WO2020045161A1 - Acrylic yarn package - Google Patents
Acrylic yarn package Download PDFInfo
- Publication number
- WO2020045161A1 WO2020045161A1 PCT/JP2019/032407 JP2019032407W WO2020045161A1 WO 2020045161 A1 WO2020045161 A1 WO 2020045161A1 JP 2019032407 W JP2019032407 W JP 2019032407W WO 2020045161 A1 WO2020045161 A1 WO 2020045161A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yarn
- package
- acrylic
- winding
- acrylic yarn
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H55/00—Wound packages of filamentary material
- B65H55/04—Wound packages of filamentary material characterised by method of winding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H55/00—Wound packages of filamentary material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
- B65H2701/313—Synthetic polymer threads
Definitions
- the present invention relates to an acrylic yarn package having a good winding shape and having less trouble during transportation and unwinding.
- the present invention is suitable as an acrylic precursor yarn package used for carbon fiber production.
- Polyacrylonitrile-based long fibers are used not only for clothing but also in recent years as precursors for carbon fibers.Therefore, many improvement techniques have been used to obtain carbon fibers with excellent performance and to increase their productivity. It has been disclosed.
- the carbon fiber is once wound in a spinning process of spinning an acrylonitrile-based fiber yarn as a precursor, and then sent to a firing process, where the fiber is heated and fired in an air atmosphere at 200 to 300 ° C. to be converted to an oxidized fiber. And a carbonization process of further heating to 300 to 3000 ° C. in an inert atmosphere such as nitrogen, argon, helium, etc., and carbonizing it. Widely used for general industrial applications.
- carbon fibers are composed of filaments having a single yarn number of 1000 or more, and multifilaments are used as one yarn unit.
- acrylic yarn as a raw material is produced in a firing process as a subsequent process. Due to the difference in the yarn speed, it is general that the yarn is once wound in a yarn-making process and then sent to a firing process.
- the acrylic yarn is usually wound around a core bobbin, so that one bobbin is used. If a large amount of yarn is wound up, the bobbin will drop vertically when transported to the firing process, or the swelling of the end face will increase, resulting in poor unwinding during the firing process. May occur.
- Patent Document 1 describes a technique for defining winding conditions such as a twill angle and a winding tension in order to obtain a good winding shape at the time of winding.
- Patent Document 2 discloses a technique for obtaining a good winding shape by taking a specific yarn width and a yarn deviation ratio for a thick acrylic yarn of 33,000 dtex or more. Unless the convergence is improved by adding water, the deterioration of the winding shape and the trouble at the time of unwinding cannot be completely prevented. It has been a problem that it is not suitable for long-distance movement because of the increase in mass and mass.
- the present invention is to solve such a problem of the prior art, and when winding an acrylic yarn having a large total fineness around a core bobbin, to provide an acrylic yarn package that does not collapse during transportation. Make it an issue.
- the acrylic yarn package of the present invention is a package in which an acrylic yarn having a total fineness of 8000 dtex or more is wound around a bobbin, and the yarn width of the acrylic yarn on the package is 0.22 mm / 1000 dtex. As described above, the acrylic yarn package has a hardness of 60 or more.
- FIG. 1 is a schematic view showing an acrylic yarn package.
- FIG. 2 is a schematic view showing an acrylic yarn package in which a warp occurs in the center.
- the present invention when winding an acrylic yarn having a high total fineness on a core bobbin, a keen examination of a carbon fiber precursor acrylic thick yarn package having a good winding shape that does not collapse even during conveyance, The inventors have sought to solve such a problem by setting the yarn width and hardness of the package to a certain value or more.
- the carbon fiber precursor acrylic yarn used in the present invention is composed of a so-called acrylic polymer, for example, a polymer obtained by polymerizing a comonomer of preferably 90% by mass or more and less than 10% by mass of acrylonitrile.
- comonomers include acrylic acid, methacrylic acid, itaconic acid, or their methyl esters, ethyl esters, propyl esters, butyl esters, alkali metal salts, ammonium salts, or allyl sulfonic acid, methallyl sulfonic acid, or these. At least one selected from alkali metal salts and the like can be used.
- acrylic polymers are obtained by using known polymerization methods, for example, polymerization methods such as emulsion polymerization, suspension polymerization, and solution polymerization.Further, when producing acrylic fibers from these polymers, for example, dimethylacetamide
- a polymer solution containing a solvent selected from dimethylsulfoxide (hereinafter, referred to as DMSO), dimethylformamide, nitric acid, zinc chloride, and an aqueous solution of rhodan soda is used as a spinning yarn and spun by a wet spinning method or a dry spinning method.
- the spun yarn is then subjected to drawing in a bath, and the drawing in the bath may be performed directly on the spun yarn, or may be performed after the spun yarn is washed once with water and the solvent is removed. Good.
- the stretching in the bath is preferably performed about 2 to 6 times in a stretching bath at 50 to 98 ° C. After the stretching, an oil agent is preferably applied, dried and densified by a hot roller or the like, and then steamed. After being subjected to stretching, it is wound around a core bobbin to form a package.
- the total fineness of the yarn wound in the present invention is 8000 dtex or more.
- the moisture content of the yarn is preferably 3% or less in order to avoid an increase in mass during transportation.
- the total amount of the acrylic yarn obtained by subtracting the bobbin mass and the water content from the mass of the entire package is preferably larger in order to reduce the number of the acrylic yarn threading operations in the firing step and to make the work more efficient, and preferably 120 kg. Above, more preferably, it is wound up to 200 kg or more.
- the hardness of the bobbin end measured by a durometer is 60 or more. If the hardness is less than 60, the package is likely to be loosened, and it is easy for the package to collapse during transport and to have a shed when unwinding.
- the hardness of 60 or more can be achieved by setting the tension of the yarn at the time of winding to an appropriate value. When winding a large amount of yarn, it is general to gradually reduce the tension from a large tension and wind it, but the value should be an appropriate value according to the fineness of the yarn and the number of filaments Can be.
- the width of the acrylic yarn is in the range of 0.22 mm to 0.54 mm / 1000 dtex.
- the method for setting the yarn width on the package to the above range is not particularly limited, but when winding the yarn with a winding machine, a method of winding after passing a free roller group for convergence for a certain amount or more is preferably used. .
- the static friction coefficient of the acrylic yarn is less than 0.13, even if the yarn width and hardness are controlled to specific conditions to prevent winding collapse, even when winding, Since swelling of the end face may occur, it is preferable that the static friction coefficient be 0.13 or more by applying an appropriate type and amount of an oil agent.
- the yarn deviation ratio is a ratio of the yarn deviation amount S to the yarn width T in two yarns passing in parallel at the closest position on the package. That is, this yarn deviation ratio is determined by (S / T) ⁇ 100 shown in FIG.
- the acrylic yarn 4 is a yarn that passes in parallel with the acrylic yarn 3 on a position closest to the acrylic yarn package 1, This is the ratio of the yarn deviation S between the acrylic yarn 3 and the acrylic yarn 4 to the yarn width T.
- the yarn width T and the yarn deviation amount S are values measured by a method described later.
- the twill angle is an angle ( ⁇ ) between a straight line perpendicular to the axis of the core bobbin 2 (line ⁇ perpendicular to the core bobbin axis direction) and the direction of the acrylic yarn 4 to be wound. ).
- the yarn deviation ratio and the twill angle can usually be controlled by setting the winding speed of the winder spindle per one yarn traverse, that is, the so-called wind ratio, to an appropriate value. If the wind ratio is an integer, the yarn passes through exactly the same yarn path before and after one traverse. By setting the decimal portion of the wind ratio to an appropriate value, the yarn path before and after one traverse is shifted, The deviation ratio can be controlled. Also, by setting the size of the entire wind ratio including the integer part to an appropriate value, the helix angle can be controlled. If the yarn deviation ratio is less than 15%, the package will have large undulations, and even if the winding tension is increased, the hardness may decrease, and the winding tends to collapse during transportation.
- the yarn deviation ratio when the yarn deviation ratio is larger than 59%, the contact surface between the inner layer yarn and the outer layer yarn becomes smaller, so that the inner layer yarn slips and is pushed out by the pressing of the outer layer yarn at the time of winding, so that the end face is removed. It will swell. Therefore, it is preferable to set the yarn deviation ratio in the range of 15% to 59% since both the hardness and the end face shape can be set to favorable numerical values.
- the twill angle is smaller than 6 °, the twill drop during unwinding is liable to occur, and if the twill angle is larger than 14 °, the end face bulges larger, so that the twill angle is in the range of 6 to 14 °. It is preferred that When winding at a constant wind ratio, the twill angle decreases linearly as the diameter of the package wound on the core bobbin increases, so change the wind ratio during winding according to the amount of yarn wound. Thus, winding can be performed while keeping the twill angle within a certain range.
- the winding in the winding process can be set freely according to the amount.
- Total fineness> A sample yarn of 20 m was collected from the package to be measured, and the total fineness was determined by a method according to JIS L1013: 2010.
- ⁇ Static friction coefficient> 1.5 m of a sample yarn was collected from the package to be measured, and wound around the package after collection. At this time, it was wound around the center of the package along the circumferential surface of the package. After winding the sample yarn so that the contact angle with the package was 540 °, a 150 g weight was attached to each end of the sample yarn. Thereafter, the mass of the weight at one end of the yarn was increased, and the mass at which the yarn started slipping on the separate roll was measured, and the mass was determined by the following equation. Static friction coefficient ( ⁇ s) 3 / ⁇ ⁇ Ln (T1 / 150) ⁇ : Pi T1: Mass (g) of the weight when slipping starts.
- ⁇ Thread width> The yarn width of the acrylic yarn on the package is measured using a caliper with a point within 2 cm from the package ends (hereinafter referred to as both ends), the center, and a total of 5 points between the ends and the center, and divided by the total fineness. The value obtained was taken as the yarn width.
- ⁇ Twill angle range> While unwinding the wound package, the angle between the straight line ( ⁇ ) perpendicular to the axial direction of the core bobbin 2 shown in FIG. 1 and the direction of the wound yarn 4 at every 10 kg until all the yarns are exhausted. ( ⁇ ) was measured at the center of the package, and the range of the measured values was defined as the twill angle range.
- Hardness> Using a Hardness Tester “Type C” (for Cellular Rubber & Yarn Package) manufactured by Kobunshi Keiki Co., Ltd., two places 2 cm inside from both ends of the package are measured, and the average value is taken as a yarn package. Hardness.
- Example 1 A 19% DMSO solution of an acrylic polymer having an intrinsic viscosity [ ⁇ ] of 1.96, which is composed of 99.6% by mass of acrylonitrile and 0.4% by mass of itaconic acid, was used as a stock solution for spinning. % And 70% water in a coagulation bath at 8 ° C. to obtain a coagulated yarn. The coagulated yarn is stretched 2.8 times in hot water while washing with water, and the remaining DMSO is further washed with water until the amount becomes 0.01% or less in the yarn. For dry densification. Subsequently, the film was dried again after being stretched 4.3 times in pressurized steam.
- Examples 2 to 5 Comparative Examples 1 to 4
- the total amount of the acrylic yarn obtained by subtracting the bobbin mass and the water content from the mass of the entire package was 240 kg
- the yarn width at the time of winding, the wind ratio and the tension of the winding machine were changed.
- the yarn was changed and wound in the yarn width, yarn deviation ratio and twill angle ranges shown in Table 1.
- Example 1 As shown in Table 1, as shown in Table 1, the packages of Examples 2 to 5 were good packages with no winding collapse during transportation, but Example 4 had a yarn misalignment ratio of 60% or more during winding. Since the surface in contact with the inner layer yarn and the outer layer yarn becomes smaller, the outer layer yarn presses the inner layer yarn at the time of winding, and the inner layer yarn slides and is pushed out, so that a package having a large end face bulge is obtained. In Example 5, since the yarn width was as large as 0.55 mm / 1000 dtex or more and the convergence of the yarn was poor, the shedding and single yarn winding occurred during unwinding in the firing step. Comparative Examples 1 to 3 had a hardness of less than 60 as compared with Example 2, and collapsed during transport. In Comparative Example 4, the yarn width was less than 0.22 mm / 1000 dtex as compared with Example 2, and winding collapse occurred during transportation.
- Example 6 Winding was performed in the same manner as in Example 2 except that the amount of oil applied was adjusted to change the coefficient of static friction of the yarn, with the yarn width and yarn deviation ratio shown in Table 1. As a result, as shown in Table 1, it was a good package without collapse during transportation. In Example 6, the static friction coefficient was as low as less than 0.13, and the side slippage of the yarn occurred at the time of winding, resulting in a package having a large end face bulge.
- Example 8 A yarn having 24,000 filaments and a total fineness of 26,600 dtex was wound in the same manner as in Example 2 except that four 6000 filament yarns were plied.
- Example 9 A 24,000 filament and a total fineness of 29,100 dtex were wound at a yarn width and a yarn deviation ratio shown in Table 1, in the same manner as in Example 8, except that the draw ratio in the pressure steam was 3.9.
- Example 10 In the same manner as in Example 2 except that six 6000 filament yarns having a single yarn fineness of 0.74 dtex were combined, 36000 filaments and a total fineness of 26,600 dtex were wound at a yarn width and a yarn deviation ratio shown in Table 1. .
- Acrylic yarn package 2 Core bobbin 3: Acrylic yarn 4: Acrylic yarn 5: Straight line connecting both ends of the upper part of the package 6: Curve L following the upper part of the package L: Yarn traverse width k1, k2: End face Swelling amount S: Yarn deviation amount T: Yarn width U: Warp ⁇ : Twill angle ⁇ : Line perpendicular to core bobbin axis direction
Landscapes
- Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
- Artificial Filaments (AREA)
Abstract
In order to provide an acrylic yarn package which, when an acrylic yarn having a high total fineness is wound around a core bobbin, prevents winding collapse during transfer, this acrylic yarn package comprises an acrylic yarn having a total fineness of 8000 dtex or more and wound around a bobbin, and the acrylic yarn on the package has a width of 0.22 mm/1000 dtex or more and a hardness of 60 or more.
Description
本発明は、アクリル系糸条のパッケージに関し、巻形状が良好で運搬時や解舒時にトラブルの少ないアクリル系糸条パッケージに関するものである。特に本発明は、炭素繊維製造に用いるアクリル系前駆体糸条パッケージとして好適である。
The present invention relates to an acrylic yarn package having a good winding shape and having less trouble during transportation and unwinding. In particular, the present invention is suitable as an acrylic precursor yarn package used for carbon fiber production.
ポリアクリロニトリル系長繊維は衣料用に用いられるばかりでなく、近年では炭素繊維のプリカーサとして利用されており、性能の優れた炭素繊維を得るためや、その生産性を上げるために多くの改善技術が開示されている。
Polyacrylonitrile-based long fibers are used not only for clothing but also in recent years as precursors for carbon fibers.Therefore, many improvement techniques have been used to obtain carbon fibers with excellent performance and to increase their productivity. It has been disclosed.
炭素繊維はそのプリカーサであるアクリロニトリル系繊維糸条を紡糸する製糸工程で一旦巻取った後に、焼成工程へ送られ、200~300℃の空気雰囲気中で該繊維を加熱焼成して酸化繊維に転換する耐炎化工程、窒素・アルゴン・ヘリウム等の不活性雰囲気中でさらに300~3000℃に加熱して炭化する炭化工程を経ることで得られ、複合材料の強化繊維として航空宇宙用途やスポーツ用途、一般産業用途などに幅広く利用されている。
The carbon fiber is once wound in a spinning process of spinning an acrylonitrile-based fiber yarn as a precursor, and then sent to a firing process, where the fiber is heated and fired in an air atmosphere at 200 to 300 ° C. to be converted to an oxidized fiber. And a carbonization process of further heating to 300 to 3000 ° C. in an inert atmosphere such as nitrogen, argon, helium, etc., and carbonizing it. Widely used for general industrial applications.
炭素繊維は一般的に、単糸数が1000本以上のフィラメントで構成された、マルチフィラメントを1つの糸条単位としているが、原料となるアクリル系糸条は、後工程となる焼成工程との生産糸条速度の差から、一旦製糸工程で巻取った後、焼成工程へ送られるのが一般的である。焼成工程での生産性を上げるためには1回あたりに処理できるアクリル系糸条の量を増やすことが有効であるが、アクリル系糸条は通常はコアボビンに巻取られるため、1つのボビンに多量の糸条を巻取ると、焼成工程への運搬時にボビンが鉛直方向に垂れてしまったり、端面の膨らみが大きくなってしまったりして、焼成工程にて解舒不良となるような巻崩れが発生することがある。
In general, carbon fibers are composed of filaments having a single yarn number of 1000 or more, and multifilaments are used as one yarn unit. However, acrylic yarn as a raw material is produced in a firing process as a subsequent process. Due to the difference in the yarn speed, it is general that the yarn is once wound in a yarn-making process and then sent to a firing process. In order to increase the productivity in the firing step, it is effective to increase the amount of acrylic yarn that can be processed at one time, but the acrylic yarn is usually wound around a core bobbin, so that one bobbin is used. If a large amount of yarn is wound up, the bobbin will drop vertically when transported to the firing process, or the swelling of the end face will increase, resulting in poor unwinding during the firing process. May occur.
炭素繊維前駆体用のアクリル系糸条パッケージにおいては、巻取り時に良好な巻形状を得るために、綾角や巻取り張力といった巻取り条件を規定する技術が、特許文献1に記載されているが、輸送時の巻崩れについては記載がない。また、33000dtex以上の太物アクリル糸条について、特定の糸幅、糸ずれ割合をとることで良好な巻形状を得る技術が特許文献2に記載されているが、巻取り前に糸条に水分を付与して集束性を向上させない限り、巻形状の悪化や解舒時のトラブルを完全には防止できておらず、輸送時にも巻崩れが発生してしまう問題があり、水分付与によるランニングコストの増加や、質量が増加するため長距離の移動には適さないことが課題となっていた。
In an acrylic yarn package for a carbon fiber precursor, Patent Document 1 describes a technique for defining winding conditions such as a twill angle and a winding tension in order to obtain a good winding shape at the time of winding. However, there is no description of collapse during transport. Patent Document 2 discloses a technique for obtaining a good winding shape by taking a specific yarn width and a yarn deviation ratio for a thick acrylic yarn of 33,000 dtex or more. Unless the convergence is improved by adding water, the deterioration of the winding shape and the trouble at the time of unwinding cannot be completely prevented. It has been a problem that it is not suitable for long-distance movement because of the increase in mass and mass.
さらに、輸送時の巻崩れを防止するために、総繊度が数十~数百dtex程度の繊維においてパッケージの硬度を規定する技術が特許文献3や特許文献4に記載されているが、1000dtexを超えるような、総繊度の大きな炭素繊維前駆体用のアクリル系糸条パッケージにそのまま適用できるものではなかった。
Further, in order to prevent collapse during transport, techniques for defining the hardness of the package for fibers having a total fineness of about several tens to several hundreds dtex are described in Patent Documents 3 and 4, but 1000 dtex is used. However, it cannot be directly applied to an acrylic yarn package for a carbon fiber precursor having a large total fineness.
本発明はこのような従来技術の問題点を解決するものであり、総繊度の大きいアクリル系糸条をコアボビンに巻取る際、運搬時に巻崩れが発生しないアクリル系糸条パッケージを提供することを課題とする。
The present invention is to solve such a problem of the prior art, and when winding an acrylic yarn having a large total fineness around a core bobbin, to provide an acrylic yarn package that does not collapse during transportation. Make it an issue.
本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明のアクリル系糸条パッケージは、総繊度が8000dtex以上のアクリル系糸条がボビンに巻かれてなるパッケージであって、パッケージ上のアクリル系糸条の糸幅が0.22mm/1000dtex以上、硬度が60以上であるアクリル系糸条パッケージである。
The present invention employs the following means in order to solve such problems. That is, the acrylic yarn package of the present invention is a package in which an acrylic yarn having a total fineness of 8000 dtex or more is wound around a bobbin, and the yarn width of the acrylic yarn on the package is 0.22 mm / 1000 dtex. As described above, the acrylic yarn package has a hardness of 60 or more.
本発明では、総繊度の高いアクリル系糸条をコアボビンに巻取る際、次工程への運搬時にも崩れることのない、巻形状が良好なアクリル系糸条パッケージを提供できる。
According to the present invention, when winding an acrylic yarn having a high total fineness around a core bobbin, it is possible to provide an acrylic yarn package having a good winding shape which does not collapse even when transported to the next step.
本発明は、前記の課題、総繊度の高いアクリル系糸条をコアボビンに巻取る際、搬送時にも崩れることない巻形状が良好な炭素繊維前駆体アクリル系太物糸条パッケージについて鋭意検討し、パッケージの糸幅および硬度を一定以上とすることで、かかる課題を解決することを究明したものである。
The present invention, the above-described problem, when winding an acrylic yarn having a high total fineness on a core bobbin, a keen examination of a carbon fiber precursor acrylic thick yarn package having a good winding shape that does not collapse even during conveyance, The inventors have sought to solve such a problem by setting the yarn width and hardness of the package to a certain value or more.
本発明に使用される炭素繊維前駆体アクリル系糸条は、いわゆるアクリル系重合体、例えば好ましくはアクリルニトリル90質量%以上で、10質量%未満のコモノマーを重合してなる重合体から構成されているものである。かかるコモノマーとしては、アクリル酸、メタアクリル酸、イタコン酸、もしくはこれらのメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、アルカリ金属塩、アンモニウム塩、またはアリルスルホン酸、メタリルスルホン酸、もしくはこれらのアルカリ金属塩等のから選ばれた少なくとも一種を用いることができる。
The carbon fiber precursor acrylic yarn used in the present invention is composed of a so-called acrylic polymer, for example, a polymer obtained by polymerizing a comonomer of preferably 90% by mass or more and less than 10% by mass of acrylonitrile. Is what it is. Such comonomers include acrylic acid, methacrylic acid, itaconic acid, or their methyl esters, ethyl esters, propyl esters, butyl esters, alkali metal salts, ammonium salts, or allyl sulfonic acid, methallyl sulfonic acid, or these. At least one selected from alkali metal salts and the like can be used.
かかるアクリル系重合体は、公知の重合方法、例えば乳化重合、懸濁重合、溶液重合などの重合法を用いて得られ、さらにこれらの重合体からアクリル系繊維を製造するに際しては、たとえばジメチルアセトアミド、ジメチルスルホキシド(以下、DMSOという)、ジメチルホルムアミド、硝酸、塩化亜鉛、ロダンソーダ水溶液から選ばれた溶媒を含むポリマー溶液を紡糸原糸とし、湿式紡糸法、または、乾式紡糸法によって紡糸する。
Such acrylic polymers are obtained by using known polymerization methods, for example, polymerization methods such as emulsion polymerization, suspension polymerization, and solution polymerization.Further, when producing acrylic fibers from these polymers, for example, dimethylacetamide A polymer solution containing a solvent selected from dimethylsulfoxide (hereinafter, referred to as DMSO), dimethylformamide, nitric acid, zinc chloride, and an aqueous solution of rhodan soda is used as a spinning yarn and spun by a wet spinning method or a dry spinning method.
紡糸された糸条は、その後、浴中延伸に供されるが、浴中延伸は、紡出糸に直接行ってもよいし、紡出糸を一度水洗し、溶媒を除去した後行ってもよい。かかる浴中延伸は、好ましくは50~98℃の延伸浴中で、約2~6倍に延伸され、延伸後は、好ましくは油剤が付与され、ホットローラー等で乾燥緻密化された後、スチーム延伸に供された後、コアボビンに巻取られパッケージとなる。
The spun yarn is then subjected to drawing in a bath, and the drawing in the bath may be performed directly on the spun yarn, or may be performed after the spun yarn is washed once with water and the solvent is removed. Good. The stretching in the bath is preferably performed about 2 to 6 times in a stretching bath at 50 to 98 ° C. After the stretching, an oil agent is preferably applied, dried and densified by a hot roller or the like, and then steamed. After being subjected to stretching, it is wound around a core bobbin to form a package.
かかるパッケージに巻取る際、複数の糸条を何本か合糸してから巻取ってもよく、炭素繊維の生産性向上のためには、多フィラメント糸条を一度に焼成することが効果的であることから、本発明で巻取る糸条の総繊度は8000dtex以上である。また、輸送時の質量増加を避けるため糸条の水分率は好ましくは3%以下である。パッケージ全体の質量からボビン質量および水分量を減じたアクリル系糸条の総量は、焼成工程でのアクリル系糸条仕掛け回数を減少し作業を効率化するためには大きい方が好ましく、好ましくは120kg以上、さらに好ましくは200kg以上となるよう巻き取る。
At the time of winding into such a package, a plurality of yarns may be combined into several yarns and then wound. In order to improve the productivity of carbon fibers, it is effective to fire the multifilament yarns at once. Therefore, the total fineness of the yarn wound in the present invention is 8000 dtex or more. Further, the moisture content of the yarn is preferably 3% or less in order to avoid an increase in mass during transportation. The total amount of the acrylic yarn obtained by subtracting the bobbin mass and the water content from the mass of the entire package is preferably larger in order to reduce the number of the acrylic yarn threading operations in the firing step and to make the work more efficient, and preferably 120 kg. Above, more preferably, it is wound up to 200 kg or more.
運搬時の巻崩れを解消するためには、デュロメータにより測定したボビン端部の硬度を60以上とすることが重要である。硬度が60未満では、パッケージが緩みやすく、運搬時の巻崩れや解舒時の綾落ちが発生しやすい。硬度を60以上とするには、巻取り時の糸条の張力を適切な値とすることで達成できる。大量の糸条の巻取りには、大きな張力から徐々に張力を減衰して巻いていくことが一般的であるが、その数値は糸条の繊度やフィラメント数に応じて適切な値をとることができる。
(4) In order to eliminate the collapse during transport, it is important that the hardness of the bobbin end measured by a durometer is 60 or more. If the hardness is less than 60, the package is likely to be loosened, and it is easy for the package to collapse during transport and to have a shed when unwinding. The hardness of 60 or more can be achieved by setting the tension of the yarn at the time of winding to an appropriate value. When winding a large amount of yarn, it is general to gradually reduce the tension from a large tension and wind it, but the value should be an appropriate value according to the fineness of the yarn and the number of filaments Can be.
また、本発明のアクリル系糸条パッケージでは、パッケージ上のアクリル系糸条の糸幅を0.22mm/1000dtex以上として巻取ることが必要である。糸幅が0.22mm/1000dtexよりも小さいと、糸の厚みが大きくなり、隣の糸条との間に糸条がずれる隙間が生じてしまい、運搬時に巻崩れが生じやすい。また、糸幅が0.54mm/1000dtexよりも大きいと、糸条の収束性が悪くなり、焼成工程で解舒時に綾落ちや単糸の巻付きといったトラブルが発生する場合があるため、パッケージ上のアクリル系糸条の糸幅は0.22mm~0.54mm/1000dtexの範囲とすることが好ましい。パッケージ上の糸幅を上記範囲とする方法は特に限定されないが、糸条を巻取り機で巻取る際に、集束用のフリーローラー群を一定以上通過させた後に巻き取る方法が好適に用いられる。
In the acrylic yarn package of the present invention, it is necessary to wind the acrylic yarn on the package so that the yarn width is 0.22 mm / 1000 dtex or more. When the yarn width is smaller than 0.22 mm / 1000 dtex, the thickness of the yarn becomes large, a gap is generated between adjacent yarns, and the yarn is liable to collapse during transportation. On the other hand, if the yarn width is larger than 0.54 mm / 1000 dtex, the convergence of the yarn becomes poor, and troubles such as twill drop and winding of a single yarn may occur at the time of unwinding in the firing step. It is preferable that the width of the acrylic yarn is in the range of 0.22 mm to 0.54 mm / 1000 dtex. The method for setting the yarn width on the package to the above range is not particularly limited, but when winding the yarn with a winding machine, a method of winding after passing a free roller group for convergence for a certain amount or more is preferably used. .
本発明のアクリル系糸条パッケージでは、アクリル系糸条の静止摩擦係数が0.13未満であると、糸幅や硬度を特定な条件に制御して巻崩れを防止しても、巻取り時に端面膨らみが発生することがあるため、適当な種類、量の油剤を付与したりすることで、静止摩擦係数を0.13以上とすることが好ましい。
In the acrylic yarn package of the present invention, if the static friction coefficient of the acrylic yarn is less than 0.13, even if the yarn width and hardness are controlled to specific conditions to prevent winding collapse, even when winding, Since swelling of the end face may occur, it is preferable that the static friction coefficient be 0.13 or more by applying an appropriate type and amount of an oil agent.
また、本発明のアクリル系糸条パッケージでは、糸ずれ割合を15~59%に、パッケージ上の綾角を6~14゜の範囲に設定することが好ましい。糸ずれ割合とは、パッケージ上で最も近いところを平行に通る二つの糸条において、糸幅Tに対する糸ずれ量Sの割合である。すなわち、この糸ずれ割合は、図1中に示される(S/T)×100で求められるものである。これを図1を用いて概念的に説明すると、アクリル系糸条4は、アクリル系糸条3に対して、アクリル系糸条パッケージ1上で最も近いところを平行に通る糸条であるが、このアクリル系糸条3とアクリル系糸条4の糸ずれ量Sの糸幅Tに対する割合である。なお、糸幅Tおよび糸ずれ量Sはそれぞれ後述する方法で測定する値である。
{Also, in the acrylic yarn package of the present invention, it is preferable to set the yarn misalignment ratio to 15 to 59% and the twill angle on the package to 6 to 14 °. The yarn deviation ratio is a ratio of the yarn deviation amount S to the yarn width T in two yarns passing in parallel at the closest position on the package. That is, this yarn deviation ratio is determined by (S / T) × 100 shown in FIG. When this is conceptually described with reference to FIG. 1, the acrylic yarn 4 is a yarn that passes in parallel with the acrylic yarn 3 on a position closest to the acrylic yarn package 1, This is the ratio of the yarn deviation S between the acrylic yarn 3 and the acrylic yarn 4 to the yarn width T. The yarn width T and the yarn deviation amount S are values measured by a method described later.
また、綾角とは、図1に示されるように、コアボビン2の軸に垂直な直線(コアボビン軸方向に垂直な線α)と、巻付けられるアクリル系糸条4の方向のなす角度(θ)のことである。
As shown in FIG. 1, the twill angle is an angle (θ) between a straight line perpendicular to the axis of the core bobbin 2 (line α perpendicular to the core bobbin axis direction) and the direction of the acrylic yarn 4 to be wound. ).
糸ずれ割合および綾角は、通常、糸条トラバース1回当たりの巻取り機スピンドル回転数、いわゆるワインド比を適切な値とすることにより制御することができる。ワインド比が整数であると、1トラバースの前後で全く同じ糸道を通ることになるため、ワインド比の小数部分を適切な値とすることで、1トラバースの前後での糸道をずらし、糸ずれ割合を制御することができる。また、整数部分も含めたワインド比全体の大きさを適切な値とすることで、綾角を制御することができる。糸ずれ割合については、15%よりも小さいと、起伏が大きいパッケージとなり、巻取り張力を大きくしても硬度が下がることがあり、運搬時に巻崩れが生じやすい。また、糸ずれ割合が59%よりも大きくなると、内層糸と外層糸の接する面が小さくなることから、巻取り時の外層糸の押し付けにより内層糸が滑って外に押し出されてしまい、端面が膨らんでしまう。そのため、糸ずれ割合を15%~59%の範囲にすることで、硬度と端面形状の両方を良好な数値とすることができ好ましい。
The yarn deviation ratio and the twill angle can usually be controlled by setting the winding speed of the winder spindle per one yarn traverse, that is, the so-called wind ratio, to an appropriate value. If the wind ratio is an integer, the yarn passes through exactly the same yarn path before and after one traverse. By setting the decimal portion of the wind ratio to an appropriate value, the yarn path before and after one traverse is shifted, The deviation ratio can be controlled. Also, by setting the size of the entire wind ratio including the integer part to an appropriate value, the helix angle can be controlled. If the yarn deviation ratio is less than 15%, the package will have large undulations, and even if the winding tension is increased, the hardness may decrease, and the winding tends to collapse during transportation. Further, when the yarn deviation ratio is larger than 59%, the contact surface between the inner layer yarn and the outer layer yarn becomes smaller, so that the inner layer yarn slips and is pushed out by the pressing of the outer layer yarn at the time of winding, so that the end face is removed. It will swell. Therefore, it is preferable to set the yarn deviation ratio in the range of 15% to 59% since both the hardness and the end face shape can be set to favorable numerical values.
また、綾角が6゜よりも小さいと、解舒時の綾落ちが発生しやすくなり、綾角が14゜より大きいと、端面膨らみが大きくなるため、綾角は6~14°の範囲内とするのが好ましい。ワインド比を一定として巻いていくと、コアボビンに巻いたパッケージの径が大きくなるにつれて綾角は直線的に減少することから、糸条巻取り量に応じてワインド比を巻取り中に変化させることで、綾角を一定の範囲内に保ちながら巻取ることができる。例えば、スピンドル駆動とトラバース駆動を独立させ、スピンドル回転数を検知した後、設定ワインド比になるよう演算後、トラバース駆動回転数を制御するような機構とすることにより、巻取りの過程で巻取り量に応じてワインド比を自由に設定することができる。
If the twill angle is smaller than 6 °, the twill drop during unwinding is liable to occur, and if the twill angle is larger than 14 °, the end face bulges larger, so that the twill angle is in the range of 6 to 14 °. It is preferred that When winding at a constant wind ratio, the twill angle decreases linearly as the diameter of the package wound on the core bobbin increases, so change the wind ratio during winding according to the amount of yarn wound. Thus, winding can be performed while keeping the twill angle within a certain range. For example, by making the spindle drive and traverse drive independent, detecting the spindle rotation speed, calculating to achieve the set wind ratio, and then controlling the traverse drive rotation speed, the winding in the winding process The wind ratio can be set freely according to the amount.
以下、実施例及び比較例を示して本発明を詳細に説明する。実施例及び比較例で用いた測定方法を次に説明する。
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. The measuring methods used in the examples and comparative examples will be described below.
<総繊度>
測定対象となるパッケージからサンプル糸条を20m採取し、JIS L1013:2010に準じた方法により総繊度を求めた。 <Total fineness>
A sample yarn of 20 m was collected from the package to be measured, and the total fineness was determined by a method according to JIS L1013: 2010.
測定対象となるパッケージからサンプル糸条を20m採取し、JIS L1013:2010に準じた方法により総繊度を求めた。 <Total fineness>
A sample yarn of 20 m was collected from the package to be measured, and the total fineness was determined by a method according to JIS L1013: 2010.
<静止摩擦係数>
測定対象となるパッケージからサンプル糸条を1.5m採取し、採取後のパッケージに巻き付けた。このとき、パッケージの円周面に沿って、パッケージの中央に巻き付けた。パッケージとの接触角が540°になるように、サンプル糸条を巻き付けた後、サンプル糸条の両端にそれぞれ150gの錘をつけた。その後、該糸の一端側の錘の質量を増やしていき、該糸がセパレートロール上をスリップし始めるときの質量を測定し、次式より求めた。
静止摩擦係数(μs)= 3/π×Ln(T1/150)
π:円周率
T1:スリップし始めたときの錘の質量(g)。 <Static friction coefficient>
1.5 m of a sample yarn was collected from the package to be measured, and wound around the package after collection. At this time, it was wound around the center of the package along the circumferential surface of the package. After winding the sample yarn so that the contact angle with the package was 540 °, a 150 g weight was attached to each end of the sample yarn. Thereafter, the mass of the weight at one end of the yarn was increased, and the mass at which the yarn started slipping on the separate roll was measured, and the mass was determined by the following equation.
Static friction coefficient (μs) = 3 / π × Ln (T1 / 150)
π: Pi T1: Mass (g) of the weight when slipping starts.
測定対象となるパッケージからサンプル糸条を1.5m採取し、採取後のパッケージに巻き付けた。このとき、パッケージの円周面に沿って、パッケージの中央に巻き付けた。パッケージとの接触角が540°になるように、サンプル糸条を巻き付けた後、サンプル糸条の両端にそれぞれ150gの錘をつけた。その後、該糸の一端側の錘の質量を増やしていき、該糸がセパレートロール上をスリップし始めるときの質量を測定し、次式より求めた。
静止摩擦係数(μs)= 3/π×Ln(T1/150)
π:円周率
T1:スリップし始めたときの錘の質量(g)。 <Static friction coefficient>
1.5 m of a sample yarn was collected from the package to be measured, and wound around the package after collection. At this time, it was wound around the center of the package along the circumferential surface of the package. After winding the sample yarn so that the contact angle with the package was 540 °, a 150 g weight was attached to each end of the sample yarn. Thereafter, the mass of the weight at one end of the yarn was increased, and the mass at which the yarn started slipping on the separate roll was measured, and the mass was determined by the following equation.
Static friction coefficient (μs) = 3 / π × Ln (T1 / 150)
π: Pi T1: Mass (g) of the weight when slipping starts.
<糸幅>
パッケージ上のアクリル系糸条の糸幅を、ノギスを用いてパッケージ両端から2cm内側の箇所(以下両端部と称する)、中央、両端部と中央の間の計5点測定し、総繊度で除した値を糸幅とした。 <Thread width>
The yarn width of the acrylic yarn on the package is measured using a caliper with a point within 2 cm from the package ends (hereinafter referred to as both ends), the center, and a total of 5 points between the ends and the center, and divided by the total fineness. The value obtained was taken as the yarn width.
パッケージ上のアクリル系糸条の糸幅を、ノギスを用いてパッケージ両端から2cm内側の箇所(以下両端部と称する)、中央、両端部と中央の間の計5点測定し、総繊度で除した値を糸幅とした。 <Thread width>
The yarn width of the acrylic yarn on the package is measured using a caliper with a point within 2 cm from the package ends (hereinafter referred to as both ends), the center, and a total of 5 points between the ends and the center, and divided by the total fineness. The value obtained was taken as the yarn width.
<糸ずれ割合>
パッケージ上で最も近いところを平行に通る二つの糸条について、図1中に示される糸ずれ量(S)を、ノギスを用いてパッケージの両端部、中央、両端部と中央の間の計5点測定し、その平均値を糸幅で除した値を糸ずれ割合とした。 <Yarn deviation ratio>
For the two yarns passing in parallel on the closest part on the package, the amount of yarn deviation (S) shown in FIG. 1 was determined by using calipers at both ends of the package, the center, and a total of 5 between the both ends and the center. The points were measured, and the value obtained by dividing the average value by the yarn width was defined as the yarn deviation ratio.
パッケージ上で最も近いところを平行に通る二つの糸条について、図1中に示される糸ずれ量(S)を、ノギスを用いてパッケージの両端部、中央、両端部と中央の間の計5点測定し、その平均値を糸幅で除した値を糸ずれ割合とした。 <Yarn deviation ratio>
For the two yarns passing in parallel on the closest part on the package, the amount of yarn deviation (S) shown in FIG. 1 was determined by using calipers at both ends of the package, the center, and a total of 5 between the both ends and the center. The points were measured, and the value obtained by dividing the average value by the yarn width was defined as the yarn deviation ratio.
<綾角範囲>
巻きあがったパッケージを解舒しながら、糸条が全てなくなるまで10kgおきに、図1に示されるコアボビン2の軸方向に直角な直線(α)と、巻付けられる糸条4の方向のなす角度(θ)を、パッケージ中央にて測定し、測定値の範囲を綾角範囲とした。 <Twill angle range>
While unwinding the wound package, the angle between the straight line (α) perpendicular to the axial direction of thecore bobbin 2 shown in FIG. 1 and the direction of the wound yarn 4 at every 10 kg until all the yarns are exhausted. (Θ) was measured at the center of the package, and the range of the measured values was defined as the twill angle range.
巻きあがったパッケージを解舒しながら、糸条が全てなくなるまで10kgおきに、図1に示されるコアボビン2の軸方向に直角な直線(α)と、巻付けられる糸条4の方向のなす角度(θ)を、パッケージ中央にて測定し、測定値の範囲を綾角範囲とした。 <Twill angle range>
While unwinding the wound package, the angle between the straight line (α) perpendicular to the axial direction of the
<硬度>
高分子計器(株)社製ハードネステスター(HARDNESS TESTER)“Type C”(Cellular Rubber & Yarn Package用)を用い、パッケージの両端部から2cm内側の2ヶ所を測定し、その平均値を糸条パッケージの硬度とした。 <Hardness>
Using a Hardness Tester “Type C” (for Cellular Rubber & Yarn Package) manufactured by Kobunshi Keiki Co., Ltd., twoplaces 2 cm inside from both ends of the package are measured, and the average value is taken as a yarn package. Hardness.
高分子計器(株)社製ハードネステスター(HARDNESS TESTER)“Type C”(Cellular Rubber & Yarn Package用)を用い、パッケージの両端部から2cm内側の2ヶ所を測定し、その平均値を糸条パッケージの硬度とした。 <Hardness>
Using a Hardness Tester “Type C” (for Cellular Rubber & Yarn Package) manufactured by Kobunshi Keiki Co., Ltd., two
<輸送時巻崩れ>
アクリル系糸条パッケージをスピンドルの付いた台車に通し、JIS Z0232:2004に準じた輸送振動試験をアクリル系糸条パッケージ1本につき1回実施し、巻崩れの有無を次の2水準で判定した。
○:端面膨らみの5.0mm以上の増加や、反りの10mm以上の増加は無かった。
×:端面膨らみの5.0mm以上の増加や、反りの10mm以上の増加があった。 <Crash during transport>
The acrylic yarn package was passed through a carriage with a spindle, and a transport vibration test according to JIS Z0232: 2004 was performed once for each acrylic yarn package, and the presence or absence of winding collapse was determined at the following two levels. .
:: There was no increase in end face bulge of 5.0 mm or more and no increase of warpage of 10 mm or more.
X: The end face swelling increased by 5.0 mm or more, and the warpage increased by 10 mm or more.
アクリル系糸条パッケージをスピンドルの付いた台車に通し、JIS Z0232:2004に準じた輸送振動試験をアクリル系糸条パッケージ1本につき1回実施し、巻崩れの有無を次の2水準で判定した。
○:端面膨らみの5.0mm以上の増加や、反りの10mm以上の増加は無かった。
×:端面膨らみの5.0mm以上の増加や、反りの10mm以上の増加があった。 <Crash during transport>
The acrylic yarn package was passed through a carriage with a spindle, and a transport vibration test according to JIS Z0232: 2004 was performed once for each acrylic yarn package, and the presence or absence of winding collapse was determined at the following two levels. .
:: There was no increase in end face bulge of 5.0 mm or more and no increase of warpage of 10 mm or more.
X: The end face swelling increased by 5.0 mm or more, and the warpage increased by 10 mm or more.
なお、図2に示される、パッケージ上部の両端を結んだ直線5から、パッケージ上部の辿る曲線6で最も遠い地点の距離(U)を測定し、反りUとした。
From the straight line 5 connecting both ends of the upper part of the package shown in FIG.
<端面膨らみ>
図1に示される、パッケージ最表面での糸条トラバース幅(L)に対して、パッケージの側面が最も外に膨らんだ地点の高さである端面膨れ量(k1、k2)をパッケージの両側面でそれぞれ測定し、その平均値を端面膨らみとした。 <End face bulge>
With respect to the yarn traverse width (L) at the outermost surface of the package shown in FIG. 1, the end surface swelling amount (k1, k2) which is the height of the point where the side surface of the package bulges outmost is the both side surfaces of the package. , And the average value was taken as the bulge at the end face.
図1に示される、パッケージ最表面での糸条トラバース幅(L)に対して、パッケージの側面が最も外に膨らんだ地点の高さである端面膨れ量(k1、k2)をパッケージの両側面でそれぞれ測定し、その平均値を端面膨らみとした。 <End face bulge>
With respect to the yarn traverse width (L) at the outermost surface of the package shown in FIG. 1, the end surface swelling amount (k1, k2) which is the height of the point where the side surface of the package bulges outmost is the both side surfaces of the package. , And the average value was taken as the bulge at the end face.
<解舒時トラブル>
パッケージをクリールに仕掛け全量を解舒した際に綾落ちや単糸の巻付きの発生しなかったものを○、発生したものを×とした。 <Trouble during unwinding>
When the package was set on a creel and the entire amount was unwound, no bleeding or no single yarn wrapping occurred.
パッケージをクリールに仕掛け全量を解舒した際に綾落ちや単糸の巻付きの発生しなかったものを○、発生したものを×とした。 <Trouble during unwinding>
When the package was set on a creel and the entire amount was unwound, no bleeding or no single yarn wrapping occurred.
(実施例1)
アクリロニトリル99.6質量%、イタコン酸0.4質量%からなる固有粘度[η]が1.80のアクリル系重合体の19%DMSO溶液を紡糸原液として、孔数6000の口金を用いて、DMSO30%、水70%からなる8℃の凝固浴中に乾湿式紡糸を行い、凝固糸を得た。該凝固糸を水洗しながら熱水中で2.8倍に延伸し、さらに残存のDMSOを糸中0.01%以下になるまで水洗した後、シリコーン系の油剤を付与し、150~160℃で乾燥緻密化を行った。引続いて加圧スチーム中で4.3倍延伸を加えた後に再度乾燥した。6000フィラメント糸条を2本合糸して、12000フィラメント、総繊度13300dtexの糸条を巻取り機で外径が145mmのFRP製コアボビンに、表1に示す糸幅、糸ずれ割合、綾角範囲にて、パッケージ全体の質量からボビン質量および水分量を減じたアクリル系糸条の総量が120kgとなるよう巻取った。なお、水分量は、巻き取る糸条をあらかじめ約12m採取し、JIS L1013:2010に準じた方法により水分率を測定しておき、巻き取った糸条量を乗じることで求めた。 (Example 1)
A 19% DMSO solution of an acrylic polymer having an intrinsic viscosity [η] of 1.96, which is composed of 99.6% by mass of acrylonitrile and 0.4% by mass of itaconic acid, was used as a stock solution for spinning. % And 70% water in a coagulation bath at 8 ° C. to obtain a coagulated yarn. The coagulated yarn is stretched 2.8 times in hot water while washing with water, and the remaining DMSO is further washed with water until the amount becomes 0.01% or less in the yarn. For dry densification. Subsequently, the film was dried again after being stretched 4.3 times in pressurized steam. Two 6000 filament yarns are plied, and a 12,000 filament yarn having a total fineness of 13300 dtex is wound by a winder on a core bobbin made of FRP having an outer diameter of 145 mm. Then, the acrylic yarn obtained by subtracting the mass of the bobbin and the amount of water from the mass of the entire package was wound up to 120 kg. The water content was determined by sampling about 12 m of the yarn to be wound in advance, measuring the water content by a method according to JIS L1013: 2010, and multiplying by the amount of the wound yarn.
アクリロニトリル99.6質量%、イタコン酸0.4質量%からなる固有粘度[η]が1.80のアクリル系重合体の19%DMSO溶液を紡糸原液として、孔数6000の口金を用いて、DMSO30%、水70%からなる8℃の凝固浴中に乾湿式紡糸を行い、凝固糸を得た。該凝固糸を水洗しながら熱水中で2.8倍に延伸し、さらに残存のDMSOを糸中0.01%以下になるまで水洗した後、シリコーン系の油剤を付与し、150~160℃で乾燥緻密化を行った。引続いて加圧スチーム中で4.3倍延伸を加えた後に再度乾燥した。6000フィラメント糸条を2本合糸して、12000フィラメント、総繊度13300dtexの糸条を巻取り機で外径が145mmのFRP製コアボビンに、表1に示す糸幅、糸ずれ割合、綾角範囲にて、パッケージ全体の質量からボビン質量および水分量を減じたアクリル系糸条の総量が120kgとなるよう巻取った。なお、水分量は、巻き取る糸条をあらかじめ約12m採取し、JIS L1013:2010に準じた方法により水分率を測定しておき、巻き取った糸条量を乗じることで求めた。 (Example 1)
A 19% DMSO solution of an acrylic polymer having an intrinsic viscosity [η] of 1.96, which is composed of 99.6% by mass of acrylonitrile and 0.4% by mass of itaconic acid, was used as a stock solution for spinning. % And 70% water in a coagulation bath at 8 ° C. to obtain a coagulated yarn. The coagulated yarn is stretched 2.8 times in hot water while washing with water, and the remaining DMSO is further washed with water until the amount becomes 0.01% or less in the yarn. For dry densification. Subsequently, the film was dried again after being stretched 4.3 times in pressurized steam. Two 6000 filament yarns are plied, and a 12,000 filament yarn having a total fineness of 13300 dtex is wound by a winder on a core bobbin made of FRP having an outer diameter of 145 mm. Then, the acrylic yarn obtained by subtracting the mass of the bobbin and the amount of water from the mass of the entire package was wound up to 120 kg. The water content was determined by sampling about 12 m of the yarn to be wound in advance, measuring the water content by a method according to JIS L1013: 2010, and multiplying by the amount of the wound yarn.
結果は、表1に示すように、輸送時の巻崩れのない良好なパッケージであった。
As shown in Table 1, the result was a good package with no collapse during transport.
(実施例2~5、比較例1~4)
パッケージ全体の質量からボビン質量および水分量を減じたアクリル系糸条の総量を240kgとしたこと以外は実施例1と同様にして、巻取り時の糸幅、巻取り機のワインド比や張力を変更し表1に示す糸幅、糸ずれ割合、綾角範囲にて巻取った。 (Examples 2 to 5, Comparative Examples 1 to 4)
In the same manner as in Example 1 except that the total amount of the acrylic yarn obtained by subtracting the bobbin mass and the water content from the mass of the entire package was 240 kg, the yarn width at the time of winding, the wind ratio and the tension of the winding machine were changed. The yarn was changed and wound in the yarn width, yarn deviation ratio and twill angle ranges shown in Table 1.
パッケージ全体の質量からボビン質量および水分量を減じたアクリル系糸条の総量を240kgとしたこと以外は実施例1と同様にして、巻取り時の糸幅、巻取り機のワインド比や張力を変更し表1に示す糸幅、糸ずれ割合、綾角範囲にて巻取った。 (Examples 2 to 5, Comparative Examples 1 to 4)
In the same manner as in Example 1 except that the total amount of the acrylic yarn obtained by subtracting the bobbin mass and the water content from the mass of the entire package was 240 kg, the yarn width at the time of winding, the wind ratio and the tension of the winding machine were changed. The yarn was changed and wound in the yarn width, yarn deviation ratio and twill angle ranges shown in Table 1.
結果は、表1に示すように、実施例2~5については輸送時の巻崩れのない良好なパッケージであったが、実施例4については、巻取り時の糸ずれ割合が60%以上と大きく、内層糸と外層糸の接する面が小さくなることから、巻取り時に外層糸が内層糸を押し付けて内層糸が滑って外に押し出されることで、端面膨らみが大きいパッケージとなった。また、実施例5については、糸幅が0.55mm/1000dtex以上と大きく糸条の収束性が悪いことから、焼成工程で解舒時に綾落ちや単糸の巻付きが発生した。比較例1~3については、実施例2と対比し硬度が60未満であり、輸送時に巻崩れが生じた。比較例4については、実施例2と対比し糸幅が0.22mm/1000dtex未満であり、輸送時に巻崩れが生じた。
As shown in Table 1, as shown in Table 1, the packages of Examples 2 to 5 were good packages with no winding collapse during transportation, but Example 4 had a yarn misalignment ratio of 60% or more during winding. Since the surface in contact with the inner layer yarn and the outer layer yarn becomes smaller, the outer layer yarn presses the inner layer yarn at the time of winding, and the inner layer yarn slides and is pushed out, so that a package having a large end face bulge is obtained. In Example 5, since the yarn width was as large as 0.55 mm / 1000 dtex or more and the convergence of the yarn was poor, the shedding and single yarn winding occurred during unwinding in the firing step. Comparative Examples 1 to 3 had a hardness of less than 60 as compared with Example 2, and collapsed during transport. In Comparative Example 4, the yarn width was less than 0.22 mm / 1000 dtex as compared with Example 2, and winding collapse occurred during transportation.
(実施例6、7)
油剤の付着量を調整して糸条の静止摩擦係数を変更させたこと以外は実施例2と同様にして、表1に示す糸幅、糸ずれ割合にて巻取った。結果は、表1に示すように、輸送時の巻崩れのない良好なパッケージであった。実施例6については、静止摩擦係数が0.13未満と低く、巻取り時に糸の横滑りが発生し端面膨らみが大きいパッケージとなった。 (Examples 6 and 7)
Winding was performed in the same manner as in Example 2 except that the amount of oil applied was adjusted to change the coefficient of static friction of the yarn, with the yarn width and yarn deviation ratio shown in Table 1. As a result, as shown in Table 1, it was a good package without collapse during transportation. In Example 6, the static friction coefficient was as low as less than 0.13, and the side slippage of the yarn occurred at the time of winding, resulting in a package having a large end face bulge.
油剤の付着量を調整して糸条の静止摩擦係数を変更させたこと以外は実施例2と同様にして、表1に示す糸幅、糸ずれ割合にて巻取った。結果は、表1に示すように、輸送時の巻崩れのない良好なパッケージであった。実施例6については、静止摩擦係数が0.13未満と低く、巻取り時に糸の横滑りが発生し端面膨らみが大きいパッケージとなった。 (Examples 6 and 7)
Winding was performed in the same manner as in Example 2 except that the amount of oil applied was adjusted to change the coefficient of static friction of the yarn, with the yarn width and yarn deviation ratio shown in Table 1. As a result, as shown in Table 1, it was a good package without collapse during transportation. In Example 6, the static friction coefficient was as low as less than 0.13, and the side slippage of the yarn occurred at the time of winding, resulting in a package having a large end face bulge.
(実施例8)
6000フィラメント糸条を4本合糸したこと以外は実施例2と同様にして、24000フィラメント、総繊度26600dtexの糸条を表1に示す糸幅、糸ずれ割合にて巻取った。 (Example 8)
A yarn having 24,000 filaments and a total fineness of 26,600 dtex was wound in the same manner as in Example 2 except that four 6000 filament yarns were plied.
6000フィラメント糸条を4本合糸したこと以外は実施例2と同様にして、24000フィラメント、総繊度26600dtexの糸条を表1に示す糸幅、糸ずれ割合にて巻取った。 (Example 8)
A yarn having 24,000 filaments and a total fineness of 26,600 dtex was wound in the same manner as in Example 2 except that four 6000 filament yarns were plied.
結果は、表1に示すように、輸送時の巻崩れのない良好なパッケージであった。
As shown in Table 1, the result was a good package with no collapse during transport.
(実施例9)
加圧スチーム中での延伸倍率を3.9倍としたこと以外は実施例8と同様にして、24000フィラメント、総繊度29100dtexを表1に示す糸幅、糸ずれ割合にて巻取った。 (Example 9)
A 24,000 filament and a total fineness of 29,100 dtex were wound at a yarn width and a yarn deviation ratio shown in Table 1, in the same manner as in Example 8, except that the draw ratio in the pressure steam was 3.9.
加圧スチーム中での延伸倍率を3.9倍としたこと以外は実施例8と同様にして、24000フィラメント、総繊度29100dtexを表1に示す糸幅、糸ずれ割合にて巻取った。 (Example 9)
A 24,000 filament and a total fineness of 29,100 dtex were wound at a yarn width and a yarn deviation ratio shown in Table 1, in the same manner as in Example 8, except that the draw ratio in the pressure steam was 3.9.
結果は、表1に示すように、輸送時の巻崩れのない良好なパッケージであった。
As shown in Table 1, the result was a good package with no collapse during transport.
(実施例10)
単糸繊度0.74dtexの6000フィラメント糸条を6本合糸したこと以外は実施例2と同様にして、36000フィラメント、総繊度26600dtexを表1に示す糸幅、糸ずれ割合にて巻取った。 (Example 10)
In the same manner as in Example 2 except that six 6000 filament yarns having a single yarn fineness of 0.74 dtex were combined, 36000 filaments and a total fineness of 26,600 dtex were wound at a yarn width and a yarn deviation ratio shown in Table 1. .
単糸繊度0.74dtexの6000フィラメント糸条を6本合糸したこと以外は実施例2と同様にして、36000フィラメント、総繊度26600dtexを表1に示す糸幅、糸ずれ割合にて巻取った。 (Example 10)
In the same manner as in Example 2 except that six 6000 filament yarns having a single yarn fineness of 0.74 dtex were combined, 36000 filaments and a total fineness of 26,600 dtex were wound at a yarn width and a yarn deviation ratio shown in Table 1. .
結果は、表1に示すように、輸送時の巻崩れのない良好なパッケージであった。
As shown in Table 1, the result was a good package with no collapse during transport.
1:アクリル系糸条パッケージ
2:コアボビン
3:アクリル系糸条
4:アクリル系糸条
5:パッケージ上部の両端を結んだ直線
6:パッケージ上部の辿る曲線
L:糸条トラバース幅
k1、k2:端面膨れ量
S:糸ずれ量
T:糸幅
U:反り
θ:綾角
α:コアボビン軸方向に直角な線 1: Acrylic yarn package 2: Core bobbin 3: Acrylic yarn 4: Acrylic yarn 5: Straight line connecting both ends of the upper part of the package 6: Curve L following the upper part of the package L: Yarn traverse width k1, k2: End face Swelling amount S: Yarn deviation amount T: Yarn width U: Warp θ: Twill angle α: Line perpendicular to core bobbin axis direction
2:コアボビン
3:アクリル系糸条
4:アクリル系糸条
5:パッケージ上部の両端を結んだ直線
6:パッケージ上部の辿る曲線
L:糸条トラバース幅
k1、k2:端面膨れ量
S:糸ずれ量
T:糸幅
U:反り
θ:綾角
α:コアボビン軸方向に直角な線 1: Acrylic yarn package 2: Core bobbin 3: Acrylic yarn 4: Acrylic yarn 5: Straight line connecting both ends of the upper part of the package 6: Curve L following the upper part of the package L: Yarn traverse width k1, k2: End face Swelling amount S: Yarn deviation amount T: Yarn width U: Warp θ: Twill angle α: Line perpendicular to core bobbin axis direction
Claims (4)
- 総繊度が8000dtex以上のアクリル系糸条がボビンに巻かれてなるパッケージであって、パッケージ上のアクリル系糸条の糸幅が0.22mm/1000dtex以上、硬度が60以上であるアクリル系糸条パッケージ。 A package comprising an acrylic yarn having a total fineness of 8000 dtex or more wound on a bobbin, wherein the acrylic yarn on the package has a yarn width of 0.22 mm / 1000 dtex or more and a hardness of 60 or more. package.
- アクリル系糸条の総量が120kg以上である、請求項1に記載のアクリル系糸条パッケージ。 The acrylic yarn package according to claim 1, wherein the total amount of the acrylic yarn is 120 kg or more.
- アクリル系糸条の静止摩擦係数が0.13以上である、請求項1または2に記載のアクリル系糸条パッケージ。 The acrylic yarn package according to claim 1 or 2, wherein the acrylic yarn has a static friction coefficient of 0.13 or more.
- パッケージ上のアクリル系糸条の糸幅が0.22~0.54mm/1000dtex、糸ずれ割合が15~59%、綾角が6~14°である、請求項1~3のいずれかに記載のアクリル系糸条パッケージ。 The yarn according to any one of claims 1 to 3, wherein the acrylic yarn on the package has a yarn width of 0.22 to 0.54 mm / 1000 dtex, a yarn deviation ratio of 15 to 59%, and a twill angle of 6 to 14 °. Acrylic yarn package.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/269,010 US20210323786A1 (en) | 2018-08-29 | 2019-08-20 | Acrylic yarn package |
CN201980051912.2A CN112533850A (en) | 2018-08-29 | 2019-08-20 | Acrylic yarn package |
EP19855987.4A EP3845477A4 (en) | 2018-08-29 | 2019-08-20 | Acrylic yarn package |
KR1020217004345A KR20210049790A (en) | 2018-08-29 | 2019-08-20 | Acrylic thread package |
JP2019545838A JPWO2020045161A1 (en) | 2018-08-29 | 2019-08-20 | Acrylic thread package |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-160115 | 2018-08-29 | ||
JP2018160115 | 2018-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020045161A1 true WO2020045161A1 (en) | 2020-03-05 |
Family
ID=69644233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032407 WO2020045161A1 (en) | 2018-08-29 | 2019-08-20 | Acrylic yarn package |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210323786A1 (en) |
EP (1) | EP3845477A4 (en) |
JP (1) | JPWO2020045161A1 (en) |
KR (1) | KR20210049790A (en) |
CN (1) | CN112533850A (en) |
TW (1) | TW202012295A (en) |
WO (1) | WO2020045161A1 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5123322A (en) | 1974-08-16 | 1976-02-24 | Teijin Ltd | KOSOKUBOSHUTSUSHIPATSUKEEJI |
JPS58212563A (en) * | 1982-06-02 | 1983-12-10 | Toray Ind Inc | Package of graphite thread and method of manufacture |
JPH10120302A (en) * | 1996-10-21 | 1998-05-12 | Toray Ind Inc | Drum-type package |
JPH11263534A (en) | 1998-03-18 | 1999-09-28 | Toray Ind Inc | Acrylic filament package and its manufacture |
JP2002003081A (en) | 2000-06-20 | 2002-01-09 | Toray Ind Inc | Carbon fiber precursor acrylic thick filament yarn package and its manufacturing method |
JP2003034466A (en) * | 2001-07-18 | 2003-02-07 | Toray Ind Inc | Carbon fiber thick yarn package and its manufacturing method |
JP2003335457A (en) * | 2002-05-16 | 2003-11-25 | Toyobo Co Ltd | Yarn package of excellent high-speed untwining performance and manufacturing method for yarn package |
JP2004123296A (en) * | 2002-10-02 | 2004-04-22 | Toray Ind Inc | Acrylic precursor yarn package |
JP2005273106A (en) | 2004-03-26 | 2005-10-06 | Toray Ind Inc | Yarn package |
JP3827672B2 (en) * | 2001-09-18 | 2006-09-27 | 旭化成せんい株式会社 | Polyester-based composite fiber pan |
JP2016069160A (en) * | 2014-09-30 | 2016-05-09 | 東レ株式会社 | Polyester false twisted yarn package |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3471082D1 (en) * | 1984-02-06 | 1988-06-16 | Toray Industries | Yarn package of carbon filament yarn and method for forming the same |
JP3830322B2 (en) * | 2000-02-04 | 2006-10-04 | 旭化成せんい株式会社 | Polytrimethylene terephthalate partially oriented fiber suitable for false twisting |
JP3249097B2 (en) * | 1999-07-12 | 2002-01-21 | 旭化成株式会社 | Polyester fiber suitable for false twisting and manufacturing method |
DE10342266B4 (en) * | 2002-09-25 | 2016-02-04 | Saurer Germany Gmbh & Co. Kg | Method for producing a cross-wound bobbin |
JP2013129452A (en) * | 2011-12-22 | 2013-07-04 | Toray Ind Inc | Fiber package packing body |
-
2019
- 2019-08-20 KR KR1020217004345A patent/KR20210049790A/en not_active Application Discontinuation
- 2019-08-20 CN CN201980051912.2A patent/CN112533850A/en active Pending
- 2019-08-20 US US17/269,010 patent/US20210323786A1/en not_active Abandoned
- 2019-08-20 JP JP2019545838A patent/JPWO2020045161A1/en active Pending
- 2019-08-20 WO PCT/JP2019/032407 patent/WO2020045161A1/en unknown
- 2019-08-20 EP EP19855987.4A patent/EP3845477A4/en not_active Withdrawn
- 2019-08-23 TW TW108130134A patent/TW202012295A/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5123322A (en) | 1974-08-16 | 1976-02-24 | Teijin Ltd | KOSOKUBOSHUTSUSHIPATSUKEEJI |
JPS58212563A (en) * | 1982-06-02 | 1983-12-10 | Toray Ind Inc | Package of graphite thread and method of manufacture |
JPH10120302A (en) * | 1996-10-21 | 1998-05-12 | Toray Ind Inc | Drum-type package |
JPH11263534A (en) | 1998-03-18 | 1999-09-28 | Toray Ind Inc | Acrylic filament package and its manufacture |
JP2002003081A (en) | 2000-06-20 | 2002-01-09 | Toray Ind Inc | Carbon fiber precursor acrylic thick filament yarn package and its manufacturing method |
JP2003034466A (en) * | 2001-07-18 | 2003-02-07 | Toray Ind Inc | Carbon fiber thick yarn package and its manufacturing method |
JP3827672B2 (en) * | 2001-09-18 | 2006-09-27 | 旭化成せんい株式会社 | Polyester-based composite fiber pan |
JP2003335457A (en) * | 2002-05-16 | 2003-11-25 | Toyobo Co Ltd | Yarn package of excellent high-speed untwining performance and manufacturing method for yarn package |
JP2004123296A (en) * | 2002-10-02 | 2004-04-22 | Toray Ind Inc | Acrylic precursor yarn package |
JP2005273106A (en) | 2004-03-26 | 2005-10-06 | Toray Ind Inc | Yarn package |
JP2016069160A (en) * | 2014-09-30 | 2016-05-09 | 東レ株式会社 | Polyester false twisted yarn package |
Non-Patent Citations (1)
Title |
---|
See also references of EP3845477A4 |
Also Published As
Publication number | Publication date |
---|---|
TW202012295A (en) | 2020-04-01 |
JPWO2020045161A1 (en) | 2021-08-10 |
CN112533850A (en) | 2021-03-19 |
EP3845477A1 (en) | 2021-07-07 |
KR20210049790A (en) | 2021-05-06 |
US20210323786A1 (en) | 2021-10-21 |
EP3845477A4 (en) | 2022-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5161604B2 (en) | Carbon fiber manufacturing method | |
JP6020201B2 (en) | Carbon fiber bundle and method for producing the same | |
JP6520767B2 (en) | Precursor fiber bundle for carbon fiber, method for producing the same, and method for producing carbon fiber | |
JP4228009B2 (en) | Method for producing acrylonitrile-based precursor fiber for carbon fiber | |
KR20010072041A (en) | Acrylonitril-Based Precursor Fiber for Carbon Fiber and Method for Production Thereof | |
JP5012089B2 (en) | Carbon fiber precursor fiber bundle and method for producing the same | |
WO2019172247A1 (en) | Carbon fiber bundle and production method therefor | |
JP6024858B1 (en) | Method for producing combined yarn bundle and method for producing carbon fiber using the obtained combined yarn bundle | |
WO2020045161A1 (en) | Acrylic yarn package | |
JP2002003081A (en) | Carbon fiber precursor acrylic thick filament yarn package and its manufacturing method | |
WO2020203390A1 (en) | Carbon-fiber-precursor fiber bundle and method for producing same | |
JP2006274497A (en) | Carbon fiber package and method for producing the same | |
JP2008240203A (en) | Steam drawing apparatus and method for producing precursor yarn for carbon fiber | |
JP3047731B2 (en) | Carbon fiber for filament winding molding and method for producing the same | |
JP3562115B2 (en) | Carbon fiber precursor acrylic yarn package and method for winding carbon fiber precursor acrylic yarn | |
WO2021090641A1 (en) | Method for manufacturing carbon fiber bundle | |
JP2002220726A (en) | Method for producing carbon fiber precursor | |
JP3448994B2 (en) | Carbon fiber bundle and method for producing the same | |
WO2019146487A1 (en) | Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle | |
JP2875667B2 (en) | Method of stretching acrylic yarn for carbon fiber precursor in bath | |
JPH11263534A (en) | Acrylic filament package and its manufacture | |
JP3918285B2 (en) | Polyacrylonitrile-based graphitized fiber bundle and method for producing the same | |
JP5842343B2 (en) | Method for producing carbon fiber precursor acrylic fiber bundle | |
JP2011208315A (en) | Method of producing carbon fiber | |
JP6881090B2 (en) | Carbon fiber bundle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019545838 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19855987 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019855987 Country of ref document: EP Effective date: 20210329 |