US5244943A - Nitrile group-containing highly saturated polymer rubber latex and process for production thereof - Google Patents
Nitrile group-containing highly saturated polymer rubber latex and process for production thereof Download PDFInfo
- Publication number
- US5244943A US5244943A US07/879,140 US87914092A US5244943A US 5244943 A US5244943 A US 5244943A US 87914092 A US87914092 A US 87914092A US 5244943 A US5244943 A US 5244943A
- Authority
- US
- United States
- Prior art keywords
- rubber
- nitrile group
- highly saturated
- solvent
- latex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/07—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/02—Hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2315/00—Characterised by the use of rubber derivatives
Definitions
- This invention relates to a nitrile group-containing highly saturated polymer rubber latex having an improved film strength both in the uncured and cured
- NBR acrylonitrile-butadiene copolymer rubber
- a nitrile group-containing rubber latex comprising an aqueous dispersion of a nitrile group-containing highly saturated polymer rubber having an iodine value of not more than 120.
- the nitrile group-containing highly saturated polymer rubber latex of this invention can be produced by adding a solution of a nitrile group-containing highly saturated polymer rubber having an iodine value of not more than 120 to water containing an emulsifier to form an oil-in-water emulsion, and removing the solvent from the emulsion.
- the content of its nitrile group-containing monomer units may be properly selected usually within the range of 5 to 60% by weight according to the use (solvents or oils to be contacted) of the final polymer.
- the nitrile group-containing saturated polymer rubber in the present invention should have an iodine value of not more than 120. If its iodine value exceeds 120, its dry film strength both in the uncured and cured states is reduced.
- the preferred iodine value is 0 to 100, especially 0 to 85.
- nitrile group-containing highly saturated polymer rubber examples include polymer rubbers obtained by hydrogenating the conjugated diene units of unsaturated nitrile/conjugated diene copolymer rubbers, and polymer rubbers obtained by hydrogenating the conjugated diene monomer units of unsaturated nitrile/conjugated diene/ethylenically unsaturated monomer terpolymer rubbers.
- These nitrile group-containing highly saturated polymer rubbers can be obtained by using ordinary polymerization techniques and ordinary hydrogenating methods. Needless to say, however, the method of producing these rubbers is not particularly restricted in the present invention.
- Examples of the unsaturated nitrile are acrylonitrile and methacrylonitrile.
- Examples of the conjugated dienes are 1,3-butadiene, 2,3-dimethylbutadiene, isoprene and 1,3-pentadiene.
- Examples of the ethylenically unsaturated monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid and maleic acid, and salts thereof such as alkali metal or ammonium salts thereof; esters of the above carboxylic acids such as methyl acrylate, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate; alkoxyalkyl esters of the above unsaturated carboxylic acids such as methoxymethyl acrylate, ethoxyethyl acrylate and methoxyethoxyethyl acrylate; acrylamide and methacrylamide; N-substituted (meth)acrylamides such as N-methylol (meth)acrylamide, N,N'-dimethylol (meth)acrylamide and N-ethoxymethyl (meth)acrylamide; and cyanoalkyl esters of (meth)acrylic acid such as cyanomethyl (me
- nitrile group-containing highly saturated polymer rubbers used in this invention are a hydrogenation product of butadiene/acrylonitrile copolymer rubber, a hydrogenation product of isoprene/butadiene/acrylonitrile copolymer rubber, a hydrogenation product of isoprene/acrylonitrile copolymer rubber, a hydrogenation product of butadiene/methyl acrylate/acrylonitrile copolymer rubber, and a hydrogenation product of butadiene/acrylic acid/acrylonitrile copolymer rubber.
- the iodine value of the polymers used in this invention is determined in accordance with JIS K0070.
- the nitrile group-containing highly saturated polymer rubber latex of this invention is a dispersion of the above rubber in water.
- the latex can be prepared easily by an ordinary method which comprises adding a solution of the rubber to water containing an emulsifier with stirring to emulsify it and form an oil-in-water emulsion, and removing the solvent from the emulsion.
- the solution of the nitrile group-containing highly saturated polymer rubber may be the polymer solution as obtained at the end of polymerization and hydrogenation either as such or after dilution, or a solution of the rubber as a solid in a solvent.
- Solvents capable of dissolving the above rubbers may be used as the solvent either singly or in combination.
- examples include halogenated hydrocarbon solvents such as dichloroethane and chloroform, and ketones such as methyl ethyl ketone, acetone or tetrahydrofuran. It is also possible to use a mixture of such a solvent with a solvent incapable of dissolving these rubbers, for example an aliphatic or alicyclic hydrocarbon such as butane, pentane, n-hexane and cyclohexane or an aromatic solvent such as benzene, toluene and xylene.
- the concentration of the rubber in the solution is usually 1 to 30% by weight, preferably 5 to 15% by weight.
- emulsifiers examples include anionic emulsifiers such as higher fatty acid salts, rosin acid salts, dialkylsulfosuccinic acid salts, alkyl- or aryl-sulfonic acid salts, alkyl- or aryl-sulfuric acid salts and aliphatic alcohol phosphoric ester salts.
- Specific examples of the higher fatty acid salts are sodium and potassium salts of fatty acids having 8 to 18 carbon atoms such as oleic acid, stearic acid, palmitic acid and lauric acid.
- Specific examples of the rosin acid salts are sodium and potassium salts of natural rosin acids, and disproportionated or hydrogenated rosin acids prepared therefrom.
- dialkylsulfosuccinic acids are sodium and potassium salts of dialkylsuccinic acids having 4 to 12 carbon atoms in the alkyl moiety such as dibutylsulfosuccinic acid and dioctylsulfosuccinic acid.
- alkylsulfonic acid salts are sodium and potassium salts of sulfonic acids having linear alkyl groups, which are biodegradable.
- arylsulfonic acid salts are sodium and potassium salts of (C 8-18 -alkyl)benzenesulfonic acids such as dodecylbenzenesulfonic acid and octylbenzenesulfonic acid.
- sulfuric acid esters are sodium octylsulfate and sodium lauryl sulfate.
- Specific examples of the phosphoric ester salts are a sodium salt of octyl alcohol phosphoric ester and a sodium salt of lauryl alcohol phosphoric ester.
- anionic emulsifiers may be used in combination with nonionic emulsifiers such as polyoxyethylene alkyl phenol ethers and polyoxyethylene alkyl esters.
- the amount of the emulsifier is desirably 1 to 20 parts by weight, preferably 2 to 10 parts by weight, per 100 parts by weight of the rubber.
- Emulsification is generally carried out by mixing the rubber solution with water containing the emulsifier. Since the resulting emulsion and latex are stable in alkalinity with a pH of 8 to 13, a pH adjusting agent such as sodium hydroxide or potassium hydroxide may be added to water in advance.
- a pH adjusting agent such as sodium hydroxide or potassium hydroxide may be added to water in advance.
- the volume ratio of the rubber solution to water at the time of emulsification is suitably from 3:1 to 1:20.
- Emulsification is carried out by using ordinary mixing means such as a homomixer, a colloid mill, a homogenizer, a Disper mill, a line mixer or an ultrasonic emulsification device.
- the size of the dispersed rubber particles in the resulting latex is determined depending upon the emulsification conditions such as the amount of the emulsifier, the amount of water, and the intensity of stirring.
- An optimum latex particle diameter may be selected according to the purpose for which the latex is used. Usually, it is 0.05 to 5 microns.
- the solvent is removed from the emulsion by a known method such as steam distillation and distillation under reduced pressure.
- the latex resulting from solvent removal may be concentrated by centrifugation, creaming, evaporation under heat, etc.
- the latex of this invention is adjusted to a total solids content of 1 to 70% by weight, and used in various applications.
- the nitrile group-containing highly saturated polymer in the latex of this invention contains little or no gelled portion (a portion insoluble in the solvent).
- an uncured film obtained by casting the latex of this invention has much improved strength over an uncured film of a conventional NBR latex containing a considerable amount of a gelled portion.
- a cured film from the latex of this invention also has very high strength and excellent oil resistance and thermal resistance.
- the latex of this invention is useful as a textile treating agent such as a binder for nonwoven fabrics, a paper treating agent as in the production of impregnated paper, a raw material for articles to be used in oil, a raw material for foam rubbers, a raw material for a thread-shaped rubber and as a binder for cork.
- NBR acrylonitrile/butadiene copolymer rubbers
- butadiene/butyl acrylate/acrylonitrile terpolymers obtained by emulsion polymerization, as indicated in Table 1, were each dissolved in methyl isobutyl ketone, and hydrogenated using a Pd-carbon catalyst to obtain hydrogenated NBRs and hydrogenated acrylonitrile/butadiene/butyl acrylate terpolymer rubbers having the iodine values indicated in Table 1.
- Each of the hydrogenated rubber samples shown in Table 1 was dissolved in a toluene/dichloroethane (75/25 by volume %) mixed solvent.
- the resulting rubber solution was poured into an aqueous emulsifier solution composed of 1.2 g of potassium oleate, 1.2 g of a potassium salt of rosin acid, 0.045 g of potassium hydroxide and 300 g of water with stirring.
- the mixture was stirred at room temperature by a TK-homomixer (model M, made by Tokushu Kika Kogyo Co., Ltd.) at 10,000 rpm for 10 minutes.
- the resulting emulsion was subjected to steam stripping to remove the solvent, and then concentrated by an evaporator to form a latex having a solids content of about 30%.
- the latex was centrifuged at room temperature and 3,000 rpm for 15 minutes to remove the excess of the emulsifier and concentrate it.
- Each of the latices was cast on a glass plate, and dried at a temperature of 20° C. and a humidity of 65% for 3 days.
- a JIS #3 dumbbell specimen was prepared from the resulting film.
- Each of the latices was compounded in accordance with recipe I or II shown in Table 2 below.
- the compounded stock was cast onto a glass plate, dried at a temperature of 20° C. and a humidity of 65% for 3 days, and then cured at 100° C. for 30 minutes.
- a JIS #3 dumbbell specimen was prepared from the resulting cured film.
- NBR latex a copolymer of acrylonitrile and butadiene produced by emulsion polymerization having a medium high bonded acrylonitrile content, a toluene-insoluble content of 53% by weight, an average particle diameter of 0.05 micron and a solids content of 41% by weight which was produced by Nippon Zeon Co., Ltd. and is available under the tradename NIPOL Lx-1562
- NIPOL Lx-1562 NIPOL Lx-1562
- Hydrogenated NBRs having an iodine value of 78 and 30 were prepared by hydrogenating an acrylonitrile/butadiene copolymer rubber (NBR) having a bonded acrylonitrile content of 37% by weight in the same way as in Example 1.
- NBR acrylonitrile/butadiene copolymer rubber
- One hundred grams of one of these hydrogenated NBRs was dissolved in a mixed solvent composed of 450 g of cyclohexane and 450 g of methyl ethyl ketone.
- aqueous emulsifier solution composed of 5 g of sodium linear alkylbenzenesulfonate (LAS), 0.5 g of potassium hydroxide and 1,000 g of water, and the mixture was stirred strongly by a TK homomixer at room temperature and 10,000 rpm for 10 minutes.
- the emulsion was then worked up as in Example 1 to concentrate it and remove the excess of the emulsifier and thus form a latex.
- a latex was also prepared in the same way from the other hydrogenated NBR.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
A nitrile group-containing rubber latex comprising an aqueous dispersion of a nitrile group-containing highly saturated rubber having an iodine value of not more than 120. The said rubber latex can be produced by converting a solution of a nitrile group-containing highly saturated polymer rubber having an iodine value of not more than 120 in an inert solvent into an oil-in-water emulsion using water and an emulsifier, and removing the solvent from the resulting emulsion.
Description
This application is a continuation of application Ser. No. 07/545,584, filed Jun. 29, 1990, which is a division of application Ser. No. 07/249,249, filed Sep. 26, 1988, which is a continuation of Ser. No. 07/020,100, filed Feb. 27, 1987, all abandoned.
This invention relates to a nitrile group-containing highly saturated polymer rubber latex having an improved film strength both in the uncured and cured
An acrylonitrile-butadiene copolymer rubber (NBR) latex having excellent oil resistance, chemical resistance and adhesion to polar materials such as fibers or leathers has been widely used heretofore as a polymer rubber latex containing a nitrile group. The NBR latex, however, has lower film strength in the uncured and cured states than a natural rubber latex. In an attempt to overcome this defect, an NBR-type latex obtained by copolymerizing an ethylenically unsaturated carboxylic acid or isoprene as a third component was developed. The properties of this latex, however, are not sufficient, and are still desired to be improved.
It is an object of this invention therefore to provide a nitrile group-containing polymer rubber latex having improved film strength both in the uncured and cured states.
According to this invention, this object is achieved by a nitrile group-containing rubber latex comprising an aqueous dispersion of a nitrile group-containing highly saturated polymer rubber having an iodine value of not more than 120.
The nitrile group-containing highly saturated polymer rubber latex of this invention can be produced by adding a solution of a nitrile group-containing highly saturated polymer rubber having an iodine value of not more than 120 to water containing an emulsifier to form an oil-in-water emulsion, and removing the solvent from the emulsion.
Since the nitrile group-containing highly saturated polymer rubber used in this invention requires oil resistance, the content of its nitrile group-containing monomer units may be properly selected usually within the range of 5 to 60% by weight according to the use (solvents or oils to be contacted) of the final polymer.
To obtain satisfactory dry film strength both in the uncured and cured states, the nitrile group-containing saturated polymer rubber in the present invention should have an iodine value of not more than 120. If its iodine value exceeds 120, its dry film strength both in the uncured and cured states is reduced. The preferred iodine value is 0 to 100, especially 0 to 85.
Examples of the nitrile group-containing highly saturated polymer rubber are polymer rubbers obtained by hydrogenating the conjugated diene units of unsaturated nitrile/conjugated diene copolymer rubbers, and polymer rubbers obtained by hydrogenating the conjugated diene monomer units of unsaturated nitrile/conjugated diene/ethylenically unsaturated monomer terpolymer rubbers. These nitrile group-containing highly saturated polymer rubbers can be obtained by using ordinary polymerization techniques and ordinary hydrogenating methods. Needless to say, however, the method of producing these rubbers is not particularly restricted in the present invention.
Examples of the unsaturated nitrile are acrylonitrile and methacrylonitrile. Examples of the conjugated dienes are 1,3-butadiene, 2,3-dimethylbutadiene, isoprene and 1,3-pentadiene. Examples of the ethylenically unsaturated monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid and maleic acid, and salts thereof such as alkali metal or ammonium salts thereof; esters of the above carboxylic acids such as methyl acrylate, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate; alkoxyalkyl esters of the above unsaturated carboxylic acids such as methoxymethyl acrylate, ethoxyethyl acrylate and methoxyethoxyethyl acrylate; acrylamide and methacrylamide; N-substituted (meth)acrylamides such as N-methylol (meth)acrylamide, N,N'-dimethylol (meth)acrylamide and N-ethoxymethyl (meth)acrylamide; and cyanoalkyl esters of (meth)acrylic acid such as cyanomethyl (meth)acrylate, 2-cyanoethyl (meth)acrylate, 3-cyanopropyl (meth)acrylate and 4-cyanobutyl (meth)acrylate.
Specific examples of the nitrile group-containing highly saturated polymer rubbers used in this invention are a hydrogenation product of butadiene/acrylonitrile copolymer rubber, a hydrogenation product of isoprene/butadiene/acrylonitrile copolymer rubber, a hydrogenation product of isoprene/acrylonitrile copolymer rubber, a hydrogenation product of butadiene/methyl acrylate/acrylonitrile copolymer rubber, and a hydrogenation product of butadiene/acrylic acid/acrylonitrile copolymer rubber.
The iodine value of the polymers used in this invention is determined in accordance with JIS K0070.
The nitrile group-containing highly saturated polymer rubber latex of this invention is a dispersion of the above rubber in water. The latex can be prepared easily by an ordinary method which comprises adding a solution of the rubber to water containing an emulsifier with stirring to emulsify it and form an oil-in-water emulsion, and removing the solvent from the emulsion.
The solution of the nitrile group-containing highly saturated polymer rubber may be the polymer solution as obtained at the end of polymerization and hydrogenation either as such or after dilution, or a solution of the rubber as a solid in a solvent.
Solvents capable of dissolving the above rubbers may be used as the solvent either singly or in combination. Examples include halogenated hydrocarbon solvents such as dichloroethane and chloroform, and ketones such as methyl ethyl ketone, acetone or tetrahydrofuran. It is also possible to use a mixture of such a solvent with a solvent incapable of dissolving these rubbers, for example an aliphatic or alicyclic hydrocarbon such as butane, pentane, n-hexane and cyclohexane or an aromatic solvent such as benzene, toluene and xylene. The concentration of the rubber in the solution is usually 1 to 30% by weight, preferably 5 to 15% by weight.
Examples of emulsifiers that can be used include anionic emulsifiers such as higher fatty acid salts, rosin acid salts, dialkylsulfosuccinic acid salts, alkyl- or aryl-sulfonic acid salts, alkyl- or aryl-sulfuric acid salts and aliphatic alcohol phosphoric ester salts. Specific examples of the higher fatty acid salts are sodium and potassium salts of fatty acids having 8 to 18 carbon atoms such as oleic acid, stearic acid, palmitic acid and lauric acid. Specific examples of the rosin acid salts are sodium and potassium salts of natural rosin acids, and disproportionated or hydrogenated rosin acids prepared therefrom. Specific examples of the dialkylsulfosuccinic acids are sodium and potassium salts of dialkylsuccinic acids having 4 to 12 carbon atoms in the alkyl moiety such as dibutylsulfosuccinic acid and dioctylsulfosuccinic acid. Specific examples of the alkylsulfonic acid salts are sodium and potassium salts of sulfonic acids having linear alkyl groups, which are biodegradable. Specific examples of the arylsulfonic acid salts are sodium and potassium salts of (C8-18 -alkyl)benzenesulfonic acids such as dodecylbenzenesulfonic acid and octylbenzenesulfonic acid. Specific examples of the sulfuric acid esters are sodium octylsulfate and sodium lauryl sulfate. Specific examples of the phosphoric ester salts are a sodium salt of octyl alcohol phosphoric ester and a sodium salt of lauryl alcohol phosphoric ester.
These anionic emulsifiers may be used in combination with nonionic emulsifiers such as polyoxyethylene alkyl phenol ethers and polyoxyethylene alkyl esters.
To obtain a stable latex, the amount of the emulsifier is desirably 1 to 20 parts by weight, preferably 2 to 10 parts by weight, per 100 parts by weight of the rubber.
Emulsification is generally carried out by mixing the rubber solution with water containing the emulsifier. Since the resulting emulsion and latex are stable in alkalinity with a pH of 8 to 13, a pH adjusting agent such as sodium hydroxide or potassium hydroxide may be added to water in advance.
The volume ratio of the rubber solution to water at the time of emulsification is suitably from 3:1 to 1:20. Emulsification is carried out by using ordinary mixing means such as a homomixer, a colloid mill, a homogenizer, a Disper mill, a line mixer or an ultrasonic emulsification device. The size of the dispersed rubber particles in the resulting latex (the particle diameter of the latex) is determined depending upon the emulsification conditions such as the amount of the emulsifier, the amount of water, and the intensity of stirring. An optimum latex particle diameter may be selected according to the purpose for which the latex is used. Usually, it is 0.05 to 5 microns.
The solvent is removed from the emulsion by a known method such as steam distillation and distillation under reduced pressure. As required, the latex resulting from solvent removal may be concentrated by centrifugation, creaming, evaporation under heat, etc.
The latex of this invention is adjusted to a total solids content of 1 to 70% by weight, and used in various applications.
The nitrile group-containing highly saturated polymer in the latex of this invention contains little or no gelled portion (a portion insoluble in the solvent). In spite of this, an uncured film obtained by casting the latex of this invention has much improved strength over an uncured film of a conventional NBR latex containing a considerable amount of a gelled portion. A cured film from the latex of this invention also has very high strength and excellent oil resistance and thermal resistance. Accordingly, the latex of this invention is useful as a textile treating agent such as a binder for nonwoven fabrics, a paper treating agent as in the production of impregnated paper, a raw material for articles to be used in oil, a raw material for foam rubbers, a raw material for a thread-shaped rubber and as a binder for cork.
The following Examples illustrate the present invention specifically. It should be understood however that the invention is not limited to these examples.
The acrylonitrile/butadiene copolymer rubbers (NBR) and butadiene/butyl acrylate/acrylonitrile terpolymers obtained by emulsion polymerization, as indicated in Table 1, were each dissolved in methyl isobutyl ketone, and hydrogenated using a Pd-carbon catalyst to obtain hydrogenated NBRs and hydrogenated acrylonitrile/butadiene/butyl acrylate terpolymer rubbers having the iodine values indicated in Table 1.
TABLE 1 __________________________________________________________________________ Rubber designation Acrylonitrile butadiene-butyl Acrylonitrile-butadiene acrylate co- Monomer copolymer rubber polymer rubber composition A B C D E F G H __________________________________________________________________________ Before Bonded acrylonitrile 37 37 45 37 33 35 35 35 hydro- (% by weight) genation Butyl acrylate units -- -- -- -- -- 25 35 35 (wt. %) Butaidene units 63 63 55 63 67 40 30 30 (wt. %) Iodine value 290 290 255 290 308 185 138 138 After Iodine value 103 51 25 159 -- 20 -- 23 hydro- (% by weight) genation __________________________________________________________________________
Each of the hydrogenated rubber samples shown in Table 1 was dissolved in a toluene/dichloroethane (75/25 by volume %) mixed solvent. The resulting rubber solution was poured into an aqueous emulsifier solution composed of 1.2 g of potassium oleate, 1.2 g of a potassium salt of rosin acid, 0.045 g of potassium hydroxide and 300 g of water with stirring. The mixture was stirred at room temperature by a TK-homomixer (model M, made by Tokushu Kika Kogyo Co., Ltd.) at 10,000 rpm for 10 minutes. The resulting emulsion was subjected to steam stripping to remove the solvent, and then concentrated by an evaporator to form a latex having a solids content of about 30%. The latex was centrifuged at room temperature and 3,000 rpm for 15 minutes to remove the excess of the emulsifier and concentrate it.
The solids contents and pH values of latices obtained as above are shown in Table 3. A toluene-insoluble portion (after immersion in toluene at room temperature for 48 hours) was not found to exist in these latices.
Uncured films and cured films were prepared from these latices, and subjected to a tensile test in accordance with JIS K6301. The results are also shown in Table 3.
Each of the latices was cast on a glass plate, and dried at a temperature of 20° C. and a humidity of 65% for 3 days. A JIS #3 dumbbell specimen was prepared from the resulting film.
Each of the latices was compounded in accordance with recipe I or II shown in Table 2 below. The compounded stock was cast onto a glass plate, dried at a temperature of 20° C. and a humidity of 65% for 3 days, and then cured at 100° C. for 30 minutes. A JIS #3 dumbbell specimen was prepared from the resulting cured film.
TABLE 2 ______________________________________ Compounding recipe (ther figures show parts by weight) I II ______________________________________ Latex (see Table 3) 100 100 (solids) (solids) Colloidal sulfur 1 -- Zinc oxide 2 -- Zinc diethyldiethiocarbamate 1 -- Zinc salt of 2-mercaptobenzo- 1 -- thiazole t-Butyl hydroperoxide -- 0.5 Tetraethylenepentamine 0.5 ______________________________________
TABLE 3 __________________________________________________________________________ Invention Comparison __________________________________________________________________________ Latex Rubber No. A* B* C* F* H* D* E G Solids content 45.3 45.5 45.0 45.0 45.6 45.0 45.4 45.4 (wt. %) pH 9.3 9.5 9.2 9.2 9.3 9.0 9.3 9.3 Average particle 0.61 0.54 0.32 0.58 0.49 0.43 0.72 0.51 diameter(**) Recipe I I II II I I II I Uncured film 500% Tensile stress 6 7 8 6 7 6 5 7 (kg/cm.sup.2) Tensile strength 18 20 48 30 22 14 13 9 (kg/cm.sup.2) Cured film 300% Tensile stress 17 19 29 25 19 13 12 13 (kg/cm.sup.2) Tensile strength 120 215 288 165 156 56 58 52 (kg/cm.sup.2) __________________________________________________________________________ *Hydrogenated rubbers (**)Determined from electron microscopic observation
The results given in Table 3 demonstrate that the uncured films and cured films obtained by using the latices of this invention have much improved tensile strength over the uncured films and cured films obtained by using latices outside the scope of the invention.
A commercially available NBR latex (a copolymer of acrylonitrile and butadiene produced by emulsion polymerization having a medium high bonded acrylonitrile content, a toluene-insoluble content of 53% by weight, an average particle diameter of 0.05 micron and a solids content of 41% by weight which was produced by Nippon Zeon Co., Ltd. and is available under the tradename NIPOL Lx-1562) was subjected to the same test as above. As a result, the uncured film had a tensile strength of 6.3 kg/cm2, and the cured film (recipe I) had a tensile strength of 103 kg/cm2.
Hydrogenated NBRs having an iodine value of 78 and 30 were prepared by hydrogenating an acrylonitrile/butadiene copolymer rubber (NBR) having a bonded acrylonitrile content of 37% by weight in the same way as in Example 1. One hundred grams of one of these hydrogenated NBRs was dissolved in a mixed solvent composed of 450 g of cyclohexane and 450 g of methyl ethyl ketone. The solution was poured into an aqueous emulsifier solution composed of 5 g of sodium linear alkylbenzenesulfonate (LAS), 0.5 g of potassium hydroxide and 1,000 g of water, and the mixture was stirred strongly by a TK homomixer at room temperature and 10,000 rpm for 10 minutes. The emulsion was then worked up as in Example 1 to concentrate it and remove the excess of the emulsifier and thus form a latex. A latex was also prepared in the same way from the other hydrogenated NBR.
The properties of these latices and uncured and cured films (recipe I) obtained from them are shown in Table 4.
TABLE 4 ______________________________________ Invention ______________________________________ Latex Rubber I*(78) J*(30) designation (iodine value) Solids content 45.2 45.1 (wt. %) pH 9.8 9.6 Average particle 0.54 0.63 diameter (μ) Uncured film 500% Tensile stress 7 8 (kg/cm.sup.2) Tensile strength 20 36 (kg/cm.sup.2) Cured film 300% Tensile stress 18 22 (kg/cm.sup.2) Tensile strength 173 235 (kg/cm.sup.2) ______________________________________ *Hydrogenated rubbers
Claims (6)
1. A process for producing a nitrile group-containing highly saturated polymer rubber latex having an average particle diameter of from about 0.32 to about 0.63μ, which comprises converting an inert solvent solution of a nitrile group-containing highly saturated polymer rubber having an iodine value of not more than 120 obtained by hydrogenating a nitrile group-containing rubber having an iodine value of more than 120 in the form of a solution into an oil-in-water emulsion using water and an emulsifier, and removing the solvent from the resulting emulsion, said inert solvent being a mixture of a solvent capable of dissolving said rubber and a solvent incapable of dissolving said rubber.
2. The process of claim 1 wherein the nitrile group-containing highly saturated polymer rubber is obtained by hydrogenating the conjugated diene units of an unsaturated nitrile/conjugated diene copolymer rubber, or the conjugated diene units of an unsaturated nitrile/conjugated diene/ethylenically unsaturated monomer terpolymer rubber.
3. The process of claim 1 or 2 wherein the rubber has an unsaturated nitrile content of 5 to 60% by weight.
4. The process of any one of claims 1 to 2 wherein the emulsifier is an anionic emulsifier.
5. The process of claim 3 wherein the emulsifier is an anionic emulsifier.
6. The process of claim 1, wherein said inert solvent is a mixture of an aromatic solvent and a halogenated hydrocarbon or a mixture of a ketone and an aliphatic or alicyclic hydrocarbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/879,140 US5244943A (en) | 1986-02-28 | 1992-05-06 | Nitrile group-containing highly saturated polymer rubber latex and process for production thereof |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61043718A JPH0832802B2 (en) | 1986-02-28 | 1986-02-28 | Aqueous dispersion for forming vulcanized film with excellent breaking strength |
JP61-43718 | 1986-02-28 | ||
US2010087A | 1987-02-27 | 1987-02-27 | |
US24924988A | 1988-09-26 | 1988-09-26 | |
US54558490A | 1990-06-29 | 1990-06-29 | |
US07/879,140 US5244943A (en) | 1986-02-28 | 1992-05-06 | Nitrile group-containing highly saturated polymer rubber latex and process for production thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US54558490A Continuation | 1986-02-28 | 1990-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5244943A true US5244943A (en) | 1993-09-14 |
Family
ID=27522335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/879,140 Expired - Lifetime US5244943A (en) | 1986-02-28 | 1992-05-06 | Nitrile group-containing highly saturated polymer rubber latex and process for production thereof |
Country Status (1)
Country | Link |
---|---|
US (1) | US5244943A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1120851C (en) * | 1997-12-01 | 2003-09-10 | 巴斯福股份公司 | Method for selective hydrogenation of ethylene unsatuated double bouds in polymerizates |
US6683123B1 (en) * | 2000-09-12 | 2004-01-27 | Bayer Polymers Llc | Process for making a thermoplastic molding composition |
WO2013098056A1 (en) * | 2011-12-28 | 2013-07-04 | Lanxess Deutschland Gmbh | Purification of optionally hydrogenated nitrile rubber |
US9120918B2 (en) | 2009-11-19 | 2015-09-01 | Lanxess Deutschland Gmbh | Fine-particle, stable suspensions of functionalized, completely or partially hydrogenated nitrile rubbers |
EP2918611A1 (en) | 2014-03-10 | 2015-09-16 | LANXESS Deutschland GmbH | Process for the reduction of nitrile groups of hydrogenated nitrile rubber |
CN111040190A (en) * | 2019-12-18 | 2020-04-21 | 东营九洲奥华化工有限责任公司 | Modified graphene nitrile rubber latex and production process thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2384545A (en) * | 1941-09-13 | 1945-09-11 | Goodrich Co B F | Butadiene copolymers |
US3240660A (en) * | 1961-07-03 | 1966-03-15 | Burlington Industries Inc | Bonding of nitrile rubbers to polyamide fibers |
US3814713A (en) * | 1970-12-04 | 1974-06-04 | Bridgestone Tire Co Ltd | Adhesive composition |
US3855168A (en) * | 1971-08-03 | 1974-12-17 | Mitsubishi Rayon Co | Adhesive composition for bonding polyester fiber to rubber |
US3898208A (en) * | 1971-06-21 | 1975-08-05 | Dow Chemical Co | Hydrogenation of oil-insoluble diene polymers |
GB2070023A (en) * | 1980-02-25 | 1981-09-03 | Johnson Matthey Co Ltd | Hydrogenation process |
US4404329A (en) * | 1978-04-06 | 1983-09-13 | Nippon Zeon Co., Ltd. | Rubber composition capable of giving vulcanizates having improved ozone cracking resistance and oil resistance |
US4452950A (en) * | 1983-02-22 | 1984-06-05 | The Goodyear Tire & Rubber Company | Process for hydrogenation of carbon-carbon double bonds in an unsaturated polymer in latex form |
US4464515A (en) * | 1982-12-08 | 1984-08-07 | Polysar Limited | Polymer hydrogenation process |
GB2135904A (en) * | 1983-03-02 | 1984-09-12 | Mitsuboshi Belting Ltd | Rubber/fabric composite manufacture |
JPS60229971A (en) * | 1984-04-28 | 1985-11-15 | Nitto Electric Ind Co Ltd | Production of o/w emulsion type of rubber tackifier |
US4560729A (en) * | 1983-10-19 | 1985-12-24 | Nippon Zeon Co. Ltd. | Rubber composition |
EP0194678A1 (en) * | 1985-03-12 | 1986-09-17 | Nippon Zeon Co., Ltd. | Method for bonding rubbers to fibers |
-
1992
- 1992-05-06 US US07/879,140 patent/US5244943A/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2384545A (en) * | 1941-09-13 | 1945-09-11 | Goodrich Co B F | Butadiene copolymers |
US3240660A (en) * | 1961-07-03 | 1966-03-15 | Burlington Industries Inc | Bonding of nitrile rubbers to polyamide fibers |
US3814713A (en) * | 1970-12-04 | 1974-06-04 | Bridgestone Tire Co Ltd | Adhesive composition |
US3898208A (en) * | 1971-06-21 | 1975-08-05 | Dow Chemical Co | Hydrogenation of oil-insoluble diene polymers |
US3855168A (en) * | 1971-08-03 | 1974-12-17 | Mitsubishi Rayon Co | Adhesive composition for bonding polyester fiber to rubber |
US4404329A (en) * | 1978-04-06 | 1983-09-13 | Nippon Zeon Co., Ltd. | Rubber composition capable of giving vulcanizates having improved ozone cracking resistance and oil resistance |
GB2070023A (en) * | 1980-02-25 | 1981-09-03 | Johnson Matthey Co Ltd | Hydrogenation process |
US4464515A (en) * | 1982-12-08 | 1984-08-07 | Polysar Limited | Polymer hydrogenation process |
US4452950A (en) * | 1983-02-22 | 1984-06-05 | The Goodyear Tire & Rubber Company | Process for hydrogenation of carbon-carbon double bonds in an unsaturated polymer in latex form |
GB2135904A (en) * | 1983-03-02 | 1984-09-12 | Mitsuboshi Belting Ltd | Rubber/fabric composite manufacture |
US4560729A (en) * | 1983-10-19 | 1985-12-24 | Nippon Zeon Co. Ltd. | Rubber composition |
JPS60229971A (en) * | 1984-04-28 | 1985-11-15 | Nitto Electric Ind Co Ltd | Production of o/w emulsion type of rubber tackifier |
EP0194678A1 (en) * | 1985-03-12 | 1986-09-17 | Nippon Zeon Co., Ltd. | Method for bonding rubbers to fibers |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1120851C (en) * | 1997-12-01 | 2003-09-10 | 巴斯福股份公司 | Method for selective hydrogenation of ethylene unsatuated double bouds in polymerizates |
US6683123B1 (en) * | 2000-09-12 | 2004-01-27 | Bayer Polymers Llc | Process for making a thermoplastic molding composition |
US9120918B2 (en) | 2009-11-19 | 2015-09-01 | Lanxess Deutschland Gmbh | Fine-particle, stable suspensions of functionalized, completely or partially hydrogenated nitrile rubbers |
WO2013098056A1 (en) * | 2011-12-28 | 2013-07-04 | Lanxess Deutschland Gmbh | Purification of optionally hydrogenated nitrile rubber |
EP2918611A1 (en) | 2014-03-10 | 2015-09-16 | LANXESS Deutschland GmbH | Process for the reduction of nitrile groups of hydrogenated nitrile rubber |
CN111040190A (en) * | 2019-12-18 | 2020-04-21 | 东营九洲奥华化工有限责任公司 | Modified graphene nitrile rubber latex and production process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2559464C9 (en) | Aqueous suspensions of carboxyl group-containing, completely or partially hydrogenated nitrile rubbers, methods for production thereof and use thereof | |
US4199490A (en) | Block copolymer latex composition | |
EP0240697B1 (en) | Nitrile group-containing highly saturated polymer rubber latex and process for production thereof | |
US3989661A (en) | Method for enlarging the particle size of polymers prepared by aqueous emulsion polymerization | |
KR102634108B1 (en) | Method of making polymer latex | |
US5244943A (en) | Nitrile group-containing highly saturated polymer rubber latex and process for production thereof | |
US3998772A (en) | Novel rubber latices and method of producing same | |
CN115109197B (en) | High-performance conductive degradable carboxyl styrene-butadiene latex and preparation method and application thereof | |
US4383108A (en) | Production of emulsion-polymerized butadiene rubber in powder form | |
US5556911A (en) | Films from aqueous dispersions of block copolymers having hydrogenated conjugated diene block | |
US4230810A (en) | Method of preparing resin | |
JP6729549B2 (en) | Method for producing synthetic isoprene polymer latex for dip molding, method for producing dip molding composition and method for producing dip molded article | |
WO2020045339A1 (en) | Method for producing polymer latex | |
JPH07145243A (en) | Production of hydrogenated nbr latex | |
US3479313A (en) | Oil extension of latices | |
CA1196435A (en) | Process for the production of fluid aqueous dispersions of polymers of conjugated dienes | |
EP0904184A1 (en) | Process for producing dip-coated articles | |
JP2760299B2 (en) | Nitrile group-containing polymer rubber aqueous dispersion | |
CA1114976A (en) | Process for stabilizing latex with alpha- methylstyrene-maleic anhydride adduct and stable latices produced thereby | |
JPS609047B2 (en) | Manufacturing method of polymer latex | |
JP3393685B2 (en) | Method for producing hydrogenated NBR latex | |
US9914806B2 (en) | Agglomerated rubber particles and method of preparing | |
JPS5815518B2 (en) | Aqueous dispersion for pressure sensitive materials | |
DE1569358C3 (en) | Enlargement of the particle size of aqueous dispersions of solid organic macromolecular polymerization products | |
CN113880988A (en) | Nitrile latex and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |