WO2019009144A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2019009144A1
WO2019009144A1 PCT/JP2018/024262 JP2018024262W WO2019009144A1 WO 2019009144 A1 WO2019009144 A1 WO 2019009144A1 JP 2018024262 W JP2018024262 W JP 2018024262W WO 2019009144 A1 WO2019009144 A1 WO 2019009144A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polarizer
optical compensation
display device
compensation layer
Prior art date
Application number
PCT/JP2018/024262
Other languages
French (fr)
Japanese (ja)
Inventor
健治 藤田
全亮 齊藤
隆行 夏目
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019009144A1 publication Critical patent/WO2019009144A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device suitable for a liquid crystal display device in a vertical alignment mode provided with a pair of circularly polarizing plates.
  • a liquid crystal display device generally includes a pair of polarizers and a liquid crystal cell provided between the pair of polarizers, and various display modes such as vertical alignment (VA) mode and horizontal alignment mode are developed. There is.
  • VA vertical alignment
  • a pair of polarizers consisting of polarizer A and polarizer B and a pair of polarizers are disclosed.
  • the liquid crystal display device is provided with a liquid crystal cell of the vertical alignment type disposed in the above, and Nz represented by the following formula (1) between the liquid crystal cell and the polarizer A and between the liquid crystal cell and the polarizer B: Retarders each having a value of more than 2.0, and the in-plane slow axis of the quarter-wave retarder has a positional relationship of approximately 45 ° with the transmission axis of the adjacent polarizer, At least one of A and the adjacent 1 ⁇ 4 ⁇ retardation plate and / or between the polarizer B and the adjacent 1 ⁇ 4 ⁇ retardation plate comprises a material layer having a negative intrinsic birefringence value, And the in-plane slow axis is in a positional relationship substantially parallel or nearly orthogonal to the absorption
  • a first substrate having a pair of first short sides and a pair of first long sides is opposed to the first substrate.
  • a liquid crystal display panel comprising a second substrate disposed, a liquid crystal layer held between the first substrate and the second substrate, and displaying an image in an active area, and an outer surface side of the first substrate , And the angle a1 formed by the pair of second short sides longer than the first short side, the pair of second long sides, and the second short side is an angle b1 formed by the second long side
  • a liquid crystal display comprising a first polarizing plate having a small first absorption axis and a second polarizing plate disposed on the outer surface side of the second substrate and having a second absorption axis is disclosed. .
  • Patent Document 3 a substrate made of glass or resin and a front-side laminate provided on the viewing side of the substrate are provided as an image display device in which the panel is prevented from warping and the decrease in display performance is suppressed.
  • the liquid crystal panel has a small warp even after being placed in a moist heat environment, and as a liquid crystal display device with little display unevenness, the front side with the first adhesive layer on the viewer side of the liquid crystal cell It is a liquid crystal display in which a polarizing plate is laminated, a back side polarizing plate is laminated on the opposite side via a second adhesive layer, and a backlight unit is disposed outside the back side polarizing plate.
  • Elastic modulus is 0.01MPa or less
  • a liquid crystal display device is disclosed which consists of the 0.1MPa or less.
  • Patent Document 5 in order to prevent a phenomenon in which the liquid crystal display panel is bent by the shrinkage of the polarizing plate in the uniaxial stretching direction when the temperature of the polarizing plate attached to the liquid crystal display panel rises,
  • a liquid crystal display panel in which a TFT substrate and an opposite substrate are formed thin, which is a flexible display, and the opposite substrate and a polarizing plate are fixed at one point by an adhesive.
  • Patent Document 6 as a liquid crystal display device for improving peeling of a polarizing plate, a liquid crystal cell having a quadrilateral display surface in which a liquid crystal layer is enclosed in a glass substrate and an adhesive layer on both sides of the display cell
  • the polarizing plate having a polarizer having a large maximum dimension in the absorption axis direction on the display surface is more glass than the polarizing plate having a polarizer having a smaller maximum dimension in the absorption axis direction.
  • a liquid crystal display device is disclosed which is adhered by an adhesive layer having high adhesion to a substrate.
  • FIG. 13 is a schematic view of a liquid crystal display device according to Comparative Embodiment 1 studied by the present inventors, (a) is a plan view, and (b) is a cross-sectional view.
  • a stretched film thermally shrinks in the stretching direction in a high temperature state
  • a polarizer in which a dichroic substance (dichroic dye) such as a dichroic dye or iodine is oriented is Generally, a method of producing a hydrophilic polymer film such as a polyvinyl alcohol-based film by stretching it in the absorption axis direction is generally used, and hence the polarizer shrinks in the absorption axis direction at high temperature.
  • the glass does not shrink, stress is generated in the film between the polarizer and the glass substrate, and birefringence different from the optical design is developed. This characteristic change (change in optical parameters) is, as shown in FIG.
  • the mechanism of the occurrence of the black unevenness is as follows. 1. Due to factors such as high heat, the polarizer shrinks in the absorption axis direction. 2. On the other hand, since the glass of the liquid crystal cell does not shrink, stress is generated between the polarizer and the glass to be shrunk (with all the materials between them). 3. The material to which stress is applied changes its optical parameter (numerical value of optical anisotropy) by photoelasticity. 4. Since the stress is not constant in the plane, the difference in optical parameters becomes large in the panel plane. 5. When a black solid screen is used, the transmittance of each place differs depending on the difference in optical parameters. That is, whitening of the black display (increase in transmittance) occurs in a partial area and is observed as unevenness.
  • Patent Document 2 focuses on the fact that the polarizing plate shrinks in the absorption axis direction due to a high temperature environment, and proposes an axial direction and a size for reducing light leakage due to the polarizing plate end coming too close to the display region. doing. According to this, although it is possible to prevent light leakage at the end portion due to the reduction of the polarizing plate, the contraction itself of the polarizing plate occurs, so it is considered that the black unevenness due to the above photoelastic effect can not be prevented.
  • Patent Documents 3 to 6 neither disclose nor suggest the problem of the above-described black unevenness and the means for solving the same.
  • the present invention has been made in view of the above-mentioned present situation, and it is an object of the present invention to provide a liquid crystal display device capable of suppressing the occurrence of black unevenness even after being placed under high temperature.
  • the inventors of the present invention variously examined a liquid crystal display device capable of suppressing the occurrence of black unevenness even after being placed under high temperature, and focused attention on heat shrinkage of a polarizer. And although it is difficult to avoid the heat contraction itself of the polarizer manufactured by drawing, since the contraction occurs in the absorption axis direction, the absorption axis of the polarizer is parallel to the long side of the polarizer The closer to the point, the larger the contraction distance, the larger the stress generated in the optical compensation layer and the larger the change in retardation due to the photoelastic effect. It was found that the unevenness became remarkable because the difference of the parameter became large and the part where the whitening became large occurred.
  • the absorption axis of the polarizer can be made perpendicular to each long side of the liquid crystal panel, thereby suppressing the occurrence of a part where the contraction distance is large, and the panel surface It has been found that unevenness can be reduced by reducing the change in retardation of the optical compensation layer due to the photoelastic effect.
  • the absorption axes of the polarizers on the viewing surface side and the back surface side of the liquid crystal cell are often orthogonal to each other.
  • the number of optical compensation layers is asymmetrical between the viewing surface side and the back side of the liquid crystal cell, and then there are many optical compensation layers.
  • the absorption axis of the side polarizer perpendicular to each long side of the liquid crystal panel, more specifically, the angle formed by the absorption axis of the polarizer and each long side of the liquid crystal panel is 45
  • the temperature more than 135 °, it is found that black unevenness due to high temperature addition to the liquid crystal display device can be reduced, and it is thought that the above problem can be solved remarkably, and the present invention is achieved.
  • One embodiment of the present invention is a liquid crystal display device including a liquid crystal panel having a rectangular shape in plan view, wherein the liquid crystal panel includes a first polarizer, two or more optical compensation layers, a liquid crystal cell, and one or more optical compensation layers And a second polarizer in this order, and the total number of optical compensation layers provided between the first polarizer and the liquid crystal cell is an optical compensation provided between the second polarizer and the liquid crystal cell
  • the angle between the absorption axis of the first polarizer and each long side of the liquid crystal panel may be 45 ° or more and 135 ° or less, which is larger than the total number of layers.
  • the angle may be 60 degrees or more and 120 degrees or less.
  • the optical compensation layer provided between the first polarizer and the liquid crystal cell includes a ⁇ / 4 retardation plate, and the optical compensation layer provided between the second polarizer and the liquid crystal cell is , ⁇ / 4 retardation plates may be included.
  • the optical compensation layer provided between the first polarizer and the liquid crystal cell may include an optical compensation layer having a refractive index relationship of nx> nz> ny.
  • the display mode of the liquid crystal display may be a vertical alignment mode.
  • the present invention it is possible to realize a liquid crystal display device capable of suppressing the occurrence of black unevenness even after being placed under high temperature.
  • FIG. 1 is a schematic plan view of a liquid crystal display device according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1.
  • FIG. 5 is a schematic cross-sectional view of a liquid crystal display device according to a modification of Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to another modification of Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Example 1.
  • FIG. 5 is a schematic cross-sectional view of a liquid crystal display device according to Comparative Example 1; It is another schematic diagram of the liquid crystal display device which concerns on Example 1, (a) is a top view which shows the relationship between the absorption axis of a polarizer, and the long side of a liquid crystal panel, (b) is an optical compensation layer. It is sectional drawing for demonstrating arrangement
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to Example 2. It is another schematic diagram of the liquid crystal display device which concerns on Example 2, (a) is a top view which shows the relationship between the absorption axis of a polarizer, and the long side of a liquid crystal panel, (b) is an optical compensation layer. It is sectional drawing for demonstrating arrangement
  • FIG. 7 is a schematic cross-sectional view of a liquid crystal display device according to Example 3.
  • FIG. 3 It is another schematic diagram of the liquid crystal display device which concerns on Example 3, (a) is a top view which shows the relationship between the absorption axis of a polarizer, and the long side of a liquid crystal panel, (b) is an optical compensation layer. It is sectional drawing for demonstrating arrangement
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the refractive index in the in-plane direction orthogonal to the slow axis "Nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the refractive index in the in-plane direction orthogonal to the slow axis "Nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) refers to the in-plane retardation value of a layer (film) at a wavelength of 550 nm at 23 ° C., unless otherwise specified.
  • Re (nx ⁇ ny) ⁇ d, where d (nm) is the thickness of the layer (film).
  • the optical compensation layer has an in-plane retardation Re of 15 nm or more and a retardation Rth in the thickness direction of +55 nm or more or -15 nm or less for light of wavelength 550 nm unless otherwise specified.
  • the function and optical performance thereof are not particularly limited. That is, the optical compensation layer is a layer satisfying 15 nm ⁇ Re and Rth ⁇ ⁇ 15 nm or +55 nm ⁇ Rth.
  • a layer satisfying Re ⁇ 15 nm and ⁇ 15 nm ⁇ Rth ⁇ +55 nm is also referred to as a layer having no optical anisotropy.
  • the viewing surface side and the rear surface viewing surface side mean the side closer to the screen (display surface) of the liquid crystal display device, and the rear surface side is more about the screen (display surface) of the liquid crystal display device It means the far side.
  • FIG. 1 is a schematic plan view of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
  • the liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2 having a rectangular shape in plan view including a pair of long sides 2a and a pair of short sides 2b.
  • the liquid crystal panel 2 has a rectangular display area 2c corresponding to the shape.
  • a plurality of pixels (not shown) are arranged in a matrix in the display area 2c, and an image is displayed in the display area 2c.
  • the liquid crystal display device 1 is a transmissive or semi-transmissive (reflective / transmissive) liquid crystal display device, and as shown in FIG. 2, a liquid crystal panel 2 and a back light disposed on the back side of the liquid crystal panel 2
  • the liquid crystal panel 2 includes a first polarizer 10, an optical compensation layer 11 having two or more layers, a liquid crystal cell 30, an optical compensation layer 21 having one or more layers, and a second polarization.
  • the child 20 is provided in this order from the observation surface side.
  • the number (the number of layers) of all the optical compensation layers 11 provided between the first polarizer 10 and the liquid crystal cell 30 is the same as all the optical components provided between the second polarizer 20 and the liquid crystal cell 30.
  • the number is larger than the number of compensation layers 21 (the number of layers). As shown in FIG. 1, all these members are also rectangular in plan view, and the first polarizer 10, the optical compensation layer 11, the optical compensation layer 21 and the second polarizer 20 at least have the display area 2c. It is arranged to cover.
  • the liquid crystal display device 1 is a normally black mode liquid crystal display device which performs black display when no voltage is applied.
  • the polarizers 10 and 20 are arranged in crossed nicols, and the first polarizer
  • the ten absorption axes 10a and the absorption axes 20a of the second polarizer 20 are substantially orthogonal to each other. More specifically, the angle (absolute value) between the two axes is in the range of 90 ⁇ 2 °, preferably in the range of 90 ⁇ 0.6 °, and particularly preferably 90 ° (completely orthogonal ).
  • each of the polarizers 10 and 20 generally includes a uniaxially stretched film which is a uniaxially stretched film, and has absorption axes 10a and 20a in the stretching direction, respectively. Therefore, when the liquid crystal display device 1 including the polarizers 10 and 20 is placed at high temperature, stress is applied to the optical compensation layers 11 and 21 due to the contraction in the absorption axis direction of the polarizers 10 and 20 as described above. It is apprehended that black spots may occur due to characteristic changes.
  • is set to 45 ° or more and 135 ° or less.
  • the absorption axis 20 a of the second polarizer 20, that is, the polarizer adjacent to the less optical compensation layer 21 is in a direction close to parallel to each long side 2 a of the liquid crystal panel 2.
  • the optical compensation layer 21 adjacent to the second polarizer 20 is smaller than the optical compensation layer 11 of the first polarizer 10, the optical parameters of the optical compensation layer 21 are increased. The influence of deviation from the design value of is relatively small. As described above, the liquid crystal display device 1 can suppress the occurrence of the black unevenness even after being placed under high temperature (of course also under high temperature).
  • FIG. 3 is a schematic cross-sectional view of a liquid crystal display device according to a modification of Embodiment 1. If the number of optical compensation layers is asymmetrical on the viewing surface side and the back surface side of the liquid crystal cell 30, it is possible to exhibit the above-described black unevenness suppressing effect. Therefore, as shown in FIG. 3, the liquid crystal panel 2 includes the first polarizer 10, the optical compensation layer 11, the liquid crystal cell 30, the optical compensation layer 21, and the second polarizer 20 from the back side. It may be provided in this order. Also in this case, as in the case shown in FIG.
  • the absorption axis 10 a of the first polarizer 10 that is, the polarizer adjacent to more optical compensation layers 11 and each long side 2 a of the liquid crystal panel 2 Is set to 45 degrees or more and 135 degrees or less, the above-described black unevenness suppressing effect can be exhibited.
  • angle (absolute value) ⁇ is 45 ° or more and 135 ° or less, the above effect can be achieved, but preferably 60 ° or more and 120 ° or less, and particularly preferably 90 ° (completely Orthogonal).
  • FIG. 4 is a schematic cross-sectional view of a liquid crystal display device according to another modification of the first embodiment.
  • FIGS. 2 and 3 illustrate the case where one optical compensation layer and two optical compensation layers are provided on both sides of the liquid crystal cell 30, but the optical compensation layers disposed on both sides of the liquid crystal cell 30 are illustrated.
  • the number of is not particularly limited as long as the number of optical compensation layers on the viewing surface side and the number of optical compensation layers on the back surface are different, for example, as shown in FIG.
  • One optical compensation layer 21 and three optical compensation layers 11 may be provided, or two optical compensation layers and three optical compensation layers may be provided. In these cases, more optical compensation layers 11 may be disposed on either the viewing surface side or the back surface side of the liquid crystal cell 30.
  • the total number of the larger number of optical compensation layers 11 is preferably 2 to 5 (more preferably 2 to 3) in terms of reliability and cost, but can be set according to the required performance.
  • the total number of the optical compensation layers 21 is preferably 1 to 4 (more preferably 1 to 2) from the viewpoint of reliability and cost, but can be set according to the required performance.
  • the difference between the total number of more optical compensation layers 11 and the smaller number of optical compensation layers 21 is also not particularly limited, but is preferably 1 to 3, and more preferably 1 to 2. Each configuration will be further described below.
  • any appropriate polarizer may be adopted as the first polarizer 10 and the second polarizer 20 depending on the purpose.
  • a hydrophilic polymer film such as a polyvinyl alcohol-based film (hereinafter, also referred to as a PVA film), a partially formalized polyvinyl alcohol-based film, or an ethylene / vinyl acetate copolymer-based partially saponified film
  • a dichromatic substance dichroic dye
  • a polarizer obtained by adsorbing a dichroic substance (dichroic dye) such as iodine to a polyvinyl alcohol-based film and uniaxially stretching it is particularly preferable because the polarization dichroic ratio is high.
  • the thickness of these polarizers is not particularly limited, but in general, it is about 5 to 30 ⁇ m.
  • a polarizer obtained by adsorbing iodine to a polyvinyl alcohol-based film and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching it to 3 to 7 times its original length. . If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or it may be immersed in an aqueous solution such as potassium iodide. Furthermore, if necessary, the polyvinyl alcohol-based film may be dipped in water and rinsed before dyeing.
  • Stretching may be carried out after dyeing with iodine, may be stretched while dyeing, or may be dyed with iodine after being stretched. It can also be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the first polarizer 10 and the second polarizer 20 may each be provided with a protective layer on the viewing surface side and the back surface side.
  • the protective layer is formed of any suitable film that can be used as a protective layer of a polarizer.
  • Specific examples of the material that is the main component of the film include, for example, cellulose resins such as triacetyl cellulose (TAC), and transparent resins such as cycloolefin resins. The cycloolefin resin will be described in detail later.
  • a film having triacetyl cellulose as a main component is also referred to as a TAC film
  • a film having a cycloolefin resin, in particular, a cycloolefin polymer (COP) as a main component is also referred to as a COP film.
  • COP cycloolefin polymer
  • the protective layer when a protective layer is provided on the liquid crystal cell 30 side of the first polarizer 10 and / or the second polarizer 20, the protective layer (inner protective layer) preferably has optical isotropy.
  • the retardation Rth in the thickness direction of the inner protective layer is preferably more than -15 nm and less than +15 nm, more preferably -10 nm or more and +10 nm or less, still more preferably -6 nm or more and +6 nm or less, particularly preferably -3 nm or more and +3 nm or less.
  • the in-plane retardation Re of the inner protective layer is preferably 0 nm or more and less than 15 nm, more preferably 0 nm or more and 10 nm or less, still more preferably 0 nm or more and 6 nm or less, and particularly preferably 0 nm or more and 3 nm or less.
  • the optical compensation layers 11 and 21 on the liquid crystal cell 30 side of the first polarizer 10 and the second polarizer 20 may be used as the protective layer.
  • any appropriate retardation plate may be employed as each of the optical compensation layers 11 and 21 in accordance with the purpose and the display mode of the liquid crystal display device 1.
  • the material and optical performance of each of the optical compensation layers 11 and 21 are not particularly limited, and, for example, a polymer film processed by stretching or the like, a liquid crystal material having fixed orientation, a thin plate made of an inorganic material, etc. Among them, those obtained by processing a polymer film such as stretching are preferable.
  • each of the optical compensation layers 11 and 21 is not particularly limited, and in the case of a polymer film, for example, a solvent cast method, a melt extrusion method, or the like can be used. It may be a method of simultaneously forming a plurality of birefringent layers by a co-extrusion method. As long as the desired retardation is developed, it may be non-stretching or may be stretched.
  • the stretching method is also not particularly limited, and it is a special stretching in which stretching is performed under the action of the shrinking force of the heat shrinkable film, in addition to the inter-roll tensile stretching method, inter-roll compression stretching method, tenter transverse uniaxial stretching method, longitudinal and transverse biaxial stretching method. A law etc.
  • a method of applying a liquid crystalline material on a substrate film subjected to alignment treatment, and orienting and fixing can be used. Even if there is a method in which the substrate film is not subjected to special orientation processing as long as the desired phase difference is expressed, or a method in which the film is peeled off from the substrate film and transferred to another film after orientation fixation. Good. Furthermore, a method in which the orientation of the liquid crystal material is not fixed may be used. Also in the case of a non-liquid crystal material, the same formation method as the liquid crystal material may be used.
  • transparent resin such as cycloolefin type-resin
  • the cycloolefin resin used for the protective layer and the optical compensation layers 11 and 21 is not particularly limited as long as it is a resin having a monomer unit composed of cyclic olefin (cycloolefin), and cycloolefin polymer (COP) or cycloolefin resin (COP) It may be any of the olefin copolymers (COC).
  • the cycloolefin copolymer refers to a non-crystalline cyclic olefin resin which is a copolymer of a cyclic olefin and an olefin such as ethylene.
  • polycyclic cyclic olefin examples include norbornenes such as norbornene, methyl norbornene, dimethyl norbornene, ethyl norbornene, ethylidene norbornene and butyl norbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene and the like
  • Examples include tetracyclododecenes such as dicyclopentadienes, tetracyclododecene, methyltetracyclododecene and dimethyltetracyclododecene, and polymers of cyclopentadienes such as tricyclopentadiene and tetracyclopentadiene.
  • examples of monocyclic cyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene and cyclododecatriene.
  • norbornenes are preferable in terms of transparency, moisture resistance, and retardation control.
  • the optical compensation layer 11 provided between the first polarizer 10 and the liquid crystal cell 30 includes the ⁇ / 4 retardation plate 11 a, and the second polarizer 20 and the liquid crystal cell
  • the optical compensation layer 21 provided between 30 may include the ⁇ / 4 retardation plate 21a.
  • the ⁇ / 4 retardation plate is an electron optical birefringence plate that serves to rotate the polarization plane of the light beam, and has an optical path of 1 ⁇ 4 wavelength between linearly polarized light vibrating in directions perpendicular to each other. We say what has function to make difference.
  • the phase between the ordinary ray component and the extraordinary ray component acts so as to be shifted by a quarter cycle, and circularly polarized light is converted to linearly polarized light (or linearly polarized light to circularly polarized light). Therefore, the first polarizer 10 and the ⁇ / 4 retardation plate 11 a, and the second polarizer 20 and the ⁇ / 4 retardation plate 21 a function as left and right circularly polarizing plates orthogonal to each other.
  • the polarizer shrinks, stress is generated not only on the adjacent optical compensation film but also on the glass substrate constituting the liquid crystal cell, and birefringence (phase difference) is also generated on the glass substrate.
  • the influence of the retardation of the glass substrate on the display characteristics tends to be larger when light incident on the glass substrate is circularly polarized than when linearly polarized. Therefore, in the case of using a circularly polarizing plate (usually, a combination of a polarizer and a ⁇ / 4 retardation plate), the black unevenness caused by the contraction of the polarizer becomes strong.
  • the black unevenness may be strong. Even according to the present embodiment, the occurrence of the black unevenness can be effectively suppressed.
  • the ⁇ / 4 retardation plate 11a has an in-plane retardation Re of approximately 137.5 nm, but may be 110 to 165 nm, preferably 130 to 145 nm, and an Nz coefficient of 0.9 to The thing of 2.4 can be used.
  • the slow axis (in-plane slow axis) of the ⁇ / 4 retardation plate 11 a forms an angle of substantially 45 ° with the absorption axis 10 a of the first polarizer 10. More specifically, the angle (absolute value) between the two axes is in the range of 45 ⁇ 5 °, preferably in the range of 45 ⁇ 2 °, more preferably in the range of 45 ⁇ 0.6 °. And particularly preferably 45 ° (completely 45 °).
  • the ⁇ / 4 retardation plate 21a has an in-plane retardation Re of approximately 137.5 nm, but may be 110 to 165 nm, preferably 130 to 145 nm, and an Nz coefficient of 0.9 to The thing of 2.4 can be used.
  • the slow axis (in-plane slow axis) of the ⁇ / 4 retardation plate 21 a forms an angle of substantially 45 ° with the absorption axis 20 a of the second polarizer 20. More specifically, the angle (absolute value) between the two axes is in the range of 45 ⁇ 5 °, preferably in the range of 45 ⁇ 2 °, more preferably in the range of 45 ⁇ 0.6 °. And particularly preferably 45 ° (completely 45 °).
  • the slow axis (in-plane slow axis) of the ⁇ / 4 phase difference plate 11a is substantially at an angle of 90 ° with respect to the slow axis (in-plane slow axis) of the ⁇ / 4 phase difference plate 21a.
  • the angle (absolute value) between the two axes is in the range of 90 ⁇ 2 °, preferably in the range of 90 ⁇ 0.6 °, and particularly preferably 90 ° (completely orthogonal ).
  • the optical compensation layer 11 provided between the first polarizer 10 and the liquid crystal cell 30 has an optical compensation layer having a relationship of refractive index of nx> nz> ny (so-called Positive B plate) 11 b may be included.
  • the viewing angle characteristics of the liquid crystal display device 1 can be improved, that is, whitening in the oblique direction at the time of black display can be suppressed.
  • the fact that the entire whiteness is small when viewed from an oblique direction means that the black unevenness is noticeable, but even in this case, according to the present embodiment, the occurrence of the black unevenness is effective. Can be suppressed.
  • the optical compensation layer 11 b has an in-plane retardation Re of 135 to 300 nm (preferably 150 to 275 nm, more preferably 170 to 240 nm), and an Nz coefficient of 0 to 0.99 (preferably 0.1 to 0. 6, more preferably 0.25 to 0.4) can be used.
  • the slow axis (in-plane slow axis) of the optical compensation layer 11 b is substantially parallel to the absorption axis 10 a of the first polarizer 10. More specifically, the angle formed by the two axes is in the range of 0 ⁇ 3 °, preferably in the range of 0 ⁇ 1 °, and more preferably in the range of 0 ⁇ 0.5 °. Particularly preferred is 0 ° (perfectly parallel).
  • the first polarizer 10 the optical compensation layer (positive B plate) 11b, the ⁇ / 4 retardation plate 11a, the liquid crystal cell 30, the ⁇ / 4 retardation plate 21a
  • the second polarizer 20 is laminated in this order from the viewing side or the back side.
  • the viewing angle characteristics of the liquid crystal display device 1 can be further improved, that is, whitening in the oblique direction at the time of black display can be further suppressed.
  • the fact that the entire whitening is smaller when viewed from an oblique direction means that the black unevenness is more noticeable, but even in this case, according to the present embodiment, the occurrence of the black unevenness is It can be effectively suppressed. In this case, as shown in FIG.
  • the first polarizer 10 the optical compensation layer (positive B plate) 11b, the ⁇ / 4 retardation plate 11a, the optical compensation layer (negative C plate) 11c, the liquid crystal cell 30,
  • the ⁇ / 4 retardation plate 21 a and the second polarizer 20 are stacked in this order from the viewing surface side or the back surface side.
  • the optical compensation layer 11 c has an in-plane retardation Re of 0 to 150 nm (preferably 0 to 40 nm, more preferably 0 nm) and a thickness direction retardation Rth of 20 to 350 nm (preferably 50 to 130 nm). It can be used.
  • the in-plane retardation is 0 nm
  • the arrangement direction of the optical compensation layer 11c in the plane is not particularly limited because the optical compensation layer 11c is substantially optically isotropic in the plane.
  • the slow axis (in-plane slow axis) of the optical compensation layer 11c is orthogonal to or parallel to the absorption axis 10a of the first polarizer 10. is there.
  • the liquid crystal cell 30 has a pair of substrates, and a liquid crystal layer as a display medium sandwiched between the substrates.
  • a color filter and a black matrix are provided on one of the substrates (color filter substrate).
  • a switching element typically, a TFT
  • a scanning line for providing a gate signal to the switching element and a signal line for providing a source signal
  • a pixel An electrode is provided on the other substrate (active matrix substrate).
  • a common electrode is further provided on either of the pair of substrates.
  • the color filter may have a thickness direction retardation Rth of about 10 to 50 nm.
  • the color filter may be provided on the active matrix substrate side. The distance between the pair of substrates (cell gap) is controlled by a spacer.
  • an alignment film made of polyimide is provided on the side of the pair of substrates in contact with the liquid crystal layer.
  • the retardation (panel retardation) ⁇ n ⁇ d of the liquid crystal layer represented by the product of the refractive index anisotropy of the liquid crystal material ⁇ n and the cell thickness (cell gap, ie, the thickness of the liquid crystal layer) d is not particularly limited. , 200 to 500 nm, preferably 250 to 450 nm, and more preferably 300 to 400 nm.
  • the display mode of the liquid crystal display device 1 is not particularly limited, and examples thereof include horizontal alignment mode such as fringe field switching (FFS) mode and in-plane switching (IPS) mode, and vertical alignment (VA) mode. Among them, the vertical alignment mode is preferable.
  • horizontal alignment mode such as fringe field switching (FFS) mode and in-plane switching (IPS) mode
  • IPS in-plane switching
  • VA vertical alignment
  • the vertical alignment mode is preferable.
  • the common electrode is provided on a substrate other than the substrate provided with the pixel electrode among the pair of substrates.
  • the liquid crystal molecules are aligned substantially perpendicular (normal direction) to the surface of each substrate.
  • substantially perpendicular also includes the case where the alignment vector of the liquid crystal molecules is inclined with respect to the normal direction of each substrate, that is, the case where the liquid crystal molecules have a tilt angle.
  • the tilt angle (angle from the normal) is at least 0 ° and preferably at all positions of the displayable portion of the liquid crystal panel 2 (the modulatable portion of the light except the light shielding portion in the display area 2c).
  • Such alignment can be realized, for example, by arranging a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film is formed as an alignment film.
  • a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film is formed as an alignment film.
  • the liquid crystal molecules in this state exhibit birefringence with respect to linearly polarized light incident on the liquid crystal layer through the back polarizer 10 or 20, and the polarization state of the incident light depends on the inclination of the liquid crystal molecules. Change.
  • light passing through the liquid crystal layer becomes, for example, linearly polarized light whose polarization direction is rotated by 90 °, and hence light is transmitted through the polarizer 20 or 10 on the viewing surface side to display a bright state ( White display is obtained.
  • the display can be returned to the dark state by the alignment control force. Further, by changing the applied voltage to control the inclination of the liquid crystal molecules and changing the intensity of the transmitted light from the polarizer 20 or 10 on the viewing surface side, it is possible to perform gradation display.
  • VA mode if the tilt direction of the liquid crystal molecules in the voltage application is one direction, asymmetry will be generated in the viewing angle characteristics.
  • MVA mode multi-domain type VA mode
  • MVA mode multi-domain type VA mode
  • the transmittance when a birefringent medium is sandwiched between crossed Nicol polarizers is sin 2 (2 ⁇ ), where the angle between the axis of the polarizer and the slow axis of the birefringent medium is ⁇ (unit: rad)
  • unit: rad
  • the tilt orientation of liquid crystal molecules can be divided into four domains of 45 °, 135 °, 225 °, and 315 °. Even in the MVA mode divided into such four domains, Schlieren orientation or orientation in an unintended direction is often observed in the vicinity of domain boundaries or orientation control means, which causes transmittance loss. There is.
  • the transmissivity when the birefringent medium is sandwiched between the left and right circularly polarizing plates orthogonal to each other is the axis of each polarizer 10, 20 and that of the birefringent medium Since it does not depend on the angle with the slow axis, even if the tilt orientation of the liquid crystal molecules is other than 45 °, 135 °, 225 °, and 315 °, the desired transmittance can be secured as long as the tilt of the liquid crystal molecules can be controlled. Therefore, for example, a circular protrusion may be disposed at the center of the pixel, and liquid crystal molecules may be inclined in all directions, or may be inclined in random directions without controlling the inclination direction at all. May be
  • each axial direction is represented by an angle when the right direction of the display area of the liquid crystal panel is 0 ° and the counterclockwise direction is positive when viewed from the viewing surface side. .
  • FIG. 5 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
  • a liquid crystal display device of Example 1 comprising the optical compensation layer of No. 3 and a liquid crystal panel in which the back polarizer is disposed in this order from the viewing surface side, and a backlight (not shown) on the back surface of the liquid crystal panel.
  • the optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG.
  • the front polarizer corresponds to the second polarizer
  • the back polarizer corresponds to the first polarizer.
  • the liquid crystal cell As the liquid crystal cell, a VA mode liquid crystal cell was used.
  • the dielectric anisotropy ⁇ n of the liquid crystal material is 0.113, and the cell thickness (cell gap) d is 3.2 ⁇ m. That is, the retardation ⁇ n ⁇ d of the liquid crystal layer was 360 nm.
  • liquid crystal panel As a liquid crystal panel, a rectangular liquid crystal panel with an aspect ratio of 5: 2 was used. That is, the shape of the display area is also rectangular with an aspect ratio of 5: 2.
  • first and second optical compensation layers films obtained by obtaining predetermined optical parameters shown in FIG. 5 by biaxially stretching a COP film were used.
  • the third optical compensation layer a film having the predetermined optical parameters shown in FIG. 5 obtained by relaxing after stretching the COP film was used.
  • the thicknesses of the first, second and third optical compensation layers were 30 ⁇ m, 30 ⁇ m and 140 ⁇ m, respectively.
  • the COP film used did not contain cycloolefin copolymer (COC).
  • a PVA film (30 ⁇ m in thickness) was used, and the PVA film was adhered to the first optical compensation layer with an adhesive and laminated on the first optical compensation layer.
  • a TAC film 40 ⁇ m thick was laminated via an adhesive on the surface of the PVA film of the front polarizer opposite to the first optical compensation layer.
  • a back polarizer what laminated
  • the COP film of the back polarizer was produced so as not to have optical anisotropy.
  • the back polarizer was placed so that the COP film was on the liquid crystal cell side and the TAC film was on the opposite side of the liquid crystal cell.
  • a PVA film of a front polarizer and a back polarizer what has a polarization performance by adding iodine after extending
  • a TAC film is widely used as a support body of a PVA film, adhere
  • a COP film is widely used as a broad-band retardation film or as a support of a PVA film, and has birefringence by stretching.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to Comparative Example 1.
  • a front polarizer, a third optical compensation layer as a positive B plate, a second optical compensation layer as a ⁇ / 4 retardation plate, a liquid crystal cell, and a ⁇ / 4 retardation plate A liquid crystal display device of Comparative Example 1 comprising a liquid crystal panel in which the first optical compensation layer and the back polarizer are arranged in this order from the viewing surface side, and a backlight (not shown) on the back surface of the liquid crystal panel.
  • the optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG.
  • the liquid crystal cell As the liquid crystal cell, a VA mode liquid crystal cell was used.
  • the dielectric anisotropy ⁇ n of the liquid crystal material is 0.113, and the cell thickness (cell gap) d is 3.2 ⁇ m. That is, the retardation ⁇ n ⁇ d of the liquid crystal layer was 360 nm.
  • liquid crystal panel As a liquid crystal panel, a rectangular liquid crystal panel with an aspect ratio of 5: 2 was used. That is, the shape of the display area is also rectangular with an aspect ratio of 5: 2.
  • first and second optical compensation layers films obtained by obtaining predetermined optical parameters shown in FIG. 6 by biaxially stretching a COP film were used.
  • third optical compensation layer a film having the predetermined optical parameters shown in FIG. 6 obtained by relaxation after stretching of the COP film was used.
  • the thicknesses of the first, second and third optical compensation layers were 30 ⁇ m, 30 ⁇ m and 140 ⁇ m, respectively.
  • a front polarizer what laminated
  • the COP film of the back polarizer was produced so as not to have optical anisotropy.
  • the front polarizer was disposed so that the COP film was on the liquid crystal cell side and the TAC film was on the opposite side to the liquid crystal cell.
  • a back polarizer a PVA film (30 ⁇ m in thickness) was used, and the PVA film was adhered to the first optical compensation layer with an adhesive and laminated on the first optical compensation layer.
  • a TAC film (40 ⁇ m thick) was laminated via an adhesive on the surface of the PVA film of the back polarizer opposite to the first optical compensation layer.
  • a PVA film of a front polarizer and a back polarizer what has a polarization performance by adding iodine after extending
  • the liquid crystal cell and the first optical compensation layer were each filled with a pressure sensitive adhesive (adhesive material) having no large optical anisotropy.
  • adhesive material such materials that do not have large optical anisotropy, such as adhesive materials, are also omitted from the process of adding them as needed in the manufacturing process as long as the layer formed from the material is a layer without optical anisotropy. It can also be done.
  • FIG. 7 is another schematic view of the liquid crystal display device according to Example 1.
  • FIG. 7 (a) is a plan view showing the relationship between the absorption axis of the polarizer and the long side of the liquid crystal panel. It is sectional drawing for demonstrating arrangement
  • FIG. 8 is another schematic view of the liquid crystal display device according to Comparative Example 1.
  • FIG. 8A is a plan view showing the relationship between the absorption axis of the polarizer and the long side of the liquid crystal panel, and FIG. It is sectional drawing for demonstrating arrangement
  • Example 1 and Comparative Example 1 the absorption axis directions of the front polarizer and the back polarizer are the same, but the position of the optical compensation layer is changed, and as shown in FIG.
  • Comparative Example 1 the absorption axis of the front polarizer having many optical compensation layers is parallel to each long side of the liquid crystal panel, as shown in FIG. It is.
  • the white spots (black unevenness) of the partial black display in the durability test at high temperature etc. are also caused by other factors such as the axial fluctuation of the polarizer and the stress generated in the glass used for the liquid crystal cell.
  • the change in retardation of the optical compensation layer due to photoelasticity is the main cause. As shown in FIG.
  • Example 7 in Example 1, the shrinkage amount of the back polarizer with a large number of laminated optical compensation layers is small, and thus the stress on the second and third optical compensation layers is small. It is set. As shown in FIG. 8, in Comparative Example 1, the shrinkage amount of the back polarizer with the large number of laminated optical compensation layers is large, and therefore, the stress on the second and third optical compensation layers is large. It is set.
  • Example 1 and Comparative Example 1 The dark room contrast of the liquid crystal display of Example 1 and Comparative Example 1 was measured.
  • the dark room contrast is obtained by measuring the luminance of white display and black display without external light, and dividing the white display luminance by the black display luminance. The higher the display device, the better. Furthermore, from the viewpoint of durability, it is preferable that the change in this numerical value be as small as possible when exposed to a severe environment such as high temperature.
  • Table 1 below shows dark room contrast at the center of the screen before and after aging for 12 hours at 85 ° C. for Example 1 and Comparative Example 1. Although there is not much difference with the value before the aging, the value in Comparative Example 1 is greatly reduced by the aging.
  • the black display uniformity of the liquid crystal display devices of Example 1 and Comparative Example 1 was measured.
  • the black display uniformity is an index indicating the intensity of so-called unevenness of black display, which is obtained by dividing the minimum luminance by the maximum luminance by scanning the luminance of the display area when a black solid screen is displayed. As this value is closer to 100%, there is no luminance distribution, that is, the unevenness is weak, which is preferable as a display device. The lower the value, the stronger the unevenness and the lower the quality as a display device.
  • Table 2 below shows black display uniformity before and after aging for 12 hours at 85 ° C. for Example 1 and Comparative Example 1. Although there is not much difference with the value before the aging, the value in Comparative Example 1 is greatly reduced by the aging. On the other hand, in Example 1, the change was small and it was shown that the unevenness was improved.
  • FIG. 9 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment.
  • a front polarizer, a third optical compensation layer as a positive B plate, a second optical compensation layer as a ⁇ / 4 retardation plate, a liquid crystal cell, and a ⁇ / 4 retardation plate A liquid crystal display device of Example 2 was prepared, which comprises a liquid crystal panel in which the first optical compensation layer, the back polarizer are disposed in this order from the viewing surface side, and the backlight on the back surface side of the liquid crystal panel.
  • the optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG.
  • the liquid crystal display device of Example 2 was produced in the same manner as Comparative Example 1 except that the axes of all the polarizers and the optical compensation layer were rotated by 90 °.
  • the back polarizer corresponds to the second polarizer
  • the front polarizer corresponds to the first polarizer.
  • the liquid crystal cell and the first optical compensation layer were each filled with a pressure sensitive adhesive (adhesive material) having no large optical anisotropy.
  • adhesive material such materials that do not have large optical anisotropy, such as adhesive materials, are also omitted from the process of adding them as needed in the manufacturing process as long as the layer formed from the material is a layer without optical anisotropy. It can also be done.
  • FIG. 10 is another schematic view of the liquid crystal display device according to Example 2.
  • FIG. 10 (a) is a plan view showing the relationship between the absorption axis of the polarizer and the long side of the liquid crystal panel, and FIG. It is sectional drawing for demonstrating arrangement
  • the position of the optical compensation layer is the same, but the axes of all the polarizers and the optical compensation layer are rotated by 90 °, and as shown in FIG.
  • the absorption axis of the front polarizer having many optical compensation layers is orthogonal to each long side of the liquid crystal panel, and as shown in FIG. 8, in Comparative Example 1, the absorption axis of the front polarizer having many optical compensation layers corresponds to each liquid crystal panel It is parallel to the long side.
  • Table 3 shows dark room contrast at the center of the screen before and after aging for 12 hours at 85 ° C. for Example 2 and Comparative Example 1.
  • Table 4 below shows black display uniformity before and after aging for 12 hours at 85 ° C. for Example 2 and Comparative Example 1.
  • Example 2 As a result, it was found that the same effect as in Example 1 can be obtained also in Example 2.
  • As to how to arrange the panels there are requirements such as relationship with polarized sunglasses, and since the preferable angle of the front polarizer differs depending on the display device, any arrangement can be selected depending on the situation.
  • FIG. 11 is a schematic cross-sectional view of the liquid crystal display device according to the third embodiment.
  • a front polarizer, a first optical compensation layer as a ⁇ / 4 retardation plate, a liquid crystal cell, a fourth optical compensation layer as a negative C plate, and a fourth ⁇ / 4 retardation plate 2 an optical compensation layer, a third optical compensation layer as a positive B plate, and a liquid crystal panel in which a back polarizer is disposed in this order from the observation surface side, and a backlight on the back side of the liquid crystal panel
  • the liquid crystal display of Example 3 was produced.
  • the optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG.
  • the fourth optical compensation layer is further added to the back side of the first embodiment.
  • the liquid crystal cell As the liquid crystal cell, a VA mode liquid crystal cell was used.
  • the dielectric anisotropy ⁇ n of the liquid crystal material is 0.113, and the cell thickness (cell gap) d is 3.2 ⁇ m. That is, the retardation ⁇ n ⁇ d of the liquid crystal layer was 360 nm.
  • liquid crystal panel As a liquid crystal panel, a rectangular liquid crystal panel with an aspect ratio of 5: 2 was used. That is, the shape of the display area is also rectangular with an aspect ratio of 5: 2.
  • first and second optical compensation layers films obtained by obtaining predetermined optical parameters shown in FIG. 11 by biaxially stretching a COP film were used.
  • third optical compensation layer a film having a predetermined optical parameter shown in FIG. 11 by stretching and relaxing the COP film was used.
  • fourth optical compensation layer a film having predetermined optical parameters shown in FIG. 11 obtained by biaxially stretching a TAC film was used.
  • the thicknesses of the first, second, third and fourth optical compensation layers were respectively 30 ⁇ m, 30 ⁇ m, 140 ⁇ m and 80 ⁇ m.
  • a PVA film (30 ⁇ m in thickness) was used, and the PVA film was adhered to the first optical compensation layer with an adhesive and laminated on the first optical compensation layer.
  • a TAC (triacetylene cellulose) film (40 ⁇ m in thickness) was laminated via an adhesive.
  • a back polarizer what laminated
  • the COP film of the back polarizer was produced so as not to have optical anisotropy.
  • the back polarizer was placed so that the COP film was on the liquid crystal cell side and the TAC film was on the opposite side of the liquid crystal cell.
  • a PVA film of a front polarizer and a back polarizer what has a polarization performance by adding iodine after extending
  • FIG. 12 is another schematic view of the liquid crystal display device according to Example 3.
  • FIG. 12A is a plan view showing the relationship between the absorption axis of the polarizer and the long side of the liquid crystal panel, and FIG. It is sectional drawing for demonstrating arrangement
  • FIGS. 8 and 12 the points are the same as in the case of Example 1 and Comparative Example 1, and thus the description thereof is omitted.
  • the number of laminated layers of the optical compensation layer is 1 front / 3 back in the third embodiment as opposed to 1 front / 2 back in the first embodiment.
  • Table 5 shows dark room contrast at the center of the screen before and after aging for 12 hours at 85 ° C. for Example 3 and Comparative Example 1.
  • Table 6 below shows black display uniformity before and after aging at 85 ° C. for 12 hours for Example 3 and Comparative Example 1.
  • Example 3 As shown in Tables 5 and 6 above, since the number of laminated optical compensation layers was increased, the change in contrast is large in Example 3 compared to Examples 1 and 2, and the unevenness after aging is strong. Also from this, it is suggested that the black unevenness is due to the characteristic change of the optical compensation layer. However, since the unevenness is improved more than the comparative example 1 in Example 3, the effect of adjustment of the absorption axis is shown.
  • One embodiment of the present invention is a liquid crystal display device (1) including a liquid crystal panel (2) having a rectangular shape in plan view, wherein the liquid crystal panel (2) comprises a first polarizer (10) and two or more optical elements.
  • the total number of optical compensation layers (11) provided between the two) is greater than the total number of optical compensation layers (21) provided between the second polarizer (20) and the liquid crystal cell (30)
  • the angle ( ⁇ ) between the absorption axis (10a) of the first polarizer (10) and each long side (2a) of the liquid crystal panel (2) may be 45 ° or more and 135 ° or less .
  • the angle ( ⁇ ) may be 60 ° or more and 120 ° or less.
  • the optical compensation layer (11) provided between the first polarizer (10) and the liquid crystal cell (30) includes a ⁇ / 4 retardation plate (11a), and the second polarizer (20) And the optical compensation layer (21) provided between the liquid crystal cell (30) may include a ⁇ / 4 retardation plate (21a).
  • the black unevenness becomes strong, but even in this case, according to the above aspect, the occurrence of the black unevenness can be suppressed. That is, the black unevenness suppressing effect according to the above aspect can be exhibited more effectively.
  • the optical compensation layer (11) provided between the first polarizer (10) and the liquid crystal cell (30) includes an optical compensation layer (11b) having a refractive index relationship of nx> nz> ny. May be.
  • the black unevenness may be noticeable, but even in this case, according to the above aspect, the occurrence of the black unevenness can be suppressed. That is, the black unevenness suppressing effect according to the above aspect can be exhibited more effectively. Further, in this case, as described later, it is particularly suitable when the display mode of the liquid crystal display device (1) is the vertical alignment mode.
  • the black unevenness may be more noticeable, but even in this case, according to the above aspect, the occurrence of the black unevenness can be suppressed. That is, the black unevenness suppressing effect according to the above aspect can be exhibited more effectively. Further, in this case, as described later, it is particularly suitable when the display mode of the liquid crystal display device (1) is the vertical alignment mode.
  • the display mode of the liquid crystal display device (1) may be a vertical alignment mode.
  • Liquid crystal display device 2 Liquid crystal panel 2a: long side 2b: short side 2c: display area 10: first polarizer 10a: absorption axis 11: optical compensation layer 11a: ⁇ / 4 retardation plate 11b: optical compensation layer (Positive B plate) 11c: Optical compensation layer (negative C plate) 20: second polarizer 20a: absorption axis 21: optical compensation layer 21a: ⁇ / 4 retardation plate 30: liquid crystal cell

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a liquid crystal display device capable of suppressing the occurrence of black irregularities even after being left at high temperatures. The present invention is a liquid crystal display device (1) comprising a liquid crystal panel (2) which is a rectangular shape in plan view, wherein: the liquid crystal panel (2) includes, in this order, a first polarizer (10), two or more optical compensation layers (11), a liquid crystal cell, one or more optical compensating layers (21) and a second polarizer; the total number of optical compensating layers situated between the first polarizer (10) and the liquid crystal cell is larger than the total number of optical compensating layers situated between the second polarizer and the liquid crystal cell; and the angle (α) formed by the absorption axis (10a) of the first polarizer (10) and the long edges (2a) of the liquid crystal panel (2) is 45°-135° inclusive.

Description

液晶表示装置Liquid crystal display
本発明は、液晶表示装置に関する。より詳しくは、一対の円偏光板を備える垂直配向モードの液晶表示装置に好適な液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device suitable for a liquid crystal display device in a vertical alignment mode provided with a pair of circularly polarizing plates.
液晶表示装置は、薄型、軽量及び低消費電力といった特長を活かし、幅広い分野で用いられている。液晶表示装置は、通常、一対の偏光子と、一対の偏光子間に設けられた液晶セルとを備えており、垂直配向(VA)モードや水平配向モード等の種々の表示モードが開発されている。 Liquid crystal display devices are used in a wide range of fields, taking advantage of features such as thinness, lightness, and low power consumption. A liquid crystal display device generally includes a pair of polarizers and a liquid crystal cell provided between the pair of polarizers, and various display modes such as vertical alignment (VA) mode and horizontal alignment mode are developed. There is.
例えば、特許文献1には、様々な方向から見ても均質で高いコントラストを得ることができる液晶表示装置として、偏光子A及び偏光子Bからなる一対の偏光子と、一対の偏光子の間に配置される垂直配向型の液晶セルとを備える液晶表示装置であって、液晶セルと偏光子Aとの間及び液晶セルと偏光子Bとの間に下記式(1)で表されるNzの値が2.0を超える1/4λ位相差板をそれぞれ備え、1/4λ位相差板の面内遅相軸は近接する偏光子の透過軸と略45°の位置関係にあり、偏光子Aとそれに近接する1/4λ位相差板との間及び偏光子Bとそれに近接する1/4λ位相差板との間の少なくとも一方には、固有複屈折値が負である材料層からなり、かつその面内遅相軸が、近接する偏光子の吸収軸と略平行又は略直交の位置関係にある光学異方体を備える液晶表示装置が開示されている。
Nz=(nx-nz)/(nx-ny)・・・(1)
For example, in Patent Document 1, as a liquid crystal display device capable of obtaining uniform high contrast even when viewed from various directions, a pair of polarizers consisting of polarizer A and polarizer B and a pair of polarizers are disclosed. The liquid crystal display device is provided with a liquid crystal cell of the vertical alignment type disposed in the above, and Nz represented by the following formula (1) between the liquid crystal cell and the polarizer A and between the liquid crystal cell and the polarizer B: Retarders each having a value of more than 2.0, and the in-plane slow axis of the quarter-wave retarder has a positional relationship of approximately 45 ° with the transmission axis of the adjacent polarizer, At least one of A and the adjacent 1⁄4 λ retardation plate and / or between the polarizer B and the adjacent 1⁄4 λ retardation plate comprises a material layer having a negative intrinsic birefringence value, And the in-plane slow axis is in a positional relationship substantially parallel or nearly orthogonal to the absorption axis of the adjacent polarizer A liquid crystal display device comprising an optical anisotropic body is disclosed.
Nz = (nx-nz) / (nx-ny) (1)
また、特許文献2には、表示品位の劣化を抑制することが可能な液晶表示装置として、一対の第1短辺及び一対の第1長辺を有する第1基板と、前記第1基板に対向配置された第2基板と、前記第1基板と前記第2基板との間に保持された液晶層と、を備え、アクティブエリアに画像を表示する液晶表示パネルと、前記第1基板の外面側に配置され、前記第1短辺よりも長い一対の第2短辺と、一対の第2長辺と、前記第2短辺とのなす角度a1が前記第2長辺とのなす角度b1よりも小さい第1吸収軸と、を有する第1偏光板と、前記第2基板の外面側に配置され、第2吸収軸を有する第2偏光板と、を備えた液晶表示装置が開示されている。 Further, according to Patent Document 2, as a liquid crystal display device capable of suppressing deterioration of display quality, a first substrate having a pair of first short sides and a pair of first long sides is opposed to the first substrate. A liquid crystal display panel comprising a second substrate disposed, a liquid crystal layer held between the first substrate and the second substrate, and displaying an image in an active area, and an outer surface side of the first substrate , And the angle a1 formed by the pair of second short sides longer than the first short side, the pair of second long sides, and the second short side is an angle b1 formed by the second long side A liquid crystal display comprising a first polarizing plate having a small first absorption axis and a second polarizing plate disposed on the outer surface side of the second substrate and having a second absorption axis is disclosed. .
また、特許文献3には、パネルの反りを防止して、表示性能の低下を抑えた画像表示装置として、ガラス又は樹脂からなる基板と、前記基板の視認側に設けられた表側積層体と、前記基板の裏側に設けられた裏側積層体と、を有する長方形のパネルを備えた画像表示装置であって、前記表側積層体が偏光子を有し、前記偏光子の吸収軸が前記パネルの短辺方向と平行である画像表示装置が開示されている。 Further, in Patent Document 3, a substrate made of glass or resin and a front-side laminate provided on the viewing side of the substrate are provided as an image display device in which the panel is prevented from warping and the decrease in display performance is suppressed. It is an image display apparatus provided with the rectangular panel which has the back side laminated body provided in the back side of the said board | substrate, Comprising: The said front side laminated body has a polarizer, The absorption axis of the said polarizer is the short of the said panel An image display device parallel to the side direction is disclosed.
また、特許文献4には、湿熱環境下に置かれた後でも液晶パネルの反りが小さく、表示ムラの少ない液晶表示装置として、液晶セルの視認側に第一の粘着剤層を介して前面側偏光板を積層し、反対側には第二の粘着剤層を介して背面側偏光板を積層し、その外側にバックライトユニットを配置した液晶表示装置であって、背面側偏光板を、バックライトユニット側から、第一の透明保護フィルム/偏光フィルム/第二の透明保護フィルム/第三の粘着剤層/位相差フィルムの層構成とし、位相差フィルムを、スチレン系樹脂からなるコア層の両面にゴム粒子含有アクリル系樹脂組成物からなるスキン層を形成した3層構造とし、第一の粘着剤層、第二の粘着剤層及び第三の粘着剤層をいずれも、50℃における貯蔵弾性率が0.01MPa以上、0.1MPa以下のもので構成する液晶表示装置が開示されている。 In addition, according to Patent Document 4, the liquid crystal panel has a small warp even after being placed in a moist heat environment, and as a liquid crystal display device with little display unevenness, the front side with the first adhesive layer on the viewer side of the liquid crystal cell It is a liquid crystal display in which a polarizing plate is laminated, a back side polarizing plate is laminated on the opposite side via a second adhesive layer, and a backlight unit is disposed outside the back side polarizing plate. Layer structure of the first transparent protective film / polarizing film / second transparent protective film / third adhesive layer / retardation film from the light unit side, and the retardation film being a core layer made of a styrenic resin It is considered as the 3 layer structure which formed the skin layer which consists of a rubber particle content acrylic resin composition on both sides, and the first pressure sensitive adhesive layer, the second pressure sensitive adhesive layer and the third pressure sensitive adhesive layer are all stored at 50 ° C. Elastic modulus is 0.01MPa or less A liquid crystal display device is disclosed which consists of the 0.1MPa or less.
また、特許文献5には、液晶表示パネルに貼り付けられている偏光板が温度上昇した場合に、偏光板が1軸延伸方向に縮むことによって液晶表示パネルが湾曲する現象を防止するために、TFT基板も対向基板も薄く形成され、フレキシブルディスプレイとなっており、対向基板と偏光板とが粘着材によって1点で固定されている液晶表示パネルが開示されている。 Further, in Patent Document 5, in order to prevent a phenomenon in which the liquid crystal display panel is bent by the shrinkage of the polarizing plate in the uniaxial stretching direction when the temperature of the polarizing plate attached to the liquid crystal display panel rises, There is disclosed a liquid crystal display panel in which a TFT substrate and an opposite substrate are formed thin, which is a flexible display, and the opposite substrate and a polarizing plate are fixed at one point by an adhesive.
また、特許文献6には、偏光板の剥がれを改善する液晶表示装置として、液晶層をガラス基板内に封入した四辺形の表示面を有する液晶セルと、表示セルの両面に粘着層により貼着けられた偏光板とを具備する液晶表示装置において、表示面において吸収軸方向の最大寸法が大きい偏光子を有する偏光板は、吸収軸方向の最大寸法が小さい偏光子を有する偏光板よりも、ガラス基板密着力の高い粘着層で貼着けられている液晶表示装置が開示されている。 Further, in Patent Document 6, as a liquid crystal display device for improving peeling of a polarizing plate, a liquid crystal cell having a quadrilateral display surface in which a liquid crystal layer is enclosed in a glass substrate and an adhesive layer on both sides of the display cell In the liquid crystal display device including the above-mentioned polarizing plate, the polarizing plate having a polarizer having a large maximum dimension in the absorption axis direction on the display surface is more glass than the polarizing plate having a polarizer having a smaller maximum dimension in the absorption axis direction. A liquid crystal display device is disclosed which is adhered by an adhesive layer having high adhesion to a substrate.
特開2009-37049号公報JP, 2009-37049, A 特開2014-89398号公報JP, 2014-89398, A 特開2007-133350号公報JP 2007-133350 A 特開2011-248178号公報JP 2011-248178 A 特開2011-107391号公報JP, 2011-107391, A 特開2013-109250号公報JP, 2013-109250, A
近年、液晶表示装置、特に車載用では、高温耐久性が要求されているのに対して、特許文献1に記載の液晶表示装置のように、円偏光板として、λ/4位相差板に加えて他の光学補償層(光学補償フィルム)を使用した場合、画像を表示する表示領域の一部領域において黒表示の白浮き(黒ムラ)が確認されることがあった。 In recent years, high-temperature durability is required for liquid crystal display devices, particularly for vehicles, but as in the liquid crystal display device described in Patent Document 1, as a circularly polarizing plate, in addition to a λ / 4 retardation plate When another optical compensation layer (optical compensation film) is used, whitening (black unevenness) of black display may be confirmed in a partial region of the display region where an image is displayed.
図13は、本発明者らが検討を行った比較形態1に係る液晶表示装置の模式図であり、(a)は、平面図であり、(b)は、断面図である。
本発明者らの検討により、黒ムラの原因は、一対の偏光子間の構成要素、例えば光学補償フィルム、λ/4位相差板等の光学補償層や、液晶セルのガラス基板等の特性変化であることがわかった。ガラスやプラスチック等の固形材料は、応力が付加されると位相差が発現して複屈折性を持つことが知られている(=光弾性)。また、延伸加工されたフィルムは、高温状態で延伸方向に熱収縮することが知られているが、二色性染料やヨウ素等の二色性物質(二色性色素)を配向した偏光子は、ポリビニルアルコール系フィルム等の親水性ポリマーフィルムを吸収軸方向に延伸して作製する方法が一般的であり、したがって、偏光子は、高温下で吸収軸方向に収縮する。それに対して、ガラスは収縮しないため、偏光子とガラス基板との間のフィルムには応力が発生し、光学設計と異なる複屈折性が発現する。この特性変化(光学パラメータの変化)は、図13に示すとおり、λ/4位相差板や光学補償フィルムといった光学補償層が多く配置された側の表偏光子の吸収軸方向における表示領域の両側で特に顕著になることがわかった。ただし、光弾性による複屈折性には方向があるため、必ずしも複屈折性が大きいところで黒表示の白浮きが生じるわけではなく、パネルや偏光板(光学補償層含む)の光学設計によってその位置は異なる。しかしながら、パネル全体で特性に差が大きくなることで、パネルの一部に白浮きが発生し、黒ムラとなる。
FIG. 13 is a schematic view of a liquid crystal display device according to Comparative Embodiment 1 studied by the present inventors, (a) is a plan view, and (b) is a cross-sectional view.
According to the study of the present inventors, the cause of the black unevenness is a change in characteristics of a component between a pair of polarizers, for example, an optical compensation film, an optical compensation layer such as λ / 4 retardation plate, a glass substrate of a liquid crystal cell It turned out that it was. It is known that solid materials such as glass and plastic exhibit birefringence when a stress is applied (= photoelasticity). In addition, it is known that a stretched film thermally shrinks in the stretching direction in a high temperature state, but a polarizer in which a dichroic substance (dichroic dye) such as a dichroic dye or iodine is oriented is Generally, a method of producing a hydrophilic polymer film such as a polyvinyl alcohol-based film by stretching it in the absorption axis direction is generally used, and hence the polarizer shrinks in the absorption axis direction at high temperature. On the other hand, since the glass does not shrink, stress is generated in the film between the polarizer and the glass substrate, and birefringence different from the optical design is developed. This characteristic change (change in optical parameters) is, as shown in FIG. 13, the both sides of the display area in the absorption axis direction of the front polarizer on the side on which many optical compensation layers such as λ / 4 retardation plates and optical compensation films are arranged. It turned out that it becomes especially remarkable. However, since there is a direction in birefringence due to photoelasticity, whitening of the black display does not necessarily occur where birefringence is large, and the position is determined by the optical design of the panel or polarizing plate (including the optical compensation layer). It is different. However, due to the large difference in characteristics across the panel, whitening occurs on a part of the panel, resulting in black unevenness.
すなわち、黒ムラ(黒画面輝度分布)発生のメカニズは、以下の通りである。
1.高熱等の要因により、偏光子が吸収軸方向に収縮する。
2.一方、液晶セルのガラスは収縮しないため、収縮しようとする偏光子とガラスと(それらの間の全ての材料と)の間で応力が発生する。
3.応力が加えられた材料は光弾性により光学パラメータ(光学異方性の数値)が変化する。
4.応力は面内で一定ではないため、パネル面内で光学パラメータの差が大きくなる。
5.黒ベタ画面にしたときに、場所ごとの透過率は光学パラメータの差により異なる。すなわち一部領域で黒表示の白浮き(透過率の増加)が発生し、ムラとして観察される。
That is, the mechanism of the occurrence of the black unevenness (black screen luminance distribution) is as follows.
1. Due to factors such as high heat, the polarizer shrinks in the absorption axis direction.
2. On the other hand, since the glass of the liquid crystal cell does not shrink, stress is generated between the polarizer and the glass to be shrunk (with all the materials between them).
3. The material to which stress is applied changes its optical parameter (numerical value of optical anisotropy) by photoelasticity.
4. Since the stress is not constant in the plane, the difference in optical parameters becomes large in the panel plane.
5. When a black solid screen is used, the transmittance of each place differs depending on the difference in optical parameters. That is, whitening of the black display (increase in transmittance) occurs in a partial area and is observed as unevenness.
なお、特許文献2では、偏光板が高温環境により、吸収軸方向に収縮することに着目し、偏光板端が表示領域に近づきすぎることによる光漏れを低減するための軸方向や大きさを提案している。これによれば、偏光板が縮小することによる端部の光漏れは防止できるが、偏光板の収縮自体は発生するため、上述の光弾性効果による黒ムラは防止できないと考えられる。 Patent Document 2 focuses on the fact that the polarizing plate shrinks in the absorption axis direction due to a high temperature environment, and proposes an axial direction and a size for reducing light leakage due to the polarizing plate end coming too close to the display region. doing. According to this, although it is possible to prevent light leakage at the end portion due to the reduction of the polarizing plate, the contraction itself of the polarizing plate occurs, so it is considered that the black unevenness due to the above photoelastic effect can not be prevented.
また、特許文献3~6には、上述した黒ムラの課題と、その解決手段について開示も示唆もされていない。 Further, Patent Documents 3 to 6 neither disclose nor suggest the problem of the above-described black unevenness and the means for solving the same.
本発明は、上記現状に鑑みてなされたものであり、高温下に置かれた後でも黒ムラの発生を抑制可能な液晶表示装置を提供することを目的とするものである。 The present invention has been made in view of the above-mentioned present situation, and it is an object of the present invention to provide a liquid crystal display device capable of suppressing the occurrence of black unevenness even after being placed under high temperature.
本発明者らは、高温下に置かれた後でも黒ムラの発生を抑制可能な液晶表示装置について種々検討したところ、偏光子の熱収縮に着目した。そして、延伸により製作された偏光子の熱収縮自体を避けるのは困難であるが、収縮は、その吸収軸方向に発生することから、偏光子の吸収軸が偏光子の長辺に対して平行に近いほど、収縮する距離の大きい部分が発生することになり、その部分では、光学補償層に発生する応力も大きくなり、光弾性効果による位相差変化も大きくなるため、パネル面内での光学パラメータの差が大きくなり、白浮きが大きくなる部分が発生するためにムラが顕著になることを見いだした。また、液晶パネルを長方形状とした場合、偏光子の吸収軸を、液晶パネルの各長辺に対して垂直に近づけることによって、収縮する距離が大きい部分の発生を抑制でき、パネル面内での光弾性効果による光学補償層の位相差変化を小さくしてムラを軽減できることを見いだした。しかしながら、その一方で、液晶表示装置として一般的なノーマリブラックモードにおいては、基本的に液晶セルの観察面側と背面側の偏光子の吸収軸は直交することが多い(そうでない場合は一般的にコントラストの低下を伴う)ため、観察面側と背面側の各々の偏光子の吸収軸を液晶パネルの長辺方向に対して垂直に配置することは困難である。そこで、更に検討したところ、複数の光学補償層を使う液晶表示装置の場合に、光学補償層の層数を液晶セルの観察面側と背面側とで非対称にした上で、光学補償層が多い側の偏光子の吸収軸を液晶パネルの各長辺に対して垂直に近づけることによって、より具体的には、上記偏光子の吸収軸と、上記液晶パネルの各長辺とのなす角度を45°以上、135°以下とすることにより、液晶表示装置への高温付加による黒ムラを低減できることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The inventors of the present invention variously examined a liquid crystal display device capable of suppressing the occurrence of black unevenness even after being placed under high temperature, and focused attention on heat shrinkage of a polarizer. And although it is difficult to avoid the heat contraction itself of the polarizer manufactured by drawing, since the contraction occurs in the absorption axis direction, the absorption axis of the polarizer is parallel to the long side of the polarizer The closer to the point, the larger the contraction distance, the larger the stress generated in the optical compensation layer and the larger the change in retardation due to the photoelastic effect. It was found that the unevenness became remarkable because the difference of the parameter became large and the part where the whitening became large occurred. When the liquid crystal panel has a rectangular shape, the absorption axis of the polarizer can be made perpendicular to each long side of the liquid crystal panel, thereby suppressing the occurrence of a part where the contraction distance is large, and the panel surface It has been found that unevenness can be reduced by reducing the change in retardation of the optical compensation layer due to the photoelastic effect. However, on the other hand, in the normally black mode generally used as a liquid crystal display device, basically, the absorption axes of the polarizers on the viewing surface side and the back surface side of the liquid crystal cell are often orthogonal to each other. It is difficult to arrange the absorption axes of the respective polarizers on the viewing surface side and the rear surface side perpendicularly to the long side direction of the liquid crystal panel because the contrast is accompanied by a drop in the contrast. Therefore, as a result of further investigation, in the case of a liquid crystal display using a plurality of optical compensation layers, the number of optical compensation layers is asymmetrical between the viewing surface side and the back side of the liquid crystal cell, and then there are many optical compensation layers. More specifically, by making the absorption axis of the side polarizer perpendicular to each long side of the liquid crystal panel, more specifically, the angle formed by the absorption axis of the polarizer and each long side of the liquid crystal panel is 45 By making the temperature more than 135 °, it is found that black unevenness due to high temperature addition to the liquid crystal display device can be reduced, and it is thought that the above problem can be solved remarkably, and the present invention is achieved.
本発明の一態様は、平面視長方形状の液晶パネルを備える液晶表示装置であって、前記液晶パネルは、第1の偏光子、2以上の光学補償層、液晶セル、1以上の光学補償層及び第2の偏光子をこの順に含み、前記第1の偏光子及び前記液晶セルの間に設けられる光学補償層の総数は、前記第2の偏光子及び前記液晶セルの間に設けられる光学補償層の総数よりも多く、前記第1の偏光子の吸収軸と、前記液晶パネルの各長辺とのなす角度は、45°以上、135°以下であってもよい。 One embodiment of the present invention is a liquid crystal display device including a liquid crystal panel having a rectangular shape in plan view, wherein the liquid crystal panel includes a first polarizer, two or more optical compensation layers, a liquid crystal cell, and one or more optical compensation layers And a second polarizer in this order, and the total number of optical compensation layers provided between the first polarizer and the liquid crystal cell is an optical compensation provided between the second polarizer and the liquid crystal cell The angle between the absorption axis of the first polarizer and each long side of the liquid crystal panel may be 45 ° or more and 135 ° or less, which is larger than the total number of layers.
前記角度は、60°以上、120°以下であってもよい。 The angle may be 60 degrees or more and 120 degrees or less.
前記第1の偏光子及び前記液晶セルの間に設けられる前記光学補償層は、λ/4位相差板を含み、前記第2の偏光子及び前記液晶セルの間に設けられる前記光学補償層は、λ/4位相差板を含んでもよい。 The optical compensation layer provided between the first polarizer and the liquid crystal cell includes a λ / 4 retardation plate, and the optical compensation layer provided between the second polarizer and the liquid crystal cell is , Λ / 4 retardation plates may be included.
前記第1の偏光子及び前記液晶セルの間に設けられる前記光学補償層は、nx>nz>nyの屈折率の関係を有する光学補償層を含んでもよい。 The optical compensation layer provided between the first polarizer and the liquid crystal cell may include an optical compensation layer having a refractive index relationship of nx> nz> ny.
前記第1の偏光子及び前記液晶セルの間に設けられる前記光学補償層は、nx=ny>nzの屈折率の関係を有する光学補償層を更に含んでもよい。 The optical compensation layer provided between the first polarizer and the liquid crystal cell may further include an optical compensation layer having a refractive index relationship of nx = ny> nz.
前記液晶表示装置の表示モードは、垂直配向モードであってもよい。 The display mode of the liquid crystal display may be a vertical alignment mode.
以上に示した本発明の各態様は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Each aspect of the present invention shown above may be combined suitably in the range which does not deviate from the gist of the present invention.
本発明によれば、高温下に置かれた後でも黒ムラの発生を抑制可能な液晶表示装置を実現することができる。 According to the present invention, it is possible to realize a liquid crystal display device capable of suppressing the occurrence of black unevenness even after being placed under high temperature.
実施形態1に係る液晶表示装置の平面模式図である。FIG. 1 is a schematic plan view of a liquid crystal display device according to Embodiment 1. 実施形態1に係る液晶表示装置の断面模式図である。FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1. 実施形態1の変形形態に係る液晶表示装置の断面模式図である。FIG. 5 is a schematic cross-sectional view of a liquid crystal display device according to a modification of Embodiment 1. 実施形態1の別の変形形態に係る液晶表示装置の断面模式図である。FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to another modification of Embodiment 1. 実施例1に係る液晶表示装置の断面模式図である。FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Example 1. 比較例1に係る液晶表示装置の断面模式図である。FIG. 5 is a schematic cross-sectional view of a liquid crystal display device according to Comparative Example 1; 実施例1に係る液晶表示装置の別の模式図であり、(a)は、偏光子の吸収軸と液晶パネルの長辺との関係を示す平面図であり、(b)は、光学補償層の配置と、偏光子の収縮具合とを説明するための断面図である。It is another schematic diagram of the liquid crystal display device which concerns on Example 1, (a) is a top view which shows the relationship between the absorption axis of a polarizer, and the long side of a liquid crystal panel, (b) is an optical compensation layer. It is sectional drawing for demonstrating arrangement | positioning of and the shrinkage condition of a polarizer. 比較例1に係る液晶表示装置の別の模式図であり、(a)は、偏光子の吸収軸と液晶パネルの長辺との関係を示す平面図であり、(b)は、光学補償層の配置と、偏光子の収縮具合とを説明するための断面図である。It is another schematic diagram of the liquid crystal display device which concerns on the comparative example 1, (a) is a top view which shows the relationship between the absorption axis of a polarizer and the long side of a liquid crystal panel, (b) is an optical compensation layer. It is sectional drawing for demonstrating arrangement | positioning of and the shrinkage condition of a polarizer. 実施例2に係る液晶表示装置の断面模式図である。FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to Example 2. 実施例2に係る液晶表示装置の別の模式図であり、(a)は、偏光子の吸収軸と液晶パネルの長辺との関係を示す平面図であり、(b)は、光学補償層の配置と、偏光子の収縮具合とを説明するための断面図である。It is another schematic diagram of the liquid crystal display device which concerns on Example 2, (a) is a top view which shows the relationship between the absorption axis of a polarizer, and the long side of a liquid crystal panel, (b) is an optical compensation layer. It is sectional drawing for demonstrating arrangement | positioning of and the shrinkage condition of a polarizer. 実施例3に係る液晶表示装置の断面模式図である。FIG. 7 is a schematic cross-sectional view of a liquid crystal display device according to Example 3. 実施例3に係る液晶表示装置の別の模式図であり、(a)は、偏光子の吸収軸と液晶パネルの長辺との関係を示す平面図であり、(b)は、光学補償層の配置と、偏光子の収縮具合とを説明するための断面図である。It is another schematic diagram of the liquid crystal display device which concerns on Example 3, (a) is a top view which shows the relationship between the absorption axis of a polarizer, and the long side of a liquid crystal panel, (b) is an optical compensation layer. It is sectional drawing for demonstrating arrangement | positioning of and the shrinkage condition of a polarizer. 本発明者らが検討を行った比較形態1に係る液晶表示装置の模式図であり、(a)は、平面図であり、(b)は、断面図である。It is a schematic diagram of the liquid crystal display device which concerns on the comparison form 1 which the present inventors examined, (a) is a top view, (b) is sectional drawing.
以下、本発明の実施形態について説明する。本発明は、以下の実施形態に記載された内容に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the contents described in the following embodiments, and design changes can be made as appropriate as long as the configuration of the present invention is satisfied.
<用語および記号の定義>
本明細書における用語及び記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は、面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は、面内で遅相軸と直交する方向の屈折率であり、「nz」は、厚み方向の屈折率である。
(2)面内位相差(Re)
面内位相差(Re)は、23℃、特に明記しなければ波長550nmにおける層(フィルム)の面内位相差値を言う。Reは、層(フィルム)の厚みをd(nm)としたとき、Re=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
厚み方向の位相差(Rth)は、23℃、特に明記しなければ波長550nmにおける層(フィルム)の厚み方向の位相差値を言う。Rthは、層(フィルム)の厚みをd(nm)としたとき、Rth={(nx+ny)/2-nz}×dによって求められる。
(4)Nz係数
Nz係数は、Nz=(nx-nz)/(nx-ny)によって求められる。
(5)光学補償層
光学補償層は、23℃、特に明記しなければ波長550nmの光に対して、15nm以上の面内位相差Reと、+55nm以上又は-15nm以下の厚み方向の位相差Rthとの少なくとも一方を付与する層を言い、その機能及び光学的性能は、特に限定されない。すなわち、光学補償層とは、15nm≦Re、かつ、Rth≦-15nm又は+55nm≦Rthを満たす層を言う。他方、Re<15nm、かつ、-15nm<Rth<+55nmを満たす層は、光学異方性を持たない層とも言う。
(6)観察面側及び背面側
観察面側は、液晶表示装置の画面(表示面)に対してより近い側を意味し、背面側は、液晶表示装置の画面(表示面)に対してより遠い側を意味する。
<Definition of terms and symbols>
The definitions of terms and symbols in the present specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the refractive index in the in-plane direction orthogonal to the slow axis "Nz" is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
The in-plane retardation (Re) refers to the in-plane retardation value of a layer (film) at a wavelength of 550 nm at 23 ° C., unless otherwise specified. Re is obtained by Re = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Retardation in the thickness direction (Rth)
The thickness direction retardation (Rth) refers to the thickness direction retardation value of a layer (film) at a wavelength of 550 nm unless otherwise specified. Rth is determined by Rth = {(nx + ny) / 2−nz} × d, where d (nm) is the thickness of the layer (film).
(4) Nz Coefficient The Nz coefficient is obtained by Nz = (nx−nz) / (nx−ny).
(5) Optical compensation layer The optical compensation layer has an in-plane retardation Re of 15 nm or more and a retardation Rth in the thickness direction of +55 nm or more or -15 nm or less for light of wavelength 550 nm unless otherwise specified. And the function and optical performance thereof are not particularly limited. That is, the optical compensation layer is a layer satisfying 15 nm ≦ Re and Rth ≦ −15 nm or +55 nm ≦ Rth. On the other hand, a layer satisfying Re <15 nm and −15 nm <Rth <+55 nm is also referred to as a layer having no optical anisotropy.
(6) The viewing surface side and the rear surface viewing surface side mean the side closer to the screen (display surface) of the liquid crystal display device, and the rear surface side is more about the screen (display surface) of the liquid crystal display device It means the far side.
<実施形態1>
図1は、実施形態1に係る液晶表示装置の平面模式図である。図2は、実施形態1に係る液晶表示装置の断面模式図である。
図1に示すように、本実施形態に係る液晶表示装置1は、一対の長辺2aと一対の短辺2bとを含む平面視長方形状の液晶パネル2を備えている。液晶パネル2は、その形状に対応した長方形状の表示領域2cを有している。表示領域2cには複数の画素(図示せず)がマトリクス状に配列されており、表示領域2cにて画像が表示される。
First Embodiment
FIG. 1 is a schematic plan view of the liquid crystal display device according to the first embodiment. FIG. 2 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
As shown in FIG. 1, the liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2 having a rectangular shape in plan view including a pair of long sides 2a and a pair of short sides 2b. The liquid crystal panel 2 has a rectangular display area 2c corresponding to the shape. A plurality of pixels (not shown) are arranged in a matrix in the display area 2c, and an image is displayed in the display area 2c.
液晶表示装置1は、透過型又は半透過型(反射透過両用型)の液晶表示装置であり、図2に示すように、液晶パネル2と、液晶パネル2の背面側に配置されたバックライト(図示せず)とを備え、液晶パネル2は、第1の偏光子10と、2層以上の光学補償層11と、液晶セル30と、1層以上の光学補償層21と、第2の偏光子20とを観察面側からこの順に備えている。ただし、第1の偏光子10及び液晶セル30の間に設けられる全ての光学補償層11の数(層数)は、第2の偏光子20及び前記液晶セル30の間に設けられる全ての光学補償層21の数(層数)よりも多くなっている。図1に示したように、これらの部材も全て平面視長方形状であり、第1の偏光子10、光学補償層11、光学補償層21及び第2の偏光子20は、表示領域2cを少なくとも覆うように配置されている。 The liquid crystal display device 1 is a transmissive or semi-transmissive (reflective / transmissive) liquid crystal display device, and as shown in FIG. 2, a liquid crystal panel 2 and a back light disposed on the back side of the liquid crystal panel 2 The liquid crystal panel 2 includes a first polarizer 10, an optical compensation layer 11 having two or more layers, a liquid crystal cell 30, an optical compensation layer 21 having one or more layers, and a second polarization. The child 20 is provided in this order from the observation surface side. However, the number (the number of layers) of all the optical compensation layers 11 provided between the first polarizer 10 and the liquid crystal cell 30 is the same as all the optical components provided between the second polarizer 20 and the liquid crystal cell 30. The number is larger than the number of compensation layers 21 (the number of layers). As shown in FIG. 1, all these members are also rectangular in plan view, and the first polarizer 10, the optical compensation layer 11, the optical compensation layer 21 and the second polarizer 20 at least have the display area 2c. It is arranged to cover.
液晶表示装置1は、電圧無印加時に黒表示を行うノーマリブラックモードの液晶表示装置であり、コントラストの観点から、偏光子10及び20は、クロスニコルに配置されており、第1の偏光子10の吸収軸10a及び第2の偏光子20の吸収軸20aは、互いに実質的に直交している。より具体的には、2つの軸のなす角度(絶対値)が90±2°の範囲内であり、好ましくは90±0.6°の範囲内であり、特に好ましくは90°(完全に直交)である。また、偏光子10及び20はいずれも、通常、1軸延伸加工されたフィルムである1軸延伸フィルムを含んで構成されており、それぞれ、延伸方向に吸収軸10a及び20aを有している。したがって、偏光子10及び20を含む液晶表示装置1は、高温下に置かれると、上述のように偏光子10及び20の吸収軸方向における収縮に起因して、光学補償層11及び21に応力が発生し、特性変化を生じて黒ムラが発生することが懸念される。 The liquid crystal display device 1 is a normally black mode liquid crystal display device which performs black display when no voltage is applied. From the viewpoint of contrast, the polarizers 10 and 20 are arranged in crossed nicols, and the first polarizer The ten absorption axes 10a and the absorption axes 20a of the second polarizer 20 are substantially orthogonal to each other. More specifically, the angle (absolute value) between the two axes is in the range of 90 ± 2 °, preferably in the range of 90 ± 0.6 °, and particularly preferably 90 ° (completely orthogonal ). Further, each of the polarizers 10 and 20 generally includes a uniaxially stretched film which is a uniaxially stretched film, and has absorption axes 10a and 20a in the stretching direction, respectively. Therefore, when the liquid crystal display device 1 including the polarizers 10 and 20 is placed at high temperature, stress is applied to the optical compensation layers 11 and 21 due to the contraction in the absorption axis direction of the polarizers 10 and 20 as described above. It is apprehended that black spots may occur due to characteristic changes.
しかしながら、本実施形態では、第1の偏光子10、すなわち、より多くの光学補償層11に隣接する偏光子の吸収軸10aと、液晶パネル2の各長辺2aとのなす角度(絶対値)αを45°以上、135°以下に設定している。これにより、高温下における第1の偏光子10の熱収縮量を小さくでき、多くの光学補償層11に生じる応力を小さくできるため、光学補償層11の光学パラメータの設計値からのズレを小さくすることができる。他方、第2の偏光子20、すなわち、より少ない光学補償層21に隣接する偏光子の吸収軸20aは、液晶パネル2の各長辺2aに対して平行に近い方向となり、高温下における第2の偏光子20の熱収縮量は大きくなるが、第2の偏光子20に隣接する光学補償層21は第1の偏光子10の光学補償層11よりも少ないため、光学補償層21の光学パラメータの設計値からのズレの影響は、相対的に小さい。以上より、液晶表示装置1は、高温下に置かれた後でも(もちろん高温下にある時も)、黒ムラの発生を抑制することができる。 However, in the present embodiment, the angle (absolute value) between the absorption axis 10 a of the first polarizer 10, that is, the polarizer adjacent to more optical compensation layers 11 and each long side 2 a of the liquid crystal panel 2. α is set to 45 ° or more and 135 ° or less. As a result, the thermal contraction amount of the first polarizer 10 at high temperature can be reduced, and the stress generated in many optical compensation layers 11 can be reduced, so that the deviation of the optical parameters of the optical compensation layer 11 from the design value is reduced be able to. On the other hand, the absorption axis 20 a of the second polarizer 20, that is, the polarizer adjacent to the less optical compensation layer 21 is in a direction close to parallel to each long side 2 a of the liquid crystal panel 2. Of the optical compensation layer 21 adjacent to the second polarizer 20 is smaller than the optical compensation layer 11 of the first polarizer 10, the optical parameters of the optical compensation layer 21 are increased. The influence of deviation from the design value of is relatively small. As described above, the liquid crystal display device 1 can suppress the occurrence of the black unevenness even after being placed under high temperature (of course also under high temperature).
図3は、実施形態1の変形形態に係る液晶表示装置の断面模式図である。
液晶セル30の観察面側と背面側とで光学補償層の枚数が非対称であれば、上述の黒ムラ抑制効果を奏することが可能である。したがって、図3に示すように、液晶パネル2は、第1の偏光子10と、光学補償層11と、液晶セル30と、光学補償層21と、第2の偏光子20とを背面側からこの順に備えていてもよい。この場合も、図1に示した場合と同様に、第1の偏光子10、すなわち、より多くの光学補償層11に隣接する偏光子の吸収軸10aと、液晶パネル2の各長辺2aとのなす角度αを45°以上、135°以下に設定されることから、上述の黒ムラ抑制効果を発揮することができる。
FIG. 3 is a schematic cross-sectional view of a liquid crystal display device according to a modification of Embodiment 1.
If the number of optical compensation layers is asymmetrical on the viewing surface side and the back surface side of the liquid crystal cell 30, it is possible to exhibit the above-described black unevenness suppressing effect. Therefore, as shown in FIG. 3, the liquid crystal panel 2 includes the first polarizer 10, the optical compensation layer 11, the liquid crystal cell 30, the optical compensation layer 21, and the second polarizer 20 from the back side. It may be provided in this order. Also in this case, as in the case shown in FIG. 1, the absorption axis 10 a of the first polarizer 10, that is, the polarizer adjacent to more optical compensation layers 11 and each long side 2 a of the liquid crystal panel 2 Is set to 45 degrees or more and 135 degrees or less, the above-described black unevenness suppressing effect can be exhibited.
上記角度(絶対値)αは、45°以上、135°以下であれば上記効果を奏することが可能であるが、好ましくは60°以上、120°以下であり、特に好ましくは90°(完全に直交)である。 If the angle (absolute value) α is 45 ° or more and 135 ° or less, the above effect can be achieved, but preferably 60 ° or more and 120 ° or less, and particularly preferably 90 ° (completely Orthogonal).
図4は、実施形態1の別の変形形態に係る液晶表示装置の断面模式図である。
図2及び3ではいずれも、液晶セル30の両側に1層の光学補償層及び2層の光学補償層を設けた場合について図示しているが、液晶セル30の両側に配置される光学補償層の数は、観察面側の光学補償層の数と背面側の光学補償層の数とが異なる限り特に限定されず、例えば、液晶セル30の観察面側及び背面側に、図4に示すように1層の光学補償層21及び3層の光学補償層11を設けてもよいし、2層の光学補償層及び3層の光学補償層を設けてもよい。なお、これらの場合も、より多い光学補償層11は、液晶セル30の観察面側及び背面側のどちらに配置してもよい。より多い光学補償層11の総数は、信頼性とコストの面からは2~5(より好ましくは2~3)が好ましいが、要求する性能に応じて設定することができる。より少ない光学補償層21の総数は、やはり信頼性とコストの面からは1~4(より好ましくは1~2)が好ましいが、要求する性能に応じて設定することができる。また、より多い光学補償層11の総数とより少ない光学補償層21との差も特に限定されないが、好ましくは1~3であり、より好ましくは1~2である。以下、各構成について更に説明する。
FIG. 4 is a schematic cross-sectional view of a liquid crystal display device according to another modification of the first embodiment.
FIGS. 2 and 3 illustrate the case where one optical compensation layer and two optical compensation layers are provided on both sides of the liquid crystal cell 30, but the optical compensation layers disposed on both sides of the liquid crystal cell 30 are illustrated. The number of is not particularly limited as long as the number of optical compensation layers on the viewing surface side and the number of optical compensation layers on the back surface are different, for example, as shown in FIG. One optical compensation layer 21 and three optical compensation layers 11 may be provided, or two optical compensation layers and three optical compensation layers may be provided. In these cases, more optical compensation layers 11 may be disposed on either the viewing surface side or the back surface side of the liquid crystal cell 30. The total number of the larger number of optical compensation layers 11 is preferably 2 to 5 (more preferably 2 to 3) in terms of reliability and cost, but can be set according to the required performance. The total number of the optical compensation layers 21 is preferably 1 to 4 (more preferably 1 to 2) from the viewpoint of reliability and cost, but can be set according to the required performance. The difference between the total number of more optical compensation layers 11 and the smaller number of optical compensation layers 21 is also not particularly limited, but is preferably 1 to 3, and more preferably 1 to 2. Each configuration will be further described below.
<偏光子>
第1の偏光子10及び第2の偏光子20としては、目的に応じて任意の適切な偏光子が採用され得る。例えば、ポリビニルアルコール系フィルム(以下、PVAフィルムとも言う。)、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性ポリマーフィルムに、ヨウ素や二色性染料等の二色性物質(二色性色素)を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらのなかでも、ポリビニルアルコール系フィルムにヨウ素等の二色性物質(二色性色素)を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好ましい。これら偏光子の厚さは特に制限されないが、一般的に、5~30μm程度である。
<Polarizer>
Any appropriate polarizer may be adopted as the first polarizer 10 and the second polarizer 20 depending on the purpose. For example, a hydrophilic polymer film such as a polyvinyl alcohol-based film (hereinafter, also referred to as a PVA film), a partially formalized polyvinyl alcohol-based film, or an ethylene / vinyl acetate copolymer-based partially saponified film A film obtained by adsorbing a dichromatic substance (dichroic dye) of the above and uniaxially stretched, a dehydrated product of polyvinyl alcohol, a dehydrochlorinated product of polyvinyl chloride, and the like, and a polyene-based oriented film and the like. Among these, a polarizer obtained by adsorbing a dichroic substance (dichroic dye) such as iodine to a polyvinyl alcohol-based film and uniaxially stretching it is particularly preferable because the polarization dichroic ratio is high. The thickness of these polarizers is not particularly limited, but in general, it is about 5 to 30 μm.
ポリビニルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいても良いし、ヨウ化カリウム等の水溶液に浸漬することもできる。更に必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗しても良い。延伸は、ヨウ素で染色した後に行ってもよいし、染色しながら延伸してもよいし、延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウム等の水溶液中や水浴中でも延伸することができる。 A polarizer obtained by adsorbing iodine to a polyvinyl alcohol-based film and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching it to 3 to 7 times its original length. . If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or it may be immersed in an aqueous solution such as potassium iodide. Furthermore, if necessary, the polyvinyl alcohol-based film may be dipped in water and rinsed before dyeing. Stretching may be carried out after dyeing with iodine, may be stretched while dyeing, or may be dyed with iodine after being stretched. It can also be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
第1の偏光子10及び第2の偏光子20は、各々、観察面側及び背面側に保護層が設けられていてもよい。上記保護層は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、例えば、トリアセチルセルロース(TAC)等のセルロース系樹脂や、シクロオレフィン系樹脂等の透明樹脂等が挙げられる。なお、シクロオレフィン系樹脂については、後で詳述する。以下、トリアセチルセルロースを主成分とするフィルムをTACフィルムとも言い、シクロオレフィン系樹脂、なかでもシクロオレフィンポリマー(COP)を主成分とするフィルムをCOPフィルムとも言う。 The first polarizer 10 and the second polarizer 20 may each be provided with a protective layer on the viewing surface side and the back surface side. The protective layer is formed of any suitable film that can be used as a protective layer of a polarizer. Specific examples of the material that is the main component of the film include, for example, cellulose resins such as triacetyl cellulose (TAC), and transparent resins such as cycloolefin resins. The cycloolefin resin will be described in detail later. Hereinafter, a film having triacetyl cellulose as a main component is also referred to as a TAC film, and a film having a cycloolefin resin, in particular, a cycloolefin polymer (COP) as a main component is also referred to as a COP film.
第1の偏光子10及び/又は第2の偏光子20の液晶セル30側に保護層を設ける場合、該保護層(内側保護層)は、光学的に等方性を有することが好ましい。具体的には、内側保護層の厚み方向の位相差Rthは、好ましくは-15nmより大きく、+15nm未満、より好ましくは-10nm以上、+10nm以下、更に好ましくは-6nm以上、+6nm以下、特に好ましくは-3nm以上、+3nm以下である。内側保護層の面内位相差Reは、好ましくは0nm以上、15nm未満、より好ましくは0nm以上、10nm以下、更に好ましくは0nm以上、6nm以下、特に好ましくは0nm以上、3nm以下である。 When a protective layer is provided on the liquid crystal cell 30 side of the first polarizer 10 and / or the second polarizer 20, the protective layer (inner protective layer) preferably has optical isotropy. Specifically, the retardation Rth in the thickness direction of the inner protective layer is preferably more than -15 nm and less than +15 nm, more preferably -10 nm or more and +10 nm or less, still more preferably -6 nm or more and +6 nm or less, particularly preferably -3 nm or more and +3 nm or less. The in-plane retardation Re of the inner protective layer is preferably 0 nm or more and less than 15 nm, more preferably 0 nm or more and 10 nm or less, still more preferably 0 nm or more and 6 nm or less, and particularly preferably 0 nm or more and 3 nm or less.
また、内側保護層を別途設ける代わりに、第1の偏光子10及び第2の偏光子20の液晶セル30側のそれぞれの光学補償層11及び21を保護層として用いてもよい。 Further, instead of separately providing the inner protective layer, the optical compensation layers 11 and 21 on the liquid crystal cell 30 side of the first polarizer 10 and the second polarizer 20 may be used as the protective layer.
<光学補償層>
各光学補償層11、21としては、目的及び液晶表示装置1の表示モードに応じて任意の適切な位相差板が採用され得る。各光学補償層11、21の材料や光学的性能についても特に限定されず、例えば、ポリマーフィルムを延伸等の加工したもの、液晶性材料の配向を固定したもの、無機材料から構成される薄板等を用いることができるが、なかでもポリマーフィルムを延伸等の加工したものが好適である。
<Optical compensation layer>
Any appropriate retardation plate may be employed as each of the optical compensation layers 11 and 21 in accordance with the purpose and the display mode of the liquid crystal display device 1. The material and optical performance of each of the optical compensation layers 11 and 21 are not particularly limited, and, for example, a polymer film processed by stretching or the like, a liquid crystal material having fixed orientation, a thin plate made of an inorganic material, etc. Among them, those obtained by processing a polymer film such as stretching are preferable.
各光学補償層11、21の形成方法としては特に限定されず、ポリマーフィルムの場合、例えば溶剤キャスト法、溶融押出し法等を用いることができる。共押出し法により、複数の複屈折層を同時に形成する方法であってもよい。所望の位相差が発現してさえいれば、無延伸であってもよいし、延伸が施されていてもよい。延伸方法も特に限定されず、ロール間引張り延伸法、ロール間圧縮延伸法、テンター横一軸延伸法、縦横二軸延伸法の他、熱収縮性フィルムの収縮力の作用下に延伸を行う特殊延伸法等を用いることができる。また、液晶性材料の場合、例えば、配向処理を施した基材フィルムの上に液晶性材料を塗布し、配向固定する方法等を用いることができる。所望の位相差が発現してさえいれば、基材フィルムに特別な配向処理を行わない方法や、配向固定した後、基材フィルムから剥がして別のフィルムに転写加工する方法等であってもよい。更に、液晶性材料の配向を固定しない方法を用いてもよい。また、非液晶性材料の場合も、液晶性材料と同様の形成方法を用いてもよい。 The method of forming each of the optical compensation layers 11 and 21 is not particularly limited, and in the case of a polymer film, for example, a solvent cast method, a melt extrusion method, or the like can be used. It may be a method of simultaneously forming a plurality of birefringent layers by a co-extrusion method. As long as the desired retardation is developed, it may be non-stretching or may be stretched. The stretching method is also not particularly limited, and it is a special stretching in which stretching is performed under the action of the shrinking force of the heat shrinkable film, in addition to the inter-roll tensile stretching method, inter-roll compression stretching method, tenter transverse uniaxial stretching method, longitudinal and transverse biaxial stretching method. A law etc. can be used. Moreover, in the case of a liquid crystalline material, for example, a method of applying a liquid crystalline material on a substrate film subjected to alignment treatment, and orienting and fixing can be used. Even if there is a method in which the substrate film is not subjected to special orientation processing as long as the desired phase difference is expressed, or a method in which the film is peeled off from the substrate film and transferred to another film after orientation fixation. Good. Furthermore, a method in which the orientation of the liquid crystal material is not fixed may be used. Also in the case of a non-liquid crystal material, the same formation method as the liquid crystal material may be used.
光学補償層11及び21用のポリマーフィルムの主成分となる材料の具体例としては、例えば、シクロオレフィン系樹脂等の透明樹脂が挙げられる。 As a specific example of the material which becomes a main component of the polymer film for the optical compensation layers 11 and 21, transparent resin, such as cycloolefin type-resin, is mentioned, for example.
上記保護層、光学補償層11及び21に用いられるシクロオレフィン系樹脂としては、環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する樹脂であれば特に限定されず、シクロオレフィンポリマー(COP)又はシクロオレフィンコポリマー(COC)のいずれであってもよい。シクロオレフィンコポリマーとは、環状オレフィンとエチレン等のオレフィンとの共重合体である非結晶性の環状オレフィン系樹脂のことをいう。 The cycloolefin resin used for the protective layer and the optical compensation layers 11 and 21 is not particularly limited as long as it is a resin having a monomer unit composed of cyclic olefin (cycloolefin), and cycloolefin polymer (COP) or cycloolefin resin (COP) It may be any of the olefin copolymers (COC). The cycloolefin copolymer refers to a non-crystalline cyclic olefin resin which is a copolymer of a cyclic olefin and an olefin such as ethylene.
上記環状オレフィンとしては、多環式の環状オレフィンと単環式の環状オレフィンとが挙げられる。多環式の環状オレフィンとしては、ノルボルネン、メチルノルボルネン、ジメチルノルボルネン、エチルノルボルネン、エチリデンノルボルネン、ブチルノルボルネン等のノルボルネン類、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン等のジシクロペンタジエン類、テトラシクロドデセン、メチルテトラシクロドデセン、ジメチルテトラシクロドデセン等のテトラシクロドデセン類、トリシクロペンタジエン、テトラシクロペンタジエン等のシクロペンタジエンの多量体類が挙げられる。また、単環式の環状オレフィンとしては、シクロブテン、シクロペンテン、シクロオクテン、シクロオクタジエン、シクロオクタトリエン、シクロドデカトリエンが挙げられる。なかでも、透明性、耐湿性、位相差制御の点から、ノルボルネン類が好ましい。 As said cyclic olefin, polycyclic cyclic olefin and monocyclic cyclic olefin are mentioned. Examples of polycyclic cyclic olefins include norbornenes such as norbornene, methyl norbornene, dimethyl norbornene, ethyl norbornene, ethylidene norbornene and butyl norbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene and the like Examples include tetracyclododecenes such as dicyclopentadienes, tetracyclododecene, methyltetracyclododecene and dimethyltetracyclododecene, and polymers of cyclopentadienes such as tricyclopentadiene and tetracyclopentadiene. Furthermore, examples of monocyclic cyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene and cyclododecatriene. Among them, norbornenes are preferable in terms of transparency, moisture resistance, and retardation control.
図2~4に示したように、第1の偏光子10及び液晶セル30の間に設けられる光学補償層11は、λ/4位相差板11aを含み、第2の偏光子20及び液晶セル30の間に設けられる光学補償層21は、λ/4位相差板21aを含んでいてもよい。この形態は、液晶表示装置1の表示モードを、円偏光板を用いたVAモードとする場合に好適である。ここで、λ/4位相差板とは、光ビームの偏光面を回転させる役目をする電子光学的な複屈折板であり、互いに直角な方向に振動する直線偏光間に1/4波長の光路差を生じさせる機能を有するものを言う。すなわち、常光線成分と異常光線成分との間の位相が4分の1サイクルずれるように作用し、円偏光を直線偏光に(又は直線偏光を円偏光に)変換するものを言う。したがって、第1の偏光子10及びλ/4位相差板11aと、第2の偏光子20及びλ/4位相差板21aとが、互いに直交する左右円偏光板として機能する。 As shown in FIGS. 2 to 4, the optical compensation layer 11 provided between the first polarizer 10 and the liquid crystal cell 30 includes the λ / 4 retardation plate 11 a, and the second polarizer 20 and the liquid crystal cell The optical compensation layer 21 provided between 30 may include the λ / 4 retardation plate 21a. This form is suitable when the display mode of the liquid crystal display device 1 is set to a VA mode using a circularly polarizing plate. Here, the λ / 4 retardation plate is an electron optical birefringence plate that serves to rotate the polarization plane of the light beam, and has an optical path of 1⁄4 wavelength between linearly polarized light vibrating in directions perpendicular to each other. We say what has function to make difference. That is, it means that the phase between the ordinary ray component and the extraordinary ray component acts so as to be shifted by a quarter cycle, and circularly polarized light is converted to linearly polarized light (or linearly polarized light to circularly polarized light). Therefore, the first polarizer 10 and the λ / 4 retardation plate 11 a, and the second polarizer 20 and the λ / 4 retardation plate 21 a function as left and right circularly polarizing plates orthogonal to each other.
一般に、偏光子が収縮すると、隣接する光学補償フィルムのみならず、液晶セルを構成するガラス基板にも応力が発生し、ガラス基板にも複屈折性(位相差)が発生する。そして、ガラス基板の位相差が表示特性に与える影響は、ガラス基板に入射する光が直線偏光の時よりも円偏光の時の方が大きくなる傾向がある。したがって、円偏光板(通常は偏光子及びλ/4位相差板の組み合わせ)を用いる場合は、偏光子の収縮に起因する黒ムラが強くなる。そのため、上述の、光学補償層11がλ/4位相差板11aを含み、光学補償層21がλ/4位相差板21aを含む形態は、黒ムラが強くなる可能性があるが、この場合であっても、本実施形態によれば、黒ムラの発生を効果的に抑制することができる。 Generally, when the polarizer shrinks, stress is generated not only on the adjacent optical compensation film but also on the glass substrate constituting the liquid crystal cell, and birefringence (phase difference) is also generated on the glass substrate. The influence of the retardation of the glass substrate on the display characteristics tends to be larger when light incident on the glass substrate is circularly polarized than when linearly polarized. Therefore, in the case of using a circularly polarizing plate (usually, a combination of a polarizer and a λ / 4 retardation plate), the black unevenness caused by the contraction of the polarizer becomes strong. Therefore, in the above-described embodiment in which the optical compensation layer 11 includes the λ / 4 retardation plate 11a and the optical compensation layer 21 includes the λ / 4 retardation plate 21a, the black unevenness may be strong. Even according to the present embodiment, the occurrence of the black unevenness can be effectively suppressed.
λ/4位相差板11aは、面内位相差Reが正確には137.5nm付近であるが、110~165nmであればよく、130~145nmであることが好ましく、Nz係数が0.9~2.4のものを用いることができる。λ/4位相差板11aの遅相軸(面内遅相軸)は、第1の偏光子10の吸収軸10aに対して実質的に45°の角度をなす。より具体的には、2つの軸のなす角度(絶対値)が45±5°の範囲内であり、好ましくは45±2°の範囲内であり、より好ましくは45±0.6°の範囲内であり、特に好ましくは45°(完全に45°)である。 The λ / 4 retardation plate 11a has an in-plane retardation Re of approximately 137.5 nm, but may be 110 to 165 nm, preferably 130 to 145 nm, and an Nz coefficient of 0.9 to The thing of 2.4 can be used. The slow axis (in-plane slow axis) of the λ / 4 retardation plate 11 a forms an angle of substantially 45 ° with the absorption axis 10 a of the first polarizer 10. More specifically, the angle (absolute value) between the two axes is in the range of 45 ± 5 °, preferably in the range of 45 ± 2 °, more preferably in the range of 45 ± 0.6 °. And particularly preferably 45 ° (completely 45 °).
λ/4位相差板21aは、面内位相差Reが正確には137.5nm付近であるが、110~165nmであればよく、130~145nmであることが好ましく、Nz係数が0.9~2.4のものを用いることができる。λ/4位相差板21aの遅相軸(面内遅相軸)は、第2の偏光子20の吸収軸20aに対して実質的に45°の角度をなす。より具体的には、2つの軸のなす角度(絶対値)が45±5°の範囲内であり、好ましくは45±2°の範囲内であり、より好ましくは45±0.6°の範囲内であり、特に好ましくは45°(完全に45°)である。 The λ / 4 retardation plate 21a has an in-plane retardation Re of approximately 137.5 nm, but may be 110 to 165 nm, preferably 130 to 145 nm, and an Nz coefficient of 0.9 to The thing of 2.4 can be used. The slow axis (in-plane slow axis) of the λ / 4 retardation plate 21 a forms an angle of substantially 45 ° with the absorption axis 20 a of the second polarizer 20. More specifically, the angle (absolute value) between the two axes is in the range of 45 ± 5 °, preferably in the range of 45 ± 2 °, more preferably in the range of 45 ± 0.6 °. And particularly preferably 45 ° (completely 45 °).
また、λ/4位相差板11aの遅相軸(面内遅相軸)は、λ/4位相差板21aの遅相軸(面内遅相軸)に対して実質的に90°の角度をなす。より具体的には、2つの軸のなす角度(絶対値)が90±2°の範囲内であり、好ましくは90±0.6°の範囲内であり、特に好ましくは90°(完全に直交)である。 Further, the slow axis (in-plane slow axis) of the λ / 4 phase difference plate 11a is substantially at an angle of 90 ° with respect to the slow axis (in-plane slow axis) of the λ / 4 phase difference plate 21a. I More specifically, the angle (absolute value) between the two axes is in the range of 90 ± 2 °, preferably in the range of 90 ± 0.6 °, and particularly preferably 90 ° (completely orthogonal ).
また、図2~4に示したように、第1の偏光子10及び液晶セル30の間に設けられる光学補償層11は、nx>nz>nyの屈折率の関係を有する光学補償層(所謂ポジティブBプレート)11bを含んでもよい。これにより、液晶表示装置1の視野角特性を向上、すなわち、黒表示時の斜め方向での白浮きを抑制することができる。他方、斜め方向から見たときに全体の白浮きが小さいということは黒ムラが目立ちやすいということになるが、この場合であっても、本実施形態によれば、黒ムラの発生を効果的に抑制することができる。 Further, as shown in FIGS. 2 to 4, the optical compensation layer 11 provided between the first polarizer 10 and the liquid crystal cell 30 has an optical compensation layer having a relationship of refractive index of nx> nz> ny (so-called Positive B plate) 11 b may be included. Thereby, the viewing angle characteristics of the liquid crystal display device 1 can be improved, that is, whitening in the oblique direction at the time of black display can be suppressed. On the other hand, the fact that the entire whiteness is small when viewed from an oblique direction means that the black unevenness is noticeable, but even in this case, according to the present embodiment, the occurrence of the black unevenness is effective. Can be suppressed.
光学補償層11bとしては、面内位相差Reが135~300nm(好ましくは150~275nm、より好ましくは170~240nm)であり、Nz係数が0~0.99(好ましくは0.1~0.6、より好ましくは0.25~0.4)のものを用いることができる。光学補償層11bの遅相軸(面内遅相軸)は、第1の偏光子10の吸収軸10aと実質的に平行である。より具体的には、2つの軸のなす角度が0±3°の範囲内であり、好ましくは0±1°の範囲内であり、より好ましくは0±0.5°の範囲内であり、特に好ましくは0°(完全に平行)である。 The optical compensation layer 11 b has an in-plane retardation Re of 135 to 300 nm (preferably 150 to 275 nm, more preferably 170 to 240 nm), and an Nz coefficient of 0 to 0.99 (preferably 0.1 to 0. 6, more preferably 0.25 to 0.4) can be used. The slow axis (in-plane slow axis) of the optical compensation layer 11 b is substantially parallel to the absorption axis 10 a of the first polarizer 10. More specifically, the angle formed by the two axes is in the range of 0 ± 3 °, preferably in the range of 0 ± 1 °, and more preferably in the range of 0 ± 0.5 °. Particularly preferred is 0 ° (perfectly parallel).
これらの場合、図2~4に示したように、第1の偏光子10、光学補償層(ポジティブBプレート)11b、λ/4位相差板11a、液晶セル30、λ/4位相差板21a及び第2の偏光子20は、観察面側又は背面側からこの順に積層される。 In these cases, as shown in FIGS. 2 to 4, the first polarizer 10, the optical compensation layer (positive B plate) 11b, the λ / 4 retardation plate 11a, the liquid crystal cell 30, the λ / 4 retardation plate 21a The second polarizer 20 is laminated in this order from the viewing side or the back side.
更に、図4に示したように、第1の偏光子10及び液晶セル30の間に設けられる光学補償層11は、nx=ny>nzの屈折率の関係を有する光学補償層(所謂ネガティブCプレート)11cを含んでもよい。これにより、液晶表示装置1の視野角特性をより向上、すなわち、黒表示時の斜め方向での白浮きをより抑制することができる。他方、斜め方向から見たときに全体の白浮きがより小さいということは黒ムラがより目立ちやすいということになるが、この場合であっても、本実施形態によれば、黒ムラの発生を効果的に抑制することができる。この場合、図4に示したように、第1の偏光子10、光学補償層(ポジティブBプレート)11b、λ/4位相差板11a、光学補償層(ネガティブCプレート)11c、液晶セル30、λ/4位相差板21a及び第2の偏光子20は、観察面側又は背面側からこの順に積層される。 Furthermore, as shown in FIG. 4, the optical compensation layer 11 provided between the first polarizer 10 and the liquid crystal cell 30 is an optical compensation layer having a refractive index relationship of nx = ny> nz (so-called negative C Plate) 11 c may be included. Thereby, the viewing angle characteristics of the liquid crystal display device 1 can be further improved, that is, whitening in the oblique direction at the time of black display can be further suppressed. On the other hand, the fact that the entire whitening is smaller when viewed from an oblique direction means that the black unevenness is more noticeable, but even in this case, according to the present embodiment, the occurrence of the black unevenness is It can be effectively suppressed. In this case, as shown in FIG. 4, the first polarizer 10, the optical compensation layer (positive B plate) 11b, the λ / 4 retardation plate 11a, the optical compensation layer (negative C plate) 11c, the liquid crystal cell 30, The λ / 4 retardation plate 21 a and the second polarizer 20 are stacked in this order from the viewing surface side or the back surface side.
光学補償層11cとしては、面内位相差Reが0~150nm(好ましくは0~40nm、より好ましくは0nm)であり、厚み方向位相差Rthが20~350nm(好ましくは50~130nm)のものを用いることができる。なお、光学補償層11cは、面内位相差が0nmの場合、面内では実質的に光学的に等方性であるため、光学補償層11cの面内における配置方向は特に限定されない。光学補償層11cの面内位相差Reが0nmより大きい場合、光学補償層11cの遅相軸(面内遅相軸)は、第1の偏光子10の吸収軸10aと直交するか、平行である。 The optical compensation layer 11 c has an in-plane retardation Re of 0 to 150 nm (preferably 0 to 40 nm, more preferably 0 nm) and a thickness direction retardation Rth of 20 to 350 nm (preferably 50 to 130 nm). It can be used. When the in-plane retardation is 0 nm, the arrangement direction of the optical compensation layer 11c in the plane is not particularly limited because the optical compensation layer 11c is substantially optically isotropic in the plane. When the in-plane retardation Re of the optical compensation layer 11c is larger than 0 nm, the slow axis (in-plane slow axis) of the optical compensation layer 11c is orthogonal to or parallel to the absorption axis 10a of the first polarizer 10. is there.
<液晶セル>
液晶セル30は、一対の基板と、基板間に挟持された表示媒体としての液晶層とを有する。一方の基板(カラーフィルター基板)には、カラーフィルター及びブラックマトリクスが設けられている。他方の基板(アクティブマトリクス基板)には、液晶の電気光学特性を制御するスイッチング素子(代表的にはTFT)と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線と、画素電極とが設けられている。一対の基板のいずれかには、更に共通電極が設けられている。なお、カラーフィルターは、10~50nm程度の厚み方向の位相差Rthを持っていてもよい。また、カラーフィルターは、アクティブマトリクス基板側に設けてもよい。上記一対の基板の間隔(セルギャップ)は、スペーサーによって制御されている。上記一対の基板の液晶層と接する側には、例えば、ポリイミドからなる配向膜が設けられている。
<Liquid crystal cell>
The liquid crystal cell 30 has a pair of substrates, and a liquid crystal layer as a display medium sandwiched between the substrates. A color filter and a black matrix are provided on one of the substrates (color filter substrate). On the other substrate (active matrix substrate), a switching element (typically, a TFT) for controlling the electro-optical characteristics of liquid crystal, a scanning line for providing a gate signal to the switching element and a signal line for providing a source signal, and a pixel An electrode is provided. A common electrode is further provided on either of the pair of substrates. The color filter may have a thickness direction retardation Rth of about 10 to 50 nm. In addition, the color filter may be provided on the active matrix substrate side. The distance between the pair of substrates (cell gap) is controlled by a spacer. On the side of the pair of substrates in contact with the liquid crystal layer, for example, an alignment film made of polyimide is provided.
液晶材料の屈折率異方性をΔnとセル厚み(セルギャップ、すなわち液晶層の厚み)dとの積で表される液晶層のリタデーション(パネルリタデーション)Δn・dは、特に限定されないが、通常、200~500nmであり、250~450nmであることが好ましく、300~400nmであることがより好ましい。 The retardation (panel retardation) Δn · d of the liquid crystal layer represented by the product of the refractive index anisotropy of the liquid crystal material Δn and the cell thickness (cell gap, ie, the thickness of the liquid crystal layer) d is not particularly limited. , 200 to 500 nm, preferably 250 to 450 nm, and more preferably 300 to 400 nm.
<液晶表示装置>
液晶表示装置1の表示モードは、特に限定されず、例えば、フリンジ・フィールド・スイッチング(FFS)モード、面内スイッチング(IPS)モード等の水平配向モードや、垂直配向(VA)モードが挙げられるが、なかでも垂直配向モードが好適である。
<Liquid crystal display device>
The display mode of the liquid crystal display device 1 is not particularly limited, and examples thereof include horizontal alignment mode such as fringe field switching (FFS) mode and in-plane switching (IPS) mode, and vertical alignment (VA) mode. Among them, the vertical alignment mode is preferable.
VAモードでは、共通電極は、上記一対の基板のうち、画素電極が設けられた基板とは別の基板に設けられる。電圧無印加時には、液晶分子は各基板面に略垂直(法線方向)に配向する。ここで、「略垂直」とは、液晶分子の配向ベクトルが各基板の法線方向に対して傾いている場合、すなわち、液晶分子がチルト角を有する場合も包含する。当該チルト角(法線からの角度)は、液晶パネル2の表示可能部分(表示領域2c内における遮光部を除く光の変調可能な部分)の全ての位置で、0°以上、かつ、好ましくは10°以下、より好ましくは5°以下、更に好ましくは1°以下である。このような配向は、例えば、配向膜として垂直配向膜を形成した基板間に負の誘電率異方性を有するネマチック液晶を配することにより実現され得る。このような状態でバックライトにより背面側の基板に光を照射すると、背面側の偏光子10又は20を通過して液晶層に入射した直線偏光の光は、略垂直配向している液晶分子の長軸の方向に沿って進む。液晶分子の長軸方向には実質的に複屈折が生じないため入射光は偏光方位を変えずに進み、背面側の偏光子10又は20と実質的に直交する吸収軸を有する観察面側の偏光子20又は10で吸収される。これにより電圧無印加時において暗状態の表示(黒表示)が得られる(ノーマリブラックモード)。画素電極及び共通電極間に電圧が印加されると、液晶分子の長軸が各基板面に平行に配向する。この状態の液晶分子は、背面側の偏光子10又は20を通過して液晶層に入射した直線偏光の光に対して複屈折性を示し、入射光の偏光状態は液晶分子の傾きに応じて変化する。所定の最大電圧印加時において液晶層を通過する光は、例えばその偏光方位が90°回転させられた直線偏光となるので、観察面側の偏光子20又は10を透過して明状態の表示(白表示)が得られる。再び電圧無印加状態にすると配向規制力により暗状態の表示に戻すことができる。また、印加電圧を変化させて液晶分子の傾きを制御して観察面側の偏光子20又は10からの透過光強度を変化させることにより階調表示が可能となる。 In the VA mode, the common electrode is provided on a substrate other than the substrate provided with the pixel electrode among the pair of substrates. When no voltage is applied, the liquid crystal molecules are aligned substantially perpendicular (normal direction) to the surface of each substrate. Here, "substantially perpendicular" also includes the case where the alignment vector of the liquid crystal molecules is inclined with respect to the normal direction of each substrate, that is, the case where the liquid crystal molecules have a tilt angle. The tilt angle (angle from the normal) is at least 0 ° and preferably at all positions of the displayable portion of the liquid crystal panel 2 (the modulatable portion of the light except the light shielding portion in the display area 2c). It is 10 ° or less, more preferably 5 ° or less, and still more preferably 1 ° or less. Such alignment can be realized, for example, by arranging a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film is formed as an alignment film. When light is irradiated to the substrate on the back side by the backlight in such a state, linearly polarized light that has passed through the polarizer 10 or 20 on the back side and is incident on the liquid crystal layer has substantially vertical alignment of liquid crystal molecules. Proceed along the direction of the long axis. Since birefringence does not occur substantially in the long axis direction of the liquid crystal molecules, incident light travels without changing the polarization direction, and on the viewing surface side having an absorption axis substantially orthogonal to the rear surface polarizer 10 or 20. It is absorbed by the polarizer 20 or 10. As a result, a dark state display (black display) can be obtained when no voltage is applied (normally black mode). When a voltage is applied between the pixel electrode and the common electrode, the major axes of the liquid crystal molecules are aligned parallel to the surface of each substrate. The liquid crystal molecules in this state exhibit birefringence with respect to linearly polarized light incident on the liquid crystal layer through the back polarizer 10 or 20, and the polarization state of the incident light depends on the inclination of the liquid crystal molecules. Change. At the time of application of a predetermined maximum voltage, light passing through the liquid crystal layer becomes, for example, linearly polarized light whose polarization direction is rotated by 90 °, and hence light is transmitted through the polarizer 20 or 10 on the viewing surface side to display a bright state ( White display is obtained. When the voltage is not applied again, the display can be returned to the dark state by the alignment control force. Further, by changing the applied voltage to control the inclination of the liquid crystal molecules and changing the intensity of the transmitted light from the polarizer 20 or 10 on the viewing surface side, it is possible to perform gradation display.
このようなVAモードでは、電圧印加時の液晶分子の傾斜方向が一方向であると視野角特性に非対称性が発生してしまうため、例えば画素電極構造の工夫や、画素内に突起物等の配向制御手段を設ける方法により、液晶分子の傾斜方向を複数に分割した配向分割型のVAモード、いわゆるMVAモード(マルチドメイン型VAモード)が広く用いられている。白表示状態の透過率を最大化する観点から、通常は偏光子軸方位と電圧印加時の液晶分子の傾斜方位とが45°の角度をなすように設定される。クロスニコル偏光子間に複屈折媒体を挟んだときの透過率は、偏光子の軸と複屈折媒体の遅相軸とのなす角度をβ(単位:rad)とするとき、sin(2β)に比例するためである。典型的なMVAモードでは、液晶分子の傾斜方位が45°、135°、225°、315°の4つのドメインに分割され得る。このような4つのドメインに分割されたMVAモードにおいても、ドメイン境界や配向制御手段の近傍で、シュリーレン配向や意図しない方向への配向が観察されることが多く、透過率ロスの原因となっている。 In such a VA mode, if the tilt direction of the liquid crystal molecules in the voltage application is one direction, asymmetry will be generated in the viewing angle characteristics. For example, the device of the pixel electrode structure or a protrusion in the pixel An alignment division type VA mode in which the tilt direction of liquid crystal molecules is divided into plural, so-called MVA mode (multi-domain type VA mode), is widely used by providing an alignment control means. From the viewpoint of maximizing the transmittance in the white display state, usually, the polarizer axis orientation and the tilt orientation of liquid crystal molecules at the time of voltage application are set to form an angle of 45 °. The transmittance when a birefringent medium is sandwiched between crossed Nicol polarizers is sin 2 (2β), where the angle between the axis of the polarizer and the slow axis of the birefringent medium is β (unit: rad) To be proportional to In a typical MVA mode, the tilt orientation of liquid crystal molecules can be divided into four domains of 45 °, 135 °, 225 °, and 315 °. Even in the MVA mode divided into such four domains, Schlieren orientation or orientation in an unintended direction is often observed in the vicinity of domain boundaries or orientation control means, which causes transmittance loss. There is.
それに対して、円偏光板を用いたVAモードによれば、互いに直交する左右円偏光板間に複屈折媒体を挟んだときの透過率は、各偏光子10、20の軸と複屈折媒体の遅相軸とのなす角度に依存しないため、液晶分子の傾斜方位が45°、135°、225°、315°以外であっても、液晶分子の傾きさえ制御できれば所望の透過率が確保できる。したがって、例えば、画素中央に円形の突起物を配置し、液晶分子を全方位に傾斜させるものであってもよいし、又は、傾斜方位を全く制御せずにランダムな方位に傾斜させるものであってもよい。 On the other hand, according to the VA mode using the circularly polarizing plate, the transmissivity when the birefringent medium is sandwiched between the left and right circularly polarizing plates orthogonal to each other is the axis of each polarizer 10, 20 and that of the birefringent medium Since it does not depend on the angle with the slow axis, even if the tilt orientation of the liquid crystal molecules is other than 45 °, 135 °, 225 °, and 315 °, the desired transmittance can be secured as long as the tilt of the liquid crystal molecules can be controlled. Therefore, for example, a circular protrusion may be disposed at the center of the pixel, and liquid crystal molecules may be inclined in all directions, or may be inclined in random directions without controlling the inclination direction at all. May be
以上、本発明の実施形態について説明したが、説明された個々の事項は、すべて本発明全般に対して適用され得るものである。 Although the embodiments of the present invention have been described above, all the individual matters described can be applied to the whole of the present invention.
以下に実施例及び比較例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、以下の各実施例及び比較例では、各軸方向は、液晶パネルの表示領域の右方向を0°とし、観察面側から見て反時計回りを正としたときの角度で表している。 EXAMPLES The present invention will be described in more detail by way of the following Examples and Comparative Examples, but the present invention is not limited to these Examples. In each of the following Examples and Comparative Examples, each axial direction is represented by an angle when the right direction of the display area of the liquid crystal panel is 0 ° and the counterclockwise direction is positive when viewed from the viewing surface side. .
<実施例1>
図5は、実施例1に係る液晶表示装置の断面模式図である。
図5に示すように、表偏光子、λ/4位相差板としての第1の光学補償層、液晶セル、λ/4位相差板としての第2の光学補償層、ポジティブBプレートとしての第3の光学補償層、及び、裏偏光子が観察面側からこの順の配置された液晶パネルと、液晶パネルの背面側のバックライト(図示せず)とを備える実施例1の液晶表示装置を作製した。各部材の光学パラメータと、各偏光子及び各光学補償層の軸方向とは、図5に示した通りである。本実施例では、表偏光子が上記第2の偏光子に対応し、裏偏光子が上記第1の偏光子に対応する。
Example 1
FIG. 5 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
As shown in FIG. 5, a front polarizer, a first optical compensation layer as a λ / 4 retardation plate, a liquid crystal cell, a second optical compensation layer as a λ / 4 retardation plate, a first B plate as a positive B plate A liquid crystal display device of Example 1 comprising the optical compensation layer of No. 3 and a liquid crystal panel in which the back polarizer is disposed in this order from the viewing surface side, and a backlight (not shown) on the back surface of the liquid crystal panel. Made. The optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG. In the present embodiment, the front polarizer corresponds to the second polarizer, and the back polarizer corresponds to the first polarizer.
液晶セルとしては、VAモードの液晶セルを用いた。液晶材料の誘電率異方性Δnは、0.113、セル厚み(セルギャップ)dは、3.2μmとした。すなわち、液晶層のリタデーションΔn・dは、360nmとした。 As the liquid crystal cell, a VA mode liquid crystal cell was used. The dielectric anisotropy Δn of the liquid crystal material is 0.113, and the cell thickness (cell gap) d is 3.2 μm. That is, the retardation Δn · d of the liquid crystal layer was 360 nm.
液晶パネルとしては、アスペクト比5:2の長方形状の液晶パネルを用いた。すなわち、表示領域の形状もアスペクト比5:2の長方形状とした。 As a liquid crystal panel, a rectangular liquid crystal panel with an aspect ratio of 5: 2 was used. That is, the shape of the display area is also rectangular with an aspect ratio of 5: 2.
第1及び第2の光学補償層としては、COPフィルムを2軸延伸することによって図5に記載の所定の光学パラメータが得られたフィルムを用いた。第3の光学補償層としては、COPフィルムを延伸後緩和することによって図5に記載の所定の光学パラメータが得られたフィルムを用いた。第1、第2及び第3の光学補償層の厚みは、それぞれ、30μm、30μm及び140μmとした。なお、各実施例及び比較例において、COPフィルムは、シクロオレフィンコポリマー(COC)を含まないものを用いた。 As the first and second optical compensation layers, films obtained by obtaining predetermined optical parameters shown in FIG. 5 by biaxially stretching a COP film were used. As the third optical compensation layer, a film having the predetermined optical parameters shown in FIG. 5 obtained by relaxing after stretching the COP film was used. The thicknesses of the first, second and third optical compensation layers were 30 μm, 30 μm and 140 μm, respectively. In each of the examples and the comparative examples, the COP film used did not contain cycloolefin copolymer (COC).
表偏光子としては、PVAフィルム(厚さ30μm)を用い、PVAフィルムを接着剤で第1の光学補償層に接着して第1の光学補償層上に積層した。なお、表偏光子のPVAフィルムの、第1の光学補償層と反対側の面上には、接着剤を介してTACフィルム(厚さ40μm)を積層した。裏偏光子としては、TACフィルム(厚さ40μm)、PVAフィルム(厚さ30μm)及びCOPフィルム(厚さ30μm)を、接着剤を介してこの順に積層したものを用いた。裏偏光子のCOPフィルムは、光学異方性を持たないように作製した。裏偏光子は、COPフィルムが液晶セル側、TACフィルムが液晶セルと反対側になるように配置した。表偏光子及び裏偏光子のPVAフィルムとしては、延伸後にヨウ素を添加することで偏光性能を持つものを用いた。このフィルムは、延伸方向に吸収軸を持つ。 As a front polarizer, a PVA film (30 μm in thickness) was used, and the PVA film was adhered to the first optical compensation layer with an adhesive and laminated on the first optical compensation layer. A TAC film (40 μm thick) was laminated via an adhesive on the surface of the PVA film of the front polarizer opposite to the first optical compensation layer. As a back polarizer, what laminated | stacked the TAC film (40 micrometers in thickness), the PVA film (30 micrometers in thickness), and the COP film (30 micrometers in thickness) in this order via the adhesive agent was used. The COP film of the back polarizer was produced so as not to have optical anisotropy. The back polarizer was placed so that the COP film was on the liquid crystal cell side and the TAC film was on the opposite side of the liquid crystal cell. As a PVA film of a front polarizer and a back polarizer, what has a polarization performance by adding iodine after extending | stretching was used. This film has an absorption axis in the stretching direction.
なお、TACフィルムは、PVAフィルムの支持体として広く使われており、PVAフィルムと接着し、フィルムとしての強度を保つ。また、COPフィルムは、広帯域の位相差フィルムとして、また、PVAフィルムの支持体としても広く使われており、延伸することで複屈折性を持つ。 In addition, a TAC film is widely used as a support body of a PVA film, adhere | attaches with a PVA film, and maintains the intensity | strength as a film. In addition, a COP film is widely used as a broad-band retardation film or as a support of a PVA film, and has birefringence by stretching.
また、図5では省略しているが、第1の光学補償層と液晶セルの間、液晶セルと第2の光学補償層の間、第2の光学補償層と第3の光学補償層の間、及び、第3の光学補償層と裏偏光子の間は、それぞれ、大きな光学異方性を持たない感圧接着剤(粘着材)で満たした。このような粘着材等、大きな光学異方性を持たない材料は、その材料から形成された層が光学異方性を持たない層である限り、製法上の必要に応じて加えることも、省くこともできる。 Further, although omitted in FIG. 5, between the first optical compensation layer and the liquid crystal cell, between the liquid crystal cell and the second optical compensation layer, and between the second optical compensation layer and the third optical compensation layer The space between the third optical compensation layer and the back polarizer was filled with a pressure sensitive adhesive (adhesive) having no large optical anisotropy. Such materials that do not have large optical anisotropy, such as adhesive materials, are also omitted from the process of adding them as needed in the manufacturing process as long as the layer formed from the material is a layer without optical anisotropy. It can also be done.
<比較例1>
図6は、比較例1に係る液晶表示装置の断面模式図である。
図6に示すように、表偏光子、ポジティブBプレートとしての第3の光学補償層、λ/4位相差板としての第2の光学補償層、液晶セル、及び、λ/4位相差板としての第1の光学補償層、裏偏光子が観察面側からこの順の配置された液晶パネルと、液晶パネルの背面側のバックライト(図示せず)とを備える比較例1の液晶表示装置を作製した。各部材の光学パラメータと、各偏光子及び各光学補償層の軸方向とは、図6に示した通りである。
Comparative Example 1
FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to Comparative Example 1.
As shown in FIG. 6, a front polarizer, a third optical compensation layer as a positive B plate, a second optical compensation layer as a λ / 4 retardation plate, a liquid crystal cell, and a λ / 4 retardation plate A liquid crystal display device of Comparative Example 1 comprising a liquid crystal panel in which the first optical compensation layer and the back polarizer are arranged in this order from the viewing surface side, and a backlight (not shown) on the back surface of the liquid crystal panel. Made. The optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG.
液晶セルとしては、VAモードの液晶セルを用いた。液晶材料の誘電率異方性Δnは、0.113、セル厚み(セルギャップ)dは、3.2μmとした。すなわち、液晶層のリタデーションΔn・dは、360nmとした。 As the liquid crystal cell, a VA mode liquid crystal cell was used. The dielectric anisotropy Δn of the liquid crystal material is 0.113, and the cell thickness (cell gap) d is 3.2 μm. That is, the retardation Δn · d of the liquid crystal layer was 360 nm.
液晶パネルとしては、アスペクト比5:2の長方形状の液晶パネルを用いた。すなわち、表示領域の形状もアスペクト比5:2の長方形状とした。 As a liquid crystal panel, a rectangular liquid crystal panel with an aspect ratio of 5: 2 was used. That is, the shape of the display area is also rectangular with an aspect ratio of 5: 2.
第1及び第2の光学補償層としては、COPフィルムを2軸延伸することによって図6に記載の所定の光学パラメータが得られたフィルムを用いた。第3の光学補償層としては、COPフィルムを延伸後緩和することによって図6に記載の所定の光学パラメータが得られたフィルムを用いた。第1、第2及び第3の光学補償層の厚みは、それぞれ、30μm、30μm及び140μmとした。 As the first and second optical compensation layers, films obtained by obtaining predetermined optical parameters shown in FIG. 6 by biaxially stretching a COP film were used. As the third optical compensation layer, a film having the predetermined optical parameters shown in FIG. 6 obtained by relaxation after stretching of the COP film was used. The thicknesses of the first, second and third optical compensation layers were 30 μm, 30 μm and 140 μm, respectively.
表偏光子としては、TACフィルム(厚さ40μm)、PVAフィルム(厚さ30μm)及びCOPフィルム(厚さ30μm)を、接着剤を介してこの順に積層したものを用いた。裏偏光子のCOPフィルムは、光学異方性を持たないように作製した。表偏光子は、COPフィルムが液晶セル側、TACフィルムが液晶セルと反対側になるように配置した。裏偏光子としては、PVAフィルム(厚さ30μm)を用い、PVAフィルムを接着剤で第1の光学補償層に接着して第1の光学補償層上に積層した。なお、裏偏光子のPVAフィルムの、第1の光学補償層と反対側の面上には、接着剤を介してTACフィルム(厚さ40μm)を積層した。表偏光子及び裏偏光子のPVAフィルムとしては、延伸後にヨウ素を添加することで偏光性能を持つものを用いた。このフィルムは、延伸方向に吸収軸を持つ。 As a front polarizer, what laminated | stacked the TAC film (40 micrometers in thickness), the PVA film (30 micrometers in thickness), and the COP film (30 micrometers in thickness) in this order via the adhesive agent was used. The COP film of the back polarizer was produced so as not to have optical anisotropy. The front polarizer was disposed so that the COP film was on the liquid crystal cell side and the TAC film was on the opposite side to the liquid crystal cell. As a back polarizer, a PVA film (30 μm in thickness) was used, and the PVA film was adhered to the first optical compensation layer with an adhesive and laminated on the first optical compensation layer. A TAC film (40 μm thick) was laminated via an adhesive on the surface of the PVA film of the back polarizer opposite to the first optical compensation layer. As a PVA film of a front polarizer and a back polarizer, what has a polarization performance by adding iodine after extending | stretching was used. This film has an absorption axis in the stretching direction.
なお、図6では省略しているが、表偏光子と第3の光学補償層の間、第3の光学補償層と第2の光学補償層の間、第2の光学補償層と液晶セルの間、液晶セルと第1の光学補償層の間は、それぞれ、大きな光学異方性を持たない感圧接着剤(粘着材)で満たした。このような粘着材等、大きな光学異方性を持たない材料は、その材料から形成された層が光学異方性を持たない層である限り、製法上の必要に応じて加えることも、省くこともできる。 Although omitted in FIG. 6, between the front polarizer and the third optical compensation layer, between the third optical compensation layer and the second optical compensation layer, and between the second optical compensation layer and the liquid crystal cell. The liquid crystal cell and the first optical compensation layer were each filled with a pressure sensitive adhesive (adhesive material) having no large optical anisotropy. Such materials that do not have large optical anisotropy, such as adhesive materials, are also omitted from the process of adding them as needed in the manufacturing process as long as the layer formed from the material is a layer without optical anisotropy. It can also be done.
<実施例1及び比較例1の比較>
図7は、実施例1に係る液晶表示装置の別の模式図であり、(a)は、偏光子の吸収軸と液晶パネルの長辺との関係を示す平面図であり、(b)は、光学補償層の配置と、偏光子の収縮具合とを説明するための断面図である。図8は、比較例1に係る液晶表示装置の別の模式図であり、(a)は、偏光子の吸収軸と液晶パネルの長辺との関係を示す平面図であり、(b)は、光学補償層の配置と、偏光子の収縮具合とを説明するための断面図である。
実施例1と比較例1について、表偏光子と裏偏光子の吸収軸方向は同じであるが、光学補償層の位置を変えており、図7に示すように、実施例1では光学補償層の多い裏偏光子の吸収軸が液晶パネルの各長辺に直交し、図8に示すように、比較例1では光学補償層の多い表偏光子の吸収軸が液晶パネルの各長辺に平行である。高温時等の耐久性試験における部分的な黒表示の白抜け(黒ムラ)は、偏光子の軸変動や、液晶セルに使用するガラスに発生する応力等の他の原因もあるが、上述したように、光弾性による光学補償層の位相差変化が主原因となっている。図7に示すように、実施例1は、光学補償層の積層枚数が多い方の裏偏光子の収縮量が小さく、したがって、第2及び第3の光学補償層への応力が小さくなるように設定されている。図8に示すように、比較例1は、光学補償層の積層枚数が多い方の裏偏光子の収縮量が大きく、したがって、第2及び第3の光学補償層への応力が大きくなるように設定されている。
Comparison of Example 1 and Comparative Example 1
FIG. 7 is another schematic view of the liquid crystal display device according to Example 1. FIG. 7 (a) is a plan view showing the relationship between the absorption axis of the polarizer and the long side of the liquid crystal panel. It is sectional drawing for demonstrating arrangement | positioning of an optical compensation layer, and shrinkage | contraction condition of a polarizer. FIG. 8 is another schematic view of the liquid crystal display device according to Comparative Example 1. FIG. 8A is a plan view showing the relationship between the absorption axis of the polarizer and the long side of the liquid crystal panel, and FIG. It is sectional drawing for demonstrating arrangement | positioning of an optical compensation layer, and shrinkage | contraction condition of a polarizer.
In Example 1 and Comparative Example 1, the absorption axis directions of the front polarizer and the back polarizer are the same, but the position of the optical compensation layer is changed, and as shown in FIG. In Comparative Example 1, the absorption axis of the front polarizer having many optical compensation layers is parallel to each long side of the liquid crystal panel, as shown in FIG. It is. The white spots (black unevenness) of the partial black display in the durability test at high temperature etc. are also caused by other factors such as the axial fluctuation of the polarizer and the stress generated in the glass used for the liquid crystal cell. As described above, the change in retardation of the optical compensation layer due to photoelasticity is the main cause. As shown in FIG. 7, in Example 1, the shrinkage amount of the back polarizer with a large number of laminated optical compensation layers is small, and thus the stress on the second and third optical compensation layers is small. It is set. As shown in FIG. 8, in Comparative Example 1, the shrinkage amount of the back polarizer with the large number of laminated optical compensation layers is large, and therefore, the stress on the second and third optical compensation layers is large. It is set.
<実施例1及び比較例1の評価結果>
実施例1及び比較例1の液晶表示装置の暗室コントラストを測定した。暗室コントラストは、外光が無い状態で白表示と黒表示の輝度を測定し、白表示輝度を黒表示輝度で割ったものであり、表示装置としては高いほど好ましい。更に、耐久性の観点から言えば、高温等の過酷な環境に晒されたときにこの数値の変化が小さいほど好ましい。
<Evaluation Results of Example 1 and Comparative Example 1>
The dark room contrast of the liquid crystal display of Example 1 and Comparative Example 1 was measured. The dark room contrast is obtained by measuring the luminance of white display and black display without external light, and dividing the white display luminance by the black display luminance. The higher the display device, the better. Furthermore, from the viewpoint of durability, it is preferable that the change in this numerical value be as small as possible when exposed to a severe environment such as high temperature.
下記表1に、実施例1及び比較例1について、85℃で12時間のエージングを行った前後での画面中央部での暗室コントラストを示す。エージング前の値には大差ないものの、エージングにより比較例1は大きく数値が低下している。 Table 1 below shows dark room contrast at the center of the screen before and after aging for 12 hours at 85 ° C. for Example 1 and Comparative Example 1. Although there is not much difference with the value before the aging, the value in Comparative Example 1 is greatly reduced by the aging.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例1及び比較例1の液晶表示装置の黒表示均一性(Black Display Uniformity)を測定した。黒表示均一性とは、黒表示の所謂ムラの強さを示す指標であり、黒ベタ画面を表示したときの表示領域の輝度をスキャンして最小輝度を最大輝度で割ったものである。この値が100%に近いほど輝度分布が無い、すなわちムラが弱く、表示装置として好ましい。低いほどムラが強く、表示装置としての品位が低いということになる。 The black display uniformity of the liquid crystal display devices of Example 1 and Comparative Example 1 was measured. The black display uniformity is an index indicating the intensity of so-called unevenness of black display, which is obtained by dividing the minimum luminance by the maximum luminance by scanning the luminance of the display area when a black solid screen is displayed. As this value is closer to 100%, there is no luminance distribution, that is, the unevenness is weak, which is preferable as a display device. The lower the value, the stronger the unevenness and the lower the quality as a display device.
下記表2に、実施例1及び比較例1について、85℃で12時間のエージングを行った前後での黒表示均一性を示す。エージング前の値には大差ないものの、エージングにより比較例1は大きく数値が低下している。一方、実施例1は変化が小さくなっており、ムラが改善していることが示された。 Table 2 below shows black display uniformity before and after aging for 12 hours at 85 ° C. for Example 1 and Comparative Example 1. Although there is not much difference with the value before the aging, the value in Comparative Example 1 is greatly reduced by the aging. On the other hand, in Example 1, the change was small and it was shown that the unevenness was improved.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例2>
図9は、実施例2に係る液晶表示装置の断面模式図である。
図9に示すように、表偏光子、ポジティブBプレートとしての第3の光学補償層、λ/4位相差板としての第2の光学補償層、液晶セル、及び、λ/4位相差板としての第1の光学補償層、裏偏光子が観察面側からこの順の配置された液晶パネルと、液晶パネルの背面側のバックライトとを備える実施例2の液晶表示装置を作製した。各部材の光学パラメータと、各偏光子及び各光学補償層の軸方向とは、図9に示した通りである。すなわち、全ての偏光子及び光学補償層の軸を90°回転した点を除いて、比較例1と同様にして実施例2の液晶表示装置を作製した。本実施例では、裏偏光子が上記第2の偏光子に対応し、表偏光子が上記第1の偏光子に対応する。
Example 2
FIG. 9 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment.
As shown in FIG. 9, a front polarizer, a third optical compensation layer as a positive B plate, a second optical compensation layer as a λ / 4 retardation plate, a liquid crystal cell, and a λ / 4 retardation plate A liquid crystal display device of Example 2 was prepared, which comprises a liquid crystal panel in which the first optical compensation layer, the back polarizer are disposed in this order from the viewing surface side, and the backlight on the back surface side of the liquid crystal panel. The optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG. That is, the liquid crystal display device of Example 2 was produced in the same manner as Comparative Example 1 except that the axes of all the polarizers and the optical compensation layer were rotated by 90 °. In the present embodiment, the back polarizer corresponds to the second polarizer, and the front polarizer corresponds to the first polarizer.
なお、図9では省略しているが、表偏光子と第3の光学補償層の間、第3の光学補償層と第2の光学補償層の間、第2の光学補償層と液晶セルの間、液晶セルと第1の光学補償層の間は、それぞれ、大きな光学異方性を持たない感圧接着剤(粘着材)で満たした。このような粘着材等、大きな光学異方性を持たない材料は、その材料から形成された層が光学異方性を持たない層である限り、製法上の必要に応じて加えることも、省くこともできる。 Although omitted in FIG. 9, between the front polarizer and the third optical compensation layer, between the third optical compensation layer and the second optical compensation layer, and between the second optical compensation layer and the liquid crystal cell. The liquid crystal cell and the first optical compensation layer were each filled with a pressure sensitive adhesive (adhesive material) having no large optical anisotropy. Such materials that do not have large optical anisotropy, such as adhesive materials, are also omitted from the process of adding them as needed in the manufacturing process as long as the layer formed from the material is a layer without optical anisotropy. It can also be done.
<実施例2及び比較例1の比較>
図10は、実施例2に係る液晶表示装置の別の模式図であり、(a)は、偏光子の吸収軸と液晶パネルの長辺との関係を示す平面図であり、(b)は、光学補償層の配置と、偏光子の収縮具合とを説明するための断面図である。
実施例2と比較例1については、光学補償層の位置は同じであるが、全ての偏光子及び光学補償層の軸を90°回転しており、図10に示すように、実施例2では光学補償層の多い表偏光子の吸収軸が液晶パネルの各長辺に直交し、図8に示したように、比較例1では光学補償層の多い表偏光子の吸収軸が液晶パネルの各長辺に平行である。
Comparison of Example 2 and Comparative Example 1
FIG. 10 is another schematic view of the liquid crystal display device according to Example 2. FIG. 10 (a) is a plan view showing the relationship between the absorption axis of the polarizer and the long side of the liquid crystal panel, and FIG. It is sectional drawing for demonstrating arrangement | positioning of an optical compensation layer, and shrinkage | contraction condition of a polarizer.
In Example 2 and Comparative Example 1, the position of the optical compensation layer is the same, but the axes of all the polarizers and the optical compensation layer are rotated by 90 °, and as shown in FIG. The absorption axis of the front polarizer having many optical compensation layers is orthogonal to each long side of the liquid crystal panel, and as shown in FIG. 8, in Comparative Example 1, the absorption axis of the front polarizer having many optical compensation layers corresponds to each liquid crystal panel It is parallel to the long side.
<実施例2及び比較例1の評価結果>
下記表3に、実施例2及び比較例1について、85℃で12時間のエージングを行った前後での画面中央部での暗室コントラストを示す。
<Evaluation Results of Example 2 and Comparative Example 1>
Table 3 below shows dark room contrast at the center of the screen before and after aging for 12 hours at 85 ° C. for Example 2 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
下記表4に、実施例2及び比較例1について、85℃で12時間のエージングを行った前後での黒表示均一性を示す。 Table 4 below shows black display uniformity before and after aging for 12 hours at 85 ° C. for Example 2 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
これらの結果、実施例2においても、実施例1と同様の効果が得られることが分かった。パネルをどのように配置するかについては、偏光サングラスとの関係等の要求があり、表示装置によって表偏光板の好ましい角度が異なるので、状況によっていずれの配置も選択することができる。 As a result, it was found that the same effect as in Example 1 can be obtained also in Example 2. As to how to arrange the panels, there are requirements such as relationship with polarized sunglasses, and since the preferable angle of the front polarizer differs depending on the display device, any arrangement can be selected depending on the situation.
<実施例3>
図11は、実施例3に係る液晶表示装置の断面模式図である。
図11に示すように、表偏光子、λ/4位相差板としての第1の光学補償層、液晶セル、ネガティブCプレートとしての第4の光学補償層、λ/4位相差板としての第2の光学補償層、ポジティブBプレートとしての第3の光学補償層、及び、裏偏光子が観察面側からこの順の配置された液晶パネルと、液晶パネルの背面側のバックライトとを備える実施例3の液晶表示装置を作製した。各部材の光学パラメータと、各偏光子及び各光学補償層の軸方向とは、図11に示した通りである。このように、本実施例は、実施例1の背面側に更に第4の光学補償層を追加したものである。
Example 3
FIG. 11 is a schematic cross-sectional view of the liquid crystal display device according to the third embodiment.
As shown in FIG. 11, a front polarizer, a first optical compensation layer as a λ / 4 retardation plate, a liquid crystal cell, a fourth optical compensation layer as a negative C plate, and a fourth λ / 4 retardation plate 2 an optical compensation layer, a third optical compensation layer as a positive B plate, and a liquid crystal panel in which a back polarizer is disposed in this order from the observation surface side, and a backlight on the back side of the liquid crystal panel The liquid crystal display of Example 3 was produced. The optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG. Thus, in the present embodiment, the fourth optical compensation layer is further added to the back side of the first embodiment.
液晶セルとしては、VAモードの液晶セルを用いた。液晶材料の誘電率異方性Δnは、0.113、セル厚み(セルギャップ)dは、3.2μmとした。すなわち、液晶層のリタデーションΔn・dは、360nmとした。 As the liquid crystal cell, a VA mode liquid crystal cell was used. The dielectric anisotropy Δn of the liquid crystal material is 0.113, and the cell thickness (cell gap) d is 3.2 μm. That is, the retardation Δn · d of the liquid crystal layer was 360 nm.
液晶パネルとしては、アスペクト比5:2の長方形状の液晶パネルを用いた。すなわち、表示領域の形状もアスペクト比5:2の長方形状とした。 As a liquid crystal panel, a rectangular liquid crystal panel with an aspect ratio of 5: 2 was used. That is, the shape of the display area is also rectangular with an aspect ratio of 5: 2.
第1及び第2の光学補償層としては、COPフィルムを2軸延伸することによって図11に記載の所定の光学パラメータが得られたフィルムを用いた。第3の光学補償層としては、COPフィルムを延伸後緩和したすることによって図11に記載の所定の光学パラメータが得られたフィルムを用いた。第4の光学補償層としては、TACフィルムを2軸延伸することによって図11に記載の所定の光学パラメータが得られたフィルムを用いた。第1、第2、第3及び第4の光学補償層の厚みは、それぞれ、30μm、30μm、140μm及び80μmとした。 As the first and second optical compensation layers, films obtained by obtaining predetermined optical parameters shown in FIG. 11 by biaxially stretching a COP film were used. As the third optical compensation layer, a film having a predetermined optical parameter shown in FIG. 11 by stretching and relaxing the COP film was used. As the fourth optical compensation layer, a film having predetermined optical parameters shown in FIG. 11 obtained by biaxially stretching a TAC film was used. The thicknesses of the first, second, third and fourth optical compensation layers were respectively 30 μm, 30 μm, 140 μm and 80 μm.
表偏光子としては、PVAフィルム(厚さ30μm)を用い、PVAフィルムを接着剤で第1の光学補償層に接着して第1の光学補償層上に積層した。なお、表偏光子のPVAフィルムの、第1の光学補償層と反対側の面上には、接着剤を介してTAC(トリアセチレンセルロース)フィルム(厚さ40μm)を積層した。裏偏光子としては、TACフィルム(厚さ40μm)、PVAフィルム(厚さ30μm)及びCOPフィルム(厚さ30μm)を、接着剤を介してこの順に積層したものを用いた。裏偏光子のCOPフィルムは、光学異方性を持たないように作製した。裏偏光子は、COPフィルムが液晶セル側、TACフィルムが液晶セルと反対側になるように配置した。表偏光子及び裏偏光子のPVAフィルムとしては、延伸後にヨウ素を添加することで偏光性能を持つものを用いた。このフィルムは、延伸方向に吸収軸を持つ。 As a front polarizer, a PVA film (30 μm in thickness) was used, and the PVA film was adhered to the first optical compensation layer with an adhesive and laminated on the first optical compensation layer. In addition, on the surface on the opposite side to the first optical compensation layer of the PVA film of the front polarizer, a TAC (triacetylene cellulose) film (40 μm in thickness) was laminated via an adhesive. As a back polarizer, what laminated | stacked the TAC film (40 micrometers in thickness), the PVA film (30 micrometers in thickness), and the COP film (30 micrometers in thickness) in this order via the adhesive agent was used. The COP film of the back polarizer was produced so as not to have optical anisotropy. The back polarizer was placed so that the COP film was on the liquid crystal cell side and the TAC film was on the opposite side of the liquid crystal cell. As a PVA film of a front polarizer and a back polarizer, what has a polarization performance by adding iodine after extending | stretching was used. This film has an absorption axis in the stretching direction.
なお、図11では省略しているが、第1の光学補償層と液晶セルの間、液晶セルと第4の光学補償層の間、第4の光学補償層と第2の光学補償層の間、第2の光学補償層と第3の光学補償層の間、及び、第3の光学補償層と裏偏光子の間は、それぞれ、大きな光学異方性を持たない感圧接着剤(粘着材)で満たした。このような粘着材等、大きな光学異方性を持たない材料は、その材料から形成された層が光学異方性を持たない層である限り、製法上の必要に応じて加えることも、省くこともできる。 Although not shown in FIG. 11, between the first optical compensation layer and the liquid crystal cell, between the liquid crystal cell and the fourth optical compensation layer, and between the fourth optical compensation layer and the second optical compensation layer. , Pressure-sensitive adhesive (adhesive material) having no large optical anisotropy between the second optical compensation layer and the third optical compensation layer, and between the third optical compensation layer and the back polarizer, respectively Filled with). Such materials that do not have large optical anisotropy, such as adhesive materials, are also omitted from the process of adding them as needed in the manufacturing process as long as the layer formed from the material is a layer without optical anisotropy. It can also be done.
<実施例3及び比較例1の比較>
図12は、実施例3に係る液晶表示装置の別の模式図であり、(a)は、偏光子の吸収軸と液晶パネルの長辺との関係を示す平面図であり、(b)は、光学補償層の配置と、偏光子の収縮具合とを説明するための断面図である。
図8及び12に示すように、ポイントについては、実施例1及び比較例1の場合と同じであるので説明を省略する。ただし、光学補償層の積層枚数は、実施例1が表1枚/裏2枚なのに対して、実施例3では表1枚/裏3枚となっている。
Comparison of Example 3 and Comparative Example 1
FIG. 12 is another schematic view of the liquid crystal display device according to Example 3. FIG. 12A is a plan view showing the relationship between the absorption axis of the polarizer and the long side of the liquid crystal panel, and FIG. It is sectional drawing for demonstrating arrangement | positioning of an optical compensation layer, and shrinkage | contraction condition of a polarizer.
As shown in FIGS. 8 and 12, the points are the same as in the case of Example 1 and Comparative Example 1, and thus the description thereof is omitted. However, the number of laminated layers of the optical compensation layer is 1 front / 3 back in the third embodiment as opposed to 1 front / 2 back in the first embodiment.
<実施例3及び比較例1の評価結果>
下記表5に、実施例3及び比較例1について、85℃で12時間のエージングを行った前後での画面中央部での暗室コントラストを示す。
<Evaluation Results of Example 3 and Comparative Example 1>
Table 5 below shows dark room contrast at the center of the screen before and after aging for 12 hours at 85 ° C. for Example 3 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
下記表6に、実施例3及び比較例1について、85℃で12時間のエージングを行った前後での黒表示均一性を示す。 Table 6 below shows black display uniformity before and after aging at 85 ° C. for 12 hours for Example 3 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
上記表5及び6に示したように、光学補償層の積層枚数を増やしたため、実施例1及び2に比べると、実施例3はコントラストの変化が大きく、エージング後のムラが強くなっている。このことからも、黒ムラは光学補償層の特性変化によることが示唆されている。ただし、それでも実施例3は比較例1よりはムラが改善されていることから、吸収軸の調整の効果が示される。 As shown in Tables 5 and 6 above, since the number of laminated optical compensation layers was increased, the change in contrast is large in Example 3 compared to Examples 1 and 2, and the unevenness after aging is strong. Also from this, it is suggested that the black unevenness is due to the characteristic change of the optical compensation layer. However, since the unevenness is improved more than the comparative example 1 in Example 3, the effect of adjustment of the absorption axis is shown.
[付記]
本発明の一態様は、平面視長方形状の液晶パネル(2)を備える液晶表示装置(1)であって、前記液晶パネル(2)は、第1の偏光子(10)、2以上の光学補償層(11)、液晶セル(30)、1以上の光学補償層(21)及び第2の偏光子(20)をこの順に含み、前記第1の偏光子(10)及び前記液晶セル(30)の間に設けられる光学補償層(11)の総数は、前記第2の偏光子(20)及び前記液晶セル(30)の間に設けられる光学補償層(21)の総数よりも多く、前記第1の偏光子(10)の吸収軸(10a)と、前記液晶パネル(2)の各長辺(2a)とのなす角度(α)は、45°以上、135°以下であってもよい。これにより、液晶表示装置(1)が高温下に置かれた後でも黒ムラの発生を抑制することができる。
[Supplementary note]
One embodiment of the present invention is a liquid crystal display device (1) including a liquid crystal panel (2) having a rectangular shape in plan view, wherein the liquid crystal panel (2) comprises a first polarizer (10) and two or more optical elements. A compensation layer (11), a liquid crystal cell (30), one or more optical compensation layers (21) and a second polarizer (20) in this order, and the first polarizer (10) and the liquid crystal cell (30) The total number of optical compensation layers (11) provided between the two) is greater than the total number of optical compensation layers (21) provided between the second polarizer (20) and the liquid crystal cell (30), The angle (α) between the absorption axis (10a) of the first polarizer (10) and each long side (2a) of the liquid crystal panel (2) may be 45 ° or more and 135 ° or less . Thereby, even after the liquid crystal display device (1) is placed under high temperature, the occurrence of the black unevenness can be suppressed.
前記なす角度(α)は、60°以上、120°以下であってもよい。 The angle (α) may be 60 ° or more and 120 ° or less.
前記第1の偏光子(10)及び前記液晶セル(30)の間に設けられる前記光学補償層(11)は、λ/4位相差板(11a)を含み、前記第2の偏光子(20)及び前記液晶セル(30)の間に設けられる前記光学補償層(21)は、λ/4位相差板(21a)を含んでもよい。この場合、黒ムラが強くなる可能性があるが、この場合であっても、上記態様によれば、黒ムラの発生を抑制することができる。すなわち、上記態様による黒ムラ抑制効果をより効果的に発揮することができる。 The optical compensation layer (11) provided between the first polarizer (10) and the liquid crystal cell (30) includes a λ / 4 retardation plate (11a), and the second polarizer (20) And the optical compensation layer (21) provided between the liquid crystal cell (30) may include a λ / 4 retardation plate (21a). In this case, there is a possibility that the black unevenness becomes strong, but even in this case, according to the above aspect, the occurrence of the black unevenness can be suppressed. That is, the black unevenness suppressing effect according to the above aspect can be exhibited more effectively.
前記第1の偏光子(10)及び前記液晶セル(30)の間に設けられる前記光学補償層(11)は、nx>nz>nyの屈折率の関係を有する光学補償層(11b)を含んでもよい。この場合、黒ムラが目立ちやすい可能性があるが、この場合であっても、上記態様によれば、黒ムラの発生を抑制することができる。すなわち、上記態様による黒ムラ抑制効果をより効果的に発揮することができる。また、この場合は、後述するように液晶表示装置(1)の表示モードが垂直配向モードである場合に特に好適である。 The optical compensation layer (11) provided between the first polarizer (10) and the liquid crystal cell (30) includes an optical compensation layer (11b) having a refractive index relationship of nx> nz> ny. May be. In this case, the black unevenness may be noticeable, but even in this case, according to the above aspect, the occurrence of the black unevenness can be suppressed. That is, the black unevenness suppressing effect according to the above aspect can be exhibited more effectively. Further, in this case, as described later, it is particularly suitable when the display mode of the liquid crystal display device (1) is the vertical alignment mode.
前記第1の偏光子(10)及び前記液晶セル(30)の間に設けられる前記光学補償層(11)は、nx=ny>nzの屈折率の関係を有する光学補償層(11c)を更に含んでもよい。この場合、黒ムラがより目立ちやすい可能性があるが、この場合であっても、上記態様によれば、黒ムラの発生を抑制することができる。すなわち、上記態様による黒ムラ抑制効果を更に効果的に発揮することができる。また、この場合は、後述するように液晶表示装置(1)の表示モードが垂直配向モードである場合に特に好適である。 The optical compensation layer (11) provided between the first polarizer (10) and the liquid crystal cell (30) further includes an optical compensation layer (11c) having a refractive index relationship of nx = ny> nz. May be included. In this case, the black unevenness may be more noticeable, but even in this case, according to the above aspect, the occurrence of the black unevenness can be suppressed. That is, the black unevenness suppressing effect according to the above aspect can be exhibited more effectively. Further, in this case, as described later, it is particularly suitable when the display mode of the liquid crystal display device (1) is the vertical alignment mode.
前記液晶表示装置(1)の表示モードは、垂直配向モードであってもよい。 The display mode of the liquid crystal display device (1) may be a vertical alignment mode.
以上に示した本発明の各態様は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Each aspect of the present invention shown above may be combined suitably in the range which does not deviate from the gist of the present invention.
1:液晶表示装置
2:液晶パネル
2a:長辺
2b:短辺
2c:表示領域
10:第1の偏光子
10a:吸収軸
11:光学補償層
11a:λ/4位相差板
11b:光学補償層(ポジティブBプレート)
11c:光学補償層(ネガティブCプレート)
20:第2の偏光子
20a:吸収軸
21:光学補償層
21a:λ/4位相差板
30:液晶セル
1: Liquid crystal display device 2: Liquid crystal panel 2a: long side 2b: short side 2c: display area 10: first polarizer 10a: absorption axis 11: optical compensation layer 11a: λ / 4 retardation plate 11b: optical compensation layer (Positive B plate)
11c: Optical compensation layer (negative C plate)
20: second polarizer 20a: absorption axis 21: optical compensation layer 21a: λ / 4 retardation plate 30: liquid crystal cell

Claims (6)

  1. 平面視長方形状の液晶パネルを備える液晶表示装置であって、
    前記液晶パネルは、第1の偏光子、2以上の光学補償層、液晶セル、1以上の光学補償層及び第2の偏光子をこの順に含み、
    前記第1の偏光子及び前記液晶セルの間に設けられる光学補償層の総数は、前記第2の偏光子及び前記液晶セルの間に設けられる光学補償層の総数よりも多く、
    前記第1の偏光子の吸収軸と、前記液晶パネルの各長辺とのなす角度は、45°以上、135°以下である液晶表示装置。
    A liquid crystal display device comprising a liquid crystal panel having a rectangular shape in plan view, comprising:
    The liquid crystal panel includes a first polarizer, two or more optical compensation layers, a liquid crystal cell, one or more optical compensation layers, and a second polarizer in this order,
    The total number of optical compensation layers provided between the first polarizer and the liquid crystal cell is larger than the total number of optical compensation layers provided between the second polarizer and the liquid crystal cell,
    The liquid crystal display device, wherein an angle between an absorption axis of the first polarizer and each long side of the liquid crystal panel is 45 ° or more and 135 ° or less.
  2. 前記角度は、60°以上、120°以下である請求項1記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the angle is 60 ° or more and 120 ° or less.
  3. 前記第1の偏光子及び前記液晶セルの間に設けられる前記光学補償層は、λ/4位相差板を含み、
    前記第2の偏光子及び前記液晶セルの間に設けられる前記光学補償層は、λ/4位相差板を含む請求項1又は2記載の液晶表示装置。
    The optical compensation layer provided between the first polarizer and the liquid crystal cell includes a λ / 4 retardation plate.
    The liquid crystal display according to claim 1, wherein the optical compensation layer provided between the second polarizer and the liquid crystal cell includes a λ / 4 retardation plate.
  4. 前記第1の偏光子及び前記液晶セルの間に設けられる前記光学補償層は、nx>nz>nyの屈折率の関係を有する光学補償層を含む請求項3記載の液晶表示装置。 4. The liquid crystal display device according to claim 3, wherein the optical compensation layer provided between the first polarizer and the liquid crystal cell includes an optical compensation layer having a refractive index relationship of nx> nz> ny.
  5. 前記第1の偏光子及び前記液晶セルの間に設けられる前記光学補償層は、nx=ny>nzの屈折率の関係を有する光学補償層を更に含む請求項4記載の液晶表示装置。 5. The liquid crystal display device according to claim 4, wherein the optical compensation layer provided between the first polarizer and the liquid crystal cell further includes an optical compensation layer having a refractive index relationship of nx = ny> nz.
  6. 前記液晶表示装置の表示モードは、垂直配向モードである請求項1~5のいずれかに記載の液晶表示装置。
     
    The liquid crystal display device according to any one of claims 1 to 5, wherein a display mode of the liquid crystal display device is a vertical alignment mode.
PCT/JP2018/024262 2017-07-04 2018-06-27 Liquid crystal display device WO2019009144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-131415 2017-07-04
JP2017131415 2017-07-04

Publications (1)

Publication Number Publication Date
WO2019009144A1 true WO2019009144A1 (en) 2019-01-10

Family

ID=64951032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024262 WO2019009144A1 (en) 2017-07-04 2018-06-27 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2019009144A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111867A1 (en) * 2012-01-27 2013-08-01 シャープ株式会社 Liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111867A1 (en) * 2012-01-27 2013-08-01 シャープ株式会社 Liquid crystal display device

Similar Documents

Publication Publication Date Title
KR100757718B1 (en) Optical film and liquid crystal display
JP5311605B2 (en) Liquid crystal panel and liquid crystal display device
US20110051062A1 (en) Method for producing liquid crystal display device, and liquid crystal display device
JP2008134587A (en) Liquid crystal panel comprising liquid crystal cell having multigap structure, and liquid crystal display device
US9104037B2 (en) Liquid crystal display device
JP5127046B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP5261346B2 (en) Liquid crystal panel and liquid crystal display device
JP4136871B2 (en) Optical film and image display device
US20090103029A1 (en) Liquid crystal panel and liquid crystal display apparatus
JP2009075533A (en) Elliptic polarization plate and liquid crystal display device
JP2013238770A (en) Liquid-crystal display device
JP2008134546A (en) Multilayer optical film, liquid crystal panel using the multilayer optical film, and liquid crystal display device
WO2019009145A1 (en) Liquid crystal display device
JP2009053614A (en) Layered optical film, liquid crystal panel using layered optical film and liquid crystal display device
US7969542B2 (en) Liquid crystal panel and liquid crystal display apparatus
JP4974218B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP4911777B2 (en) Liquid crystal panel and liquid crystal display device
JP2012252084A (en) Liquid crystal panel and liquid crystal display device
JP5261317B2 (en) Liquid crystal panel and liquid crystal display device
JP4761399B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP2008139806A (en) Layered optical film, liquid crystal panel using layered optical film and liquid crystal display device
JP5084029B2 (en) Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film
JP2012252085A (en) Liquid crystal panel and liquid crystal display device
WO2019009144A1 (en) Liquid crystal display device
JP5497546B2 (en) Liquid crystal panel and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18829084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18829084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP