasher “(manufactured by Nippon Coke Industry), trade name” trigonal wet pulverizer “(manufactured by Mitsui Miike Kakoki Co., Ltd.), trade name” Cavitron “(eurotech) ), Trade name "Milder” (manufactured by Taiheiyo Kiko), trade name “Fine Flow Mill” (manufactured by Taiheiyo Kiko) and the like.
  • the conditions of the mixing operation by the mixing device 30 are not particularly limited, and a processing temperature, a processing time, and the like may be appropriately selected so that a desired dispersion state is obtained.
  • the temperature of the solution or dispersion of the polymer and the aqueous solution of the emulsifier when the polymer solution or dispersion and the aqueous solution of the emulsifier are continuously fed to the mixing device 30 are not particularly limited.
  • the temperature is preferably from 20 to 100 ° C., more preferably from 40 to 90 ° C., and still more preferably from 60 to 80 ° C., from the viewpoint that satisfactorily can be carried out.
  • the temperature at which these are mixed is the temperature at which the polymer solution or dispersion is stored in the polymer tank 10 and the aqueous solution of the emulsifier is mixed with the emulsifier tank so that the mixing temperature becomes the desired temperature.
  • the temperature at the time of storing in 20 is just to control by adjusting the temperature at the time of storing in 20 respectively.
  • the polymer solution or dispersion at 60 ° C. and the aqueous solution of the emulsifier at 60 ° C. are mixed by the mixing device 30, the polymer solution or dispersion is stored in the polymer tank 10.
  • the temperature when the aqueous solution of the emulsifier is stored in the emulsifier tank 20 may be 60 ° C.
  • the content of the organic solvent in the emulsion used in the production method of the present invention is usually 30 to 60% by weight, preferably 35 to 60% by weight based on 100% by weight of all components constituting the emulsion. %, More preferably 37 to 50% by weight.
  • the content of the emulsifier in the emulsion used in the production method of the present invention is generally 0.1 to 30 parts by weight, preferably 1 to 20 parts by weight, more preferably 3 to 20 parts by weight, per 100 parts by weight of the polymer. 1515 parts by weight.
  • Organic solvent distillation step In the production method of the present invention, as described above, a polymer solution or dispersion obtained by dissolving or dispersing the polymer in an organic solvent, and an emulsion obtained by mixing an aqueous solution of an emulsifier, An organic solvent distilling step of distilling (removing) the organic solvent is provided. Then, in the production method of the present invention, the distillation (removal) of the organic solvent from the emulsion in such an organic solvent distilling step is performed in a vessel adjusted to a pressure condition of 0.02 MPa or more by gauge pressure. It is performed in.
  • the organic solvent distilling step the organic solvent is sent from the mixing device 30 and stored in the storage tank 40.
  • the organic solvent contained in the emulsion is distilled off in a state where the pressure in the storage tank 40 is controlled to a pressure of 0.02 MPa or more by gauge pressure for the emulsion.
  • the storage tank 40 includes the stirring blade 50, and further includes a jacket (not shown) for circulating the steam on the outside thereof.
  • a distillation pipe 60 and a condenser 70 connected to the distillation pipe 60 are provided above the storage tank 40.
  • the pressure in the storage tank 40 is adjusted and the organic solvent is distilled off as follows. That is, in the organic solvent distilling step of the manufacturing method of the present invention, the system including the storage tank 40, the distilling pipe 60, and the condenser 70 is kept in a closed system sealed from the outside air, and While the emulsion is being stirred, steam whose pressure has been adjusted is continuously fed into a jacket provided outside the storage tank 40 to heat the emulsion stored in the storage tank 40. Then, the pressure in the storage tank 40 is increased by evaporating (evaporating or boiling) the organic solvent from the heated emulsion, whereby the inside of the storage tank 40 is pressurized. On the other hand, a part of the organic solvent vaporized from the heated emulsion passes through the distillation pipe 60, is cooled by the condenser 70, and is recovered in the organic solvent recovery tank 80.
  • the organic solvent is distilled off while maintaining the pressurized state by utilizing the pressure increase inside the storage tank 40 due to the vaporization of the organic solvent. Is what you do. Specifically, the organic solvent is distilled off in a state where the pressure inside the storage tank 40 is maintained under a pressure condition of 0.02 MPa (gauge pressure) or more.
  • the upper limit of the pressure inside the storage tank 40 in the organic solvent distillation step is not particularly limited, but is preferably 0.18 MPa (gauge pressure) or less from the viewpoint of equipment.
  • the organic solvent is preferably distilled while maintaining the pressure inside the storage tank 40 at a pressure of 0.05 to 0.09 MPa (gauge pressure).
  • the organic solvent is distilled off while maintaining the pressure condition of 0.07 to 0.09 MPa (gauge pressure).
  • the pressure inside the storage tank 40 in the organic solvent distillation step can be adjusted by, for example, a heating temperature when the emulsion stored in the storage tank 40 is heated. For example, as the heating temperature increases, the pressure can be increased.
  • the organic solvent distilling step of the production method of the present invention the organic solvent is distilled off under such a pressurized condition of 0.02 MPa (gauge pressure) or more, and the distillation is performed under the pressurized condition.
  • the organic solvent contained in the emulsion can be distilled off in a short time while achieving a high yield.
  • the inventors of the present invention have studied that, although the distillation of the organic solvent is generally performed under reduced pressure conditions, conversely, when the pressure is increased to 0.02 MPa (gauge pressure) or more. It has been found that the time required for distilling off the organic solvent is reduced, and based on such knowledge, the distilling off of the organic solvent is performed under a pressure condition of 0.02 MPa (gauge pressure) or more.
  • the foaming of the liquid surface can be suppressed by applying a pressure condition of 0.02 MPa (gauge pressure) or more.
  • the amount of the emulsified liquid is relatively large, preferably 50 to 85% by volume, more preferably 55 to 85% by volume, and still more preferably 70 to 85% by volume with respect to the volume of the storage tank 40. Even when the amount is relatively large, it is possible to effectively suppress the problem that a part of the emulsion flows into the condenser 70 due to foaming and lowers the yield. As a result, the productivity can be improved.
  • the pressure is 0.02 MPa (gauge pressure) or more
  • the inside of the storage tank 40 is filled with the vaporized organic solvent, This allows the wall surface of the storage tank 40 to be kept wet during the removal of the organic solvent. Therefore, even when the emulsified liquid adheres to the wall surface of the storage tank 40, it is possible to effectively suppress the solidification of the emulsified liquid and the remaining of the polymer component adhered thereto. It is possible to suppress a decrease in the yield due to the polymer component remaining on the wall surface, and to realize a high yield.
  • the heating temperature for heating the emulsion stored in the storage tank 40 is not particularly limited.
  • the temperature may be set according to the desired pressure, but the boiling point is higher than the boiling point Tb of the organic solvent contained in the emulsion (that is, the organic solvent derived from the polymer solution or dispersion) under atmospheric pressure.
  • the temperature is preferably Tb or higher, more preferably in the range of Tb + 1 to Tb + 35 ° C, more preferably in the range of Tb + 5 to Tb + 35 ° C, and still more preferably in the range of Tb + 10 to Tb + 30 ° C.
  • the heating temperature may be set based on the boiling point of the organic solvent having the higher content.
  • the pressure applied inside the storage tank 40 in the organic solvent distillation step can be appropriately controlled.
  • the heating temperature can be appropriately adjusted by adjusting the flow rate and the flow rate of the steam to be charged into the jacket provided outside the storage tank 40.
  • the pressure applied to the inside of the storage tank 40 in the organic solvent distillation step may be within the above range in terms of gauge pressure, but is preferably 0.1213 to 0.2813 MPa, more preferably 0.1513 to absolute pressure.
  • the pressure is 0.1913 MPa, and more preferably 0.1713 to 0.1913 MPa.
  • the system including the storage tank 40, the distillation pipe 60, and the condenser 70 is maintained in a closed system that is closed from the outside air, and the organic solvent is removed.
  • the heating of the storage tank 40 is started, it is connected to the upper part of the condenser 70 for the purpose of removing air contained in the storage tank 40.
  • the pressure valve may be opened to remove air. At this time, it is desirable to close the pressure valve after the removal of the air contained in the storage tank 40 is completed and the liquefaction of the organic solvent by the condenser 70 is confirmed, thereby forming a closed system.
  • the pressure in the storage tank 40 in the organic solvent distillation step may be adjusted by the heating temperature.
  • the pressure is adjusted by a pressure valve connected to the upper part of the condenser 70. The methods may be used in combination.
  • the distillation of the organic solvent from the emulsion under the pressure condition of 0.02 MPa (gauge pressure) or more in the organic solvent distillation step is based on 100% by weight of the polymer in the emulsion.
  • the process is preferably performed until the content of the organic solvent in the emulsion becomes preferably 500 ppm by weight or less, more preferably 100 ppm by weight or less.
  • the organic solvent is distilled off from the emulsion under a pressure condition of 0.02 MPa (gauge pressure) or more.
  • the organic solvent may be distilled off under reduced pressure conditions in combination.
  • a decompression pump may be connected to the downstream side of the condenser 70 so that the pressure is reduced by the decompression pump.
  • a polymer latex can be obtained.
  • the polymer latex thus obtained is usually blended in the field of latex, such as a pH adjuster, an antifoaming agent, a preservative, a chelating agent, an oxygen scavenger, a dispersant, an antioxidant and the like. Additives may be blended.
  • Examples of the pH adjuster include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate; hydrogen carbonates of alkali metals such as sodium hydrogen carbonate; ammonia Organic amine compounds such as trimethylamine and triethanolamine; and the like, with preference given to alkali metal hydroxides or ammonia.
  • a concentration operation by centrifugation may be performed to increase the solid content of the polymer latex.
  • the volume average particle diameter of the polymer latex produced by the production method of the present invention is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m, and still more preferably 1 to 2 ⁇ m.
  • the solid content of the polymer latex produced by the production method of the present invention is preferably 30 to 70% by weight, more preferably 40 to 70% by weight.
  • the polymer latex of the present invention thus obtained can be made into a latex composition by, for example, blending various additives such as a cross-linking agent, and the latex composition can be used as a dip molded article or the like. In addition to being used for obtaining a film molded product, it can also be used for adhesives.
  • Example 1> Preparation of normal hexane solution (a) of synthetic polyisoprene) Synthetic polyisoprene (trade name “Nipol IR2200L (R)”, manufactured by Zeon Corporation) was mixed with normal hexane (boiling point: 69 ° C.), and the temperature was raised to 60 ° C. with stirring to dissolve. A normal hexane solution (a) of synthetic polyisoprene having a concentration of 15% by weight was prepared.
  • emulsifier aqueous solution (b1) An emulsifier aqueous solution (b1) having a potassium rosinate concentration of 1.2% by weight was prepared by mixing potassium rosinate as a fatty acid-based emulsifier with water at a temperature of 60 ° C.
  • the normal hexane solution (a) of the synthetic polyisoprene prepared as described above is stored in the polymer tank 10 while being heated to 60 ° C., and is stored in the emulsifier tank 20 as described above.
  • the prepared emulsifier aqueous solution (b1) is stored while being heated to 60 ° C., and these are stored in a line as a premixing device so that the weight ratio of “synthetic polyisoprene”: “emulsifier” becomes 10: 1.
  • the mixture was continuously supplied to the mixing device 30 to continuously obtain an emulsion (the ratio of normal hexane in the emulsion was 37.7% by weight).
  • the emulsified liquid was continuously discharged to a closed storage tank 40 in which the valves other than the connection pipe to the mixing device 30 were closed.
  • a homogenizer (trade name "Milder”, manufactured by Taiheiyo Kiko Co., Ltd.) was used. Further, before the emulsified liquid was discharged from the mixing device 30, the pressure of the storage tank 40 in a closed state was 0 MPa (gauge pressure).
  • the system composed of the storage tank 40, the distillation pipe 60 and the condenser 70 was a closed system which was closed from the outside air.
  • the temperature of the emulsion is raised to 85 ° C. by heating with steam, and the pressure inside the storage tank 40 when the temperature of the emulsion reaches 85 ° C. is 0.08 MPa (gauge pressure). Met.
  • the distillation of normal hexane from the emulsion was continued under the conditions that the temperature of the emulsion was 85 ° C. and the pressure inside the storage tank 40 was 0.08 MPa (gauge pressure).
  • Example 1 the organic solvent distillation time, which is the time from the start of normal hexane vapor aggregation in the condenser 70 to the end of normal hexane distillation, was 9 hours (described later).
  • Example 1 the organic solvent distillation time was measured in the same manner.
  • the foam surface height due to the foaming of the emulsion in the storage tank 40 was observed, the height was 72% of the storage tank volume (maximum foam surface height: 72%) at the highest time. there were.
  • Example 1 after the distillation of normal hexane was completed, the ratio of the synthetic polyisoprene adhered to the wall surface of the storage tank 40 was reduced to 100% by weight of the total amount of the synthetic polyisoprene contained in the emulsion. In contrast, the content was 1.3% by weight, and the volume average particle diameter of the obtained synthetic polyisoprene latex was 1.09 ⁇ m.
  • Example 2 In the same manner as in Example 1, except that the heating temperature of the emulsion was changed from 85 ° C. to 78 ° C. by heating with steam when normal hexane was distilled off in the storage tank 40. N-hexane was distilled off from the mixture.
  • Example 2 when the temperature of the emulsion was set at 78 ° C., the pressure inside the storage tank 40 was 0.06 MPa (gauge pressure). Table 1 shows the results.
  • Example 3 Instead of normal hexane, normal pentane (boiling point: 36 ° C.) is used, and when the normal pentane is distilled off in the storage tank 40, the emulsion is heated to 85 ° C. by heating with steam. The normal pentane was distilled off from the emulsion in the same manner as in Example 1 except that the temperature was changed to 67 ° C. In Example 3, when the temperature of the emulsion was set at 67 ° C., the pressure inside the storage tank 40 was 0.04 MPa (gauge pressure). Table 1 shows the results.
  • Example 4 A styrene-isoprene-styrene copolymer (trade name “Quintac 3620”, manufactured by Zeon Corporation, described as “SIS” in Table 1) was used instead of synthetic polyisoprein, and cyclohexane was used instead of normal hexane. (Boiling point: 80 ° C.) Except for using, in the same manner as in Example 1, an emulsified liquid was obtained, and when the cyclohexane was distilled off in the storage tank 40, the emulsified liquid was heated by steam. Cyclohexane was distilled off from the emulsion in the same manner as in Example 1 except that the heating temperature was changed from 85 ° C. to 82 ° C. In Example 4, when the temperature of the emulsion was 82 ° C., the pressure inside the storage tank 40 was 0.07 MPa (gauge pressure). Table 1 shows the results.
  • Comparative Example 2 a pressure reducing pump was connected to the downstream side of the condenser 70, and the pressure in the storage tank 40 was adjusted to ⁇ 0.02 MPa (gauge pressure) by reducing the pressure with the pressure reducing pump.
  • ⁇ 0.02 MPa gauge pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The present invention provides a method for producing a polymer latex, which comprises a step wherein an organic solvent is removed by distillation from an emulsion that is obtained by mixing an aqueous solution of an emulsifying agent with a solution or dispersion liquid of a polymer, said solution or dispersion liquid being obtained by dissolving or dispersing the polymer in the organic solvent. With respect to this method for producing a polymer latex, the removal of the organic solvent from the emulsion by means of distillation is performed within a container in which the pressure is controlled to 0.02 MPa or more in terms of a gauge pressure.

Description

重合体ラテックスの製造方法Method for producing polymer latex
 本発明は、重合体ラテックスの製造方法に関し、さらに詳しくは、高い収率を実現しながら、短時間での製造が可能となる重合体ラテックスの製造方法に関する。 The present invention relates to a method for producing a polymer latex, and more particularly, to a method for producing a polymer latex that can be produced in a short time while achieving a high yield.
 従来、天然ゴムや合成ゴムのラテックスを含有するラテックス組成物をディップ成形して得られるディップ成形体などの膜成形体は、乳首、風船、手袋、バルーン、サック等として好適に用いられている。 Conventionally, a film molded product such as a dip molded product obtained by dip molding a latex composition containing a latex of natural rubber or synthetic rubber has been suitably used as a nipple, a balloon, a glove, a balloon, a sack and the like.
 たとえば、特許文献1では、合成ゴムのラテックスを製造するための方法として、合成ゴムが有機溶媒に溶解してなる合成ゴムの溶液と、乳化剤の水溶液とを、混合することで乳化液を得て、得られた乳化液に対して、減圧条件下で、有機溶媒の沸点よりも高い温度にて加熱することで、有機溶媒の除去を行う方法が開示されている。しかしながら、この特許文献1の技術では、有機溶媒の除去に時間が掛かり、そのため生産性に劣るという問題があった。 For example, in Patent Literature 1, as a method for producing a synthetic rubber latex, an emulsion is obtained by mixing a solution of a synthetic rubber in which a synthetic rubber is dissolved in an organic solvent and an aqueous solution of an emulsifier. A method for removing an organic solvent by heating an obtained emulsion at a temperature higher than the boiling point of the organic solvent under reduced pressure conditions is disclosed. However, the technique of Patent Document 1 has a problem that it takes a long time to remove the organic solvent, and thus the productivity is poor.
特許第5260738号公報Japanese Patent No. 5260737
 本発明は、高い収率を実現しながら、短時間での製造が可能となる重合体ラテックスの製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a polymer latex that can be produced in a short time while realizing a high yield.
 本発明者等は、上記課題を解決すべく鋭意研究した結果、重合体が有機溶媒に溶解または分散してなる重合体の溶液または分散液と、乳化剤の水溶液とを混合することで得られた乳化液から、有機溶媒を留去する際に、乳化液からの有機溶媒の留去を、ゲージ圧で0.02MPa以上の圧力条件に調整された容器中において行うことにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 The present inventors have conducted intensive studies to solve the above problems, and as a result, a polymer solution or dispersion obtained by dissolving or dispersing a polymer in an organic solvent and an aqueous solution of an emulsifier were obtained. When the organic solvent is distilled off from the emulsion, the above-mentioned object can be achieved by performing the distillation of the organic solvent from the emulsion in a vessel adjusted to a pressure condition of 0.02 MPa or more at a gauge pressure. And completed the present invention.
 すなわち、本発明によれば、重合体が有機溶媒に溶解または分散してなる重合体の溶液または分散液と、乳化剤の水溶液とを混合することで得られた乳化液から、有機溶媒を留去する工程を備える重合体ラテックスの製造方法であって、
 前記乳化液からの前記有機溶媒の留去を、ゲージ圧で0.02MPa以上の圧力条件に調整された容器中において行う重合体ラテックスの製造方法が提供される。
That is, according to the present invention, the organic solvent is distilled off from the emulsion obtained by mixing the polymer solution or dispersion obtained by dissolving or dispersing the polymer in the organic solvent and the aqueous solution of the emulsifier. A method for producing a polymer latex, comprising:
There is provided a method for producing a polymer latex, in which the organic solvent is distilled off from the emulsion in a vessel adjusted to a pressure condition of 0.02 MPa or more at a gauge pressure.
 本発明の重合体ラテックスの製造方法において、有機溶媒を留去する前の前記乳化液中の有機溶媒の含有割合が、30~60重量%であることが好ましい。
 本発明の重合体ラテックスの製造方法において、前記乳化液からの前記有機溶媒の留去を、ゲージ圧で0.02~0.18MPaの圧力条件に調整された容器中において行うことが好ましい。
 本発明の重合体ラテックスの製造方法において、前記乳化液からの前記有機溶媒の留去を、前記有機溶媒の沸点以上の温度にて行うことが好ましい。
 本発明の重合体ラテックスの製造方法において、前記有機溶媒が、シクロヘキサン、ノルマルヘキサン、シクロペンタンおよびノルマルペンタンから選択される有機溶媒であることが好ましい。
 本発明の重合体ラテックスの製造方法において、前記有機溶媒の留去を、前記容器に備えられたジャケット中に、圧力調整されたスチームを投入する方法によって加熱することにより行うことが好ましい。
 本発明の重合体ラテックスの製造方法において、前記重合体が、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレン共重合体であることが好ましい。
 本発明の重合体ラテックスの製造方法において、有機溶媒を留去する前の前記乳化液中における、前記乳化剤の含有量が、前記重合体100重量部に対して、0.1~30重量部であることが好ましい。
In the method for producing a polymer latex of the present invention, the content of the organic solvent in the emulsion before the organic solvent is distilled off is preferably 30 to 60% by weight.
In the method for producing a polymer latex of the present invention, the organic solvent is preferably distilled off from the emulsion in a vessel adjusted to a gauge pressure of 0.02 to 0.18 MPa.
In the method for producing a polymer latex of the present invention, it is preferable that the organic solvent is distilled off from the emulsion at a temperature equal to or higher than the boiling point of the organic solvent.
In the method for producing a polymer latex of the present invention, it is preferable that the organic solvent is an organic solvent selected from cyclohexane, normal hexane, cyclopentane, and normal pentane.
In the method for producing a polymer latex of the present invention, it is preferable that the distillation of the organic solvent is performed by heating by a method in which steam whose pressure is adjusted is charged into a jacket provided in the container.
In the method for producing a polymer latex of the present invention, the polymer is preferably a synthetic polyisoprene and / or a styrene-isoprene-styrene copolymer.
In the method for producing a polymer latex of the present invention, the content of the emulsifier in the emulsion before removing the organic solvent is 0.1 to 30 parts by weight based on 100 parts by weight of the polymer. Preferably, there is.
 本発明の重合体ラテックスの製造方法によれば、高い収率を実現しながら、短時間での製造が可能とすることができ、これにより生産性の向上が可能となる。 According to the method for producing a polymer latex of the present invention, production can be performed in a short time while achieving a high yield, thereby improving productivity.
図1は、本発明の重合体ラテックスの製造方法に用いられる乳化装置の一例を示す図である。FIG. 1 is a diagram illustrating an example of an emulsifying apparatus used in the method for producing a polymer latex of the present invention.
 本発明の重合体ラテックスの製造方法は、
 重合体が有機溶媒に溶解または分散してなる重合体の溶液または分散液と、乳化剤の水溶液とを混合することで得られた乳化液から、有機溶媒を留去する工程を備え、
 前記乳化液からの前記有機溶媒の留去を、ゲージ圧で0.02MPa以上の圧力条件に調整された容器中において行うものである。
The method for producing the polymer latex of the present invention comprises:
A polymer solution or dispersion obtained by dissolving or dispersing the polymer in an organic solvent, and an emulsion obtained by mixing an aqueous solution of an emulsifier, comprising a step of distilling off the organic solvent,
The organic solvent is distilled off from the emulsion in a container adjusted to a pressure condition of 0.02 MPa or more at a gauge pressure.
<乳化液>
 本発明の製造方法で用いる、乳化液は、重合体が有機溶媒に溶解または分散してなる重合体の溶液または分散液と、乳化剤の水溶液とを混合することで得られるものである。
<Emulsion>
The emulsion used in the production method of the present invention is obtained by mixing a polymer solution or dispersion obtained by dissolving or dispersing a polymer in an organic solvent with an aqueous solution of an emulsifier.
 重合体の溶液または分散液は、重合体が有機溶媒中に溶解または分散してなる溶液または分散液であればよく、特に限定されない。 The polymer solution or dispersion is not particularly limited as long as it is a solution or dispersion in which the polymer is dissolved or dispersed in an organic solvent.
 重合体としては、特に限定されず、種々の重合体を制限なく用いることができるが、たとえば、天然ゴム;合成ポリブタジエン、合成ポリイソプレン、合成ポリクロロプレン等の共役ジエン単量体の単独重合体もしくは共重合体;スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-イソプレン-スチレンブロック共重合体、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-イソプレン共重合体、アクリロニトリル-ブタジエン-イソプレン共重合体、ブチルアクリレート-ブタジエン共重合体等の共役ジエン単量体とこれと共重合可能な他の単量体との共重合体;アクリレート系(共)重合体等が挙げられる。これらのなかでも、本発明の製造方法を適用した場合における効果がより高いという観点より、天然ゴム、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体が好ましく、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体がより好ましい。 The polymer is not particularly limited and various polymers can be used without limitation. Examples thereof include natural rubber; homopolymers of conjugated diene monomers such as synthetic polybutadiene, synthetic polyisoprene, and synthetic polychloroprene; Copolymers: styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-isoprene-styrene block copolymer, acrylonitrile-butadiene copolymer, acrylonitrile-isoprene copolymer, acrylonitrile-butadiene-isoprene copolymer And a conjugated diene monomer such as butyl acrylate-butadiene copolymer and another monomer copolymerizable therewith; an acrylate (co) polymer; Among these, natural rubber, synthetic polyisoprene, and styrene-isoprene-styrene block copolymer are preferable, and synthetic polyisoprene and styrene-isoprene- are preferable from the viewpoint that the effect of the production method of the present invention is higher. Styrene block copolymers are more preferred.
 以下、本発明の製造方法で用いる重合体の溶液または分散液を構成する重合体が、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体である場合を例示するが、本発明の製造方法で用いる重合体の溶液または分散液は、これら合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレンブロック共重合体の溶液または分散液に、何ら限定されるものではない。 Hereinafter, the case where the polymer constituting the solution or dispersion of the polymer used in the production method of the present invention is a synthetic polyisoprene and / or a styrene-isoprene-styrene block copolymer will be exemplified. The polymer solution or dispersion used in the method is not limited to the solution or dispersion of the synthetic polyisoprene and / or styrene-isoprene-styrene block copolymer.
 合成ポリイソプレンは、イソプレンの単独重合体であってもよいし、イソプレンと共重合可能な他のエチレン性不飽和単量体とを共重合したものであってもよい。合成ポリイソプレン中のイソプレン単位の含有量は、柔軟で、引張強度に優れるディップ成形体などの膜成形体が得られやすいことから、全単量体単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上、特に好ましくは100重量%(イソプレンの単独重合体)である。 The synthetic polyisoprene may be a homopolymer of isoprene or a copolymer of isoprene and another ethylenically unsaturated monomer copolymerizable with isoprene. The content of the isoprene unit in the synthetic polyisoprene is preferably 70% by weight or more based on all the monomer units, since a film molded body such as a dip molded body having flexibility and excellent tensile strength can be easily obtained. The content is more preferably 90% by weight or more, further preferably 95% by weight or more, and particularly preferably 100% by weight (a homopolymer of isoprene).
 イソプレンと共重合可能な他のエチレン性不飽和単量体としては、たとえば、ブタジエン、クロロプレン、1,3-ペンタジエン等のイソプレン以外の共役ジエン単量体;アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル等のエチレン性不飽和ニトリル単量体;スチレン、アルキルスチレン等のビニル芳香族単量体;(メタ)アクリル酸メチル(「アクリル酸メチルおよび/またはメタクリル酸メチル」の意味であり、以下、(メタ)アクリル酸エチルなども同様。)、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル等のエチレン性不飽和カルボン酸エステル単量体;などが挙げられる。これらのイソプレンと共重合可能な他のエチレン性不飽和単量体は、1種単独でも、複数種を併用してもよい。 Other ethylenically unsaturated monomers copolymerizable with isoprene include, for example, conjugated diene monomers other than isoprene such as butadiene, chloroprene and 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, α- Ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth) acrylate (meaning "methyl acrylate and / or methyl methacrylate" And ethyl (meth) acrylate), ethylenically unsaturated carboxylic acid ester monomers such as ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate; Is mentioned. These other ethylenically unsaturated monomers copolymerizable with isoprene may be used alone or in combination of two or more.
 合成ポリイソプレンは、従来公知の方法、たとえばトリアルキルアルミニウム-四塩化チタンからなるチーグラー系重合触媒やn-ブチルリチウム、sec-ブチルリチウムなどのアルキルリチウム重合触媒を用いて、有機溶媒中で、イソプレンと、必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体とを溶液重合することで、合成ポリイソプレンが有機溶媒に溶解してなる、合成ポリイソプレンの溶液として得ることできる。なお、溶液重合により得られた合成ポリイソプレンの溶液は、乳化工程において、そのまま用いてもよいが、溶液重合により得られた溶液から固形の合成ポリイソプレンを取り出した後、有機溶媒に溶解して、用いてもよい。 Synthetic polyisoprene can be prepared in a known manner, for example, using a Ziegler-based polymerization catalyst comprising trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium in an organic solvent using isoprene. And, by solution-polymerizing another copolymerizable ethylenically unsaturated monomer used as needed, a synthetic polyisoprene obtained by dissolving a synthetic polyisoprene in an organic solvent can be obtained as a solution of a synthetic polyisoprene. . In addition, the solution of the synthetic polyisoprene obtained by the solution polymerization may be used as it is in the emulsification step, but after taking out the solid synthetic polyisoprene from the solution obtained by the solution polymerization, the solution is dissolved in an organic solvent. , May be used.
 また、重合に用いる有機溶媒としては、たとえば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒;ブタン、ノルマルペンタン、ノルマルヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を好適に挙げることができる。なお、溶液重合により得られた溶液から固形の合成ポリイソプレンを取り出した後、再度、有機溶媒に溶解する場合にも、これらの有機溶媒を好適に用いることができる。 Examples of the organic solvent used for the polymerization include, for example, aromatic hydrocarbon solvents such as benzene, toluene, and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane, and cyclohexene; butane, normal pentane, normal hexane, and the like. Suitable examples include aliphatic hydrocarbon solvents such as heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride. In addition, even when solid synthetic polyisoprene is taken out of a solution obtained by solution polymerization and then dissolved again in an organic solvent, these organic solvents can be suitably used.
 合成ポリイソプレン中のイソプレン単位としては、イソプレンの結合状態により、シス結合単位、トランス結合単位、1,2-ビニル結合単位、3,4-ビニル結合単位の4種類が存在する。得られるディップ成形体などの膜成形体の引張強度向上の観点から、合成ポリイソプレンに含まれるイソプレン単位中のシス結合単位の含有割合は、全イソプレン単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上である。 イ ソ As the isoprene units in the synthetic polyisoprene, there are four types of cis-bond units, trans-bond units, 1,2-vinyl-bond units, and 3,4-vinyl-bond units, depending on the bonding state of isoprene. From the viewpoint of improving the tensile strength of the film molded body such as the obtained dip molded body, the content ratio of the cis-bond unit in the isoprene unit contained in the synthetic polyisoprene is preferably at least 70% by weight based on all the isoprene units, It is more preferably at least 90% by weight, further preferably at least 95% by weight.
 合成ポリイソプレンの重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~5,000,000、より好ましくは500,000~5,000,000、さらに好ましくは800,000~3,000,000である。合成ポリイソプレンの重量平均分子量を上記範囲とすることにより、ディップ成形体などの膜成形体とした場合における、得られる膜成形体の引張強度が向上するとともに、合成ポリイソプレンラテックスが製造しやすくなる傾向がある。 The weight average molecular weight of the synthetic polyisoprene is preferably 10,000 to 5,000,000, more preferably 500,000 to 5,000,000, and still more preferably, in terms of standard polystyrene by gel permeation chromatography analysis. Is from 800,000 to 3,000,000. When the weight average molecular weight of the synthetic polyisoprene is in the above range, the tensile strength of the obtained film molded body in the case of a film molded body such as a dip molded body is improved, and the synthetic polyisoprene latex is easily manufactured. Tend.
 合成ポリイソプレンのポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは50~80、より好ましくは60~80、さらに好ましくは70~80である。 ポ リ マ ー The polymer Mooney viscosity (ML1 + 4, 100 ° C) of the synthetic polyisoprene is preferably 50 to 80, more preferably 60 to 80, and further preferably 70 to 80.
 スチレン-イソプレン-スチレンブロック共重合体は、スチレンとイソプレンのブロック共重合体である。スチレン-イソプレン-スチレンブロック共重合体中のスチレン単位とイソプレン単位の含有割合は、特に限定されないが、「スチレン単位:イソプレン単位」の重量比で、通常1:99~90:10、好ましくは3:97~70:30、より好ましくは5:95~50:50、さらに好ましくは10:90~30:70の範囲である。 Styrene-isoprene-styrene block copolymer is a block copolymer of styrene and isoprene. The content ratio of the styrene unit to the isoprene unit in the styrene-isoprene-styrene block copolymer is not particularly limited, but is usually from 1:99 to 90:10, preferably from 3 to 9, based on the weight ratio of “styrene unit: isoprene unit”. : 97 to 70:30, more preferably 5:95 to 50:50, even more preferably 10:90 to 30:70.
 スチレン-イソプレン-スチレンブロック共重合体は、従来公知の方法、たとえばトリアルキルアルミニウム-四塩化チタンからなるチーグラー系重合触媒やn-ブチルリチウム、sec-ブチルリチウムなどのアルキルリチウム重合触媒を用いて、有機溶媒中で、イソプレンとスチレンとをブロック共重合することで、スチレン-イソプレン-スチレンブロック共重合体が有機溶媒に溶解してなる、スチレン-イソプレン-スチレンブロック共重合体の溶液として得ることができる。なお、ブロック共重合により得られたスチレン-イソプレン-スチレンブロック共重合体の溶液は、乳化工程において、そのまま用いてもよいが、ブロック共重合により得られた溶液から固形のスチレン-イソプレン-スチレンブロック共重合体を取り出した後、有機溶媒に溶解して、用いてもよい。また、重合に用いる有機溶媒としては、上記した合成イソプレンと同様のものが挙げられる。 The styrene-isoprene-styrene block copolymer can be prepared by a conventionally known method, for example, using a Ziegler-based polymerization catalyst composed of trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium. By block copolymerizing isoprene and styrene in an organic solvent, a styrene-isoprene-styrene block copolymer solution obtained by dissolving a styrene-isoprene-styrene block copolymer in an organic solvent can be obtained. it can. The styrene-isoprene-styrene block copolymer solution obtained by the block copolymerization may be used as it is in the emulsification step, but the solid styrene-isoprene-styrene block is obtained from the solution obtained by the block copolymerization. After taking out the copolymer, the copolymer may be dissolved in an organic solvent and used. Examples of the organic solvent used for the polymerization include the same ones as the above-mentioned synthetic isoprene.
 スチレン-イソプレン-スチレンブロック共重合体中に含まれるイソプレン単位中のシス結合単位の含有割合は、得られるディップ成形体などの膜成形体の引張強度向上の観点から、全イソプレン単位に対して、好ましくは90重量%以上、より好ましくは95重量%以上、さらに好ましくは98重量%以上である。 The content ratio of the cis-bond unit in the isoprene unit contained in the styrene-isoprene-styrene block copolymer is, with respect to all the isoprene units, from the viewpoint of improving the tensile strength of the obtained film-formed body such as the dip-formed body. It is preferably at least 90% by weight, more preferably at least 95% by weight, even more preferably at least 98% by weight.
 スチレン-イソプレン-スチレンブロック共重合体の重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~1,000,000、より好ましくは50,000~500,000、さらに好ましくは100,000~300,000である。スチレン-イソプレン-スチレンブロック共重合体の重量平均分子量を上記範囲とすることにより、ディップ成形体などの膜成形体とした場合における、得られる膜成形体の引張強度が向上するとともに、スチレン-イソプレン-スチレンブロック共重合体ラテックスが製造しやすくなる傾向がある。 The weight average molecular weight of the styrene-isoprene-styrene block copolymer is preferably from 10,000 to 1,000,000, more preferably from 50,000 to 500, in terms of standard polystyrene by gel permeation chromatography analysis. 000, more preferably 100,000 to 300,000. By setting the weight average molecular weight of the styrene-isoprene-styrene block copolymer within the above range, when a film molded product such as a dip molded product is obtained, the tensile strength of the obtained film molded product is improved, and styrene-isoprene is obtained. -Styrene block copolymer latex tends to be easily produced.
 スチレン-イソプレン-スチレンブロック共重合体のポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは50~80、より好ましくは60~80、さらに好ましくは70~80である。 ポ リ マ ー The polymer Mooney viscosity (ML1 + 4, 100 ° C.) of the styrene-isoprene-styrene block copolymer is preferably 50 to 80, more preferably 60 to 80, and even more preferably 70 to 80.
 本発明の製造方法で用いる、重合体の溶液または分散液中における、重合体の含有割合は、特に限定されないが、好ましくは3~30重量%、より好ましくは5~20重量%、さらに好ましくは7~15重量%である。 The content of the polymer in the polymer solution or dispersion used in the production method of the present invention is not particularly limited, but is preferably 3 to 30% by weight, more preferably 5 to 20% by weight, and further preferably It is 7 to 15% by weight.
 本発明の製造方法で用いる、乳化剤の水溶液を構成する、乳化剤としては、特に限定されないが、アニオン性乳化剤を好ましく用いることができる。アニオン性乳化剤としては、たとえば、ラウリン酸ナトリウム、ミリスチン酸カリウム、パルミチン酸ナトリウム、オレイン酸カリウム、リノレン酸ナトリウム、ロジン酸ナトリウム、ロジン酸カリウム等の脂肪酸塩;ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、デシルベンゼンスルホン酸ナトリウム、デシルベンゼンスルホン酸カリウム、セチルベンゼンスルホン酸ナトリウム、セチルベンゼンスルホン酸カリウム等のアルキルベンゼンスルホン酸塩;ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、ジ(2-エチルヘキシル)スルホコハク酸カリウム、ジオクチルスルホコハク酸ナトリウム等のアルキルスルホコハク酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸カリウム等のアルキル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸カリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ラウリルリン酸ナトリウム、ラウリルリン酸カリウム等のモノアルキルリン酸塩;等が挙げられる。 乳化 The emulsifier constituting the aqueous solution of the emulsifier used in the production method of the present invention is not particularly limited, but an anionic emulsifier can be preferably used. Examples of the anionic emulsifier include fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, sodium rosinate, potassium rosinate; sodium dodecylbenzenesulfonate, dodecylbenzenesulfonate Alkylbenzene sulfonates such as potassium, sodium decylbenzenesulfonate, potassium decylbenzenesulfonate, sodium cetylbenzenesulfonate, potassium cetylbenzenesulfonate; sodium di (2-ethylhexyl) sulfosuccinate, di (2-ethylhexyl) sulfosuccinate Alkyl sulfosuccinates such as potassium and sodium dioctyl sulfosuccinate; alkyl sulfates such as sodium lauryl sulfate and potassium lauryl sulfate Teru salts; polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene lauryl ether sulfate and potassium polyoxyethylene lauryl ether sulfate; monoalkyl phosphates such as sodium lauryl phosphate and potassium lauryl phosphate; .
 これらアニオン性乳化剤の中でも、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩が好ましく、得られる重合体ラテックス中における凝集物の発生をより適切に防止することができ、得られる重合体ラテックスの安定性をより高めることができるという観点より、脂肪酸塩およびアルキルベンゼンスルホン酸塩がより好ましく、脂肪酸塩がさらに好ましく、ロジン酸ナトリウム、ロジン酸カリウムが特に好ましい。また、脂肪酸塩と、アルキルベンゼンスルホン酸塩とを組み合わせて用いることも好ましい。 Among these anionic emulsifiers, fatty acid salts, alkyl benzene sulfonates, alkyl sulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates are preferred, and the generation of aggregates in the resulting polymer latex is more appropriate. From the viewpoint that the stability of the obtained polymer latex can be further improved, fatty acid salts and alkylbenzene sulfonates are more preferable, fatty acid salts are more preferable, and sodium rosinate and potassium rosinate are preferable. Particularly preferred. It is also preferable to use a combination of a fatty acid salt and an alkylbenzene sulfonate.
 本発明の製造方法で用いる、乳化剤の水溶液中における、乳化剤の含有割合は、特に限定されないが、好ましくは0.1~5重量%、より好ましくは0.3~3重量%、さらに好ましくは0.5~2重量%である。 The content of the emulsifier in the aqueous solution of the emulsifier used in the production method of the present invention is not particularly limited, but is preferably 0.1 to 5% by weight, more preferably 0.3 to 3% by weight, and still more preferably 0 to 3% by weight. 0.5 to 2% by weight.
 そして、本発明の製造方法においては、このような重合体が有機溶媒に溶解または分散してなる重合体の溶液または分散液と、乳化剤の水溶液とを、混合装置に供給し、混合することで、乳化液を得ることができる。乳化液を得る際には、重合体の溶液または分散液と、乳化剤の水溶液とを、混合装置に連続的に供給し、連続的に乳化液を得るような態様とすることが好ましい。 In the production method of the present invention, a polymer solution or dispersion obtained by dissolving or dispersing such a polymer in an organic solvent, and an aqueous solution of an emulsifier are supplied to a mixing device, and mixed. , An emulsion can be obtained. When obtaining an emulsion, it is preferable that the solution or dispersion of the polymer and the aqueous solution of the emulsifier are continuously supplied to a mixing device to obtain an emulsion continuously.
 ここで、図1は、本発明の重合体ラテックスの製造方法に用いられる乳化装置の一例を示す図である。図1に示すように、図1に示す乳化装置は、重合体用タンク10と、乳化剤用タンク20と、混合装置30と、貯留タンク40と、留去用配管60と、コンデンサ70と、有機溶媒回収タンク80とを備えている。 Here, FIG. 1 is a diagram showing an example of an emulsifying apparatus used in the method for producing a polymer latex of the present invention. As shown in FIG. 1, the emulsifying apparatus shown in FIG. 1 includes a polymer tank 10, an emulsifier tank 20, a mixing apparatus 30, a storage tank 40, a distillation pipe 60, a condenser 70, And a solvent recovery tank 80.
 以下においては、本発明で用いる乳化液の製造方法について、図1を参照しながら説明を行うが、図1に示す乳化装置を用いる態様に特に限定されるものではない。 In the following, the method for producing an emulsion used in the present invention will be described with reference to FIG. 1, but the present invention is not particularly limited to the embodiment using the emulsifying apparatus shown in FIG.
 すなわち、図1を参照して説明すると、重合体用タンク10から重合体の溶液または分散液を、乳化剤用タンク20から乳化剤の水溶液を、それぞれ連続的に混合装置30に送り、これにより混合装置30内にて、重合体の溶液または分散液と、乳化剤の水溶液とを連続的に混合することで、連続的に乳化液を得ることができる。そして、図1に示す乳化装置においては、このようにして連続的に得られる乳化液を、貯留タンク40に連続的に供給するものである。 That is, with reference to FIG. 1, the polymer solution or dispersion from the polymer tank 10 and the aqueous solution of the emulsifier from the emulsifier tank 20 are continuously sent to the mixing device 30, respectively. By continuously mixing the solution or dispersion of the polymer and the aqueous solution of the emulsifier in 30, an emulsion can be obtained continuously. In the emulsifying apparatus shown in FIG. 1, the emulsified liquid thus continuously obtained is continuously supplied to the storage tank 40.
 この際に、重合体の溶液または分散液および乳化剤の水溶液を、連続的に混合装置30に送る際における、これらの供給割合は、特に限定されないが、重合体の乳化をより適切に進行させることができるという観点より、「重合体の溶液または分散液:乳化剤の水溶液」の体積比で、好ましくは1:2~1:0.3、より好ましくは1:1.5~1:0.5、より好ましくは1:1~1:0.7である。 At this time, when the solution or dispersion of the polymer and the aqueous solution of the emulsifier are continuously sent to the mixing device 30, the supply ratio thereof is not particularly limited, but the emulsification of the polymer is allowed to proceed more appropriately. From the viewpoint that a polymer solution or a dispersion liquid: aqueous solution of an emulsifier can be obtained, the volume ratio is preferably 1: 2 to 1: 0.3, more preferably 1: 1.5 to 1: 0.5. , More preferably 1: 1 to 1: 0.7.
 重合体用タンク10および乳化剤用タンク20から、重合体の溶液または分散液および乳化剤の水溶液を、連続的に混合装置30に送る方法としては、特に限定されないが、重合体の溶液または分散液および乳化剤の水溶液を、ポンプにより、直接、混合装置30に送るような態様としてもよいし、あるいは、混合装置30の上流側に、ラインミキサーなどの予備混合装置を備えるような構成とし、予備混合装置により予備混合を行い、予備混合された状態にて、混合装置30に送るような態様としてもよい。 The method for continuously feeding the polymer solution or dispersion and the aqueous solution of the emulsifier from the polymer tank 10 and the emulsifier tank 20 to the mixing device 30 is not particularly limited. The aqueous solution of the emulsifier may be directly sent to the mixing device 30 by a pump, or a premixing device such as a line mixer may be provided upstream of the mixing device 30 to provide a premixing device. The pre-mixing may be performed in such a manner that the pre-mixed state is sent to the mixing device 30 in the pre-mixed state.
 混合装置30としては、特に限定されないが、連続的に混合を行うことができるような混合装置が好ましく、たとえば、商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等を用いることができる。なお、混合装置30による混合操作の条件は、特に限定されず、所望の分散状態になるように、処理温度、処理時間などを適宜選定すればよい。 The mixing device 30 is not particularly limited, but is preferably a mixing device capable of continuously mixing, for example, a product name “TK Pipeline Homomixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.), and a product name “ Colloid mill "(manufactured by Shinko Pantech), trade name" Slasher "(manufactured by Nippon Coke Industry), trade name" trigonal wet pulverizer "(manufactured by Mitsui Miike Kakoki Co., Ltd.), trade name" Cavitron "(eurotech) ), Trade name "Milder" (manufactured by Taiheiyo Kiko), trade name "Fine Flow Mill" (manufactured by Taiheiyo Kiko) and the like. The conditions of the mixing operation by the mixing device 30 are not particularly limited, and a processing temperature, a processing time, and the like may be appropriately selected so that a desired dispersion state is obtained.
 重合体の溶液または分散液と、乳化剤の水溶液とを、連続的に混合装置30に送って混合する際における、重合体の溶液または分散液、および乳化剤の水溶液の温度は特に限定されないが、乳化を良好に行うことができるという観点より、好ましくは20~100℃であり、より好ましくは40~90℃、さらに好ましくは60~80℃である。なお、これらを混合する際の温度は、混合温度が所望の温度となるように、重合体の溶液または分散液を重合体用タンク10に貯留する際における温度、および乳化剤の水溶液を乳化剤用タンク20に貯留する際における温度を、それぞれ調整することにより制御すればよい。たとえば、60℃の重合体の溶液または分散液と、60℃の乳化剤の水溶液とを、混合装置30で混合する場合には、重合体の溶液または分散液を重合体用タンク10に貯留する際における温度を60℃とし、乳化剤の水溶液を乳化剤用タンク20に貯留する際における温度を60℃とすればよい。 The temperature of the solution or dispersion of the polymer and the aqueous solution of the emulsifier when the polymer solution or dispersion and the aqueous solution of the emulsifier are continuously fed to the mixing device 30 are not particularly limited. The temperature is preferably from 20 to 100 ° C., more preferably from 40 to 90 ° C., and still more preferably from 60 to 80 ° C., from the viewpoint that satisfactorily can be carried out. The temperature at which these are mixed is the temperature at which the polymer solution or dispersion is stored in the polymer tank 10 and the aqueous solution of the emulsifier is mixed with the emulsifier tank so that the mixing temperature becomes the desired temperature. What is necessary is just to control by adjusting the temperature at the time of storing in 20 respectively. For example, when the polymer solution or dispersion at 60 ° C. and the aqueous solution of the emulsifier at 60 ° C. are mixed by the mixing device 30, the polymer solution or dispersion is stored in the polymer tank 10. At 60 ° C., and the temperature when the aqueous solution of the emulsifier is stored in the emulsifier tank 20 may be 60 ° C.
 なお、本発明の製造方法において用いる乳化液中の有機溶媒の含有割合は、乳化液を構成する全成分100重量%に対して、通常、30~60重量%であり、好ましくは35~60重量%、より好ましくは37~50重量%である。 The content of the organic solvent in the emulsion used in the production method of the present invention is usually 30 to 60% by weight, preferably 35 to 60% by weight based on 100% by weight of all components constituting the emulsion. %, More preferably 37 to 50% by weight.
 また、本発明の製造方法において用いる乳化液中の乳化剤の含有量は、重合体100重量部に対して、通常、0.1~30重量部、好ましくは1~20重量部、より好ましくは3~15重量部である。 The content of the emulsifier in the emulsion used in the production method of the present invention is generally 0.1 to 30 parts by weight, preferably 1 to 20 parts by weight, more preferably 3 to 20 parts by weight, per 100 parts by weight of the polymer. 1515 parts by weight.
<有機溶媒留去工程>
 本発明の製造方法においては、上記のようにして、重合体が有機溶媒に溶解または分散してなる重合体の溶液または分散液と、乳化剤の水溶液とを混合することで得られる乳化液から、有機溶媒を留去(除去)する有機溶媒留去工程を備える。
 そして、本発明の製造方法においては、このような有機溶媒留去工程における、乳化液からの有機溶媒の留去(除去)を、ゲージ圧で0.02MPa以上の圧力条件に調整された容器中において行うものである。
<Organic solvent distillation step>
In the production method of the present invention, as described above, a polymer solution or dispersion obtained by dissolving or dispersing the polymer in an organic solvent, and an emulsion obtained by mixing an aqueous solution of an emulsifier, An organic solvent distilling step of distilling (removing) the organic solvent is provided.
Then, in the production method of the present invention, the distillation (removal) of the organic solvent from the emulsion in such an organic solvent distilling step is performed in a vessel adjusted to a pressure condition of 0.02 MPa or more by gauge pressure. It is performed in.
 以下においては、本発明の製造方法の有機溶媒留去工程の具体的な態様について、図1を参照しながら説明を行うが、本発明は、図1に示す乳化装置を用いる態様に特に限定されるものではない。 Hereinafter, a specific embodiment of the organic solvent distilling step of the production method of the present invention will be described with reference to FIG. 1, but the present invention is particularly limited to an embodiment using the emulsifying apparatus shown in FIG. Not something.
 すなわち、図1を参照し、本発明の製造方法の有機溶媒留去工程の具体的な態様について説明すると、有機溶媒留去工程においては、混合装置30から送られ、貯留タンク40に貯留されている乳化液について、貯留タンク40内の圧力を、ゲージ圧で0.02MPa以上の加圧条件に制御した状態にて、乳化液中に含まれる有機溶媒を留去するものである。 That is, a specific mode of the organic solvent distilling step of the production method of the present invention will be described with reference to FIG. 1. In the organic solvent distilling step, the organic solvent is sent from the mixing device 30 and stored in the storage tank 40. The organic solvent contained in the emulsion is distilled off in a state where the pressure in the storage tank 40 is controlled to a pressure of 0.02 MPa or more by gauge pressure for the emulsion.
 ここで、貯留タンク40は、攪拌羽根50を備え、さらに、その外側には、スチームを流通させるためのジャケット(不図示)を備えている。また、貯留タンク40の上方には、留去用配管60と、留去用配管60に接続されたコンデンサ70とを備えている。 Here, the storage tank 40 includes the stirring blade 50, and further includes a jacket (not shown) for circulating the steam on the outside thereof. Above the storage tank 40, a distillation pipe 60 and a condenser 70 connected to the distillation pipe 60 are provided.
 そして、本発明の製造方法の有機溶媒留去工程においては、次のようにして、貯留タンク40内の圧力の調整および有機溶媒の留去が行われるものである。すなわち、本発明の製造方法の有機溶媒留去工程においては、貯留タンク40、留去用配管60およびコンデンサ70からなる系を、外気から密閉した密閉系を保った状態とし、攪拌羽根50にて乳化液の攪拌を行いながら、貯留タンク40の外側に備えられたジャケットに、圧力調整されたスチームを連続的に投入することで、貯留タンク40に貯留されている乳化液を加温する。そして、加温された乳化液中から、有機溶媒が気化(蒸発あるいは沸騰)することで、貯留タンク40内の圧力が上昇し、これにより、貯留タンク40内部が加圧状態となる。一方で、加温された乳化液中から気化した有機溶媒のうち一部は、留去用配管60を通って、コンデンサ70により冷却され、有機溶媒回収タンク80に回収される。 In the organic solvent distilling step of the production method of the present invention, the pressure in the storage tank 40 is adjusted and the organic solvent is distilled off as follows. That is, in the organic solvent distilling step of the manufacturing method of the present invention, the system including the storage tank 40, the distilling pipe 60, and the condenser 70 is kept in a closed system sealed from the outside air, and While the emulsion is being stirred, steam whose pressure has been adjusted is continuously fed into a jacket provided outside the storage tank 40 to heat the emulsion stored in the storage tank 40. Then, the pressure in the storage tank 40 is increased by evaporating (evaporating or boiling) the organic solvent from the heated emulsion, whereby the inside of the storage tank 40 is pressurized. On the other hand, a part of the organic solvent vaporized from the heated emulsion passes through the distillation pipe 60, is cooled by the condenser 70, and is recovered in the organic solvent recovery tank 80.
 本発明の製造方法の有機溶媒留去工程においては、このような有機溶媒の気化による、貯留タンク40内部の圧力上昇を利用し、加圧状態を保った状態にて、有機溶媒の留去を行うものである。具体的には、貯留タンク40内部の圧力を、0.02MPa(ゲージ圧)以上の加圧条件に保った状態にて、有機溶媒の留去を行うものである。有機溶媒留去工程における、貯留タンク40内部の圧力の上限は、特に限定されないが、設備上の観点より、好ましくは0.18MPa(ゲージ圧)以下である。有機溶媒留去工程においては、貯留タンク40内部の圧力を、0.05~0.09MPa(ゲージ圧)の加圧条件に保った状態にて、有機溶媒の留去を行うことが好ましく、0.07~0.09MPa(ゲージ圧)の加圧条件に保った状態にて、有機溶媒の留去を行うことがより好ましい。なお、有機溶媒留去工程における、貯留タンク40内部の圧力は、たとえば、貯留タンク40に貯留されている乳化液を加温する際の加温温度などにより調整することができる。たとえば、加温温度を高くするほど、加圧力を高くすることができる。 In the organic solvent distillation step of the production method of the present invention, the organic solvent is distilled off while maintaining the pressurized state by utilizing the pressure increase inside the storage tank 40 due to the vaporization of the organic solvent. Is what you do. Specifically, the organic solvent is distilled off in a state where the pressure inside the storage tank 40 is maintained under a pressure condition of 0.02 MPa (gauge pressure) or more. The upper limit of the pressure inside the storage tank 40 in the organic solvent distillation step is not particularly limited, but is preferably 0.18 MPa (gauge pressure) or less from the viewpoint of equipment. In the organic solvent distillation step, the organic solvent is preferably distilled while maintaining the pressure inside the storage tank 40 at a pressure of 0.05 to 0.09 MPa (gauge pressure). More preferably, the organic solvent is distilled off while maintaining the pressure condition of 0.07 to 0.09 MPa (gauge pressure). In addition, the pressure inside the storage tank 40 in the organic solvent distillation step can be adjusted by, for example, a heating temperature when the emulsion stored in the storage tank 40 is heated. For example, as the heating temperature increases, the pressure can be increased.
 本発明の製造方法の有機溶媒留去工程によれば、このような0.02MPa(ゲージ圧)以上の加圧条件にて、有機溶媒の留去を行うものであり、加圧条件にて留去を行うことで、乳化液に含まれる有機溶媒の留去を、高い収率を実現しながら、短時間で行うことができるものである。特に、本発明者等が検討したところ、有機溶媒の留去は、減圧条件で行われることが一般的であるところ、逆に、0.02MPa(ゲージ圧)以上の加圧条件とすることにより、有機溶媒の留去に要する時間が短くなることを見出し、このような知見に基づいて、0.02MPa(ゲージ圧)以上の加圧条件にて、有機溶媒の留去を行うものである。 According to the organic solvent distilling step of the production method of the present invention, the organic solvent is distilled off under such a pressurized condition of 0.02 MPa (gauge pressure) or more, and the distillation is performed under the pressurized condition. By performing the removal, the organic solvent contained in the emulsion can be distilled off in a short time while achieving a high yield. In particular, the inventors of the present invention have studied that, although the distillation of the organic solvent is generally performed under reduced pressure conditions, conversely, when the pressure is increased to 0.02 MPa (gauge pressure) or more. It has been found that the time required for distilling off the organic solvent is reduced, and based on such knowledge, the distilling off of the organic solvent is performed under a pressure condition of 0.02 MPa (gauge pressure) or more.
 加えて、本発明の製造方法の有機溶媒留去工程によれば、0.02MPa(ゲージ圧)以上の加圧条件とすることにより、液面の発泡を抑えることができるものであり、これにより、貯留タンク40の容積に対し、好ましくは50~85容積%、より好ましくは55~85容積%、さらに好ましくは70~85容積%と、比較的多く乳化液を貯留させ、一度の操作における処理量を比較的多くした場合でも、発泡により乳化液の一部がコンデンサ70内に流入してしまい歩留まりを低下させるという不具合を有効に抑制することができるものである。そして、これにより、生産性の向上を図ることができるものである。 In addition, according to the organic solvent evaporating step of the production method of the present invention, the foaming of the liquid surface can be suppressed by applying a pressure condition of 0.02 MPa (gauge pressure) or more. The amount of the emulsified liquid is relatively large, preferably 50 to 85% by volume, more preferably 55 to 85% by volume, and still more preferably 70 to 85% by volume with respect to the volume of the storage tank 40. Even when the amount is relatively large, it is possible to effectively suppress the problem that a part of the emulsion flows into the condenser 70 due to foaming and lowers the yield. As a result, the productivity can be improved.
 さらに、本発明の製造方法の有機溶媒留去工程によれば、0.02MPa(ゲージ圧)以上の加圧条件であるため、貯留タンク40内部には、気化した有機溶媒が充満した状態となり、これにより、有機溶媒の留去中においては、貯留タンク40の壁面をウエットな状態に保つことができるものである。そのため、貯留タンク40の壁面に、乳化液が付着した場合でも、乳化液が固化して重合体成分が付着したままとなってしまうことを有効に抑制することでき、これにより、貯留タンク40の壁面に重合体成分が付着したままとなってしまうことに起因する、歩留まりの低下を抑制でき、ひいては、高い収率を実現できるものである。 Furthermore, according to the organic solvent distilling step of the production method of the present invention, since the pressure is 0.02 MPa (gauge pressure) or more, the inside of the storage tank 40 is filled with the vaporized organic solvent, This allows the wall surface of the storage tank 40 to be kept wet during the removal of the organic solvent. Therefore, even when the emulsified liquid adheres to the wall surface of the storage tank 40, it is possible to effectively suppress the solidification of the emulsified liquid and the remaining of the polymer component adhered thereto. It is possible to suppress a decrease in the yield due to the polymer component remaining on the wall surface, and to realize a high yield.
 0.02MPa(ゲージ圧)以上の加圧条件にて有機溶媒の留去を行う際における、貯留タンク40に貯留されている乳化液を加温するための加温温度としては、特に限定されず、所望の加圧力に応じた温度とすればよいが、乳化液に含まれる有機溶媒(すなわち、重合体の溶液または分散液に由来する有機溶媒)の大気圧下における沸点Tbに対して、沸点Tb以上の温度とすることが好ましく、Tb+1~Tb+35℃の範囲とすることが好ましく、Tb+5~Tb+35℃の範囲とすることがより好ましく、Tb+10~Tb+30℃の範囲とすることがさらに好ましい。なお、乳化液に2種以上の有機溶媒が含まれる場合には、含有量の多い方の有機溶媒の沸点を基準に、加温温度を設定すればよい。加温温度を上記範囲とすることにより、有機溶媒留去工程における、貯留タンク40内部の加圧力を適切に制御することができる。なお、加温温度は、貯留タンク40の外側に備えられたジャケットに投入する、スチームの流通量や流通速度を調整することで、適宜調整することができる。 When the organic solvent is distilled off under a pressure condition of 0.02 MPa (gauge pressure) or more, the heating temperature for heating the emulsion stored in the storage tank 40 is not particularly limited. The temperature may be set according to the desired pressure, but the boiling point is higher than the boiling point Tb of the organic solvent contained in the emulsion (that is, the organic solvent derived from the polymer solution or dispersion) under atmospheric pressure. The temperature is preferably Tb or higher, more preferably in the range of Tb + 1 to Tb + 35 ° C, more preferably in the range of Tb + 5 to Tb + 35 ° C, and still more preferably in the range of Tb + 10 to Tb + 30 ° C. When two or more organic solvents are contained in the emulsion, the heating temperature may be set based on the boiling point of the organic solvent having the higher content. By setting the heating temperature within the above range, the pressure applied inside the storage tank 40 in the organic solvent distillation step can be appropriately controlled. Note that the heating temperature can be appropriately adjusted by adjusting the flow rate and the flow rate of the steam to be charged into the jacket provided outside the storage tank 40.
 なお、有機溶媒留去工程における、貯留タンク40内部の加圧力は、ゲージ圧で上記範囲とすればよいが、絶対圧で、好ましくは0.1213~0.2813MPa、より好ましくは0.1513~0.1913MPa、さらに好ましくは0.1713~0.1913MPaである。 In addition, the pressure applied to the inside of the storage tank 40 in the organic solvent distillation step may be within the above range in terms of gauge pressure, but is preferably 0.1213 to 0.2813 MPa, more preferably 0.1513 to absolute pressure. The pressure is 0.1913 MPa, and more preferably 0.1713 to 0.1913 MPa.
 また、有機溶媒留去工程においては、上記加圧力を保つために、貯留タンク40、留去用配管60およびコンデンサ70からなる系を、外気から密閉した密閉系を保った状態として、有機溶媒の留去を行うことが好ましいが、その一方で、貯留タンク40の加温開始直後においては、貯留タンク40内に含まれている空気を除去することを目的として、コンデンサ70の上部に接続された圧力弁を開放し、空気を除去してもよい。そして、この際には、貯留タンク40内に含まれている空気の除去が完了し、コンデンサ70による有機溶媒の液化が確認された後に、圧力弁を閉じて、密閉系とすることが望ましい。 In addition, in the organic solvent distillation step, in order to maintain the pressure, the system including the storage tank 40, the distillation pipe 60, and the condenser 70 is maintained in a closed system that is closed from the outside air, and the organic solvent is removed. Although it is preferable to perform distillation, on the other hand, immediately after the heating of the storage tank 40 is started, it is connected to the upper part of the condenser 70 for the purpose of removing air contained in the storage tank 40. The pressure valve may be opened to remove air. At this time, it is desirable to close the pressure valve after the removal of the air contained in the storage tank 40 is completed and the liquefaction of the organic solvent by the condenser 70 is confirmed, thereby forming a closed system.
 あるいは、有機溶媒留去工程における、貯留タンク40内の加圧力は、加温温度により調整すればよいが、加温温度による調整に加えて、コンデンサ70の上部に接続された圧力弁により調整する方法を併用してもよい。 Alternatively, the pressure in the storage tank 40 in the organic solvent distillation step may be adjusted by the heating temperature. In addition to the adjustment by the heating temperature, the pressure is adjusted by a pressure valve connected to the upper part of the condenser 70. The methods may be used in combination.
 本発明の製造方法において、有機溶媒留去工程における、0.02MPa(ゲージ圧)以上の加圧条件での、乳化液からの有機溶媒の留去は、乳化液中の重合体100重量%に対する、乳化液中の有機溶媒の含有量が、好ましくは500重量ppm以下、より好ましくは100重量ppm以下となるまで行うことが好ましい。なお、本発明の製造方法においては、乳化液からの有機溶媒の留去を、0.02MPa(ゲージ圧)以上の加圧条件で行うものであるが、たとえば、乳化液中の重合体100重量%に対する、乳化液中の有機溶媒の含有量が、好ましくは1重量%以下程度まで低減されるまで、0.02MPa(ゲージ圧)以上の加圧条件での有機溶媒の留去を行った後、減圧条件での有機溶媒の留去を組み合わせて行ってもよい。この場合には、コンデンサ70の下流側に減圧ポンプを接続し、減圧ポンプにより減圧されるような態様とすればよい。 In the production method of the present invention, the distillation of the organic solvent from the emulsion under the pressure condition of 0.02 MPa (gauge pressure) or more in the organic solvent distillation step is based on 100% by weight of the polymer in the emulsion. The process is preferably performed until the content of the organic solvent in the emulsion becomes preferably 500 ppm by weight or less, more preferably 100 ppm by weight or less. In the production method of the present invention, the organic solvent is distilled off from the emulsion under a pressure condition of 0.02 MPa (gauge pressure) or more. %, After removing the organic solvent under a pressure condition of 0.02 MPa (gauge pressure) or more until the content of the organic solvent in the emulsion with respect to% is preferably reduced to about 1% by weight or less. Alternatively, the organic solvent may be distilled off under reduced pressure conditions in combination. In this case, a decompression pump may be connected to the downstream side of the condenser 70 so that the pressure is reduced by the decompression pump.
 以上のようにして、本発明の製造方法によれば、重合体ラテックスを得ることができる。なお、このようにして得られる重合体ラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、キレート化剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。 As described above, according to the production method of the present invention, a polymer latex can be obtained. Incidentally, the polymer latex thus obtained is usually blended in the field of latex, such as a pH adjuster, an antifoaming agent, a preservative, a chelating agent, an oxygen scavenger, a dispersant, an antioxidant and the like. Additives may be blended.
 pH調整剤としては、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。 Examples of the pH adjuster include hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide; carbonates of alkali metals such as sodium carbonate and potassium carbonate; hydrogen carbonates of alkali metals such as sodium hydrogen carbonate; ammonia Organic amine compounds such as trimethylamine and triethanolamine; and the like, with preference given to alkali metal hydroxides or ammonia.
 また、必要に応じ、重合体ラテックスの固形分濃度を上げるために、遠心分離による濃縮操作を行ってもよい。 濃縮 If necessary, a concentration operation by centrifugation may be performed to increase the solid content of the polymer latex.
 本発明の製造方法により製造される重合体ラテックスの体積平均粒子径は、好ましくは0.1~10μm、より好ましくは0.5~3μm、さらに好ましくは1~2μmである。体積平均粒子径を上記範囲とすることにより、ラテックス粘度が適度なものとなり取り扱いやすくなるとともに、重合体ラテックスを貯蔵した際に、ラテックス表面に皮膜が生成することを抑制できる。 体積 The volume average particle diameter of the polymer latex produced by the production method of the present invention is preferably 0.1 to 10 μm, more preferably 0.5 to 3 μm, and still more preferably 1 to 2 μm. By setting the volume average particle diameter in the above range, the viscosity of the latex becomes appropriate and the handling becomes easy, and the formation of a film on the latex surface when the polymer latex is stored can be suppressed.
 本発明の製造方法により製造される重合体ラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは40~70重量%である。固形分濃度を上記範囲とすることにより、重合体ラテックスを貯蔵した際における重合体粒子の分離を抑制することができるとともに、重合体粒子同士が凝集して粗大凝集物が発生することを抑制できる。 固 形 The solid content of the polymer latex produced by the production method of the present invention is preferably 30 to 70% by weight, more preferably 40 to 70% by weight. By setting the solid content concentration in the above range, it is possible to suppress separation of the polymer particles when the polymer latex is stored, and it is possible to suppress the occurrence of coarse aggregates due to aggregation of the polymer particles. .
 このようにして得られる本発明の重合体ラテックスは、たとえば、架橋剤などの各種添加剤などを配合することで、ラテックス組成物とすることができ、該ラテックス組成物は、ディップ成形体などの膜成形体を得るために用いられる他、接着剤用途などにも用いることができる。 The polymer latex of the present invention thus obtained can be made into a latex composition by, for example, blending various additives such as a cross-linking agent, and the latex composition can be used as a dip molded article or the like. In addition to being used for obtaining a film molded product, it can also be used for adhesives.
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り重量基準である。また、試験、評価は下記によった。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples. In the following, “parts” are based on weight unless otherwise specified. Tests and evaluations were as follows.
<実施例1>
(合成ポリイソプレンのノルマルヘキサン溶液(a)の調製)
 合成ポリイソプレン(商品名「Nipol IR2200L(R)」 、日本ゼオン社製)をノルマルヘキサン(沸点:69℃)と混合し、攪拌しながら温度を60℃に昇温して溶解し、合成ポリイソプレン濃度15重量%である、合成ポリイソプレンのノルマルヘキサン溶液(a)を調製した。
<Example 1>
(Preparation of normal hexane solution (a) of synthetic polyisoprene)
Synthetic polyisoprene (trade name “Nipol IR2200L (R)”, manufactured by Zeon Corporation) was mixed with normal hexane (boiling point: 69 ° C.), and the temperature was raised to 60 ° C. with stirring to dissolve. A normal hexane solution (a) of synthetic polyisoprene having a concentration of 15% by weight was prepared.
(乳化剤水溶液(b1)の調製)
 脂肪酸系乳化剤としてのロジン酸カリウムを、温度60℃で水と混合することにより、ロジン酸カリウム濃度1.2重量%である、乳化剤水溶液(b1)を調製した。
(Preparation of emulsifier aqueous solution (b1))
An emulsifier aqueous solution (b1) having a potassium rosinate concentration of 1.2% by weight was prepared by mixing potassium rosinate as a fatty acid-based emulsifier with water at a temperature of 60 ° C.
(合成ポリイソプレンラテックスの製造)
 そして、上記にて調製した合成ポリイソプレンのノルマルヘキサン溶液(a)および乳化剤水溶液(b1)を用い、図1に示す乳化装置を使用して、合成ポリイソプレンラテックスの製造を行った。
(Production of synthetic polyisoprene latex)
Then, using the normal hexane solution (a) of the synthetic polyisoprene prepared above and the aqueous solution of the emulsifier (b1), a synthetic polyisoprene latex was produced using the emulsifying apparatus shown in FIG.
 具体的には、重合体用タンク10に、上記にて調製した合成ポリイソプレンのノルマルヘキサン溶液(a)を60℃に加温した状態で貯留させ、また、乳化剤用タンク20に、上記にて調製した乳化剤水溶液(b1)を60℃に加温した状態で貯留させて、これらを、「合成ポリイソプレン」:「乳化剤」の重量比で10:1となるように、予備混合装置としてのラインミキサーにて予備混合を行った後に、混合装置30に連続的に供給することで、乳化液(乳化液中の、ノルマルヘキサンの割合は37.7重量%)を連続的に得て、得られた乳化液を、混合装置30との接続配管以外のバルブを閉とされ、密閉状態とされた貯留タンク40に連続的に排出させた。混合装置30としては、ホモジナイザー(商品名「マイルダー」、太平洋機工社製)を使用した。また、混合装置30から乳化液が排出される以前の、密閉状態の貯留タンク40の圧力は、0MPa(ゲージ圧)であった。 Specifically, the normal hexane solution (a) of the synthetic polyisoprene prepared as described above is stored in the polymer tank 10 while being heated to 60 ° C., and is stored in the emulsifier tank 20 as described above. The prepared emulsifier aqueous solution (b1) is stored while being heated to 60 ° C., and these are stored in a line as a premixing device so that the weight ratio of “synthetic polyisoprene”: “emulsifier” becomes 10: 1. After premixing with a mixer, the mixture was continuously supplied to the mixing device 30 to continuously obtain an emulsion (the ratio of normal hexane in the emulsion was 37.7% by weight). The emulsified liquid was continuously discharged to a closed storage tank 40 in which the valves other than the connection pipe to the mixing device 30 were closed. As the mixing device 30, a homogenizer (trade name "Milder", manufactured by Taiheiyo Kiko Co., Ltd.) was used. Further, before the emulsified liquid was discharged from the mixing device 30, the pressure of the storage tank 40 in a closed state was 0 MPa (gauge pressure).
 次いで、貯留タンク40内における乳化液の量が、貯留タンク40の容積に対し、56容積%の量となった時点で、混合装置30から貯留タンク40への乳化液の移送を停止し、混合装置30との接続配管のバルブを閉とし、攪拌羽根50による攪拌を開始した後、貯留タンク40の外側に備えられたジャケット(不図示)に、スチームを流すことにより、乳化液の加温を開始した。また、加温開始時には、コンデンサ70の上部に接続された圧力弁を開放し、貯留タンク40内の空気を除去し、コンデンサ70によるノルマルヘキサン蒸気の凝集が確認された後に、圧力弁を閉めて、貯留タンク40、留去用配管60およびコンデンサ70からなる系を、外気から密閉した密閉系とした。本実施例においては、スチームによる加温により、乳化液の温度は85℃まで上昇させ、乳化液の温度が85℃に達した時点での貯留タンク40内部の圧力は0.08MPa(ゲージ圧)であった。
 そして、本実施例においては、乳化液の温度が85℃、貯留タンク40内部の圧力が0.08MPa(ゲージ圧)の条件にて、乳化液中のノルマルヘキサンの留去を継続した。
Next, when the amount of the emulsion in the storage tank 40 becomes 56% by volume with respect to the volume of the storage tank 40, the transfer of the emulsion from the mixing device 30 to the storage tank 40 is stopped, and the mixing is stopped. After closing the valve of the connection pipe to the device 30 and starting stirring by the stirring blade 50, steam is flowed into a jacket (not shown) provided outside the storage tank 40 to warm the emulsion. Started. At the start of heating, the pressure valve connected to the upper part of the condenser 70 is opened, the air in the storage tank 40 is removed, and after the condensation of normal hexane vapor by the condenser 70 is confirmed, the pressure valve is closed. The system composed of the storage tank 40, the distillation pipe 60 and the condenser 70 was a closed system which was closed from the outside air. In the present embodiment, the temperature of the emulsion is raised to 85 ° C. by heating with steam, and the pressure inside the storage tank 40 when the temperature of the emulsion reaches 85 ° C. is 0.08 MPa (gauge pressure). Met.
In this example, the distillation of normal hexane from the emulsion was continued under the conditions that the temperature of the emulsion was 85 ° C. and the pressure inside the storage tank 40 was 0.08 MPa (gauge pressure).
 なお、ノルマルヘキサンの留去に際しては、コンデンサ70により回収されたノルマルヘキサンの量を1時間ごとに測定し、乳化液中のノルマルヘキサンの含有量が、乳化液中の合成ポリイソプレン100重量%に対して、100重量ppm以下となったと判断された時点で、ノルマルヘキサンの留去が完了したと判定し、ノルマルヘキサンの加圧条件下による留去を終了した。実施例1においては、コンデンサ70においてノルマルヘキサン蒸気の凝集の開始が確認されてから、ノルマルヘキサンの留去が終了するまでの時間である有機溶媒留去時間は、9時間であった(後述する実施例1~4、比較例1,2においても同様にして、有機溶媒留去時間を測定した。)。また、この間における、貯留タンク40内の、乳化液の発泡による泡面高さを観察したところ、最も高い時で、貯留タンク容積の72%の高さ(最大泡面高さ:72%)であった。さらに、実施例1においては、ノルマルヘキサンの留去が終了した後において、貯留タンク40の壁面に付着した合成ポリイソプレンの割合は、乳化液に含まれている合成ポリイソプレンの全量100重量%に対し、1.3重量%であり、得られた合成ポリイソプレンラテックスの体積平均粒径は1.09μmであった。 During the distillation of normal hexane, the amount of normal hexane collected by the condenser 70 was measured every hour, and the content of normal hexane in the emulsion was reduced to 100% by weight of the synthetic polyisoprene in the emulsion. On the other hand, when it was determined that the concentration became 100 ppm by weight or less, it was determined that the distillation of normal hexane was completed, and the distillation of normal hexane under pressurized conditions was terminated. In Example 1, the organic solvent distillation time, which is the time from the start of normal hexane vapor aggregation in the condenser 70 to the end of normal hexane distillation, was 9 hours (described later). In Examples 1 to 4 and Comparative Examples 1 and 2, the organic solvent distillation time was measured in the same manner.) Also, during this time, when the foam surface height due to the foaming of the emulsion in the storage tank 40 was observed, the height was 72% of the storage tank volume (maximum foam surface height: 72%) at the highest time. there were. Further, in Example 1, after the distillation of normal hexane was completed, the ratio of the synthetic polyisoprene adhered to the wall surface of the storage tank 40 was reduced to 100% by weight of the total amount of the synthetic polyisoprene contained in the emulsion. In contrast, the content was 1.3% by weight, and the volume average particle diameter of the obtained synthetic polyisoprene latex was 1.09 μm.
<実施例2>
 貯留タンク40内でのノルマルヘキサンの留去を行う際における、スチームによる加温による、乳化液の加温温度を85℃から78℃に変更した以外は、実施例1と同様にして、乳化液からのノルマルヘキサンの留去を行った。なお、実施例2において、乳化液の温度を78℃とした際における、貯留タンク40内部の圧力は0.06MPa(ゲージ圧)であった。結果を表1に示す。
<Example 2>
In the same manner as in Example 1, except that the heating temperature of the emulsion was changed from 85 ° C. to 78 ° C. by heating with steam when normal hexane was distilled off in the storage tank 40. N-hexane was distilled off from the mixture. In Example 2, when the temperature of the emulsion was set at 78 ° C., the pressure inside the storage tank 40 was 0.06 MPa (gauge pressure). Table 1 shows the results.
<実施例3>
 ノルマルヘキサンの代わりに、ノルマルペンタン(沸点:36℃)を使用するとともに、貯留タンク40内でのノルマルペンタンの留去を行う際における、スチームによる加温による、乳化液の加温温度を85℃から67℃に変更した以外は、実施例1と同様にして、乳化液からのノルマルペンタンの留去を行った。なお、実施例3において、乳化液の温度を67℃とした際における、貯留タンク40内部の圧力は0.04MPa(ゲージ圧)であった。結果を表1に示す。
<Example 3>
Instead of normal hexane, normal pentane (boiling point: 36 ° C.) is used, and when the normal pentane is distilled off in the storage tank 40, the emulsion is heated to 85 ° C. by heating with steam. The normal pentane was distilled off from the emulsion in the same manner as in Example 1 except that the temperature was changed to 67 ° C. In Example 3, when the temperature of the emulsion was set at 67 ° C., the pressure inside the storage tank 40 was 0.04 MPa (gauge pressure). Table 1 shows the results.
<実施例4>
 合成ポリイソプレインの代わりに、スチレン-イソプレン-スチレン共重合体(商品名「Quintac 3620」、日本ゼオン社製、表1中、「SIS」と記載。)を使用し、ノルマルヘキサンの代わりにシクロヘキサン(沸点:80℃)を使用した以外は、実施例1と同様にして、乳化液を得るとともに、貯留タンク40内でのシクロヘキサンの留去を行う際における、スチームによる加温による、乳化液の加温温度を85℃から82℃に変更した以外は、実施例1と同様にして、乳化液からのシクロヘキサンの留去を行った。なお、実施例4において、乳化液の温度を82℃とした際における、貯留タンク40内部の圧力は0.07MPa(ゲージ圧)であった。結果を表1に示す。
<Example 4>
A styrene-isoprene-styrene copolymer (trade name “Quintac 3620”, manufactured by Zeon Corporation, described as “SIS” in Table 1) was used instead of synthetic polyisoprein, and cyclohexane was used instead of normal hexane. (Boiling point: 80 ° C.) Except for using, in the same manner as in Example 1, an emulsified liquid was obtained, and when the cyclohexane was distilled off in the storage tank 40, the emulsified liquid was heated by steam. Cyclohexane was distilled off from the emulsion in the same manner as in Example 1 except that the heating temperature was changed from 85 ° C. to 82 ° C. In Example 4, when the temperature of the emulsion was 82 ° C., the pressure inside the storage tank 40 was 0.07 MPa (gauge pressure). Table 1 shows the results.
<比較例1>
 貯留タンク40内でのノルマルヘキサンの留去を行う際における、スチームによる加温による、乳化液の加温温度を85℃から60℃に変更し、かつ、貯留タンク40内の圧力を-0.02MPa(ゲージ圧)の減圧条件下とした以外は、実施例1と同様にして、乳化液からのノルマルヘキサンの留去を行った。なお、比較例1においては、コンデンサ70の下流側に、減圧ポンプを接続し、減圧ポンプにより減圧することで、貯留タンク40内の圧力を-0.02MPa(ゲージ圧)に調整した。結果を表1に示す。
<Comparative Example 1>
When the normal hexane is distilled off in the storage tank 40, the heating temperature of the emulsion is changed from 85 ° C. to 60 ° C. by heating with steam, and the pressure in the storage tank 40 is set to −0. Normal hexane was distilled off from the emulsion in the same manner as in Example 1 except that the pressure was reduced under a pressure of 02 MPa (gauge pressure). In Comparative Example 1, a pressure reducing pump was connected to the downstream side of the condenser 70, and the pressure in the storage tank 40 was adjusted to −0.02 MPa (gauge pressure) by reducing the pressure with the pressure reducing pump. Table 1 shows the results.
<比較例2>
 ノルマルヘキサンの代わりにシクロヘキサンを使用した以外は、実施例1と同様にして、乳化液を得るとともに、貯留タンク40内でのシクロヘキサンの留去を行う際における、スチームによる加温による、乳化液の加温温度を85℃から86℃に変更し、かつ、貯留タンク40内の圧力を-0.02MPa(ゲージ圧)の減圧条件下とした以外は、実施例1と同様にして、乳化液からのシクロヘキサンの留去を行った。なお、比較例2においては、コンデンサ70の下流側に、減圧ポンプを接続し、減圧ポンプにより減圧することで、貯留タンク40内の圧力を-0.02MPa(ゲージ圧)に調整した。比較例2においては、乳化液の泡立ちが激しく、乳化液の一部が、留去用配管60を通って、コンデンサ70まで進入してしまい、シクロヘキサンの留去を継続的に行うことができなかった。
<Comparative Example 2>
Except that cyclohexane was used instead of normal hexane, an emulsion was obtained in the same manner as in Example 1, and when the cyclohexane was distilled off in the storage tank 40, the emulsion was heated by steam. Except that the heating temperature was changed from 85 ° C. to 86 ° C. and the pressure in the storage tank 40 was reduced under a reduced pressure condition of −0.02 MPa (gauge pressure), Of cyclohexane was distilled off. In Comparative Example 2, a pressure reducing pump was connected to the downstream side of the condenser 70, and the pressure in the storage tank 40 was adjusted to −0.02 MPa (gauge pressure) by reducing the pressure with the pressure reducing pump. In Comparative Example 2, foaming of the emulsion was intense, and a part of the emulsion passed through the distillation pipe 60 to the condenser 70, and the cyclohexane could not be continuously distilled. Was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、貯留タンク40内の圧力を0.02MPa(ゲージ圧)以上の加圧状態として、乳化液から有機溶媒の留去を行った場合には、重合体のタンク40の壁面への付着を少なく抑えながら、有機溶媒留去時間を短くすることができ、そのため、高い収率を実現しながら、短時間での製造が可能であった(実施例1~4)。 As shown in Table 1, when the pressure inside the storage tank 40 was increased to 0.02 MPa (gauge pressure) or more and the organic solvent was distilled off from the emulsion, the wall of the polymer tank 40 was removed. The evaporation time of the organic solvent could be shortened while keeping the adhesion to the solvent small, so that the production in a short time was possible while realizing a high yield (Examples 1 to 4).
 一方、温度60℃にて、貯留タンク40内の圧力を減圧することで、乳化液から有機溶媒の留去を行った場合には、最大泡面高さが90容積%と高くなるとともに、有機溶媒留去時間が長くなり、さらには、重合体のタンク40の壁面への付着も多くなる結果となった(比較例1)。
 また、温度を86℃まで上げ、貯留タンク40内の圧力を減圧することで、乳化液から有機溶媒の留去を行った場合には、乳化液の泡立ちが激しく、乳化液の一部が、貯留タンク40からコンデンサ70内に進入してしまい(最大泡面高さが100%を超え)、有機溶媒の留去を継続的に行うことができなかった(比較例2)。
On the other hand, when the organic solvent is distilled off from the emulsion by reducing the pressure in the storage tank 40 at a temperature of 60 ° C., the maximum foam surface height is increased to 90% by volume, and the organic solvent is removed. As a result, the solvent distillation time was prolonged, and the adhesion of the polymer to the wall surface of the tank 40 was increased (Comparative Example 1).
Further, when the temperature is raised to 86 ° C. and the pressure in the storage tank 40 is reduced to thereby evaporate the organic solvent from the emulsion, the foaming of the emulsion is intense, and a part of the emulsion is It entered into the condenser 70 from the storage tank 40 (the maximum foam surface height exceeded 100%), and the organic solvent could not be continuously distilled off (Comparative Example 2).

Claims (8)

  1.  重合体が有機溶媒に溶解または分散してなる重合体の溶液または分散液と、乳化剤の水溶液とを混合することで得られた乳化液から、有機溶媒を留去する工程を備える重合体ラテックスの製造方法であって、
     前記乳化液からの前記有機溶媒の留去を、ゲージ圧で0.02MPa以上の圧力条件に調整された容器中において行う重合体ラテックスの製造方法。
    A polymer latex comprising a step of distilling off an organic solvent from an emulsion obtained by mixing a polymer solution or dispersion obtained by dissolving or dispersing the polymer in an organic solvent and an aqueous solution of an emulsifier. A manufacturing method,
    A method for producing a polymer latex, wherein the organic solvent is distilled off from the emulsion in a vessel adjusted to a pressure condition of 0.02 MPa or more at a gauge pressure.
  2.  有機溶媒を留去する前の前記乳化液中の有機溶媒の含有割合が、30~60重量%である請求項1に記載の重合体ラテックスの製造方法。 (4) The method for producing a polymer latex according to (1), wherein the content of the organic solvent in the emulsion before the organic solvent is distilled off is 30 to 60% by weight.
  3.  前記乳化液からの前記有機溶媒の留去を、ゲージ圧で0.02~0.18MPaの圧力条件に調整された容器中において行う請求項1または2に記載の重合体ラテックスの製造方法。 (3) The method for producing a polymer latex according to (1) or (2), wherein the organic solvent is distilled off from the emulsion in a container adjusted to a gauge condition of 0.02 to 0.18 MPa.
  4.  前記乳化液からの前記有機溶媒の留去を、前記有機溶媒の沸点以上の温度にて行う請求項1~3のいずれかに記載の重合体ラテックスの製造方法。 4. The method for producing a polymer latex according to any one of claims 1 to 3, wherein the organic solvent is distilled off from the emulsion at a temperature equal to or higher than the boiling point of the organic solvent.
  5.  前記有機溶媒が、シクロヘキサン、ノルマルヘキサン、シクロペンタンおよびノルマルペンタンから選択される有機溶媒である請求項1~4のいずれかに記載の重合体ラテックスの製造方法。 (5) The method for producing a polymer latex according to any one of (1) to (4), wherein the organic solvent is an organic solvent selected from cyclohexane, normal hexane, cyclopentane and normal pentane.
  6.  前記有機溶媒の留去を、前記容器に備えられたジャケット中に、圧力調整されたスチームを投入する方法によって加熱することにより行う請求項1~5のいずれかに記載の重合体ラテックスの製造方法。 The method for producing a polymer latex according to any one of claims 1 to 5, wherein the organic solvent is distilled off by heating by a method of introducing steam under pressure into a jacket provided in the container. .
  7.  前記重合体が、合成ポリイソプレンおよび/またはスチレン-イソプレン-スチレン共重合体である請求項1~6のいずれかに記載の重合体ラテックスの製造方法。 (7) The method for producing a polymer latex according to any one of (1) to (6), wherein the polymer is a synthetic polyisoprene and / or a styrene-isoprene-styrene copolymer.
  8.  有機溶媒を留去する前の前記乳化液中における、前記乳化剤の含有量が、前記重合体100重量部に対して、0.1~30重量部である請求項1~7のいずれかに記載の重合体ラテックスの製造方法。 8. The emulsion according to claim 1, wherein the content of the emulsifier in the emulsion before the organic solvent is distilled off is 0.1 to 30 parts by weight based on 100 parts by weight of the polymer. A method for producing a polymer latex.
PCT/JP2019/033270 2018-08-29 2019-08-26 Method for producing polymer latex WO2020045339A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217004897A KR20210049800A (en) 2018-08-29 2019-08-26 Method for producing polymer latex
BR112021003445-5A BR112021003445B1 (en) 2018-08-29 2019-08-26 METHOD FOR PRODUCING A POLYMER LATEX
JP2020539439A JP7342871B2 (en) 2018-08-29 2019-08-26 Method for manufacturing polymer latex
CN201980050373.0A CN112513147A (en) 2018-08-29 2019-08-26 Method for producing polymer latex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018160490 2018-08-29
JP2018-160490 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020045339A1 true WO2020045339A1 (en) 2020-03-05

Family

ID=69644483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033270 WO2020045339A1 (en) 2018-08-29 2019-08-26 Method for producing polymer latex

Country Status (4)

Country Link
JP (1) JP7342871B2 (en)
KR (1) KR20210049800A (en)
CN (1) CN112513147A (en)
WO (1) WO2020045339A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116589705A (en) * 2023-04-19 2023-08-15 北京诺维新材科技有限公司 Latex preparation method and preparation device
CN116891543A (en) * 2023-09-11 2023-10-17 新疆天利石化股份有限公司 Method for preparing artificial latex by adopting parallel-serial continuous kettle type distillation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257902A (en) * 1986-05-02 1987-11-10 Sumitomo Naugatuck Co Ltd Removal of volatile matter in polymer latex
WO2017159534A1 (en) * 2016-03-15 2017-09-21 日本ゼオン株式会社 Method for producing polymer latex

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2001776C2 (en) 2008-07-07 2010-01-11 Kraton Polymers Us Llc Process for the preparation of an artificial latex.
CN103772772A (en) * 2014-01-21 2014-05-07 大连理工大学 Method for preparing latex directly from rare-earth polyisoprene glue solution
CN107474587B (en) * 2016-06-08 2019-08-20 中国石油化工股份有限公司 A kind of polyisoprene latex and preparation method thereof
CN107602877A (en) * 2017-09-05 2018-01-19 青岛科技大学 A kind of preparation method of synthetic guttapercha breast

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257902A (en) * 1986-05-02 1987-11-10 Sumitomo Naugatuck Co Ltd Removal of volatile matter in polymer latex
WO2017159534A1 (en) * 2016-03-15 2017-09-21 日本ゼオン株式会社 Method for producing polymer latex

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116589705A (en) * 2023-04-19 2023-08-15 北京诺维新材科技有限公司 Latex preparation method and preparation device
CN116589705B (en) * 2023-04-19 2024-04-30 北京诺维新材科技有限公司 Latex preparation method and preparation device
CN116891543A (en) * 2023-09-11 2023-10-17 新疆天利石化股份有限公司 Method for preparing artificial latex by adopting parallel-serial continuous kettle type distillation method
CN116891543B (en) * 2023-09-11 2023-12-19 新疆天利石化股份有限公司 Method for preparing artificial latex by adopting parallel-serial continuous kettle type distillation method

Also Published As

Publication number Publication date
CN112513147A (en) 2021-03-16
JP7342871B2 (en) 2023-09-12
BR112021003445A2 (en) 2021-05-18
JPWO2020045339A1 (en) 2021-08-12
KR20210049800A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP5031821B2 (en) Method for preparing artificial latex
TWI454507B (en) Process for the preparation of an artificial latex
WO2020045339A1 (en) Method for producing polymer latex
JP6816728B2 (en) Method for producing polymer latex
JPWO2014129547A1 (en) Dip molding latex, dip molding composition and dip molding
EP3412708B1 (en) Polymer latex production method
EP1840153B1 (en) Process for the preparation of an artificial latex
JP7031383B2 (en) How to make synthetic rubber latex
JP6729549B2 (en) Method for producing synthetic isoprene polymer latex for dip molding, method for producing dip molding composition and method for producing dip molded article
US3886109A (en) Process for preparing a latex of a rubbery polymer from a solution of this polymer in an organic solvent
EP0240697A1 (en) Nitrile group-containing highly saturated polymer rubber latex and process for production thereof
BR112021003445B1 (en) METHOD FOR PRODUCING A POLYMER LATEX
US3424705A (en) Process for the preparation of polymer solutions from polymer latices and agglomerated latices therefrom
US3305508A (en) Emulsification in presence of an aliphatic oxygen compound
US5244943A (en) Nitrile group-containing highly saturated polymer rubber latex and process for production thereof
JP7081585B2 (en) How to make synthetic rubber latex
JP2000219748A (en) Preparation of styrene thermoplastic elastomer latex
JPH0218321B2 (en)
KR20220026727A (en) Method for preparing polymer
JPS609047B2 (en) Manufacturing method of polymer latex
JPH03223303A (en) Production of particulate polymer
WO2021166725A1 (en) Latex composition production method
JPS6136016B2 (en)
JP2721717B2 (en) Method for producing powdery granular polymer
JPS63159404A (en) Method and apparatus for coagulation of polymer latex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539439

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101001104

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021003445

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021003445

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210224

122 Ep: pct application non-entry in european phase

Ref document number: 19855409

Country of ref document: EP

Kind code of ref document: A1