JPS6136016B2 - - Google Patents

Info

Publication number
JPS6136016B2
JPS6136016B2 JP53032092A JP3209278A JPS6136016B2 JP S6136016 B2 JPS6136016 B2 JP S6136016B2 JP 53032092 A JP53032092 A JP 53032092A JP 3209278 A JP3209278 A JP 3209278A JP S6136016 B2 JPS6136016 B2 JP S6136016B2
Authority
JP
Japan
Prior art keywords
rubber
liquid
aqueous dispersion
molecular weight
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53032092A
Other languages
Japanese (ja)
Other versions
JPS54124045A (en
Inventor
Naotake Kono
Hideo Takamatsu
Junnosuke Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP3209278A priority Critical patent/JPS54124045A/en
Publication of JPS54124045A publication Critical patent/JPS54124045A/en
Publication of JPS6136016B2 publication Critical patent/JPS6136016B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、液状ゴム水性分散体とゴムラテツク
スまたは合成樹脂水性エマルジヨンとからなる水
性分散体混合物に関する。 最近分子量が数万にも及ぶ比較的高分子量の液
状ポリイソプレンゴムが単独でもしくは各種固形
ゴムにブレンドされて広く用いられつつあるが、
これらが使用される理由としては、例えばそれ自
身が古くから続いている一般のゴムの加硫技術を
用いて成形できること、また天然ゴム、合成ポリ
イソプレンゴム、ポリブタジエンゴム、スチレン
―ブタジエン共重合体ゴム等と容易に共加硫する
こと、さらには粘着糊の軟化剤として用いた場
合、凝集力(耐クリープ性)と粘着力とのバラン
スが良いことなどが挙げられる。このような液状
ポリイソプレンゴムを固形ゴムにブレンドする場
合には、通常、オープンロールとかニーダーのよ
うな混練機を用いて容易に行なうことができる。
しかしながら天然ゴムラテツクス、スチレン―ブ
タジエン共重合体ラテツクス、スチレン―イソプ
レン共重合体ラテツクス、酢酸ビニル系エマルジ
ヨンおよびアクリル系エマルジヨン等のラテツク
スやエマルジヨンとブレンドして用いる場合には
当然のことながら液状ポリイソプレンゴムもまた
水性分散体、すなわちエマルジヨンの状態である
必要がある。一方、プロセスオイルとか分子量が
高々数千の液状ゴムに関しては粘度が低いので一
般の乳化剤を用いて容易にエマルジヨン化が可能
であるが分子量が数万にも及ぶ液状ポリイソプレ
ンともなると、その粘度が高いことにより一般に
は乳化が困難であり、それ故にかかる高分子量の
液状ポリイソプレンについてはその乳化したもの
は従来知られていなかつた。 本発明者等は数万の比較的高い分子量を有する
液状ポリイソプレンゴムの乳化について種々検討
した結果、粘度平均分子量10000〜60000の液状合
成シス1,4―ポリイソプレンゴムを水中に分散
せしめたものからなり、かつ該水性分散体中に含
まれる前記液状ゴムの粒子径が10μ以下である液
状ゴム水性分散体は非常に安定であり、かつ分子
量が高々数千の通常の低分子量液状ポリイソプレ
ンでは発現されない優れたゴム物性をも示すこと
を確認し、さらに検討した結果、アニオン重合法
によつて製造された、粘度平均分子量10000〜
60000の液状合成シス1,4―ポリイソプレンゴ
ムを水中に分散せしめたものからなり、かつ該水
性分散体中に含まれる前記液状ゴムの粒子径が10
μ以下である液状ゴム水性分散体とゴムラテツ
クスaまたは合成樹脂水性エマルジヨンbと
からなる水性分散体混合物が、安定性に富み、表
面平滑性の優れた成形物を提供できるものである
ことを見出し、本発明を完成するに至つた。特に
液状ゴム水性分散体とゴムラテツクスaとの
混合物の場合、液状ゴムとゴムとが共加硫するの
でしなやかなゴムシートが得られる。 本発明において使用される液状ポリイソプレン
ゴムとしてはイソプレン単量体をリチウム系触媒
を用いて重合されるアニオン重合法によるもので
あつて、かつその分子量が粘度平均分子量で
10000〜60000の範囲内にある合成シス1,4―ポ
リイソプレンゴムであることが必要であり、さら
に分子量に関していえば20000〜50000であること
が望ましい。この程度の分子量を有する液状シス
1,4―ポリイソプレンゴムとしては他に天然ゴ
ムやチーグラー重合法あるいはアニオン重合法で
得られた高分子量の合成シス1,4―ポリイソプ
レンゴムを高温で熱分解したものやチーグラー重
合法を最初から採用して重合条件の調節により得
たものなどが従来よりあるが、これらはいずれも
分子量分布が均一でなく、特に熱分解タイプの液
状シス1,4―ポリイソプレンゴムにあつては熱
分解時に副生する不純物による着色や臭いの問題
も加わつて、製品としての水性分散体の均一性や
外観、臭気等の見地から水性分散体製造用の素材
とはなり難い。一方前述した分子量に関して云え
ば10000より小さい領域では乳化後の成形物につ
いて良好な物性が得られず、また60000より大き
い領域ではその高過ぎる粘度のため本発明の所期
目的である安定な水性分散体混合物を得ることが
できない。なお、本発明において粘度平均分子量
Vとは次式から算出されるものであり、次式中
のトルエン中30℃での固有粘度〔η〕の測定方法
は例えば「実験化学講座第8巻高分子化学」(丸
善(株)1964年発行)に記載されている。 〔η〕=1.21×10-4MV 0.77 本発明において液状ポリイソプレンゴム水性分
散体を製造する1つの望ましい方法はオレイン酸
ナトリウム、オレイン酸カリウム等で代表される
オレイン酸石けんやポリオキシエチレンアルキレ
ンエーテルサルフエートアンモニウム塩なる群か
ら選ばれた少なくとも1種を乳化剤として使用
し、該乳化剤を前述した液状ポリイソプレンゴム
100重量部に対して2〜20重量部、好ましくは4
〜12重量部用い、これらを充分に混合した後、該
混合物に対して撹拌下に水を徐々に添加して乳化
する方法である。その他の方法としては最初、水
に前述した乳化剤を溶解しておき、次に撹拌下、
液状ポリイソプレンゴムを徐々に添加して乳化す
る方法、あるいはまた撹拌下、液状ポリイソプレ
ンゴムに前述した乳化剤を溶解した水を徐々に添
加して乳化する方法なども採り得る。しかしなが
ら作業性及び水性分散体の粒子径分布の点から云
えば最初に述べた方法が最も好ましい。またいず
れの方法をとるにしても水と液状ポリイソプレン
ゴムの混合の少なくとも最終段階ではホモジナイ
ザーとかホモミキサーのような撹拌機で高速で撹
拌するのが望ましい。 乳化にあたつては、必要に応じて消泡剤が添加
される。また液状ポリイソプレンゴムにオイルや
粘着付与樹脂やワツクス等が混合されて乳化され
る場合もある。さらには少量の溶剤が添加されて
乳化されてもよい。 本発明において液状ポリイソプレンゴム水性分
散体の粒子径は10μ以下であることが必要であ
る。粒子径が10μ以上のものになると水性分散体
自体が不安定になるばかりでなく、他のラテツク
スまたはエマルジヨンと混合した際、均一な混合
物が得られる。例えば天然ゴムラテツクスと液状
ポリイソプレンゴム水性分散体とを混合して、加
硫シートを作製した場合、液状ポリイソプレンゴ
ム水性分散体の粒子径が10μ以下のものであれば
均一なる加硫シートが得られるが10μ以上の粗大
粒子が多い水性分散体を用いると加硫シートは著
しく不均一なものとなり、実用に供することは出
来ない。 本発明で使用する液状ポリイソプレンゴム水性
分散体は非常に安定であり、ゴムラテツクスまた
は合成樹脂水性エマルジヨンに添加しても、凝固
などのトラブルが生じず。しかも塗布よりシート
を作製した場合平滑なシート等の成形物が得られ
る。加えて、ゴムラテツクスに添加し、加硫した
場合にしなやかなゴムシートが得られる。 本発明で使用するゴムラテツクスと合成樹脂エ
マルジヨンとしては、例えば天然ゴムラテツク
ス、スチレン―ブタジエン共重合体ラテツクス、
スチレン―イソプレン共重合体ラテツクス等の合
成ゴムラテツクス、酢酸ビニル系エマルジヨンお
よびアクリル系エマルジヨン等合成樹脂エマルジ
ヨンが挙げられる。 液状ポリイソプレンゴム水性分散体とゴムラテ
ツクスまたは合成樹脂水性エマルジヨンとの混合
は、常法によつて行うことができる。その際の混
合割合は目的に応じて決められる。混合に際して
は必要に応じてイオウ、加硫促進剤、老化防止
剤、その他の配合薬品、充填剤などが配合され
る。 このようにして得られた本発明の水性分散体混
合物は、極めて安定性にすぐれ、塗布、乾燥して
表面平滑性にすぐれたシート、成形物が得られ
る。しかも、ゴム物性にとんだ成形物を得ること
ができる。そのため、接着剤、粘着剤をはじめ、
ゴム手袋、指サツクなどの浸漬製品、ゴム玩具な
どの注型製品、ゴム系、フオームラバー、パーム
ロツクなどのロツク製品、びん類の王冠用パツキ
ン等のパツキン類、さらにはゴムが製品の一部を
構成するようなカーペツト、不織布などの製品に
広く使用される。 以下実施例を用いて本発明をさらに具体的に説
明するが、本発明はこれらの実施例になんら限定
されるものではない。 液状ポリイソプレンの水性分散体の製造例 製造例 1 ブチルリチウム触媒を用いてイソプレン単量体
を重合することによつて、分子量が25000の液状
シス1,4―ポリイソプレンゴムを得た。該液状
ポリイソプレンゴムを容器に100重量部とり、こ
れに乳化剤としてポリオキシエチレンアルキルエ
ーテルサルフエートアンモニウムを8重量部添加
し、80℃恒温槽内でプロペラ型撹拌機で均一に混
合した。次にホモミキサー(特殊化工機(株)製)を
上記混合物にセツトして、撹拌しながら80℃に予
熱した温水を60重量部徐々に添加して、固形分濃
度が60%の水性分散体を調製した。同様な調製を
前記乳化剤に変えてオレイン酸カリを使用して行
ない別の水性分散体を得た。これら2種の水性分
散体の粒子径は0.3〜3μと細かく、24時間後の
乳化状態も全く変らず極めて安定していた。 製造例 2 ブチルリチウム触媒を用いて分子量が17000の
液状シス1,4―ポリイソプレンゴムを調製し
た。該液状ポリイソプレンゴムを3つの容器にそ
れぞれ100重量部ずつとり、これらの1つにはポ
リオキシエチレンアルキルフエニルエーテルサル
フエートアンモニウム3重量部とポリオキシエチ
レンノニルフエニルエーテルサルフエート3重量
部とからなる乳化剤を、他の1つにはオレイン酸
カリ3重量部とポリオキシエチレンノニルフエニ
ルエーテルサルフエート3重量部とからなる乳化
剤を、さらに他の一つには、オレイン酸カリ3重
量部とロジン酸カリ3重量部とからなる乳化剤を
それぞれ混合した以外はすべて実施例1と同様に
して水性分散体を調製した。これら3種の水性分
散体の粒子径はいずれも0.3〜4μなる範囲内に
あり、24時間後の乳化状況には全く変化が見られ
ず極めて安定していた。 製造例 3 ブチルリチウム触媒を用いて分子量が37000の
液状シス1,4―ポリイソプレンゴムを調製し
た。該液状ポリイソプレンゴムにプロセスオイル
(サンオイル社(株)サンセン450)の30%ブレンドし
た混合物Aを作製した。一方、前記液状ポリイソ
プレンと粘着付与樹脂(安原油脂(株)YSレジン)
を溶融ブレンドした混合物Bを作つた。乳化剤と
して混合物100重量部に対してオレイン酸カリを
5重量部及びポリオキシエチレンアルキルフエニ
ルエーテルサルフエートアンモニウム(ハイテノ
ールN―07)を5重量部用いて実施例1に準じた
方法で乳化を行つた。混合物A、混合物B共に粒
子が0.5〜5μである安定なエマルジヨンが得ら
れた。なお固形分濃度としては混合物で65%にな
るように設定した。 製造例 4 実施例1で使用した液状シス1,4―ポリイソ
プレンゴムに希釈溶剤としてトルエンを20重量%
添加して混合物Cを得た。一方、容器に乳化剤ポ
リオキシエチレンアルキルエーテルサルフエート
アンモニウム(花王アトラス(株)エマール20A)を
10重量部(液状ポリイソプレンゴム100重量部に
対して)溶解した水を75重量部用意し、ホモミキ
サーで撹拌しながら上記混合物Cを徐々に添加
し、最後に消泡剤を添加して混合物Cのエマルジ
ヨンを得た。該エマルジヨンは粒子径が0.3〜1.5
μであり、安定なものであつた。 実施例 1 ブチルリチウム触媒を用いて分子量がそれぞれ
5000、29000、83000の液状シス1,4―ポリイソ
プレンゴムを得た。該ポリイソプレンゴム100重
量部に対してオレイン酸カリを2部としロジン酸
カリを1部を添加し、70℃の雰囲気下で、プロペ
ラ撹拌機を用いてよく混合した後、続いて50部の
水を徐々に添加して乳化した。分子量が5000及び
29000の液状ポリイソプレンゴムは粒子径が各々
0.2〜5μ、0.5〜7μの水性分散体となり安定で
あつたが、分子量83000のものについては撹拌効
率が悪く、安定な水性分散体は得られなかつた。
さらに前記の分子量5000と29000の液状ポリイソ
プレンゴム水性分散体と天然ゴムラテツクスを用
いて表1に示した配合物を作製し、該配合物を硝
酸カリのメタノール溶液に浸漬し凝固せしめた。
その結果分子量29000のものについては凝固性は
良かつたが、分子量5000のものについては凝固性
が悪く、凝固物は不均一であつた。該凝固物を
100℃で30分間加硫したところ分子量29000の液状
ポリイソプレンゴム水性分散体を用いたものは均
一でしなやかな加硫シートが得られたが、分子量
5000のものについては加硫シートは不均一であ
り、かつ表面がベタベタしており実用的な加硫シ
ートにはならなかつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aqueous dispersion mixture consisting of a liquid rubber aqueous dispersion and a rubber latex or synthetic resin aqueous emulsion. Recently, relatively high molecular weight liquid polyisoprene rubber with a molecular weight in the tens of thousands has been widely used either alone or blended with various solid rubbers.
The reasons why these are used include, for example, that they can be molded using general rubber vulcanization technology that has been used for a long time, and that they can be molded using natural rubber, synthetic polyisoprene rubber, polybutadiene rubber, and styrene-butadiene copolymer rubber. Further, when used as a softener for adhesive glue, it has a good balance between cohesive force (creep resistance) and adhesive force. Blending such liquid polyisoprene rubber with solid rubber can be easily carried out using a kneading machine such as an open roll or a kneader.
However, when used in blends with latexes and emulsions such as natural rubber latex, styrene-butadiene copolymer latex, styrene-isoprene copolymer latex, vinyl acetate emulsion, and acrylic emulsion, it goes without saying that liquid polyisoprene rubber is also used. It also needs to be in the form of an aqueous dispersion, that is, an emulsion. On the other hand, process oil and other liquid rubbers with a molecular weight of several thousand at most have a low viscosity, so they can be easily emulsified using a general emulsifier, but when it comes to liquid polyisoprene, which has a molecular weight of several tens of thousands, its viscosity is low. Because of its high molecular weight, it is generally difficult to emulsify it, and therefore, no emulsified version of such high molecular weight liquid polyisoprene has been known. As a result of various studies on the emulsification of liquid polyisoprene rubber having tens of thousands of relatively high molecular weights, the present inventors have developed a system in which liquid synthetic cis-1,4-polyisoprene rubber with a viscosity average molecular weight of 10,000 to 60,000 is dispersed in water. A liquid rubber aqueous dispersion in which the particle size of the liquid rubber contained in the aqueous dispersion is 10μ or less is very stable, and is more stable than ordinary low molecular weight liquid polyisoprene having a molecular weight of several thousand at most. As a result of further investigation, we confirmed that it also exhibited excellent rubber physical properties that were not normally expressed, and as a result of further investigation, we found that a rubber with a viscosity average molecular weight of 10,000 to 10,000, manufactured by anionic polymerization
60,000 liquid synthetic cis-1,4-polyisoprene rubber dispersed in water, and the liquid rubber contained in the aqueous dispersion has a particle size of 10
It has been discovered that an aqueous dispersion mixture consisting of a liquid rubber aqueous dispersion having a particle diameter of less than μ and a rubber latex a or a synthetic resin aqueous emulsion b is capable of providing molded products with high stability and excellent surface smoothness, The present invention has now been completed. In particular, in the case of a mixture of the liquid rubber aqueous dispersion and rubber latex a, a flexible rubber sheet can be obtained because the liquid rubber and the rubber are co-vulcanized. The liquid polyisoprene rubber used in the present invention is produced by an anionic polymerization method in which isoprene monomer is polymerized using a lithium catalyst, and its molecular weight is a viscosity average molecular weight.
It is necessary that the synthetic cis-1,4-polyisoprene rubber has a molecular weight in the range of 10,000 to 60,000, and preferably 20,000 to 50,000. Other liquid cis-1,4-polyisoprene rubbers with molecular weights of this level include natural rubber and high-molecular-weight synthetic cis-1,4-polyisoprene rubbers obtained by Ziegler polymerization or anionic polymerization, which are thermally decomposed at high temperatures. Conventionally, there are products obtained by adopting the Ziegler polymerization method from the beginning and adjusting the polymerization conditions, but none of these have a uniform molecular weight distribution, especially for thermal decomposition type liquid cis-1,4-polymers. In the case of isoprene rubber, there are problems with coloration and odor caused by impurities produced during thermal decomposition, and from the viewpoint of the uniformity, appearance, odor, etc. of the aqueous dispersion as a product, it is not suitable as a material for producing aqueous dispersions. hard. On the other hand, with respect to the above-mentioned molecular weight, if the molecular weight is less than 10,000, good physical properties cannot be obtained for the molded product after emulsification, and if it is greater than 60,000, the viscosity is too high, so that stable aqueous dispersion, which is the intended purpose of the present invention, cannot be obtained. It is not possible to obtain a body mixture. In the present invention, the viscosity average molecular weight M V is calculated from the following formula, and the method for measuring the intrinsic viscosity [η] in toluene at 30°C in the following formula is described, for example, in "Jikken Chemistry Course Volume 8 High "Molecular Chemistry" (published by Maruzen Co., Ltd. in 1964). [η]=1.21×10 -4 M V 0 . 77 In the present invention, one desirable method for producing the liquid polyisoprene rubber aqueous dispersion is to use oleic acid soap or polyoxygenate represented by sodium oleate, potassium oleate, etc. At least one selected from the group consisting of ethylene alkylene ether sulfate ammonium salts is used as an emulsifier, and the emulsifier is used in the liquid polyisoprene rubber described above.
2 to 20 parts by weight, preferably 4 parts by weight per 100 parts by weight
This is a method in which ~12 parts by weight are used, and after these are sufficiently mixed, water is gradually added to the mixture while stirring to emulsify the mixture. Another method is to first dissolve the emulsifier mentioned above in water, and then, under stirring,
A method of gradually adding liquid polyisoprene rubber to emulsify it, or a method of gradually adding water in which the above-mentioned emulsifier is dissolved to liquid polyisoprene rubber while stirring to emulsify it, etc., can be adopted. However, from the point of view of workability and particle size distribution of the aqueous dispersion, the first method is most preferred. Regardless of which method is used, it is desirable to stir the water and liquid polyisoprene rubber at high speed using a stirrer such as a homogenizer or homomixer at least in the final stage of mixing. During emulsification, an antifoaming agent is added as necessary. In some cases, liquid polyisoprene rubber is mixed with oil, tackifier resin, wax, etc. and emulsified. Furthermore, a small amount of solvent may be added to emulsify. In the present invention, the particle size of the liquid polyisoprene rubber aqueous dispersion must be 10 μm or less. If the particle size is 10 μm or more, not only will the aqueous dispersion itself become unstable, but a homogeneous mixture will not be obtained when mixed with other latexes or emulsions. For example, when a vulcanized sheet is prepared by mixing natural rubber latex and an aqueous liquid polyisoprene rubber dispersion, a uniform vulcanized sheet can be obtained if the particle size of the aqueous liquid polyisoprene rubber dispersion is 10μ or less. However, if an aqueous dispersion containing many coarse particles of 10 μm or more is used, the vulcanized sheet will be extremely non-uniform and cannot be put to practical use. The liquid polyisoprene rubber aqueous dispersion used in the present invention is very stable and does not cause problems such as coagulation even when added to rubber latex or synthetic resin aqueous emulsion. Moreover, when a sheet is produced by coating, a smooth molded product such as a sheet can be obtained. In addition, when added to rubber latex and vulcanized, a flexible rubber sheet can be obtained. Examples of the rubber latex and synthetic resin emulsion used in the present invention include natural rubber latex, styrene-butadiene copolymer latex,
Examples include synthetic rubber latex such as styrene-isoprene copolymer latex, and synthetic resin emulsion such as vinyl acetate emulsion and acrylic emulsion. The liquid polyisoprene rubber aqueous dispersion and the rubber latex or synthetic resin aqueous emulsion can be mixed by a conventional method. The mixing ratio at that time is determined depending on the purpose. During mixing, sulfur, a vulcanization accelerator, an anti-aging agent, other compounded chemicals, fillers, etc. are added as necessary. The aqueous dispersion mixture of the present invention thus obtained has excellent stability and can be coated and dried to yield sheets and molded products with excellent surface smoothness. Moreover, a molded product with excellent rubber physical properties can be obtained. Therefore, including adhesives and adhesives,
Dipped products such as rubber gloves and finger holders, cast products such as rubber toys, locking products such as rubber, foam rubber, and palm locks, and seals such as seals for the crowns of bottles; Widely used in products such as carpets, non-woven fabrics, etc. The present invention will be explained in more detail below using Examples, but the present invention is not limited to these Examples in any way. Production Example of an Aqueous Dispersion of Liquid Polyisoprene Production Example 1 A liquid cis-1,4-polyisoprene rubber having a molecular weight of 25,000 was obtained by polymerizing isoprene monomer using a butyllithium catalyst. 100 parts by weight of the liquid polyisoprene rubber was placed in a container, 8 parts by weight of ammonium polyoxyethylene alkyl ether sulfate was added as an emulsifier, and the mixture was uniformly mixed using a propeller type stirrer in a constant temperature bath at 80°C. Next, a homo mixer (manufactured by Tokushu Kakoki Co., Ltd.) was set in the above mixture, and while stirring, 60 parts by weight of warm water preheated to 80°C was gradually added to form an aqueous dispersion with a solid content concentration of 60%. was prepared. A similar preparation was carried out using potassium oleate instead of the emulsifier to obtain another aqueous dispersion. The particle diameters of these two types of aqueous dispersions were as fine as 0.3 to 3 μm, and the emulsified state did not change at all after 24 hours and was extremely stable. Production Example 2 A liquid cis-1,4-polyisoprene rubber having a molecular weight of 17,000 was prepared using a butyllithium catalyst. 100 parts by weight of the liquid polyisoprene rubber was placed in each of three containers, and one of these containers contained 3 parts by weight of polyoxyethylene alkyl phenyl ether sulfate ammonium and 3 parts by weight of polyoxyethylene nonyl phenyl ether sulfate. One emulsifier consists of 3 parts by weight of potassium oleate and 3 parts by weight of polyoxyethylene nonyl phenyl ether sulfate, and the other emulsifier consists of 3 parts by weight of potassium oleate. An aqueous dispersion was prepared in the same manner as in Example 1 except that an emulsifier consisting of 3 parts by weight of potassium rosin acid and 3 parts by weight of potassium rosin acid was mixed. The particle diameters of these three types of aqueous dispersions were all within the range of 0.3 to 4 μm, and the emulsification state after 24 hours showed no change at all and was extremely stable. Production Example 3 A liquid cis-1,4-polyisoprene rubber having a molecular weight of 37,000 was prepared using a butyllithium catalyst. A mixture A was prepared by blending the liquid polyisoprene rubber with 30% of process oil (Sansen 450, manufactured by Sun Oil Co., Ltd.). On the other hand, the liquid polyisoprene and the tackifying resin (Yasu Yuki Co., Ltd. YS Resin)
A mixture B was prepared by melt-blending the following. Emulsification was carried out in the same manner as in Example 1 using 5 parts by weight of potassium oleate and 5 parts by weight of polyoxyethylene alkyl phenyl ether sulfate ammonium (Hitenol N-07) as emulsifiers for 100 parts by weight of the mixture. I went. Stable emulsions with particles of 0.5 to 5 microns were obtained for both Mixture A and Mixture B. The solid content concentration in the mixture was set to 65%. Production Example 4 20% by weight of toluene was added to the liquid cis-1,4-polyisoprene rubber used in Example 1 as a diluting solvent.
Mixture C was obtained. Meanwhile, the emulsifier polyoxyethylene alkyl ether sulfate ammonium (Kao Atlas Co., Ltd. Emar 20A) was added to the container.
Prepare 75 parts by weight of water dissolved in 10 parts by weight (based on 100 parts by weight of liquid polyisoprene rubber), gradually add the above mixture C while stirring with a homomixer, and finally add an antifoaming agent to form a mixture. An emulsion of C was obtained. The emulsion has a particle size of 0.3 to 1.5
μ and was stable. Example 1 Using a butyllithium catalyst, the molecular weight was
Liquid cis 1,4-polyisoprene rubbers of 5,000, 29,000 and 83,000 were obtained. To 100 parts by weight of the polyisoprene rubber, 2 parts of potassium oleate and 1 part of potassium rosin acid were added and mixed well using a propeller stirrer in an atmosphere of 70°C. Water was gradually added to emulsify. Molecular weight is 5000 and
29000 liquid polyisoprene rubber has different particle sizes.
Aqueous dispersions of 0.2 to 5 μm and 0.5 to 7 μm were obtained and were stable, but for those with a molecular weight of 83,000, stirring efficiency was poor and stable aqueous dispersions could not be obtained.
Furthermore, the formulations shown in Table 1 were prepared using the liquid polyisoprene rubber aqueous dispersions with molecular weights of 5,000 and 29,000 and natural rubber latex, and the formulations were immersed in a methanol solution of potassium nitrate to coagulate.
As a result, those with a molecular weight of 29,000 had good coagulation properties, but those with a molecular weight of 5,000 had poor coagulation properties and the coagulated product was non-uniform. The coagulum
When vulcanized at 100°C for 30 minutes, a uniform and flexible vulcanized sheet using a liquid polyisoprene rubber aqueous dispersion with a molecular weight of 29,000 was obtained;
In the case of No. 5000, the vulcanized sheet was non-uniform and had a sticky surface, so it could not be a practical vulcanized sheet. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アニオン重合法によつて製造された、粘度平
均分子量10000〜60000の液状合成シス1,4―ポ
リイソプレンゴムを水中に分散せしめたものから
なり、かつ該水性分散体中に含まれる前記液状ゴ
ムの粒子径が10μ以下である液状ゴム水性分散体
とゴムラテツクスaまたは合成樹脂水性エマ
ルジヨンbとからなる水性分散体混合物。
1. A liquid synthetic cis-1,4-polyisoprene rubber produced by an anionic polymerization method and having a viscosity average molecular weight of 10,000 to 60,000 is dispersed in water, and the liquid rubber is contained in the aqueous dispersion. An aqueous dispersion mixture comprising a liquid rubber aqueous dispersion having a particle size of 10 μm or less and a rubber latex a or a synthetic resin aqueous emulsion b.
JP3209278A 1978-03-20 1978-03-20 Aqeous dispersion of liquid rubber Granted JPS54124045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209278A JPS54124045A (en) 1978-03-20 1978-03-20 Aqeous dispersion of liquid rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209278A JPS54124045A (en) 1978-03-20 1978-03-20 Aqeous dispersion of liquid rubber

Publications (2)

Publication Number Publication Date
JPS54124045A JPS54124045A (en) 1979-09-26
JPS6136016B2 true JPS6136016B2 (en) 1986-08-15

Family

ID=12349231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209278A Granted JPS54124045A (en) 1978-03-20 1978-03-20 Aqeous dispersion of liquid rubber

Country Status (1)

Country Link
JP (1) JPS54124045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069568A1 (en) 2017-10-04 2019-04-11 パナソニックIpマネジメント株式会社 Sound output device, earphone, hearing aid, and mobile terminal device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062487A (en) * 2011-12-27 2012-03-29 Nippon Zeon Co Ltd Dip molding composition, and dip molded product
WO2014181714A1 (en) * 2013-05-10 2014-11-13 Jsr株式会社 Polyisoprene latex for molding medical supplies, composition for dip molding, medical supplies, and method for molding same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069568A1 (en) 2017-10-04 2019-04-11 パナソニックIpマネジメント株式会社 Sound output device, earphone, hearing aid, and mobile terminal device

Also Published As

Publication number Publication date
JPS54124045A (en) 1979-09-26

Similar Documents

Publication Publication Date Title
US5336712A (en) Process for making submicron stable latexes of block copolymers
US3238173A (en) Polystyrene-polyisoprene-polystyrene block copolymer latices and process for their preparation
JP5031821B2 (en) Method for preparing artificial latex
US2822341A (en) Freeze-resistant polymer-containing latex paint
BR112018015227B1 (en) METHODS FOR PRODUCTION OF A POLYMER LATEX, A LATEX COMPOSITION AND AN IMMERSION MOLDED ARTICLE
JPWO2019151020A1 (en) Latex for foam rubber
JP3757605B2 (en) Copolymer rubber latex for foam rubber and foam rubber
JPS6136016B2 (en)
JP7342871B2 (en) Method for manufacturing polymer latex
JP2000219748A (en) Preparation of styrene thermoplastic elastomer latex
JPH0832802B2 (en) Aqueous dispersion for forming vulcanized film with excellent breaking strength
JP4133152B2 (en) Method for producing copolymer latex for rubber foam
US3434994A (en) Oil extension of high solids latex
US2912407A (en) Process for stabilizing oil-extended rubber
JPS6031326B2 (en) Manufacturing method of liquid polyisoprene emulsion
JP5859693B1 (en) Foam rubber aqueous composition and foam rubber
US3145189A (en) Method of making freely flowable rubber compositions
WO2020138030A1 (en) Latex, latex composition, molded body, and foam rubber
EP0004862B1 (en) Process for the production of a linear polyphosphazene rubber latex and its use in the production of coatings, foams and films
US3079359A (en) Adjustment of the rheological properties of a dispersion of rubber in an organic solution of rubber by adding water
JPS5953289B2 (en) Method for producing liquid cis-1,4-polyisoprene rubber aqueous dispersion
US2761001A (en) Latex foam sponge containing an alkali salt of perfluoromonocarboxylic acid
US2446101A (en) Creaming of synthetic rubber
US2304678A (en) Rubber cement and method of making the same
US3878154A (en) Mastics derived from neoprene latex