WO2020045287A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2020045287A1
WO2020045287A1 PCT/JP2019/033078 JP2019033078W WO2020045287A1 WO 2020045287 A1 WO2020045287 A1 WO 2020045287A1 JP 2019033078 W JP2019033078 W JP 2019033078W WO 2020045287 A1 WO2020045287 A1 WO 2020045287A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
refractive index
crystal display
polarizer
display device
Prior art date
Application number
PCT/JP2019/033078
Other languages
French (fr)
Japanese (ja)
Inventor
貴道 猪股
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020539419A priority Critical patent/JPWO2020045287A1/en
Publication of WO2020045287A1 publication Critical patent/WO2020045287A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a liquid crystal display device.
  • Liquid crystal display devices are classified into a vertical electric field mode liquid crystal display device and a horizontal electric field mode liquid crystal display device according to the orientation direction of liquid crystal molecules in a liquid crystal cell and the direction of applied voltage.
  • a typical liquid crystal display device in the horizontal electric field mode an in-plane switching mode (IPS mode) liquid crystal display device is exemplified.
  • the liquid crystal molecules are aligned (homogeneous alignment) in a direction parallel to the in-plane direction of the alignment film of the liquid crystal cell, and the liquid crystal molecules are generated by generating an electric field in the in-plane direction of the alignment film. By rotating, the transmittance of light passing through the liquid crystal cell is controlled.
  • the IPS mode liquid crystal display device is said to be superior in contrast, color, etc. as compared with the liquid crystal display device in the twisted nematic mode (TN mode), which is a transverse electric field mode, but aims at further improving the image quality.
  • TN mode twisted nematic mode
  • Patent Literature 1 a high contrast is realized by combining predetermined retardation layers and at the same time giving a difference in transmittance between two polarizing plates.
  • Patent Document 2 high contrast is realized by disposing a retardation layer having a multilayer structure in which a biaxial film is coated with a uniaxial C film between a polarizer and a liquid crystal cell. I have.
  • any of the techniques of Patent Documents 1 to 3 requires two types of polarizing plates or needs to laminate a plurality of retardation layers. As a result, the configuration of the liquid crystal display device becomes complicated and the manufacturing cost increases.
  • the inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, the inventors have found that the problem can be solved by providing a layer having a predetermined refractive index anisotropy and having a single-layer structure between the first polarizer layer and the liquid crystal cell, thereby completing the present invention. That is, the present invention provides the following.
  • the liquid crystal cell has a homogeneous alignment,
  • the absorption axis of the first polarizer is orthogonal to the absorption axis of the second polarizer,
  • the refractive index anisotropic layer has a single-layer structure and negative biaxiality, Wherein the slow axis A 2 in the plane of the refractive index anisotropic layer and the slow axis A 1 is parallel, the liquid crystal display device.
  • the alicyclic structure-containing polymer is a hydride of a ring-opening polymer of a monomer having a norbornene structure, an addition copolymer of a monomer having a norbornene structure and an ⁇ -olefin, and a norbornene structure
  • Liquid crystal display device according to [5] which is at least one member selected from the group consisting of a hydride of an addition copolymer of a monomer having ⁇ and an ⁇ -olefin.
  • a backlight further comprising: the backlight, the first polarizer, the refractive index anisotropic layer, the liquid crystal cell, and the second polarizer are arranged in this order.
  • the liquid crystal display device according to any one of [7].
  • a backlight is further provided, wherein the first polarizer, the refractive index anisotropic layer, the liquid crystal cell, the second polarizer, and the backlight are arranged in this order.
  • the liquid crystal display device according to any one of [7].
  • FIG. 1 is an exploded view schematically showing the liquid crystal display device according to the first embodiment.
  • FIG. 2 is an exploded view schematically showing the liquid crystal display device according to the second embodiment.
  • the slow axis of the film or layer means the in-plane slow axis of the film or layer unless otherwise specified.
  • an angle formed by an optical axis (slow axis, transmission axis, absorption axis, etc.) of each layer in a member including a plurality of layers is an angle when the layer is viewed from the thickness direction, unless otherwise specified.
  • the front direction of a certain film means the normal direction of the main surface of the film unless otherwise specified, and specifically, the direction of the polar angle 0 ° and the azimuth angle 0 ° of the main surface. Point to.
  • the tilt direction of a certain film means a direction that is neither parallel nor perpendicular to the main surface of the film unless otherwise specified.
  • the polar angle of the main surface is greater than 0 ° and 90 °. Point in a direction smaller than °.
  • nx represents the refractive index in the direction (in-plane direction) perpendicular to the thickness direction of the layer and in the direction giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the layer and in a direction perpendicular to the direction of nx.
  • nz represents the refractive index in the thickness direction of the layer.
  • d represents the thickness of the layer.
  • the measurement wavelength is 590 nm unless otherwise specified.
  • the directions of the elements are “parallel”, “vertical” and “orthogonal”, unless otherwise specified, within a range that does not impair the effects of the present invention, for example, ⁇ 3 °, ⁇ 2 ° or ⁇ 1 °. May be included.
  • a liquid crystal display device includes a first polarizer, a refractive index anisotropic layer, a liquid crystal cell, and a second polarizer in this order.
  • a liquid crystal cell generally includes a substrate, two alignment films formed on the substrate, a liquid crystal compound disposed between the two alignment films, and an electrode.
  • the liquid crystal cell may include a control element for controlling a voltage.
  • the liquid crystal cell is preferably a liquid crystal cell driven in the IPS mode.
  • the liquid crystal cell has a homogeneous alignment when no voltage is applied. The fact that the liquid crystal cell is in a homogeneous alignment means that the alignment vector of the liquid crystal molecules existing between the alignment films is in an alignment state in which the alignment vectors are uniformly parallel to a predetermined direction in the plane of the alignment film.
  • the liquid crystal cell in which the alignment vector of the liquid crystal molecules forms an angle of more than 0 ° and 3 ° or less with the alignment film surface is also in a homogeneous alignment.
  • the angle between the alignment vector and the alignment film surface is called a pretilt angle.
  • the smaller the pretilt angle of the liquid crystal molecules in the liquid crystal cell (hereinafter, also referred to as the “pretilt angle of the liquid crystal cell”), the smaller is preferable, and the ideal value is 0 °. It is usually difficult to set the pretilt angle to 0 ° in a widely used rubbing treatment, but it is preferable that the pretilt angle be 3 ° or less. In a liquid crystal display device including a liquid crystal cell having a pretilt angle exceeding 0 °, when observed from an inclined direction when black is displayed on the screen, the color change depending on the azimuth angle observed tends to be large.
  • the liquid crystal display device according to the aspect can suppress such a change in tint even when the pretilt angle exceeds 0 °.
  • the pretilt angle of liquid crystal molecules in a liquid crystal cell can be measured by a conventionally known method (for example, a crystal rotation method).
  • the liquid crystal cell has a slow axis A 1 in plane when no voltage is applied.
  • the slow axis, in the orientation film in a plane parallel to the liquid crystal cell means the direction which gives a maximum refractive index n e.
  • the slow axis A 1 is normally coincides with the optical axis direction, also coincides with the orientation direction of the normal alignment layer.
  • the alignment direction of the alignment film is a direction in which the liquid crystal molecules are aligned when a process (eg, a rubbing process) for applying an alignment regulating force to the alignment film is performed to align the liquid crystal molecules on the alignment film.
  • a process eg, a rubbing process
  • the alignment direction of the alignment film is usually the rubbing direction.
  • Direction of the slow axis A 1 in the liquid crystal cell can be determined by measuring the refractive index of the liquid crystal cell in the orientation film in a plane parallel to the liquid crystal cell in the absence of an applied voltage. Further, the rubbing direction of the alignment film in the case of known, good rubbing direction as the direction of the slow axis A 1.
  • the first polarizer and the second polarizer a film capable of transmitting one of two linearly polarized lights whose vibration directions intersect at right angles and absorbing or reflecting the other can be used.
  • the oscillation direction of the linearly polarized light indicates the oscillation direction of the electric field of the linearly polarized light.
  • Such a film usually has a polarization transmission axis (hereinafter, the polarization transmission axis is also referred to as a transmission axis), can transmit linearly polarized light having a vibration direction parallel to the transmission axis, and vibrates perpendicularly to the transmission axis. It can absorb or reflect linearly polarized light having a direction.
  • the polarizer include polyvinyl alcohol, including a vinyl alcohol-based polymer such as partially formalized polyvinyl alcohol, a polyvinyl alcohol resin film, iodine, dyeing treatment with a dichroic substance such as a dichroic dye, One obtained by performing an appropriate treatment such as a stretching treatment and a cross-linking treatment in an appropriate order and manner may be used.
  • the polarizer preferably contains a polyvinyl alcohol resin.
  • the first polarizer and the second polarizer may have different characteristics, but are preferably members having the same characteristics. By using members having the same characteristics as the first polarizer and the second polarizer, the manufacturing cost of the liquid crystal display device can be reduced.
  • the difference in transmittance between the first polarizer and the second polarizer is preferably less than 0.5%, more preferably 0.2% or less, further preferably less than 0.1%, and usually 0%. Or more.
  • the refractive index anisotropic layer is a layer having a single-layer structure with anisotropic refractive index, and has negative biaxiality. With such a configuration of the refractive index anisotropic layer, a liquid crystal display device having a sufficient contrast can be realized with a simple configuration.
  • a layer having negative biaxiality means a layer in which nx, ny, and nz satisfy the relationship of nx> ny> nz, and means that the layer is a so-called negative B plate.
  • the refractive index anisotropic layer has a retardation Re in the in-plane direction of preferably 10 nm or more, more preferably 30 nm or more, still more preferably 50 nm or more, preferably 250 nm or less, more preferably 240 nm or less, and still more preferably 230 nm. It is as follows. When the in-plane retardation Re is greater than or equal to the lower limit, the contrast in the inclined direction (viewing angle contrast) can be effectively improved. When the in-plane retardation is less than or equal to the upper limit, black is displayed from the inclined direction. When observing the screen in the state, the change in the tint due to the azimuth can be effectively suppressed.
  • the value of (nx ⁇ nz) / (nx ⁇ ny) preferably satisfies the following expression (i).
  • the value of (nx-nz) / (nx-ny) is also called an NZ coefficient. 1.1 ⁇ (nx ⁇ nz) / (nx ⁇ ny) ⁇ 1.9 (i)
  • the NZ coefficient is more preferably 1.2 or more, still more preferably 1.25 or more, more preferably 1.8 or less, and still more preferably 1.75 or less.
  • the contrast particularly the contrast when observed from an inclined direction, can be effectively improved.
  • the polarization state of light in the tilt direction from the backlight side polarizer of the liquid crystal display device changes when black is displayed on the screen, and light is efficiently emitted. It is considered to be absorbed, but does not limit the present invention.
  • the refractive index anisotropic layer is preferably a layer formed of a thermoplastic resin.
  • thermoplastic resin capable of forming the refractive index anisotropic layer a thermoplastic resin having a positive intrinsic birefringence value can be used.
  • a layer having negative biaxiality can be obtained.
  • the stretching method for example, any method such as a uniaxial stretching method, a sequential biaxial stretching method, and a simultaneous biaxial stretching method can be used.
  • a resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is higher than the refractive index in the direction perpendicular to the stretching direction.
  • the intrinsic birefringence value can be calculated from the permittivity distribution.
  • polymers that can be included in the resin having a positive intrinsic birefringence value include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; Polyarylate; cellulose ester, polyether sulfone; polysulfone; polyaryl sulfone; polyvinyl chloride; alicyclic structure-containing polymer such as norbornene polymer; and rod-shaped liquid crystal polymer.
  • polyolefins such as polyethylene and polypropylene
  • polyesters such as polyethylene terephthalate and polybutylene terephthalate
  • polyarylene sulfides such as polyphenylene sulfide
  • polyvinyl alcohol Polyarylate
  • cellulose ester polyether sulfone
  • polysulfone polysulfone
  • the resin capable of forming the refractive index anisotropy may contain the polymer alone or in a combination of two or more kinds in any ratio.
  • the resin capable of forming the refractive index anisotropic layer has a photoelastic coefficient of preferably 30 ⁇ 10 ⁇ 13 cm 2 / dyn or less, more preferably 10 ⁇ 10 ⁇ 13 cm 2 / dyn or less, and still more preferably 5 ⁇ 10 5 -13 cm 2 / dyn or less, and a smaller value is more preferable.
  • the photoelastic coefficient of the resin can be measured by an ellipsometer.
  • a film is formed from a resin, and a phase difference when a load of 50 g, 100 g, or 150 g is applied to the film is measured, and the phase difference is obtained from a slope of a graph of the load and the phase difference.
  • the photoelastic coefficient of the resin capable of forming the refractive index anisotropic layer is equal to or less than the upper limit, a change in the use environment, an external force such as bending or shrinkage stress is applied to the refractive index anisotropic layer formed from the resin. Display defects such as display unevenness of the liquid crystal display device, which may occur in the case of the above.
  • the refractive index anisotropic layer is preferably formed from a resin containing an alicyclic structure-containing polymer.
  • the alicyclic structure-containing polymer is a polymer whose structural unit contains an alicyclic structure.
  • the resin forming the refractive index anisotropic layer may contain one kind of the alicyclic structure-containing polymer alone, or may contain two or more kinds thereof in combination.
  • the alicyclic structure-containing polymer may have an alicyclic structure in the main chain, may have an alicyclic structure in the side chain, and may have an alicyclic structure in both the main chain and the side chain. It may have a structure. Above all, a polymer containing an alicyclic structure in at least the main chain is preferable from the viewpoint of mechanical strength and heat resistance.
  • alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
  • cycloalkane saturated alicyclic hydrocarbon
  • cycloalkene unsaturated alicyclic hydrocarbon
  • cycloalkyne unsaturated alicyclic hydrocarbon
  • a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably, per one alicyclic structure. Is in the range of 15 or less. By setting the number of carbon atoms constituting the alicyclic structure in this range, the mechanical strength, heat resistance and moldability of the resin containing the alicyclic structure-containing polymer are highly balanced.
  • the ratio of the structural unit having an alicyclic structure can be appropriately selected depending on the purpose of use.
  • the proportion of the structural unit having an alicyclic structure in the alicyclic structure-containing polymer is preferably at least 55% by weight, more preferably at least 70% by weight, particularly preferably at least 90% by weight, and usually at most 100% by weight. It is. When the proportion of the structural unit having an alicyclic structure in the alicyclic structure-containing polymer is within this range, the transparency and heat resistance of the resin containing the alicyclic structure-containing polymer are improved.
  • Examples of the alicyclic structure-containing polymer include, for example, a norbornene-based polymer, a monocyclic cycloolefin-based polymer, a cyclic conjugated diene-based polymer, a vinyl alicyclic hydrocarbon polymer, and hydrogenated products thereof, and vinyl.
  • Examples include hydrides of aromatic hydrocarbon polymers.
  • a norbornene-based polymer is more preferable because of its excellent transparency and moldability. Since the resin containing such a polymer has a low water vapor transmission rate and a small photoelastic coefficient, it occurs when an external force such as a change in use environment, bending or shrinkage stress is applied to the refractive index anisotropic layer formed from such a resin. Display defects such as display unevenness of the liquid crystal display device can be suppressed.
  • Examples of the norbornene-based polymer include a ring-opened polymer of a monomer having a norbornene structure and a hydride thereof; and an addition polymer of a monomer having a norbornene structure and a hydride thereof.
  • Examples of the ring-opening polymer of a monomer having a norbornene structure include a ring-opening homopolymer of one kind of monomer having a norbornene structure and a ring-opening polymer of two or more kinds of monomers having a norbornene structure.
  • Examples of the copolymer include a copolymer, a monomer having a norbornene structure, and a ring-opening copolymer of any monomer copolymerizable therewith.
  • examples of the addition polymer of a monomer having a norbornene structure include an addition homopolymer of one type of monomer having a norbornene structure and an addition copolymer of two or more types of monomers having a norbornene structure.
  • an addition copolymer of a monomer having a norbornene structure and an arbitrary monomer copolymerizable therewith are examples of the copolymer.
  • hydrides of ring-opening polymers of monomers having a norbornene structure addition copolymers of monomers having a norbornene structure and ⁇ -olefin, and monomers having a norbornene structure and ⁇ -olefin
  • a hydride of an addition copolymer with an olefin is preferred.
  • Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene) and tricyclo [4.3.0.1 2,5 ] deca-3,7. -Diene (common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4. 0.1 2,5 . [ 1,7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (eg, those having a substituent on the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group. Two or more of these substituents may be the same or different and may be bonded to the ring.
  • the monomer having a norbornene structure one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the ring-opened polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing the monomer in the presence of a ring-opening polymerization catalyst.
  • examples of the ⁇ -olefin include ⁇ -olefins having 2 to 20 carbon atoms, such as ethylene, propylene and 1-butene, and derivatives thereof. Is mentioned. Of these, ethylene is preferred.
  • One type of ⁇ -olefin may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the addition polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing the monomer in the presence of an addition polymerization catalyst.
  • the hydride of the ring-opening polymer and the addition polymer described above can be used, for example, in a solution of the ring-opening polymer and the addition polymer in the presence of a hydrogenation catalyst containing a transition metal such as nickel, palladium, etc. Saturated bonds may be produced by hydrogenating preferably 90% or more.
  • the resin capable of forming the refractive index anisotropic layer may contain an optional compounding agent in addition to the polymer.
  • the compounding agents include stabilizers such as antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, ultraviolet absorbers, near infrared absorbers, etc .; plasticizers.
  • One type of compounding agent may be used, or two or more types may be used in combination at an arbitrary ratio.
  • the angle between the absorption axis A a2 of the second polarizer and the slow axis A 1 when the second polarizer and the liquid crystal cell are viewed from the thickness direction is preferably 90 ° ⁇ 1 °, Preferably 90 ° ⁇ 0.8 °, or preferably 90 ° ⁇ 0.5 °.
  • the absorption axis A a1 of the first polarizer is orthogonal to the absorption axis A a2 of the second polarizer. Specifically, the absorption axis A a1 of the first polarizer and the absorption axis A a2 of the second polarizer, the angle when viewed first polarizer and the second polarizer from a thickness direction, preferably 90 ° ⁇ 1 °, preferably 90 ° ⁇ 0.8 °, or preferably 90 ° ⁇ 0.5 °.
  • the slow axis A 2 in the plane of the refractive index anisotropic layer and the slow axis A 1 in the plane of the liquid crystal cell when no voltage is applied is parallel.
  • the slow axis A 2 of the refractive index anisotropic layer, the slow axis A 1, the angle when viewing the refractive index anisotropic layer and the liquid crystal cell in the thickness direction preferably 0 ° ⁇ 1 °, preferably 0 ° ⁇ 0.8 °, or preferably 0 ° ⁇ 0.5 °.
  • each element has the above-described relationship, it is possible to realize a liquid crystal display device having a simple configuration and sufficient contrast.
  • the absorption axis A a2 of the second polarizer is orthogonal to the slow axis A 1 of the liquid crystal cell, and the liquid crystal display device is a so-called E-mode liquid crystal.
  • the absorption axis A a1 of the first polarizer is parallel to the slow axis A 1 of the liquid crystal cell, and the liquid crystal display device is a so-called O-mode liquid crystal display. Device.
  • the liquid crystal display device may include an arbitrary layer in addition to the first polarizer, the refractive index anisotropic layer, the liquid crystal cell, and the second polarizer.
  • optional layers include a polarizer protective film, a color filter, and an adhesive layer for bonding each layer.
  • the layer having the refractive index anisotropy included between the first polarizer layer and the second polarizer layer is only the liquid crystal cell and the refractive index anisotropic layer. That is, it is preferable that no layer having a refractive index anisotropy exists between the first polarizer layer and the second polarizer layer other than the liquid crystal cell and the refractive index anisotropic layer.
  • a liquid crystal display device can be easily realized.
  • the layer having the refractive index anisotropy is, for example, a layer having an in-plane retardation Re of 5 nm or more and / or an absolute value of the thickness direction retardation Rth of 3 nm or more.
  • the average contrast of the liquid crystal display device at a polar angle of 60 ° is preferably 30 or more, more preferably 35 or more, and still more preferably 40 or more.
  • the average contrast at a polar angle of 60 ° can be measured as follows.
  • the azimuthal angles in the slow axis direction in the plane of the liquid crystal cell are defined as 0 ° and 180 °.
  • the polar angle is 60 ° and the azimuth angles are 45 °, 135 °, 225 °, and 315 °
  • the luminance B1 in a state where black is displayed on the screen and the luminance W1 in a state where white is displayed on the screen are measured.
  • the ratio of the luminance W1 to the luminance B1 (luminance W1 / luminance B2) can be calculated to obtain the average contrast at a polar angle of 60 °.
  • Brightness can be measured, for example, by a spectroradiometer.
  • FIG. 1 is an exploded view schematically showing the liquid crystal display device according to the first embodiment.
  • FIG. 1 shows the liquid crystal display device in a state where no voltage is applied.
  • electrodes, circuits, control elements, and the like are omitted.
  • the liquid crystal display device 100 according to the embodiment includes a first polarizer 110, a refractive index anisotropic layer 120, a color filter 130, a liquid crystal cell 140, a second polarizer 150, and a backlight 160 in this order.
  • the first polarizer 110 and the second polarizer 150 have an absorption axis A a1 and an absorption axis A a2 , respectively.
  • the absorption axis A a1 and the absorption axis A a2 are orthogonal to each other.
  • Refractive index anisotropic layer 120 has a slow axis A 2.
  • the liquid crystal cell 140 has a slow axis A 1.
  • the slow axis A 1 of the slow axis A 2 and the liquid crystal cell 140 of the refractive index anisotropic layer 120 are parallel.
  • the slow axis A 1 of the absorption axis A a2 and the liquid crystal cell 140 of the second polarizer 150 are orthogonal, the liquid crystal display device 100 is a liquid crystal display device of the so-called E- mode.
  • the backlight 160 may have any configuration, and may be an edge light type or a direct type.
  • the color filter 130 may have any configuration. For example, a red color filter, a green color filter, or a blue color filter may be used.
  • FIG. 2 is an exploded view schematically showing the liquid crystal display device according to the second embodiment.
  • FIG. 2 shows the liquid crystal display device in a state where no voltage is applied.
  • electrodes, circuits, control elements, and the like are omitted.
  • the liquid crystal display device 200 according to the present embodiment includes a backlight 260, a first polarizer 210, a refractive index anisotropic layer 220, a liquid crystal cell 240, a color filter 230, and a second polarizer 250 in this order.
  • the first polarizer 210 and second polarizer 250 each have an absorption axis A a1 and the absorption axis A a2.
  • the absorption axis A a1 and the absorption axis A a2 are orthogonal to each other.
  • Refractive index anisotropic layer 220 has a slow axis A 2.
  • the liquid crystal cell 240 has a slow axis A 1.
  • the slow axis A 1 of the slow axis A 2 and the liquid crystal cell 240 of the refractive index anisotropic layer 220 are parallel.
  • the slow axis A 1 of the absorption axis A a1 and the liquid crystal cell 240 of the first polarizer 210 is parallel, the liquid crystal display device 200 is a liquid crystal display device of the so-called O- mode.
  • the backlight 260 and the color filter 230 configurations similar to those of the backlight 160 and the color filter 130, respectively, can be adopted.
  • the refractive index (nx, ny, nz), the retardation Re in the in-plane direction, and the retardation Rth in the thickness direction of the film were measured at a wavelength of 590 nm using a phase difference measuring device (Axometric's product name “Axoscan”). .
  • the pretilt angle of the liquid crystal molecules in the liquid crystal cell was measured by a conventionally known method (for example, a crystal rotation method).
  • the liquid crystal display was set to display black.
  • the slow axis directions of the liquid crystal cell included in the liquid crystal display device when no voltage was applied were defined as azimuth angles 0 ° and 180 °.
  • the color of the screen was visually observed from two directions: a polar angle of 60 ° azimuth 45 ° and a polar angle of 60 ° azimuth 135 °.
  • the liquid crystal display device was set to a state where black was displayed or a state where white was displayed. Then, using a luminance meter (“SR-LED” manufactured by Topcon), a luminance B1 in a state where black was displayed on the screen and a luminance W1 in a state where white was displayed on the screen were measured. The ratio of the luminance W1 to the luminance B1 (luminance W1 / luminance B1) was determined.
  • the front direction contrast was determined from the luminance measured from the normal direction (front direction) of the liquid crystal display screen.
  • the average contrast at a polar angle of 60 ° was determined from the luminance measured from the direction of the polar angle of 60 ° on the liquid crystal display screen.
  • the slow axis directions of the liquid crystal cell included in the liquid crystal display device when no voltage was applied were defined as azimuth angles of 0 ° and 180 °. Then, the contrast at the polar angle of 60 ° and the azimuth angles of 45 °, 135 °, 225 °, and 315 ° were obtained, and the arithmetic mean of the contrast at each azimuth angle was defined as the value of the average contrast at the polar angle of 60 °.
  • the contrast of the liquid crystal display device was comprehensively evaluated according to the following criteria.
  • a resin containing an alicyclic structure-containing polymer (“ZEONOR1420” manufactured by Zeon Corporation, photoelastic coefficient: 2 ⁇ 10 ⁇ 13 cm 2 / dyn) is melted, extruded, and taken out by a cast roll to form a thickness.
  • a 60 ⁇ m raw film was obtained.
  • the obtained raw film was longitudinally stretched 2.5 times at 142 ° C.
  • the longitudinal stretching was performed by providing a difference in the peripheral speed of the transport roll.
  • the longitudinally stretched film was horizontally stretched 1.5 times by a tenter stretching machine at 142 ° C. to obtain a compensation film 1 as a refractive index anisotropic layer.
  • the obtained compensation film 1 has a thickness of 26 ⁇ m, a refractive index nx of 1.5328, a refractive index ny of 1.5293, a refractive index nz of 1.5280, an in-plane retardation Re of 90 nm, and a thickness direction. Had a retardation Rth of 79 nm and an NZ coefficient of 1.38.
  • the obtained compensation film 2 has a thickness of 25 ⁇ m, a refractive index nx of 1.5330, a refractive index ny of 1.5293, a refractive index nz of 1.5277, an in-plane retardation Re of 92 nm, and a thickness direction. Had a retardation Rth of 86 nm and an NZ coefficient of 1.43.
  • the obtained compensation film 4 has a thickness of 28 ⁇ m, a refractive index nx of 1.5332, a refractive index ny of 1.5290, a refractive index nz of 1.5279, a retardation Re in the in-plane direction of 118 nm, and a thickness direction. Had a retardation Rth of 89 nm and an NZ coefficient of 1.25.
  • the obtained compensation film 5 has a thickness of 26 ⁇ m, a refractive index nx of 1.5338, a refractive index ny of 1.5288, a refractive index nz of 1.5273, a retardation Re in the in-plane direction of 130 nm, and a thickness direction.
  • a retardation Rth of 105 nm and an NZ coefficient of 1.31 Had a retardation Rth of 105 nm and an NZ coefficient of 1.31.
  • a 50 ⁇ m thick raw film was obtained by melting and extruding a thermoplastic resin (“ZEONOR1420” manufactured by Zeon Corporation, photoelastic coefficient: 2 ⁇ 10 ⁇ 13 cm 2 / dyn).
  • the obtained raw film was longitudinally stretched 1.5 times at 140 ° C. to obtain a compensation film C1.
  • the longitudinal stretching was performed by providing a difference in the peripheral speed of the transport roll.
  • the obtained compensation film C1 has a thickness of 41 ⁇ m, a refractive index nx of 1.5315, a refractive index ny of 1.5293, a refractive index nz of 1.5293, a retardation Re in the in-plane direction of 90 nm, and a thickness direction.
  • a retardation Rth 45 nm and an NZ coefficient of 1.00.
  • Example 1 A commercially available IPS liquid crystal display device (TS-430 manufactured by ADONIS) was prepared.
  • the liquid crystal display device has a so-called E-mode in which the pretilt angle of the liquid crystal cell is 2 ° and the absorption axis of the backlight side polarizer is orthogonal to the slow axis of the liquid crystal cell when no voltage is applied.
  • the absorption axis of the viewing side polarizer is orthogonal to the absorption axis of the backlight side polarizer.
  • the liquid crystal display was disassembled, the compensation film 1 was inserted between the viewing-side polarizer and the color filter, and reassembled to obtain the liquid crystal display 1 for evaluation.
  • the liquid crystal display device 1 includes a viewing side polarizer, a compensation film 1, a color filter, a liquid crystal cell, a backlight side polarizer, and a backlight in this order from the viewing side.
  • a change in tint and a contrast depending on an azimuth angle in a state where black was displayed on a screen were evaluated by the above method. Table 1 shows the results.
  • Example 2 A liquid crystal display device 2 for evaluation was obtained in the same manner as in Example 1 except that the compensating film 2 was used instead of the compensating film 1, and the color change and contrast depending on the azimuth angle in a state where black was displayed on the screen were measured. evaluated. Table 1 shows the results.
  • Example 3 A liquid crystal display device 3 for evaluation was obtained in the same manner as in Example 1 except that the compensating film 3 was used instead of the compensating film 1, and the color change and contrast due to the azimuth angle in a state where black was displayed on the screen were measured. evaluated. Table 1 shows the results.
  • Example 4 A liquid crystal display device 4 for evaluation was obtained in the same manner as in Example 1 except that the compensating film 4 was used instead of the compensating film 1, and the color change and contrast due to the azimuth angle in a state where black was displayed on the screen were measured. evaluated. Table 1 shows the results.
  • Example 5 A liquid crystal display device 5 for evaluation was obtained in the same manner as in Example 1 except that the compensating film 5 was used instead of the compensating film 1, and the color change and contrast due to the azimuth angle in a state where black was displayed on the screen were measured. evaluated. Table 1 shows the results.
  • Example 6 A commercially available IPS liquid crystal display device (23M47 manufactured by LG Display) was prepared. This liquid crystal display device has a so-called O-mode in which the pretilt angle of the liquid crystal cell is 1.0 ° and the absorption axis of the backlight side polarizer is parallel to the slow axis of the liquid crystal cell when no voltage is applied. Device. The absorption axis of the viewing side polarizer is orthogonal to the absorption axis of the backlight side polarizer. The liquid crystal display was disassembled, the compensation film 1 was inserted between the backlight-side polarizer and the liquid crystal cell, and reassembled to obtain a liquid crystal display 6 for evaluation.
  • the liquid crystal display device 6 includes, from the viewing side, a viewing side polarizer, a color filter, a liquid crystal cell, a compensation film 1, a backlight side polarizer, and a backlight in this order.
  • a change in color and a contrast depending on the azimuth angle in a state where black was displayed on the screen were evaluated by the above-described method. Table 2 shows the results.
  • Example 1 A liquid crystal display device C1 for evaluation was obtained in the same manner as in Example 1 except for the following changes. -The compensation film C1 was used instead of the compensation film 1. With respect to the obtained liquid crystal display device C1, the color change and the contrast depending on the azimuth angle in the state where black was displayed on the screen were evaluated. Table 1 shows the results.
  • color means a change in color depending on the azimuth angle when black is displayed on the screen.
  • the liquid crystal display devices of Examples 1 to 5 have sufficiently high front-side contrast of 1000 or more and an average contrast at a polar angle of 60 ° of 30 or more.
  • the colors at the azimuth angles of 45 ° and 135 ° are similar colors, and the change of the color due to the azimuth angle is suppressed. I understand.
  • the average contrast at a polar angle of 60 ° was less than 30. It can be seen that the contrast in the tilt direction is insufficient.
  • the liquid crystal display device of Example 6 had a front direction contrast of 1000 or more and an average contrast at a polar angle of 60 ° of 30 or more, and was sufficiently large.
  • the colors at the azimuth angles of 45 ° and 135 ° are similar colors, and the change of the color due to the azimuth angle is suppressed. I understand.
  • This result is obtained by arranging a predetermined refractive index anisotropic layer having a single-layer structure at a predetermined position of a liquid crystal display device in a so-called O-mode, so that the contrast in the tilt direction as well as in the front direction is sufficient. This shows that a certain liquid crystal display device can be realized.
  • the liquid crystal display device has a small display unevenness, including a compensation film having a photoelastic coefficient of 2 ⁇ 10 ⁇ 13 cm 2 / dyn and using a very small resin (ZEONOR1420). The uniformity was excellent.
  • Reference Signs List 100 liquid crystal display device 110 first polarizer 120 refractive index anisotropic layer 130 color filter 140 liquid crystal cell 150 second polarizer 160 backlight 200 liquid crystal display device 210 first polarizer 220 refractive index anisotropic layer 230 color filter 240 liquid crystal cell 250 second polarizer 260 backlight

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

A liquid crystal display device which sequentially comprises a first polarizer, a refractive index anisotropic layer, a liquid crystal cell and a second polarizer in this order, and which is configured such that: the liquid crystal cell has a homogeneous alignment; the absorption axis of the first polarizer and the absorption axis of the second polarizer are at right angles to each other; the absorption axis of the second polarizer and the in-plane slow axis A1 of the liquid crystal cell, to which a voltage is not applied, are at right angles to each other; the refractive index anisotropic layer has a single layer structure, while having negative biaxiality; and the in-plane slow axis A2 of the refractive index anisotropic layer and the in-plane slow axis A1 are parallel to each other.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関する。 << The present invention relates to a liquid crystal display device.
 液晶表示装置は、液晶セルにおける液晶分子の配向方向及び印加する電圧の方向により縦電界モードの液晶表示装置と横電界モードの液晶表示装置とに分類される。横電界モードの代表的な液晶表示装置としては、イン-プレーン-スイッチングモード(IPSモード)の液晶表示装置が挙げられる。IPSモードの液晶表示装置では、液晶セルの配向膜の面内方向と平行な方向に液晶分子が配向(ホモジニアス配向)しており、配向膜の面内方向に電界を発生させることにより液晶分子を回転させ、液晶セルを透過する光の透過率を制御している。
 IPSモードの液晶表示装置は、横電界モードであるツイステッドネマチックモード(TNモード)の液晶表示装置と比較して、コントラスト、色味などに優れているといわれているが、更に画質の向上を目指して、IPSモードの液晶表示装置に屈折率異方性を有する位相差層を組み合わせる試みがなされている(特許文献1、2、及び3)。
Liquid crystal display devices are classified into a vertical electric field mode liquid crystal display device and a horizontal electric field mode liquid crystal display device according to the orientation direction of liquid crystal molecules in a liquid crystal cell and the direction of applied voltage. As a typical liquid crystal display device in the horizontal electric field mode, an in-plane switching mode (IPS mode) liquid crystal display device is exemplified. In the IPS mode liquid crystal display device, the liquid crystal molecules are aligned (homogeneous alignment) in a direction parallel to the in-plane direction of the alignment film of the liquid crystal cell, and the liquid crystal molecules are generated by generating an electric field in the in-plane direction of the alignment film. By rotating, the transmittance of light passing through the liquid crystal cell is controlled.
The IPS mode liquid crystal display device is said to be superior in contrast, color, etc. as compared with the liquid crystal display device in the twisted nematic mode (TN mode), which is a transverse electric field mode, but aims at further improving the image quality. Attempts have been made to combine a retardation layer having a refractive index anisotropy with an IPS mode liquid crystal display device (Patent Documents 1, 2, and 3).
特開2009-092847号公報(対応公報:米国特許出願公開第2009/103017号明細書)Japanese Patent Application Laid-Open No. 2009-092847 (corresponding publication: US Patent Application Publication No. 2009/103017) 特表2008-517322号公報(対応公報:国際公開第2007/013782号)Japanese Translation of PCT International Publication No. 2008-517322 (corresponding publication: International Publication No. 2007/013782) 国際公開第2008/156011号International Publication No. WO 2008/156011
 特許文献1の技術では、所定の位相差層を組み合わせると同時に2枚の偏光板の透過率に差を付けることにより、高いコントラストを実現している。
 特許文献2の技術では、偏光子と液晶セルとの間に、二軸性フィルムに一軸性Cフィルムをコーティングした、複層構造である位相差層を配置することにより、高いコントラストを実現している。
 しかし、特許文献1~3の技術のいずれも、2種の偏光板が必要である、又は、複数層の位相差層を積層する必要がある。その結果、液晶表示装置の構成が複雑となって製造コストが上昇する。また、積層する層が増えるほど、層の間に塵等を挟み込むおそれが大きくなり、液晶表示装置の品質低下を招く。特に、近年需要が高まっている大面積の液晶表示装置において、構成の簡易化が望まれている。
In the technique of Patent Literature 1, a high contrast is realized by combining predetermined retardation layers and at the same time giving a difference in transmittance between two polarizing plates.
In the technique of Patent Document 2, high contrast is realized by disposing a retardation layer having a multilayer structure in which a biaxial film is coated with a uniaxial C film between a polarizer and a liquid crystal cell. I have.
However, any of the techniques of Patent Documents 1 to 3 requires two types of polarizing plates or needs to laminate a plurality of retardation layers. As a result, the configuration of the liquid crystal display device becomes complicated and the manufacturing cost increases. In addition, as the number of layers to be stacked increases, there is a greater possibility that dust or the like will be interposed between the layers, and the quality of the liquid crystal display device will be reduced. In particular, simplification of the configuration is desired for a large-area liquid crystal display device, which has been growing in demand in recent years.
 したがって、構成が簡易でありながら、十分なコントラストを有する液晶表示装置が望まれている。 Therefore, there is a demand for a liquid crystal display device having a simple configuration and sufficient contrast.
 本発明者は、前記課題を解決するべく、鋭意検討した。その結果、第1偏光子層及び液晶セルの間に、所定の屈折率異方性を有する、単層構造の層を設けることにより、前記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下を提供する。
The inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, the inventors have found that the problem can be solved by providing a layer having a predetermined refractive index anisotropy and having a single-layer structure between the first polarizer layer and the liquid crystal cell, thereby completing the present invention.
That is, the present invention provides the following.
 [1] 第1偏光子、屈折率異方層、液晶セル、及び第2偏光子をこの順で含み、
 前記液晶セルは、ホモジニアス配向であり、
 前記第1偏光子の吸収軸と前記第2偏光子の吸収軸とが直交しており、
 前記第2偏光子の吸収軸と電圧が印加されていない前記液晶セルの面内における遅相軸Aとが、直交しており、
 前記屈折率異方層は、単層構造であって負の二軸性を有し、
 前記屈折率異方層の面内における遅相軸Aと前記遅相軸Aとが、平行である、液晶表示装置。
 [2] 前記第1偏光子層及び前記第2偏光子層の間に含まれる屈折率異方性を有する層が、前記液晶セル及び前記屈折率異方層のみである、[1]に記載の液晶表示装置。
 [3] 前記屈折率異方層の面内における最大の屈折率nx、前記屈折率異方層の面内方向であって屈折率nxを与える方向に垂直な方向の屈折率ny、及び前記屈折率異方層の厚み方向の屈折率nzが、下記式(i)を満たす、[1]又は[2]に記載の液晶表示装置。
 1.1≦(nx-nz)/(nx-ny)≦1.9  (i)
 [4] 前記屈折率異方層は、面内方向におけるレターデーションReが10nm以上250nm以下である、[1]~[3]のいずれか1項に記載の液晶表示装置。
 [5] 前記屈折率異方層が、脂環式構造含有重合体を含む樹脂から形成されている、[1]~[4]のいずれか1項に記載の液晶表示装置。
 [6] 前記脂環式構造含有重合体が、ノルボルネン構造を有する単量体の開環重合体の水素化物、ノルボルネン構造を有する単量体とα-オレフィンとの付加共重合体、及びノルボルネン構造を有する単量体とα-オレフィンとの付加共重合体の水素化物からなる群より選択される1種以上である、[5]に記載の液晶表示装置。
 [7] 極角60°における平均コントラストが30以上である、[1]~[6]のいずれか1項に記載の液晶表示装置。
 [8] バックライトを更に含み、前記バックライト、前記第1偏光子、前記屈折率異方層、前記液晶セル、及び前記第2偏光子が、この順で配置されている、[1]~[7]のいずれか1項に記載の液晶表示装置。
 [9] バックライトを更に含み、前記第1偏光子、前記屈折率異方層、前記液晶セル、前記第2偏光子、及び前記バックライトが、この順で配置されている、[1]~[7]のいずれか1項に記載の液晶表示装置。
[1] including a first polarizer, a refractive index anisotropic layer, a liquid crystal cell, and a second polarizer in this order;
The liquid crystal cell has a homogeneous alignment,
The absorption axis of the first polarizer is orthogonal to the absorption axis of the second polarizer,
The slow axis A 1 in the second polarizer absorption axis in the plane of the liquid crystal cell voltage is not applied of, are orthogonal,
The refractive index anisotropic layer has a single-layer structure and negative biaxiality,
Wherein the slow axis A 2 in the plane of the refractive index anisotropic layer and the slow axis A 1 is parallel, the liquid crystal display device.
[2] The layer according to [1], wherein the layer having the refractive index anisotropy contained between the first polarizer layer and the second polarizer layer is only the liquid crystal cell and the refractive index anisotropic layer. Liquid crystal display device.
[3] The maximum refractive index nx in the plane of the refractive index anisotropic layer, the refractive index ny in the in-plane direction of the refractive index anisotropic layer and a direction perpendicular to the direction giving the refractive index nx, and the refraction The liquid crystal display device according to [1] or [2], wherein the refractive index nz in the thickness direction of the anisotropic layer satisfies the following expression (i).
1.1 ≦ (nx−nz) / (nx−ny) ≦ 1.9 (i)
[4] The liquid crystal display device according to any one of [1] to [3], wherein the refractive index anisotropic layer has an in-plane retardation Re of 10 nm or more and 250 nm or less.
[5] The liquid crystal display device according to any one of [1] to [4], wherein the refractive index anisotropic layer is formed of a resin containing an alicyclic structure-containing polymer.
[6] The alicyclic structure-containing polymer is a hydride of a ring-opening polymer of a monomer having a norbornene structure, an addition copolymer of a monomer having a norbornene structure and an α-olefin, and a norbornene structure Liquid crystal display device according to [5], which is at least one member selected from the group consisting of a hydride of an addition copolymer of a monomer having α and an α-olefin.
[7] The liquid crystal display device according to any one of [1] to [6], wherein the average contrast at a polar angle of 60 ° is 30 or more.
[8] A backlight further comprising: the backlight, the first polarizer, the refractive index anisotropic layer, the liquid crystal cell, and the second polarizer are arranged in this order. The liquid crystal display device according to any one of [7].
[9] A backlight is further provided, wherein the first polarizer, the refractive index anisotropic layer, the liquid crystal cell, the second polarizer, and the backlight are arranged in this order. The liquid crystal display device according to any one of [7].
 本発明によれば、構成が簡易でありながら、十分なコントラストを有する液晶表示装置を提供できる。 According to the present invention, it is possible to provide a liquid crystal display device having a simple configuration and sufficient contrast.
図1は、第1実施形態に係る液晶表示装置を模式的に示す分解図である。FIG. 1 is an exploded view schematically showing the liquid crystal display device according to the first embodiment. 図2は、第2実施形態に係る液晶表示装置を模式的に示す分解図である。FIG. 2 is an exploded view schematically showing the liquid crystal display device according to the second embodiment.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the following embodiments and examples, and can be arbitrarily modified and implemented without departing from the scope of the claims of the present invention and equivalents thereof.
 以下の説明において、フィルム又は層の遅相軸とは、別に断らない限り、当該フィルム又は層の面内における遅相軸を表す。 In the following description, the slow axis of the film or layer means the in-plane slow axis of the film or layer unless otherwise specified.
 以下の説明において、複数の層を備える部材における各層の光学軸(遅相軸、透過軸、吸収軸等)がなす角度は、別に断らない限り、前記の層を厚み方向から見たときの角度を表す。 In the following description, an angle formed by an optical axis (slow axis, transmission axis, absorption axis, etc.) of each layer in a member including a plurality of layers is an angle when the layer is viewed from the thickness direction, unless otherwise specified. Represents
 以下の説明において、あるフィルムの正面方向とは、別に断らない限り、当該フィルムの主面の法線方向を意味し、具体的には前記主面の極角0°且つ方位角0°の方向を指す。 In the following description, the front direction of a certain film means the normal direction of the main surface of the film unless otherwise specified, and specifically, the direction of the polar angle 0 ° and the azimuth angle 0 ° of the main surface. Point to.
 以下の説明において、あるフィルムの傾斜方向とは、別に断らない限り、当該フィルムの主面に平行でも垂直でもない方向を意味し、具体的には前記主面の極角が0°より大きく90°より小さい範囲の方向を指す。 In the following description, the tilt direction of a certain film means a direction that is neither parallel nor perpendicular to the main surface of the film unless otherwise specified. Specifically, the polar angle of the main surface is greater than 0 ° and 90 °. Point in a direction smaller than °.
 以下の説明において、層の面内方向におけるレターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、層の厚み方向のレターデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは層の厚み方向の屈折率を表す。dは、層の厚みを表す。測定波長は、別に断らない限り、590nmである。 に お い て In the following description, the retardation Re in the in-plane direction of the layer is a value represented by Re = (nx−ny) × d unless otherwise specified. The retardation Rth in the thickness direction of the layer is a value represented by Rth = [{(nx + ny) / 2} −nz] × d unless otherwise specified. nx represents the refractive index in the direction (in-plane direction) perpendicular to the thickness direction of the layer and in the direction giving the maximum refractive index. ny represents the refractive index in the in-plane direction of the layer and in a direction perpendicular to the direction of nx. nz represents the refractive index in the thickness direction of the layer. d represents the thickness of the layer. The measurement wavelength is 590 nm unless otherwise specified.
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±3°、±2°又は±1°の範囲内での誤差を含んでいてもよい。 In the following description, the directions of the elements are "parallel", "vertical" and "orthogonal", unless otherwise specified, within a range that does not impair the effects of the present invention, for example, ± 3 °, ± 2 ° or ± 1 °. May be included.
[1.液晶表示装置の概要]
 本発明の一実施形態に係る液晶表示装置は、第1偏光子、屈折率異方層、液晶セル、及び第2偏光子をこの順で含む。
[1. Overview of Liquid Crystal Display]
A liquid crystal display device according to an embodiment of the present invention includes a first polarizer, a refractive index anisotropic layer, a liquid crystal cell, and a second polarizer in this order.
[1.1.液晶セル]
 液晶セルは、通常、基板、基板上に形成された2枚の配向膜、2枚の配向膜間に配置された液晶化合物、及び電極を備える。液晶セルは、電圧を制御する制御素子を備えていてもよい。
 液晶セルは、IPSモードで駆動する液晶セルであることが好ましい。
 液晶セルは、電圧無印加のときに、ホモジニアス配向である。液晶セルがホモジニアス配向であるとは、配向膜間に存在する液晶分子の配向ベクトルが、配向膜の面内における所定の方向に一様に平行となっている配向状態であることを意味する。ここで、液晶分子の配向ベクトルが、配向膜面と0°を超え3°以下の角度をなしている液晶セルも、ホモジニアス配向であるとする。配向ベクトルと配向膜面とのなす角は、プレティルト角と称される。
[1.1. Liquid crystal cell]
A liquid crystal cell generally includes a substrate, two alignment films formed on the substrate, a liquid crystal compound disposed between the two alignment films, and an electrode. The liquid crystal cell may include a control element for controlling a voltage.
The liquid crystal cell is preferably a liquid crystal cell driven in the IPS mode.
The liquid crystal cell has a homogeneous alignment when no voltage is applied. The fact that the liquid crystal cell is in a homogeneous alignment means that the alignment vector of the liquid crystal molecules existing between the alignment films is in an alignment state in which the alignment vectors are uniformly parallel to a predetermined direction in the plane of the alignment film. Here, it is assumed that the liquid crystal cell in which the alignment vector of the liquid crystal molecules forms an angle of more than 0 ° and 3 ° or less with the alignment film surface is also in a homogeneous alignment. The angle between the alignment vector and the alignment film surface is called a pretilt angle.
 液晶セルにおける液晶分子のプレティルト角(以下、「液晶セルのプレティルト角」ともいう。)は、小さいほど好ましく、理想値は0°である。広く用いられるラビング処理ではプレティルト角を0°にすることは通常困難であるが、3°以下であることが好ましい。プレティルト角が0°を超える液晶セルを含む液晶表示装置は、画面に黒を表示した状態の時に傾斜方向から観察した場合に、観察する方位角による色味変化が大きい傾向があるが、本実施形態の液晶表示装置は、プレティルト角が0°を超えている場合でも、かかる色味の変化を抑制できる。 (4) The smaller the pretilt angle of the liquid crystal molecules in the liquid crystal cell (hereinafter, also referred to as the “pretilt angle of the liquid crystal cell”), the smaller is preferable, and the ideal value is 0 °. It is usually difficult to set the pretilt angle to 0 ° in a widely used rubbing treatment, but it is preferable that the pretilt angle be 3 ° or less. In a liquid crystal display device including a liquid crystal cell having a pretilt angle exceeding 0 °, when observed from an inclined direction when black is displayed on the screen, the color change depending on the azimuth angle observed tends to be large. The liquid crystal display device according to the aspect can suppress such a change in tint even when the pretilt angle exceeds 0 °.
 液晶セルにおける液晶分子のプレティルト角は、従前公知の方法(例えば、クリスタルローテーション法)によって測定しうる。 プ レ The pretilt angle of liquid crystal molecules in a liquid crystal cell can be measured by a conventionally known method (for example, a crystal rotation method).
 液晶セルは、電圧無印加時に面内において遅相軸Aを有する。ここで、遅相軸とは、液晶セルの配向膜と平行な面内において、最大の屈折率nを与える方向を意味する。遅相軸Aは、通常光軸方向に一致しており、また通常配向膜の配向方向に一致する。配向膜の配向方向とは、配向膜に配向規制力を付与する処理(例、ラビング処理)を行って配向膜上に液晶分子を配向させた場合に、液晶分子が配向する方向である。配向膜に行われた処理がラビング処理である場合は、配向膜の配向方向は、通常ラビング方向である。 The liquid crystal cell has a slow axis A 1 in plane when no voltage is applied. Here, the slow axis, in the orientation film in a plane parallel to the liquid crystal cell means the direction which gives a maximum refractive index n e. The slow axis A 1 is normally coincides with the optical axis direction, also coincides with the orientation direction of the normal alignment layer. The alignment direction of the alignment film is a direction in which the liquid crystal molecules are aligned when a process (eg, a rubbing process) for applying an alignment regulating force to the alignment film is performed to align the liquid crystal molecules on the alignment film. When the treatment performed on the alignment film is a rubbing treatment, the alignment direction of the alignment film is usually the rubbing direction.
 液晶セルにおける遅相軸Aの方向は、電圧無印加状態で液晶セルの屈折率を液晶セルの配向膜と平行な面内において測定することにより決定しうる。また、配向膜のラビング方向が既知の場合は、ラビング方向を遅相軸Aの方向としてよい。 Direction of the slow axis A 1 in the liquid crystal cell, can be determined by measuring the refractive index of the liquid crystal cell in the orientation film in a plane parallel to the liquid crystal cell in the absence of an applied voltage. Further, the rubbing direction of the alignment film in the case of known, good rubbing direction as the direction of the slow axis A 1.
 液晶セルとしては、市販品を利用できる。 市 販 A commercially available liquid crystal cell can be used.
[1.2.偏光子]
 第1偏光子及び第2偏光子としては、振動方向が直角に交わる二つの直線偏光のうち、一方を透過させ、他方を吸収又は反射できるフィルムを用いることができる。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を表す。このようなフィルムは、通常、偏光透過軸(以下、偏光透過軸を透過軸ともいう。)を有し、当該透過軸と平行な振動方向を有する直線偏光を透過でき、透過軸と垂直な振動方向を有する直線偏光を吸収又は反射できる。
[1.2. Polarizer]
As the first polarizer and the second polarizer, a film capable of transmitting one of two linearly polarized lights whose vibration directions intersect at right angles and absorbing or reflecting the other can be used. Here, the oscillation direction of the linearly polarized light indicates the oscillation direction of the electric field of the linearly polarized light. Such a film usually has a polarization transmission axis (hereinafter, the polarization transmission axis is also referred to as a transmission axis), can transmit linearly polarized light having a vibration direction parallel to the transmission axis, and vibrates perpendicularly to the transmission axis. It can absorb or reflect linearly polarized light having a direction.
 偏光子の具体例を挙げると、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール等のビニルアルコール系重合体を含む、ポリビニルアルコール樹脂のフィルムに、ヨウ素、二色性染料等の二色性物質による染色処理、延伸処理、架橋処理等の適切な処理を適切な順序及び方式で施したものが挙げられる。偏光子は、ポリビニルアルコール樹脂を含むことが好ましい。 Specific examples of the polarizer include polyvinyl alcohol, including a vinyl alcohol-based polymer such as partially formalized polyvinyl alcohol, a polyvinyl alcohol resin film, iodine, dyeing treatment with a dichroic substance such as a dichroic dye, One obtained by performing an appropriate treatment such as a stretching treatment and a cross-linking treatment in an appropriate order and manner may be used. The polarizer preferably contains a polyvinyl alcohol resin.
 第1偏光子及び第2偏光子は、異なる特性を有するものであってもよいが、同一の特性を有する部材であることが好ましい。第1偏光子及び第2偏光子として、同一の特性を有する部材を用いることで、液晶表示装置の製造コストを抑えることができる。 1The first polarizer and the second polarizer may have different characteristics, but are preferably members having the same characteristics. By using members having the same characteristics as the first polarizer and the second polarizer, the manufacturing cost of the liquid crystal display device can be reduced.
 例えば、第1偏光子と第2偏光子との透過率の差は、好ましくは0.5%未満、より好ましくは0.2%以下、更に好ましくは0.1%未満であり、通常0%以上としうる。 For example, the difference in transmittance between the first polarizer and the second polarizer is preferably less than 0.5%, more preferably 0.2% or less, further preferably less than 0.1%, and usually 0%. Or more.
[1.3.屈折率異方層]
 屈折率異方層は、屈折率が異方性を有する単層構造の層であり、負の二軸性を有する。屈折率異方層をかかる構成とすることにより、十分なコントラストを有する液晶表示装置を簡易な構成で実現しうる。
[1.3. Refractive index anisotropic layer]
The refractive index anisotropic layer is a layer having a single-layer structure with anisotropic refractive index, and has negative biaxiality. With such a configuration of the refractive index anisotropic layer, a liquid crystal display device having a sufficient contrast can be realized with a simple configuration.
 負の二軸性を有する層とは、nx、ny、及びnzが、nx>ny>nzの関係を満たす層を意味し、層がいわゆるネガティブBプレートであることを意味する。 層 A layer having negative biaxiality means a layer in which nx, ny, and nz satisfy the relationship of nx> ny> nz, and means that the layer is a so-called negative B plate.
 屈折率異方層は、面内方向におけるレターデーションReが、好ましくは10nm以上、より好ましくは30nm以上、更に好ましくは50nm以上であり、好ましくは250nm以下、より好ましくは240nm以下、更に好ましくは230nm以下である。面内レターデーションReが前記下限値以上であることにより、効果的に傾斜方向におけるコントラスト(視野角コントラスト)を向上させることができ、前記上限値以下であることにより、傾斜方向から黒を表示した状態の画面を観察した場合に、方位角による色味の変化を効果的に抑制しうる。 The refractive index anisotropic layer has a retardation Re in the in-plane direction of preferably 10 nm or more, more preferably 30 nm or more, still more preferably 50 nm or more, preferably 250 nm or less, more preferably 240 nm or less, and still more preferably 230 nm. It is as follows. When the in-plane retardation Re is greater than or equal to the lower limit, the contrast in the inclined direction (viewing angle contrast) can be effectively improved. When the in-plane retardation is less than or equal to the upper limit, black is displayed from the inclined direction. When observing the screen in the state, the change in the tint due to the azimuth can be effectively suppressed.
 屈折率異方層は、(nx-nz)/(nx-ny)の値が、下記式(i)を満たすことが好ましい。以下の説明において、(nx-nz)/(nx-ny)の値を、NZ係数ともいう。
 1.1≦(nx-nz)/(nx-ny)≦1.9  (i)
In the refractive index anisotropic layer, the value of (nx−nz) / (nx−ny) preferably satisfies the following expression (i). In the following description, the value of (nx-nz) / (nx-ny) is also called an NZ coefficient.
1.1 ≦ (nx−nz) / (nx−ny) ≦ 1.9 (i)
 NZ係数は、より好ましくは1.2以上、更に好ましくは1.25以上であり、より好ましくは1.8以下、更に好ましくは1.75以下である。 The NZ coefficient is more preferably 1.2 or more, still more preferably 1.25 or more, more preferably 1.8 or less, and still more preferably 1.75 or less.
 NZ係数が、前記範囲内に収まることで、コントラスト、特に傾斜方向から観察した場合のコントラストを効果的に向上させうる。その理由は、NZ係数が前記範囲内である場合には、画面に黒を表示した状態の時に液晶表示装置のバックライト側偏光子から傾斜方向への光の偏光状態が変化し効率よく光が吸収されるためと考えられるが本発明を限定するものではない。 When the NZ coefficient falls within the above range, the contrast, particularly the contrast when observed from an inclined direction, can be effectively improved. The reason is that when the NZ coefficient is within the above range, the polarization state of light in the tilt direction from the backlight side polarizer of the liquid crystal display device changes when black is displayed on the screen, and light is efficiently emitted. It is considered to be absorbed, but does not limit the present invention.
 屈折率異方層は、熱可塑性樹脂から形成されている層であることが好ましい。 The refractive index anisotropic layer is preferably a layer formed of a thermoplastic resin.
 屈折率異方層を形成しうる熱可塑性樹脂としては、正の固有複屈折値を有する熱可塑性樹脂を用いうる。正の固有複屈折値を有する熱可塑性樹脂から任意の方法により形成された層を面内方向に延伸することにより、負の二軸性を有する層としうる。延伸方法としては、例えば、一軸延伸法、逐次二軸延伸法、同時二軸延伸法などの任意の方法を用いうる。 As a thermoplastic resin capable of forming the refractive index anisotropic layer, a thermoplastic resin having a positive intrinsic birefringence value can be used. By stretching a layer formed from a thermoplastic resin having a positive intrinsic birefringence value by an arbitrary method in an in-plane direction, a layer having negative biaxiality can be obtained. As the stretching method, for example, any method such as a uniaxial stretching method, a sequential biaxial stretching method, and a simultaneous biaxial stretching method can be used.
 正の固有複屈折値を有する樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる樹脂を意味する。固有複屈折値は、誘電率分布から計算しうる。 樹脂 A resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is higher than the refractive index in the direction perpendicular to the stretching direction. The intrinsic birefringence value can be calculated from the permittivity distribution.
 正の固有複屈折値を有する樹脂に含まれうる重合体の例としては、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリフェニレンサルファイド等のポリアリーレンサルファイド;ポリビニルアルコール;ポリカーボネート;ポリアリレート;セルロースエステル、ポリエーテルスルホン;ポリスルホン;ポリアリールスルホン;ポリ塩化ビニル;ノルボルネン重合体等の脂環式構造含有重合体;棒状液晶ポリマーが挙げられる。 Examples of polymers that can be included in the resin having a positive intrinsic birefringence value include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; Polyarylate; cellulose ester, polyether sulfone; polysulfone; polyaryl sulfone; polyvinyl chloride; alicyclic structure-containing polymer such as norbornene polymer; and rod-shaped liquid crystal polymer.
 屈折率異方性を形成しうる樹脂は、前記重合体を1種単独で含んでいても、2種類以上の任意の比率の組み合わせで含んでいてもよい。 樹脂 The resin capable of forming the refractive index anisotropy may contain the polymer alone or in a combination of two or more kinds in any ratio.
 屈折率異方層を形成しうる樹脂は、光弾性係数が、好ましくは30×10-13cm/dyn以下、より好ましくは10×10-13cm/dyn以下、更に好ましくは5×10-13cm/dyn以下であり、小さい程好ましい。
 樹脂の光弾性係数は、エリプソメーターによって測定できる。樹脂からフィルムを形成し、このフィルムに50g、100g、150gの荷重をかけたときの位相差を測定し、荷重と位相差とのグラフの傾きから求められる。
 屈折率異方層を形成しうる樹脂の光弾性係数が、前記上限値以下であることにより、かかる樹脂から形成される屈折率異方層に使用環境変化、曲げや収縮応力などの外力が加わった場合に生じうる、液晶表示装置の表示ムラなどの表示不具合を抑制することができる。
The resin capable of forming the refractive index anisotropic layer has a photoelastic coefficient of preferably 30 × 10 −13 cm 2 / dyn or less, more preferably 10 × 10 −13 cm 2 / dyn or less, and still more preferably 5 × 10 5 -13 cm 2 / dyn or less, and a smaller value is more preferable.
The photoelastic coefficient of the resin can be measured by an ellipsometer. A film is formed from a resin, and a phase difference when a load of 50 g, 100 g, or 150 g is applied to the film is measured, and the phase difference is obtained from a slope of a graph of the load and the phase difference.
Since the photoelastic coefficient of the resin capable of forming the refractive index anisotropic layer is equal to or less than the upper limit, a change in the use environment, an external force such as bending or shrinkage stress is applied to the refractive index anisotropic layer formed from the resin. Display defects such as display unevenness of the liquid crystal display device, which may occur in the case of the above.
 屈折率異方層は、脂環式構造含有重合体を含む樹脂から形成されていることが好ましい。脂環式構造含有重合体とは、その重合体の構造単位が脂環式構造を含有する重合体である。 The refractive index anisotropic layer is preferably formed from a resin containing an alicyclic structure-containing polymer. The alicyclic structure-containing polymer is a polymer whose structural unit contains an alicyclic structure.
 屈折率異方層を形成する樹脂は、脂環式構造含有重合体を1種単独で含んでいてもよく、2種以上の組み合わせで含んでいてもよい。 樹脂 The resin forming the refractive index anisotropic layer may contain one kind of the alicyclic structure-containing polymer alone, or may contain two or more kinds thereof in combination.
 脂環式構造含有重合体は、主鎖に脂環式構造を有していてもよく、側鎖に脂環式構造を有していてもよく、主鎖及び側鎖の双方に脂環式構造を有していてもよい。中でも、機械的強度及び耐熱性の観点から、少なくとも主鎖に脂環式構造を含有する重合体が好ましい。 The alicyclic structure-containing polymer may have an alicyclic structure in the main chain, may have an alicyclic structure in the side chain, and may have an alicyclic structure in both the main chain and the side chain. It may have a structure. Above all, a polymer containing an alicyclic structure in at least the main chain is preferable from the viewpoint of mechanical strength and heat resistance.
 脂環式構造としては、例えば、飽和脂環式炭化水素(シクロアルカン)構造、不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造などが挙げられる。中でも、機械強度及び耐熱性の観点から、シクロアルカン構造及びシクロアルケン構造が好ましく、中でもシクロアルカン構造が特に好ましい。 Examples of the alicyclic structure include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure. Above all, from the viewpoint of mechanical strength and heat resistance, a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
 脂環式構造を構成する炭素原子数は、一つの脂環式構造あたり、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下の範囲である。脂環式構造を構成する炭素原子数をこの範囲にすることにより、脂環式構造含有重合体を含む樹脂の機械強度、耐熱性及び成形性が高度にバランスされる。 The number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably, per one alicyclic structure. Is in the range of 15 or less. By setting the number of carbon atoms constituting the alicyclic structure in this range, the mechanical strength, heat resistance and moldability of the resin containing the alicyclic structure-containing polymer are highly balanced.
 脂環式構造含有重合体において、脂環式構造を有する構造単位の割合は、使用目的に応じて適宜選択しうる。脂環式構造含有重合体における脂環式構造を有する構造単位の割合は、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上であり、通常100重量%以下である。脂環式構造含有重合体における脂環式構造を有する構造単位の割合がこの範囲にあると、脂環式構造含有重合体を含む樹脂の透明性及び耐熱性が良好となる。 に お い て In the alicyclic structure-containing polymer, the ratio of the structural unit having an alicyclic structure can be appropriately selected depending on the purpose of use. The proportion of the structural unit having an alicyclic structure in the alicyclic structure-containing polymer is preferably at least 55% by weight, more preferably at least 70% by weight, particularly preferably at least 90% by weight, and usually at most 100% by weight. It is. When the proportion of the structural unit having an alicyclic structure in the alicyclic structure-containing polymer is within this range, the transparency and heat resistance of the resin containing the alicyclic structure-containing polymer are improved.
 脂環式構造含有重合体としては、例えば、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物、並びにビニル芳香族炭化水素重合体の水素化物が挙げられる。これらの中でも、透明性及び成形性が良好であるので、ノルボルネン系重合体がより好ましい。かかる重合体を含む樹脂は、水蒸気透過率が低く、光弾性係数も小さいため、かかる樹脂から形成される屈折率異方層に使用環境変化、曲げや収縮応力などの外力が加わった場合に生じうる、液晶表示装置の表示ムラなどの表示不具合を抑制することができる。 Examples of the alicyclic structure-containing polymer include, for example, a norbornene-based polymer, a monocyclic cycloolefin-based polymer, a cyclic conjugated diene-based polymer, a vinyl alicyclic hydrocarbon polymer, and hydrogenated products thereof, and vinyl. Examples include hydrides of aromatic hydrocarbon polymers. Among these, a norbornene-based polymer is more preferable because of its excellent transparency and moldability. Since the resin containing such a polymer has a low water vapor transmission rate and a small photoelastic coefficient, it occurs when an external force such as a change in use environment, bending or shrinkage stress is applied to the refractive index anisotropic layer formed from such a resin. Display defects such as display unevenness of the liquid crystal display device can be suppressed.
 ノルボルネン系重合体の例としては、ノルボルネン構造を有する単量体の開環重合体及びその水素化物;ノルボルネン構造を有する単量体の付加重合体及びその水素化物が挙げられる。また、ノルボルネン構造を有する単量体の開環重合体の例としては、ノルボルネン構造を有する1種類の単量体の開環単独重合体、ノルボルネン構造を有する2種類以上の単量体の開環共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合しうる任意の単量体との開環共重合体が挙げられる。さらに、ノルボルネン構造を有する単量体の付加重合体の例としては、ノルボルネン構造を有する1種類の単量体の付加単独重合体、ノルボルネン構造を有する2種類以上の単量体の付加共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合しうる任意の単量体との付加共重合体が挙げられる。 Examples of the norbornene-based polymer include a ring-opened polymer of a monomer having a norbornene structure and a hydride thereof; and an addition polymer of a monomer having a norbornene structure and a hydride thereof. Examples of the ring-opening polymer of a monomer having a norbornene structure include a ring-opening homopolymer of one kind of monomer having a norbornene structure and a ring-opening polymer of two or more kinds of monomers having a norbornene structure. Examples of the copolymer include a copolymer, a monomer having a norbornene structure, and a ring-opening copolymer of any monomer copolymerizable therewith. Further, examples of the addition polymer of a monomer having a norbornene structure include an addition homopolymer of one type of monomer having a norbornene structure and an addition copolymer of two or more types of monomers having a norbornene structure. And an addition copolymer of a monomer having a norbornene structure and an arbitrary monomer copolymerizable therewith.
 これらの中で、ノルボルネン構造を有する単量体の開環重合体の水素化物、ノルボルネン構造を有する単量体とα-オレフィンとの付加共重合体、及びノルボルネン構造を有する単量体とα-オレフィンとの付加共重合体の水素化物が好ましい。 Among these, hydrides of ring-opening polymers of monomers having a norbornene structure, addition copolymers of monomers having a norbornene structure and α-olefin, and monomers having a norbornene structure and α-olefin A hydride of an addition copolymer with an olefin is preferred.
 ノルボルネン構造を有する単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、及びこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。これらの置換基は、同一または相異なって、複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene) and tricyclo [4.3.0.1 2,5 ] deca-3,7. -Diene (common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4. 0.1 2,5 . [ 1,7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (eg, those having a substituent on the ring). Here, examples of the substituent include an alkyl group, an alkylene group, and a polar group. Two or more of these substituents may be the same or different and may be bonded to the ring. As the monomer having a norbornene structure, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 ノルボルネン構造を有する単量体の開環重合体は、例えば、単量体を開環重合触媒の存在下に重合又は共重合することにより製造しうる。 The ring-opened polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing the monomer in the presence of a ring-opening polymerization catalyst.
 ノルボルネン構造を有する単量体とα-オレフィンとの付加共重合体において、α-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン等の炭素原子数2~20のα-オレフィン及びこれらの誘導体が挙げられる。これらのなかでも、エチレンが好ましい。α-オレフィンは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 In the addition copolymer of a monomer having a norbornene structure and an α-olefin, examples of the α-olefin include α-olefins having 2 to 20 carbon atoms, such as ethylene, propylene and 1-butene, and derivatives thereof. Is mentioned. Of these, ethylene is preferred. One type of α-olefin may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 ノルボルネン構造を有する単量体の付加重合体は、例えば、単量体を付加重合触媒の存在下に重合又は共重合することにより製造しうる。 The addition polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing the monomer in the presence of an addition polymerization catalyst.
 上述した開環重合体及び付加重合体の水素化物は、例えば、開環重合体及び付加重合体の溶液において、ニッケル、パラジウム等の遷移金属を含む水素化触媒の存在下で、炭素-炭素不飽和結合を、好ましくは90%以上水素化することによって製造しうる。 The hydride of the ring-opening polymer and the addition polymer described above can be used, for example, in a solution of the ring-opening polymer and the addition polymer in the presence of a hydrogenation catalyst containing a transition metal such as nickel, palladium, etc. Saturated bonds may be produced by hydrogenating preferably 90% or more.
 屈折率異方層を形成しうる樹脂は、重合体以外に、任意の配合剤を含んでいてもよい。配合剤の例としては、酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;可塑剤;などが挙げられる。配合剤は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 樹脂 The resin capable of forming the refractive index anisotropic layer may contain an optional compounding agent in addition to the polymer. Examples of the compounding agents include stabilizers such as antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, ultraviolet absorbers, near infrared absorbers, etc .; plasticizers. One type of compounding agent may be used, or two or more types may be used in combination at an arbitrary ratio.
[1.4.各要素の関係]
 本実施形態の液晶表示装置では、第2偏光子の吸収軸Aa2と、電圧無印加時の液晶セルの面内における遅相軸Aとが直交している。具体的には、第2偏光子の吸収軸Aa2と、遅相軸Aとは、第2偏光子及び液晶セルを厚み方向から見たときの角度が、好ましくは90°±1°、好ましくは90°±0.8°、又は好ましくは90°±0.5°である。
[1.4. Relationship of each element]
In the liquid crystal display device of this embodiment, the absorption axis A a2 of the second polarizer, and the slow axis A 1 in the plane of the liquid crystal cell when no voltage is applied orthogonally. Specifically, the angle between the absorption axis A a2 of the second polarizer and the slow axis A 1 when the second polarizer and the liquid crystal cell are viewed from the thickness direction is preferably 90 ° ± 1 °, Preferably 90 ° ± 0.8 °, or preferably 90 ° ± 0.5 °.
 第1偏光子の吸収軸Aa1と、第2偏光子の吸収軸Aa2とは、直交している。具体的には、第1偏光子の吸収軸Aa1と、第2偏光子の吸収軸Aa2とは、第1偏光子及び第2偏光子を厚み方向から見たときの角度が、好ましくは90°±1°、好ましくは90°±0.8°、又は好ましくは90°±0.5°である。 The absorption axis A a1 of the first polarizer is orthogonal to the absorption axis A a2 of the second polarizer. Specifically, the absorption axis A a1 of the first polarizer and the absorption axis A a2 of the second polarizer, the angle when viewed first polarizer and the second polarizer from a thickness direction, preferably 90 ° ± 1 °, preferably 90 ° ± 0.8 °, or preferably 90 ° ± 0.5 °.
 また、本実施形態の液晶表示装置では、屈折率異方層の面内における遅相軸Aと、電圧無印加時の液晶セルの面内における遅相軸Aとが平行である。具体的には、屈折率異方層の遅相軸Aと、遅相軸Aとは、屈折率異方層及び液晶セルを厚み方向から見たときの角度が、好ましくは0°±1°、好ましくは0°±0.8°、又は好ましくは0°±0.5°である。 In the liquid crystal display device of this embodiment, the slow axis A 2 in the plane of the refractive index anisotropic layer and the slow axis A 1 in the plane of the liquid crystal cell when no voltage is applied is parallel. Specifically, the slow axis A 2 of the refractive index anisotropic layer, the slow axis A 1, the angle when viewing the refractive index anisotropic layer and the liquid crystal cell in the thickness direction, preferably 0 ° ± 1 °, preferably 0 ° ± 0.8 °, or preferably 0 ° ± 0.5 °.
 各要素が、前記関係を有することにより、簡易な構成でありながら十分なコントラストを有する液晶表示装置を実現できる。 に よ り Since each element has the above-described relationship, it is possible to realize a liquid crystal display device having a simple configuration and sufficient contrast.
 第2偏光子がバックライト側の偏光子である場合、第2偏光子の吸収軸Aa2と液晶セルの遅相軸Aとは直交しており、液晶表示装置はいわゆるE-モードの液晶表示装置である。
 第1偏光子がバックライト側の偏光子である場合、第1偏光子の吸収軸Aa1と液晶セルの遅相軸Aとは平行であり、液晶表示装置はいわゆるO-モードの液晶表示装置である。
When the second polarizer is a backlight-side polarizer, the absorption axis A a2 of the second polarizer is orthogonal to the slow axis A 1 of the liquid crystal cell, and the liquid crystal display device is a so-called E-mode liquid crystal. A display device.
When the first polarizer is a backlight-side polarizer, the absorption axis A a1 of the first polarizer is parallel to the slow axis A 1 of the liquid crystal cell, and the liquid crystal display device is a so-called O-mode liquid crystal display. Device.
[1.5.任意の構成要素]
 液晶表示装置は、前記第1偏光子、屈折率異方層、液晶セル、及び第2偏光子に加えて、任意の層を含みうる。かかる任意の層の例としては、偏光子保護フィルム、カラーフィルタ、各層を接着する接着層が挙げられる。
 ただし、第1偏光子層及び第2偏光子層の間に含まれる屈折率異方性を有する層は、液晶セル及び屈折率異方層のみであることが好ましい。すなわち、第1偏光子層及び第2偏光子層の間には、液晶セル及び屈折率異方層以外に屈折率異方性を有する層が存在しないことが好ましい。これにより、簡易な構成でありながら十分なコントラストを有し、画面に黒を表示した状態の時に画面の傾斜方向から観察した場合にも、方位角による色味の変化を効果的に抑制しうる液晶表示装置を容易に実現できる。
[1.5. Arbitrary component]
The liquid crystal display device may include an arbitrary layer in addition to the first polarizer, the refractive index anisotropic layer, the liquid crystal cell, and the second polarizer. Examples of such optional layers include a polarizer protective film, a color filter, and an adhesive layer for bonding each layer.
However, it is preferable that the layer having the refractive index anisotropy included between the first polarizer layer and the second polarizer layer is only the liquid crystal cell and the refractive index anisotropic layer. That is, it is preferable that no layer having a refractive index anisotropy exists between the first polarizer layer and the second polarizer layer other than the liquid crystal cell and the refractive index anisotropic layer. Thus, it is possible to effectively suppress the change in color due to the azimuth angle even when the image is viewed from the tilt direction of the screen when black is displayed on the screen while having a simple configuration and sufficient contrast. A liquid crystal display device can be easily realized.
 屈折率異方性を有する層とは、例えば、面内方向のレターデーションReが5nm以上、及び/又は、厚み方向のレターデーションRthの絶対値が3nm以上である層である。 The layer having the refractive index anisotropy is, for example, a layer having an in-plane retardation Re of 5 nm or more and / or an absolute value of the thickness direction retardation Rth of 3 nm or more.
[1.6.液晶表示装置の特性]
 液晶表示装置の極角60°における平均コントラストは、好ましくは30以上、より好ましくは35以上、更に好ましくは40以上であり、大きいほど好ましい。
[1.6. Characteristics of liquid crystal display device]
The average contrast of the liquid crystal display device at a polar angle of 60 ° is preferably 30 or more, more preferably 35 or more, and still more preferably 40 or more.
 極角60°における平均コントラストは次のようにして測定しうる。液晶セルの面内における遅相軸方向の方位角を0°及び180°と定義する。そして、極角が60°、及び方位角45°、135°、225°、315°において、画面に黒を表示した状態での輝度B1及び画面に白を表示した状態での輝度W1を測定し、輝度W1の輝度B1に対する比率(輝度W1/輝度B2)を算出して、極角60°における平均コントラストとしうる。輝度は、例えば分光放射計により測定しうる。 平均 The average contrast at a polar angle of 60 ° can be measured as follows. The azimuthal angles in the slow axis direction in the plane of the liquid crystal cell are defined as 0 ° and 180 °. Then, when the polar angle is 60 ° and the azimuth angles are 45 °, 135 °, 225 °, and 315 °, the luminance B1 in a state where black is displayed on the screen and the luminance W1 in a state where white is displayed on the screen are measured. , The ratio of the luminance W1 to the luminance B1 (luminance W1 / luminance B2) can be calculated to obtain the average contrast at a polar angle of 60 °. Brightness can be measured, for example, by a spectroradiometer.
[2.液晶表示装置の構成例]
[2.1.第1実施形態]
 図1は、第1実施形態に係る液晶表示装置を模式的に示す分解図である。図1は、電圧無印加の状態の液晶表示装置を示している。また、電極、回路、制御素子などは省略されている。
 本実施形態に係る液晶表示装置100は、第1偏光子110、屈折率異方層120、カラーフィルタ130、液晶セル140、第2偏光子150、及びバックライト160をこの順で含む。
 第1偏光子110及び第2偏光子150は、それぞれ吸収軸Aa1及び吸収軸Aa2を有する。吸収軸Aa1及び吸収軸Aa2とは直交している。屈折率異方層120は、遅相軸Aを有する。液晶セル140は、遅相軸Aを有する。屈折率異方層120の遅相軸Aと液晶セル140の遅相軸Aとは平行である。第2偏光子150の吸収軸Aa2と液晶セル140の遅相軸Aとは直交しており、液晶表示装置100は、いわゆるE-モードの液晶表示装置である。
[2. Configuration example of liquid crystal display device]
[2.1. First Embodiment]
FIG. 1 is an exploded view schematically showing the liquid crystal display device according to the first embodiment. FIG. 1 shows the liquid crystal display device in a state where no voltage is applied. In addition, electrodes, circuits, control elements, and the like are omitted.
The liquid crystal display device 100 according to the embodiment includes a first polarizer 110, a refractive index anisotropic layer 120, a color filter 130, a liquid crystal cell 140, a second polarizer 150, and a backlight 160 in this order.
The first polarizer 110 and the second polarizer 150 have an absorption axis A a1 and an absorption axis A a2 , respectively. The absorption axis A a1 and the absorption axis A a2 are orthogonal to each other. Refractive index anisotropic layer 120 has a slow axis A 2. The liquid crystal cell 140 has a slow axis A 1. The slow axis A 1 of the slow axis A 2 and the liquid crystal cell 140 of the refractive index anisotropic layer 120 are parallel. The slow axis A 1 of the absorption axis A a2 and the liquid crystal cell 140 of the second polarizer 150 are orthogonal, the liquid crystal display device 100 is a liquid crystal display device of the so-called E- mode.
 バックライト160としては、任意の構成を採用することができ、エッジライト方式であっても直下型方式であってもよい。 The backlight 160 may have any configuration, and may be an edge light type or a direct type.
 カラーフィルタ130としては、任意の構成を採用することができ、例えば、赤色カラーフィルタ、緑色カラーフィルタ、又は青色カラーフィルタを採用しうる。 (4) The color filter 130 may have any configuration. For example, a red color filter, a green color filter, or a blue color filter may be used.
[2.2.第2実施形態]
 図2は、第2実施形態に係る液晶表示装置を模式的に示す分解図である。図2は、電圧無印加の状態の液晶表示装置を示している。また、電極、回路、制御素子などは省略されている。
 本実施形態に係る液晶表示装置200は、バックライト260、第1偏光子210、屈折率異方層220、液晶セル240、カラーフィルタ230、及び第2偏光子250をこの順で含む。
 第1偏光子210及び第2偏光子250は、それぞれ吸収軸Aa1及び吸収軸Aa2を有する。吸収軸Aa1及び吸収軸Aa2とは直交している。屈折率異方層220は、遅相軸Aを有する。液晶セル240は、遅相軸Aを有する。屈折率異方層220の遅相軸Aと液晶セル240の遅相軸Aとは平行である。第1偏光子210の吸収軸Aa1と液晶セル240の遅相軸Aとは平行であり、液晶表示装置200は、いわゆるO-モードの液晶表示装置である。
 バックライト260及びカラーフィルタ230としては、それぞれバックライト160及びカラーフィルタ130と同様の構成を採用しうる。
[2.2. Second Embodiment]
FIG. 2 is an exploded view schematically showing the liquid crystal display device according to the second embodiment. FIG. 2 shows the liquid crystal display device in a state where no voltage is applied. In addition, electrodes, circuits, control elements, and the like are omitted.
The liquid crystal display device 200 according to the present embodiment includes a backlight 260, a first polarizer 210, a refractive index anisotropic layer 220, a liquid crystal cell 240, a color filter 230, and a second polarizer 250 in this order.
The first polarizer 210 and second polarizer 250 each have an absorption axis A a1 and the absorption axis A a2. The absorption axis A a1 and the absorption axis A a2 are orthogonal to each other. Refractive index anisotropic layer 220 has a slow axis A 2. The liquid crystal cell 240 has a slow axis A 1. The slow axis A 1 of the slow axis A 2 and the liquid crystal cell 240 of the refractive index anisotropic layer 220 are parallel. The slow axis A 1 of the absorption axis A a1 and the liquid crystal cell 240 of the first polarizer 210 is parallel, the liquid crystal display device 200 is a liquid crystal display device of the so-called O- mode.
As the backlight 260 and the color filter 230, configurations similar to those of the backlight 160 and the color filter 130, respectively, can be adopted.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the embodiments described below, and may be arbitrarily modified and implemented without departing from the scope of the claims of the present invention and equivalents thereof.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。 に お い て In the following description, “%” and “parts” representing amounts are based on weight unless otherwise specified. The operations described below were performed at normal temperature and normal pressure unless otherwise specified.
[評価方法]
(フィルムの厚み)
 フィルムの厚みを、スナップゲージにより測定した。
[Evaluation method]
(Film thickness)
The thickness of the film was measured with a snap gauge.
(フィルムの屈折率、面内方向におけるレターデーションRe、厚み方向のレターデーションRth及びNZ係数)
 フィルムの屈折率(nx,ny,nz)、面内方向におけるレターデーションRe及び厚み方向におけるレターデーションRthを、波長590nmで位相差測定装置(Axometric社製 製品名「Axoscan」)を用いて測定した。
 フィルムのNZ係数を、測定されたRe及びRthの値から下記の式に従い求めた。
 NZ係数=Rth/Re+0.5
(Refractive index of film, retardation Re in in-plane direction, retardation Rth in thickness direction and NZ coefficient)
The refractive index (nx, ny, nz), the retardation Re in the in-plane direction, and the retardation Rth in the thickness direction of the film were measured at a wavelength of 590 nm using a phase difference measuring device (Axometric's product name “Axoscan”). .
The NZ coefficient of the film was determined from the measured values of Re and Rth according to the following formula.
NZ coefficient = Rth / Re + 0.5
(プレティルト角)
 液晶セルにおける液晶分子のプレティルト角は、従前公知の方法(例えば、クリスタルローテーション法)によって測定した。
(Pretilt angle)
The pretilt angle of the liquid crystal molecules in the liquid crystal cell was measured by a conventionally known method (for example, a crystal rotation method).
(画面に黒を表示した状態における方位角による色味変化)
 液晶表示装置に黒を表示した状態とした。液晶表示装置が備える液晶セルの、電圧無印加の状態での遅相軸方向を、方位角0°及び180°と定義した。そして、極角60°方位角45°、及び、極角60°方位角135°の二方向から、目視により画面の色を観察した。
(Color change due to azimuth angle when black is displayed on the screen)
The liquid crystal display was set to display black. The slow axis directions of the liquid crystal cell included in the liquid crystal display device when no voltage was applied were defined as azimuth angles 0 ° and 180 °. The color of the screen was visually observed from two directions: a polar angle of 60 ° azimuth 45 ° and a polar angle of 60 ° azimuth 135 °.
(コントラスト)
 液晶表示装置に黒を表示した状態又は白を表示した状態とした。そして、輝度計(Topcon社製「SR-LED」)を用いて、画面に黒を表示した状態での輝度B1及び画面に白を表示した状態での輝度W1を測定した。輝度W1の輝度B1に対する比率(輝度W1/輝度B1)を求めた。
 液晶表示装置画面の法線方向(正面方向)から測定された輝度から正面方向コントラストを求めた。
 また、液晶表示装置画面の極角60°の方向から測定された輝度から、極角60°における平均コントラストを求めた。具体的には、液晶表示装置が備える液晶セルの、電圧無印加の状態での遅相軸方向を、方位角0°及び180°と定義した。そして、極角60°、及び、方位角45°、135°、225°、315°におけるコントラストを求め、各方位角におけるコントラストの相加平均を、極角60°における平均コントラストの値とした。
(contrast)
The liquid crystal display device was set to a state where black was displayed or a state where white was displayed. Then, using a luminance meter (“SR-LED” manufactured by Topcon), a luminance B1 in a state where black was displayed on the screen and a luminance W1 in a state where white was displayed on the screen were measured. The ratio of the luminance W1 to the luminance B1 (luminance W1 / luminance B1) was determined.
The front direction contrast was determined from the luminance measured from the normal direction (front direction) of the liquid crystal display screen.
The average contrast at a polar angle of 60 ° was determined from the luminance measured from the direction of the polar angle of 60 ° on the liquid crystal display screen. Specifically, the slow axis directions of the liquid crystal cell included in the liquid crystal display device when no voltage was applied were defined as azimuth angles of 0 ° and 180 °. Then, the contrast at the polar angle of 60 ° and the azimuth angles of 45 °, 135 °, 225 °, and 315 ° were obtained, and the arithmetic mean of the contrast at each azimuth angle was defined as the value of the average contrast at the polar angle of 60 °.
 正面方向コントラスト及び極角60°における平均コントラストから、下記基準により液晶表示装置のコントラストを総合評価した。
A:平均コントラスト≧40 且つ 正面コントラスト≧1100
B:平均コントラスト≧40 且つ 1100>正面コントラスト≧1000
C:平均コントラスト<40
From the contrast in the front direction and the average contrast at a polar angle of 60 °, the contrast of the liquid crystal display device was comprehensively evaluated according to the following criteria.
A: Average contrast ≧ 40 and front contrast ≧ 1100
B: average contrast ≧ 40 and 1100> front contrast ≧ 1000
C: average contrast <40
[製造例1]
 脂環式構造含有重合体を含む樹脂(日本ゼオン社製「ZEONOR1420」、光弾性係数は2×10-13cm/dyn)を溶融し、押出し、キャストロールに引き取って成形することにより、厚み60μmの原反フィルムを得た。得られた原反フィルムを、142℃で2.5倍に縦延伸した。縦延伸は、搬送ロールの周速に差を設けることにより行った。次いで、縦延伸されたフィルムを142℃で、テンター延伸機により1.5倍に横延伸し、屈折率異方層としての補償フィルム1を得た。得られた補償フィルム1の、厚みは26μm、屈折率nxは1.5328、屈折率nyは1.5293、屈折率nzは、1.5280、面内方向のレターデーションReは、90nm、厚み方向のレターデーションRthは79nm、NZ係数は1.38であった。
[Production Example 1]
A resin containing an alicyclic structure-containing polymer (“ZEONOR1420” manufactured by Zeon Corporation, photoelastic coefficient: 2 × 10 −13 cm 2 / dyn) is melted, extruded, and taken out by a cast roll to form a thickness. A 60 μm raw film was obtained. The obtained raw film was longitudinally stretched 2.5 times at 142 ° C. The longitudinal stretching was performed by providing a difference in the peripheral speed of the transport roll. Next, the longitudinally stretched film was horizontally stretched 1.5 times by a tenter stretching machine at 142 ° C. to obtain a compensation film 1 as a refractive index anisotropic layer. The obtained compensation film 1 has a thickness of 26 μm, a refractive index nx of 1.5328, a refractive index ny of 1.5293, a refractive index nz of 1.5280, an in-plane retardation Re of 90 nm, and a thickness direction. Had a retardation Rth of 79 nm and an NZ coefficient of 1.38.
[製造例2]
 下記事項を変更した以外は製造例1と同様にして、厚み55μmの原反フィルムを得た。
・キャストロールへの引き取り速度を製造例1における速度の1.1倍に変更した。
 得られた原反フィルムを、141℃で2.2倍に縦延伸した。縦延伸は、搬送ロールの周速に差を設けることにより行った。次いで、縦延伸されたフィルムを141℃で、テンター延伸機により1.5倍に横延伸し、屈折率異方層としての補償フィルム2を得た。得られた補償フィルム2の、厚みは25μm、屈折率nxは1.5330、屈折率nyは1.5293、屈折率nzは、1.5277、面内方向のレターデーションReは、92nm、厚み方向のレターデーションRthは86nm、NZ係数は1.43であった。
[Production Example 2]
Except having changed the following matter, it carried out similarly to manufacture example 1, and obtained the 55-micrometer-thick raw film.
The take-up speed to the cast roll was changed to 1.1 times the speed in Production Example 1.
The obtained raw film was longitudinally stretched 2.2 times at 141 ° C. The longitudinal stretching was performed by providing a difference in the peripheral speed of the transport roll. Next, the longitudinally stretched film was transversely stretched 1.5 times by a tenter stretching machine at 141 ° C. to obtain a compensation film 2 as a refractive index anisotropic layer. The obtained compensation film 2 has a thickness of 25 μm, a refractive index nx of 1.5330, a refractive index ny of 1.5293, a refractive index nz of 1.5277, an in-plane retardation Re of 92 nm, and a thickness direction. Had a retardation Rth of 86 nm and an NZ coefficient of 1.43.
[製造例3]
 製造例2と同様にして厚み55μmの原反フィルムを得た。得られた原反フィルムを、141℃で2.7倍に縦延伸した。縦延伸は、搬送ロールの周速に差を設けることにより行った。次いで、縦延伸されたフィルムを141℃で、テンター延伸機により1.6倍に横延伸し、屈折率異方層としての補償フィルム3を得た。得られた補償フィルム3の、厚みは20μm、屈折率nxは1.5338、屈折率nyは1.5289、屈折率nzは、1.5273、面内方向のレターデーションReは、99nm、厚み方向のレターデーションRthは80nm、NZ係数は1.31であった。
[Production Example 3]
A 55 μm thick raw film was obtained in the same manner as in Production Example 2. The obtained raw film was longitudinally stretched 2.7 times at 141 ° C. The longitudinal stretching was performed by providing a difference in the peripheral speed of the transport roll. Next, the longitudinally stretched film was horizontally stretched 1.6 times by a tenter stretching machine at 141 ° C. to obtain a compensation film 3 as a refractive index anisotropic layer. The obtained compensation film 3 has a thickness of 20 μm, a refractive index nx of 1.5338, a refractive index ny of 1.5289, a refractive index nz of 1.5273, a retardation Re in the in-plane direction of 99 nm, and a thickness direction. Had a retardation Rth of 80 nm and an NZ coefficient of 1.31.
[製造例4]
 下記事項を変更した以外は製造例1と同様にして、厚み105μmの原反フィルムを得た。
・キャストロールへの引き取り速度を製造例1における速度の0.5倍に変更した。
 得られた原反フィルムを、140℃で3.7倍に縦延伸した。縦延伸は、搬送ロールの周速に差を設けることにより行った。次いで、縦延伸されたフィルムを140℃で、テンター延伸機により1.9倍に横延伸し、屈折率異方層としての補償フィルム4を得た。得られた補償フィルム4の、厚みは28μm、屈折率nxは1.5332、屈折率nyは1.5290、屈折率nzは、1.5279、面内方向のレターデーションReは、118nm、厚み方向のレターデーションRthは89nm、NZ係数は1.25であった。
[Production Example 4]
A 105 μm-thick raw film was obtained in the same manner as in Production Example 1 except for the following changes.
-The take-up speed to the cast roll was changed to 0.5 times the speed in Production Example 1.
The obtained raw film was longitudinally stretched 3.7 times at 140 ° C. The longitudinal stretching was performed by providing a difference in the peripheral speed of the transport roll. Next, the longitudinally stretched film was horizontally stretched 1.9 times by a tenter stretching machine at 140 ° C. to obtain a compensation film 4 as a refractive index anisotropic layer. The obtained compensation film 4 has a thickness of 28 μm, a refractive index nx of 1.5332, a refractive index ny of 1.5290, a refractive index nz of 1.5279, a retardation Re in the in-plane direction of 118 nm, and a thickness direction. Had a retardation Rth of 89 nm and an NZ coefficient of 1.25.
[製造例5]
 下記事項を変更した以外は製造例1と同様にして、厚み85μmの原反フィルムを得た。
・キャストロールへの引き取り速度を製造例1における速度の0.6倍に変更した。
 得られた原反フィルムを、143℃で3.4倍に縦延伸した。縦延伸は、搬送ロールの周速に差を設けることにより行った。次いで、縦延伸されたフィルムを143℃で、テンター延伸機により1.8倍に横延伸し、屈折率異方層としての補償フィルム5を得た。得られた補償フィルム5の、厚みは26μm、屈折率nxは1.5338、屈折率nyは1.5288、屈折率nzは、1.5273、面内方向のレターデーションReは、130nm、厚み方向のレターデーションRthは105nm、NZ係数は1.31であった。
[Production Example 5]
An original film having a thickness of 85 μm was obtained in the same manner as in Production Example 1 except for the following changes.
-The take-up speed to the cast roll was changed to 0.6 times the speed in Production Example 1.
The obtained raw film was longitudinally stretched at 143 ° C. by 3.4 times. The longitudinal stretching was performed by providing a difference in the peripheral speed of the transport roll. Next, the longitudinally stretched film was transversely stretched 1.8 times by a tenter stretching machine at 143 ° C. to obtain a compensation film 5 as a refractive index anisotropic layer. The obtained compensation film 5 has a thickness of 26 μm, a refractive index nx of 1.5338, a refractive index ny of 1.5288, a refractive index nz of 1.5273, a retardation Re in the in-plane direction of 130 nm, and a thickness direction. Had a retardation Rth of 105 nm and an NZ coefficient of 1.31.
[製造例6]
 熱可塑性樹脂(日本ゼオン社製「ZEONOR1420」、光弾性係数は2×10-13cm/dyn)を溶融し、押出し成形することにより、厚み50μmの原反フィルムを得た。得られた原反フィルムを140℃で1.5倍に縦延伸して補償フィルムC1を得た。縦延伸は、搬送ロールの周速に差を設けることにより行った。得られた補償フィルムC1の、厚みは41μm、屈折率nxは1.5315、屈折率nyは1.5293、屈折率nzは、1.5293、面内方向のレターデーションReは、90nm、厚み方向のレターデーションRthは、45nm、NZ係数は1.00であった。
[Production Example 6]
A 50 μm thick raw film was obtained by melting and extruding a thermoplastic resin (“ZEONOR1420” manufactured by Zeon Corporation, photoelastic coefficient: 2 × 10 −13 cm 2 / dyn). The obtained raw film was longitudinally stretched 1.5 times at 140 ° C. to obtain a compensation film C1. The longitudinal stretching was performed by providing a difference in the peripheral speed of the transport roll. The obtained compensation film C1 has a thickness of 41 μm, a refractive index nx of 1.5315, a refractive index ny of 1.5293, a refractive index nz of 1.5293, a retardation Re in the in-plane direction of 90 nm, and a thickness direction. Had a retardation Rth of 45 nm and an NZ coefficient of 1.00.
[実施例1]
 市販のIPS方式液晶表示装置(ADONIS社製 TS-430)を準備した。該液晶表示装置は、液晶セルのプレティルト角が2°であり、またバックライト側偏光子の吸収軸と電圧無印加時における液晶セルの遅相軸とが直交している、いわゆるE-モードの装置である。視認側偏光子の吸収軸と、バックライト側偏光子の吸収軸とは、直交している。
 液晶表示装置を分解し、視認側偏光子とカラーフィルタとの間に、補償フィルム1を挿入して組み立て直し、評価用の液晶表示装置1を得た。その際、補償フィルム1の遅相軸(nxを与える方向)が電圧無印加時における液晶セルの遅相軸と平行となるようにした。液晶表示装置1は、視認側から、視認側偏光子、補償フィルム1、カラーフィルタ、液晶セル、バックライト側偏光子、及びバックライトをこの順で備える。得られた液晶表示装置1について、前記方法により、画面に黒を表示した状態における方位角による色味変化及びコントラストを評価した。結果を表1に示す。
[Example 1]
A commercially available IPS liquid crystal display device (TS-430 manufactured by ADONIS) was prepared. The liquid crystal display device has a so-called E-mode in which the pretilt angle of the liquid crystal cell is 2 ° and the absorption axis of the backlight side polarizer is orthogonal to the slow axis of the liquid crystal cell when no voltage is applied. Device. The absorption axis of the viewing side polarizer is orthogonal to the absorption axis of the backlight side polarizer.
The liquid crystal display was disassembled, the compensation film 1 was inserted between the viewing-side polarizer and the color filter, and reassembled to obtain the liquid crystal display 1 for evaluation. At that time, the slow axis of the compensating film 1 (the direction giving nx) was made parallel to the slow axis of the liquid crystal cell when no voltage was applied. The liquid crystal display device 1 includes a viewing side polarizer, a compensation film 1, a color filter, a liquid crystal cell, a backlight side polarizer, and a backlight in this order from the viewing side. With respect to the obtained liquid crystal display device 1, a change in tint and a contrast depending on an azimuth angle in a state where black was displayed on a screen were evaluated by the above method. Table 1 shows the results.
[実施例2]
 補償フィルム1の代わりに補償フィルム2を用いた以外は実施例1と同様にして、評価用の液晶表示装置2を得て、画面に黒を表示した状態における方位角による色味変化及びコントラストを評価した。結果を表1に示す。
[Example 2]
A liquid crystal display device 2 for evaluation was obtained in the same manner as in Example 1 except that the compensating film 2 was used instead of the compensating film 1, and the color change and contrast depending on the azimuth angle in a state where black was displayed on the screen were measured. evaluated. Table 1 shows the results.
[実施例3]
 補償フィルム1の代わりに補償フィルム3を用いた以外は実施例1と同様にして、評価用の液晶表示装置3を得て、画面に黒を表示した状態における方位角による色味変化及びコントラストを評価した。結果を表1に示す。
[Example 3]
A liquid crystal display device 3 for evaluation was obtained in the same manner as in Example 1 except that the compensating film 3 was used instead of the compensating film 1, and the color change and contrast due to the azimuth angle in a state where black was displayed on the screen were measured. evaluated. Table 1 shows the results.
[実施例4]
 補償フィルム1の代わりに補償フィルム4を用いた以外は実施例1と同様にして、評価用の液晶表示装置4を得て、画面に黒を表示した状態における方位角による色味変化及びコントラストを評価した。結果を表1に示す。
[Example 4]
A liquid crystal display device 4 for evaluation was obtained in the same manner as in Example 1 except that the compensating film 4 was used instead of the compensating film 1, and the color change and contrast due to the azimuth angle in a state where black was displayed on the screen were measured. evaluated. Table 1 shows the results.
[実施例5]
 補償フィルム1の代わりに補償フィルム5を用いた以外は実施例1と同様にして、評価用の液晶表示装置5を得て、画面に黒を表示した状態における方位角による色味変化及びコントラストを評価した。結果を表1に示す。
[Example 5]
A liquid crystal display device 5 for evaluation was obtained in the same manner as in Example 1 except that the compensating film 5 was used instead of the compensating film 1, and the color change and contrast due to the azimuth angle in a state where black was displayed on the screen were measured. evaluated. Table 1 shows the results.
[実施例6]
 市販のIPS方式液晶表示装置(LGディスプレイ社製 23M47)を準備した。該液晶表示装置は、液晶セルのプレティルト角が1.0°であり、またバックライト側偏光子の吸収軸と電圧無印加時における液晶セルの遅相軸とが平行である、いわゆるO-モードの装置である。視認側偏光子の吸収軸と、バックライト側偏光子の吸収軸とは、直交している。
 液晶表示装置を分解して、バックライト側偏光子と液晶セルとの間に補償フィルム1を挿入して組み立て直し、評価用の液晶表示装置6を得た。その際、補償フィルム1の遅相軸(nxを与える方向)が電圧無印加時における液晶セルの遅相軸と平行となるようにした。液晶表示装置6は、視認側から、視認側偏光子、カラーフィルタ、液晶セル、補償フィルム1、バックライト側偏光子、及びバックライトをこの順で備える。得られた液晶表示装置6について、前記方法により、画面に黒を表示した状態における方位角による色味変化及びコントラストを評価した。結果を表2に示す。
[Example 6]
A commercially available IPS liquid crystal display device (23M47 manufactured by LG Display) was prepared. This liquid crystal display device has a so-called O-mode in which the pretilt angle of the liquid crystal cell is 1.0 ° and the absorption axis of the backlight side polarizer is parallel to the slow axis of the liquid crystal cell when no voltage is applied. Device. The absorption axis of the viewing side polarizer is orthogonal to the absorption axis of the backlight side polarizer.
The liquid crystal display was disassembled, the compensation film 1 was inserted between the backlight-side polarizer and the liquid crystal cell, and reassembled to obtain a liquid crystal display 6 for evaluation. At that time, the slow axis of the compensating film 1 (the direction giving nx) was made parallel to the slow axis of the liquid crystal cell when no voltage was applied. The liquid crystal display device 6 includes, from the viewing side, a viewing side polarizer, a color filter, a liquid crystal cell, a compensation film 1, a backlight side polarizer, and a backlight in this order. With respect to the obtained liquid crystal display device 6, a change in color and a contrast depending on the azimuth angle in a state where black was displayed on the screen were evaluated by the above-described method. Table 2 shows the results.
[比較例1]
 下記事項を変更した以外は実施例1と同様にして、評価用の液晶表示装置C1を得た。
・補償フィルム1の代わりに補償フィルムC1を用いた。
 得られた液晶表示装置C1について、画面に黒を表示した状態における方位角による色味変化及びコントラストを評価した。結果を表1に示す。
[Comparative Example 1]
A liquid crystal display device C1 for evaluation was obtained in the same manner as in Example 1 except for the following changes.
-The compensation film C1 was used instead of the compensation film 1.
With respect to the obtained liquid crystal display device C1, the color change and the contrast depending on the azimuth angle in the state where black was displayed on the screen were evaluated. Table 1 shows the results.
[比較例2]
 市販のIPS方式液晶表示装置(ADONIS社製 TS-430)について、画面に黒を表示した状態における方位角による色味変化及びコントラストを評価した。結果を表1に示す。
[Comparative Example 2]
With respect to a commercially available IPS type liquid crystal display device (TS-430 manufactured by ADONIS), the color change and the contrast depending on the azimuth angle when black was displayed on the screen were evaluated. Table 1 shows the results.
 下表において、「色味」とは、画面に黒を表示した状態における方位角による色味変化を意味する。 に お い て In the table below, “color” means a change in color depending on the azimuth angle when black is displayed on the screen.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果によれば、実施例1~5の液晶表示装置は、正面方向コントラストが1000以上、極角60°の平均コントラストが30以上であって、十分に大きいことが分かる。また、傾斜方向から黒を表示させた状態の画面を観察した場合に、方位角45°及び方位角135°の色味が同系色であり、方位角による色味の変化が抑制されていることが分かる。
 一方、補償フィルムを含まない比較例2の液晶表示装置、及び、補償フィルムが負の二軸性を有さない比較例1の液晶表示装置は、極角60°の平均コントラストが30に満たず、傾斜方向におけるコントラストが不十分であることが分かる。更に、傾斜方向から黒を表示させた状態の画面を観察した場合に、方位角45°及び方位角135°の色味が異系色であり、方位角による色味の変化が抑制されていないことが分かる。
 これらの結果は、いわゆるE-モードである液晶表示装置の所定の位置に、単層構造である所定の屈折率異方層を配することによって、正面方向のみならず、傾斜方向におけるコントラストが十分である液晶表示装置を実現しうることを示す。
According to the above results, it is understood that the liquid crystal display devices of Examples 1 to 5 have sufficiently high front-side contrast of 1000 or more and an average contrast at a polar angle of 60 ° of 30 or more. In addition, when observing a screen in which black is displayed from the tilt direction, the colors at the azimuth angles of 45 ° and 135 ° are similar colors, and the change of the color due to the azimuth angle is suppressed. I understand.
On the other hand, in the liquid crystal display device of Comparative Example 2 not including the compensation film and the liquid crystal display device of Comparative Example 1 in which the compensation film did not have negative biaxiality, the average contrast at a polar angle of 60 ° was less than 30. It can be seen that the contrast in the tilt direction is insufficient. Further, when observing a screen in which black is displayed from the tilt direction, the colors at the azimuth angles of 45 ° and 135 ° are different colors, and the change of the color by the azimuth angle is not suppressed. You can see that.
These results show that by arranging a predetermined refractive index anisotropic layer having a single-layer structure at a predetermined position of a so-called E-mode liquid crystal display device, the contrast in the tilt direction as well as in the front direction can be sufficiently obtained. It is shown that a liquid crystal display device can be realized.
 また、実施例6の液晶表示装置は、正面方向コントラストが1000以上、極角60°の平均コントラストが30以上であって、十分に大きいことが分かる。また、傾斜方向から黒を表示させた状態の画面を観察した場合に、方位角45°及び方位角135°の色味が同系色であり、方位角による色味の変化が抑制されていることが分かる。この結果は、いわゆるO-モードである液晶表示装置の所定の位置に、単層構造である所定の屈折率異方層を配することによって、正面方向のみならず、傾斜方向におけるコントラストが十分である液晶表示装置を実現しうることを示す。 Further, it can be seen that the liquid crystal display device of Example 6 had a front direction contrast of 1000 or more and an average contrast at a polar angle of 60 ° of 30 or more, and was sufficiently large. In addition, when observing a screen in which black is displayed from the tilt direction, the colors at the azimuth angles of 45 ° and 135 ° are similar colors, and the change of the color due to the azimuth angle is suppressed. I understand. This result is obtained by arranging a predetermined refractive index anisotropic layer having a single-layer structure at a predetermined position of a liquid crystal display device in a so-called O-mode, so that the contrast in the tilt direction as well as in the front direction is sufficient. This shows that a certain liquid crystal display device can be realized.
 また、実施例1-6では、光弾性係数が2×10-13cm/dynであって非常に小さい樹脂(ZEONOR1420)を用いた補償フィルムを含み、液晶表示装置に表示ムラは少なく、表示均一性に優れていた。 Also, in Example 1-6, the liquid crystal display device has a small display unevenness, including a compensation film having a photoelastic coefficient of 2 × 10 −13 cm 2 / dyn and using a very small resin (ZEONOR1420). The uniformity was excellent.
 100 液晶表示装置
 110 第1偏光子
 120 屈折率異方層
 130 カラーフィルタ
 140 液晶セル
 150 第2偏光子
 160 バックライト
 200 液晶表示装置
 210 第1偏光子
 220 屈折率異方層
 230 カラーフィルタ
 240 液晶セル
 250 第2偏光子
 260 バックライト
Reference Signs List 100 liquid crystal display device 110 first polarizer 120 refractive index anisotropic layer 130 color filter 140 liquid crystal cell 150 second polarizer 160 backlight 200 liquid crystal display device 210 first polarizer 220 refractive index anisotropic layer 230 color filter 240 liquid crystal cell 250 second polarizer 260 backlight

Claims (9)

  1.  第1偏光子、屈折率異方層、液晶セル、及び第2偏光子をこの順で含み、
     前記液晶セルは、ホモジニアス配向であり、
     前記第1偏光子の吸収軸と前記第2偏光子の吸収軸とが直交しており、
     前記第2偏光子の吸収軸と電圧が印加されていない前記液晶セルの面内における遅相軸Aとが、直交しており、
     前記屈折率異方層は、単層構造であって負の二軸性を有し、
     前記屈折率異方層の面内における遅相軸Aと前記遅相軸Aとが、平行である、液晶表示装置。
    Including a first polarizer, a refractive index anisotropic layer, a liquid crystal cell, and a second polarizer in this order;
    The liquid crystal cell has a homogeneous alignment,
    The absorption axis of the first polarizer is orthogonal to the absorption axis of the second polarizer,
    The slow axis A 1 in the second polarizer absorption axis in the plane of the liquid crystal cell voltage is not applied of, are orthogonal,
    The refractive index anisotropic layer has a single-layer structure and negative biaxiality,
    Wherein the slow axis A 2 in the plane of the refractive index anisotropic layer and the slow axis A 1 is parallel, the liquid crystal display device.
  2.  前記第1偏光子層及び前記第2偏光子層の間に含まれる屈折率異方性を有する層が、前記液晶セル及び前記屈折率異方層のみである、請求項1に記載の液晶表示装置。 2. The liquid crystal display according to claim 1, wherein a layer having a refractive index anisotropy included between the first polarizer layer and the second polarizer layer is only the liquid crystal cell and the refractive index anisotropic layer. apparatus.
  3.  前記屈折率異方層の面内における最大の屈折率nx、前記屈折率異方層の面内方向であって屈折率nxを与える方向に垂直な方向の屈折率ny、及び前記屈折率異方層の厚み方向の屈折率nzが、下記式(i)を満たす、請求項1又は2に記載の液晶表示装置。
     1.1≦(nx-nz)/(nx-ny)≦1.9  (i)
    The maximum refractive index nx in the plane of the refractive index anisotropic layer, the refractive index ny in the in-plane direction of the refractive index anisotropic layer, and a direction perpendicular to the direction giving the refractive index nx; The liquid crystal display device according to claim 1, wherein the refractive index nz in the thickness direction of the layer satisfies the following expression (i).
    1.1 ≦ (nx−nz) / (nx−ny) ≦ 1.9 (i)
  4.  前記屈折率異方層は、面内方向におけるレターデーションReが10nm以上250nm以下である、請求項1~3のいずれか1項に記載の液晶表示装置。 4. The liquid crystal display device according to claim 1, wherein the refractive index anisotropic layer has an in-plane retardation Re of 10 nm or more and 250 nm or less.
  5.  前記屈折率異方層が、脂環式構造含有重合体を含む樹脂から形成されている、請求項1~4のいずれか1項に記載の液晶表示装置。 (5) The liquid crystal display device according to any one of (1) to (4), wherein the refractive index anisotropic layer is formed from a resin containing an alicyclic structure-containing polymer.
  6.  前記脂環式構造含有重合体が、ノルボルネン構造を有する単量体の開環重合体の水素化物、ノルボルネン構造を有する単量体とα-オレフィンとの付加共重合体、及びノルボルネン構造を有する単量体とα-オレフィンとの付加共重合体の水素化物からなる群より選択される1種以上である、請求項5に記載の液晶表示装置。 The alicyclic structure-containing polymer is a hydride of a ring-opened polymer of a monomer having a norbornene structure, an addition copolymer of a monomer having a norbornene structure and an α-olefin, and a monomer having a norbornene structure. 6. The liquid crystal display device according to claim 5, wherein the liquid crystal display device is at least one member selected from the group consisting of a hydride of an addition copolymer of a monomer and an α-olefin.
  7.  極角60°における平均コントラストが30以上である、請求項1~6のいずれか1項に記載の液晶表示装置。 7. The liquid crystal display device according to claim 1, wherein the average contrast at a polar angle of 60 ° is 30 or more.
  8.  バックライトを更に含み、前記バックライト、前記第1偏光子、前記屈折率異方層、前記液晶セル、及び前記第2偏光子が、この順で配置されている、請求項1~7のいずれか1項に記載の液晶表示装置。 8. The liquid crystal display according to claim 1, further comprising a backlight, wherein the backlight, the first polarizer, the refractive index anisotropic layer, the liquid crystal cell, and the second polarizer are arranged in this order. 2. The liquid crystal display device according to claim 1.
  9.  バックライトを更に含み、前記第1偏光子、前記屈折率異方層、前記液晶セル、前記第2偏光子、及び前記バックライトが、この順で配置されている、請求項1~7のいずれか1項に記載の液晶表示装置。 8. The liquid crystal display according to claim 1, further comprising a backlight, wherein the first polarizer, the refractive index anisotropic layer, the liquid crystal cell, the second polarizer, and the backlight are arranged in this order. 2. The liquid crystal display device according to claim 1.
PCT/JP2019/033078 2018-08-29 2019-08-23 Liquid crystal display device WO2020045287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539419A JPWO2020045287A1 (en) 2018-08-29 2019-08-23 Liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018160802 2018-08-29
JP2018-160802 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020045287A1 true WO2020045287A1 (en) 2020-03-05

Family

ID=69644190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033078 WO2020045287A1 (en) 2018-08-29 2019-08-23 Liquid crystal display device

Country Status (3)

Country Link
JP (1) JPWO2020045287A1 (en)
TW (1) TW202020522A (en)
WO (1) WO2020045287A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276643A (en) * 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd Phase difference film, and liquid crystal display and compound
JP2006350371A (en) * 2004-08-26 2006-12-28 Nitto Denko Corp Retardation film and method of producing same, and optical film, liquid crystal panel and liquid crystal display apparatus using the retardation film
KR20110032702A (en) * 2009-09-24 2011-03-30 동우 화인켐 주식회사 In-plane switching mode liquid crystal display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350371A (en) * 2004-08-26 2006-12-28 Nitto Denko Corp Retardation film and method of producing same, and optical film, liquid crystal panel and liquid crystal display apparatus using the retardation film
JP2006276643A (en) * 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd Phase difference film, and liquid crystal display and compound
KR20110032702A (en) * 2009-09-24 2011-03-30 동우 화인켐 주식회사 In-plane switching mode liquid crystal display

Also Published As

Publication number Publication date
TW202020522A (en) 2020-06-01
JPWO2020045287A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
KR102534639B1 (en) liquid crystal display
KR102643461B1 (en) Optical film, manufacturing method thereof and display device
JP6581796B2 (en) Liquid crystal panel and liquid crystal display device
KR101395319B1 (en) Optical film
TWI400527B (en) Liquid crystal panel and liquid crystal display device
US11604379B2 (en) Liquid crystal display device and polarizing plate
TW200923519A (en) Liquid crystal panel, and liquid crystal display
JP5261346B2 (en) Liquid crystal panel and liquid crystal display device
JP2009075533A (en) Elliptic polarization plate and liquid crystal display device
US20130286330A1 (en) Optical film and liquid crystal display including the same
JP5252615B2 (en) Liquid crystal panel and liquid crystal display device
WO2019009145A1 (en) Liquid crystal display device
US9618795B2 (en) Liquid crystal panel and liquid crystal display
JP2006047882A (en) Optical laminated body, polarizing plate and liquid crystal display device
WO2019239794A1 (en) Liquid crystal panel and liquid crystal display device
JP2012252084A (en) Liquid crystal panel and liquid crystal display device
WO2020045287A1 (en) Liquid crystal display device
WO2017150375A1 (en) Image display device
JP2011039176A (en) Liquid crystal panel and liquid crystal display device
JP2020034702A (en) Liquid crystal display device
KR101818448B1 (en) In-plane switching mode liquid crystal display having the compensation film
WO2019009144A1 (en) Liquid crystal display device
KR20200105215A (en) Polarizing Plate
WO2009028428A1 (en) Elliptic polarization plate and liquid crystal display device
JP2006058542A (en) Birefringent film and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856177

Country of ref document: EP

Kind code of ref document: A1