WO2020044927A1 - Catalyst reference device - Google Patents

Catalyst reference device Download PDF

Info

Publication number
WO2020044927A1
WO2020044927A1 PCT/JP2019/030190 JP2019030190W WO2020044927A1 WO 2020044927 A1 WO2020044927 A1 WO 2020044927A1 JP 2019030190 W JP2019030190 W JP 2019030190W WO 2020044927 A1 WO2020044927 A1 WO 2020044927A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
workpiece
processing
cleaning
light
Prior art date
Application number
PCT/JP2019/030190
Other languages
French (fr)
Japanese (ja)
Inventor
英資 鈴木
鈴木 辰俊
鈴木 大介
Original Assignee
東邦エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦エンジニアリング株式会社 filed Critical 東邦エンジニアリング株式会社
Priority to JP2019555055A priority Critical patent/JP6757011B2/en
Publication of WO2020044927A1 publication Critical patent/WO2020044927A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a catalyst reference device.
  • the catalyst-based etching method described in Patent Document 1 polishes the substrate by causing the substrate and the polishing tool to move relative to each other while contacting each other.
  • a catalyst-based etching apparatus that performs a catalyst-based etching method
  • a catalyst pad catalyst pad having a catalyst layer on its surface comes into contact with or comes close to the surface of a workpiece in an inclined state
  • the catalyst pad The catalyst layer was sometimes separated from the catalyst body.
  • the catalyst-based etching apparatus since the surface of the workpiece is processed by the catalyst layer, the catalyst-based etching cannot be performed when the catalyst layer is peeled off from the catalyst pad. Therefore, it is desired that the damage of the catalyst layer of the catalyst pad can be suppressed.
  • the object of the present invention is to provide a catalyst reference device capable of suppressing breakage of a catalyst layer when the surface of a workpiece is flattened by catalyst reference etching using a catalyst body having a catalyst layer.
  • the present invention relates to a catalyst body provided with a catalyst layer for removing only a portion that is in contact with or in proximity to a surface of a workpiece by a catalyst-based reaction, and a catalyst film formed on the surface of the catalyst body by coating the surface of the workpiece with a catalyst film. And a process execution unit that performs a surface forming process operation necessary for removal by a catalyst-based reaction after contacting or approaching so as not to peel off.
  • the catalyst-based reaction is a catalyst-based etching or a catalyst-based cleaning
  • the processing operation performed by the processing execution unit is necessary for establishing a flattening process or a catalyst-based cleaning required for the catalyst-based etching.
  • at least one of the main operations is performed.
  • the movable body in a range including a state in which the surface of the catalyst body and the surface of the workpiece are parallel, and a state in which the surface of the catalyst body and the surface of the workpiece are not parallel, It is preferable that a tilt movable mechanism that can tilt at least one of the catalyst body and the workpiece is provided.
  • a difference in height between both ends of the surface of the catalyzer or the surface of the workpiece is 0.01 mm. It is preferable that at least one of the catalyst body and the workpiece can be tilted to the above range.
  • the tilt movable mechanism unit may be configured to control at least one of the catalyst body and the workpiece so that a tilt angle of a surface of the workpiece relative to a surface of the catalyst body is relatively 0.03 ° or more. Can be inclined.
  • a catalyst-based etching apparatus capable of suppressing damage to a catalyst layer when the surface of a workpiece is flattened by catalyst-based etching using a catalyst body having a catalyst layer.
  • FIG. 2 is a plan view mainly showing a configuration of a support surface plate and a container of a first example of the light irradiation catalyst-based etching apparatus. It is a figure showing composition of a main drive part of the 1st example of an apparatus for light irradiation catalyst standard etching.
  • FIG. 9 is a diagram illustrating control for starting the light irradiation catalyst-based etching operation after the workpiece held by the polishing head comes into contact with or approaches the surface of the catalyst pad. It is a photographic image which shows the state where the contact part of the conventional contact pad peeled at the peeling part.
  • FIG. 1 is a diagram showing the overall configuration of a workpiece processing system 10 according to the present invention.
  • a workpiece processing system 10 includes a mechanical or physical surface processing unit 11 for polishing the surface of a workpiece, a latent scratch removing unit 12, and a first cleaning unit. 13, a first drying unit 14, a latent scratch removal inspection unit 15, a surface finishing unit 16, a second cleaning unit 17, a second drying unit 18, and an inspection unit 19.
  • a transport unit 20 constituted by a robot or the like is used for movement between the drying unit 18 and the inspection unit 19.
  • the mechanical or physical surface processing means 11 performs a surface treatment of cutting, cutting, dicing, or polishing the surface of the workpiece by mechanical or physical processing.
  • the workpiece include a SiC substrate (wafer).
  • the workpiece is not limited to a substrate such as a SiC substrate.
  • a CMP Chemical Mechanical Polishing
  • CMP increases the mechanical polishing (surface removal) effect due to the relative movement between the polishing agent and the object to be polished by the surface chemical action of the polishing agent (abrasive grains) itself or the action of a chemical component contained in the polishing liquid.
  • the latent scratch removing means 12 performs a surface treatment for removing a latent scratch formed on the workpiece by the mechanical or physical surface processing means 11.
  • the latent scratch removing means 12 not mechanical processing using abrasive grains, but surface treatment using a chemical reaction not using abrasive grains is performed. Therefore, the latent scratch removing unit 12 can remove the latent scratch formed on the workpiece by the mechanical or physical surface processing unit 11 without forming damage such as a latent scratch on the workpiece.
  • the surface treatment using a chemical reaction without using abrasive grains in the latent scratch removing means 12 may be performed while performing a treatment by an electric action or a treatment of irradiating ultraviolet light. By performing surface treatment using a chemical reaction that does not use abrasive grains while performing treatment by electrical action or treatment by irradiating ultraviolet light, the chemical reaction of the catalyst and the like can be accelerated. The speed of the surface treatment of the object can be improved.
  • Chemical polishing is a surface treatment processing technique using a chemical reaction performed in a state where a polishing liquid that does not use abrasive grains is introduced.
  • Chemical etching is a surface treatment technology using a chemical reaction performed in a state where an etching solution that does not use abrasive grains is introduced.
  • Catalyst-based etching is a processing technology that utilizes a chemical reaction that does not use abrasives or abrasive grains at all.
  • the catalyst-based etching is a processing method that does not introduce scratches, damaged layers or latent scratches on the surface to be processed by the processing.
  • the catalyst-based etching is performed by placing a workpiece in one or both of a processing solution and a gas, and bringing a catalyst into contact with or in close proximity to a processing surface of the workpiece, thereby forming a processing solution and a gas.
  • a processing solution and a gas By making the workpiece relatively move while contacting or approaching the catalyst immersed in one or both of the above, the processing of the processing surface of the workpiece proceeds.
  • the workpiece is, for example, a substrate such as SiC, GaN, sapphire, gallium oxide, diamond, aluminum gallium nitride, or silicon; an oxide substrate; a ceramic substrate; an epitaxially grown film or a film-formed surface; 2 ) a ternary mixed crystal, a quaternary mixed crystal, a compound, a substance having at least one component of Si, C, Ga, N, Al, O, In, and F;
  • the workpiece used for the catalyst-based etching is not limited to the substrate.
  • the workpiece may be of any shape.
  • the workpiece is not limited to these as long as it can be processed by a catalytic reaction.
  • a metal for example, a platinum, nickel, or ceramic solid catalyst can be used.
  • As the processing solution for example, a liquid that causes hydrolysis on the processing surface of the workpiece, a liquid that generates halogen radicals on the surface of the catalyst, or the like can be used.
  • a gas is used.
  • the catalyst-based etching using gas there is one using an oxidation reaction.
  • both a liquid and a gas may be used by utilizing at least one of a mist, a microbubble aqueous solution, and a nanobubble aqueous solution. Further, at least one of the liquid and the gas may be heated. Alternatively, ultraviolet light (UV) may be used (used). Alternatively, electricity may be used.
  • UV ultraviolet light
  • a nickel sulfate aqueous solution for example, a nickel sulfate aqueous solution, water (pure water, ultrapure water), or the like can be used as a processing solution that causes hydrolysis on the processing surface of the workpiece.
  • aqueous solution of nickel sulfate as a processing solution, hydrolysis is caused on a processing surface of a workpiece, and plating can be formed on a catalyst pad 155 (described later) by applying a voltage.
  • a processing solution for generating a halogen radical an aqueous solution of hydrofluoric acid or the like can be used.
  • the work piece is placed in a processing solution in which a molecule containing a halogen that is not normally soluble in the work piece is dissolved, and platinum or ruthenium is used.
  • Chemical reaction between halogen radicals generated on the surface of the catalyst and surface atoms of the workpiece by arranging a catalyst made of a metal catalyst or a ceramic-based solid catalyst that has resistance, such as a solid catalyst, in contact with or close to the processing surface of the workpiece.
  • the workpiece is processed by eluting the halogen compound generated in the above.
  • the workpiece to be processed on the SiC substrate is subjected to catalytic reference etching
  • the workpiece is brought into contact with a catalyst immersed in the processing solution using platinum as a contact catalyst and an aqueous hydrofluoric acid solution as a processing solution.
  • Processing is advanced by relative movement while doing. The details of the configuration of the catalyst-based etching apparatus that performs the catalyst-based etching will be described later.
  • the processing is performed so as to increase the flatness without leaving any damage on the surface of the workpiece.
  • Flattening of the workpiece can be performed while irradiating the surface of the workpiece with light.
  • the catalyst in the medium-based etching method in which the removal reaction proceeds from the step end of the workpiece, for example, by providing a light source for irradiating the ultraviolet light, the catalyst can be applied from other than the step end of the workpiece that has received the ultraviolet light Processing by the reaction of the reference etching method becomes possible.
  • the latent scratch removing means 12 reduces the latent scratch formed on the workpiece by the surface treatment to at least 30% or less by a surface treatment using a chemical reaction without using abrasive grains before finishing the workpiece. In advance (latent scratch removal step).
  • the latent scratch removing unit 12 removes the latent scratch from the workpiece in advance so as to reduce the latent scratch to at least 30% or less, preferably 10% or less, more preferably 0%.
  • the surface of the workpiece polished by the mechanical or physical surface processing means 11 is an apparently flat surface.
  • a workpiece polished by mechanical polishing such as CMP has an inherent damage of a flaw called a latent flaw.
  • Latent scratches have the risk of being formed just below the surface of the workpiece during polishing by the mechanical or physical surface processing means 11, and by removing a thickness of, for example, about 100 nm from the surface of the workpiece. Almost all of the latent wounds can be removed.
  • the thickness at which the latent scratch is removed is not limited to 100 nm because the depth at which the latent scratch is formed varies depending on the method and conditions of mechanical polishing.
  • the latent scratch formed on the workpiece by the mechanical or physical surface processing means 11 is obtained by subjecting the workpiece polished by mechanical polishing such as CMP to a surface treatment using a chemical reaction without using abrasive grains. By removing several nm to several tens of nm (for example, 20 nm), the surface can be made to be obvious. From this state, the latent scratch removing means 12 removes the latent scratches from the workpiece by at least 30% or less, preferably 10% or less, more preferably 0% by surface treatment using a chemical reaction without using abrasive grains. In advance so as to reduce The workpiece on which the latent scratch removal process has been performed in the latent scratch removal step is formed.
  • processing is performed by a processing method based on catalyst-based etching.
  • a metal for example, a component composed of platinum, gold, chromium, or a ceramic solid catalyst, with harmful components that impair the quality. Attached as a kimono.
  • cleaning for removing harmful components attached to the surface of the article is performed.
  • Cleaning for removing harmful components attached to the surface of the workpiece is performed by the first cleaning unit 13.
  • the first cleaning unit 13 cleans the surface of the workpiece on which the latent scratch removal processing has been performed by, for example, the catalyst-based etching.
  • the first cleaning unit 13 includes a first main cleaning unit 13a and a finish cleaning unit 13b.
  • the first main cleaning means 13a is used for cleaning by bringing the workpiece to which the harmful component impairing the quality adheres into contact with or close to a cleaning substance which causes a catalytic reaction in relation to the harmful component and the workpiece.
  • a cleaning substance which causes a catalytic reaction in relation to the harmful component and the workpiece.
  • the surface of the workpiece is processed by the catalyst-based etching in the latent scratch removing unit 12
  • the surface of the workpiece is used as a catalyst in the catalyst-based etching, for example, Pt (platinum).
  • Pt platinum
  • other harmful substances are attached as metal contamination.
  • the first main cleaning unit 13a is used as a catalyst in, for example, catalyst-based etching, and cleans harmful substances attached to the surface of the workpiece.
  • the above-described catalyst-based etching technique is applied, and only a portion in contact with or in proximity to the workpiece can be removed at the atomic level using a chemical reaction.
  • the first main cleaning means 13a is used for cleaning when the atomic level flatness of the surface is to be maintained. Cleaning is possible at the atomic level from the edge.
  • a catalyst as a cleaning substance, it is possible to perform a cleaning process of a harmful substance attached to the surface of the workpiece. Further, the first main cleaning unit 13a can perform cleaning without causing latent scratches.
  • Examples of the catalyst used as a cleaning substance include noble metals, transition metals, ceramic solid catalysts, basic solid catalysts, and acidic solid catalysts.
  • the harmful substances (components) attached to the surface of the workpiece and the surface components to be removed by cleaning the workpiece need to be mixed in the liquid by the cleaning substance and the fluid in the cleaning based on the catalyst.
  • the cleaning substance used in the first main cleaning means 13a needs to be removable by the first finish cleaning means 13b without adversely affecting the workpiece as much as possible. It is necessary to select the catalyst used for the first main cleaning unit 13a and the first finish cleaning unit 13b in consideration of the compatibility between the workpiece, the cleaning substance, and the cleaning unit.
  • the first main cleaning means 13a if a catalyst composed of Ni or Fe is used as a cleaning substance in a liquid or gas, the quality of Pt (platinum) or the like adhered to the surface of the workpiece is reduced. Harmful substances that have an adverse effect can be reduced or eliminated without using boiling water.
  • the first main cleaning means 13a is not a cleaning that dissolves the entire surface only by applying a chemical to the surface as in cleaning using a general chemical, so that the surface roughness of the workpiece can be easily maintained.
  • the workpiece is intentionally used as a cleaning substance, for example, a component serving as a new metal contamination source.
  • the components of the cleaning substance (metal contamination and the like) attached to the workpiece are compatible with the cleaning means of the first finishing cleaning means 13b and the workpiece in the cleaning means of the first finishing cleaning means 13b. Therefore, by selecting a cleaning liquid or the like capable of removing components of a cleaning substance (metal contamination or the like) as the cleaning means of the first finishing cleaning means 13b, the surface of the workpiece can be processed without causing latent scratches and pits in the cleaning step. Harmful components can be reduced or removed.
  • a substrate can be used as the workpiece, and other than the substrate, an object having a different thickness or shape can be used.
  • the workpiece for example, a columnar shape, a prismatic shape, a cylindrical shape or a rectangular tube shape, a shape having irregularities or holes, or a three-dimensional shape can be used.
  • the material of the workpiece may be an epitaxially grown film or a deposition surface, a compound, a ternary mixed crystal, a quaternary mixed crystal, an oxide, a ceramic, calcium fluoride (CaF 2 ), In, Si, C, Ga, N, or O. And at least one of the atoms of Al, Zn and F. It is better to be able to polish (use) ultraviolet light (UV).
  • the material of the workpiece is not limited to these as long as it can be processed by a catalytic reaction.
  • the first main cleaning unit 13a performs cleaning for removing adhered components such as Pt (platinum) adhered to the surface of the workpiece using Ni as a catalyst as a cleaning substance, for example.
  • the cleaning operation of the first main cleaning means 13a is performed by performing cleaning using Ni as a catalyst instead of performing etching using Pt as a catalyst by using the above-described apparatus for performing catalyst-based etching.
  • Pt attached to the object can be removed.
  • Pt is removed from the surface of the workpiece, and Ni adheres to the surface of the workpiece from which Pt has been removed.
  • the first main cleaning means 13a is used to remove a catalytic reaction-inhibiting component that inhibits the reaction of the catalyst before the workpiece to which the harmful component that impairs the quality adheres adheres to or comes close to the cleaning substance.
  • a treatment catalytic reaction inhibiting component removing step in which at least one of a liquid, a gas, and ultraviolet light (UV) capable of acting on the cleaning substance may be performed. This makes it possible to effectively remove harmful components attached to the workpiece when cleaning the workpiece. Before the workpiece is brought into contact with or close to the cleaning substance, the surface of the workpiece may be irradiated with ultraviolet light (UV).
  • UV ultraviolet light
  • UV light By applying ultraviolet (UV) light, harmful components can be removed from the surface of the workpiece, for example, only a few layers of the atomic layer other than the end of the step terrace. Irradiation with ultraviolet light (UV) can improve the possibility of removing harmful components from the surface of the workpiece.
  • the first main cleaning means 13a performs a catalytic reaction comprising at least one of a gas and a liquid before and / or after the workpiece to which the harmful component impairing the quality has adhered comes into contact with or comes close to the cleaning substance.
  • a process of causing a component such as a catalyst poison to be deactivated to act on a catalyst component attached to a workpiece (a catalyst component operation step) may be performed.
  • the catalyst poison acts on the harmful components such as the catalyst component attached to the workpiece, so that the catalytic reaction by the harmful catalyst component attached to the surface of the workpiece is performed. Can be reduced.
  • the first finish cleaning means 13b executes a cleaning process for removing harmful substances attached to the surface of the workpiece by the first main cleaning means 13a.
  • the first finish cleaning means 13b cleans all or a part of the components of the cleaning substance by at least one of general cleaning means (cleaning) of wet cleaning, dry cleaning, scrub cleaning, or ultrasonic cleaning.
  • the components of the substance are removed from the adhered workpiece (cleaning step).
  • the cleaning substance used in the first main cleaning unit 13a is a cleaning substance that can be removed by general cleaning.
  • General cleaning may be any cleaning as long as it can remove or reduce components adhered by the cleaning substance, and needs to satisfy the conditions of use of the workpiece.
  • wet cleaning and scrub cleaning as general cleaning will be described.
  • Wet cleaning is cleaning using water as a medium.
  • a typical example of wet cleaning is RCA cleaning.
  • Cleaning such as RCA cleaning which does not generate latent scratches or pits on the workpiece due to compatibility with the workpiece is preferable.
  • Scrub cleaning is cleaning in which a contaminant attached to the surface of a workpiece (such as a substrate) is physically impacted to remove the contaminant from the surface of the workpiece (such as a substrate).
  • the first finish cleaning unit 13b removes, for example, a Ni component, which is a cleaning substance, attached to the surface of the workpiece by the first main cleaning unit 13a. It is removed by performing a general cleaning used for cleaning.
  • the first main cleaning means 13a all or a part of the harmful component adhered to the surface of the workpiece by the catalytic reaction of the cleaning substance is removed by the first main cleaning means 13a. Together with it.
  • the harmful substance adhering to the workpiece to be removed is Pt (platinum) and the workpiece is a workpiece that cannot withstand boiling aqua regia due to material or temperature conditions.
  • the cleaning substance attached during cleaning of the first main cleaning unit 13a can be easily removed.
  • the first drying unit 14 dries the workpiece cleaned by the first cleaning unit 13.
  • the latent scratch removal inspection unit 15 inspects whether the latent scratch formed on the workpiece has been removed after the first cleaning unit 13 has washed and dried the first drying unit 14.
  • a method of confirming the presence or absence of a latent scratch formed on a workpiece for example, there is a method of observing the surface of the workpiece after removing a predetermined thickness of the surface of the workpiece on which the latent scratch is formed.
  • the surface of the workpiece is processed by a chemical reaction that does not use any abrasive or abrasive grains, so that the thickness of the latent scratch appears on the surface, for example, Remove several nm to several tens nm.
  • a latent flaw appearing on the surface of the workpiece is set as a reference before removing the latent flaw from the workpiece.
  • the thickness of the workpiece such that the latent scratch appears on the surface may be a thickness that allows the latent scratch to be revealed to the extent that it becomes a reference when calculating the residual rate of the latent scratch.
  • the thickness for removing the surface is set as appropriate.
  • the surface of the workpiece is further removed by a predetermined thickness, for example, several nm to several tens of nm from the reference before removing the latent scratches. Then, every time a few nm to several tens of nm are removed, an inspection step is performed to confirm the presence or absence of a latent scratch by checking the difference from the reference before removing the latent scratch. Thereby, in the inspection step for confirming the presence or absence of latent scratches, the residual rate of latent scratches on the workpiece is reduced to at least 30% or less, preferably 10% or less, and more preferably to 0%. Inspect whether it has been done.
  • the number of latent scratches, the total length of the latent scratches, and the total area of the range where the latent scratches are formed are calculated based on these.
  • the latent scratch on the surface of the workpiece can be measured by, for example, an SiC wafer defect inspection apparatus (SICA manufactured by Lasertec Corporation).
  • the workpiece inspected by the latent scratch removal inspection unit 15 When the workpiece inspected by the latent scratch removal inspection unit 15 does not satisfy the predetermined residual ratio of latent scratches, the workpiece is returned to, for example, the latent scratch removal unit 12 to remove latent scratches from the workpiece. Perform reprocessing. If the workpiece inspected by the latent scratch removal inspection unit 15 satisfies a predetermined residual ratio of latent scratches, the workpiece is transported to the surface finishing unit 16.
  • the workpiece is a mass-produced product, for example, in the same lot, if a condition for removing latent scratches is found, the latent workpiece is removed under the same conditions for the remaining workpieces. Since the step of inspecting the workpiece can be omitted, the processing time can be reduced.
  • the thickness to be removed from the surface of the workpiece by the latent scratch removing means 12 is, for example, a device that has been subjected to the latent scratch removal processing under a plurality of latent scratch removal conditions, is converted into a device, and the device performance result is obtained. Based on the collected experimental data and the like, based on the collected experimental data and the like, the workpiece is processed until the workpiece is free of latent scratches (for example, 30% or less, 10% or less, 0%).
  • the thickness to be removed from the surface of the object may be set in advance.
  • the processing is performed such that the surface of the workpiece is flattened and rough polishing that is easily damaged is gradually performed. In such a case, the processing is performed to reduce the number of scratches. In other words, the surface of the workpiece is polished by making the abrasive particles finer, so that the surface of the workpiece is flat, and latent scratches are hardly formed.
  • This conventional processing method is a processing method in which the surface of the workpiece is flattened so that latent scratches are hardly formed, and is not performed while observing the latent scratches of the workpiece.
  • the present invention is to flatten the surface of the workpiece after removing the latent scratch on the workpiece.
  • the latent scratch formed on the workpiece by the surface treatment is subjected to a surface treatment using a chemical reaction without using abrasive grains before finishing the workpiece. And once removed from the workpiece in advance so as to reduce it to at least 30% or less.
  • the finishing process is performed.
  • the surface of the workpiece can be processed at low cost.
  • the surface treatment using a chemical reaction without using abrasive grains removes latent scratches from the workpiece in advance before finishing, so that no new latent scratch is formed. Just finish the surface.
  • surface finishing has been performed while removing latent scratches from the state where latent scratches exist.
  • the latent scratch formed by the mechanical polishing is removed from the workpiece in the latent scratch removing step. Can be removed from the surface. Therefore, in the case where the catalyst-based etching is performed in the finishing process, the flatness quality of the surface of the substrate to be processed can be ensured without causing a latent scratch on the substrate to be processed.
  • the risk of newly generating latent scratches can be minimized by shortening the finish processing time by eliminating the need to remove existing latent scratches. Therefore, since the surface is finished after reducing the latent scratches to at least 30% or less before the finish processing, the risk of generating latent scratches in the finish processing is reduced, and the finish processing time is reduced without causing the workpiece to have latent scratches. In addition to being able to be shortened, latent scratches can be reduced to zero, and the surface of the workpiece can be finished as flat as required by the device. If no slurry is used, it is easy to handle and the surface of the workpiece can be processed at low cost.
  • the finish processing does not require the removal of latent scratches, so the formation of the surface is minimized. Processing is sufficient.
  • the finishing process is performed by the catalyst-based etching, if there are no latent scratches in the pre-processing, no latent scratches occur even in the finishing process. It is possible to finish.
  • the finishing process is CMP, it is a process of increasing the number of latent scratches from zero in the state of latent scratches. In the present invention, when the finishing process is CMP, it is sufficient that the finishing CMP is performed only for a short time until the surface is formed. Therefore, the risk that a new latent scratch is generated in the finishing process can be reduced as compared with the related art.
  • the depth at which the latent scratch exists is described as about 100 nm, but the depth at which the latent scratch remains is determined by the processing method and conditions performed up to the step before the finishing step. Depends on. Therefore, the depth at which the latent scratch is present is not always about 100 nm.
  • the surface finishing means 16 performs finishing processing on the surface of the workpiece from which the latent scratch has been removed by the latent scratch removing means 12 (surface finishing step).
  • the surface finishing means 16 is executed by, for example, finishing CMP, catalyst-based etching, or the like.
  • the surface finishing means 16 mainly performs a process of flattening the surface of the workpiece in the finishing process of the workpiece.
  • the surface finishing means 16 performs a process of flattening the surface of the workpiece on which the latent scratch removal processing has been performed in the latent scratch removal step performed by the latent scratch removal means 12.
  • the latent scratch removing step in the latent scratch removing means 12 is mainly processing for removing latent scratches from the surface of the workpiece, and the finishing processing in the surface finishing means 16 is for flattening the surface of the workpiece. Is the main processing.
  • a polishing process is performed by using a slurry for finishing (for example, a slurry having fine abrasive grains) than the CMP used in the mechanical or physical surface processing means 11 described above, and the polishing is performed on the workpiece. It is performed within a range that does not cause damage. Therefore, the finish CMP can reduce the risk of causing a latent scratch on the workpiece more stochastically than the conventional method.
  • a slurry for finishing for example, a slurry having fine abrasive grains
  • the catalyst-based etching is the same as the processing used in the latent scratch removing means 12 described above, and can also be used for the surface finishing processing. Catalyst-based etching, even when used in the finishing process, uses a chemical reaction that does not use any abrasives or abrasive grains, so it does not cause latent scratches on the surface of the workpiece, It can be used for finishing treatment for flattening the surface.
  • the second cleaning means 17 cleans the surface of the workpiece on which the surface finishing treatment has been performed.
  • the second cleaning unit 17 includes a main cleaning unit 17a and a finish cleaning unit 17b.
  • the configuration and operation of the second cleaning unit 17 are the same as the configuration and operation of the first cleaning unit 13, and a description thereof will be omitted.
  • the second drying unit 18 dries the workpiece cleaned by the second cleaning unit 17.
  • the inspection means 19 inspects the workpiece after the surface processing.
  • the inspection unit 19 measures, for example, the thickness and weight of the workpiece after the surface processing, and inspects whether or not a predetermined standard is satisfied. When the predetermined criterion is not satisfied, for example, it is controlled to be removed as a defective product or to reprocess the workpiece.
  • the workpiece inspected by the inspection means 19 is transported to the next step.
  • a description will be given of a light irradiation catalyst-based etching apparatus capable of executing the catalyst-based etching performed in the latent scratch removing means 12 and the surface finishing means 16 in FIG.
  • a first example of a catalyst-based etching apparatus and a second example of a catalyst-based etching apparatus will be described.
  • a first apparatus example and a second apparatus example of the light irradiation catalyst reference etching apparatus are processing apparatuses that perform a latent scratch removing step performed by the latent scratch removing unit 12 and a surface finishing step performed by the surface finishing unit 16. This is an example.
  • FIG. 2 is an overall side view showing a first example of the light irradiation catalyst-based etching apparatus 100.
  • FIG. 3 is a longitudinal sectional view showing details of a first example of the light irradiation catalyst-based etching apparatus 100.
  • FIG. 4 is a plan view mainly showing a configuration of the support platen 140 and the tub container 150 of the first example of the light irradiation catalyst-based etching apparatus 100.
  • FIG. 5 is a diagram showing a configuration of the main drive unit PD of the first example of the light irradiation catalyst-based etching apparatus 100.
  • the light irradiation catalyst reference etching apparatus 100 in the first apparatus example includes a pair of flat processing portions SP1 and SP2 at left and right positions of the base 110 as shown in FIGS.
  • the left and right flat processing portions SP1 and SP2 have the same structure, and have substantially the same weight except for processing accuracy errors.
  • the details of the flattened portion SP1 will be described below with reference to FIG.
  • pedestals 121 and 122 having a symmetrical L-shaped cross section are arranged in parallel on the base 110, and extend in the front-back direction of FIG. 3 (the left-right direction of FIG. 2).
  • the left and right flat processing portions SP1 and SP2 are provided integrally.
  • the left and right mounts 121, 121 and the mounts 122, 122 are respectively located on the same straight line.
  • a rail 131 constituting a linear guide 130 as a guide member is fixed along these.
  • the rail 131 is provided with sliders 132 slidably movable at two positions in the longitudinal direction along the rails 131.
  • a rectangular support surface plate as a second holding means is provided. 140 (surface plate) is mounted.
  • the support platen 140 is formed of a material that is not suitable for transmitting light having a wavelength effective for processing a workpiece.
  • the support surface plate 140 is formed of a material that does not transmit ultraviolet light.
  • the support surface plate 140 is made of, for example, a metal material, a material having resistance to ultraviolet light and having strength, or a material which has been subjected to a surface treatment resistant to ultraviolet light.
  • the support surface plate 140 is formed of a metal such as SUS (stainless steel) that does not transmit ultraviolet light, a ceramic that does not transmit ultraviolet light, a resin that does not transmit ultraviolet light, or a composite material thereof.
  • the surface is surface-treated with a film formed or plated of platinum group or gold, or a resistant film such as Teflon (registered trademark) coat. It may be. Therefore, the strength of the support platen 140 is ensured as compared to the case where the support platen 140 is entirely made of quartz or the like for transmitting ultraviolet light.
  • the support platen 140 is more preferably formed of SUS304, SUS316, or the like, which is good for use in a clean room and resistant to ultraviolet rays. Further, it is preferable that the support platen 140 has resistance to a water component or an oxygen component of 90 degrees or less. The temperature of the water component may be 75 degrees or less depending on the workpiece.
  • the processing rate is critically improved.
  • the workpiece is SiC, it is sufficient that the workpiece is resistant to a water component of at least 73 degrees.
  • the supporting platen 140 has a plurality of slit grooves 141 (platen-side through-opening) through which ultraviolet light emitted from the UV lamp 125 passes.
  • the plurality of slit grooves 141 extend in the width direction orthogonal to the moving direction of the support surface plate 140 (the direction in which the rail 131 extends) moved by the drive motor 182 described later, and move in the movement direction of the support surface plate 140 (the rail 131). (Extending direction).
  • the plurality of slit grooves 141 are formed at positions where ultraviolet light from a UV lamp 125 (described later) disposed below the support surface plate 140 is transmitted. It is formed at a position where the ultraviolet light from the substrate is transmitted.
  • the support surface plate 140 can reciprocate linearly along the rail 131.
  • the mounts 121 and 122 need only have a surface on which the rail is mounted, such as a flat bar, in addition to the L-shaped cross section.
  • the base 110 and the frames 121 and 122 may be integrated.
  • the merit is that the base 110 and the mounts 121 and 122 are separate from each other, for example, during a cutting process that increases the surface accuracy between the base 110 and the mounts 121 and 122. It is a point that is less likely to be distorted than when it is a body.
  • the guide member for guiding the support surface plate 140 is not limited to the above-described structure, and may be, for example, one that holds a guide shaft and slides along the guide shaft.
  • the support platen 140 does not need to be particularly rectangular.
  • a UV lamp 125 (ultraviolet irradiation unit) that emits ultraviolet light and is used for light irradiation catalyst-based etching is disposed below the support surface plate 140.
  • the UV lamp 125 emits ultraviolet light having a wavelength effective for processing a workpiece.
  • the UV lamp 125 is configured by an LED lamp that emits light having an ultraviolet wavelength.
  • the UV lamp 125 may be configured by at least one of a low-pressure mercury UV lamp that emits ultraviolet light, a high-pressure mercury lamp, a metal halide lamp, an excimer lamp, and an LED lamp.
  • an LED lamp may be provided between the support platen 140 and the catalyst pad 155, more preferably between the trough container 150 and the catalyst pad 155.
  • an LED lamp is provided between the support platen 140 and the catalyst pad 155, heat generated from the LED, which is the UV lamp 125, can be used in the latent scratch removing step and the surface finishing step. Further, for example, when the heat generated from the LED as the UV lamp 125 is processed by the catalyst-based etching in the latent scratch removing step or the surface finishing step, it can be used as the heat required for the catalyst-based etching processing.
  • the heat generated by the UV light emitting LED which is a UV lamp 125 that outputs ultraviolet light toward the surface of the workpiece W, is dissipated into the processing solution and the processing solution is heated, and at the same time, the LED is cooled.
  • a tub container 150 (tub unit) for storing gas or liquid is mounted.
  • the tub container 150 is detachable from the support platen 140.
  • the tub container 150 is formed with the upper part opened.
  • the tub container 150 is not limited to being open at the top, and may not be open at the top.
  • the trough container 150 includes a bottom plate 151 disposed above the support platen 140 and a peripheral wall portion 152 rising from a peripheral edge of the bottom plate 151.
  • the tub container 150 is formed in a tub shape capable of holding a processing solution or gas.
  • the tub 150 is made of, for example, a material such as resin, metal, ceramics, or a glass-based metal oxide having a low transmittance of ultraviolet light.
  • the tub 150 is preferably resistant to water components or oxygen components of 90 degrees or less.
  • the temperature of the water component may be 75 degrees or less depending on the workpiece. For example, in the case where the workpiece is SiC, when the temperature of the water component exceeds about 60 degrees to about 70 degrees, the processing rate is critically improved. When the workpiece is SiC, it is sufficient that the workpiece is resistant to a water component of at least 73 degrees.
  • the processing solution is stored in the trough container 150.
  • hydrolysis is caused on the processing surface of the workpiece and voltage is applied.
  • plating can be formed on the catalyst pad 155 (described later).
  • the ultraviolet transmitting member 157 described later is made of, for example, quartz
  • the hydrofluoric acid aqueous solution dissolves the quartz. Therefore, in the case of using the ultraviolet transmitting member 157 made of quartz in the light irradiation catalyst reference etching apparatus 100 that irradiates ultraviolet light, a hydrofluoric acid aqueous solution cannot be used as a processing solution.
  • a liquid containing at least a water component for example, ultrapure water or pure water, aqueous hydrogen peroxide, an aqueous solution containing a component such as nickel, which can be used as a catalyst and capable of electrolytic plating, and the like.
  • a liquid that satisfies chemical resistance is used.
  • the gas a gas satisfying chemical resistance containing at least one of an oxygen component, a nitrogen component and an ozone component can be used.
  • an aqueous solution of hydrofluoric acid may be used as a processing solution by forming the ultraviolet transmitting member 157 with, for example, sapphire glass.
  • the ultraviolet transmitting member 157 is made of sapphire glass, it is necessary to select a light source that can transmit sapphire glass and emit light having a wavelength effective for processing a workpiece as a light source.
  • hydrogen fluoride when hydrogen fluoride is used, a toxic gas is generated in the human body. Therefore, it is necessary to remove the gas with a scrubber or the like to detoxify the gas.
  • the vat container 150 is disposed above the support platen 140. Therefore, the tub container 150 can be moved in the movement direction M by moving the support surface plate 140 in the movement direction M (the direction in which the rail 131 extends). As shown in FIG. 4, the tub container 150 is positioned by a pair of positioning members 153 and 153 on both sides in the width direction W orthogonal to the moving direction (direction in which the rail 131 extends) M at the lower end of the tub container 150. In this state, it is attached to the support platen 140. The pair of positioning members 153 and 153 are spaced apart in the width direction W corresponding to the length of the tub container 150 in the width direction W.
  • the pair of positioning members 153 and 153 include a positioning main body 153a extending a predetermined length in the moving direction M (direction in which the rail 131 extends) M of the flat processing portions SP1 and SP2, and a moving direction of the flat processing portions SP1 and SP2 (the rail 131 (Extending direction) M, a positioning extension 153b extending inward at both ends.
  • the pair of positioning members 153, 153 regulate the movement of the tub container 150 in the width direction W by the positioning main body 153a, and the moving direction (rail) of the flattened portions SP1, SP2 in the tub container 150 by the positioning extension 153b. It is fixed to the upper surface of the support surface plate 140 in a state where the movement in the direction (M in which the 131 extends) is restricted.
  • the positioning member 153 may be a general clamp mechanism.
  • a plurality of slit grooves 151a (bottom plate side through openings) through which ultraviolet light passes are formed in the bottom plate 151.
  • the plurality of slit grooves 151 a formed in the tub container 150 are provided at positions corresponding to the plurality of slit grooves 141 formed in the support surface plate 140.
  • the support surface plate 140 has a portion that does not transmit ultraviolet light from the UV lamp 125, and prevents irradiation of ultraviolet light to a portion that does not want to transmit ultraviolet light, thereby minimizing deterioration of the tub container 150 and the like. Suppress.
  • an ultraviolet transmitting member 157 is attached to the lower side of the bottom plate 151 in the trough container 150.
  • the ultraviolet transmitting member 157 is a transmitting member that can transmit ultraviolet light from the UV lamp 125 disposed below the support platen 140.
  • the ultraviolet transmitting member 157 is made of, for example, quartz.
  • the ultraviolet transmitting member 157 is attached to the lower surface of the bottom plate 151 of the tub container 150 so as to close the plurality of slit grooves 151a (bottom plate side through opening) formed in the bottom plate 151 of the tub container 150.
  • the periphery of the ultraviolet transmitting member 157 is subjected to a water stopping process in a water stopping section 157a. That is, the ultraviolet transmitting member 157 is attached to the bottom plate 151 in the water stop processing section 157a in a state where the water stop processing is performed.
  • the water stopping section 157a the plurality of slit grooves 141 formed in the support platen 140 are provided in portions of the ultraviolet transmitting member 157 that do not correspond to the water stopping section 157a.
  • the water stop processing unit 157a is arranged at a position where the ultraviolet light from the UV lamp 125 does not reach. Therefore, it is possible to prevent the water stoppage processing unit 157a from being deteriorated by the ultraviolet light emitted from the UV lamp 125.
  • a catalyst pad 155 is provided on the entire surface of the bottom plate 151 of the trough container 150 as an example of a pad portion in which a catalyst layer is formed to a predetermined thickness by sputtering or the like.
  • the catalyst pad 155 has a catalyst layer for flattening the surface of the workpiece W by catalyst-based etching.
  • the catalyst pad 155 is arranged above the bottom plate 151 in the tub 150.
  • a plurality of slit grooves 155a are formed in the catalyst pad 155.
  • the plurality of slit grooves 155 a formed in the catalyst pad 155 are provided at positions corresponding to the plurality of slit grooves 151 a formed in the tub container 150 and the plurality of slit grooves 141 formed in the support platen 140. That is, the plurality of slit grooves 151a formed in the tub container 150, the plurality of slit grooves 141 formed in the support platen 140, and the plurality of slit grooves 155a formed in the catalyst pad 155 continuously penetrate vertically. It is configured to be able to transmit ultraviolet light from the UV lamp 125.
  • the catalyst pad 155 preferably has resistance to a water component or an oxygen component of 90 degrees or less.
  • the slit grooves 155a do not have to be all the same in dimensions and pitch and penetrate, and need not be provided continuously. Further, the slit groove 155a may be a hole or the like.
  • the plurality of slit grooves 155a formed in the catalyst pad 155 may be formed according to the processing operation, depending on the shape of the workpiece, depending on the processing operation. May be used by being attached to a support surface plate 140 provided with a plurality of slit grooves 141 in which dimensions, pitches, etc. are adjusted.
  • the through hole of the slit groove 155a formed in the catalyst pad 155 may be optimized. The same applies to the plurality of slit grooves 151a formed in the tub container 150.
  • the material of the catalyst pad 155 rubber, resin, ceramics, glass, metal, or the like having resistance to a processing solution or gas is used.
  • a transition metal such as Pt can be used as the catalyst. When metal is laminated on the catalyst, metal bonding is desirable. Examples of the metal include chromium, gold, and platinum.
  • a main shaft 160 having a circular cross section is vertically provided above the vat container 150, and the main shaft 160 is rotatably held by a sleeve 161 in a vertical posture.
  • the main shaft 160 is rotated by a drive motor 171 as a first drive unit.
  • the sleeve 161 is moved up and down by a drive part 172 such as a drive cylinder or a ball screw as a second drive means, and the main shaft 160 is moved forward and backward with respect to the catalyst pad 155 accordingly.
  • a polishing head 163 is provided at the lower end of the main shaft 160.
  • the workpiece W is held on the lower surface of the polishing head 163.
  • the polishing head 163 is configured to be able to hold the workpiece W, and also functions as a holder as a first holding unit.
  • the driving parts 172 such as the main shaft 160, the driving motor 171, and the driving cylinder are provided on the base 110 or above.
  • FIG. 5 shows details of the main drive unit PD.
  • the main drive unit PD includes a bracket plate 181 provided on the base 110 in a vertical posture, and a shaft 190 extending vertically in the bracket plate 181 includes a bearing member 191 and a bearing member 191. By 192, it is held rotatably.
  • An output shaft 182 a of a drive motor 182 provided in a vertical direction is inserted and coupled to the center of the lower end of the shaft body 190 along the bracket plate 181.
  • one end of a pair of link plates 183 and 184 extending horizontally in the left-right direction is connected to the outer periphery of the intermediate portion of the shaft body 190 so as to be relatively rotatable.
  • the link plate 183 connected to the lower side of the shaft body 190 is bent upward on the way, and the other end is connected to the support surface plate 140 of the flat processing portion SP1 so as to be relatively rotatable via the connection shaft 183a. (See FIG. 2).
  • the link plate 184 connected to the upper side of the shaft body 190 is bent downward in the middle, and the other end of the link plate 184 is connected to the support surface plate 140 of the flat processing portion SP2 so as to be relatively rotatable via the connection shaft 184a.
  • the upper surfaces of the support surface plates 140 of the flattened portions SP1 and SP2 are located on the same horizontal plane.
  • the intermediate portion of the shaft body 190 has the shaft cores C1 and C2 of the shaft portions 193 and 194 to which the link plates 183 and 184 are connected, respectively. It is eccentric from the output shaft 182a of the motor 182). That is, the shaft cores C1 and C2 of the shaft portion 193 to which the link plate 183 is connected and the shaft portion 194 to which the link plate 184 is connected are spaced apart from each other by the same amount d in the radial direction from the shaft center C of the shaft body 190. It is located at a 180-degree symmetric position.
  • each support surface plate 140 is reciprocated between the distances (amplitudes) 2d in opposite phases on the same straight line via the link plates 183 and 184.
  • the rotation speed of the shaft 190 (the reciprocating vibration frequency of the support platen 140) is 500 rpm.
  • the value of the distance 2d is not limited to 3 mm, and may be an arbitrary value such as 10 mm.
  • the gas necessary for the catalytic reaction or the gas required for the catalytic reaction is placed in the tub 150 on the left and right support platens 140.
  • a liquid for example, in the case of a liquid, is filled with a liquid containing at least one of hydrogen fluoride (HF), a water component, a hydrogen peroxide component, and a sulfuric acid component, and is processed by a driving part 172 (see FIG. 3).
  • W is brought close to or in contact with the catalyst pad 155.
  • the support platen 140 and the tub container 150 provided thereon are linearly reciprocated in the horizontal direction along the rail 131 by the drive motor 182.
  • the workpiece W may be rotated by rotating the main shaft 160 with the drive motor 171 (see FIG. 3).
  • the reciprocating movement is used not as a sub-machining such as oscillating but as a main machining which is responsible for a main machining rate.
  • the surface to be processed of the workpiece W is flattened by the catalyst-based etching with high accuracy on the order of the atomic level.
  • the support bases 140 of the left and right flat processing parts SP1 and SP2 are reciprocated (vibrated) in opposite phases on the same straight line, so that the vibrations of each other are canceled out and the vibrating force on the base 110 is reduced. It becomes sufficiently small and its vibration is prevented.
  • the first example of the light irradiation catalyst reference etching apparatus 100 according to the present invention configured as described above has the following advantages as compared with the conventional light irradiation catalyst reference etching apparatus.
  • a surface plate used for a light irradiation catalyst-based etching method is formed of a material having excellent transparency of ultraviolet light emitted from a light source of an ultraviolet irradiation unit, for example, quartz or the like.
  • UV lamps having a short wavelength of about 180 nm or about 250 nm have been used as the main output wavelength so that the light irradiation catalyst-based etching process can proceed at a higher speed.
  • the output main wavelength it is necessary to select a material that can transmit light of a short wavelength such as around 180 nm for the material of the surface plate portion that can transmit light, and the cost tends to increase.
  • a short-wavelength UV lamp even if quartz capable of transmitting ultraviolet light of a UV lamp near 180 nm is prepared, the light-transmittable surface plate is damaged by the light of the UV lamp. . Therefore, it is necessary to replace the platen, and the platen may become a consumable item.
  • the surface plate capable of transmitting light does not transmit light so as to be uniform over the entire surface of the workpiece to be processed, it will adversely affect the flattening of the workpiece. Further, as the size of the workpiece increases, the area of the workpiece that comes into contact with the catalyst surface at one time tends to increase as compared with the case where a small workpiece such as 2 inches is used. With the increase in the contact area of the workpiece with the catalyst surface, it has become necessary to apply a high load to the surface plate in order to optimize the load per unit area when processing the workpiece. .
  • a head portion that holds a workpiece and a surface plate that is larger than the head portion are provided, and the surface plate is rotated.
  • a shaft such as a UV lamp that outputs light when the light transmitting platen rotates is used. In order to avoid contact, it was necessary to arrange at least at the center or at the outermost periphery.
  • the surface plate when trying to maintain a load per unit area with the increase in the size of the surface plate, it is necessary to apply a higher load to the light-transmittable surface plate than when the size of the workpiece is small, such as 2 inches. . In addition, since the size of the workpiece is larger than before, the moment load is also easily applied.
  • the surface plate is made of, for example, quartz or sapphire, and thus has low strength and is easily broken. Therefore, it is necessary to increase the thickness of the platen so as not to damage the platen, leading to an increase in cost.
  • Some surface plates cannot be technically produced depending on the thickness, size and shape, and the wavelength of light to be transmitted.
  • the distance from the UV lamp to the workpiece is limited. Therefore, in the light irradiation catalyst-based etching apparatus, light from the ultraviolet irradiation part can be transmitted to the processing surface of the workpiece, and light can be transmitted, which can cope with an increase in cost that can be a consumable with sufficient strength. A good surface plate was needed.
  • the conventional platen made of quartz was reviewed in order to cope with a large size, load and short wavelength light.
  • the supporting platen 140 With SUS304, SUS316, or the like, the strength was secured and the thickness was maintained.
  • the support surface plate 140 is made of a member that does not become a consumable part, and an ultraviolet transmitting member 157 is disposed so as to cover the slit groove 141 of the support surface plate 140 to transmit ultraviolet light. It was configured as follows. Thus, the support plate 140 can be replaced as a consumable component without using the support platen 140 as a consumable component.
  • the light irradiation catalyst reference etching apparatus 100 configured as described above can secure the strength of the support base 140 while promoting the catalyst reference etching by the ultraviolet light irradiated by the UV lamp 125. Therefore, even if the total load of the members arranged above the support surface plate 140 increases, breakage of the support surface plate 140 can be suppressed.
  • the light irradiation catalyst-based etching apparatus 100 includes the above-described support platen 140, tub container 150, ultraviolet transmitting member 157, and catalyst pad 155.
  • the transmission space necessary for the light to hit the workpiece was secured.
  • an ultraviolet transmitting member 157 such as quartz, which is optimal for light transmission, into the transmission space, it is possible to prevent the liquid or gas stored in the tub 150 required for processing from flowing into the area such as the UV lamp from the processing area.
  • the most suitable ultraviolet transmitting member 157 was selected in consideration of cost, chemical solution or gas used in processing, and light of a desired wavelength.
  • it was configured using a quartz substrate flowing in a mass production process.
  • a semiconductor-grade quartz substrate that guarantees light transmission can be used in a clean room and has a stable light transmission quality. It can be obtained at a lower cost than creating a dedicated UV transmitting member. The flatness is stable.
  • the quartz substrate is compatible with large diameters such as 300 mm. Quartz used in the ultraviolet transmitting member 157 is deteriorated by use of short-wavelength UV light. However, since the quartz substrate is inexpensive, it can be replaced at low cost.
  • a substrate formed of sapphire or the like can be used for the transmitting portion depending on the compatibility between the transmitted wavelength light and the chemical or gas.
  • the use of a substrate made of quartz or the like for the ultraviolet transmitting member 157 is apt to be broken because the substrate itself is thin, such as 1 mm, but the present invention receives the load on the support platen 140 so that the ultraviolet transmitting member 157 is not damaged. I have.
  • the tub container 150 is made of a material that is resistant to liquids and gases used in processing.
  • the catalyst reference etching using electricity is also performed.
  • the first example of the light irradiation catalyst-based etching apparatus 100 a configuration relating to each electrode used when processing is performed by an electric action will be described.
  • an electrode for plating, an electrode for electrolytic polishing, an electrode for UV electricity, and the like are arranged.
  • FIG. 6 is a diagram showing each electrode unit in the first example of the light irradiation catalyst-based etching apparatus.
  • the polishing head 163 is provided with a head-side DC voltage power supply section 165 used when irradiating ultraviolet rays (UV), and a head-side auxiliary electrode 164a used during plating or electrolytic polishing.
  • a head-side DC voltage power supply section 165 used when irradiating ultraviolet rays (UV)
  • a head-side auxiliary electrode 164a used during plating or electrolytic polishing.
  • the tub container 150 is provided with the reference electrode 103 and the conducting part 101.
  • the catalyst pad 155 is fixed to the bottom plate 151 of the vat container 150 by an insulating polycarbonate screw 102 in a state where a washer constituting the energizing unit 101 is in contact with the surface of the catalyst pad 155. I have.
  • the surface of the catalyst pad 155 becomes a working electrode 155b by the electricity from the current supply unit 101.
  • power is supplied between the working electrode 155b, the head-side auxiliary electrode 164a, and the reference electrode 103, which are the surfaces of the catalyst pad 155.
  • a current flows between the head-side auxiliary electrode 164a and the working electrode 155b that is the surface of the catalyst pad 155 in a state where the polishing head 163 is placed in the processing solution stored in the tub container 150, Electropolishing and plating can be performed on the catalyst surface. As a result, the catalytic activity on the catalyst surface is maintained and the catalyst can be regenerated, so that the sustainability of the catalyst-based etching on the contact surface between the catalyst and the workpiece W is improved.
  • a head side DC voltage power supply section 165 for supplying a DC voltage power supply (+) is provided in the workpiece holding section 166 of the polishing head 163.
  • An object to be processed W e.g., a substrate, an epitaxially grown film or a film-formed surface, a compound, a ternary mixed crystal, a quaternary mixed crystal, In, Al, Si, C, Ga, , N, O, Zn, or a component containing at least one of Zn and F, and a workpiece such as SiC, GaN, gallium oxide, diamond, or aluminum gallium nitride.
  • an energizable liquid or gas used in the light irradiation catalyst reference etching method is arranged below the workpiece W, and a catalyst pad 155 with which the workpiece W abuts is arranged below the liquid or gas.
  • a cathode is provided between the ultraviolet transmitting members 157 from below the catalyst pad 155.
  • the cathode for example, platinum or the like that is resistant to light such as ultraviolet light (UV) necessary for processing a workpiece, or a cathode plated with platinum or gold is used.
  • the size of the cathode line is not particularly limited as long as the diameter is, for example, ⁇ 1 to ⁇ 0.3 mm and the line is not broken and can transmit light such as ultraviolet (UV) light required for processing.
  • the cathode may be made of a thin film of several ⁇ m or the like like a wiring pattern. According to the size of one or a plurality of slit grooves 155a of the catalyst pad 155, a cathode line or a membrane can be appropriately selected.
  • a DC voltage power supply (-) may be electrically connected to the cathode.
  • the head-side DC voltage power supply unit 165 is not particularly limited in parts as long as it is resistant to light, liquid, and gas used in processing and has a low electric resistance value.
  • the specific bias voltage to be used is 2 V to several tens V when the workpiece W is SiC. When the workpiece W itself has resistance, the electrode is ideally brought into contact with the entire back surface of the workpiece W. This is because, when the workpiece W itself has a resistance, the net bias voltage decreases on the processing surface remote from the electrode, and the processing speed decreases.
  • the rate of oxidation of the surface of the workpiece W is rate-limiting. It is preferable to perform the light irradiation catalyst-based etching method under a condition that satisfies the relationship “the flat processing speed of the surface to be processed ⁇ the oxidation speed of the surface to be processed by electric action or light irradiation”. Finishing is performed by blocking, retreating or turning off light effective for processing of the workpiece such as ultraviolet light used in the light irradiation catalyst-based etching method, and then, on the surface of the workpiece W, the surface layer burned by light is subjected to the catalyst-based etching method. It is preferable to remove by finishing processing such as.
  • the movable range is narrow.
  • the polishing head 163 is provided with a head-side auxiliary electrode 164a, the polishing head 163 in the processing solution should be avoided while the support platen 140 moves with a large swing. Then, an auxiliary electrode (not shown) must be taken in and out of the solution, and plating and electrolytic polishing must be performed, which is difficult as an apparatus configuration.
  • the auxiliary electrode is provided on the head-side auxiliary electrode 164a of the polishing head 163.
  • Plating and electrolytic polishing can be performed.
  • a method in which the workpiece and the catalyst pad are brought into contact with each other and a method in which the height of the catalyst pad from the catalyst surface is adjusted to perform plating or electrolytic polishing can be considered.
  • uniform plating can be obtained by performing plating while performing an averaging operation.
  • the shape of the head-side auxiliary electrode 164a (for plating or electrolytic polishing) is formed in a tapered shape at the outer peripheral portion, a gas that inhibits the reaction is released, a groove for stirring a fluid necessary for the reaction is provided, and a polishing head is formed.
  • plating or electropolishing can be performed while oxygen or hydrogen generated at the time of plating or electropolishing on the catalyst surface of the catalyst pad is directed toward the outer periphery of the auxiliary electrode portion. If the area of the surface of the catalyst layer is made smaller than the surface of the workpiece W, the position and residence time of the small catalyst pad 155 with respect to the surface of the workpiece W are controlled to reduce the local processing amount on the surface of the workpiece W. Can be controlled. That is, local processing by numerical control can be performed.
  • FIG. 7 is a perspective view illustrating a second example of the light irradiation catalyst-based etching apparatus 200.
  • FIG. 8 is a perspective view of a second example of the light irradiation catalyst-based etching apparatus 200 as viewed from below.
  • FIG. 9 is a partial cross-sectional view mainly showing the configurations of the support surface plate 210 and the tub container 220 of the second example of the light irradiation catalyst-based etching apparatus 200.
  • the light irradiation catalyst reference etching apparatus 200 of the second apparatus example is a state in which the workpiece W as a workpiece and the catalyst layer 230 of the catalyst pad 240 are immersed in a gas atmosphere or liquid. Is a structure for processing a workpiece.
  • the light irradiation catalyst-based etching apparatus 200 includes a support platen 210 (platen), a tub container 220 for holding water 201 as an example of gas and liquid, and a catalyst layer 230 having a catalyst substance on at least the surface thereof.
  • the catalyst pad 240 placed in the tub container 220 and immersed in the water 201 while holding the workpiece W is placed in the tub container 220 in a state of contacting or approaching the catalyst layer 230.
  • the polishing head 260 includes a polishing head 260, a driving mechanism 270 that moves the catalyst pad 240 and the polishing head 260 relative to each other while contacting or approaching the polishing head 260, and a UV lamp 225 (ultraviolet irradiation unit).
  • the catalyst pad 240 Between the plurality of through holes 221a (see FIG. 9) of the tub 220 through which the ultraviolet light passes and the plurality of through holes 241 (see FIG. 9) of the catalyst pad 240.
  • a cathode provided between the plurality of through-holes 221a of the vat container 220 through which the ultraviolet light passes and the plurality of through-holes 241 of the catalyst pad 240, and a DC voltage power supply (-) connected to the cathode can be electrically connected. It is good also as a state.
  • the support platen 210 is formed of a material that is not suitable for transmitting light having a wavelength effective for processing a workpiece. Specifically, as shown in FIGS. 7 and 8, the support surface plate 210 is formed in a disk shape and is made of a material that does not transmit ultraviolet light.
  • the support platen 210 is formed of a metal material, a material having resistance to ultraviolet light and having strength, or a material which has been subjected to a surface treatment resistant to ultraviolet light.
  • the support surface plate 210 is formed of a metal such as SUS (stainless steel) which does not transmit ultraviolet light, a ceramic which does not transmit ultraviolet light, a resin which does not transmit ultraviolet light, or a composite material thereof.
  • the surface is surface-treated with a film formed or plated of platinum group or gold, or a resistant film such as Teflon (registered trademark) coat. It may be. Therefore, the strength of the support platen 210 is ensured as compared with the case where the support platen 210 is entirely made of quartz or the like for transmitting ultraviolet light. It is even more preferable that the support platen 210 is formed of SUS304, SUS316, or the like, which is suitable for use in a clean room and resistant to ultraviolet rays.
  • the support platen 210 has a plurality of through-hole groups 211 through which the ultraviolet light emitted from the UV lamp 225 passes, as shown in FIG.
  • the plurality of through-hole groups 211 are formed by an aggregate having a circular outer shape formed by the plurality of through-holes 211a (surface plate side through-opening).
  • the plurality of through-holes 211a are formed at positions where ultraviolet light from a UV lamp 225 (described later) disposed below the support platen 210 is transmitted, and are provided from the UV lamp 225 (described below) during a catalyst-based etching operation. Is formed at a position through which the ultraviolet light is transmitted.
  • the plurality of through-hole groups 211 are arranged at predetermined positions radially outward from the center of the support platen 210 and spaced apart in the circumferential direction.
  • the plurality of through holes 211a are arranged such that the three adjacent through holes 211a are located at the vertices of an equilateral triangle when viewing the three adjacent through holes 211a.
  • the plurality of through holes 211a constituting the through hole group 211 have a diameter R of, for example, 5 mm, and an interval L between adjacent through holes 211a is 10 mm.
  • a UV lamp 225 (ultraviolet irradiation unit) that emits ultraviolet light and is used for catalyst-based etching is disposed below the support platen 210.
  • the upper end of the lower rotation shaft 271 of the drive mechanism 270 is connected to the center of the lower surface of the support surface plate 210.
  • the support platen 210 is rotatable when the lower rotation shaft 271 rotates.
  • a tub container 220 (tub unit) for storing a circular liquid that opens upward is mounted.
  • the tub container 220 is detachable from the support platen 210.
  • the vat container 220 is open at the top, and is disposed above the support platen 210.
  • the tub container 220 includes a disc-shaped bottom plate 221 having a plurality of through holes 221a (bottom plate side through-opening) through which ultraviolet light passes, and a cylindrical peripheral wall portion 222 rising from the periphery of the bottom plate 221.
  • the tub container 220 is formed in a tub shape capable of holding a processing solution or gas.
  • the tub 220 is made of, for example, a material such as a resin, a metal, a ceramic, or a glass-based metal oxide having a low transmittance of ultraviolet light.
  • the plurality of through-holes 221 a of the tub container 220 are provided at positions corresponding to the plurality of through-holes 211 a formed in the support surface plate 210.
  • the support platen 210 has a portion through which ultraviolet light from the UV lamp 225 does not transmit, and prevents irradiation of ultraviolet light to a portion that does not want to transmit ultraviolet light, thereby minimizing deterioration of the tub container 220 and the like. Suppress.
  • An ultraviolet transmitting member 212 is attached to the lower side of the bottom plate 221 of the tub container 220.
  • the ultraviolet transmission member 212 is a transmission member that can transmit ultraviolet light from the UV lamp 225 disposed below the support platen 210.
  • the ultraviolet transmitting member 212 is made of, for example, quartz.
  • the processing solution is stored in the vat container 220.
  • water is used as a processing solution, so that hydrolysis is caused on the processing surface of the workpiece.
  • the relative movement generates a decomposition product by a hydrolysis reaction on the processing surface of the workpiece. Then, the processing surface of the workpiece is processed by dissolving the decomposition product into the processing solution.
  • a hydrofluoric acid aqueous solution is used as the processing solution
  • the ultraviolet transmitting member 212 described later is made of, for example, quartz
  • the hydrofluoric acid aqueous solution dissolves the quartz. Therefore, in the case of using the ultraviolet transmitting member 212 made of quartz in the light irradiation catalyst reference etching apparatus 200 that irradiates ultraviolet light, a hydrofluoric acid aqueous solution cannot be used as a processing solution. Therefore, in this embodiment, water is used as the processing solution.
  • the ultraviolet transmitting member 212 may be made of, for example, sapphire glass, and the aqueous solution of hydrofluoric acid may be used as the processing solution.
  • sapphire glass does not transmit ultraviolet light of a specific short wavelength as compared with quartz, so that if the wavelength is too short, it may not be possible to cope with ultraviolet light. Therefore, it is necessary to use a UV lamp 225 that emits light having a wavelength that can be transmitted.
  • the ultraviolet transmitting member 212 is attached to the lower surface of the bottom plate 221 of the container 220 so as to cover the plurality of through holes 221 a (the bottom plate side through-opening) of the bottom plate 221 of the container 220.
  • the periphery of the ultraviolet ray transmitting member 212 is subjected to a water stopping process in a water stopping section 212a.
  • the ultraviolet transmitting member 212 is attached to the bottom plate 221 in the water stop processing section 212a in a state where the water stop processing has been performed.
  • the plurality of through holes 221a of the support platen 210 are provided in portions of the ultraviolet transmitting member 212 that do not correspond to the water stopping section 212a. That is, the water stop processing unit 212a is arranged at a position where the ultraviolet light from the UV lamp 225 does not reach. Therefore, it is possible to suppress the deterioration caused by the ultraviolet light emitted from the UV lamp 225 in the water stop processing unit 212a.
  • a catalyst pad 240 as an example of a pad portion having a catalyst layer 230 formed with a predetermined thickness by sputtering or the like is provided on the entire upper surface of the bottom plate 221 of the tub container 220, as shown in FIG. I have.
  • the catalyst pad 240 has a catalyst layer 230 for flattening the surface of the workpiece W by catalyst-based etching.
  • the catalyst pad 240 is disposed above the bottom plate 221 in the tub 220.
  • a plurality of through holes 241 are formed in the catalyst pad 240.
  • the plurality of through holes 241 formed in the catalyst pad 240 are provided at positions corresponding to the plurality of through holes 221a formed in the tub container 220 and the plurality of through holes 211a formed in the support platen 210. That is, the plurality of through-holes 221a formed in the tub 220, the plurality of through-holes 211a formed in the support platen 210, and the plurality of through-holes 241 formed in the catalyst pad 240 continuously penetrate vertically. It is configured to be able to transmit ultraviolet light from the UV lamp 225. It is preferable that the catalyst pad 240 has resistance to a water component or an oxygen component of 90 degrees or less.
  • the through holes 241 do not need to be all the same in size, pitch, and the like, and do not need to be continuously provided.
  • the plurality of through holes 241 formed in the catalyst pad 240 may be formed according to the shape of the workpiece according to the processing operation. It may be used after being optimized and attached to a support platen 210 provided with a plurality of through holes 211a whose dimensions and pitch are adjusted. For example, when it is desired to transmit only part of the ultraviolet light (UV), the through hole 241 of the catalyst pad 240 may be optimized. The same applies to the plurality of through holes 221a formed in the tub container 220.
  • the catalyst pad 240 As a material of the catalyst pad 240, a rubber, resin, ceramics, glass, metal, or the like having resistance to a processing solution or gas is used. A transition metal such as Pt can be used as the catalyst. When metal is laminated on the catalyst, metal bonding is desirable. Examples of the metal include chromium, gold, and platinum.
  • the tub container 220 may store gas.
  • an upper rotation shaft 272 of the drive mechanism 270 is provided vertically above the trough container 220.
  • the upper rotation shaft 272 is arranged on the upper side of the tub container 220 at a position radially offset from the center of the bottom plate 221 of the tub container 220.
  • the upper rotation shaft 272 is rotatably held in a vertical posture with respect to the sleeve 261 as shown in FIG.
  • the upper rotation shaft 272 is rotated by a driving motor 273 as first driving means.
  • the sleeve 261 is moved up and down by a drive part 274 such as a drive cylinder or a ball screw as a second drive means.
  • the upper rotation shaft 272 is moved forward and backward so as to move closer to or away from the catalyst pad 240. Moved in the direction.
  • a polishing head 260 is provided at a lower end of the upper rotation shaft 272.
  • the workpiece W is held on the lower surface of the polishing head 260.
  • the polishing head 260 is configured to be able to hold the workpiece W, and also functions as a holder as first holding means.
  • FIG. 10 is a diagram illustrating a control in which the operation of the catalyst-based etching is started after the workpiece W held by the polishing head 260 comes into contact with or approaches the surface of the catalyst pad 240.
  • the upper rotation shaft 272 and the polishing head 260 are connected by the tilt movable mechanism 262 as shown in FIG.
  • the tilt movable mechanism 262 is movable in a range including a state where the surface of the catalyst pad 240 and the surface of the workpiece W are parallel, and a state where the surface of the catalyst pad 240 and the surface of the workpiece W are not parallel. As a result, at least one of the catalyst pad 240 and the workpiece W can be tilted.
  • the tilt movable mechanism 262 can tilt the polishing head 260 with respect to the horizontal direction within a range of 360 °, the workpiece W can be tilted with respect to the horizontal direction within a range of 360 °. It is possible to tilt.
  • the difference H between both end portions on the surface of the catalyst pad 240 or the surface of the workpiece W is 0.01 mm or more. It is possible to tilt at least one of the catalyst pad 240 and the workpiece W to a certain extent.
  • the tilt movable mechanism unit 262 is, for example, at least one of the catalyst pad 240 and the workpiece W such that the tilt angle ⁇ of the surface of the workpiece W with respect to the surface of the catalyst pad 240 is relatively 0.03 degrees or more. Can be tilted.
  • the surface of the workpiece W and the surface of the catalyst pad 240 can be made to follow the tilt movable mechanism 262.
  • the catalyst pad 240 is provided with a catalyst layer for removing only a portion in contact with or close to the surface of the workpiece W by catalyst-based etching (catalyst-based reaction).
  • the rotation of the upper rotation shaft 272 is stopped and the lower rotation shaft 271 (see FIG. 7) is stopped and supported.
  • the upper rotating shaft 272 is lowered by lowering the sleeve 261 by the driving part 274 as the second driving means, and the surface of the workpiece W is placed on the surface of the catalyst pad 240. Contact or approach so that the film does not peel off.
  • the upper rotation shaft 272 and the lower rotation shaft 271 are rotated by the drive motor 273 as the first drive means to rotate the support platen 210, so that catalyst-based etching (catalyst-based reaction) is performed.
  • the necessary flattening process is executed by a flattening process execution unit (not shown).
  • a flattening process execution unit not shown.
  • the workpiece W and the catalyst pad 240 are processed.
  • the end of the workpiece W comes into contact with the catalyst pad 240 due to the influence of the inclination angle of the workpiece W, and the catalyst portion of the catalyst pad 240 hit by the end of the workpiece W Depending on the state of the chamfer, as shown in FIG.
  • the upper surface of the workpiece W required for processing is brought into contact with or close to the surface of the catalyst pad 240, and then the upper rotation shaft 272 is rotated by the drive motor 273 as the first drive means.
  • the risk of the catalyst layer 230 peeling off during mass production can be physically suppressed. If the workpiece W is attached to the surface of the catalyst pad 240 from which the catalyst layer 230 has been peeled off by the water sticking phenomenon during the processing of the catalyst reference etching, if the material of the catalyst pad 240 is, for example, rubber, the processing is performed. The water sticking phenomenon between the workpiece W and the catalyst pad 240 and the gripping force generated between the workpiece W and the catalyst pad 240 between the polishing pad 260 holding the workpiece W and the workpiece. There is a risk that the workpiece W may fly away to the outer peripheral portion and be damaged by the processing operation of the catalyst-based etching apparatus 200. However, if the catalyst layer 230 does not peel off, the risk can be reduced.
  • the surface of the workpiece W is brought into contact with or close to the catalyst pad 240 while the surface of the workpiece W is being processed by the main processing operation.
  • the possibility that the workpiece W sticks to the catalyst pad 240 due to the water sticking phenomenon is theoretically lower than the case where the working operation is performed after the contact is made.
  • the risk that the workpiece W stuck to the catalyst pad 240 comes off from the retainer (holding portion) of the polishing head 260 and is damaged may be caused by applying the surface of the workpiece W to the catalyst pad 240 while performing the processing in the main processing operation.
  • the contact or proximity is preferable because the dynamic frictional resistance is generated between the workpiece and the pad, and is lower than the static frictional force.
  • the catalyst on the catalyst pad 240 is prevented from peeling off by performing the processing operation after the surface of the workpiece W is brought into contact with the catalyst pad 240. Peeling off the catalyst from the catalyst pad is a particular problem in catalyst-based etching.
  • the processing operation of the main processing performed on the surface of the workpiece W is the minimum operation necessary for achieving the polishing processing.
  • the processing operation of the main processing is an operation that mainly determines the processing rate, and in the case of the catalyst-based etching apparatus of FIG.
  • the upper rotation shaft 272 is rotated by the drive motor 273 as the first drive unit, and the lower rotation shaft 271 is This is an operation of rotating the support platen 210 by rotating it.
  • the machining operation of the sub machining is a machining operation in a swing operation.
  • the processing operation of the sub-processing is to perform averaging together with the processing operation of the main processing, so that the PV value (Peak to Valley: maximum error) and the RMS value (Root Mean Square: root mean square) of the processing surface of the workpiece W are obtained. (Square root).
  • the processing operation of the main processing is a processing operation in which the minimum required processing in the catalyst-based etching is realized only by the processing operation of the main processing, without the processing operation of the sub-processing.
  • the catalyst pad 240 is a disk-shaped rotating platen, and the polishing head 260 and the catalyst holding the workpiece W having an area smaller than the platen.
  • the pad 240 is rotated at a predetermined speed on rotation axes that are parallel and eccentric to each other.
  • the polishing head 260 can adjust the contact pressure of the workpiece W with respect to the catalyst layer 230 of the catalyst pad 240 by adjusting the load.
  • the processing is performed at a temperature of 70 degrees in the catalyst-based etching using water (also referred to as water CARE), so that the processing rate is higher than when processing using water at normal temperature. Is improved.
  • water also referred to as water CARE
  • the area of the surface of the catalyst layer 230 is smaller than that of the surface of the workpiece W, the position and the residence time of the small catalyst pad 240 with respect to the surface of the workpiece W are controlled, and the surface of the workpiece W is controlled.
  • the local processing amount can be controlled, that is, local processing can be performed by numerical control.
  • the photoirradiation catalyst-based etching apparatus 200 of the second apparatus example is configured such that water molecules are dissociated, adsorb and cut back bonds between an oxygen element constituting a solid oxide film and other elements, and a decomposition product by hydrolysis is converted into water. The elution is performed to process the surface of the workpiece W.
  • a water circulation system 290 is provided to purify the water 201 in the tub container 220 and keep the water level constant.
  • the water circulation system 290 includes a supply pipe 291, a drain pipe 292, a processing liquid purifier (not shown), a buffer tank, a pump, a waste liquid section, and the like.
  • the cleaning device can be realized by changing the catalyst in the basic configuration of the light irradiation catalyst reference etching devices 100 and 200.
  • a cleaning device that removes Pt attached to a workpiece can be realized by performing etching using Ni as a catalyst instead of performing etching using Pt as a catalyst in the light irradiation catalyst-based etching devices 100 and 200. In this case, Pt is removed from the surface of the workpiece. Ni adheres to the surface of the workpiece from which Pt has been removed.
  • the device that performs the processing performed by the latent scratch removing unit 12 and the device that performs the process performed by the first cleaning unit 13 may be configured by the same device or by different devices. Is also good.
  • the apparatus for performing the processing performed by the above-described surface finishing means 16 and the apparatus for performing the processing performed by the second cleaning means 17 may be constituted by the same apparatus or may be constituted by different apparatuses. May be. In this case, even if the catalyst is changed by introducing the cleaning liquid into the tub containers 150 and 220 after performing the catalyst-based etching process in the light irradiation catalyst-based etching apparatuses 100 and 200, the catalyst may be changed. Good.
  • the above-described light irradiation catalyst-based etching apparatus may have the following configuration in addition to the configuration of the light irradiation catalyst-based etching apparatuses 100 and 200.
  • the workpiece processing system 10 may also have the following configuration. It should be noted that the contents described below include some contents that are the same as the contents described above.
  • a photocatalyst based etching apparatus uses a chemical-resistant workpiece storage cassette and a case when cleaning contaminants that adhere to the cassette (preferably, since the cleaning method is easily established, the cassette and the case are made of one material, and are submerged in water.
  • a cassette mounting part used in the process of the catalyst-based etching method When transporting by means of an air vent on the case ceiling), a cassette mounting part used in the process of the catalyst-based etching method, a suction type handling part to prevent the workpiece from drying before cleaning, and a UV lamp Surveillance camera to prevent UV light from entering the eyes directly, monitor to prevent UV light from the UV lamp from entering the eyes directly, workpiece holder, catalyst pad holder, head Auxiliary electrode for plating and electropolishing, a polishing head with an auxiliary electrode for plating and electropolishing, and an energizable polishing head for UV lamps It may be.
  • the light irradiation catalyst-based etching apparatus includes a workpiece holding unit configured to hold a workpiece (eg, a substrate), a catalyst pad holding unit configured to hold a catalyst pad, and a processing unit.
  • a drive unit configured to relatively move the workpiece holding unit and the catalyst pad holding unit in a state where the processing area of the workpiece and the catalyst are in contact with each other may be provided.
  • the catalyst pad holding section may include an elastic member for holding the catalyst pad.
  • the catalyst pad holding section has a plurality of grooves and holes configured to allow the processing liquid to move between the catalyst pad holding section and the work piece when the catalyst pad and the work piece are in contact with each other. May be.
  • the photoirradiation catalyst-based etching apparatus may further include a treatment liquid temperature adjustment unit that adjusts the temperature of the treatment liquid to a predetermined temperature within a range of 10 degrees or more and 90 degrees or less. By adjusting the temperature of the processing liquid, a processing rate of a workpiece such as an oxide or SiC can be improved, and catalyst poison such as a Si component can be removed.
  • the catalyst-based etching apparatus may include a processing liquid supply unit having a supply port for supplying the processing liquid onto the processing target region of the workpiece. The processing liquid supply unit may be configured such that the supply port moves together with the catalyst holding unit.
  • the light irradiation catalyst reference etching apparatus may include an electrolytic regeneration unit configured to remove an etching product on the catalyst surface by using an electrolytic action.
  • the electrolytic regeneration section has an electrode configured to be electrically connectable to the catalyst, and by applying a voltage between the catalyst and the electrode, an etching product attached to the surface of the catalyst is subjected to electrolytic action. It may be configured to remove.
  • the light irradiation catalyst-based etching apparatus may include a plating regeneration unit configured to regenerate the catalyst.
  • the plating regenerating section has an electrode configured to be electrically connectable to the catalyst.
  • the plating regenerating section is configured to immerse the catalyst in a nickel salt solution such as nickel sulfate (hydrate).
  • the surface of the catalyst may be regenerated by applying a voltage to the catalyst.
  • the catalyst may be used while chemically dissolving the surface.
  • the catalyst may be brought into a positive potential state with respect to the processing liquid to dissolve the transition metal film on the processing surface.
  • the light irradiation catalyst-based etching apparatus is a monitoring unit that monitors the etching processing state of the processing target area of the processing target, at least in the processing conditions of the processing target being processed based on the etching processing state obtained by the monitoring unit
  • a control unit configured to control one parameter, or a potential adjustment unit having a reference electrode, wherein the catalyst and the reference electrode are electrochemically connected to each other via a treatment liquid, and the potential of the surface of the catalyst is adjusted. It may include a potential adjustment unit configured to control.
  • the monitoring unit includes a torque current monitoring unit that monitors an etching process state based on a torque current of the driving unit when the catalyst holding unit and the workpiece holding unit relatively move, and a monitoring unit that processes the workpiece.
  • An optical monitoring unit for monitoring may be provided.
  • the light irradiation catalyst-based etching apparatus is configured to supply a treatment liquid through a catalyst cleaning nozzle or a catalyst holding unit configured to supply water and / or a chemical solution for cleaning the surface of the catalyst to the surface of the catalyst.
  • a processing liquid supply unit having a supply port for supplying the processing object onto the processing area may be provided.
  • the workpiece processing system may include a workpiece cleaning unit configured to clean the workpiece, and a workpiece transport unit that transports the workpiece.
  • the workpiece processing system the workpiece measuring unit configured to measure the surface state, thickness or weight of the processing area of the workpiece after processing by the workpiece processing apparatus, A reprocessing control unit configured to reprocess the workpiece after being processed by the workpiece processing apparatus when a measurement result of the workpiece measurement unit does not satisfy a predetermined standard. Is also good.
  • the workpiece transfer section may be configured to be able to separately transport the workpiece in a wet state and the workpiece in a dry state.
  • the workpiece processing system may further include a film forming apparatus configured to perform a film forming process on the workpiece.
  • the film forming apparatus may include at least one of a chemical vapor deposition (CVD) apparatus, a sputtering apparatus, a plating apparatus, and a coater apparatus.
  • CVD chemical vapor deposition
  • the method of cleaning the workpiece is to remove the harmful substances attached to the surface of the workpiece after performing the catalyst-based etching process.
  • the harmful substances adhered to the surface may not be those adhered in the catalyst-based etching process.
  • the method of cleaning the workpiece can be applied to a case where the harmful substances attached to the surface of the workpiece are removed after the catalyst-based etching is not performed.
  • a component adhered to the surface of the workpiece that can be observed by measurement using a total reflection X-ray fluorescence spectrometer (for example, manufactured by Rigaku Corporation) is reduced. Is possible.
  • the present invention there is no need to worry about surface roughness due to cleaning, and the surface roughness Ra is maintained, as compared with a case where cleaning is performed by directly dissolving with a strong acid or alkali chemical in relation to a workpiece or a deposit. And can be improved. Cleaning can be performed while maintaining or improving the surface roughness Ra or the like. Further, in the method of cleaning a workpiece, cleaning can be performed without causing latent scratches.
  • the pair of support platens 140 are configured to reciprocate in opposite phases on the same straight line, but the present invention is not limited to this.
  • the pair of support bases 140 may be configured to reciprocate in opposite phases in an oval range in plan view. This makes it possible to increase the range of movement as compared with the case where the pair of support platens 140 are reciprocated on the same straight line in opposite phases, so that the range of processing the surface of the workpiece can be increased. it can.
  • tub containers 150 and 220 are provided, and the tub containers 150 and 220 (tub portions) are raised from the peripheral edges of the bottom plates 151 and 221 and the bottom plates 151 and 221. , 222, but is not limited thereto.
  • peripheral walls may be provided on the support plattens 140 and 210 (platen).
  • the ultraviolet transmitting members 157 and 212 may be arranged on the supporting surface plates 140 and 210 (surface plates).
  • the shape of the trough may be a trough capable of storing at least one of a liquid and a gas.
  • the shape of the tub portion may be a shape that opens upward like the tub containers 150 and 220 of the above embodiment, or may be a closed shape.
  • the liquid or gas used for processing may be used in a lateral direction or an upside-down direction.
  • the upper part where the trough is opened may be lateral or downward.
  • a catalyst pad 240 provided with a catalyst layer for removing only a portion of the workpiece to be brought into contact with or in proximity to the surface of the workpiece by catalyst-based etching, and a catalyst pad for removing the surface of the workpiece.
  • a flattening process execution unit that executes a flattening process (surface forming process operation) necessary for removal by a contact reaction after the catalyst film abuts or approaches the surface of 240 so as not to peel off. .
  • the surface of the workpiece W can be brought into contact with or close to the surface of the catalyst pad 240 in a state where the catalyst pad 240 is stopped, so that the catalyst layer formed on the surface of the catalyst pad 240 may be peeled off. Is suppressed. Therefore, the catalyst layer on the surface of the catalyst pad 240 can be prevented from peeling off, so that the processing quality of the workpiece W can be improved.
  • the problem of film peeling is affected during mass production in which workpieces are automatically processed.
  • catalyst-based etching a catalytic reaction occurs where a catalyst is present.
  • the surface of the workpiece is to be removed evenly over the entire surface, such as an epitaxial film, and if the catalyst film is peeled off without being noticed, processing unevenness occurs without processing only the part where the catalyst film is peeled off. appear. Then, quality assurance cannot be assured, or when it is not known when film peeling has occurred at the time of processing a workpiece continuously during mass production, a large number of defective products may be generated.
  • a tilt movable mechanism 262 capable of tilting at least one of the catalyst pad 240 and the workpiece is provided.
  • the tilt movable mechanism 262 allows the surface of the workpiece W and the surface of the catalyst pad 240 to follow, thereby changing the angle of the catalyst pad 240 or the surface of the workpiece. Therefore, when the surface of the workpiece W abuts or approaches the surface of the catalyst pad 240, the followability of the surface of the workpiece W can be improved.
  • the light irradiation catalyst-based etching apparatus 200 is not limited to the above-described embodiment, and can be appropriately changed.
  • the flattening process execution unit that executes the flattening process by the catalyst-based etching is provided, but is not limited thereto.
  • a process execution unit that executes a process in catalyst-based cleaning may be provided.
  • the process performed by the process execution unit may be a main operation necessary for establishing the catalyst-based cleaning.
  • the present disclosure can be applied to a method and an apparatus for processing a workpiece.
  • various methods for polishing or polishing (polishing) the surfaces of various substrates including a workpiece such as a Si substrate (wafer) with high quality have been provided.
  • CMP Chemical Mechanical Polishing
  • a workpiece such as a substrate
  • abrasive abrasive grains
  • CMP increases the mechanical polishing (surface removal) effect due to the relative movement between the polishing agent and the object to be polished by the surface chemical action of the polishing agent (abrasive grains) itself or the action of a chemical component contained in the polishing liquid. This is a technique for obtaining a smooth polished surface.
  • a workpiece such as a substrate is made of a material such as SiC or GaN
  • SiC and GaN are harder than Si
  • hard diamond abrasive grains are used as an abrasive (abrasive grains).
  • Latent scratches caused by polishing using abrasive grains do not exhibit the original performance of the workpiece when the workpiece is used as a device, and lead to poor electrical characteristics and low strength.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-114632.
  • the catalyst-based etching method described in Patent Literature 2 is a processing technique that does not use an abrasive or abrasive grains at all, and is an ideal processing method that does not cause latent scratches such as scratches and a damaged layer on a processing surface by processing. is there.
  • the catalyst-based etching method is a technology that uses a catalyst to process only the portion of the surface of the workpiece that is in contact with the workpiece and the liquid or gas at the atomic level, so that the polishing using abrasive grains is performed. Requires more processing time than processing.
  • polishing using abrasive grains has the advantage that the processing time is shorter than that of the catalyst-based etching method. May cause scratches. Latent scratches formed on the workpiece cause the original performance of the workpiece not to be exhibited when the workpiece is used as a device, resulting in poor electrical characteristics or reduced strength. Preferably not present in the product. It is desirable to reduce the finishing time, to eliminate latent scratches by some means as much as possible, and to finish the surface of the workpiece as flat as required by the device.
  • the present invention relates to a surface processing technology for flattening the surface of a workpiece, in order to solve the above-mentioned problems, to shorten the finish processing time, reduce latent scratches to zero as much as possible, and apply a device to the surface of the workpiece with a device. It is an object of the present invention to provide a processing method and a processing apparatus for a workpiece which can be finished to a required flatness.
  • Latent scratches formed on the workpiece by the surface treatment are reduced to at least 30% or less by a chemical reaction without using abrasive grains or a surface treatment using ultraviolet light before finishing the workpiece.
  • a latent wound removing step for removing A surface finishing step of finishing the surface of the workpiece after the latent scratch removing step.
  • the surface treatment using a chemical reaction not using the abrasive grains in the latent scratch removal step is performed while performing chemical etching or chemical polishing without using the abrasive grains, a process by an electric action or a process of irradiating ultraviolet light.
  • the ultraviolet light is an LED lamp that emits light having an ultraviolet light wavelength
  • Processing method. ⁇ 5> A processing apparatus for performing the latent scratch removing step and the surface finishing step according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> A substance used in the processing apparatus according to ⁇ 5>, at least one of a liquid, a gas, a light transmitting section, a light absorbing section, a light reflecting section, an electrode, and an ultraviolet irradiation section.
  • ⁇ 7> A workpiece that has been subjected to the latent scratch removal process in the latent scratch removal step according to any one of ⁇ 1> to ⁇ 4>.
  • At least 30 latent scratches formed on the workpiece by the surface treatment are subjected to a surface treatment using a chemical reaction without using abrasive grains before the finish processing of the substrate to be processed. %, And a surface finishing step of finishing the surface of the workpiece after the latent scratch removing step.
  • the surface treatment using a chemical reaction without using abrasive grains removes latent scratches from the workpiece in advance before finishing, so that no new latent scratch is formed. Just finishing the surface will improve. Conventionally, surface finishing has been performed while removing latent scratches from the state where latent scratches exist.
  • the latent scratch formed by mechanical polishing is removed in the latent scratch removal step. Can be removed from the surface. Therefore, it is possible to ensure that the surface of the substrate to be processed is subjected to the catalyst-based etching by the finishing process without causing any latent scratches on the substrate to be processed.
  • the risk of newly generating a latent scratch can be minimized by shortening the finish processing time, because the existing latent scratch does not need to be removed. Therefore, since the surface is finished after reducing the latent scratches to at least 30% or less before the finish processing, the risk of generating latent scratches in the finish processing is reduced, and the finish processing time is reduced without causing the workpiece to have latent scratches. In addition to being able to be shortened, latent scratches can be reduced to zero, and the surface of the workpiece can be finished as flat as required by the device. In addition, the surface of the workpiece can be easily processed at low cost.
  • the finish processing does not require the removal of latent scratches, so the formation of the surface is minimized. Processing is sufficient.
  • the finishing process is performed by the catalyst-based etching, if there are no latent scratches in the pre-processing, no latent scratches occur even in the finishing process. It is possible to finish.
  • the finishing process is CMP, it is a process of increasing the number of latent scratches from zero in the state of latent scratches. In the present invention, when the finishing process is CMP, it is sufficient that the finishing CMP is performed only for a short time until the surface is formed. Therefore, the risk that a new latent scratch is generated in the finishing process can be reduced as compared with the related art.
  • the problem can be improved by removing latent scratches in advance.
  • the depth at which the latent scratch exists is described as about 100 nm, but the depth at which the latent scratch remains is determined by the processing method and conditions performed up to the step before the finishing step. Depends on. Therefore, the depth at which the latent scratch is present is not always about 100 nm.
  • SiC or GaN is a crystal in which atoms are regularly arranged.
  • the presence of a latent flaw is the same as breaking a crystal on the surface of the workpiece.
  • a leakage current is generated from the latent scratch, which has a fatal effect on reliability and performance.
  • the problem can be improved by removing the latent scratch in advance.
  • the surface treatment using a chemical reaction without using abrasive grains in the latent scratch removal step is preferably performed while performing a treatment by an electric action or a treatment of irradiating ultraviolet light. Therefore, the speed of the catalytic reaction can be increased, and the speed of the surface treatment of the workpiece can be improved. Therefore, the time for removing the latent scratch from the workpiece can be reduced.
  • the SiC surface (including holes and grooves on the surface) is made of quartz lens (SiO 2 ) by irradiating the workpiece SiC with UV light (ultraviolet light) and using electricity. It can be.
  • UV light ultraviolet light
  • latent scratches on the SiC surface can be removed.
  • the latent scratch is first removed from the surface of the workpiece to be machined so as to reduce at least 30% or less, preferably 10% or less, more preferably 0%.
  • the means for removing latent scratches by irradiating this UV light is described as not using abrasive grains, but there are exceptions.
  • a slurry containing abrasive grains that do not cause latent scratches in SiO 2 does not cause latent scratches in the workpiece SiC. Therefore, a slurry containing abrasive grains that do not generate latent scratches in SiO 2 can be used in the latent scratch removing step of the present invention.
  • a slurry containing abrasive grains that do not generate latent scratches in SiO 2 is not used in conventional SiC processing because a processing rate cannot be expected by ordinary CMP on the surface of the workpiece SiC.
  • a slurry containing abrasive grains that do not generate latent scratches can be used for SiO 2 .
  • an example of the slurry abrasive does not generate a latent scratches on SiO 2 particle enters is a slurry used in polishing the SiO 2 in the finishing of the quartz lens (SiO 2).
  • a slurry containing abrasive grains that do not cause latent scratches on gallium oxide when processing GaN. is there.
  • a slurry containing abrasive grains capable of finishing the surface state after irradiation with UV light without generating latent scratches can be used exceptionally well in the latent scratch removal of the present invention.
  • a slurry containing abrasive grains that does not have a processing rate that can finish the surface state after irradiation with UV light without generating latent scratches can be used exceptionally well in removing latent scratches of the present invention It is.
  • a processing reaction occurs.
  • a processing starting point is provided on the surface of the workpiece with water, ultraviolet rays (UV) and electricity, and the liquid is drained. Polishing with a slurry containing particles stops the slurry and removes it from the processing tank. Again, a processing starting point is provided on the surface of the workpiece with water, ultraviolet rays (UV), and electricity, and then the workpiece is polished with a slurry. These may be repeated. Further, the process of irradiating the workpiece with UV and the process of polishing the workpiece may be repeated, and the processing of the workpiece performed by reciprocating in a processing tank different from the process of polishing the workpiece.
  • the light irradiation catalyst-based etching apparatus 100 according to the present invention is not limited to the above-described embodiment, and can be appropriately changed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-64972
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-64972
  • a process of flatly removing the surface of a workpiece such as a Si substrate (wafer) (a process using a catalyst-based etching method) is performed, for example, when platinum is used as a catalyst in a process using a catalyst-based etching method
  • the platinum component remains on the surface of the workpiece after the processing.
  • the technique described in Patent Document 1 is a technique for removing a platinum component attached to the surface of a workpiece by immersing the workpiece in aqua regia.
  • An object of the present invention is to provide a method and a device for cleaning a workpiece, which can easily remove harmful components attached to the workpiece.
  • the following means are available to solve the above problems.
  • the workpiece to which the harmful component that impairs the quality adheres is brought into contact with or close to a cleaning substance that causes a catalytic reaction in relation to the harmful component and the workpiece, thereby causing a catalytic reaction by the cleaning substance.
  • a method of cleaning a workpiece including a removal step of removing all or a part of the harmful component attached to the surface of the workpiece together with the surface of the workpiece.
  • all or a part of the components of the cleaning substance is removed from the workpiece to which the components of the cleaning substance are attached by at least one of wet cleaning, dry cleaning, and scrub cleaning.
  • ⁇ 1> The method for cleaning a workpiece according to ⁇ 1>, including a cleaning step.
  • the method includes a step of applying at least one of a liquid, a gas, and ultraviolet light (UV) to the cleaning substance, which can be used to remove a catalyst reaction inhibiting component that inhibits a reaction of a catalyst.
  • ⁇ 4> A cleaning device that performs the cleaning method according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 5> A liquid, gas, at least one of a cleaning substance and a pad used in the method for cleaning a workpiece according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 6> A workpiece to be cleaned by the method for cleaning a workpiece according to any one of ⁇ 1> to ⁇ 5>.
  • a method of cleaning a substrate to be processed is such that a substrate to which a harmful component that impairs quality adheres is brought into contact with or close to a cleaning substance that causes a catalytic reaction in relation to the harmful component and the substrate to be processed.
  • a catalyst composed of Ni or Fe is used as a cleaning substance in a liquid or gas
  • harmful substances such as Pt (platinum) attached to the surface of the workpiece and adversely affecting the quality can be removed using boiling water. It can be reduced or eliminated without use.
  • the liquid may be ultrapure water. It is preferable that the temperature of the liquid or gas is controlled.
  • At least one of a liquid, a gas, and ultraviolet (UV) that can be used to remove a catalyst reaction-inhibiting component that inhibits the reaction of the catalyst is caused to act on the cleaning substance.
  • UV ultraviolet
  • the cleaning device realized by changing the catalyst in the basic configuration of the light irradiation catalyst-based etching device 100 according to the present invention is not limited to the above-described embodiment, and can be appropriately changed.
  • the present disclosure can be applied to, for example, a polishing apparatus (including a surface plate and a polishing pad) utilizing (involving) ultraviolet light (UV).
  • a polishing apparatus including a surface plate and a polishing pad
  • UV ultraviolet light
  • the present invention relates to a light irradiation catalyst-based etching apparatus (including a surface plate and a polishing pad) used for processing a surface of a workpiece, which can be suitably used for flat processing using a catalyst-based etching method. .
  • a light irradiation catalyst reference etching apparatus using a light irradiation catalyst reference etching method described in paragraph [0032] of Patent Document 1 and the like is connected to a container filled with a processing liquid and an upper end of a platen rotating shaft.
  • a surface plate rotatably disposed in the container and also serving as the bottom surface of the container; and a holder connected to the lower end of the holder rotating shaft and detachably holding the workpiece with the surface of the surface to be processed facing downward.
  • the platen is made of a solid acidic catalyst having excellent light transmittance, for example, quartz.
  • the lower surface of the workpiece is irradiated with light, for example, ultraviolet light, by a light source through a surface plate.
  • the surface plate may be made of sapphire, zirconia, or the like having excellent light transmittance.
  • a removal reaction proceeds from a step end of a workpiece.
  • a light source for irradiating ultraviolet light it is possible to perform processing by a reaction based on the catalyst-based etching method from a portion other than the step end of the workpiece that has received the ultraviolet light.
  • the surface plate used in the conventional light irradiation catalyst-based etching method is formed of a material having excellent transparency of ultraviolet light irradiated from a light source of an ultraviolet irradiation unit, such as quartz.
  • a light source of an ultraviolet irradiation unit such as quartz.
  • the surface plate When the size of the surface plate is increased while maintaining the same thickness as that of the conventional plate, the surface plate is formed of, for example, quartz or the like, and therefore has low strength and is easily damaged. On the other hand, if the thickness of the surface plate is increased so as not to be damaged, the cost increases. Therefore, in the light irradiation catalyst-based etching apparatus, a surface plate capable of transmitting light from an ultraviolet irradiation unit to a surface to be processed of a workpiece and securing the strength and not causing an increase in cost is required.
  • An object of the present invention is to provide a polishing apparatus utilizing (incorporating), for example, ultraviolet light (UV) having a surface plate capable of securing strength and transmitting light from an ultraviolet irradiation unit to a surface to be processed of a workpiece. And, it is an object of the present invention to provide a light irradiation catalyst reference etching apparatus.
  • UV ultraviolet light
  • a light irradiation unit that is used for light irradiation catalyst-based etching and emits light having a wavelength that is effective for processing a workpiece;
  • a surface plate having one or a plurality of platen-side through openings through which light emitted from the light irradiation unit passes, and formed of a material that is not suitable for transmitting light emitted by the light irradiation unit;
  • a tub portion provided with a bottom plate having one or a plurality of bottom plate-side through openings, which is disposed above the surface plate and through which light emitted by the light irradiation unit passes,
  • a light transmitting member arranged in the tub portion to close the one or more bottom plate side through openings;
  • a light irradiation catalyst-based etching apparatus comprising: a pad portion disposed above the bottom plate in the tub portion.
  • ⁇ 2> The light irradiation catalyst reference etching apparatus according to ⁇ 1>, wherein the platen is formed of a metal material, a material having resistance to ultraviolet light and having strength, or a material having a surface treatment having resistance to ultraviolet light.
  • ⁇ 3> The light irradiation catalyst reference etching apparatus according to ⁇ 1> or ⁇ 2>, wherein the tub portion is detachable from the surface plate.
  • the light transmitting member that transmits light having a wavelength that is effective for processing the workpiece is attached in a state where the bottom plate has been subjected to water stop processing in a water stop processing unit,
  • the light-irradiation catalyst-based etching apparatus according to any one of ⁇ 1> to ⁇ 3>, wherein the one or a plurality of platen-side through-openings are provided in a portion of the light transmitting member that does not correspond to the water stopping section.
  • ⁇ 5> At least any one of the surface plate, the trough part, and the pad part is resistant to at least one of a water component and an oxygen component of 90 degrees or less, according to any one of ⁇ 1> to ⁇ 4>.
  • Light irradiation catalyst based etching equipment At least one of a surface plate, a trough, a light transmitting member, and a catalyst pad used in the light irradiation catalyst reference etching apparatus according to any one of ⁇ 1> to ⁇ 5>.
  • a light irradiation unit which is used for light irradiation catalyst-based etching and emits light having a wavelength effective for processing a workpiece;
  • a surface plate having one or a plurality of surface plate side through openings through which light emitted from the light irradiation unit passes, and formed of a material that is not suitable for transmitting light emitted by the light irradiation unit,
  • a peripheral wall rising from the periphery of the surface plate A light transmitting member disposed on the surface plate so as to close the one or more surface plate side through openings;
  • a light irradiation catalyst-based etching apparatus comprising: a pad portion disposed above the surface plate.
  • the light irradiation catalyst-based etching apparatuses 100 and 200 are used for catalyst-based etching, and are UV lamps 125 and 225 that emit ultraviolet light, and a plurality of slits through which ultraviolet light emitted from the UV lamps 125 and 225 passes.
  • Support plats 140 and 210 having a groove 141 or a plurality of through holes 211a and formed of a material that does not transmit ultraviolet light, and a plurality of support plats disposed above the support plats 140 and 210 and through which the ultraviolet light passes.
  • Vat containers 150 and 220 provided with bottom plates 151 and 221 having slit grooves 151a or a plurality of through holes 221a, and ultraviolet rays arranged in vat containers 150 and 220 so as to cover the plurality of slit grooves 151a or the plurality of through holes 221a.
  • the strength of the supporting platens 140 and 210 can be ensured while promoting the catalyst-based etching by the ultraviolet light emitted from the UV lamps 125 and 225.
  • the supporting platens 140 and 210 are formed of a metal material, a material having a resistance to ultraviolet rays and having a strength, or a surface-treated material having a resistance to ultraviolet rays. Thereby, the strength of the support bases 140 and 210 can be secured. Therefore, even if the total load of the members arranged above the support surface plates 140 and 210 increases, breakage of the support surface plates 140 and 210 can be suppressed. Due to the increase in the contact area at the time of the catalyst-based etching processing accompanying the increase in the diameter of the workpiece W, even if the load applied during the processing increases for the purpose of maintaining and increasing the load per unit area, the support surface plate 140 , 210 can be suppressed. As a result, the load increases due to the effect of increasing the size of the surface plate portion due to the increase in the size of the workpiece. However, breakage of the support surface plates 140 and 210 due to the load from the moment direction can be suppressed.
  • the tub containers 150 and 220 are detachable from the support surface plates 140 and 210. Therefore, handling of the tub containers 150 and 220 is easy. Also, if there is space for attaching the tub containers 150 and 220 to the CMP polishing apparatus, the catalyzer pads 155 and 240 can be used in the catalyst-based etching using water by attaching the tub containers 150 and 220 to the polishing apparatus. It becomes possible to do. In the case where there is no hole for irradiating light from below on the support platens 140, 210, the catalyst pads 155, 240 need not have a penetrating groove.
  • the ultraviolet transmitting members 157 and 212 are attached to the bottom plates 151 and 221 in the water stopping sections 157a and 212a in a state where the water blocking processing is performed.
  • the groove 141 or the plurality of through-holes 211a are provided in portions of the ultraviolet transmitting members 157, 212 that do not correspond to the water stopping sections 157a, 212a. Therefore, it is possible to prevent the water stoppage processing units 157a and 212a from deteriorating due to the ultraviolet light emitted from the UV lamps 125 and 225.
  • the light irradiation catalyst-based etching apparatus 100 according to the present invention is not limited to the above-described embodiment, and can be appropriately changed.
  • the first device example and the second device example of the above embodiment may be changed to other embodiments described below.
  • the support platen 140 of the light irradiation catalyst-based etching apparatus 100 has the slit grooves 141 of the first apparatus example.
  • the workpiece W to be irradiated with ultraviolet light may have an ultraviolet light irradiation opening for ultraviolet light corresponding to the entire surface to be processed or most of the size.
  • a UV lamp 125 is provided below the UV irradiation opening, and UV light is irradiated by the UV lamp 125. After irradiating ultraviolet rays with the UV lamp 125, polishing processing is performed by the polishing head 163.
  • the base 110 When the polishing process is performed, the base 110 is moved along a parallel rail (not shown) in the front-rear direction (the direction penetrating through FIG. 2) in FIG. In the portion where there is no, as in the above-described embodiment, the main shaft 160 is lowered to bring the workpiece W supported or held by the polishing head 163 into contact with or close to the catalyst pad 155. Thereafter, the support platen 140 is vibrated to the left and right on the paper surface of FIG. 2 by the drive motor 182, and in this state, the base 110 is swung within a certain range. In this state, the rotation of the main shaft 160 may or may not be optional.
  • the workpiece W may be returned to the ultraviolet irradiation opening again to irradiate the ultraviolet rays, and then the polishing operation may be repeated. If the spindle 160 (polishing head 163) is rotated with the workpiece W facing the UV lamp 125, the polishing surface of the workpiece W can be more uniformly irradiated with ultraviolet rays.
  • the merit of this method is that since the entire surface of the surface of the workpiece W to be processed can be irradiated with ultraviolet light once, when the surface is to be processed by several nm, for example, by setting the number of reciprocations, the amount can be reduced to a value close to several nm. It is possible to control the processing of the surface of the workpiece W.
  • the supporting surface plate 210 is provided on the outer diameter portion instead of the bottom plate side through-opening 221a of the second device example, and the entire surface of the workpiece W to be irradiated with the ultraviolet light to be processed.
  • an opening for ultraviolet irradiation corresponding to most of the size may be provided.
  • a light irradiation unit 225 is provided below the ultraviolet irradiation opening, and ultraviolet light is irradiated from the light irradiation unit 225 to the outer diameter portion with the polishing head 260 raised. After irradiating the light irradiating unit 225 with ultraviolet light, the light irradiating unit 225 is moved to the inner diameter portion of the support platen 210.
  • the workpiece W supported or held by the polishing head 260 is lowered and brought into contact with or close to the catalyst pad 240.
  • the catalyst-based etching process is performed.
  • the light irradiation unit 225 is moved to the outer diameter portion with the polishing head 260 raised again, and the workpiece W is irradiated with ultraviolet light. This operation is repeated.
  • the processing operation of the catalyst-based etching process may be repeated at the outer diameter portion after the light irradiation with the polishing head 260 raised.
  • the lower rotation shaft 271 of the hollow drive mechanism 270 is present around the light irradiation part 225.
  • the outer diameter portion may be held by a bearing.
  • Catalyst based etching system (catalyst based system) 240 Catalyst pad (catalyst body) W Workpiece

Abstract

Provided is a catalyst reference device which is capable of preventing damage to a catalyst layer when planarizing a surface of a workpiece by catalyst referred etching using a catalyst body that has a catalyst layer. A catalyst referred etching device 200 includes: a catalyst body 240 that has a catalyst layer for removing only a portion of a surface of a workpiece that abuts or approaches the catalyst body 240 by reaction of a catalyst reference; and a processing performing unit that performs a surface forming operation that is required for removal by reaction of the catalyst reference after the surface of the workpiece is made to abut against or brought near the surface of the catalyst body 240 such that a catalyst film does not peel off.

Description

触媒基準装置Catalyst reference device
 本発明は、触媒基準装置に関する。 The present invention relates to a catalyst reference device.
 近年、半導体デバイスの製造分野では、Siウェハを始めSiCやGaN等基板の表面を、高品位に平坦化加工する方法として、触媒基準面に基づく触媒基準エッチング法が提案されている(例えば、特許文献1参照)。 In recent years, in the field of manufacturing semiconductor devices, a catalyst-based etching method based on a catalyst-based surface has been proposed as a method for flattening a surface of a substrate such as SiC or GaN, such as a Si wafer, with high quality (for example, see Patent Reference 1).
 特許文献1に記載の触媒基準エッチング法は、基板と研磨具とを互いに接触させつつ相対運動させて、基板を研磨する。 The catalyst-based etching method described in Patent Document 1 polishes the substrate by causing the substrate and the polishing tool to move relative to each other while contacting each other.
特開2015-128161号公報JP-A-2015-128161
 触媒基準エッチング法を行う触媒基準エッチング装置においては、表面に触媒層を備えた触媒パッド(触媒体)が、被加工物の表面に対して傾いた状態で、当接又は近接すると、触媒パッド(触媒体)から触媒層が剥がれることがあった。
 特に触媒基準エッチング装置においては、触媒層により被加工物の表面を加工するため、触媒パッドから触媒層が剥がれた場合には、触媒基準エッチングを行うことができない。そのため、触媒パッドの触媒層の破損を抑制できることが望まれている。
In a catalyst-based etching apparatus that performs a catalyst-based etching method, when a catalyst pad (catalyst body) having a catalyst layer on its surface comes into contact with or comes close to the surface of a workpiece in an inclined state, the catalyst pad ( The catalyst layer was sometimes separated from the catalyst body).
In particular, in the catalyst-based etching apparatus, since the surface of the workpiece is processed by the catalyst layer, the catalyst-based etching cannot be performed when the catalyst layer is peeled off from the catalyst pad. Therefore, it is desired that the damage of the catalyst layer of the catalyst pad can be suppressed.
 本発明は、触媒層を備えた触媒体を用いて被加工物の表面を触媒基準エッチングによって平坦化する際に、触媒層の破損を抑制できる触媒基準装置を提供することを目的とする。 The object of the present invention is to provide a catalyst reference device capable of suppressing breakage of a catalyst layer when the surface of a workpiece is flattened by catalyst reference etching using a catalyst body having a catalyst layer.
 本発明は、被加工物の表面を触媒基準の反応によって当接又は近接した部分のみ除去するための触媒層を備えた触媒体と、前記被加工物の表面を前記触媒体の表面に触媒膜が剥がれないように当接又は近接させた後に、触媒基準の反応による除去に必要な表面形成処理動作を実行する処理実行部と、を備える触媒基準装置に関する。 The present invention relates to a catalyst body provided with a catalyst layer for removing only a portion that is in contact with or in proximity to a surface of a workpiece by a catalyst-based reaction, and a catalyst film formed on the surface of the catalyst body by coating the surface of the workpiece with a catalyst film. And a process execution unit that performs a surface forming process operation necessary for removal by a catalyst-based reaction after contacting or approaching so as not to peel off.
 また、前記触媒基準の反応とは、触媒基準エッチング又は触媒基準クリーニングであり、前記処理実行部により実行される処理動作は、触媒基準エッチングに必要な平坦化の処理又は触媒基準クリーニングの成立に必要な主動作の少なくともいずれかであることが好ましい。 Further, the catalyst-based reaction is a catalyst-based etching or a catalyst-based cleaning, and the processing operation performed by the processing execution unit is necessary for establishing a flattening process or a catalyst-based cleaning required for the catalyst-based etching. Preferably, at least one of the main operations is performed.
 また、前記触媒体の表面と前記被加工物の表面とが平行な状態と、前記触媒体の表面と前記被加工物の表面とが平行ではない状態とを含む範囲において可動するように、前記触媒体及び前記被加工物の少なくともいずれかを傾かせることが可能な傾き可動機構部を備えることが好ましい。 Also, the movable body in a range including a state in which the surface of the catalyst body and the surface of the workpiece are parallel, and a state in which the surface of the catalyst body and the surface of the workpiece are not parallel, It is preferable that a tilt movable mechanism that can tilt at least one of the catalyst body and the workpiece is provided.
 また、前記傾き可動機構部は、前記触媒体の表面又は前記被加工物の表面の表面方向において、前記触媒体の表面又は前記被加工物の表面の両端部の高さの差が0.01mm以上となる範囲まで、前記触媒体及び前記被加工物の少なくともいずれかを傾かせることが可能であることが好ましい。 Further, in the surface direction of the surface of the catalyzer or the surface of the workpiece, a difference in height between both ends of the surface of the catalyzer or the surface of the workpiece is 0.01 mm. It is preferable that at least one of the catalyst body and the workpiece can be tilted to the above range.
 また、前記傾き可動機構部は、前記触媒体の表面に対する前記被加工物の表面の傾斜角度が相対的に0.03°以上になるように、前記触媒体及び前記被加工物の少なくともいずれかを傾かせることが可能であることが好ましい。 In addition, the tilt movable mechanism unit may be configured to control at least one of the catalyst body and the workpiece so that a tilt angle of a surface of the workpiece relative to a surface of the catalyst body is relatively 0.03 ° or more. Can be inclined.
 本発明によれば、触媒層を備えた触媒体を用いて被加工物の表面を触媒基準エッチングによって平坦化する際に、触媒層の破損を抑制できる触媒基準エッチング装置を提供することができる。 According to the present invention, it is possible to provide a catalyst-based etching apparatus capable of suppressing damage to a catalyst layer when the surface of a workpiece is flattened by catalyst-based etching using a catalyst body having a catalyst layer.
本発明の被加工物加工処理システムの全体構成を示す図である。It is a figure showing the whole composition of the work processing system of the present invention. 光照射触媒基準エッチング装置の第1装置例を示す全体側面図である。It is the whole side view which shows the 1st example of a light irradiation catalyst reference etching apparatus. 光照射触媒基準エッチング装置の第1装置例の詳細を示す縦断面図である。It is a longitudinal cross-sectional view which shows the detail of the 1st example of a light irradiation catalyst reference etching apparatus. 光照射触媒基準エッチング装置の第1装置例の支持定盤及び容器の構成を主に示した平面図である。FIG. 2 is a plan view mainly showing a configuration of a support surface plate and a container of a first example of the light irradiation catalyst-based etching apparatus. 光照射触媒基準エッチング装置の第1装置例の主駆動部の構成を示す図である。It is a figure showing composition of a main drive part of the 1st example of an apparatus for light irradiation catalyst standard etching. 光照射触媒基準エッチング装置の第1装置例において、各電極部を示す図である。It is a figure which shows each electrode part in the 1st example of a light irradiation catalyst reference etching apparatus. 光照射触媒基準エッチング装置の第2装置例を示す斜視図である。It is a perspective view which shows the 2nd example of a light irradiation catalyst reference etching apparatus. 光照射触媒基準エッチング装置の第2装置例を下方側から見た斜視図である。It is the perspective view which looked at the 2nd example of a light irradiation catalyst standard etching device from the lower side. 光照射触媒基準エッチング装置の第2装置例の支持定盤及び容器の構成を主に示した部分断面図である。It is the fragmentary sectional view which mainly showed the structure of the support surface plate and container of the 2nd example of a light irradiation catalyst reference etching apparatus. 研磨ヘッドに保持された被加工物が触媒パッドの表面に当接又は近接された後に、光照射触媒基準エッチングの動作が開始される制御について説明する図である。FIG. 9 is a diagram illustrating control for starting the light irradiation catalyst-based etching operation after the workpiece held by the polishing head comes into contact with or approaches the surface of the catalyst pad. 従来の接触パッドの接触部分が、剥がれ部分において剥がれた状態を示す写真画像である。It is a photographic image which shows the state where the contact part of the conventional contact pad peeled at the peeling part.
 以下、本発明の被加工物加工処理システム10の好ましい実施形態について、図面を参照しながら説明する。本実施形態の被加工物加工処理システム10の全体構成につき、図1を参照しながら説明する。図1は、本発明の被加工物加工処理システム10の全体構成を示す図である。 Hereinafter, a preferred embodiment of the workpiece processing system 10 of the present invention will be described with reference to the drawings. The overall configuration of the workpiece processing system 10 according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing the overall configuration of a workpiece processing system 10 according to the present invention.
 本実施形態の被加工物加工処理システム10は、図1に示すように、被加工物の表面を研磨する機械的又は物理的表面加工手段11と、潜傷除去手段12と、第1クリーニング手段13と、第1乾燥手段14と、潜傷除去検査手段15と、表面仕上げ手段16と、第2クリーニング手段17と、第2乾燥手段18と、検査手段19と、を備える。また、機械的又は物理的表面加工手段11、潜傷除去手段12、第1クリーニング手段13、第1乾燥手段14、潜傷除去検査手段15、表面仕上げ手段16、第2クリーニング手段17、第2乾燥手段18及び検査手段19の各手段間の移動には、ロボットなどにより構成される搬送手段20が用いられる。 As shown in FIG. 1, a workpiece processing system 10 according to the present embodiment includes a mechanical or physical surface processing unit 11 for polishing the surface of a workpiece, a latent scratch removing unit 12, and a first cleaning unit. 13, a first drying unit 14, a latent scratch removal inspection unit 15, a surface finishing unit 16, a second cleaning unit 17, a second drying unit 18, and an inspection unit 19. In addition, mechanical or physical surface processing means 11, latent scar removing means 12, first cleaning means 13, first drying means 14, latent scar removal inspection means 15, surface finishing means 16, second cleaning means 17, second A transport unit 20 constituted by a robot or the like is used for movement between the drying unit 18 and the inspection unit 19.
 機械的又は物理的表面加工手段11は、被加工物の表面を機械的又は物理的な加工により、切削、切断、ダイシング、又は研磨する表面処理を行う。被加工物としては、例えば、SiC基板(ウェハ)などが挙げられる。なお、被加工物は、SiC基板などの基板に限定されない。機械的又は物理的表面加工手段11としては、例えば、研磨剤(砥粒)を用いて被加工物の表面を研磨するCMP(Chemical Mechanical Polishing)の技術を用いたCMP装置が用いられる。CMPは、研磨剤(砥粒)自体が有する表面化学作用又は研磨液に含まれる化学成分の作用によって、研磨剤と研磨対象物の相対運動による機械的研磨(表面除去)効果を増大させ、高速かつ平滑な研磨面を得る技術である。CMPでは、研磨剤(砥粒)に、例えば硬いダイヤモンド砥粒を使用する。CMPなどの機械的研磨により被加工物の表面を研磨すると、見かけ上は平坦な表面であっても、潜傷と呼ばれる傷のダメージが内在する可能性が残り、この潜傷が被加工物の電気特性に悪影響を与えたり、潜傷が原因で被加工物の強度が弱くなったりするという問題がある。 The mechanical or physical surface processing means 11 performs a surface treatment of cutting, cutting, dicing, or polishing the surface of the workpiece by mechanical or physical processing. Examples of the workpiece include a SiC substrate (wafer). The workpiece is not limited to a substrate such as a SiC substrate. As the mechanical or physical surface processing means 11, for example, a CMP (Chemical Mechanical Polishing) technique for polishing the surface of a workpiece using an abrasive (abrasive) is used. CMP increases the mechanical polishing (surface removal) effect due to the relative movement between the polishing agent and the object to be polished by the surface chemical action of the polishing agent (abrasive grains) itself or the action of a chemical component contained in the polishing liquid. This is a technique for obtaining a smooth polished surface. In CMP, for example, hard diamond abrasive grains are used as an abrasive (abrasive grains). When the surface of the workpiece is polished by mechanical polishing such as CMP, even if the surface is apparently flat, there is a possibility that the damage of the so-called latent scratch remains therein. There are problems in that the electrical characteristics are adversely affected, and the strength of the workpiece is reduced due to latent scratches.
 潜傷除去手段12は、機械的又は物理的表面加工手段11により被加工物に形成された潜傷を除去する表面処理を行う。潜傷除去手段12では、砥粒を利用した機械的な加工処理ではなく、砥粒を使用しない化学反応を利用した表面処理が行われる。そのため、潜傷除去手段12は、被加工物に潜傷などのダメージを形成することなく、機械的又は物理的表面加工手段11において被加工物に形成された潜傷を除去することができる。なお、潜傷除去手段12における砥粒を使用しない化学反応を利用した表面処理は、電気的な作用による処理又は紫外線光を照射する処理を行いながら行われてもよい。砥粒を使用しない化学反応を利用した表面処理を、電気的な作用による処理又は紫外線光を照射する処理を行いながら行うことで、触媒等の化学反応を高速化させることができるため、被加工物の表面処理の速度を向上できる。 The latent scratch removing means 12 performs a surface treatment for removing a latent scratch formed on the workpiece by the mechanical or physical surface processing means 11. In the latent scratch removing means 12, not mechanical processing using abrasive grains, but surface treatment using a chemical reaction not using abrasive grains is performed. Therefore, the latent scratch removing unit 12 can remove the latent scratch formed on the workpiece by the mechanical or physical surface processing unit 11 without forming damage such as a latent scratch on the workpiece. The surface treatment using a chemical reaction without using abrasive grains in the latent scratch removing means 12 may be performed while performing a treatment by an electric action or a treatment of irradiating ultraviolet light. By performing surface treatment using a chemical reaction that does not use abrasive grains while performing treatment by electrical action or treatment by irradiating ultraviolet light, the chemical reaction of the catalyst and the like can be accelerated. The speed of the surface treatment of the object can be improved.
 砥粒を使用しない化学反応を利用した加工処理としては、例えば、ケミカルポリッシング、ケミカルエッチング、又は触媒基準エッチングなどが用いられる。
 ケミカルポリッシングは、砥粒を使用しないポリッシング液が導入された状態で行われる化学反応を利用した表面処理加工技術である。
 ケミカルエッチングは、砥粒を使用しないエッチング液が導入された状態で行われる化学反応を利用した表面処理加工技術である。
As the processing using a chemical reaction without using abrasive grains, for example, chemical polishing, chemical etching, or catalyst-based etching is used.
Chemical polishing is a surface treatment processing technique using a chemical reaction performed in a state where a polishing liquid that does not use abrasive grains is introduced.
Chemical etching is a surface treatment technology using a chemical reaction performed in a state where an etching solution that does not use abrasive grains is introduced.
 触媒基準エッチングは、研磨剤や砥粒を全く使用しない化学反応を利用した加工技術である。触媒基準エッチングは、加工によって被加工面にスクラッチや加工変質層や潜傷を全く導入しない加工方法である。 Catalyst-based etching is a processing technology that utilizes a chemical reaction that does not use abrasives or abrasive grains at all. The catalyst-based etching is a processing method that does not introduce scratches, damaged layers or latent scratches on the surface to be processed by the processing.
 具体的には、触媒基準エッチングは、加工溶液及び気体のいずれか一方又は両方の中に被加工物を配置して、触媒を被加工物の加工面に接触又は近接させて、加工溶液及び気体のいずれか一方又は両方の中に浸漬させた触媒に被加工物を接触又は近接させながら相対運動させることで、被加工物の加工面の加工を進行させる。 Specifically, the catalyst-based etching is performed by placing a workpiece in one or both of a processing solution and a gas, and bringing a catalyst into contact with or in close proximity to a processing surface of the workpiece, thereby forming a processing solution and a gas. By making the workpiece relatively move while contacting or approaching the catalyst immersed in one or both of the above, the processing of the processing surface of the workpiece proceeds.
 被加工物は、例えば、SiCやGaNやサファイア、酸化ガリウム、ダイヤモンド、アルミニウムガリウムナイトライド、又はシリコンなどの基板、酸化物の基板、セラミックの基板、エピタキシャル成長膜や成膜面、フッ化カルシウム(CaF)、3元混晶、4元混晶、化合物、Si、C、Ga、N、Al、O、In、Fの少なくともいずれかの成分を有する物などである。なお、触媒基準エッチングに用いられる被加工物は、基板に限定されない。被加工物は、任意の形状でよい。なお、被加工物は、触媒反応で加工できるものであれば、これらに限定されない。
 触媒には、金属、例えば、白金、ニッケル又はセラミックス系固体触媒などを用いることができる。
 加工溶液には、例えば、被加工物の加工面で加水分解を起こす液体や、触媒の表面でハロゲンラジカルを生成する液体などを用いることができる。
The workpiece is, for example, a substrate such as SiC, GaN, sapphire, gallium oxide, diamond, aluminum gallium nitride, or silicon; an oxide substrate; a ceramic substrate; an epitaxially grown film or a film-formed surface; 2 ) a ternary mixed crystal, a quaternary mixed crystal, a compound, a substance having at least one component of Si, C, Ga, N, Al, O, In, and F; The workpiece used for the catalyst-based etching is not limited to the substrate. The workpiece may be of any shape. The workpiece is not limited to these as long as it can be processed by a catalytic reaction.
As the catalyst, a metal, for example, a platinum, nickel, or ceramic solid catalyst can be used.
As the processing solution, for example, a liquid that causes hydrolysis on the processing surface of the workpiece, a liquid that generates halogen radicals on the surface of the catalyst, or the like can be used.
 被加工物の性質上、化学的に触媒基準エッチングの原理を用いて表面処理加工を行う場合において、加工液よりも気体の方が合理的に加工可能な場合には、気体を使用する。気体を使用する触媒基準エッチングの例としては、酸化反応を利用したものがある。
 触媒基準エッチング反応の合理化、被加工物の加工表面付近の気体や液体の流動性向上、加工溶液の酸化防止や被加工物表面の加工促進、又は、触媒表面の再活性や触媒毒除去のいずれかを目的として、ミストやマイクロバブル水溶液やナノバブル水溶液の少なくともいずれかを利用することで、液体と気体との両方を使用してもよい。また、液体と気体の少なくともいずれかを加温してもよい。または、紫外線(UV)を援用(使用)してもよい。または、電気を援用してもよい。
Due to the nature of the workpiece, in the case where the surface treatment is performed chemically using the principle of catalyst-based etching, if a gas can be processed more rationally than a processing liquid, a gas is used. As an example of the catalyst-based etching using gas, there is one using an oxidation reaction.
Either rationalization of the catalyst-based etching reaction, improvement of fluidity of gas or liquid near the processing surface of the workpiece, prevention of oxidation of the processing solution, promotion of processing of the workpiece surface, or reactivation of the catalyst surface or removal of catalyst poisons For this purpose, both a liquid and a gas may be used by utilizing at least one of a mist, a microbubble aqueous solution, and a nanobubble aqueous solution. Further, at least one of the liquid and the gas may be heated. Alternatively, ultraviolet light (UV) may be used (used). Alternatively, electricity may be used.
 例えば、被加工物の加工面で加水分解を起こす加工溶液として、硫酸ニッケル水溶液や、水(純水、超純水)などを用いることができる。なお、加工溶液として硫酸ニッケル水溶液を使用することで、被加工物の加工面で加水分解を起こすと共に、電圧を印加することで、触媒パッド155(後述)にメッキも形成できる。加水分解を起こして触媒基準エッチングを行う場合には、被加工物の加工面と触媒との間に加工溶液を介在させた状態で、加工溶液に浸漬させた触媒に被加工物を接触させながら相対運動させることで、被加工物の加工面で加水分解反応により分解生成物を生成する。そして、分解生成物を加工溶液中に溶出させることで、被加工物の加工面を加工する。 For example, a nickel sulfate aqueous solution, water (pure water, ultrapure water), or the like can be used as a processing solution that causes hydrolysis on the processing surface of the workpiece. In addition, by using an aqueous solution of nickel sulfate as a processing solution, hydrolysis is caused on a processing surface of a workpiece, and plating can be formed on a catalyst pad 155 (described later) by applying a voltage. When performing catalyst-based etching by causing hydrolysis, with the processing solution interposed between the processing surface of the processing object and the catalyst, while contacting the processing object with the catalyst immersed in the processing solution, The relative movement generates a decomposition product by a hydrolysis reaction on the processing surface of the workpiece. Then, the processing surface of the workpiece is processed by dissolving the decomposition product into the processing solution.
 また、ハロゲンラジカルを生成する加工溶液として、フッ化水素酸水溶液などを用いることができる。ハロゲンラジカルを生成して触媒基準エッチングを行う場合には、被加工物に対して常態では溶解性を示さないハロゲンを含む分子が溶けた処理液中に被加工物を配置して、白金やルテニュウムなどの耐性のある金属触媒又はセラミックス系固体触媒からなる触媒を被加工物の加工面に接触若しくは近接させて配し、触媒の表面で生成したハロゲンラジカルと被加工物の表面原子との化学反応で生成したハロゲン化合物を溶出させることによって、被加工物を加工する。例えば、SiC基板の被加工物を触媒基準エッチングする場合には、接触触媒として白金を用い、加工溶液としてフッ化水素酸水溶液を用いて、加工溶液に浸漬させた触媒に被加工物を接触させながら相対運動させることで加工を進行させる。
 なお、触媒基準エッチングを行う触媒基準エッチング装置の構成の詳細については後述する。
Further, as a processing solution for generating a halogen radical, an aqueous solution of hydrofluoric acid or the like can be used. In the case of performing catalyst-based etching by generating halogen radicals, the work piece is placed in a processing solution in which a molecule containing a halogen that is not normally soluble in the work piece is dissolved, and platinum or ruthenium is used. Chemical reaction between halogen radicals generated on the surface of the catalyst and surface atoms of the workpiece by arranging a catalyst made of a metal catalyst or a ceramic-based solid catalyst that has resistance, such as a solid catalyst, in contact with or close to the processing surface of the workpiece. The workpiece is processed by eluting the halogen compound generated in the above. For example, in the case where the workpiece to be processed on the SiC substrate is subjected to catalytic reference etching, the workpiece is brought into contact with a catalyst immersed in the processing solution using platinum as a contact catalyst and an aqueous hydrofluoric acid solution as a processing solution. Processing is advanced by relative movement while doing.
The details of the configuration of the catalyst-based etching apparatus that performs the catalyst-based etching will be described later.
 また、触媒基準エッチング装置においては、触媒基準エッチング法のメリットを延ばし、触媒基準エッチング法のデメリットを補完するために、被加工物の表面にダメージを残すことなく平坦度を高めるように、被加工物の表面に光を照射させながら被加工物の平坦加工を行うこともできる。これにより、被加工物のステップ端から除去反応が進行する媒基準エッチング法において、例えば、紫外線光を照射する光源を備えることで、紫外線光を受けた被加工物のステップ端以外からも、触媒基準エッチング法の反応による加工が可能になる。これにより、触媒基準エッチングだけでなく、光照射を更に加えた光照射触媒基準エッチングが可能となる。
 なお、光照射触媒基準エッチングを行う光照射触媒基準エッチング装置の構成の詳細については後述する。
In addition, in the catalyst-based etching apparatus, in order to extend the merits of the catalyst-based etching method and complement the disadvantages of the catalyst-based etching method, the processing is performed so as to increase the flatness without leaving any damage on the surface of the workpiece. Flattening of the workpiece can be performed while irradiating the surface of the workpiece with light. Thus, in the medium-based etching method in which the removal reaction proceeds from the step end of the workpiece, for example, by providing a light source for irradiating the ultraviolet light, the catalyst can be applied from other than the step end of the workpiece that has received the ultraviolet light Processing by the reaction of the reference etching method becomes possible. Accordingly, not only the catalyst-based etching but also the light-irradiated catalyst-based etching to which light irradiation is further applied can be performed.
The details of the configuration of the light irradiation catalyst-based etching apparatus that performs the light irradiation catalyst-based etching will be described later.
 潜傷除去手段12は、表面処理により被加工物に形成された潜傷を、被加工物の仕上げ加工前に、砥粒を使用しない化学反応を利用した表面処理により、少なくとも30%以下に低減するように予め除去する(潜傷除去工程)。潜傷除去手段12は、被加工物から、潜傷を、少なくとも30%以下、好ましくは10%以下、より好ましくは0%に低減するように予め除去する。 The latent scratch removing means 12 reduces the latent scratch formed on the workpiece by the surface treatment to at least 30% or less by a surface treatment using a chemical reaction without using abrasive grains before finishing the workpiece. In advance (latent scratch removal step). The latent scratch removing unit 12 removes the latent scratch from the workpiece in advance so as to reduce the latent scratch to at least 30% or less, preferably 10% or less, more preferably 0%.
 具体的には、CMPなどの機械的又は物理的表面加工手段11により研磨した被加工物の表面は、見かけ上は平坦な表面である。しかし、CMPなどの機械的研磨により研磨した被加工物には、潜傷と呼ばれる傷のダメージが内在している。潜傷は、機械的又は物理的表面加工手段11によって研磨中に被加工物表面のすぐ下に形成されるリスクがあり、被加工物の表面から、例えば100nm程度の厚さを除去することで、潜傷のほぼ全部を除去できる。なお、潜傷を除去する厚さは、潜傷が形成される深さが機械的研磨の方法や条件によって異なるため、100nmに限定されない。 Specifically, the surface of the workpiece polished by the mechanical or physical surface processing means 11 such as CMP is an apparently flat surface. However, a workpiece polished by mechanical polishing such as CMP has an inherent damage of a flaw called a latent flaw. Latent scratches have the risk of being formed just below the surface of the workpiece during polishing by the mechanical or physical surface processing means 11, and by removing a thickness of, for example, about 100 nm from the surface of the workpiece. Almost all of the latent wounds can be removed. The thickness at which the latent scratch is removed is not limited to 100 nm because the depth at which the latent scratch is formed varies depending on the method and conditions of mechanical polishing.
 機械的又は物理的表面加工手段11により被加工物に形成された潜傷は、CMPなどの機械的研磨で研磨した被加工物を、砥粒を使用しない化学反応を利用した表面処理により、厚さ数nm~数十nm(例えば、20nm)取り除くことで、被加工物の表面に顕在化させることができる。この状態から、潜傷除去手段12は、砥粒を使用しない化学反応を利用した表面処理により、被加工物から、潜傷を、少なくとも30%以下、好ましくは10%以下、より好ましくは0%に低減するように予め除去する。潜傷除去工程により潜傷除去処理を行った被加工物が形成される。 The latent scratch formed on the workpiece by the mechanical or physical surface processing means 11 is obtained by subjecting the workpiece polished by mechanical polishing such as CMP to a surface treatment using a chemical reaction without using abrasive grains. By removing several nm to several tens of nm (for example, 20 nm), the surface can be made to be obvious. From this state, the latent scratch removing means 12 removes the latent scratches from the workpiece by at least 30% or less, preferably 10% or less, more preferably 0% by surface treatment using a chemical reaction without using abrasive grains. In advance so as to reduce The workpiece on which the latent scratch removal process has been performed in the latent scratch removal step is formed.
 ここで、本実施形態の潜傷除去手段12においては、例えば、触媒基準エッチングによる加工方法で加工処理が行われている。触媒基準エッチングによる潜傷除去の処理を行った後においては、被加工物の表面には、金属、例えば、白金、金、クロム又はセラミックス系固体触媒からなる成分が、品質を損なう有害成分の付着物として付着している。 Here, in the latent scratch removing means 12 of the present embodiment, for example, processing is performed by a processing method based on catalyst-based etching. After performing the process of removing latent scratches by catalyst-based etching, the surface of the workpiece is coated with a metal, for example, a component composed of platinum, gold, chromium, or a ceramic solid catalyst, with harmful components that impair the quality. Attached as a kimono.
 そのため、本実施形態においては、被加物の表面に付着した有害成分を除去するクリーニング(洗浄)を行う。被加工物の表面に付着した有害成分を除去するクリーニングは、第1クリーニング手段13により行われる。 Therefore, in the present embodiment, cleaning (cleaning) for removing harmful components attached to the surface of the article is performed. Cleaning for removing harmful components attached to the surface of the workpiece is performed by the first cleaning unit 13.
 第1クリーニング手段13は、潜傷除去手段12において、例えば、触媒基準エッチングにより潜傷除去の処理が行われた被加工物の表面をクリーニングする。第1クリーニング手段13は、第1メインクリーニング手段13aと、仕上げクリーニング手段13bと、を備える。 {Circle around (1)} The first cleaning unit 13 cleans the surface of the workpiece on which the latent scratch removal processing has been performed by, for example, the catalyst-based etching. The first cleaning unit 13 includes a first main cleaning unit 13a and a finish cleaning unit 13b.
 第1メインクリーニング手段13aは、品質を損なう有害成分が付着した被加工物を、有害成分及び被加工物との関係で触媒反応を生じさせる洗浄用物質に当接又は近接させることで、洗浄用物質による触媒反応によって、被加工物の表面に付着した有害成分の全部又は一部を、被加工物の表面の一部とともに除去する(クリーニング工程)。 The first main cleaning means 13a is used for cleaning by bringing the workpiece to which the harmful component impairing the quality adheres into contact with or close to a cleaning substance which causes a catalytic reaction in relation to the harmful component and the workpiece. By the catalytic reaction of the substance, all or a part of the harmful component attached to the surface of the workpiece is removed together with a part of the surface of the workpiece (cleaning step).
 例えば、被加工物の表面が潜傷除去手段12において触媒基準エッチングで加工処理された場合には、被加工物の表面には、触媒基準エッチングにおいて触媒として用いられた、例えば、Pt(白金)などの有害物質が金属汚染などとして付着している。第1メインクリーニング手段13aは、例えば、触媒基準エッチングにおいて触媒として用いられ、かつ、被加工物の表面に付着した有害物質をクリーニングする。第1メインクリーニング手段13aにおいては、例えば、前述の触媒基準エッチングの技術を応用し、被加工物に当接又は近接した部分のみを原子レベルで化学反応を用いて除去可能である。特に、被加工物であるクリーニング対象物の表面がワンバイレーヤのステップテラス構造になっている場合等、第1メインクリーニング手段13aは、表面の原子レベルの平坦性を維持したい場合の洗浄で、ステップテラス端から原子レベルでクリーニング可能である。洗浄用物質としての触媒を用いて、被加工物の表面に付着した有害物質のクリーニングの処理を行うことが可能である。また、第1メインクリーニング手段13aは、潜傷を発生させること無く、クリーニングを行うことが可能である。 For example, when the surface of the workpiece is processed by the catalyst-based etching in the latent scratch removing unit 12, the surface of the workpiece is used as a catalyst in the catalyst-based etching, for example, Pt (platinum). And other harmful substances are attached as metal contamination. The first main cleaning unit 13a is used as a catalyst in, for example, catalyst-based etching, and cleans harmful substances attached to the surface of the workpiece. In the first main cleaning unit 13a, for example, the above-described catalyst-based etching technique is applied, and only a portion in contact with or in proximity to the workpiece can be removed at the atomic level using a chemical reaction. In particular, when the surface of the object to be cleaned, which is a workpiece, has a one-by-layer step terrace structure or the like, the first main cleaning means 13a is used for cleaning when the atomic level flatness of the surface is to be maintained. Cleaning is possible at the atomic level from the edge. By using a catalyst as a cleaning substance, it is possible to perform a cleaning process of a harmful substance attached to the surface of the workpiece. Further, the first main cleaning unit 13a can perform cleaning without causing latent scratches.
 洗浄用物質として使用される触媒としては、貴金属、遷移金属、セラミックス系固体触媒、塩基性固体触媒、酸性固体触媒などの触媒がある。被加工物の表面に付着した有害物質(成分)や被加工物のクリーニングで除去される表面成分は、触媒基準のクリーニングで洗浄用物質と流体により液中に混ざる必要がある。洗浄用物質の選定は、被加工物と被加工物に付着する洗浄用物質の成分を考慮する必要がある。第1メインクリーニング手段13aで使用する洗浄用物質は、可能な限り被加工物へ悪影響を及ぼすこと無く、第1仕上げクリーニング手段13bにより除去可能である必要がある。被加工物と洗浄用物質と洗浄手段との相性を考慮して、第1メインクリーニング手段13aに使用する触媒と第1仕上げクリーニング手段13bとを選択する必要がある。 (5) Examples of the catalyst used as a cleaning substance include noble metals, transition metals, ceramic solid catalysts, basic solid catalysts, and acidic solid catalysts. The harmful substances (components) attached to the surface of the workpiece and the surface components to be removed by cleaning the workpiece need to be mixed in the liquid by the cleaning substance and the fluid in the cleaning based on the catalyst. When selecting a cleaning substance, it is necessary to consider the workpiece and components of the cleaning substance that adhere to the workpiece. The cleaning substance used in the first main cleaning means 13a needs to be removable by the first finish cleaning means 13b without adversely affecting the workpiece as much as possible. It is necessary to select the catalyst used for the first main cleaning unit 13a and the first finish cleaning unit 13b in consideration of the compatibility between the workpiece, the cleaning substance, and the cleaning unit.
 例えば、従来は、被加工物の表面に付着したPt(白金)などの有害物質は、煮沸王水などを使用しないと除去できないとされていたが、被加工物の表面は、被加工物の成分によっては王水や熱に対する耐性が低かった。また、従来、被加工物に付着している除去したい成分を除去可能な洗浄方法で被加工物を洗浄しようとしても、洗浄液や洗浄方法や被加工物の耐性により、被加工物に付着している除去したい成分の除去ができないこともあった。これに対して、第1メインクリーニング手段13aにおいて、液や気体中においてNiやFeの成分からなる触媒を洗浄物質として使用すれば、被加工物の表面に付着したPt(白金)などの品質に悪影響を及ぼす有害物質を、煮沸王水を使用せずに、低減又は除去することができる。しかも、第1メインクリーニング手段13aは、一般的な化学薬品を用いたクリーニングのように表面に薬品をかけるだけで表面全体を溶かす洗浄ではないため、被加工物の表面粗さを維持しやすい。 For example, conventionally, it has been considered that harmful substances such as Pt (platinum) attached to the surface of a workpiece cannot be removed without using boiling water or the like. Some components were less resistant to aqua regia and heat. Conventionally, even if an attempt is made to clean the workpiece by a cleaning method capable of removing the components to be removed attached to the workpiece, the cleaning liquid, the cleaning method, and the resistance of the workpiece may cause the component to adhere to the workpiece. In some cases, it is not possible to remove the components that you want to remove. On the other hand, in the first main cleaning means 13a, if a catalyst composed of Ni or Fe is used as a cleaning substance in a liquid or gas, the quality of Pt (platinum) or the like adhered to the surface of the workpiece is reduced. Harmful substances that have an adverse effect can be reduced or eliminated without using boiling water. In addition, the first main cleaning means 13a is not a cleaning that dissolves the entire surface only by applying a chemical to the surface as in cleaning using a general chemical, so that the surface roughness of the workpiece can be easily maintained.
 通常の洗浄は、新たなパーティクル(ゴミ)や金属汚染の付着を避ける。しかし、本発明の洗浄(第1メインクリーニング手段13a)では、被加工物に新しい金属汚染源になる成分などをあえて洗浄用物質として使用する。被加工物に付着する洗浄用物質(金属汚染等)の成分は、第1仕上げクリーニング手段13bの洗浄手段において、第1仕上げクリーニング手段13bの洗浄手段及び被加工物との相性が良い。そのため、洗浄用物質(金属汚染等)の成分除去が可能な洗浄液などを第1仕上げクリーニング手段13bの洗浄手段として選ぶことで、潜傷やピットを洗浄工程で発生させることなく被加工物の表面から有害成分を低減又は除去可能になる。 Normal cleaning avoids adhesion of new particles (dust) and metal contamination. However, in the cleaning of the present invention (the first main cleaning means 13a), the workpiece is intentionally used as a cleaning substance, for example, a component serving as a new metal contamination source. The components of the cleaning substance (metal contamination and the like) attached to the workpiece are compatible with the cleaning means of the first finishing cleaning means 13b and the workpiece in the cleaning means of the first finishing cleaning means 13b. Therefore, by selecting a cleaning liquid or the like capable of removing components of a cleaning substance (metal contamination or the like) as the cleaning means of the first finishing cleaning means 13b, the surface of the workpiece can be processed without causing latent scratches and pits in the cleaning step. Harmful components can be reduced or removed.
 なお、被加工物には、基板を用いることができ、基板以外にも、厚みや形状が異なる物も対応可能である。被加工物としては、例えば、円柱形状や角柱形状、円筒形状や角筒形状、凹凸や孔のある形状、又は立体形状も対応可能である。被加工物の材質は、エピタキシャル成長膜や成膜面、化合物、3元混晶、4元混晶、酸化物やセラミックやフッ化カルシウム(CaF)やInやSiやCやGaやNやOやAlやZnやFの原子のいずれかを少なくとも含むものがある。紫外線(UV)を援用(使用)した研磨ができる方がよい。なお、被加工物の材料は、触媒反応で加工できるものであれば、これらに限定されない。 Note that a substrate can be used as the workpiece, and other than the substrate, an object having a different thickness or shape can be used. As the workpiece, for example, a columnar shape, a prismatic shape, a cylindrical shape or a rectangular tube shape, a shape having irregularities or holes, or a three-dimensional shape can be used. The material of the workpiece may be an epitaxially grown film or a deposition surface, a compound, a ternary mixed crystal, a quaternary mixed crystal, an oxide, a ceramic, calcium fluoride (CaF 2 ), In, Si, C, Ga, N, or O. And at least one of the atoms of Al, Zn and F. It is better to be able to polish (use) ultraviolet light (UV). The material of the workpiece is not limited to these as long as it can be processed by a catalytic reaction.
 本実施形態においては、第1メインクリーニング手段13aは、例えば、洗浄用物質としての触媒にNiを用いて、被加工物の表面に付着したPt(白金)などの付着成分を除去するクリーニングを行う。この場合、第1メインクリーニング手段13aのクリーニング動作は、前述の触媒基準エッチングを行う装置を用いて、触媒をPtとしてエッチングを行うのに代えて、触媒をNiとしてクリーニングを行うことで、被加工物に付着したPtを除去することができる。この場合、被加工物の表面からはPtが除去され、Ptが除去された被加工物の表面には、Niが付着する。 In the present embodiment, the first main cleaning unit 13a performs cleaning for removing adhered components such as Pt (platinum) adhered to the surface of the workpiece using Ni as a catalyst as a cleaning substance, for example. . In this case, the cleaning operation of the first main cleaning means 13a is performed by performing cleaning using Ni as a catalyst instead of performing etching using Pt as a catalyst by using the above-described apparatus for performing catalyst-based etching. Pt attached to the object can be removed. In this case, Pt is removed from the surface of the workpiece, and Ni adheres to the surface of the workpiece from which Pt has been removed.
 なお、第1メインクリーニング手段13aは、品質を損なう有害成分が付着した被加工物を洗浄用物質に当接又は近接させる前に、触媒の反応を阻害する触媒反応阻害成分を除去するために用いることが可能な液体、気体又は紫外線(UV)の少なくともいずれかを洗浄用物質に作用させる処理(触媒反応阻害成分除去工程)を実行してもよい。これにより、被加工物をクリーニングする際に、被加工物に付着した有害成分を効果的に除去できる。また、被加工物を洗浄用物質に当接又は近接させる前に、被加工物の表面に、紫外線(UV)を照射してもよい。紫外線(UV)を作用させることで、被加工物の表面において、例えば原子の層において数層だけステップテラス端以外からも、有害成分を除去可能になる。紫外線(UV)を照射することにより、被加工物の表面から、有害成分を除去できる可能性を向上させることができる。 The first main cleaning means 13a is used to remove a catalytic reaction-inhibiting component that inhibits the reaction of the catalyst before the workpiece to which the harmful component that impairs the quality adheres adheres to or comes close to the cleaning substance. A treatment (catalytic reaction inhibiting component removing step) in which at least one of a liquid, a gas, and ultraviolet light (UV) capable of acting on the cleaning substance may be performed. This makes it possible to effectively remove harmful components attached to the workpiece when cleaning the workpiece. Before the workpiece is brought into contact with or close to the cleaning substance, the surface of the workpiece may be irradiated with ultraviolet light (UV). By applying ultraviolet (UV) light, harmful components can be removed from the surface of the workpiece, for example, only a few layers of the atomic layer other than the end of the step terrace. Irradiation with ultraviolet light (UV) can improve the possibility of removing harmful components from the surface of the workpiece.
 また、第1メインクリーニング手段13aは、品質を損なう有害成分が付着した被加工物を洗浄用物質に当接又は近接させる前後の少なくともいずれかにおいて、気体又は液体の少なくともいずれかからなる触媒反応を不活性にする触媒毒などの成分を、被加工物に付着した触媒成分に作用させる処理(触媒成分作用工程)を実行してもよい。これにより、被加工物をクリーニングする際に、被加工物に付着した触媒成分などの有害成分に対して、触媒毒を作用させることで、被加工物の表面に付着した有害触媒成分による触媒反応を低減可能である。 Further, the first main cleaning means 13a performs a catalytic reaction comprising at least one of a gas and a liquid before and / or after the workpiece to which the harmful component impairing the quality has adhered comes into contact with or comes close to the cleaning substance. A process of causing a component such as a catalyst poison to be deactivated to act on a catalyst component attached to a workpiece (a catalyst component operation step) may be performed. As a result, when cleaning the workpiece, the catalyst poison acts on the harmful components such as the catalyst component attached to the workpiece, so that the catalytic reaction by the harmful catalyst component attached to the surface of the workpiece is performed. Can be reduced.
 第1仕上げクリーニング手段13bは、第1メインクリーニング手段13aにより被加工物の表面に付着した有害物質を除去するクリーニング処理を実行する。第1仕上げクリーニング手段13bは、洗浄用物質の成分の全部又は一部を、ウエット洗浄、ドライ洗浄、スクラブ洗浄、又は超音波洗浄の少なくともいずれかの一般的なクリーニング手段(洗浄)により、洗浄用物質の成分が付着した被加工物から除去する(洗浄工程)。本実施形態においては、第1メインクリーニング手段13aで使用される洗浄用物質について、一般的な洗浄で除去可能な洗浄用物質を用いている。一般的な洗浄としては、洗浄用物質により付着した成分を、除去又は低減できる洗浄であれば良く、被加工物の使用用途の条件を満たす洗浄である必要がある。 {Circle around (1)} The first finish cleaning means 13b executes a cleaning process for removing harmful substances attached to the surface of the workpiece by the first main cleaning means 13a. The first finish cleaning means 13b cleans all or a part of the components of the cleaning substance by at least one of general cleaning means (cleaning) of wet cleaning, dry cleaning, scrub cleaning, or ultrasonic cleaning. The components of the substance are removed from the adhered workpiece (cleaning step). In the present embodiment, the cleaning substance used in the first main cleaning unit 13a is a cleaning substance that can be removed by general cleaning. General cleaning may be any cleaning as long as it can remove or reduce components adhered by the cleaning substance, and needs to satisfy the conditions of use of the workpiece.
 一般的なクリーニング(洗浄)としてのウエット洗浄、スクラブ洗浄について説明する。
 ウエット洗浄は、水を媒体とする洗浄である。ウエット洗浄の代表的なものとして、例えば、RCA洗浄がある。被加工物との相性で被加工物に潜傷やピットが発生しないRCA洗浄などの洗浄が好ましい。
 スクラブ洗浄は、被加工物(基板など)の表面に付着した汚染物質に物理的衝撃を与えて、被加工物(基板など)の表面から汚染物質を除去する洗浄である。
Wet cleaning and scrub cleaning as general cleaning (cleaning) will be described.
Wet cleaning is cleaning using water as a medium. A typical example of wet cleaning is RCA cleaning. Cleaning such as RCA cleaning which does not generate latent scratches or pits on the workpiece due to compatibility with the workpiece is preferable.
Scrub cleaning is cleaning in which a contaminant attached to the surface of a workpiece (such as a substrate) is physically impacted to remove the contaminant from the surface of the workpiece (such as a substrate).
 本実施形態においては、第1仕上げクリーニング手段13bは、例えば、第1メインクリーニング手段13aにより被加工物の表面に付着した、例えば、洗浄用物質であるNi成分を、被加工物(基板など)の洗浄に用いられる一般的なクリーニングを行うことで除去する。 In the present embodiment, the first finish cleaning unit 13b removes, for example, a Ni component, which is a cleaning substance, attached to the surface of the workpiece by the first main cleaning unit 13a. It is removed by performing a general cleaning used for cleaning.
 従来、被加工物に付着した、例えば、Pt(白金)などの有害物質を被加工物の表面から除去する場合に、被加工物を王水に浸漬させることで、被加工物の表面に付着した白金を除去していた。被加工物に付着した白金を王水でクリーニングするには、王水が人体への危険性が高く、かつ、王水を高温にするなどの別の設備が必要となり、困難である。 Conventionally, when a harmful substance such as Pt (platinum) attached to a workpiece is removed from the surface of the workpiece, the workpiece is immersed in aqua regia to adhere to the surface of the workpiece. The removed platinum had been removed. It is difficult to clean platinum adhered to a workpiece with aqua regia, because the aqua regia has a high risk to the human body and requires other facilities such as a high aqua regia.
 これに対して、本発明は、第1メインクリーニング手段13aにより、洗浄用物質による触媒反応によって、被加工物の表面に付着した有害成分の全部又は一部を、被加工物の表面の一部とともに除去する。これにより、被加工物のクリーニングにおいて、管理及び使用のために別の設備が必要な王水などを使用しなくてよいため、被加工物に付着した有害成分を容易に除去できる。これは、被加工物と除去したい有害物質と洗浄液との関係で、洗浄することができない組み合わせの場合には、特に有効である。一例としては、被加工物に付着して除去したい有害物質が、Pt(白金)であり、被加工物が、材質的又は温度条件的に煮沸王水が耐えられない被加工物である場合などがある。
 また、第1仕上げクリーニング手段13bにより一般的なクリーニングを行うことで、第1メインクリーニング手段13aのクリーニングの際に付着した洗浄用物質を容易に除去できる。
On the other hand, according to the present invention, all or a part of the harmful component adhered to the surface of the workpiece by the catalytic reaction of the cleaning substance is removed by the first main cleaning means 13a. Together with it. This eliminates the need to use aqua regia or the like, which requires another facility for management and use, in cleaning the workpiece, thereby easily removing harmful components attached to the workpiece. This is particularly effective in the case of a combination that cannot be cleaned due to the relationship between the workpiece, the harmful substance to be removed, and the cleaning liquid. As an example, a case where the harmful substance adhering to the workpiece to be removed is Pt (platinum) and the workpiece is a workpiece that cannot withstand boiling aqua regia due to material or temperature conditions. There is.
In addition, by performing general cleaning by the first finish cleaning unit 13b, the cleaning substance attached during cleaning of the first main cleaning unit 13a can be easily removed.
 第1乾燥手段14は、第1クリーニング手段13においてクリーニングされた被加工物を乾燥させる。 The first drying unit 14 dries the workpiece cleaned by the first cleaning unit 13.
 潜傷除去検査手段15は、第1クリーニング手段13により洗浄されて第1乾燥手段14により乾燥された後に、被加工物に形成された潜傷が除去されたか否かを検査する。被加工物に形成された潜傷の有無を確認する方法としては、例えば、潜傷が形成された被加工物の表面を所定の厚み除去した後に被加工物の表面を観察する方法がある。 (4) The latent scratch removal inspection unit 15 inspects whether the latent scratch formed on the workpiece has been removed after the first cleaning unit 13 has washed and dried the first drying unit 14. As a method of confirming the presence or absence of a latent scratch formed on a workpiece, for example, there is a method of observing the surface of the workpiece after removing a predetermined thickness of the surface of the workpiece on which the latent scratch is formed.
 潜傷除去検査手段15における被加工物に形成された潜傷の有無を確認する具体的な手順について説明する。
 まず、潜傷が形成された被加工物において、被加工物の表面を、研磨剤や砥粒を全く使用しない化学反応を利用した加工により、潜傷が表面に現れる程度の厚さ、例えば、数nm~数十nm除去する。この場合に、例えば、被加工物の表面に現れた潜傷を、被加工物から潜傷を除去する前の基準とする。なお、潜傷が表面に現れる程度の被加工物の厚さは、潜傷の残存率を算出する際の基準となる程度に潜傷を顕在化させた厚さであればよく、被加工物の表面を除去する厚さは、適宜設定される。
A specific procedure for confirming the presence or absence of a latent scratch formed on the workpiece by the latent scratch removal inspection unit 15 will be described.
First, in the workpiece on which the latent scratch is formed, the surface of the workpiece is processed by a chemical reaction that does not use any abrasive or abrasive grains, so that the thickness of the latent scratch appears on the surface, for example, Remove several nm to several tens nm. In this case, for example, a latent flaw appearing on the surface of the workpiece is set as a reference before removing the latent flaw from the workpiece. The thickness of the workpiece such that the latent scratch appears on the surface may be a thickness that allows the latent scratch to be revealed to the extent that it becomes a reference when calculating the residual rate of the latent scratch. The thickness for removing the surface is set as appropriate.
 潜傷の有無を確認する検査工程においては、被加工物の表面を、潜傷を除去する前の基準から、更に、所定の厚さ、例えば、数nm~数十nmずつ除去していく。そして、数nm~数十nm除去したごとに、潜傷を除去する前の基準からの差を見ることで、潜傷の有無を確認する検査工程を行う。これにより、潜傷の有無を確認する検査工程においては、被加工物の潜傷の残存率が、少なくとも30%以下であるか、好ましくは10%以下であるか、より好ましくは0%に低減されているかの検査を行う。 (4) In the inspection step for checking the presence or absence of latent scratches, the surface of the workpiece is further removed by a predetermined thickness, for example, several nm to several tens of nm from the reference before removing the latent scratches. Then, every time a few nm to several tens of nm are removed, an inspection step is performed to confirm the presence or absence of a latent scratch by checking the difference from the reference before removing the latent scratch. Thereby, in the inspection step for confirming the presence or absence of latent scratches, the residual rate of latent scratches on the workpiece is reduced to at least 30% or less, preferably 10% or less, and more preferably to 0%. Inspect whether it has been done.
 潜傷の残存率は、例えば、表面を正面から見た場合において、潜傷の数や、潜傷の総長さや、潜傷が形成されている範囲の総面積などを算出して、これらに基づいて判断する。被加工物の表面の潜傷は、例えば、SiCウェハ欠陥検査装置(レーザーテック株式会社製 SICA)などにより測定することができる。 For example, when the surface is viewed from the front, the number of latent scratches, the total length of the latent scratches, and the total area of the range where the latent scratches are formed are calculated based on these. To judge. The latent scratch on the surface of the workpiece can be measured by, for example, an SiC wafer defect inspection apparatus (SICA manufactured by Lasertec Corporation).
 潜傷除去検査手段15により検査された被加工物について、所定の潜傷の残存率を満たさない場合には、例えば、潜傷除去手段12に戻されて、被加工物における潜傷の除去の再処理を行う。潜傷除去検査手段15により検査された被加工物について、所定の潜傷の残存率を満たす場合には、被加工物は、表面仕上げ手段16に向けて搬送される。ここで、被加工物が量産品である場合には、例えば、同じロットにおいて、潜傷を取り除ける条件を見つけた場合には、残りの被加工物について、その条件で潜傷を除去することで、被加工物を検査する工程を省けるため、加工時間を短縮できる。 When the workpiece inspected by the latent scratch removal inspection unit 15 does not satisfy the predetermined residual ratio of latent scratches, the workpiece is returned to, for example, the latent scratch removal unit 12 to remove latent scratches from the workpiece. Perform reprocessing. If the workpiece inspected by the latent scratch removal inspection unit 15 satisfies a predetermined residual ratio of latent scratches, the workpiece is transported to the surface finishing unit 16. Here, when the workpiece is a mass-produced product, for example, in the same lot, if a condition for removing latent scratches is found, the latent workpiece is removed under the same conditions for the remaining workpieces. Since the step of inspecting the workpiece can be omitted, the processing time can be reduced.
 なお、潜傷除去手段12において被加工物の表面から除去する厚さについては、例えば、複数の潜傷除去条件において潜傷除去処理を行った被加工物をデバイス化して、デバイスの性能結果に基づいた潜傷残存率の実験データを収集して、収集された実験データ等に基づいて、被加工物から潜傷がなくなる(例えば、30%以下、10%以下、0%)までの被加工物の表面から除去する厚さを予め設定してもよい。 The thickness to be removed from the surface of the workpiece by the latent scratch removing means 12 is, for example, a device that has been subjected to the latent scratch removal processing under a plurality of latent scratch removal conditions, is converted into a device, and the device performance result is obtained. Based on the collected experimental data and the like, based on the collected experimental data and the like, the workpiece is processed until the workpiece is free of latent scratches (for example, 30% or less, 10% or less, 0%). The thickness to be removed from the surface of the object may be set in advance.
 従来、被加工物の表面加工処理において、CMPなどの機械的研磨処理を行う場合には、被加工物の表面を平坦にしつつ、傷ができやすい粗い研磨を行う加工処理から、徐々に細かい研磨を行う加工処理になるように、傷が少なくなる加工処理を行っていた。つまり、研磨剤の粒子等を細かくしていくことで、被加工物の表面を平坦にしつつ、潜傷ができにくいように、被加工物の表面を研磨する加工を行うものであった。この従来の加工方法は、被加工物の表面を平坦にしつつ潜傷ができにくいように加工する加工方法であって、被加工物の潜傷を見ながら行っているものではなかった。 Conventionally, when mechanical polishing such as CMP is performed in the surface processing of a workpiece, the processing is performed such that the surface of the workpiece is flattened and rough polishing that is easily damaged is gradually performed. In such a case, the processing is performed to reduce the number of scratches. In other words, the surface of the workpiece is polished by making the abrasive particles finer, so that the surface of the workpiece is flat, and latent scratches are hardly formed. This conventional processing method is a processing method in which the surface of the workpiece is flattened so that latent scratches are hardly formed, and is not performed while observing the latent scratches of the workpiece.
 これに対して、本発明は、被加工物の潜傷を除去した後に、被加工物の表面を平坦化するものである。つまり、本発明における被加工物の加工方法においては、表面処理により被加工物に形成された潜傷を、被加工物の仕上げ加工前に、砥粒を使用しない化学反応を利用した表面処理により、被加工物から、一旦、少なくとも30%以下に低減するように予め除去する。これにより、被加工物から、潜傷をなくす処理を実行した後に、仕上げ処理を行う。よって、被加工物の研磨加工の全部を、例えばステップ端からの触媒基準エッチングのような加工時間を要する原子レベルでの加工方法で行わなくてもよいため、被加工物の平坦化時間を短縮しつつ、低コストで被加工物の表面加工を行うことができる。 On the other hand, the present invention is to flatten the surface of the workpiece after removing the latent scratch on the workpiece. In other words, in the method for processing a workpiece according to the present invention, the latent scratch formed on the workpiece by the surface treatment is subjected to a surface treatment using a chemical reaction without using abrasive grains before finishing the workpiece. And once removed from the workpiece in advance so as to reduce it to at least 30% or less. Thus, after performing the process of eliminating latent scratches from the workpiece, the finishing process is performed. Therefore, it is not necessary to perform the entire polishing process of the workpiece by the processing method at the atomic level which requires a processing time such as the catalyst-based etching from the step end, thereby shortening the flattening time of the workpiece. In addition, the surface of the workpiece can be processed at low cost.
 これにより、砥粒を使用しない化学反応を使用した表面処理により、被加工物から仕上加工前に予め潜傷を除法するため、新たな潜傷を形成することなく、仕上加工では、被加工物の表面を仕上るだけでよくなる。従来は、潜傷がある状態から、潜傷を除去しながら表面の仕上加工を行っていた。
 また、CMPなどの機械的研磨で加工時間を短縮して被加工物である基板の表面の研磨を行った後に、機械的研磨により形成された潜傷を、潜傷除去工程において被加工物の表面から除去できる。よって、仕上げ加工で触媒基準エッチングを行う場合は、被加工物である基板に潜傷を存在させずに、被加工物である基板表面の平坦化品質を担保できる。CMPで仕上加工を行う場合においても、既存の潜傷を除去しなくてよい分仕上加工時間が短くなることで、新たに潜傷が発生するリスクを最小に抑えることが可能になる。
 したがって、仕上加工前に潜傷を少なくとも30%以下にしてから、表面を仕上げるので、仕上加工で潜傷が発生するリスクを下げ、被加工物に潜傷を存在させずに、仕上加工時間を短縮可能であると共に、潜傷を限りなくゼロにし、被加工物の表面をデバイスで求められる程度に平坦に仕上げることができる。スラリーを用いなければ、取り扱いが容易で、かつ、低コストに被加工物の表面加工を行うことも可能である。
In this way, the surface treatment using a chemical reaction without using abrasive grains removes latent scratches from the workpiece in advance before finishing, so that no new latent scratch is formed. Just finish the surface. Conventionally, surface finishing has been performed while removing latent scratches from the state where latent scratches exist.
Further, after the processing time is reduced by mechanical polishing such as CMP and the surface of the substrate as the workpiece is polished, the latent scratch formed by the mechanical polishing is removed from the workpiece in the latent scratch removing step. Can be removed from the surface. Therefore, in the case where the catalyst-based etching is performed in the finishing process, the flatness quality of the surface of the substrate to be processed can be ensured without causing a latent scratch on the substrate to be processed. Even in the case of performing finish processing by CMP, the risk of newly generating latent scratches can be minimized by shortening the finish processing time by eliminating the need to remove existing latent scratches.
Therefore, since the surface is finished after reducing the latent scratches to at least 30% or less before the finish processing, the risk of generating latent scratches in the finish processing is reduced, and the finish processing time is reduced without causing the workpiece to have latent scratches. In addition to being able to be shortened, latent scratches can be reduced to zero, and the surface of the workpiece can be finished as flat as required by the device. If no slurry is used, it is easy to handle and the surface of the workpiece can be processed at low cost.
 例えば、本発明であれば、仕上加工前に本発明の潜傷除去工程で潜傷を0個にした場合、仕上加工では潜傷除去を行う必要が無くなるので、表面の形成という最小限の表面加工で足りる。触媒基準エッチングで仕上加工を行う場合は、前加工で潜傷が0個であれば、仕上加工でも潜傷は発生しないため、表面を形成するだけで、潜傷が0個のままで加工を終えることが可能である。仕上加工がCMPの場合は、潜傷の状態で見れば、潜傷が0個から何個増えるのかの加工になる。本発明は、仕上加工がCMPの場合は、仕上CMPを表面が形成されるまでの短い時間だけ行うだけで足りる。よって、新規の潜傷が仕上加工で発生するリスクを、従来よりも減らすことができる。 For example, in the case of the present invention, if the number of latent scratches is reduced to zero in the latent scratch removal step of the present invention before the finish processing, the finish processing does not require the removal of latent scratches, so the formation of the surface is minimized. Processing is sufficient. When the finishing process is performed by the catalyst-based etching, if there are no latent scratches in the pre-processing, no latent scratches occur even in the finishing process. It is possible to finish. When the finishing process is CMP, it is a process of increasing the number of latent scratches from zero in the state of latent scratches. In the present invention, when the finishing process is CMP, it is sufficient that the finishing CMP is performed only for a short time until the surface is formed. Therefore, the risk that a new latent scratch is generated in the finishing process can be reduced as compared with the related art.
 従来のように、例えば被加工物の表面に数百個の潜傷が存在する状態から表面を形成しつつ、潜傷を少しでも0に向けて行う加工では、従来は約100nmの厚み分だけ、潜傷を除去しようとした場合、加工レートの低くなりがちな仕上加工で、表面全面を均等に除去する必要があった。この時、仕上げを仮に砥粒を使用したCMPで行う場合、従来は約100nmの厚み分だけ、仕上加工で除去しなければならない。仕上げを仮に砥粒を使用したCMPで行う場合は、加工前の表面から約100nmの厚み分が除去できるまで、常に新規の潜傷が発生するリスクが存在していた。本発明によれば、その問題を改善できる。なお、補足として、従来の技術説明において、潜傷の存在する深さが約100nmと記載したが、潜傷が残っている深さは、仕上げ工程前の工程までにおいて実施した加工の仕方や条件に依存する。よって、潜傷の存在する深さは、一律に約100nmとは限らない。 As in the past, for example, in a process of forming a surface from a state where several hundred latent scratches exist on the surface of the workpiece and performing the latent scratch as little as possible, conventionally, only a thickness of about 100 nm is used. In order to remove latent scratches, it is necessary to remove the entire surface evenly by finishing, which tends to reduce the processing rate. At this time, if the finishing is performed by CMP using abrasive grains, conventionally, only a thickness of about 100 nm must be removed by finishing. If the finishing is performed by CMP using abrasive grains, there is always a risk of generating new latent scratches until a thickness of about 100 nm can be removed from the surface before processing. According to the present invention, the problem can be improved. As a supplement, in the description of the conventional technology, the depth at which the latent scratch exists is described as about 100 nm, but the depth at which the latent scratch remains is determined by the processing method and conditions performed up to the step before the finishing step. Depends on. Therefore, the depth at which the latent scratch is present is not always about 100 nm.
 表面仕上げ手段16は、潜傷除去手段12により潜傷が除去された被加工物の表面の仕上げ加工を行う(表面仕上げ工程)。表面仕上げ手段16は、例えば、仕上げCMPや、触媒基準エッチングなどにより実行される。表面仕上げ手段16は、主に、被加工物の仕上げ処理において、被加工物の表面を平坦化する処理を行う。表面仕上げ手段16は、潜傷除去手段12により行われる潜傷除去工程により潜傷除去処理を行った被加工物について、被加工物の表面を平坦化する処理を行う。つまり、潜傷除去手段12における潜傷除去工程は、被加工物の表面から潜傷を除去する処理が主な処理であり、表面仕上げ手段16における仕上げ処理は、被加工物の表面を平坦化する処理が主な処理である。 (4) The surface finishing means 16 performs finishing processing on the surface of the workpiece from which the latent scratch has been removed by the latent scratch removing means 12 (surface finishing step). The surface finishing means 16 is executed by, for example, finishing CMP, catalyst-based etching, or the like. The surface finishing means 16 mainly performs a process of flattening the surface of the workpiece in the finishing process of the workpiece. The surface finishing means 16 performs a process of flattening the surface of the workpiece on which the latent scratch removal processing has been performed in the latent scratch removal step performed by the latent scratch removal means 12. In other words, the latent scratch removing step in the latent scratch removing means 12 is mainly processing for removing latent scratches from the surface of the workpiece, and the finishing processing in the surface finishing means 16 is for flattening the surface of the workpiece. Is the main processing.
 仕上げCMPは、前述の機械的又は物理的表面加工手段11で用いられるCMPよりも仕上げ向けのスラリー(例えば砥粒の粒径が細かいスラリー)を用いて研磨処理が実行され、被加工物に潜傷を生じさせない範囲で行われる。そのため、仕上げCMPは、被加工物に潜傷を生じさせるリスクを従来法よりも確率的に減らせる。 In the finishing CMP, a polishing process is performed by using a slurry for finishing (for example, a slurry having fine abrasive grains) than the CMP used in the mechanical or physical surface processing means 11 described above, and the polishing is performed on the workpiece. It is performed within a range that does not cause damage. Therefore, the finish CMP can reduce the risk of causing a latent scratch on the workpiece more stochastically than the conventional method.
 触媒基準エッチングは、前述の潜傷除去手段12において用いられる処理と同様の処理であって、表面仕上げ処理にも用いることができる。触媒基準エッチングは、仕上げ処理において用いられる場合においても、研磨剤や砥粒を全く使用しない化学反応を利用しているため、被加工物の表面に潜傷を生じさせずに、被加工物の表面を平坦化加工するための仕上げ処理に用いることができる。 The catalyst-based etching is the same as the processing used in the latent scratch removing means 12 described above, and can also be used for the surface finishing processing. Catalyst-based etching, even when used in the finishing process, uses a chemical reaction that does not use any abrasives or abrasive grains, so it does not cause latent scratches on the surface of the workpiece, It can be used for finishing treatment for flattening the surface.
 第2クリーニング手段17は、表面仕上げ処理が行われた被加工物の表面をクリーニングする。第2クリーニング手段17は、メインクリーニング手段17aと、仕上げクリーニング手段17bと、を備える。第2クリーニング手段17の構成及び動作は、第1クリーニング手段13の構成及び動作と同様であるため、その説明を省略する。 {Circle around (2)} The second cleaning means 17 cleans the surface of the workpiece on which the surface finishing treatment has been performed. The second cleaning unit 17 includes a main cleaning unit 17a and a finish cleaning unit 17b. The configuration and operation of the second cleaning unit 17 are the same as the configuration and operation of the first cleaning unit 13, and a description thereof will be omitted.
 第2乾燥手段18は、第2クリーニング手段17においてクリーニングされた被加工物を乾燥させる。 The second drying unit 18 dries the workpiece cleaned by the second cleaning unit 17.
 検査手段19は、表面加工処理がされた後の被加工物の検査を行う。検査手段19は、例えば、表面加工処理がされた後の被加工物の厚みや重さを測定し、所定の基準を満たすか否かを検査する。所定の基準を満たさない場合には、例えば、欠陥品として除去され、又は、被加工物の再処理を行うように制御される。
 検査手段19により検査された被加工物は、次の工程に向けて搬送される。
The inspection means 19 inspects the workpiece after the surface processing. The inspection unit 19 measures, for example, the thickness and weight of the workpiece after the surface processing, and inspects whether or not a predetermined standard is satisfied. When the predetermined criterion is not satisfied, for example, it is controlled to be removed as a defective product or to reprocess the workpiece.
The workpiece inspected by the inspection means 19 is transported to the next step.
[光照射触媒基準エッチング装置]
 次に、図1における潜傷除去手段12及び表面仕上げ手段16において行われる触媒基準エッチングを実行可能な光照射触媒基準エッチング装置(加工装置)について説明する。例えば、触媒基準エッチング装置の第1装置例及び第2装置例について説明する。光照射触媒基準エッチング装置の第1装置例及び第2装置例は、前述の潜傷除去手段12において実行される潜傷除去工程、及び表面仕上げ手段16において実行される表面仕上げ工程を行う加工装置の一例である。
[Light irradiation catalyst-based etching equipment]
Next, a description will be given of a light irradiation catalyst-based etching apparatus (processing apparatus) capable of executing the catalyst-based etching performed in the latent scratch removing means 12 and the surface finishing means 16 in FIG. For example, a first example of a catalyst-based etching apparatus and a second example of a catalyst-based etching apparatus will be described. A first apparatus example and a second apparatus example of the light irradiation catalyst reference etching apparatus are processing apparatuses that perform a latent scratch removing step performed by the latent scratch removing unit 12 and a surface finishing step performed by the surface finishing unit 16. This is an example.
(光照射触媒基準エッチング装置の第1装置例)
 光照射触媒基準エッチングを行う光照射触媒基準エッチング装置の第1装置例について説明する。図2は、光照射触媒基準エッチング装置100の第1装置例を示す全体側面図である。図3は、光照射触媒基準エッチング装置100の第1装置例の詳細を示す縦断面図である。図4は、光照射触媒基準エッチング装置100の第1装置例の支持定盤140及び桶容器150の構成を主に示した平面図である。図5は、光照射触媒基準エッチング装置100の第1装置例の主駆動部PDの構成を示す図である。
(First Example of Light Irradiation Catalyst-Based Etching Apparatus)
A first example of a light irradiation catalyst-based etching apparatus that performs light irradiation catalyst-based etching will be described. FIG. 2 is an overall side view showing a first example of the light irradiation catalyst-based etching apparatus 100. FIG. 3 is a longitudinal sectional view showing details of a first example of the light irradiation catalyst-based etching apparatus 100. FIG. 4 is a plan view mainly showing a configuration of the support platen 140 and the tub container 150 of the first example of the light irradiation catalyst-based etching apparatus 100. FIG. 5 is a diagram showing a configuration of the main drive unit PD of the first example of the light irradiation catalyst-based etching apparatus 100.
 第1装置例における光照射触媒基準エッチング装置100は、図2~図4に示すように、基台110の左右位置に、一対の平坦加工部SP1、SP2を備えている。左右の平坦加工部SP1、SP2は、同等構造で、加工精度誤差分を除外すればほぼ同じ重量である。平坦加工部SP1について、その詳細を、図3を参照しつつ、以下に説明する。 光 The light irradiation catalyst reference etching apparatus 100 in the first apparatus example includes a pair of flat processing portions SP1 and SP2 at left and right positions of the base 110 as shown in FIGS. The left and right flat processing portions SP1 and SP2 have the same structure, and have substantially the same weight except for processing accuracy errors. The details of the flattened portion SP1 will be described below with reference to FIG.
 図3に示すように、基台110上に、対称形のL字断面とした架台121,122が平行に配設されて、図3の前後方向(図2の左右方向)へ延びている。なお、左右の平坦加工部SP1、SP2は、一体的に設けられる。そして、左右の架台121,121及び架台122,122は、それぞれ同一直線上に位置している。左右の各架台121,122上には、これらに沿って、それぞれ、案内部材であるリニアガイド130を構成するレール131が固定されている。レール131には、長手方向の2箇所に、これに沿って、摺動移動可能なスライダ132が設けられており、左右前後のスライダ132上には、第2保持手段としての四角形の支持定盤140(定盤)が載設されている。 (3) As shown in FIG. 3, pedestals 121 and 122 having a symmetrical L-shaped cross section are arranged in parallel on the base 110, and extend in the front-back direction of FIG. 3 (the left-right direction of FIG. 2). Note that the left and right flat processing portions SP1 and SP2 are provided integrally. The left and right mounts 121, 121 and the mounts 122, 122 are respectively located on the same straight line. On each of the left and right mounts 121 and 122, a rail 131 constituting a linear guide 130 as a guide member is fixed along these. The rail 131 is provided with sliders 132 slidably movable at two positions in the longitudinal direction along the rails 131. On the sliders 132 on the left, right, front and rear sides, a rectangular support surface plate as a second holding means is provided. 140 (surface plate) is mounted.
 支持定盤140は、被加工物の加工に有効な波長の光を透過させることに適さない材料により形成される。具体的には、支持定盤140は、紫外線光を透過しない材料により形成される。支持定盤140は、例えば、金属材料、紫外線に耐性を有すると共に強度を有する材料、又は、紫外線に耐性を有する表面処理が施されている材料により形成される。例えば、支持定盤140は、紫外線光を透過しないSUS(ステンレス鋼)などの金属や、紫外線光を透過しないセラミックス、紫外線光を透過しない樹脂、又は、これらの複合材料などにより形成される。表面を、紫外線光、液体又は気体に対して耐性をより持たせるために、表面は、白金族や金などの成膜やメッキ、もしくは、テフロン(登録商標)コートなど耐性のある膜によって表面処理されていてもよい。そのため、支持定盤140は、紫外線光を透過するために石英などで全部が形成されるよりも、強度が高く確保されている。支持定盤140は、クリーンルームでの使用が良好でかつ紫外線に耐性のある、SUS304やSUS316などで形成されることがより好ましい。また、支持定盤140は、90度以下の水成分又は酸素成分に耐性を有することが好ましい。水成分の温度は、被加工物によっては75度以下でもよい。例えば、被加工物がSiCである場合に、水成分の温度が60度を超えたあたりから70度ぐらいになると、加工レートが臨界的に向上する。被加工物がSiCである場合は、少なくとも73度以上の水成分に耐性があればよい。 (4) The support platen 140 is formed of a material that is not suitable for transmitting light having a wavelength effective for processing a workpiece. Specifically, the support surface plate 140 is formed of a material that does not transmit ultraviolet light. The support surface plate 140 is made of, for example, a metal material, a material having resistance to ultraviolet light and having strength, or a material which has been subjected to a surface treatment resistant to ultraviolet light. For example, the support surface plate 140 is formed of a metal such as SUS (stainless steel) that does not transmit ultraviolet light, a ceramic that does not transmit ultraviolet light, a resin that does not transmit ultraviolet light, or a composite material thereof. In order to make the surface more resistant to ultraviolet light, liquid or gas, the surface is surface-treated with a film formed or plated of platinum group or gold, or a resistant film such as Teflon (registered trademark) coat. It may be. Therefore, the strength of the support platen 140 is ensured as compared to the case where the support platen 140 is entirely made of quartz or the like for transmitting ultraviolet light. The support platen 140 is more preferably formed of SUS304, SUS316, or the like, which is good for use in a clean room and resistant to ultraviolet rays. Further, it is preferable that the support platen 140 has resistance to a water component or an oxygen component of 90 degrees or less. The temperature of the water component may be 75 degrees or less depending on the workpiece. For example, in the case where the workpiece is SiC, when the temperature of the water component exceeds about 60 degrees to about 70 degrees, the processing rate is critically improved. When the workpiece is SiC, it is sufficient that the workpiece is resistant to a water component of at least 73 degrees.
 支持定盤140は、UVランプ125から出射された紫外線光が通過する複数のスリット溝141(定盤側貫通開口)を有する。複数のスリット溝141は、後述する駆動モータ182により移動される支持定盤140の移動方向(レール131が延びる方向)に直交する幅方向に延び、かつ、支持定盤140の移動方向(レール131が延びる方向)に並んで配置される。複数のスリット溝141は、支持定盤140の下方に配置されるUVランプ125(後述)からの紫外線光が透過する位置に形成され、触媒基準エッチングの加工動作の際にUVランプ125(後述)からの紫外線光が透過する位置に形成される。 The supporting platen 140 has a plurality of slit grooves 141 (platen-side through-opening) through which ultraviolet light emitted from the UV lamp 125 passes. The plurality of slit grooves 141 extend in the width direction orthogonal to the moving direction of the support surface plate 140 (the direction in which the rail 131 extends) moved by the drive motor 182 described later, and move in the movement direction of the support surface plate 140 (the rail 131). (Extending direction). The plurality of slit grooves 141 are formed at positions where ultraviolet light from a UV lamp 125 (described later) disposed below the support surface plate 140 is transmitted. It is formed at a position where the ultraviolet light from the substrate is transmitted.
 支持定盤140は、レール131に沿って往復直線移動が可能である。なお、架台121,122は、L字断面以外に、フラットバーなど、レールを載せる面が出ているものであればよい。基台110と架台121,122とは一体でもよい。基台110と架台121,122とが一体である場合のメリットは、基台110と架台121,122との面精度を出す切削加工の際などに、基台110と架台121,122とが別体である場合よりも、歪みにくい点である。また、支持定盤140を案内する案内部材は、上記構造に限られるものではなく、例えば、ガイド軸を包持して、これに沿って摺動するようなものでもよい。支持定盤140は、特に四角形である必要は無い。 The support surface plate 140 can reciprocate linearly along the rail 131. In addition, the mounts 121 and 122 need only have a surface on which the rail is mounted, such as a flat bar, in addition to the L-shaped cross section. The base 110 and the frames 121 and 122 may be integrated. When the base 110 is integrated with the mounts 121 and 122, the merit is that the base 110 and the mounts 121 and 122 are separate from each other, for example, during a cutting process that increases the surface accuracy between the base 110 and the mounts 121 and 122. It is a point that is less likely to be distorted than when it is a body. Further, the guide member for guiding the support surface plate 140 is not limited to the above-described structure, and may be, for example, one that holds a guide shaft and slides along the guide shaft. The support platen 140 does not need to be particularly rectangular.
 支持定盤140の下方には、光照射触媒基準エッチングに用いられると共に紫外線光を出射するUVランプ125(紫外線照射部)が配置されている。UVランプ125は、被加工物の加工に有効な波長の紫外線光を出射する。例えば、UVランプ125は、紫外光波長の光を照射するLEDランプにより構成される。UVランプ125は、紫外線光を出射する低圧水銀UVランプ、高圧水銀ランプ、メタルハライドランプ、エキシマランプ、LEDランプ少なくとものいずれかにより構成されていてもよい。UVランプ125がLEDランプの場合は、支持定盤140の上方から触媒パッド155までの間、より好ましくは桶容器150から触媒パッド155までの間にLEDランプを設けてもよい。支持定盤140の上方から触媒パッド155までの間にLEDランプを設ける場合、UVランプ125であるLEDからの発熱を、前述の潜傷除去工程や表面仕上工程に用いることができる。また、例えば、UVランプ125であるLEDからの発熱を、潜傷除去工程又は表面仕上工程において触媒基準エッチングにより加工を行う場合には、触媒基準エッチング加工に必要な熱として用いることができる。具体的には、被加工物Wの表面に向けて紫外線を出力するUVランプ125である紫外線発光用LEDの発熱は、加工溶液に放散されて当該加工溶液が加温されると同時にLEDが冷却されるように構成してもよい。
 支持定盤140の上面中心部には、気体や液貯留用の桶容器150(桶部)が載設されている。桶容器150は、支持定盤140に対して着脱可能である。本実施形態においては、桶容器150は、上方が開放されて形成される。なお、桶容器150は、上方が開放されていることに限定されず、上方が開放されていなくてもよい。
A UV lamp 125 (ultraviolet irradiation unit) that emits ultraviolet light and is used for light irradiation catalyst-based etching is disposed below the support surface plate 140. The UV lamp 125 emits ultraviolet light having a wavelength effective for processing a workpiece. For example, the UV lamp 125 is configured by an LED lamp that emits light having an ultraviolet wavelength. The UV lamp 125 may be configured by at least one of a low-pressure mercury UV lamp that emits ultraviolet light, a high-pressure mercury lamp, a metal halide lamp, an excimer lamp, and an LED lamp. When the UV lamp 125 is an LED lamp, an LED lamp may be provided between the support platen 140 and the catalyst pad 155, more preferably between the trough container 150 and the catalyst pad 155. When an LED lamp is provided between the support platen 140 and the catalyst pad 155, heat generated from the LED, which is the UV lamp 125, can be used in the latent scratch removing step and the surface finishing step. Further, for example, when the heat generated from the LED as the UV lamp 125 is processed by the catalyst-based etching in the latent scratch removing step or the surface finishing step, it can be used as the heat required for the catalyst-based etching processing. Specifically, the heat generated by the UV light emitting LED, which is a UV lamp 125 that outputs ultraviolet light toward the surface of the workpiece W, is dissipated into the processing solution and the processing solution is heated, and at the same time, the LED is cooled. May be configured.
At the center of the upper surface of the support surface plate 140, a tub container 150 (tub unit) for storing gas or liquid is mounted. The tub container 150 is detachable from the support platen 140. In the present embodiment, the tub container 150 is formed with the upper part opened. The tub container 150 is not limited to being open at the top, and may not be open at the top.
 桶容器150は、上方が開放されている本実施形態においては、支持定盤140の上方側に配置される底板151と、底板151の周縁から立ち上がる周壁部152と、を備えている。桶容器150は、加工溶液や気体を保持できる桶状に形成される。桶容器150は、例えば、樹脂、金属、セラミックス、又は紫外線光の透過率の低いガラス系金属酸化物などの材料により形成されている。桶容器150は、90度以下の水成分又は酸素成分に耐性を有することが好ましい。水成分の温度は、被加工物によっては75度以下でもよい。例えば、被加工物がSiCである場合に、水成分の温度が60度を超えたあたりから70度ぐらいになると、加工レートが臨界的に向上する。被加工物がSiCである場合は、少なくとも73度以上の水成分に耐性があればよい。 In the present embodiment in which the upper part is opened, the trough container 150 includes a bottom plate 151 disposed above the support platen 140 and a peripheral wall portion 152 rising from a peripheral edge of the bottom plate 151. The tub container 150 is formed in a tub shape capable of holding a processing solution or gas. The tub 150 is made of, for example, a material such as resin, metal, ceramics, or a glass-based metal oxide having a low transmittance of ultraviolet light. The tub 150 is preferably resistant to water components or oxygen components of 90 degrees or less. The temperature of the water component may be 75 degrees or less depending on the workpiece. For example, in the case where the workpiece is SiC, when the temperature of the water component exceeds about 60 degrees to about 70 degrees, the processing rate is critically improved. When the workpiece is SiC, it is sufficient that the workpiece is resistant to a water component of at least 73 degrees.
 桶容器150には、加工溶液が貯留される。本実施形態の光照射触媒基準エッチング装置100の第1装置例においては、加工溶液として、例えば硫酸ニッケル水溶液を用いることで、被加工物の加工面で加水分解を起こすと共に、電圧を印加することで、触媒パッド155(後述)にメッキを形成できる。加水分解を起こして触媒基準エッチングを行う場合には、被加工物の加工面と触媒との間に加工溶液を介在させた状態で、加工溶液に浸漬させた触媒に被加工物を接触させながら相対運動させることで、被加工物の加工面で加水分解反応により分解生成物を生成する。そして、分解生成物を加工溶液中に溶出させることで、被加工物の加工面を加工する。 The processing solution is stored in the trough container 150. In the first example of the photoirradiation catalyst-based etching apparatus 100 of the present embodiment, by using, for example, an aqueous solution of nickel sulfate as the processing solution, hydrolysis is caused on the processing surface of the workpiece and voltage is applied. Thus, plating can be formed on the catalyst pad 155 (described later). When performing catalyst-based etching by causing hydrolysis, with the processing solution interposed between the processing surface of the processing object and the catalyst, while contacting the processing object with the catalyst immersed in the processing solution, The relative movement generates a decomposition product by a hydrolysis reaction on the processing surface of the workpiece. Then, the processing surface of the workpiece is processed by dissolving the decomposition product into the processing solution.
 ここで、仮に、加工溶液としてフッ化水素酸水溶液を用いた場合には、後述する紫外線透過部材157を例えば石英により構成すると、フッ化水素酸水溶液が、石英を溶かしてしまう。そのため、紫外線光を照射する光照射触媒基準エッチング装置100において、石英により構成された紫外線透過部材157を使用する場合には、加工溶液として、フッ化水素酸水溶液を用いることができない。そのため、本実施形態においては、加工溶液として、水成分を少なくとも含む液体、例えば超純水や純水、過酸化水素水、ニッケルなどの触媒として利用できる電解メッキが可能な成分を含む水溶液などの薬品耐性を満たす液体を用いている。また、気体として、酸素成分、窒素成分又はオゾン成分の少なくともいずれかを含む薬品耐性を満たす気体を使用することもできる。 Here, if a hydrofluoric acid aqueous solution is used as the processing solution, if the ultraviolet transmitting member 157 described later is made of, for example, quartz, the hydrofluoric acid aqueous solution dissolves the quartz. Therefore, in the case of using the ultraviolet transmitting member 157 made of quartz in the light irradiation catalyst reference etching apparatus 100 that irradiates ultraviolet light, a hydrofluoric acid aqueous solution cannot be used as a processing solution. Therefore, in the present embodiment, as a processing solution, a liquid containing at least a water component, for example, ultrapure water or pure water, aqueous hydrogen peroxide, an aqueous solution containing a component such as nickel, which can be used as a catalyst and capable of electrolytic plating, and the like. A liquid that satisfies chemical resistance is used. Further, as the gas, a gas satisfying chemical resistance containing at least one of an oxygen component, a nitrogen component and an ozone component can be used.
 なお、フッ化水素酸水溶液はサファイアガラスを溶かさないため、紫外線透過部材157を、例えば、サファイアガラスで構成することで、加工溶液として、フッ化水素酸水溶液を用いてもよい。ただし、紫外線透過部材157をサファイアガラスにより構成した場合には、光源として、サファイアガラスを透過可能で且つ被加工物の加工に有効な波長の光を出射可能な光源を選択する必要がある。特にフッ化水素を使用する場合は、人体に有毒なガスが発生するため、スクラバーなどでガスを除去して無毒化する必要がある。 Since the aqueous solution of hydrofluoric acid does not dissolve sapphire glass, an aqueous solution of hydrofluoric acid may be used as a processing solution by forming the ultraviolet transmitting member 157 with, for example, sapphire glass. However, when the ultraviolet transmitting member 157 is made of sapphire glass, it is necessary to select a light source that can transmit sapphire glass and emit light having a wavelength effective for processing a workpiece as a light source. In particular, when hydrogen fluoride is used, a toxic gas is generated in the human body. Therefore, it is necessary to remove the gas with a scrubber or the like to detoxify the gas.
 桶容器150は、支持定盤140上部に配置される。そのため、桶容器150は、支持定盤140が移動方向M(レール131が延びる方向)に移動することで、移動方向Mに移動可能である。桶容器150は、図4に示すように、桶容器150の下端部における移動方向(レール131が延びる方向)Mに直交する幅方向Wの両側において、一対の位置決め部材153,153により位置決めされた状態で、支持定盤140に取り付けられている。一対の位置決め部材153,153は、桶容器150の幅方向Wの長さに対応して幅方向Wに離間して配置される。一対の位置決め部材153,153は、平坦加工部SP1,SP2の移動方向(レール131が延びる方向)Mに所定長さ延びる位置決め本体部153aと、平坦加工部SP1,SP2の移動方向(レール131が延びる方向)Mの両端部において内側に延びる位置決め延在部153bと、を有する。一対の位置決め部材153,153は、位置決め本体部153aにより桶容器150の幅方向Wの移動を規制し、かつ、位置決め延在部153bにより桶容器150における平坦加工部SP1,SP2の移動方向(レール131が延びる方向)Mへの移動を規制した状態で、支持定盤140の上面に固定されている。また、位置決め部材153は、一般的なクランプ機構でもよい。 The vat container 150 is disposed above the support platen 140. Therefore, the tub container 150 can be moved in the movement direction M by moving the support surface plate 140 in the movement direction M (the direction in which the rail 131 extends). As shown in FIG. 4, the tub container 150 is positioned by a pair of positioning members 153 and 153 on both sides in the width direction W orthogonal to the moving direction (direction in which the rail 131 extends) M at the lower end of the tub container 150. In this state, it is attached to the support platen 140. The pair of positioning members 153 and 153 are spaced apart in the width direction W corresponding to the length of the tub container 150 in the width direction W. The pair of positioning members 153 and 153 include a positioning main body 153a extending a predetermined length in the moving direction M (direction in which the rail 131 extends) M of the flat processing portions SP1 and SP2, and a moving direction of the flat processing portions SP1 and SP2 (the rail 131 (Extending direction) M, a positioning extension 153b extending inward at both ends. The pair of positioning members 153, 153 regulate the movement of the tub container 150 in the width direction W by the positioning main body 153a, and the moving direction (rail) of the flattened portions SP1, SP2 in the tub container 150 by the positioning extension 153b. It is fixed to the upper surface of the support surface plate 140 in a state where the movement in the direction (M in which the 131 extends) is restricted. The positioning member 153 may be a general clamp mechanism.
 底板151には、図4に示すように、紫外線光が通過する複数のスリット溝151a(底板側貫通開口)が形成される。桶容器150に形成される複数のスリット溝151aは、支持定盤140に形成される複数のスリット溝141に対応した位置に設けられる。また、支持定盤140は、UVランプ125からの紫外線光を透過させない部分を有し、紫外線光を透過させたくない部分への紫外線光照射を防いで、桶容器150などの劣化を最小限に抑制する。 As shown in FIG. 4, a plurality of slit grooves 151a (bottom plate side through openings) through which ultraviolet light passes are formed in the bottom plate 151. The plurality of slit grooves 151 a formed in the tub container 150 are provided at positions corresponding to the plurality of slit grooves 141 formed in the support surface plate 140. In addition, the support surface plate 140 has a portion that does not transmit ultraviolet light from the UV lamp 125, and prevents irradiation of ultraviolet light to a portion that does not want to transmit ultraviolet light, thereby minimizing deterioration of the tub container 150 and the like. Suppress.
 桶容器150にある底板151の下方側には、図3に示すように、紫外線透過部材157が取り付けられている。紫外線透過部材157は、支持定盤140の下方に配置されるUVランプ125からの紫外線光を透過可能な透過部材である。本実施形態では、紫外線透過部材157は、例えば、石英により構成される。 As shown in FIG. 3, an ultraviolet transmitting member 157 is attached to the lower side of the bottom plate 151 in the trough container 150. The ultraviolet transmitting member 157 is a transmitting member that can transmit ultraviolet light from the UV lamp 125 disposed below the support platen 140. In the present embodiment, the ultraviolet transmitting member 157 is made of, for example, quartz.
 紫外線透過部材157は、桶容器150にある底板151に形成される複数のスリット溝151a(底板側貫通開口)を塞ぐように桶容器150にある底板151の下面に取り付けられる。紫外線透過部材157は、桶容器150にある底板151の下方側に配置された状態で、紫外線透過部材157の周縁部が、止水処理部157aにおいて止水処理が施されている。つまり、紫外線透過部材157は、止水処理部157aにおいて底板151に止水処理が施された状態で取り付けられている。 The ultraviolet transmitting member 157 is attached to the lower surface of the bottom plate 151 of the tub container 150 so as to close the plurality of slit grooves 151a (bottom plate side through opening) formed in the bottom plate 151 of the tub container 150. In a state where the ultraviolet transmitting member 157 is disposed below the bottom plate 151 in the tub 150, the periphery of the ultraviolet transmitting member 157 is subjected to a water stopping process in a water stopping section 157a. That is, the ultraviolet transmitting member 157 is attached to the bottom plate 151 in the water stop processing section 157a in a state where the water stop processing is performed.
 ここで、止水処理部157aの配置に関して、支持定盤140に形成される複数のスリット溝141は、紫外線透過部材157における止水処理部157aに対応しない部分に設けられる。これにより、止水処理部157aは、UVランプ125からの紫外線光が届かない位置に配置される。よって、止水処理部157aにおいて、UVランプ125から照射される紫外線光による劣化を生じさせることを抑制できる。 Here, regarding the arrangement of the water stopping section 157a, the plurality of slit grooves 141 formed in the support platen 140 are provided in portions of the ultraviolet transmitting member 157 that do not correspond to the water stopping section 157a. As a result, the water stop processing unit 157a is arranged at a position where the ultraviolet light from the UV lamp 125 does not reach. Therefore, it is possible to prevent the water stoppage processing unit 157a from being deteriorated by the ultraviolet light emitted from the UV lamp 125.
 桶容器150の底板151には、図3に示すように、表面全面に、触媒層がスパッタリング等によって所定厚さで形成されたパッド部の一例として触媒パッド155が設けられている。触媒パッド155は、被加工物Wの表面を触媒基準エッチングによって平坦化するための触媒層を有する。触媒パッド155は、桶容器150における底板151の上方側に配置される。触媒パッド155には、複数のスリット溝155aが形成されている。触媒パッド155に形成される複数のスリット溝155aは、桶容器150に形成される複数のスリット溝151a及び支持定盤140に形成される複数のスリット溝141に対応した位置に設けられる。つまり、桶容器150に形成される複数のスリット溝151a、支持定盤140に形成される複数のスリット溝141及び触媒パッド155に形成される複数のスリット溝155aは、上下方向に連続して貫通しており、UVランプ125からの紫外線光を透過可能に構成されている。触媒パッド155は、90度以下の水成分又は酸素成分に耐性を有することが好ましい。スリット溝155aは、寸法やピッチなど全てが同一で貫通している必要はなく、また、連続に設けられていなくてよい。また、スリット溝155aは、孔などでもよい。例えば、支持定盤140の取り外しが困難な場合などには、被加工物の形状により、加工動作に応じて、触媒パッド155に形成される複数のスリット溝155aを、貫通穴寸法や貫通穴間のピッチなどを最適化して、寸法やピッチなどを調整した複数のスリット溝141を設けた支持定盤140に取り付けて使用してもよい。例えば、一部だけ紫外線(UV)を透過させたい場合は、触媒パッド155に形成されるスリット溝155aの貫通穴を最適化して構成してもよい。また、桶容器150に形成される複数のスリット溝151aも同様である。 As shown in FIG. 3, a catalyst pad 155 is provided on the entire surface of the bottom plate 151 of the trough container 150 as an example of a pad portion in which a catalyst layer is formed to a predetermined thickness by sputtering or the like. The catalyst pad 155 has a catalyst layer for flattening the surface of the workpiece W by catalyst-based etching. The catalyst pad 155 is arranged above the bottom plate 151 in the tub 150. A plurality of slit grooves 155a are formed in the catalyst pad 155. The plurality of slit grooves 155 a formed in the catalyst pad 155 are provided at positions corresponding to the plurality of slit grooves 151 a formed in the tub container 150 and the plurality of slit grooves 141 formed in the support platen 140. That is, the plurality of slit grooves 151a formed in the tub container 150, the plurality of slit grooves 141 formed in the support platen 140, and the plurality of slit grooves 155a formed in the catalyst pad 155 continuously penetrate vertically. It is configured to be able to transmit ultraviolet light from the UV lamp 125. The catalyst pad 155 preferably has resistance to a water component or an oxygen component of 90 degrees or less. The slit grooves 155a do not have to be all the same in dimensions and pitch and penetrate, and need not be provided continuously. Further, the slit groove 155a may be a hole or the like. For example, when it is difficult to remove the support platen 140, the plurality of slit grooves 155a formed in the catalyst pad 155 may be formed according to the processing operation, depending on the shape of the workpiece, depending on the processing operation. May be used by being attached to a support surface plate 140 provided with a plurality of slit grooves 141 in which dimensions, pitches, etc. are adjusted. For example, when it is desired to transmit only part of the ultraviolet (UV) light, the through hole of the slit groove 155a formed in the catalyst pad 155 may be optimized. The same applies to the plurality of slit grooves 151a formed in the tub container 150.
 触媒パッド155の材料としては、加工溶液や気体に対する耐性のあるゴムや樹脂、セラミックス、ガラス、金属等を使用する。触媒としてはPt等の遷移金属を使用できる。触媒に金属を積層させる場合は、金属結合が望ましい。金属の一例として、クロム、金、白金などを挙げることができる。 (4) As the material of the catalyst pad 155, rubber, resin, ceramics, glass, metal, or the like having resistance to a processing solution or gas is used. A transition metal such as Pt can be used as the catalyst. When metal is laminated on the catalyst, metal bonding is desirable. Examples of the metal include chromium, gold, and platinum.
 桶容器150の上方には、図3に示すように、円形断面の主軸160が垂設されており、主軸160は、スリーブ161に垂直姿勢で回転可能に保持されている。主軸160は、第1駆動手段としての駆動モータ171によって回転させられる。スリーブ161は、第2駆動手段としての駆動シリンダやボールねじなどの駆動パーツ172によって昇降させられ、これに応じて主軸160は、触媒パッド155に対して遠近前後動させられる。主軸160の下端には、研磨ヘッド163が設けられている。研磨ヘッド163の下面には、被加工物Wが保持されている。研磨ヘッド163は、被加工物Wを保持可能に構成され、第1保持手段としてのホルダとしても機能する。なお、主軸160、駆動モータ171、駆動シリンダ等の駆動パーツ172は、基台110上やそれより上方に設けられている。 As shown in FIG. 3, a main shaft 160 having a circular cross section is vertically provided above the vat container 150, and the main shaft 160 is rotatably held by a sleeve 161 in a vertical posture. The main shaft 160 is rotated by a drive motor 171 as a first drive unit. The sleeve 161 is moved up and down by a drive part 172 such as a drive cylinder or a ball screw as a second drive means, and the main shaft 160 is moved forward and backward with respect to the catalyst pad 155 accordingly. At the lower end of the main shaft 160, a polishing head 163 is provided. The workpiece W is held on the lower surface of the polishing head 163. The polishing head 163 is configured to be able to hold the workpiece W, and also functions as a holder as a first holding unit. The driving parts 172 such as the main shaft 160, the driving motor 171, and the driving cylinder are provided on the base 110 or above.
 図2に示すように、左右の平坦加工部SP1、SP2の中間には、主駆動部PDが設けられている。主駆動部PDの詳細を図5に示す。主駆動部PDは、図5に示すように、基台110に垂直姿勢で設けられたブラケット板181を備えており、当該ブラケット板181上で、上下方向にのびる軸体190が軸受け部材191,192によって、回転可能に保持されている。軸体190の下端中心には、ブラケット板181に沿って、上下方向に設けられた駆動モータ182の出力軸182aが進入結合されている。 主 As shown in FIG. 2, a main drive unit PD is provided between the left and right flat processing units SP1 and SP2. FIG. 5 shows details of the main drive unit PD. As shown in FIG. 5, the main drive unit PD includes a bracket plate 181 provided on the base 110 in a vertical posture, and a shaft 190 extending vertically in the bracket plate 181 includes a bearing member 191 and a bearing member 191. By 192, it is held rotatably. An output shaft 182 a of a drive motor 182 provided in a vertical direction is inserted and coupled to the center of the lower end of the shaft body 190 along the bracket plate 181.
 上記軸体190の中間部外周には、図5に示すように、それぞれ、左右方向へ水平に延びる一対のリンク板183,184の一端部が相対回転可能に連結されている。軸体190の下側に連結されたリンク板183は、途中で上方へ屈曲して、その他端部は、連結軸183aを介して相対回転可能に平坦加工部SP1の支持定盤140に連結されている(図2参照)。一方、軸体190の上側に連結されたリンク板184は、途中で下方へ屈曲して、その他端部は、連結軸184aを介して、相対回転可能に平坦加工部SP2の支持定盤140に連結されている。ここで、平坦加工部SP1,SP2の支持定盤140の上面は、同一水平面上に位置している。 As shown in FIG. 5, one end of a pair of link plates 183 and 184 extending horizontally in the left-right direction is connected to the outer periphery of the intermediate portion of the shaft body 190 so as to be relatively rotatable. The link plate 183 connected to the lower side of the shaft body 190 is bent upward on the way, and the other end is connected to the support surface plate 140 of the flat processing portion SP1 so as to be relatively rotatable via the connection shaft 183a. (See FIG. 2). On the other hand, the link plate 184 connected to the upper side of the shaft body 190 is bent downward in the middle, and the other end of the link plate 184 is connected to the support surface plate 140 of the flat processing portion SP2 so as to be relatively rotatable via the connection shaft 184a. Are linked. Here, the upper surfaces of the support surface plates 140 of the flattened portions SP1 and SP2 are located on the same horizontal plane.
 軸体190の上記中間部は、図5の拡大図に示すように、各リンク板183,184が連結された軸部193,194の軸芯C1,C2が軸体190の軸芯C(駆動モータ182の出力軸182aの軸芯)から偏心させられている。すなわち、リンク板183が連結された軸部193とリンク板184が連結された軸部194の各軸芯C1,C2は、軸体190の軸芯Cから径方向へ同量dだけ離れて互いに180度の対称位置に位置している。 As shown in the enlarged view of FIG. 5, the intermediate portion of the shaft body 190 has the shaft cores C1 and C2 of the shaft portions 193 and 194 to which the link plates 183 and 184 are connected, respectively. It is eccentric from the output shaft 182a of the motor 182). That is, the shaft cores C1 and C2 of the shaft portion 193 to which the link plate 183 is connected and the shaft portion 194 to which the link plate 184 is connected are spaced apart from each other by the same amount d in the radial direction from the shaft center C of the shaft body 190. It is located at a 180-degree symmetric position.
 したがって、駆動モータ182によって軸体190がその軸芯Cを中心に回転させられると、軸部193,194の各軸芯C1,C2は、軸体190の軸芯C回りに旋回移動させられる。これに伴い、リンク板183,184を介して各支持定盤140は、同一直線上で互いに逆位相で距離(振幅)2dの間を往復移動させられる。この際、往復移動の一例は、2d=3mm、軸体190の回転数(支持定盤140の往復振動数)は500rpmである。なお、距離2dの値は、3mmに限定されず、例えば10mmなど任意の値であってもよい。 Therefore, when the shaft 190 is rotated around the axis C by the drive motor 182, the axes C1 and C2 of the shafts 193 and 194 are pivotally moved around the axis C of the shaft 190. Along with this, each support surface plate 140 is reciprocated between the distances (amplitudes) 2d in opposite phases on the same straight line via the link plates 183 and 184. At this time, an example of the reciprocating movement is 2d = 3 mm, and the rotation speed of the shaft 190 (the reciprocating vibration frequency of the support platen 140) is 500 rpm. The value of the distance 2d is not limited to 3 mm, and may be an arbitrary value such as 10 mm.
 このような構造の平坦加工装置で被加工物Wの下面(被加工面)の平坦加工を行う場合には、左右の支持定盤140上の桶容器150内に、触媒反応に必要な気体や液体、例えば、液体の場合には、フッ化水素(HF)や水成分や過酸化水素成分や硫酸成分の少なくともいずれかを含む液体を満たし、駆動パーツ172(図3参照)によって、被加工物Wを触媒パッド155に近接ないし当接させる。この状態で、駆動モータ182によって支持定盤140およびその上に設けた桶容器150をレール131に沿う水平方向で直線往復動させる。また、駆動モータ171(図3参照)で主軸160を回転することにより、被加工物Wを回転させてもよい。 When flattening the lower surface (working surface) of the workpiece W with the flattening apparatus having such a structure, the gas necessary for the catalytic reaction or the gas required for the catalytic reaction is placed in the tub 150 on the left and right support platens 140. A liquid, for example, in the case of a liquid, is filled with a liquid containing at least one of hydrogen fluoride (HF), a water component, a hydrogen peroxide component, and a sulfuric acid component, and is processed by a driving part 172 (see FIG. 3). W is brought close to or in contact with the catalyst pad 155. In this state, the support platen 140 and the tub container 150 provided thereon are linearly reciprocated in the horizontal direction along the rail 131 by the drive motor 182. Alternatively, the workpiece W may be rotated by rotating the main shaft 160 with the drive motor 171 (see FIG. 3).
 すなわち、被加工物Wの被加工面と、これが当接する触媒層を形成した触媒パッド155とを、互いを当接させ又は近接させた後に、相対往復動させる。この時、この往復移動は揺動のような平均化という副加工ではなく主な加工レートを担当する主加工の役割として用いる。これにより、被加工物Wの被加工面が触媒基準エッチング加工によって、原子レベル程度の高い精度で平坦加工される。この際、左右の平坦加工部SP1,SP2の支持定盤140は同一直線上で互いに逆位相で往復移動(振動)させられるから、互いの振動が相殺されて、基台110に対する起振力は十分に小さくなり、その振動が防止される。 {That is, the work surface of the work W and the catalyst pad 155 on which the catalyst layer in contact with the work W is brought into contact with each other or brought close to each other, and then reciprocated relative to each other. At this time, the reciprocating movement is used not as a sub-machining such as oscillating but as a main machining which is responsible for a main machining rate. As a result, the surface to be processed of the workpiece W is flattened by the catalyst-based etching with high accuracy on the order of the atomic level. At this time, the support bases 140 of the left and right flat processing parts SP1 and SP2 are reciprocated (vibrated) in opposite phases on the same straight line, so that the vibrations of each other are canceled out and the vibrating force on the base 110 is reduced. It becomes sufficiently small and its vibration is prevented.
 以上のように構成される本発明に係る光照射触媒基準エッチング装置100の第1装置例は、従来の光照射触媒基準エッチング装置と比べて以下の利点がある。
 従来、光照射触媒基準エッチング法に用いられる定盤は、紫外線照射部の光源から照射される紫外線光の透過性に優れた材料、例えば石英などを材料として形成されている。しかし、近年、より高速に光照射触媒基準エッチングの加工が進むように、出力主波長が180nm付近や250nm付近の短波長のUVランプを使用するようになった。出力主波長の変更に伴って、光透過可能な定盤部の素材も180nm付近などの短波長の光を透過可能な素材を選ぶ必要が発生し、コストが増加する傾向にある。また、短波長のUVランプを使用することで、180nm付近のUVランプの紫外線光を透過可能な石英を準備しても、光透過可能な定盤がUVランプの光によりダメージを受けることになる。そのため、定盤を交換する必要が生じて、定盤は消耗品になる可能性がある。
The first example of the light irradiation catalyst reference etching apparatus 100 according to the present invention configured as described above has the following advantages as compared with the conventional light irradiation catalyst reference etching apparatus.
2. Description of the Related Art Conventionally, a surface plate used for a light irradiation catalyst-based etching method is formed of a material having excellent transparency of ultraviolet light emitted from a light source of an ultraviolet irradiation unit, for example, quartz or the like. However, in recent years, UV lamps having a short wavelength of about 180 nm or about 250 nm have been used as the main output wavelength so that the light irradiation catalyst-based etching process can proceed at a higher speed. Along with the change of the output main wavelength, it is necessary to select a material that can transmit light of a short wavelength such as around 180 nm for the material of the surface plate portion that can transmit light, and the cost tends to increase. In addition, by using a short-wavelength UV lamp, even if quartz capable of transmitting ultraviolet light of a UV lamp near 180 nm is prepared, the light-transmittable surface plate is damaged by the light of the UV lamp. . Therefore, it is necessary to replace the platen, and the platen may become a consumable item.
 更に、近年、被加工物の大型化のニーズが発生している。一例として、被加工物のサイズが2インチから8インチへの変更に伴い、加工に使用する光透過可能な定盤を4倍に大型化する必要も生じた。今後、被加工物はより大型化していく可能性も高く、短波長の光透過可能な大面積の石英材料が必要になる。石英などの素材は短波長に対応する素材であるほど又は大面積なほど素材の価格は上昇する。また、大面積の石英などで短波長な光を透過可能な定盤とした場合には、高度な表面研磨などの加工技術や、定盤を製作する特別な治具や装置などが必要となり、コストが高くなりがちである。光透過可能な定盤は、被加工物の加工したい表面の全面に均一になるように光を透過させなければ、被加工物の平坦化加工に悪影響を及ぼすことになる。更に、被加工物の大型化に伴って、一度に触媒表面に接触する被加工物の面積も、サイズが2インチのような小さい被加工物を用いる場合に比べて、増大傾向にある。被加工物における触媒表面への接触面積の増大に伴い、被加工物の加工時の単位面積当たりの荷重を最適条件にするためには、定盤には、高荷重をかける必要も出てきた。 Furthermore, in recent years, there has been a need for larger workpieces. For example, as the size of the workpiece has changed from 2 inches to 8 inches, it has been necessary to increase the size of the light-transmittable surface plate used for processing by four times. In the future, there is a high possibility that the workpiece will be larger in size, and a large-area quartz material that can transmit short-wavelength light is required. As the material such as quartz is a material corresponding to a short wavelength or has a larger area, the price of the material increases. In the case of a surface plate that can transmit short-wavelength light with a large area of quartz, processing technology such as advanced surface polishing and special jigs and equipment for manufacturing the surface plate are required. The cost tends to be high. If the surface plate capable of transmitting light does not transmit light so as to be uniform over the entire surface of the workpiece to be processed, it will adversely affect the flattening of the workpiece. Further, as the size of the workpiece increases, the area of the workpiece that comes into contact with the catalyst surface at one time tends to increase as compared with the case where a small workpiece such as 2 inches is used. With the increase in the contact area of the workpiece with the catalyst surface, it has become necessary to apply a high load to the surface plate in order to optimize the load per unit area when processing the workpiece. .
 背景技術で説明した特開2012-64972号公報に記載の技術のように、被加工物を保持するヘッド部と、ヘッド部に比べて大きい定盤と、を備えて構成され、定盤を回転させるように構成される従来の光照射触媒基準エッチング法の場合、光透過可能な定盤を支え動力を伝える軸は、光透過可能な定盤が回転する際に光を出力するUVランプなどに接触しないように、少なくとも中央部に配置するか最外周に配置する必要があった。ところが、定盤の大型化に伴い単位面積当たりの荷重を保とうとすると、被加工物のサイズが2インチなどの小さい場合よりも、光透過可能な定盤に高荷重をかける必要が出てくる。しかも、従来よりも被加工物のサイズが大型化しているので、モーメント加重もかかりやすくなる。定盤は、厚みが従来のものと同じままで、サイズが大型化すると、例えば石英やサファイアなどを材料として形成されているため、強度が弱く、破損しやすい。そのため、定盤の厚みを破損しないように厚くする必要があり、コスト増につながっていた。また、定盤には、厚みと大きさと形状、透過させたい光の波長によっては技術的に作成できないものもある。さらに、短波長の光はパワーが減衰しやすいので、UVランプから被加工物までの距離に制限が発生する。よって、光照射触媒基準エッチング装置において、紫外線照射部からの光を被加工物の加工面まで透過しつつ、強度も確保された消耗品になりうるコストの大型化にも対応可能な光透過可能な定盤が必要であった。 As in the technique described in Japanese Patent Application Laid-Open No. 2012-64972 described in the Background Art, a head portion that holds a workpiece and a surface plate that is larger than the head portion are provided, and the surface plate is rotated. In the case of the conventional light irradiation catalyst-based etching method that is configured to allow the light transmitting platen to support and transmit power, a shaft such as a UV lamp that outputs light when the light transmitting platen rotates is used. In order to avoid contact, it was necessary to arrange at least at the center or at the outermost periphery. However, when trying to maintain a load per unit area with the increase in the size of the surface plate, it is necessary to apply a higher load to the light-transmittable surface plate than when the size of the workpiece is small, such as 2 inches. . In addition, since the size of the workpiece is larger than before, the moment load is also easily applied. When the size of the surface plate is increased while keeping the same thickness as that of the conventional one, the surface plate is made of, for example, quartz or sapphire, and thus has low strength and is easily broken. Therefore, it is necessary to increase the thickness of the platen so as not to damage the platen, leading to an increase in cost. Some surface plates cannot be technically produced depending on the thickness, size and shape, and the wavelength of light to be transmitted. Further, since the power of short-wavelength light is easily attenuated, the distance from the UV lamp to the workpiece is limited. Therefore, in the light irradiation catalyst-based etching apparatus, light from the ultraviolet irradiation part can be transmitted to the processing surface of the workpiece, and light can be transmitted, which can cope with an increase in cost that can be a consumable with sufficient strength. A good surface plate was needed.
 これに対して、本発明に係る光照射触媒基準エッチング装置100の第1装置例においては、特に大型化と荷重と短波長光に対応するために、従来の石英で形成された定盤を見直し、支持定盤140を、SUS304やSUS316などで形成することで、強度を確保すると共に厚みを維持した。また、消耗部品の削減対策として、支持定盤140を消耗部品にならない部材で構成し、支持定盤140のスリット溝141を塞ぐように、紫外線透過部材157を配置して、紫外線光を透過させるように構成した。これにより、支持定盤140を消耗部品とせずに、紫外線透過部材157を消耗部品として交換できるように構成した。このように構成される光照射触媒基準エッチング装置100は、UVランプ125により照射される紫外線光により触媒基準エッチングを促進させつつ、支持定盤140の強度を確保できる。従って、支持定盤140の上方側に配置される部材の総荷重が増大しても、支持定盤140の破損を抑制できる。 On the other hand, in the first example of the light irradiation catalyst-based etching apparatus 100 according to the present invention, the conventional platen made of quartz was reviewed in order to cope with a large size, load and short wavelength light. By forming the supporting platen 140 with SUS304, SUS316, or the like, the strength was secured and the thickness was maintained. In addition, as a measure for reducing consumable parts, the support surface plate 140 is made of a member that does not become a consumable part, and an ultraviolet transmitting member 157 is disposed so as to cover the slit groove 141 of the support surface plate 140 to transmit ultraviolet light. It was configured as follows. Thus, the support plate 140 can be replaced as a consumable component without using the support platen 140 as a consumable component. The light irradiation catalyst reference etching apparatus 100 configured as described above can secure the strength of the support base 140 while promoting the catalyst reference etching by the ultraviolet light irradiated by the UV lamp 125. Therefore, even if the total load of the members arranged above the support surface plate 140 increases, breakage of the support surface plate 140 can be suppressed.
 また、本発明に係る光照射触媒基準エッチング装置100は、上記の支持定盤140、桶容器150、紫外線透過部材157、触媒パッド155を備える。紫外線光を被加工物に透過させるために、平均化や平坦化の加工動作に合わせた光透過用の穴や開口を支持定盤140、桶容器150、触媒パッド155に加工することで、被加工物に光が当たるために必要な透過スペースを確保した。透過スペースに光透過に最適な石英などの紫外線透過部材157をはめ込むことで、加工に必要な桶容器150に貯める液体やガスが、加工エリアからUVランプなどのエリアに流れ込まないように構成できる。 The light irradiation catalyst-based etching apparatus 100 according to the present invention includes the above-described support platen 140, tub container 150, ultraviolet transmitting member 157, and catalyst pad 155. In order to transmit the ultraviolet light to the workpiece, holes and openings for light transmission according to the averaging and flattening processing operations are formed in the support platen 140, the tub container 150, and the catalyst pad 155, so that the processing is performed. The transmission space necessary for the light to hit the workpiece was secured. By fitting an ultraviolet transmitting member 157 such as quartz, which is optimal for light transmission, into the transmission space, it is possible to prevent the liquid or gas stored in the tub 150 required for processing from flowing into the area such as the UV lamp from the processing area.
 また、本発明に係る光照射触媒基準エッチング装置100においては、紫外線透過部材157は、コストや、加工で使用する薬液や気体と透過したい波長光などを考慮して、最適なものを選定した。例えば、量産工程で流れている石英基板を使用して構成した。光透過が保障された半導体グレードの石英基板であれば、クリーンルームでも使用でき、光透過の品質も安定している。専用の紫外線透過部材を作成するよりも安価に手に入る。平坦度なども安定している。更に石英基板は300mmなど大口径にも対応している。紫外線透過部材157で使用される石英は短波長のUV光の使用により劣化するが、石英基板は安価であるため、安価に交換可能である。透過部は透過する波長光と薬液やガスの相性によってはサファイアで形成された基板なども使用可能である。石英などの基板を紫外線透過部材157に使用することは基板自体が1mmなど薄いため破損しやすいが、本発明は支持定盤140で荷重を受け止めることで、紫外線透過部材157が破損しないようにしている。また、桶容器150を、加工で使用する液体や気体に耐性のある材質で構成している。 In addition, in the light irradiation catalyst-based etching apparatus 100 according to the present invention, the most suitable ultraviolet transmitting member 157 was selected in consideration of cost, chemical solution or gas used in processing, and light of a desired wavelength. For example, it was configured using a quartz substrate flowing in a mass production process. A semiconductor-grade quartz substrate that guarantees light transmission can be used in a clean room and has a stable light transmission quality. It can be obtained at a lower cost than creating a dedicated UV transmitting member. The flatness is stable. Further, the quartz substrate is compatible with large diameters such as 300 mm. Quartz used in the ultraviolet transmitting member 157 is deteriorated by use of short-wavelength UV light. However, since the quartz substrate is inexpensive, it can be replaced at low cost. A substrate formed of sapphire or the like can be used for the transmitting portion depending on the compatibility between the transmitted wavelength light and the chemical or gas. The use of a substrate made of quartz or the like for the ultraviolet transmitting member 157 is apt to be broken because the substrate itself is thin, such as 1 mm, but the present invention receives the load on the support platen 140 so that the ultraviolet transmitting member 157 is not damaged. I have. Further, the tub container 150 is made of a material that is resistant to liquids and gases used in processing.
 また、本発明に係る光照射触媒基準エッチング装置100の第1装置例においては、電気を援用した触媒基準エッチングも併せて行う。光照射触媒基準エッチング装置100の第1装置例において、電気的作用により加工を行う場合に用いられる各電極に係る構成について説明する。光照射触媒基準エッチング装置100には、メッキ形成用の電極や、電解研磨用の電極や、UV電気用の電極などが配置されている。図6は、光照射触媒基準エッチング装置の第1装置例において、各電極部を示す図である。 In addition, in the first example of the light irradiation catalyst reference etching apparatus 100 according to the present invention, the catalyst reference etching using electricity is also performed. In the first example of the light irradiation catalyst-based etching apparatus 100, a configuration relating to each electrode used when processing is performed by an electric action will be described. In the light irradiation catalyst reference etching apparatus 100, an electrode for plating, an electrode for electrolytic polishing, an electrode for UV electricity, and the like are arranged. FIG. 6 is a diagram showing each electrode unit in the first example of the light irradiation catalyst-based etching apparatus.
 図6に示すように、研磨ヘッド163には、紫外線(UV)を照射する際に用いるヘッド側直流電圧電源通電部165と、メッキや電解研磨の際に用いるヘッド側補助電極164aと、が設けられる。桶容器150には、参照電極103と、通電部101と、が設けられる。 As shown in FIG. 6, the polishing head 163 is provided with a head-side DC voltage power supply section 165 used when irradiating ultraviolet rays (UV), and a head-side auxiliary electrode 164a used during plating or electrolytic polishing. Can be The tub container 150 is provided with the reference electrode 103 and the conducting part 101.
 桶容器150の内部において、触媒パッド155は、通電部101を構成するワッシャが触媒パッド155の表面に当接した状態で、絶縁性のポリカねじ102により、桶容器150の底板151に固定されている。触媒パッド155の表面は、通電部101からの電気により、作用電極155bとなる。桶容器150側においては、桶容器150に加工溶液が貯留されているため、触媒パッド155の表面である作用電極155bとヘッド側補助電極164aと参照電極103との間に電力が供給されることで、作用電極155bへメッキを形成することと、電解研磨をすることと、が可能となる。これにより、触媒表面の触媒活性状態を維持することが可能となる。よって、触媒パッド155の表面には、例えば、電解メッキからなるニッケル触媒層を形成しやすくなる。 Inside the vat container 150, the catalyst pad 155 is fixed to the bottom plate 151 of the vat container 150 by an insulating polycarbonate screw 102 in a state where a washer constituting the energizing unit 101 is in contact with the surface of the catalyst pad 155. I have. The surface of the catalyst pad 155 becomes a working electrode 155b by the electricity from the current supply unit 101. On the tub container 150 side, since the processing solution is stored in the tub container 150, power is supplied between the working electrode 155b, the head-side auxiliary electrode 164a, and the reference electrode 103, which are the surfaces of the catalyst pad 155. Thus, it is possible to form plating on the working electrode 155b and to perform electrolytic polishing. This makes it possible to maintain the catalytic activity on the catalyst surface. Therefore, it is easy to form, for example, a nickel catalyst layer made of electrolytic plating on the surface of the catalyst pad 155.
 研磨ヘッド163において、研磨ヘッド163を桶容器150に貯留された加工溶液に入れた状態で、ヘッド側補助電極164aと触媒パッド155の表面である作用電極155bとの間に電流が流れることで、触媒面に電解研磨やメッキをすることができる。その結果、触媒表面の触媒活性状態が維持されて再生可能となることで、触媒と被加工物Wとの接触面における触媒基準エッチングの加工の持続性が向上する。 In the polishing head 163, a current flows between the head-side auxiliary electrode 164a and the working electrode 155b that is the surface of the catalyst pad 155 in a state where the polishing head 163 is placed in the processing solution stored in the tub container 150, Electropolishing and plating can be performed on the catalyst surface. As a result, the catalytic activity on the catalyst surface is maintained and the catalyst can be regenerated, so that the sustainability of the catalyst-based etching on the contact surface between the catalyst and the workpiece W is improved.
 例えば、紫外線(UV)の場合は、研磨ヘッド163の被加工物保持部166に直流電圧電源(+)を通電するヘッド側直流電圧電源通電部165を設け、ヘッド側直流電圧電源通電部165の下方に光照射触媒基準エッチング法で加工可能な被加工物W(一例として、基板、エピタキシャル成長膜や成膜面、化合物、3元混晶、4元混晶、InやAlやSiやCやGaやNやOやZnやFの成分のいずれかを少なくとも含む被加工物、SiCやGaNや酸化ガリウムやダイヤモンドやアルミニウムガリウムナイトライドなどの被加工物)を取り付ける。そして、被加工物Wの下方に光照射触媒基準エッチング法で使用する通電可能な液体や気体を配置し、液体や気体の下に被加工物Wが当接する触媒パッド155を配置する。触媒パッド155の下方から紫外線透過部材157の間に陰極を設ける。陰極は、例えば、被加工物の加工に必要な紫外線(UV)などの光に耐性のある白金などを使用し、もしくは、白金や金などがメッキされたものを使用する。陰極の線のサイズは、径の大きさが例えばφ1~φ0.3mm等で線が断線せずに且つ加工に必要な紫外線(UV)などの光も透過できるサイズであれば、特に制限されない。陰極は、配線パターンのように数μmの薄い膜などで作られていてもよい。触媒パッド155の1又は複数のスリット溝155aの大きさに合わせて、陰極の線や膜を適宜選定できる。陰極には直流電圧電源(-)が電気的に接続されればよい。ヘッド側直流電圧電源通電部165は、加工で使用する光や液体や気体に耐性があり電気の抵抗値が低ければ、特にパーツに制約はない。使用する具体的なバイアス電圧は、被加工物WがSiCの場合、2V~十数Vである。被加工物W自体にも抵抗がある場合、理想的には、被加工物Wの裏面の全面に電極を接触させるようにする。被加工物W自体に抵抗がある場合、電極から離れた加工表面で、正味のバイアス電圧が低下し、加工速度が遅くなるためである。 For example, in the case of ultraviolet (UV) light, a head side DC voltage power supply section 165 for supplying a DC voltage power supply (+) is provided in the workpiece holding section 166 of the polishing head 163. An object to be processed W (e.g., a substrate, an epitaxially grown film or a film-formed surface, a compound, a ternary mixed crystal, a quaternary mixed crystal, In, Al, Si, C, Ga, , N, O, Zn, or a component containing at least one of Zn and F, and a workpiece such as SiC, GaN, gallium oxide, diamond, or aluminum gallium nitride. Then, an energizable liquid or gas used in the light irradiation catalyst reference etching method is arranged below the workpiece W, and a catalyst pad 155 with which the workpiece W abuts is arranged below the liquid or gas. A cathode is provided between the ultraviolet transmitting members 157 from below the catalyst pad 155. As the cathode, for example, platinum or the like that is resistant to light such as ultraviolet light (UV) necessary for processing a workpiece, or a cathode plated with platinum or gold is used. The size of the cathode line is not particularly limited as long as the diameter is, for example, φ1 to φ0.3 mm and the line is not broken and can transmit light such as ultraviolet (UV) light required for processing. The cathode may be made of a thin film of several μm or the like like a wiring pattern. According to the size of one or a plurality of slit grooves 155a of the catalyst pad 155, a cathode line or a membrane can be appropriately selected. A DC voltage power supply (-) may be electrically connected to the cathode. The head-side DC voltage power supply unit 165 is not particularly limited in parts as long as it is resistant to light, liquid, and gas used in processing and has a low electric resistance value. The specific bias voltage to be used is 2 V to several tens V when the workpiece W is SiC. When the workpiece W itself has resistance, the electrode is ideally brought into contact with the entire back surface of the workpiece W. This is because, when the workpiece W itself has a resistance, the net bias voltage decreases on the processing surface remote from the electrode, and the processing speed decreases.
 また、本発明では、被加工物Wの表面の酸化の速度が律速である。「加工したい表面の平坦加工速度≧電気的作用又は光照射による加工したい表面の酸化の速度」という関係を満たすような条件下で光照射触媒基準エッチング法の加工を行うのが好ましい。仕上げは、光照射触媒基準エッチング法で使用する紫外線などの被加工物の加工に有効な光を遮断、退避もしくはオフ後、被加工物Wの表面において、光で焼けた表層を触媒基準エッチング法などの仕上げ加工で除去することが好ましい。 In the present invention, the rate of oxidation of the surface of the workpiece W is rate-limiting. It is preferable to perform the light irradiation catalyst-based etching method under a condition that satisfies the relationship “the flat processing speed of the surface to be processed ≧ the oxidation speed of the surface to be processed by electric action or light irradiation”. Finishing is performed by blocking, retreating or turning off light effective for processing of the workpiece such as ultraviolet light used in the light irradiation catalyst-based etching method, and then, on the surface of the workpiece W, the surface layer burned by light is subjected to the catalyst-based etching method. It is preferable to remove by finishing processing such as.
 ここで、光照射触媒基準エッチング装置100の第1装置例のように、小さな振幅で往復移動させる構成の場合には、可動範囲が狭いため、随時加工しながらメッキや電解研磨をするには、図6に示すように、研磨ヘッド163にヘッド側補助電極164aを取り付けた構造にしないと、支持定盤140側が大揺動で移動している間に、加工溶液中の研磨ヘッド163を避けるようにして、補助電極(図示せず)を液に出し入れして、メッキや電解研磨をしなければならず、装置構成として難しい。これに対して、図6に示すように、研磨ヘッド163のヘッド側補助電極164aに補助電極を備えることで、支持定盤140の大揺動による進行とともに、被加工物の加工部を中心にメッキや電解研磨を行える。メッキや電解研磨のいずれかをする際は、被加工物と触媒パッドを接触させながらする方式と、触媒パッドの触媒面からの高さを調節してメッキや電解研磨をする方式とが考えられる。研磨ヘッド163にあるヘッド側補助電極164aを用いたメッキや電解研磨時には、平均化動作を行いながらメッキをすることで、均一なメッキを得ることができる。ヘッド側補助電極164a(メッキや電解研磨用)の形状を、外周部においてテーパ形状に形成したり、反応を阻害する気体を逃がしたり、反応に必要な流体を攪拌する溝をつけたり、研磨ヘッドの回転速度を上げたりすることで、触媒パッドの触媒面へのメッキや電解研磨時に発生する酸素や水素を補助電極部の外周方向へ飛ばしながらメッキや電解研磨を行える。尚、被加工物Wの表面よりも触媒層表面の面積を小さくすれば、小さな触媒パッド155の被加工物W表面に対する位置と滞在時間を制御して、被加工物W表面の局所加工量を制御することができる。つまり、数値制御による局所加工を行うことができる。 Here, in the case of a configuration in which reciprocation is performed with a small amplitude as in the first apparatus example of the light irradiation catalyst-based etching apparatus 100, the movable range is narrow. As shown in FIG. 6, unless the polishing head 163 is provided with a head-side auxiliary electrode 164a, the polishing head 163 in the processing solution should be avoided while the support platen 140 moves with a large swing. Then, an auxiliary electrode (not shown) must be taken in and out of the solution, and plating and electrolytic polishing must be performed, which is difficult as an apparatus configuration. On the other hand, as shown in FIG. 6, the auxiliary electrode is provided on the head-side auxiliary electrode 164a of the polishing head 163. Plating and electrolytic polishing can be performed. When performing either plating or electrolytic polishing, a method in which the workpiece and the catalyst pad are brought into contact with each other and a method in which the height of the catalyst pad from the catalyst surface is adjusted to perform plating or electrolytic polishing can be considered. . At the time of plating or electrolytic polishing using the head-side auxiliary electrode 164a of the polishing head 163, uniform plating can be obtained by performing plating while performing an averaging operation. The shape of the head-side auxiliary electrode 164a (for plating or electrolytic polishing) is formed in a tapered shape at the outer peripheral portion, a gas that inhibits the reaction is released, a groove for stirring a fluid necessary for the reaction is provided, and a polishing head is formed. By increasing the rotation speed, plating or electropolishing can be performed while oxygen or hydrogen generated at the time of plating or electropolishing on the catalyst surface of the catalyst pad is directed toward the outer periphery of the auxiliary electrode portion. If the area of the surface of the catalyst layer is made smaller than the surface of the workpiece W, the position and residence time of the small catalyst pad 155 with respect to the surface of the workpiece W are controlled to reduce the local processing amount on the surface of the workpiece W. Can be controlled. That is, local processing by numerical control can be performed.
(光照射触媒基準エッチング装置の第2装置例)
 光照射触媒基準エッチング装置の第2装置例について説明する。図7は、光照射触媒基準エッチング装置200の第2装置例を示す斜視図である。図8は、光照射触媒基準エッチング装置200の第2装置例を下方側から見た斜視図である。図9は、光照射触媒基準エッチング装置200の第2装置例の支持定盤210及び桶容器220の構成を主に示した部分断面図である。
(Example of Second Device of Light Irradiation Catalyst-Based Etching Device)
A second example of the light irradiation catalyst-based etching apparatus will be described. FIG. 7 is a perspective view illustrating a second example of the light irradiation catalyst-based etching apparatus 200. FIG. 8 is a perspective view of a second example of the light irradiation catalyst-based etching apparatus 200 as viewed from below. FIG. 9 is a partial cross-sectional view mainly showing the configurations of the support surface plate 210 and the tub container 220 of the second example of the light irradiation catalyst-based etching apparatus 200.
 第2装置例の光照射触媒基準エッチング装置200は、図7~図9に示すように、被加工物である被加工物Wと触媒パッド240の触媒層230を気体雰囲気や液体に浸漬した状態で被加工物の加工を行う構造である。光照射触媒基準エッチング装置200は、支持定盤210(定盤)と、気体や液体一例としての水201を保持する桶容器220と、少なくとも表面に触媒物質を有する触媒層230が設けられ水201に浸漬させて桶容器220内に配置される触媒パッド240と、被加工物Wを保持して水201に浸漬させ、触媒層230と接触若しくは接近させた状態で桶容器220内に配置される研磨ヘッド260と、触媒パッド240と研磨ヘッド260とを接触若しくは接近させながら相対運動させる駆動機構270と、UVランプ225(紫外線照射部)と、を備える。 As shown in FIGS. 7 to 9, the light irradiation catalyst reference etching apparatus 200 of the second apparatus example is a state in which the workpiece W as a workpiece and the catalyst layer 230 of the catalyst pad 240 are immersed in a gas atmosphere or liquid. Is a structure for processing a workpiece. The light irradiation catalyst-based etching apparatus 200 includes a support platen 210 (platen), a tub container 220 for holding water 201 as an example of gas and liquid, and a catalyst layer 230 having a catalyst substance on at least the surface thereof. The catalyst pad 240 placed in the tub container 220 and immersed in the water 201 while holding the workpiece W is placed in the tub container 220 in a state of contacting or approaching the catalyst layer 230. The polishing head 260 includes a polishing head 260, a driving mechanism 270 that moves the catalyst pad 240 and the polishing head 260 relative to each other while contacting or approaching the polishing head 260, and a UV lamp 225 (ultraviolet irradiation unit).
 被加工物の種類(例えばSiC等)によっては、紫外線光が通過する桶容器220の複数の貫通孔221a(図9参照)と触媒パッド240の複数の貫通孔241(図9参照)との間に陰極を設け、研磨ヘッド260の直流電圧電源(+)と、被加工物の裏面に配置される研磨ヘッド260を保持する被加工物保持部と、被加工物Wと、加工で用いる溶液と、紫外線光が通過する桶容器220の複数の貫通孔221aと触媒パッド240の複数の貫通孔241との間に設ける陰極と、陰極につながる直流電圧電源(-)と、を電気的に接続できる状態としてもよい。 Depending on the type of the workpiece (for example, SiC or the like), between the plurality of through holes 221a (see FIG. 9) of the tub 220 through which the ultraviolet light passes and the plurality of through holes 241 (see FIG. 9) of the catalyst pad 240. A cathode, a DC voltage power supply (+) of the polishing head 260, a workpiece holding section for holding the polishing head 260 disposed on the back surface of the workpiece, a workpiece W, and a solution used for processing. A cathode provided between the plurality of through-holes 221a of the vat container 220 through which the ultraviolet light passes and the plurality of through-holes 241 of the catalyst pad 240, and a DC voltage power supply (-) connected to the cathode can be electrically connected. It is good also as a state.
 支持定盤210は、被加工物の加工に有効な波長の光を透過させることに適さない材料により形成される。具体的には、支持定盤210は、図7及び図8に示すように、円板状に形成され、紫外線光を透過しない材料により形成される。支持定盤210は、金属材料、紫外線に耐性を有すると共に強度を有する材料、又は、紫外線に耐性を有する表面処理が施されている材料により形成される。例えば、支持定盤210は、紫外線光を透過しないSUS(ステンレス鋼)などの金属や、紫外線光を透過しないセラミックス、紫外線光を透過しない樹脂、又は、これらの複合材料などにより形成される。表面を、紫外線光、液体又は気体に対して耐性をより持たせるために、表面は、白金族や金などの成膜やメッキ、もしくは、テフロン(登録商標)コートなど耐性のある膜によって表面処理されていてもよい。そのため、支持定盤210は、紫外線光を透過するために石英などで全部が形成されるよりも、強度が高く確保されている。支持定盤210は、クリーンルームでの使用が良好でかつ紫外線の耐性のある、SUS304やSUS316などで形成されることが更により好ましい。 (4) The support platen 210 is formed of a material that is not suitable for transmitting light having a wavelength effective for processing a workpiece. Specifically, as shown in FIGS. 7 and 8, the support surface plate 210 is formed in a disk shape and is made of a material that does not transmit ultraviolet light. The support platen 210 is formed of a metal material, a material having resistance to ultraviolet light and having strength, or a material which has been subjected to a surface treatment resistant to ultraviolet light. For example, the support surface plate 210 is formed of a metal such as SUS (stainless steel) which does not transmit ultraviolet light, a ceramic which does not transmit ultraviolet light, a resin which does not transmit ultraviolet light, or a composite material thereof. In order to make the surface more resistant to ultraviolet light, liquid or gas, the surface is surface-treated with a film formed or plated of platinum group or gold, or a resistant film such as Teflon (registered trademark) coat. It may be. Therefore, the strength of the support platen 210 is ensured as compared with the case where the support platen 210 is entirely made of quartz or the like for transmitting ultraviolet light. It is even more preferable that the support platen 210 is formed of SUS304, SUS316, or the like, which is suitable for use in a clean room and resistant to ultraviolet rays.
 支持定盤210は、図8に示すように、UVランプ225から出射された紫外線光が通過する複数の貫通孔群211を有する。複数の貫通孔群211は、複数の貫通孔211a(定盤側貫通開口)により構成された外形が円形状の集合体により形成される。複数の貫通孔211aは、支持定盤210の下方に配置されるUVランプ225(後述)からの紫外線光が透過する位置に形成され、触媒基準エッチング加工動作の際にUVランプ225(後述)からの紫外線光が透過する位置に形成される。複数の貫通孔群211は、支持定盤210の中心から径方向の外方所定位置において、周方向に離間して配置される。複数の貫通孔211aは、隣接する3つの貫通孔211aを見た場合に、隣接する3つの貫通孔211aが、正三角形の頂点に位置するように配置される。貫通孔群211を構成する複数の貫通孔211aは、直径Rが例えば5mmであり、隣接する貫通孔211aの間隔Lが10mmである。 (8) The support platen 210 has a plurality of through-hole groups 211 through which the ultraviolet light emitted from the UV lamp 225 passes, as shown in FIG. The plurality of through-hole groups 211 are formed by an aggregate having a circular outer shape formed by the plurality of through-holes 211a (surface plate side through-opening). The plurality of through-holes 211a are formed at positions where ultraviolet light from a UV lamp 225 (described later) disposed below the support platen 210 is transmitted, and are provided from the UV lamp 225 (described below) during a catalyst-based etching operation. Is formed at a position through which the ultraviolet light is transmitted. The plurality of through-hole groups 211 are arranged at predetermined positions radially outward from the center of the support platen 210 and spaced apart in the circumferential direction. The plurality of through holes 211a are arranged such that the three adjacent through holes 211a are located at the vertices of an equilateral triangle when viewing the three adjacent through holes 211a. The plurality of through holes 211a constituting the through hole group 211 have a diameter R of, for example, 5 mm, and an interval L between adjacent through holes 211a is 10 mm.
 支持定盤210の下方には、触媒基準エッチングに用いられると共に紫外線光を出射するUVランプ225(紫外線照射部)が配置されている。
 支持定盤210下面の中心には、駆動機構270における下方側回転軸271の上端部が接続されている。支持定盤210は、下方側回転軸271が回転することで、回転移動可能である。
 支持定盤210の上面には、上方へ開放する円形液貯留用の桶容器220(桶部)が載設されている。桶容器220は、支持定盤210に対して着脱可能である。
Below the support platen 210, a UV lamp 225 (ultraviolet irradiation unit) that emits ultraviolet light and is used for catalyst-based etching is disposed.
The upper end of the lower rotation shaft 271 of the drive mechanism 270 is connected to the center of the lower surface of the support surface plate 210. The support platen 210 is rotatable when the lower rotation shaft 271 rotates.
On the upper surface of the support platen 210, a tub container 220 (tub unit) for storing a circular liquid that opens upward is mounted. The tub container 220 is detachable from the support platen 210.
 桶容器220は、上方が開放されており、支持定盤210の上方側に配置される。桶容器220は、紫外線光が通過する複数の貫通孔221a(底板側貫通開口)を有する円板状の底板221と、底板221の周縁から立ち上がる円筒状の周壁部222と、を備えている。桶容器220は、加工溶液や気体を保持できる桶状に形成される。桶容器220は、例えば、樹脂や、金属や、セラミックスや、紫外線光の透過率の低いガラス系金属酸化物などの材料により形成されている。桶容器220の複数の貫通孔221aは、支持定盤210に形成される複数の貫通孔211aに対応した位置に設けられる。また、支持定盤210は、UVランプ225からの紫外線光が透過させない部分を有し、紫外線光を透過させたくない部分に対する紫外線光の照射を防いで、桶容器220などの劣化を最小限に抑制する。 The vat container 220 is open at the top, and is disposed above the support platen 210. The tub container 220 includes a disc-shaped bottom plate 221 having a plurality of through holes 221a (bottom plate side through-opening) through which ultraviolet light passes, and a cylindrical peripheral wall portion 222 rising from the periphery of the bottom plate 221. The tub container 220 is formed in a tub shape capable of holding a processing solution or gas. The tub 220 is made of, for example, a material such as a resin, a metal, a ceramic, or a glass-based metal oxide having a low transmittance of ultraviolet light. The plurality of through-holes 221 a of the tub container 220 are provided at positions corresponding to the plurality of through-holes 211 a formed in the support surface plate 210. In addition, the support platen 210 has a portion through which ultraviolet light from the UV lamp 225 does not transmit, and prevents irradiation of ultraviolet light to a portion that does not want to transmit ultraviolet light, thereby minimizing deterioration of the tub container 220 and the like. Suppress.
 桶容器220における底板221の下方側には、紫外線透過部材212が取り付けられている。紫外線透過部材212は、支持定盤210の下方に配置されるUVランプ225からの紫外線光を透過可能な透過部材である。本実施形態では、紫外線透過部材212は、例えば、石英により構成される。 An ultraviolet transmitting member 212 is attached to the lower side of the bottom plate 221 of the tub container 220. The ultraviolet transmission member 212 is a transmission member that can transmit ultraviolet light from the UV lamp 225 disposed below the support platen 210. In the present embodiment, the ultraviolet transmitting member 212 is made of, for example, quartz.
 桶容器220には、加工溶液が貯留される。本実施形態の光照射触媒基準エッチング装置200の第2装置例においては、加工溶液として、例えば水を用いることで、被加工物の加工面で加水分解を起こすように構成される。加水分解を起こして触媒基準エッチングを行う場合には、被加工物の加工面と触媒との間に加工溶液を介在させた状態で、加工溶液に浸漬させた触媒に被加工物を接触させながら相対運動させることで、被加工物の加工面で加水分解反応により分解生成物を生成する。そして、分解生成物を加工溶液中に溶出させることで、被加工物の加工面を加工する。 The processing solution is stored in the vat container 220. In the second example of the light irradiation catalyst reference etching apparatus 200 of the present embodiment, for example, water is used as a processing solution, so that hydrolysis is caused on the processing surface of the workpiece. When performing catalyst-based etching by causing hydrolysis, with the processing solution interposed between the processing surface of the processing object and the catalyst, while contacting the processing object with the catalyst immersed in the processing solution, The relative movement generates a decomposition product by a hydrolysis reaction on the processing surface of the workpiece. Then, the processing surface of the workpiece is processed by dissolving the decomposition product into the processing solution.
 ここで、仮に、加工溶液としてフッ化水素酸水溶液を用いた場合には、後述する紫外線透過部材212を例えば石英により構成すると、フッ化水素酸水溶液が、石英を溶かしてしまう。そのため、紫外線光を照射する光照射触媒基準エッチング装置200において、石英により構成された紫外線透過部材212を使用する場合には、加工溶液として、フッ化水素酸水溶液を用いることができない。そのため、本実施形態においては、加工溶液として水を用いている。 Here, if a hydrofluoric acid aqueous solution is used as the processing solution, if the ultraviolet transmitting member 212 described later is made of, for example, quartz, the hydrofluoric acid aqueous solution dissolves the quartz. Therefore, in the case of using the ultraviolet transmitting member 212 made of quartz in the light irradiation catalyst reference etching apparatus 200 that irradiates ultraviolet light, a hydrofluoric acid aqueous solution cannot be used as a processing solution. Therefore, in this embodiment, water is used as the processing solution.
 なお、フッ化水素酸水溶液はサファイアガラスを溶かさないため、紫外線透過部材212を、例えば、サファイアガラスで構成することで、加工溶液として、フッ化水素酸水溶液を用いてもよい。ただし、紫外線透過部材212をサファイアガラスにより構成した場合には、サファイアガラスが石英に比べて特定の短波長の紫外線を透過しないため、短波長すぎると紫外線光には対応できない可能性が有る。そのため、透過可能な波長の光を照射するUVランプ225を使用する必要がある。 Since the aqueous solution of hydrofluoric acid does not dissolve the sapphire glass, the ultraviolet transmitting member 212 may be made of, for example, sapphire glass, and the aqueous solution of hydrofluoric acid may be used as the processing solution. However, when the ultraviolet transmitting member 212 is made of sapphire glass, sapphire glass does not transmit ultraviolet light of a specific short wavelength as compared with quartz, so that if the wavelength is too short, it may not be possible to cope with ultraviolet light. Therefore, it is necessary to use a UV lamp 225 that emits light having a wavelength that can be transmitted.
 紫外線透過部材212は、桶容器220の底板221の複数の貫通孔221a(底板側貫通開口)を塞ぐように桶容器220の底板221の下面に取り付けられる。紫外線透過部材212は、桶容器220の底板221の下方側に配置された状態で、紫外線透過部材212の周縁部は、止水処理部212aにおいて止水処理が施されている。これにより、紫外線透過部材212は、止水処理部212aにおいて底板221に止水処理が施された状態で取り付けられている。 The ultraviolet transmitting member 212 is attached to the lower surface of the bottom plate 221 of the container 220 so as to cover the plurality of through holes 221 a (the bottom plate side through-opening) of the bottom plate 221 of the container 220. In a state where the ultraviolet ray transmitting member 212 is arranged below the bottom plate 221 of the tub 220, the periphery of the ultraviolet ray transmitting member 212 is subjected to a water stopping process in a water stopping section 212a. As a result, the ultraviolet transmitting member 212 is attached to the bottom plate 221 in the water stop processing section 212a in a state where the water stop processing has been performed.
 ここで、止水処理部212aの配置に関して、支持定盤210の複数の貫通孔221aは、紫外線透過部材212における止水処理部212aに対応しない部分に設けられる。つまり、止水処理部212aは、UVランプ225からの紫外線光が届かない位置に配置される。よって、止水処理部212aにおいて、UVランプ225から照射される紫外線光による劣化を生じさせることを抑制できる。 Here, regarding the arrangement of the water stopping section 212a, the plurality of through holes 221a of the support platen 210 are provided in portions of the ultraviolet transmitting member 212 that do not correspond to the water stopping section 212a. That is, the water stop processing unit 212a is arranged at a position where the ultraviolet light from the UV lamp 225 does not reach. Therefore, it is possible to suppress the deterioration caused by the ultraviolet light emitted from the UV lamp 225 in the water stop processing unit 212a.
 桶容器220の底板221の上方側には、図9に示すように、表面全面に、触媒層230がスパッタリング等によって所定厚さで形成されたパッド部の一例としての触媒パッド240が設けられている。触媒パッド240は、被加工物Wの表面を触媒基準エッチングによって平坦化するための触媒層230を有する。触媒パッド240は、桶容器220における底板221の上方側に配置される。触媒パッド240には、複数の貫通孔241が形成されている。 As shown in FIG. 9, a catalyst pad 240 as an example of a pad portion having a catalyst layer 230 formed with a predetermined thickness by sputtering or the like is provided on the entire upper surface of the bottom plate 221 of the tub container 220, as shown in FIG. I have. The catalyst pad 240 has a catalyst layer 230 for flattening the surface of the workpiece W by catalyst-based etching. The catalyst pad 240 is disposed above the bottom plate 221 in the tub 220. A plurality of through holes 241 are formed in the catalyst pad 240.
 触媒パッド240に形成される複数の貫通孔241は、桶容器220に形成される複数の貫通孔221a及び支持定盤210に形成される複数の貫通孔211aに対応した位置に設けられる。つまり、桶容器220に形成される複数の貫通孔221a、支持定盤210に形成される複数の貫通孔211a及び触媒パッド240に形成される複数の貫通孔241は、上下方向に連続して貫通しており、UVランプ225からの紫外線光を透過可能に構成されている。触媒パッド240は、90度以下の水成分又は酸素成分に耐性を有することが好ましい。貫通孔241は、寸法やピッチなど全てが同一で貫通している必要はなく、また、連続に設けられていなくてよい。例えば、支持定盤210の取り外しが困難な場合などには、被加工物の形状により、加工動作に応じて、触媒パッド240に形成される複数の貫通孔241を、穴の寸法やピッチなどを最適化して、寸法やピッチなどを調整した複数の貫通孔211aを設けた支持定盤210に取り付けて使用してもよい。例えば、一部だけ紫外線(UV)を透過させしたい場合は、触媒パッド240の貫通孔241を最適化して構成してもよい。また、桶容器220に形成される複数の貫通孔221aも同様である。 The plurality of through holes 241 formed in the catalyst pad 240 are provided at positions corresponding to the plurality of through holes 221a formed in the tub container 220 and the plurality of through holes 211a formed in the support platen 210. That is, the plurality of through-holes 221a formed in the tub 220, the plurality of through-holes 211a formed in the support platen 210, and the plurality of through-holes 241 formed in the catalyst pad 240 continuously penetrate vertically. It is configured to be able to transmit ultraviolet light from the UV lamp 225. It is preferable that the catalyst pad 240 has resistance to a water component or an oxygen component of 90 degrees or less. The through holes 241 do not need to be all the same in size, pitch, and the like, and do not need to be continuously provided. For example, when it is difficult to remove the support surface plate 210, the plurality of through holes 241 formed in the catalyst pad 240 may be formed according to the shape of the workpiece according to the processing operation. It may be used after being optimized and attached to a support platen 210 provided with a plurality of through holes 211a whose dimensions and pitch are adjusted. For example, when it is desired to transmit only part of the ultraviolet light (UV), the through hole 241 of the catalyst pad 240 may be optimized. The same applies to the plurality of through holes 221a formed in the tub container 220.
 触媒パッド240の材料としては、加工溶液や、気体に対する耐性のあるゴムや樹脂、セラミックス、ガラス、金属等を使用する。触媒としてはPt等の遷移金属が使用できる。触媒に金属を積層させる場合は、金属結合が望ましい。金属の一例として、クロム、金、白金などを挙げることができる。ここで、桶容器220は、気体を貯留するものであっても良い。 (4) As a material of the catalyst pad 240, a rubber, resin, ceramics, glass, metal, or the like having resistance to a processing solution or gas is used. A transition metal such as Pt can be used as the catalyst. When metal is laminated on the catalyst, metal bonding is desirable. Examples of the metal include chromium, gold, and platinum. Here, the tub container 220 may store gas.
 桶容器220の上方には、図7に示すように、駆動機構270の上方側回転軸272が垂設されている。上方側回転軸272は、桶容器220の上方側において、桶容器220における底板221の中心から径方向にずれた位置に配置されている。上方側回転軸272は、図10に示すように、スリーブ261に対して垂直姿勢で回転可能に保持されている。上方側回転軸272は、第1駆動手段としての駆動モータ273によって回転させられる。スリーブ261は、第2駆動手段としての駆動シリンダやボールねじなどの駆動パーツ274によって昇降させられ、これに応じて上方側回転軸272は、触媒パッド240に対して近づけたり遠ざけたりするように前後方向に移動させられる。上方側回転軸272の下端には、研磨ヘッド260が設けられている。研磨ヘッド260の下面には、被加工物Wが保持されている。研磨ヘッド260は、被加工物Wを保持可能に構成され、第1保持手段としてのホルダとしても機能する。 As shown in FIG. 7, an upper rotation shaft 272 of the drive mechanism 270 is provided vertically above the trough container 220. The upper rotation shaft 272 is arranged on the upper side of the tub container 220 at a position radially offset from the center of the bottom plate 221 of the tub container 220. The upper rotation shaft 272 is rotatably held in a vertical posture with respect to the sleeve 261 as shown in FIG. The upper rotation shaft 272 is rotated by a driving motor 273 as first driving means. The sleeve 261 is moved up and down by a drive part 274 such as a drive cylinder or a ball screw as a second drive means. In response, the upper rotation shaft 272 is moved forward and backward so as to move closer to or away from the catalyst pad 240. Moved in the direction. A polishing head 260 is provided at a lower end of the upper rotation shaft 272. The workpiece W is held on the lower surface of the polishing head 260. The polishing head 260 is configured to be able to hold the workpiece W, and also functions as a holder as first holding means.
 次に、研磨ヘッド260の動作制御について説明する。図10は、研磨ヘッド260に保持された被加工物Wが触媒パッド240の表面に当接又は近接された後に、触媒基準エッチングの動作が開始される制御について説明する図である。 Next, operation control of the polishing head 260 will be described. FIG. 10 is a diagram illustrating a control in which the operation of the catalyst-based etching is started after the workpiece W held by the polishing head 260 comes into contact with or approaches the surface of the catalyst pad 240.
 上方側回転軸272と研磨ヘッド260とは、図10に示すように、傾き可動機構部262により接続される。傾き可動機構部262は、触媒パッド240の表面と被加工物Wの表面とが平行な状態と、触媒パッド240の表面と被加工物Wの表面とが平行ではない状態とを含む範囲において可動するように、触媒パッド240及び被加工物Wの少なくともいずれかを傾かせることが可能である。本実施形態においては、傾き可動機構部262は、研磨ヘッド260を360°の範囲において水平方向に対して傾かせることが可能であるため、被加工物Wを360°の範囲において水平方向に対して傾かせることが可能である。 The upper rotation shaft 272 and the polishing head 260 are connected by the tilt movable mechanism 262 as shown in FIG. The tilt movable mechanism 262 is movable in a range including a state where the surface of the catalyst pad 240 and the surface of the workpiece W are parallel, and a state where the surface of the catalyst pad 240 and the surface of the workpiece W are not parallel. As a result, at least one of the catalyst pad 240 and the workpiece W can be tilted. In the present embodiment, since the tilt movable mechanism 262 can tilt the polishing head 260 with respect to the horizontal direction within a range of 360 °, the workpiece W can be tilted with respect to the horizontal direction within a range of 360 °. It is possible to tilt.
 傾き可動機構部262は、触媒パッド240の表面又は被加工物W表面の表面方向において、例えば、触媒パッド240の表面又は被加工物W表面における両端部高さの差Hが0.01mm以上となる範囲まで、触媒パッド240及び被加工物Wの少なくともいずれかを傾かせることが可能である。傾き可動機構部262は、例えば、触媒パッド240の表面に対する被加工物W表面の傾斜角度αが相対的に0.03度以上になるように、触媒パッド240及び被加工物Wの少なくともいずれかを傾かせることが可能である。これにより、傾き可動機構部262により、被加工物Wの表面と、触媒パッド240の表面とを追従させることができる。よって、被加工物Wの表面を触媒パッド240の表面に当接又は近接させる際の、被加工物Wの表面追従性を高めることができる。触媒パッド240は、触媒基準エッチング(触媒基準の反応)によって、被加工物Wの表面を当接又は近接した部分のみ除去するための触媒層を備えている。 In the surface direction of the surface of the catalyst pad 240 or the surface of the workpiece W, for example, the difference H between both end portions on the surface of the catalyst pad 240 or the surface of the workpiece W is 0.01 mm or more. It is possible to tilt at least one of the catalyst pad 240 and the workpiece W to a certain extent. The tilt movable mechanism unit 262 is, for example, at least one of the catalyst pad 240 and the workpiece W such that the tilt angle α of the surface of the workpiece W with respect to the surface of the catalyst pad 240 is relatively 0.03 degrees or more. Can be tilted. Thus, the surface of the workpiece W and the surface of the catalyst pad 240 can be made to follow the tilt movable mechanism 262. Therefore, when the surface of the workpiece W abuts or approaches the surface of the catalyst pad 240, the surface followability of the workpiece W can be improved. The catalyst pad 240 is provided with a catalyst layer for removing only a portion in contact with or close to the surface of the workpiece W by catalyst-based etching (catalyst-based reaction).
 触媒基準エッチングに必要な平坦化の処理を実行する場合には、図10に示すように、上方側回転軸272の回転を停止すると共に下方側回転軸271(図7参照)を停止して支持定盤210を止めた状態で、第2駆動手段としての駆動パーツ274によってスリーブ261を降下させることで上方側回転軸272を降下させて、被加工物Wの表面を触媒パッド240の表面に触媒膜が剥がれないように当接又は近接させる。その後、第1駆動手段としての駆動モータ273によって上方側回転軸272を回転すると共に下方側回転軸271を回転させて支持定盤210を回転させることで、触媒基準エッチング(触媒基準の反応)に必要な平坦化の処理を、平坦化処理実行部(図示せず)により実行する。これにより、触媒パッド240が停止した状態で、被加工物Wの表面を触媒パッド240の表面に触媒膜が剥がれないように当接又は近接させることができるため、触媒パッド240の表面に形成される触媒層が剥がれることが抑制される。よって、触媒パッド240の表面の触媒層の剥がれが抑制できるため、被加工物Wの加工品質を向上できる。 When performing the flattening process required for the catalyst-based etching, as shown in FIG. 10, the rotation of the upper rotation shaft 272 is stopped and the lower rotation shaft 271 (see FIG. 7) is stopped and supported. With the surface plate 210 stopped, the upper rotating shaft 272 is lowered by lowering the sleeve 261 by the driving part 274 as the second driving means, and the surface of the workpiece W is placed on the surface of the catalyst pad 240. Contact or approach so that the film does not peel off. After that, the upper rotation shaft 272 and the lower rotation shaft 271 are rotated by the drive motor 273 as the first drive means to rotate the support platen 210, so that catalyst-based etching (catalyst-based reaction) is performed. The necessary flattening process is executed by a flattening process execution unit (not shown). Thus, in a state where the catalyst pad 240 is stopped, the surface of the workpiece W can be brought into contact with or close to the surface of the catalyst pad 240 so that the catalyst film is not peeled off. Peeling of the catalyst layer is suppressed. Therefore, since the peeling of the catalyst layer on the surface of the catalyst pad 240 can be suppressed, the processing quality of the workpiece W can be improved.
 従来、例えば、被加工物Wの表面を主加工の加工動作で加工を行いながら、被加工物Wの表面を触媒パッド240の表面に当接又は近接させると、被加工物Wと触媒パッド240との傾き角度の影響で、被加工物Wの端部が触媒パッド240に接触してしまい、被加工物Wの端部が当たった触媒パッド240の触媒部分が、被加工物W端部の面取り状態によっては、図11に示すように、剥がれ部分Xにおいて、剥がれてしまうという問題が発生していた。
 この対策として、加工に必要な被加工物Wの表面を触媒パッド240の表面に当接又は近接した状態にしてから、第1駆動手段としての駆動モータ273によって上方側回転軸272を回転させると共に、下方側回転軸271を回転させることによって支持定盤210を回転させる主加工の加工動作を行うことで、従来に比べて、触媒パッド240の触媒が剥がれることがない加工を実施できる。
Conventionally, for example, when the surface of the workpiece W is brought into contact with or close to the surface of the catalyst pad 240 while the surface of the workpiece W is processed by the main processing operation, the workpiece W and the catalyst pad 240 are processed. The end of the workpiece W comes into contact with the catalyst pad 240 due to the influence of the inclination angle of the workpiece W, and the catalyst portion of the catalyst pad 240 hit by the end of the workpiece W Depending on the state of the chamfer, as shown in FIG.
As a countermeasure, the upper surface of the workpiece W required for processing is brought into contact with or close to the surface of the catalyst pad 240, and then the upper rotation shaft 272 is rotated by the drive motor 273 as the first drive means. By performing the main processing operation of rotating the support platen 210 by rotating the lower rotation shaft 271, processing in which the catalyst of the catalyst pad 240 does not peel off can be performed as compared with the related art.
 また、量産時において触媒層230が膜剥がれするリスクを、物理的に抑えることができる。触媒基準エッチングの加工中に、触媒層230が剥がれた触媒パッド240の表面に水貼り現象で被加工物Wがくっついた場合に、触媒パッド240の材質が例えばゴムである場合には、被加工物Wと触媒パッド240との間の水貼り現象と、被加工物Wと触媒パッド240がゴムとの間に発生するグリップ力とで、被加工物Wを保持する研磨ヘッド260から被加工物Wが外れて、触媒基準エッチング装置200の加工動作により、被加工物Wが外周部へ飛んでいき破損するリスクがある。しかし、触媒層230が剥がれなければ、そのリスクを減らすことができる。 (4) The risk of the catalyst layer 230 peeling off during mass production can be physically suppressed. If the workpiece W is attached to the surface of the catalyst pad 240 from which the catalyst layer 230 has been peeled off by the water sticking phenomenon during the processing of the catalyst reference etching, if the material of the catalyst pad 240 is, for example, rubber, the processing is performed. The water sticking phenomenon between the workpiece W and the catalyst pad 240 and the gripping force generated between the workpiece W and the catalyst pad 240 between the polishing pad 260 holding the workpiece W and the workpiece. There is a risk that the workpiece W may fly away to the outer peripheral portion and be damaged by the processing operation of the catalyst-based etching apparatus 200. However, if the catalyst layer 230 does not peel off, the risk can be reduced.
 通常、被加工物Wの表面を主加工の加工動作で加工を行いながら触媒パッド240に被加工物Wの表面を当接又は近接した方が、被加工物Wの表面を触媒パッド240に当接させてから加工動作するよりも、理論上、水貼り現象により被加工物Wが触媒パッド240に貼り付く可能性が低い。触媒パッド240に貼り付いた被加工物Wが研磨ヘッド260のリテーナ(保持部分)から抜けて破損するリスクは、主加工の加工動作で加工を行いながら触媒パッド240に被加工物Wの表面を当接又は近接した方が、動摩擦抵力が被加工物とパッドの間に発生するので、静止摩擦力に比べて低くなるため好ましい。しかし、本発明では、被加工物Wの表面を触媒パッド240に当接させてから加工動作することで、触媒パッド240の触媒が剥がれるのを予防している。触媒パッドの触媒が剥がれるのは、触媒基準エッチングにおける特有の課題である。 Normally, the surface of the workpiece W is brought into contact with or close to the catalyst pad 240 while the surface of the workpiece W is being processed by the main processing operation. The possibility that the workpiece W sticks to the catalyst pad 240 due to the water sticking phenomenon is theoretically lower than the case where the working operation is performed after the contact is made. The risk that the workpiece W stuck to the catalyst pad 240 comes off from the retainer (holding portion) of the polishing head 260 and is damaged may be caused by applying the surface of the workpiece W to the catalyst pad 240 while performing the processing in the main processing operation. The contact or proximity is preferable because the dynamic frictional resistance is generated between the workpiece and the pad, and is lower than the static frictional force. However, according to the present invention, the catalyst on the catalyst pad 240 is prevented from peeling off by performing the processing operation after the surface of the workpiece W is brought into contact with the catalyst pad 240. Peeling off the catalyst from the catalyst pad is a particular problem in catalyst-based etching.
 なお、被加工物Wの表面において行われる主加工の加工動作とは、研磨加工の成立に必要な最低限度の動作のことである。
 本実施形態においては、例えば、主加工の加工動作とは、主に加工レートを出す動作であり、図7の触媒基準エッチング装置の場合、主加工の加工動作は、加工に必要な液や気体雰囲気中で、被加工物Wと触媒パッド240とが当接又は近接している状態において、第1駆動手段としての駆動モータ273によって上方側回転軸272を回転させると共に、下方側回転軸271を回転させることによって支持定盤210を回転させる動作である。これに対して、副加工の加工動作とは、揺動動作におる加工動作である。副加工の加工動作とは、平均化を主加工の加工動作と共に行うことで、被加工物Wの加工表面のPV値(Peak to Valley:最大誤差)とRMS値(Root Mean Square:2乗平均平方根)とをより向上させられる動作である。主加工の加工動作は、副加工の加工動作は無くても、主加工の加工動作のみで触媒基準エッチングにおける必要最低限の加工が成立する加工動作である。
In addition, the processing operation of the main processing performed on the surface of the workpiece W is the minimum operation necessary for achieving the polishing processing.
In the present embodiment, for example, the processing operation of the main processing is an operation that mainly determines the processing rate, and in the case of the catalyst-based etching apparatus of FIG. In an atmosphere, in a state where the workpiece W and the catalyst pad 240 are in contact with or close to each other, the upper rotation shaft 272 is rotated by the drive motor 273 as the first drive unit, and the lower rotation shaft 271 is This is an operation of rotating the support platen 210 by rotating it. On the other hand, the machining operation of the sub machining is a machining operation in a swing operation. The processing operation of the sub-processing is to perform averaging together with the processing operation of the main processing, so that the PV value (Peak to Valley: maximum error) and the RMS value (Root Mean Square: root mean square) of the processing surface of the workpiece W are obtained. (Square root). The processing operation of the main processing is a processing operation in which the minimum required processing in the catalyst-based etching is realized only by the processing operation of the main processing, without the processing operation of the sub-processing.
 以上のように構成される光照射触媒基準エッチング装置200は、触媒パッド240が、円盤状の回転定盤であり、該定盤よりも小さな面積の被加工物Wを保持した研磨ヘッド260と触媒パッド240を、互いに平行で偏心した回転軸で、所定速度で回転させるようにしている。また、研磨ヘッド260は、荷重を調節して、触媒パッド240の触媒層230に対する被加工物Wの接触圧力を調節できるようになっている。また、触媒パッド240や定盤や桶や流体部や研磨ヘッド260の少なくともいずれかに温度制御機能を備えれば、加工温度を所定温度で一定に維持することができるので望ましい。例えば被加工物WがSiCの場合には、水を用いた触媒基準エッチング(水CAREともいう)において70度の温度で加工することで、常温の水を用いて加工する場合よりも、加工レートが向上する。尚、被加工物Wの表面よりも触媒層230の表面の面積を狭くすれば、小さな触媒パッド240の被加工物Wの表面に対する位置と滞在時間を制御して、被加工物Wの表面の局所加工量を制御し、つまり数値制御による局所加工を行うことができる。 In the light irradiation catalyst reference etching apparatus 200 configured as described above, the catalyst pad 240 is a disk-shaped rotating platen, and the polishing head 260 and the catalyst holding the workpiece W having an area smaller than the platen. The pad 240 is rotated at a predetermined speed on rotation axes that are parallel and eccentric to each other. The polishing head 260 can adjust the contact pressure of the workpiece W with respect to the catalyst layer 230 of the catalyst pad 240 by adjusting the load. Further, it is preferable that at least one of the catalyst pad 240, the platen, the tub, the fluid unit, and the polishing head 260 has a temperature control function, because the processing temperature can be maintained at a predetermined temperature. For example, when the workpiece W is made of SiC, the processing is performed at a temperature of 70 degrees in the catalyst-based etching using water (also referred to as water CARE), so that the processing rate is higher than when processing using water at normal temperature. Is improved. If the area of the surface of the catalyst layer 230 is smaller than that of the surface of the workpiece W, the position and the residence time of the small catalyst pad 240 with respect to the surface of the workpiece W are controlled, and the surface of the workpiece W is controlled. The local processing amount can be controlled, that is, local processing can be performed by numerical control.
 第2装置例の光照射触媒基準エッチング装置200は、水分子が解離して固体酸化膜を構成する酸素元素と他の元素のバックボンドを切って吸着し、加水分解による分解生成物を水中に溶出させ、被加工物Wの表面を加工するものである。また、桶容器220の水201を浄化し、水位を一定に保つために水循環系290を備えている。この水循環系290は、供給管291、排水管292、図示しない処理液精製器、バッファタンク、ポンプ、廃液部等で構成される。 The photoirradiation catalyst-based etching apparatus 200 of the second apparatus example is configured such that water molecules are dissociated, adsorb and cut back bonds between an oxygen element constituting a solid oxide film and other elements, and a decomposition product by hydrolysis is converted into water. The elution is performed to process the surface of the workpiece W. Further, a water circulation system 290 is provided to purify the water 201 in the tub container 220 and keep the water level constant. The water circulation system 290 includes a supply pipe 291, a drain pipe 292, a processing liquid purifier (not shown), a buffer tank, a pump, a waste liquid section, and the like.
[クリーニング装置]
 次に、図1における第1クリーニング手段13及び第2クリーニング手段17において行われるクリーニングを実行可能なクリーニング装置について説明する。
 クリーニング装置は、光照射触媒基準エッチング装置100,200の基本構成において、触媒を変更することで、実現できる。例えば、光照射触媒基準エッチング装置100,200において触媒をPtとしてエッチングを行うのに代えて、触媒をNiとしてエッチングを行うことで、被加工物に付着したPtを除去するクリーニング装置を実現できる。この場合、被加工物の表面からは、Ptが除去される。Ptが除去された被加工物の表面には、Niが付着する。
[Cleaning device]
Next, a cleaning device capable of executing the cleaning performed by the first cleaning unit 13 and the second cleaning unit 17 in FIG. 1 will be described.
The cleaning device can be realized by changing the catalyst in the basic configuration of the light irradiation catalyst reference etching devices 100 and 200. For example, a cleaning device that removes Pt attached to a workpiece can be realized by performing etching using Ni as a catalyst instead of performing etching using Pt as a catalyst in the light irradiation catalyst-based etching devices 100 and 200. In this case, Pt is removed from the surface of the workpiece. Ni adheres to the surface of the workpiece from which Pt has been removed.
 なお、前述の潜傷除去手段12において実行される処理を行う装置と第1クリーニング手段13において実行される処理を行う装置とを、同じ装置で構成してもよいし、異なる装置で構成してもよい。また、同様に、前述の表面仕上げ手段16において実行される処理を行う装置と第2クリーニング手段17において実行される処理を行う装置とを、同じ装置で構成してもよいし、異なる装置で構成してもよい。この場合には、光照射触媒基準エッチング装置100,200において、触媒基準エッチングの処理を実行した後に、クリーニング液を桶容器150,220に導入して、触媒を変更することで、実現してもよい。 The device that performs the processing performed by the latent scratch removing unit 12 and the device that performs the process performed by the first cleaning unit 13 may be configured by the same device or by different devices. Is also good. Similarly, the apparatus for performing the processing performed by the above-described surface finishing means 16 and the apparatus for performing the processing performed by the second cleaning means 17 may be constituted by the same apparatus or may be constituted by different apparatuses. May be. In this case, even if the catalyst is changed by introducing the cleaning liquid into the tub containers 150 and 220 after performing the catalyst-based etching process in the light irradiation catalyst-based etching apparatuses 100 and 200, the catalyst may be changed. Good.
(光照射触媒基準エッチング装置及び被加工物加工処理システムの変形形態)
 なお、上述した光照射触媒基準エッチング装置は、上記光照射触媒基準エッチング装置100,200の構成に加えて、以下の構成を備えていてもよい。また、被加工物加工処理システム10も、以下の構成を備えていてもよい。なお、以下に記載した内容には、上記に説明した内容と重複した内容も一部含まれている。
(Modifications of Light Irradiation Catalyst Reference Etching Apparatus and Workpiece Processing System)
The above-described light irradiation catalyst-based etching apparatus may have the following configuration in addition to the configuration of the light irradiation catalyst-based etching apparatuses 100 and 200. The workpiece processing system 10 may also have the following configuration. It should be noted that the contents described below include some contents that are the same as the contents described above.
 例えば、光照射触媒基準エッチング装置は、付着する汚染物質を洗浄する際に薬品耐性のある被加工物収納カセットとケース(好ましくは、洗浄方法が確立しやすいのでカセットとケースは1材質、水没させて搬送する場合は、ケース天井にエア抜き穴付き)や、触媒基準エッチング法の工程で使用するカセット取り付け部や、被加工物を洗浄前に乾燥させないための吸引方式のハンドリング部や、UVランプの紫外線光が直接目に入らないようにするための監視カメラや、UVランプの紫外線光が直接目に入らないようにするためのモニタや、被加工物保持部、触媒パッド保持部、ヘッド部にあるメッキや電解研磨用補助電極や、メッキや電解研磨用補助電極のついた研磨ヘッドや、UVランプ用の通電が可能な研磨ヘッドなどを備えていてもよい。 For example, a photocatalyst based etching apparatus uses a chemical-resistant workpiece storage cassette and a case when cleaning contaminants that adhere to the cassette (preferably, since the cleaning method is easily established, the cassette and the case are made of one material, and are submerged in water. When transporting by means of an air vent on the case ceiling), a cassette mounting part used in the process of the catalyst-based etching method, a suction type handling part to prevent the workpiece from drying before cleaning, and a UV lamp Surveillance camera to prevent UV light from entering the eyes directly, monitor to prevent UV light from the UV lamp from entering the eyes directly, workpiece holder, catalyst pad holder, head Auxiliary electrode for plating and electropolishing, a polishing head with an auxiliary electrode for plating and electropolishing, and an energizable polishing head for UV lamps It may be.
 また、光照射触媒基準エッチング装置は、被加工物(基板など)を保持するように構成された被加工物保持部と、触媒パッドを保持するように構成された触媒パッド保持部と、被加工物の被処理領域と触媒とが接触した状態で、被加工物保持部と触媒パッド保持部とを相対的に移動させるように構成された駆動部と、を備えていてもよい。触媒パッド保持部は、触媒パッドを保持するための弾性部材を備えていてもよい。触媒パッド保持部は、触媒パッドと被加工物とが接触した状態において、触媒パッド保持部と被加工物との間において、処理液が移動できるように構成される複数の溝や穴を有していてもよい。 Further, the light irradiation catalyst-based etching apparatus includes a workpiece holding unit configured to hold a workpiece (eg, a substrate), a catalyst pad holding unit configured to hold a catalyst pad, and a processing unit. A drive unit configured to relatively move the workpiece holding unit and the catalyst pad holding unit in a state where the processing area of the workpiece and the catalyst are in contact with each other may be provided. The catalyst pad holding section may include an elastic member for holding the catalyst pad. The catalyst pad holding section has a plurality of grooves and holes configured to allow the processing liquid to move between the catalyst pad holding section and the work piece when the catalyst pad and the work piece are in contact with each other. May be.
 また、光照射触媒基準エッチング装置は、処理液の温度を、10度以上かつ90度以下の範囲内で所定温度に調整する処理液温度調整部を備えていてもよい。処理液の温度を調整することで、酸化物やSiCなどの被加工物では加工レートが向上したり、Si成分などの触媒毒除去が可能になる。また、触媒基準エッチング装置は、処理液を被加工物の被処理領域上に供給するための供給口を有する処理液供給部を備えていてもよい。処理液供給部は、供給口が触媒保持部とともに移動するように構成されていてもよい。 The photoirradiation catalyst-based etching apparatus may further include a treatment liquid temperature adjustment unit that adjusts the temperature of the treatment liquid to a predetermined temperature within a range of 10 degrees or more and 90 degrees or less. By adjusting the temperature of the processing liquid, a processing rate of a workpiece such as an oxide or SiC can be improved, and catalyst poison such as a Si component can be removed. Further, the catalyst-based etching apparatus may include a processing liquid supply unit having a supply port for supplying the processing liquid onto the processing target region of the workpiece. The processing liquid supply unit may be configured such that the supply port moves together with the catalyst holding unit.
 また、光照射触媒基準エッチング装置は、電解作用を利用して触媒表面のエッチング生成物を除去するように構成された電解再生部を備えていてもよい。電解再生部は、触媒と電気的に接続可能に構成された電極を有しており、触媒と電極との間に電圧を印加することによって、触媒の表面に付着したエッチング生成物を電解作用により除去するように構成されていてもよい。 The light irradiation catalyst reference etching apparatus may include an electrolytic regeneration unit configured to remove an etching product on the catalyst surface by using an electrolytic action. The electrolytic regeneration section has an electrode configured to be electrically connectable to the catalyst, and by applying a voltage between the catalyst and the electrode, an etching product attached to the surface of the catalyst is subjected to electrolytic action. It may be configured to remove.
 また、光照射触媒基準エッチング装置は、触媒を再生するように構成されたメッキ再生部を備えていてもよい。メッキ再生部は、触媒と電気的に接続可能に構成された電極を有しており、硫酸ニッケル(水和物)などのニッケル塩液中に触媒を浸漬した状態で、触媒と電極との間に電圧を印加することによって、触媒の表面をメッキ再生するように構成されていてもよい。または、触媒の表面を化学的に溶かしながら使用してもよい。触媒を加工液に対して正電位状態にして、該加工面の遷移金属膜を溶解させてもよい。 The light irradiation catalyst-based etching apparatus may include a plating regeneration unit configured to regenerate the catalyst. The plating regenerating section has an electrode configured to be electrically connectable to the catalyst. The plating regenerating section is configured to immerse the catalyst in a nickel salt solution such as nickel sulfate (hydrate). The surface of the catalyst may be regenerated by applying a voltage to the catalyst. Alternatively, the catalyst may be used while chemically dissolving the surface. The catalyst may be brought into a positive potential state with respect to the processing liquid to dissolve the transition metal film on the processing surface.
 また、光照射触媒基準エッチング装置は、被加工物の被処理領域のエッチング処理状態をモニタリングするモニタリング部や、モニタリング部によって得られるエッチング処理状態に基づいて処理中の被加工物の処理条件における少なくとも1つのパラメータを制御するように構成された制御部や、参照電極を有する電位調整部であって触媒と参照電極とを処理液を介して電気化学的に接続して、触媒の表面の電位を制御するように構成された電位調整部を備えていてもよい。また、モニタリング部は、触媒保持部と被加工物保持部とが相対的に移動する際の駆動部のトルク電流に基づいてエッチング処理状態をモニタリングするトルク電流モニタリング部や、被加工物の被処理領域に向けて光を照射し、被加工物の被処理領域の表面で反射するか、該被加工物を透過した後に反射する反射光を受光し、該受光した光に基づいてエッチング処理状態をモニタリングする光学式モニタリング部を備えていてもよい。 Further, the light irradiation catalyst-based etching apparatus is a monitoring unit that monitors the etching processing state of the processing target area of the processing target, at least in the processing conditions of the processing target being processed based on the etching processing state obtained by the monitoring unit A control unit configured to control one parameter, or a potential adjustment unit having a reference electrode, wherein the catalyst and the reference electrode are electrochemically connected to each other via a treatment liquid, and the potential of the surface of the catalyst is adjusted. It may include a potential adjustment unit configured to control. The monitoring unit includes a torque current monitoring unit that monitors an etching process state based on a torque current of the driving unit when the catalyst holding unit and the workpiece holding unit relatively move, and a monitoring unit that processes the workpiece. Light is directed toward the region, and the reflected light reflected on the surface of the processed region of the workpiece or reflected after transmitting through the workpiece is received, and the etching process state is determined based on the received light. An optical monitoring unit for monitoring may be provided.
 また、光照射触媒基準エッチング装置は、触媒の表面に、触媒の表面を洗浄するための水および/または薬液を供給するように構成された触媒洗浄ノズルや、触媒保持部内を通って処理液を被加工物の前記被処理領域上に供給するための供給口を有する処理液供給部を有していてもよい。 In addition, the light irradiation catalyst-based etching apparatus is configured to supply a treatment liquid through a catalyst cleaning nozzle or a catalyst holding unit configured to supply water and / or a chemical solution for cleaning the surface of the catalyst to the surface of the catalyst. A processing liquid supply unit having a supply port for supplying the processing object onto the processing area may be provided.
 また、被加工物加工処理システムは、被加工物を洗浄するように構成された被加工物洗浄部と、被加工物を搬送する被加工物搬送部と、を備えていてもよい。
 また、被加工物加工処理システムは、被加工物処理装置によって処理された後の被加工物の被処理領域の表面状態、厚み又は重さを測定するように構成された被加工物測定部や、被加工物測定部の測定結果が所定の基準を満たさない場合に、被加工物処理装置によって処理された後の被加工物を再処理するように構成された再処理制御部を備えていてもよい。また、被加工物搬送部は、ウエット状態の被加工物とドライ状態の被加工物を別々に搬送できるように構成されていてもよい。
Further, the workpiece processing system may include a workpiece cleaning unit configured to clean the workpiece, and a workpiece transport unit that transports the workpiece.
Further, the workpiece processing system, the workpiece measuring unit configured to measure the surface state, thickness or weight of the processing area of the workpiece after processing by the workpiece processing apparatus, A reprocessing control unit configured to reprocess the workpiece after being processed by the workpiece processing apparatus when a measurement result of the workpiece measurement unit does not satisfy a predetermined standard. Is also good. Further, the workpiece transfer section may be configured to be able to separately transport the workpiece in a wet state and the workpiece in a dry state.
 また、被加工物加工処理システムは、被加工物に成膜処理を行うように構成される成膜装置を備えていてもよい。成膜装置は、化学気相成長(CVD)装置、スパッタ装置、メッキ装置、およびコーター装置の少なくとも1つを有していてもよい。 The workpiece processing system may further include a film forming apparatus configured to perform a film forming process on the workpiece. The film forming apparatus may include at least one of a chemical vapor deposition (CVD) apparatus, a sputtering apparatus, a plating apparatus, and a coater apparatus.
 また、前記実施形態では、被加工物のクリーニング方法について、触媒基準エッチングの処理を行った後において被加工物の表面に付着した有害物質を除去するようにしたが、これに限定されない。表面に付着した有害物質は、触媒基準エッチングの処理で付着したものでなくてもよい。つまり、被加工物のクリーニング方法を、触媒基準エッチングの処理を行った後ではない場合における被加工物の表面に付着した有害物質を除去する場合にも適用できる。例えば、被加工物のクリーニング方法を用いることにより、全反射蛍光X線分析装置(例えば、株式会社リガク社製)を用いた測定で観察可能な被加工物の表面に付着した成分を低減することが可能である。本発明を用いれば、被加工物や付着物の関係で強力な酸やアルカリの化学薬品でそのまま溶かしてクリーニングするよりも、クリーニングによる表面荒れの心配がなく、表面粗さRaなどを維持することや向上させることが可能である。表面粗さRaなどを維持させたり向上させたままでのクリーニングが可能である。また、被加工物のクリーニング方法において、潜傷を発生させること無くクリーニングも可能である。 In the above embodiment, the method of cleaning the workpiece is to remove the harmful substances attached to the surface of the workpiece after performing the catalyst-based etching process. However, the present invention is not limited to this. The harmful substances adhered to the surface may not be those adhered in the catalyst-based etching process. In other words, the method of cleaning the workpiece can be applied to a case where the harmful substances attached to the surface of the workpiece are removed after the catalyst-based etching is not performed. For example, by using a method for cleaning a workpiece, a component adhered to the surface of the workpiece that can be observed by measurement using a total reflection X-ray fluorescence spectrometer (for example, manufactured by Rigaku Corporation) is reduced. Is possible. According to the present invention, there is no need to worry about surface roughness due to cleaning, and the surface roughness Ra is maintained, as compared with a case where cleaning is performed by directly dissolving with a strong acid or alkali chemical in relation to a workpiece or a deposit. And can be improved. Cleaning can be performed while maintaining or improving the surface roughness Ra or the like. Further, in the method of cleaning a workpiece, cleaning can be performed without causing latent scratches.
 また、例えば、前記実施形態においては、図2に示す光照射触媒基準エッチング装置100の第1装置例、又は、図2に示す光照射触媒基準エッチング装置100の第1装置例の基本構成において触媒を変更して実現したクリーニング装置において、一対の支持定盤140を同一直線上で互いに逆位相で往復移動させるように構成したが、これに限定されない。例えば、一対の支持定盤140を、平面視で長円形の範囲で互いに逆位相で往復移動するように構成してもよい。これにより、一対の支持定盤140を同一直線上で互いに逆位相で往復移動させる場合よりも、移動範囲を広げることが可能であるため、被加工物の表面を処理する範囲を拡大することができる。 Further, for example, in the above-described embodiment, in the first example of the light irradiation catalyst-based etching apparatus 100 shown in FIG. 2 or the first example of the light irradiation catalyst-based etching apparatus 100 shown in FIG. In the cleaning device realized by changing the above, the pair of support platens 140 are configured to reciprocate in opposite phases on the same straight line, but the present invention is not limited to this. For example, the pair of support bases 140 may be configured to reciprocate in opposite phases in an oval range in plan view. This makes it possible to increase the range of movement as compared with the case where the pair of support platens 140 are reciprocated on the same straight line in opposite phases, so that the range of processing the surface of the workpiece can be increased. it can.
 また、例えば、前記実施形態においては、桶容器150、220(桶部)を設けて、桶容器150、220(桶部)を、底板151、221及び底板151、221の周縁から立ち上がる周壁部152、222を有するように構成したが、これに限定されない。桶容器150、220(桶部)を設けずに、支持定盤140、210(定盤)に周壁を設けてもよい。この場合、支持定盤140、210(定盤)に紫外線透過部材157、212(光透過部材)が配置されていても良い。 Further, for example, in the above embodiment, the tub containers 150 and 220 (tub portions) are provided, and the tub containers 150 and 220 (tub portions) are raised from the peripheral edges of the bottom plates 151 and 221 and the bottom plates 151 and 221. , 222, but is not limited thereto. Instead of providing the tub containers 150 and 220 (tub units), peripheral walls may be provided on the support plattens 140 and 210 (platen). In this case, the ultraviolet transmitting members 157 and 212 (light transmitting members) may be arranged on the supporting surface plates 140 and 210 (surface plates).
 また、桶部の形状は、液体や気体の少なくともいずれかを貯められるような桶の形状をしていてもよい。桶部の形状としては、前記実施形態の桶容器150、220のように上方が開放する形状でもよいし、又は、密閉形状でもよい。上方が開放する形状の場合には、加工に使用する液体や気体によっては横方向や逆さ方向で使用する場合があり、この場合には、桶部が開放する上方は、横向きや下向きでもよい。 桶 Also, the shape of the trough may be a trough capable of storing at least one of a liquid and a gas. The shape of the tub portion may be a shape that opens upward like the tub containers 150 and 220 of the above embodiment, or may be a closed shape. In the case where the upper part is open, the liquid or gas used for processing may be used in a lateral direction or an upside-down direction. In this case, the upper part where the trough is opened may be lateral or downward.
 以上のような本実施形態の触媒基準エッチング装置によれば、以下の効果を得ることができる。 According to the catalyst-based etching apparatus of the present embodiment as described above, the following effects can be obtained.
 (1)触媒基準エッチング装置200においては、被加工物の表面を触媒基準エッチングによって当接又は近接した部分のみ除去するための触媒層を備えた触媒パッド240と、被加工物の表面を触媒パッド240の表面に触媒膜が剥がれないように当接又は近接させた後に、接触反応による除去に必要な平坦化処理(表面形成処理動作)を実行する平坦化処理実行部と、を備えて構成した。これにより、触媒パッド240が停止した状態で、被加工物Wの表面を触媒パッド240の表面に当接又は近接させることができるため、触媒パッド240の表面に形成される触媒層が剥がれることが抑制される。よって、触媒パッド240表面の触媒層が剥がれるのを抑制できるため、被加工物Wの加工品質を向上できる。 (1) In the catalyst-based etching apparatus 200, a catalyst pad 240 provided with a catalyst layer for removing only a portion of the workpiece to be brought into contact with or in proximity to the surface of the workpiece by catalyst-based etching, and a catalyst pad for removing the surface of the workpiece. And 240. A flattening process execution unit that executes a flattening process (surface forming process operation) necessary for removal by a contact reaction after the catalyst film abuts or approaches the surface of 240 so as not to peel off. . Accordingly, the surface of the workpiece W can be brought into contact with or close to the surface of the catalyst pad 240 in a state where the catalyst pad 240 is stopped, so that the catalyst layer formed on the surface of the catalyst pad 240 may be peeled off. Is suppressed. Therefore, the catalyst layer on the surface of the catalyst pad 240 can be prevented from peeling off, so that the processing quality of the workpiece W can be improved.
 特に、膜剥がれの問題は、被加工物を自動的に加工する量産の時に影響が出る。触媒基準エッチングは、触媒が存在するところで触媒反応が起こる。しかし、被加工物の表面がエピタキシャル膜など均等に表面全面を同じだけ除去したい場合に、気が付かない間に触媒膜が剥がれていると、触媒膜が剥がれている部分だけ加工されずに加工ムラが発生する。そうすると、品質保証ができなかったり、量産時に連続で被加工物を加工しようとした際に、いつのタイミングで膜剥がれが発生したか分からない場合、多量の不良品を生じさせることもありうる。被加工物の表面にムラができると、触媒基準エッチング装置200で行う加工動作の場合、平均化動作を使って加工しているので、カメラの監視などで加工槽を時系列で保存しないと、いつのタイミングで膜が剥がれたのか推測が出来なくなる。本発明によれば、このようなリスクを低減できる。また、触媒基準エッチングの加工中に、触媒層230が剥がれた触媒パッド240の表面に水貼り現象で被加工物Wがくっついた場合に、触媒パッド240の材質が例えばゴムである場合には、被加工物Wと触媒パッド240との間の水貼り現象と、被加工物Wと触媒パッド240の触媒層230が剥がれてむき出しになったゴムとの間に発生するグリップ力とで、被加工物Wを保持する研磨ヘッド260から被加工物Wが外れて、触媒基準エッチング装置200の加工動作により、被加工物Wが外周部へ飛んでいき破損するリスクがある。しかし、触媒層230が剥がれなければ、そのリスクを減らすことができる。 Especially, the problem of film peeling is affected during mass production in which workpieces are automatically processed. In catalyst-based etching, a catalytic reaction occurs where a catalyst is present. However, if the surface of the workpiece is to be removed evenly over the entire surface, such as an epitaxial film, and if the catalyst film is peeled off without being noticed, processing unevenness occurs without processing only the part where the catalyst film is peeled off. appear. Then, quality assurance cannot be assured, or when it is not known when film peeling has occurred at the time of processing a workpiece continuously during mass production, a large number of defective products may be generated. If the surface of the workpiece becomes uneven, in the case of the processing operation performed by the catalyst-based etching apparatus 200, since the processing is performed using the averaging operation, unless the processing tank is stored in chronological order by monitoring the camera, It is impossible to estimate when the film has come off. According to the present invention, such a risk can be reduced. Further, during the processing of the catalyst-based etching, when the workpiece W is stuck to the surface of the catalyst pad 240 from which the catalyst layer 230 has been peeled off by a water sticking phenomenon, when the material of the catalyst pad 240 is, for example, rubber, The water sticking phenomenon between the workpiece W and the catalyst pad 240 and the grip force generated between the workpiece W and the rubber that has been exposed by the peeling of the catalyst layer 230 of the catalyst pad 240 cause the workpiece to be processed. The workpiece W is detached from the polishing head 260 holding the workpiece W, and there is a risk that the workpiece W may fly to the outer peripheral portion and be damaged by the processing operation of the catalyst-based etching apparatus 200. However, if the catalyst layer 230 does not peel off, the risk can be reduced.
 (2)また、触媒パッド240の表面と被加工物の表面とが平行な状態と、触媒パッド240の表面と被加工物の表面とが平行ではない状態とを含む範囲において可動するように、触媒パッド240及び被加工物の少なくともいずれかを傾かせることが可能な傾き可動機構部262を備える。この傾き可動機構部262により、被加工物Wの表面と触媒パッド240の表面とを追従させて、触媒パッド240又は被加工物の表面の角度を変化させることができる。よって、被加工物Wの表面を触媒パッド240の表面に当接又は近接させる際に、被加工物W表面の追従性を高めることができる。 (2) In addition, it is possible to move in a range including a state where the surface of the catalyst pad 240 and the surface of the workpiece are parallel and a state where the surface of the catalyst pad 240 and the surface of the workpiece are not parallel. A tilt movable mechanism 262 capable of tilting at least one of the catalyst pad 240 and the workpiece is provided. The tilt movable mechanism 262 allows the surface of the workpiece W and the surface of the catalyst pad 240 to follow, thereby changing the angle of the catalyst pad 240 or the surface of the workpiece. Therefore, when the surface of the workpiece W abuts or approaches the surface of the catalyst pad 240, the followability of the surface of the workpiece W can be improved.
 なお、本発明に係る光照射触媒基準エッチング装置200は、前述した実施形態に限定されるものではなく、適宜変更することができる。
 例えば、前記実施形態においては、触媒基準エッチングで平坦化の処理を実行する平坦化処理実行部を備えたが、これに限定されない。触媒基準クリーニング(触媒基準の反応)で処理を実行する処理実行部を備えてもよい。触媒基準クリーニングで処理を実行する場合には、処理実行部により実行される処理は、触媒基準クリーニングの成立に必要な主動作でもよい。
The light irradiation catalyst-based etching apparatus 200 according to the present invention is not limited to the above-described embodiment, and can be appropriately changed.
For example, in the above-described embodiment, the flattening process execution unit that executes the flattening process by the catalyst-based etching is provided, but is not limited thereto. A process execution unit that executes a process in catalyst-based cleaning (catalyst-based reaction) may be provided. When the process is performed in the catalyst-based cleaning, the process performed by the process execution unit may be a main operation necessary for establishing the catalyst-based cleaning.
 また、別の観点から、本開示は、被加工物の加工方法及び加工装置に適用できる。
 従来、半導体デバイスの製造分野では、Si基板(ウェハ)などの被加工物を始め様々な基板の表面を、高品位に平坦化加工する方法若しくは研磨する方法(ポリッシング)が各種提供されている。代表的には、研磨剤(砥粒)を用いて被加工物(基板など)の表面を研磨するCMP(Chemical Mechanical Polishing)がある(例えば、特許文献1(特開2012-238824号公報)参照)。
Further, from another viewpoint, the present disclosure can be applied to a method and an apparatus for processing a workpiece.
2. Description of the Related Art Conventionally, in the field of manufacturing semiconductor devices, various methods for polishing or polishing (polishing) the surfaces of various substrates including a workpiece such as a Si substrate (wafer) with high quality have been provided. Typically, there is CMP (Chemical Mechanical Polishing) for polishing the surface of a workpiece (such as a substrate) using an abrasive (abrasive grains) (see, for example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-238824)). ).
 CMPは、研磨剤(砥粒)自体が有する表面化学作用又は研磨液に含まれる化学成分の作用によって、研磨剤と研磨対象物の相対運動による機械的研磨(表面除去)効果を増大させ、高速かつ平滑な研磨面を得る技術である。これに対し、基板などの被加工物は、SiCやGaNなどの材料の場合、Siに比べてスイッチングロスが少ないことや高温に対応する材質として注目されている。SiCやGaNはSiよりも硬いので、CMPでは、研磨剤(砥粒)に、例えば硬いダイヤモンド砥粒を使用している。ダイヤモンド砥粒などを使用すると、潜傷と呼ばれる被加工物の表面の下に原子レベルでのダメージが形成されることがある。砥粒を用いた研磨加工により生じる潜傷は、被加工物をデバイスにした際に、被加工物本来の性能が発揮されずに、電気特性が悪かったり、強度が弱くなることにつながる。 CMP increases the mechanical polishing (surface removal) effect due to the relative movement between the polishing agent and the object to be polished by the surface chemical action of the polishing agent (abrasive grains) itself or the action of a chemical component contained in the polishing liquid. This is a technique for obtaining a smooth polished surface. On the other hand, when a workpiece such as a substrate is made of a material such as SiC or GaN, it has attracted attention as a material having less switching loss than Si and a material corresponding to a high temperature. Since SiC and GaN are harder than Si, in CMP, for example, hard diamond abrasive grains are used as an abrasive (abrasive grains). When diamond abrasive grains or the like are used, damage at the atomic level may be formed below the surface of the workpiece, which is called latent scratch. Latent scratches caused by polishing using abrasive grains do not exhibit the original performance of the workpiece when the workpiece is used as a device, and lead to poor electrical characteristics and low strength.
 これに対して、近年、潜傷を生じさせずに、SiC等の難加工物や光学ガラス等の固体酸化膜を加工する技術として、触媒基準面に基づく触媒基準エッチング法が提案されている(例えば、特許文献2(特開2006-114632号公報)参照)。 On the other hand, in recent years, a catalyst-based etching method based on a catalyst-based surface has been proposed as a technique for processing a difficult-to-process material such as SiC or a solid oxide film such as an optical glass without causing latent scratches ( For example, see Patent Document 2 (Japanese Patent Application Laid-Open No. 2006-114632).
 特許文献2に記載の触媒基準エッチング法は、研磨剤や砥粒を全く使用しない加工技術であり、加工によって被加工面にスクラッチや加工変質層などの潜傷を生じさせない理想的な加工方法である。しかし、触媒基準エッチング法は、被加工物の表面を、触媒を使用して、被加工物と液や気体と接触した部分のみを原子レベルで加工する技術であるため、砥粒を用いた研磨加工よりも加工時間を要する。 The catalyst-based etching method described in Patent Literature 2 is a processing technique that does not use an abrasive or abrasive grains at all, and is an ideal processing method that does not cause latent scratches such as scratches and a damaged layer on a processing surface by processing. is there. However, the catalyst-based etching method is a technology that uses a catalyst to process only the portion of the surface of the workpiece that is in contact with the workpiece and the liquid or gas at the atomic level, so that the polishing using abrasive grains is performed. Requires more processing time than processing.
 被加工物の表面を平坦化する表面加工技術に関して、砥粒を用いた研磨加工は、触媒基準エッチング法と比べて、加工時間が短いという利点があるが、研磨加工により、被加工物に潜傷を生じさせることがある。被加工物に形成された潜傷は、被加工物をデバイスにした際に、被加工物本来の性能が発揮されずに、電気特性が悪かったり、強度が弱くなることにつながるため、被加工物に存在しないことが好ましい。仕上げ加工時間を短縮できると共に、潜傷を何らかの手段で限りなくゼロにし、被加工物の表面をデバイスで求められる程度に平坦に仕上げたい。 Regarding the surface processing technology for flattening the surface of the workpiece, polishing using abrasive grains has the advantage that the processing time is shorter than that of the catalyst-based etching method. May cause scratches. Latent scratches formed on the workpiece cause the original performance of the workpiece not to be exhibited when the workpiece is used as a device, resulting in poor electrical characteristics or reduced strength. Preferably not present in the product. It is desirable to reduce the finishing time, to eliminate latent scratches by some means as much as possible, and to finish the surface of the workpiece as flat as required by the device.
 本発明は、被加工物の表面を平坦化する表面加工技術に関して、前記課題を解決するために、仕上加工時間を短縮できると共に、潜傷を限りなくゼロにし、被加工物の表面をデバイスで求められる程度に平坦に仕上げることができる被加工物の加工方法及び加工装置を提供することを目的とする。 The present invention relates to a surface processing technology for flattening the surface of a workpiece, in order to solve the above-mentioned problems, to shorten the finish processing time, reduce latent scratches to zero as much as possible, and apply a device to the surface of the workpiece with a device. It is an object of the present invention to provide a processing method and a processing apparatus for a workpiece which can be finished to a required flatness.
 上記課題を解決するために以下の手段がある。
<1>
 表面処理により被加工物に形成された潜傷を、被加工物の仕上加工前に、砥粒を使用しない化学反応又は紫外線光を利用した表面処理により、少なくとも30%以下に低減するように予め除去する潜傷除去工程と、
 前記潜傷除去工程の後に、被加工物表面の仕上加工を行う表面仕上工程と、を含む被加工物の加工方法。
<2>
 前記潜傷除去工程における前記砥粒を使用しない化学反応を利用した表面処理は、砥粒を使用しないケミカルエッチングやケミカルポリッシング、電気的な作用による処理又は紫外線光を照射する処理を行いながら行われる<1>に記載の被加工物の加工方法。
<3>
 前記紫外線光は、紫外光波長の光を照射するLEDランプであり、
 前記LEDランプからの発熱を、前記潜傷除去工程又は前記表面仕上工程に用いる<1>又は<2>に記載の加工方法。
<4>
 前記LEDランプからの発熱は、前記潜傷除去工程又は前記表面仕上工程において触媒基準エッチングにより加工を行う場合には、触媒基準エッチング加工に必要な熱として用いられる<3>に記載の被加工物の加工方法。
<5>
 <1>~<4>のいずれかに記載の前記潜傷除去工程及び前記表面仕上工程を実行する加工装置。
<6>
 <5>に記載の加工装置で使用する液体、気体、光透過部、光吸収部、光反射部、電極、紫外線照射部の少なくともいずれかの物質。
<7>
 <1>~<4>のいずれかに記載の潜傷除去工程により潜傷除去処理を行った被加工物。
The following means are available to solve the above problems.
<1>
Latent scratches formed on the workpiece by the surface treatment are reduced to at least 30% or less by a chemical reaction without using abrasive grains or a surface treatment using ultraviolet light before finishing the workpiece. A latent wound removing step for removing,
A surface finishing step of finishing the surface of the workpiece after the latent scratch removing step.
<2>
The surface treatment using a chemical reaction not using the abrasive grains in the latent scratch removal step is performed while performing chemical etching or chemical polishing without using the abrasive grains, a process by an electric action or a process of irradiating ultraviolet light. The method for processing a workpiece according to <1>.
<3>
The ultraviolet light is an LED lamp that emits light having an ultraviolet light wavelength,
The processing method according to <1> or <2>, wherein heat generated from the LED lamp is used in the latent scratch removing step or the surface finishing step.
<4>
The workpiece according to <3>, wherein heat generated from the LED lamp is used as heat necessary for catalyst-based etching when processing is performed by catalyst-based etching in the latent scratch removing step or the surface finishing step. Processing method.
<5>
A processing apparatus for performing the latent scratch removing step and the surface finishing step according to any one of <1> to <4>.
<6>
A substance used in the processing apparatus according to <5>, at least one of a liquid, a gas, a light transmitting section, a light absorbing section, a light reflecting section, an electrode, and an ultraviolet irradiation section.
<7>
A workpiece that has been subjected to the latent scratch removal process in the latent scratch removal step according to any one of <1> to <4>.
 以上のような本実施形態の被加工物の加工方法によれば、以下の効果を得ることができる。 According to the method for processing a workpiece of the present embodiment as described above, the following effects can be obtained.
 (1)被加工物の加工方法について、表面処理により被加工物に形成された潜傷を、被加工基板の仕上加工前に、砥粒を使用しない化学反応を利用した表面処理により、少なくとも30%以下に低減するように予め除去する潜傷除去工程と、潜傷除去工程の後に、被加工物の表面の仕上加工を行う表面仕上工程と、を含んで構成した。 (1) Regarding the processing method of the workpiece, at least 30 latent scratches formed on the workpiece by the surface treatment are subjected to a surface treatment using a chemical reaction without using abrasive grains before the finish processing of the substrate to be processed. %, And a surface finishing step of finishing the surface of the workpiece after the latent scratch removing step.
 これにより、砥粒を使用しない化学反応を使用した表面処理により、被加工物から仕上加工前に予め潜傷を除法するため、新たな潜傷を形成することなく、仕上加工では、被加工物の表面を仕上るだけで良くなる。従来は、潜傷がある状態から、潜傷を除去しながら表面の仕上加工を行っていた。
 また、CMPなどの機械的研磨で加工時間を短縮して被加工物である基板の表面の研磨を行った後に、潜傷除去工程では機械的研磨により形成された潜傷を、被加工物の表面から除去できる。よって、被加工物である基板に潜傷を存在させずに、被加工物である基板表面の平坦化品質を仕上げ加工で触媒基準エッチングを行う場合は担保できる。CMPで仕上加工を行う場合においても、既存の潜傷を除去しなくてよい分、新たに潜傷が発生するリスクを仕上加工時間が短くなることで最小に抑えることが可能になる。
 したがって、仕上加工前に潜傷を少なくとも30%以下にしてから、表面を仕上げるので、仕上加工で潜傷が発生するリスクを下げ、被加工物に潜傷を存在させずに、仕上加工時間を短縮可能であると共に、潜傷を限りなくゼロにし、被加工物の表面をデバイスで求められる程度に平坦に仕上げることができる。また、取り扱いが容易で、かつ、低コストで、被加工物の表面加工を行うことが可能である。
In this way, the surface treatment using a chemical reaction without using abrasive grains removes latent scratches from the workpiece in advance before finishing, so that no new latent scratch is formed. Just finishing the surface will improve. Conventionally, surface finishing has been performed while removing latent scratches from the state where latent scratches exist.
In addition, after the processing time is reduced by mechanical polishing such as CMP to polish the surface of the substrate as a workpiece, the latent scratch formed by mechanical polishing is removed in the latent scratch removal step. Can be removed from the surface. Therefore, it is possible to ensure that the surface of the substrate to be processed is subjected to the catalyst-based etching by the finishing process without causing any latent scratches on the substrate to be processed. Even in the case of performing the finish processing by CMP, the risk of newly generating a latent scratch can be minimized by shortening the finish processing time, because the existing latent scratch does not need to be removed.
Therefore, since the surface is finished after reducing the latent scratches to at least 30% or less before the finish processing, the risk of generating latent scratches in the finish processing is reduced, and the finish processing time is reduced without causing the workpiece to have latent scratches. In addition to being able to be shortened, latent scratches can be reduced to zero, and the surface of the workpiece can be finished as flat as required by the device. In addition, the surface of the workpiece can be easily processed at low cost.
 例えば、本発明であれば、仕上加工前に本発明の潜傷除去工程で潜傷を0個にした場合、仕上加工では潜傷除去を行う必要が無くなるので、表面の形成という最小限の表面加工で足りる。触媒基準エッチングで仕上加工を行う場合は、前加工で潜傷が0個であれば、仕上加工でも潜傷は発生しないため、表面を形成するだけで、潜傷が0個のままで加工を終えることが可能である。仕上加工がCMPの場合は、潜傷の状態で見れば、潜傷が0個から何個増えるのかの加工になる。本発明は、仕上加工がCMPの場合は、仕上CMPを表面が形成されるまでの短い時間だけ行うだけで足りる。よって、新規の潜傷が仕上加工で発生するリスクを、従来よりも減らすことができる。 For example, in the case of the present invention, if the number of latent scratches is reduced to zero in the latent scratch removal step of the present invention before the finish processing, the finish processing does not require the removal of latent scratches, so the formation of the surface is minimized. Processing is sufficient. When the finishing process is performed by the catalyst-based etching, if there are no latent scratches in the pre-processing, no latent scratches occur even in the finishing process. It is possible to finish. When the finishing process is CMP, it is a process of increasing the number of latent scratches from zero in the state of latent scratches. In the present invention, when the finishing process is CMP, it is sufficient that the finishing CMP is performed only for a short time until the surface is formed. Therefore, the risk that a new latent scratch is generated in the finishing process can be reduced as compared with the related art.
 従来のように、例えば被加工物の表面に数百個の潜傷が存在する状態から表面を形成しつつ、潜傷を少しでも0(ゼロ)に向けて行う加工では、従来は約100nmの厚み分だけ、潜傷を除去しようとした場合、加工レートの低くなりがちな仕上加工であるため、表面全面を除去する必要があった。この時、仕上げを仮に砥粒を使用したCMPで行う場合、従来は約100nmの厚み分だけ、仕上加工で除去しなければならない。仕上げを仮に砥粒を使用したCMPで行う場合は、加工前の表面から約100nmの厚み分が除去できるまで、常に新規の潜傷が発生するリスクが存在していた。また、従来のように、例えば被加工物の表面に数百個の潜傷が存在する状態から表面を形成しつつ、潜傷を少しでも0(ゼロ)に向けて行う加工の場合には、加工方法や被加工物の形状によっては、表面全面を均一に100nmずつ除去できる保証が無い。そのため、従来の方法では、被加工物の表面から均一に潜傷を除去できなかった場合、加工以前に発生した潜傷の取り残しの可能性もあった。本発明によれば、潜傷を予め除去することで、その問題を改善できる。なお、補足として、従来の技術説明において、潜傷の存在する深さが約100nmと記載したが、潜傷が残っている深さは、仕上げ工程前の工程までにおいて実施した加工の仕方や条件に依存する。よって、潜傷の存在する深さは、一律に約100nmとは限らない。 As in the past, for example, in a process of forming a surface from a state where several hundreds of latent scratches exist on the surface of a workpiece and aiming the latent scratch at least to 0 (zero), conventionally, a process of about 100 nm is used. When an attempt is made to remove latent scratches by the thickness of the surface, it is necessary to remove the entire surface because the finishing rate tends to be low. At this time, if the finishing is performed by CMP using abrasive grains, conventionally, only a thickness of about 100 nm must be removed by finishing. If the finishing is performed by CMP using abrasive grains, there is always a risk of generating new latent scratches until a thickness of about 100 nm can be removed from the surface before processing. Further, as in the conventional case, for example, in the case of processing in which a surface is formed from a state where several hundred latent scratches exist on the surface of the workpiece and the latent scratch is directed to 0 (zero) as much as possible, Depending on the processing method and the shape of the workpiece, there is no guarantee that the entire surface can be uniformly removed by 100 nm. For this reason, if the conventional method cannot uniformly remove the latent flaw from the surface of the workpiece, there is a possibility that the latent flaw generated before processing is left behind. According to the present invention, the problem can be improved by removing latent scratches in advance. As a supplement, in the description of the conventional technology, the depth at which the latent scratch exists is described as about 100 nm, but the depth at which the latent scratch remains is determined by the processing method and conditions performed up to the step before the finishing step. Depends on. Therefore, the depth at which the latent scratch is present is not always about 100 nm.
 また、例えば被加工物がSiCやGaNである場合には、SiCやGaNなどは、原子が規則正しく並んでいる結晶である。そのため、潜傷が存在すると、被加工物の表面上の結晶が壊れているのと同じである。これにより、その潜傷からリーク電流が発生するため、信頼性と性能に致命的な影響が出る。このような場合において、本発明によれば、潜傷を予め除去することで、その問題を改善できる。 例 え ば Further, for example, when the workpiece is SiC or GaN, SiC or GaN is a crystal in which atoms are regularly arranged. Thus, the presence of a latent flaw is the same as breaking a crystal on the surface of the workpiece. As a result, a leakage current is generated from the latent scratch, which has a fatal effect on reliability and performance. In such a case, according to the present invention, the problem can be improved by removing the latent scratch in advance.
 (2)潜傷除去工程における砥粒を使用しない化学反応を利用した表面処理は、電気的な作用による処理又は紫外線光を照射する処理を行いながら行うことが好ましい。そのため、触媒反応を高速化させることができるため、被加工物の表面処理の速度を向上できる。よって、被加工物から潜傷を除去する時間を短縮できる。 (2) The surface treatment using a chemical reaction without using abrasive grains in the latent scratch removal step is preferably performed while performing a treatment by an electric action or a treatment of irradiating ultraviolet light. Therefore, the speed of the catalytic reaction can be increased, and the speed of the surface treatment of the workpiece can be improved. Therefore, the time for removing the latent scratch from the workpiece can be reduced.
 潜傷除去工程の一例として、被加工物SiCに対してUV光(紫外線光)を照射して電気を用いることで、SiC表面(表面上の穴や溝も含む)を石英レンズ(SiO)にすることが出来る。この状態で、砥粒をもちいないケミカルポリッシングやケミカルエッチングを行うことでSiOを化学反応で溶かせば、SiC表面の潜傷除去が出来る。この手法では、仕上げ加工前に、被加工物の加工したい表面より、潜傷を、少なくとも30%以下、好ましくは10%以下、より好ましくは0%に、低減するように先に除去する。 As an example of the latent scratch removal step, the SiC surface (including holes and grooves on the surface) is made of quartz lens (SiO 2 ) by irradiating the workpiece SiC with UV light (ultraviolet light) and using electricity. It can be. In this state, by performing chemical polishing or chemical etching without using abrasive grains to dissolve SiO 2 by a chemical reaction, latent scratches on the SiC surface can be removed. In this method, before finishing, the latent scratch is first removed from the surface of the workpiece to be machined so as to reduce at least 30% or less, preferably 10% or less, more preferably 0%.
 なお、このUV光(紫外線光)を照射して潜傷を除去する手段には、砥粒を用いないと記載したが例外がある。
 SiOにも潜傷を発生させない砥粒が入ったスラリーは、被加工物SiCに潜傷を発生させない。そのため、SiOにも潜傷を発生させない砥粒が入ったスラリーは、本発明の潜傷除去工程で使用可能である。具体的には、SiOにも潜傷を発生させない砥粒が入ったスラリーは、被加工物SiCの表面の通常のCMPでは加工レートが見込めないため、従来のSiC加工では使用されていない。しかし、本発明では、SiC表面にUV光を照射してSiOにしながら加工をするので、SiOにも潜傷を発生させない砥粒が入ったスラリーを使用可能である。なお、SiOにも潜傷を発生させない砥粒が入ったスラリーの一例は、石英レンズ(SiO)の仕上加工でSiOを磨く際に使用するスラリーである。他の例として、GaNを加工する際に酸化ガリウムにも潜傷を発生させない砥粒が入ったスラリーがある。本発明では、GaN表面にUV光を照射して表面を酸化したガリウムにしながら加工をするので、GaNを加工する際に酸化ガリウムにも潜傷を発生させない砥粒が入ったスラリーを使用可能である。
 つまり、UV光を照射した後の表面状態を潜傷の発生無く仕上げることが出来る砥粒入りスラリーは、本発明の潜傷除去で例外的に良好に使用可能である。
 より限定するとすれば、UV光を照射した後の表面状態を潜傷の発生無く仕上げることが出来る加工レートが出ない砥粒入りスラリーは、本発明の潜傷除去で例外的に良好に使用可能である。
The means for removing latent scratches by irradiating this UV light (ultraviolet light) is described as not using abrasive grains, but there are exceptions.
A slurry containing abrasive grains that do not cause latent scratches in SiO 2 does not cause latent scratches in the workpiece SiC. Therefore, a slurry containing abrasive grains that do not generate latent scratches in SiO 2 can be used in the latent scratch removing step of the present invention. Specifically, a slurry containing abrasive grains that do not generate latent scratches in SiO 2 is not used in conventional SiC processing because a processing rate cannot be expected by ordinary CMP on the surface of the workpiece SiC. However, in the present invention, since the SiC surface is processed while irradiating UV light to form SiO 2 , a slurry containing abrasive grains that do not generate latent scratches can be used for SiO 2 . Incidentally, an example of the slurry abrasive does not generate a latent scratches on SiO 2 particle enters is a slurry used in polishing the SiO 2 in the finishing of the quartz lens (SiO 2). As another example, there is a slurry containing abrasive grains that do not cause latent damage on gallium oxide when processing GaN. In the present invention, since the processing is performed while irradiating the GaN surface with UV light to make the surface oxidized gallium, it is possible to use a slurry containing abrasive grains that do not cause latent scratches on gallium oxide when processing GaN. is there.
In other words, a slurry containing abrasive grains capable of finishing the surface state after irradiation with UV light without generating latent scratches can be used exceptionally well in the latent scratch removal of the present invention.
More specifically, a slurry containing abrasive grains that does not have a processing rate that can finish the surface state after irradiation with UV light without generating latent scratches can be used exceptionally well in removing latent scratches of the present invention It is.
 補足として、砥粒入りスラリーとUV光(紫外線光)との併用がスラリーの使用条件上難しい場合には、例えば加工反応が起こってしまう。スラリーが濁っていることで光が透過できないなどの場合は、例えば水と紫外線(UV)と電気とで、被加工物の表面に加工起点を設けておいて、液を排水し、その後、砥粒入りスラリーで研磨して、スラリーを止めて加工槽から除去する。再度、水と紫外線(UV)と電気とで、被加工物の表面に加工起点を設けておいて、その後、スラリーで研磨する。これらのことを繰り返してもよい。また、UVを被加工物へ照射する工程と、被加工物を研磨する工程とは異なる加工槽を往復して行う被加工物の加工を繰り返してもよい。 Additionally, when it is difficult to use the slurry containing abrasive grains in combination with UV light (ultraviolet light) due to the use conditions of the slurry, for example, a processing reaction occurs. In the case where the slurry cannot be transmitted because the slurry is turbid, for example, a processing starting point is provided on the surface of the workpiece with water, ultraviolet rays (UV) and electricity, and the liquid is drained. Polishing with a slurry containing particles stops the slurry and removes it from the processing tank. Again, a processing starting point is provided on the surface of the workpiece with water, ultraviolet rays (UV), and electricity, and then the workpiece is polished with a slurry. These may be repeated. Further, the process of irradiating the workpiece with UV and the process of polishing the workpiece may be repeated, and the processing of the workpiece performed by reciprocating in a processing tank different from the process of polishing the workpiece.
 なお、本発明に係る光照射触媒基準エッチング装置100は、前述した実施形態に限定されるものではなく、適宜変更することができる。 The light irradiation catalyst-based etching apparatus 100 according to the present invention is not limited to the above-described embodiment, and can be appropriately changed.
 また、別の観点から、本開示は、被加工物のクリーニング方法及びクリーニング装置に適用できる。
 従来、被加工物(基板など)に付着した白金を王水でクリーニングする方法が知られている(例えば、特許文献1(特開2012-64972号公報)参照)。Si基板(ウェハ)などの被加工物の表面を平坦に除去する加工(触媒基準エッチング法を利用した加工)を行うと、例えば、触媒基準エッチング法を利用した加工において触媒として白金を用いた場合に、加工後における被加工物表面に白金成分が付着した状態で残存する。これに対して、特許文献1に記載の技術は、被加工物を王水に浸漬させることで、被加工物の表面に付着した白金成分を除去する技術である。
Further, from another viewpoint, the present disclosure can be applied to a method and a device for cleaning a workpiece.
Conventionally, a method of cleaning platinum adhered to a workpiece (eg, a substrate) with aqua regia has been known (for example, see Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-64972)). When a process of flatly removing the surface of a workpiece such as a Si substrate (wafer) (a process using a catalyst-based etching method) is performed, for example, when platinum is used as a catalyst in a process using a catalyst-based etching method Then, the platinum component remains on the surface of the workpiece after the processing. On the other hand, the technique described in Patent Document 1 is a technique for removing a platinum component attached to the surface of a workpiece by immersing the workpiece in aqua regia.
 しかし、被加工物に付着した白金を王水でクリーニングするには、王水が人体への危険性が高く、かつ、王水を高温にするなどの別の設備が必要となり、困難である。そのため、被加工物(基板など)に付着した有害成分を容易に除去できるクリーニング方法が望まれる。 However, it is difficult to clean platinum adhered to a workpiece with aqua regia because the aqua regia has a high risk to the human body and requires other facilities such as raising the aqua regia to a high temperature. Therefore, a cleaning method that can easily remove harmful components attached to a workpiece (such as a substrate) is desired.
 本発明は、被加工物に付着した有害成分を容易に除去できる被加工物のクリーニング方法及びクリーニング装置を提供することを目的とする。 An object of the present invention is to provide a method and a device for cleaning a workpiece, which can easily remove harmful components attached to the workpiece.
 上記課題を解決するために以下の手段がある。
<1>
 品質を損なう有害成分が付着した被加工物を、前記有害成分及び前記被加工物との関係で触媒反応を生じさせる洗浄用物質に当接または近接させることで、前記洗浄用物質による触媒反応によって、前記被加工物の表面に付着した前記有害成分の全部又は一部を、前記被加工物の表面とともに除去する除去工程を含む被加工物のクリーニング方法。
<2>
 前記除去工程の後に、前記洗浄用物質の成分が付着した被加工物から、前記洗浄用物質の成分の全部又は一部を、ウェット洗浄、ドライ洗浄またはスクラブ洗浄の少なくともいずれかの手段により除去する洗浄工程を含む<1>に記載の被加工物のクリーニング方法。
<3>
 前記除去工程の前に、触媒の反応を阻害する触媒反応阻害成分を除去するために用いることが可能な液体、気体または紫外線(UV)の少なくともいずれかを前記洗浄用物質に作用させる工程を含む<1>又は<2>に記載の被加工物のクリーニング方法。
<4>
 <1>から<3>のいずれか1つに記載のクリーニング方法を実行するクリーニング装置。
<5>
 <1>から<3>のいずれか1つに記載の被加工物のクリーニング方法で使用される液体、気体、洗浄用物質やパッドの少なくともいずれかの物質。
<6>
 <1>から<5>のいずれか1つに記載の被加工物のクリーニング方法により洗浄が行われる被加工物。
The following means are available to solve the above problems.
<1>
The workpiece to which the harmful component that impairs the quality adheres is brought into contact with or close to a cleaning substance that causes a catalytic reaction in relation to the harmful component and the workpiece, thereby causing a catalytic reaction by the cleaning substance. A method of cleaning a workpiece, the method including a removal step of removing all or a part of the harmful component attached to the surface of the workpiece together with the surface of the workpiece.
<2>
After the removing step, all or a part of the components of the cleaning substance is removed from the workpiece to which the components of the cleaning substance are attached by at least one of wet cleaning, dry cleaning, and scrub cleaning. <1> The method for cleaning a workpiece according to <1>, including a cleaning step.
<3>
Before the removing step, the method includes a step of applying at least one of a liquid, a gas, and ultraviolet light (UV) to the cleaning substance, which can be used to remove a catalyst reaction inhibiting component that inhibits a reaction of a catalyst. The method for cleaning a workpiece according to <1> or <2>.
<4>
A cleaning device that performs the cleaning method according to any one of <1> to <3>.
<5>
A liquid, gas, at least one of a cleaning substance and a pad used in the method for cleaning a workpiece according to any one of <1> to <3>.
<6>
A workpiece to be cleaned by the method for cleaning a workpiece according to any one of <1> to <5>.
 以上のような本実施形態の被加工基板のクリーニング方法によれば、以下の効果を得ることができる。 According to the method for cleaning a substrate to be processed of the present embodiment as described above, the following effects can be obtained.
 (1)被加工基板のクリーニング方法について、品質を損なう有害成分が付着した被加工基板を、有害成分及び被加工基板との関係で触媒反応を生じさせる洗浄用物質に当接または近接させることで、洗浄用物質による触媒反応によって、被加工基板の表面に付着した有害成分の全部又は一部を、被加工物の表面の一部とともに除去する除去工程を含む。これにより、被加工基板をクリーニングする際に、被加工基板に付着した有害成分を効果的に除去できる。そして、被加工基板のクリーニングにおいて、管理や使用するために別の設備が必要な王水などを使用しなくてよいため、被加工基板(被加工物)に付着した有害成分を容易に除去できる。例えば、液や気体中においてNiやFeの成分からなる触媒を洗浄物質として使用すれば、被加工物の表面に付着したPt(白金)などの品質に悪影響を及ぼす有害物質を、煮沸王水を使用せずに、低減又は除去することができる。ここで、液は、超純水でもよい。液や気体は温度管理されている方が好ましい。 (1) A method of cleaning a substrate to be processed is such that a substrate to which a harmful component that impairs quality adheres is brought into contact with or close to a cleaning substance that causes a catalytic reaction in relation to the harmful component and the substrate to be processed. A removing step of removing all or a part of the harmful components attached to the surface of the substrate to be processed by a catalytic reaction with the cleaning substance together with a part of the surface of the workpiece. Thus, when cleaning the substrate to be processed, the harmful components attached to the substrate to be processed can be effectively removed. In cleaning the substrate to be processed, harmful components attached to the substrate to be processed (workpiece) can be easily removed because it is not necessary to use aqua regia or the like which requires another facility for management and use. . For example, if a catalyst composed of Ni or Fe is used as a cleaning substance in a liquid or gas, harmful substances such as Pt (platinum) attached to the surface of the workpiece and adversely affecting the quality can be removed using boiling water. It can be reduced or eliminated without use. Here, the liquid may be ultrapure water. It is preferable that the temperature of the liquid or gas is controlled.
 (2)また、除去工程の後に、洗浄用物質の成分が付着した被加工物から、洗浄用物質の成分の全部又は一部を、ウェット洗浄、またはスクラブ洗浄の少なくともいずれかの手段により除去する洗浄工程を含む。これにより、除去工程の後に、一般的なクリーニングを行うことで、第1メインクリーニング部13aのクリーニングの際に付着した洗浄用物質を容易に除去できる。 (2) After the removing step, all or a part of the components of the cleaning substance is removed from the workpiece to which the components of the cleaning substance are attached by at least one of wet cleaning and scrub cleaning. Including a washing step. Thus, by performing general cleaning after the removing step, the cleaning substance attached during the cleaning of the first main cleaning unit 13a can be easily removed.
 (3)また、除去工程の前に、触媒の反応を阻害する触媒反応阻害成分を除去するために用いることが可能な液体、気体または紫外線(UV)の少なくともいずれかを洗浄用物質に作用させる工程を含む。これにより、品質を損なう有害成分が付着した基板を洗浄用物質に当接または近接させる前に、触媒の反応を阻害する触媒反応阻害成分を除去するために用いることが可能な液体、気体または紫外線(UV)の少なくともいずれかを洗浄用物質に作用させることができるため、被加工基板をクリーニングする際に、被加工基板に付着した有害成分に対して、触媒反応を効果的に作用させることができる。 (3) Before the removal step, at least one of a liquid, a gas, and ultraviolet (UV) that can be used to remove a catalyst reaction-inhibiting component that inhibits the reaction of the catalyst is caused to act on the cleaning substance. Process. This makes it possible to remove liquid, gas, or ultraviolet light that can be used to remove the catalytic reaction-inhibiting component that inhibits the catalytic reaction before the substrate on which the harmful component that impairs the quality adheres is brought into contact with or close to the cleaning substance. Since at least one of (UV) can act on the cleaning substance, it is possible to effectively act a catalytic reaction on harmful components attached to the substrate when cleaning the substrate to be processed. it can.
 なお、本発明に係る光照射触媒基準エッチング装置100の基本構成において触媒を変更して実現したクリーニング装置は、前述した実施形態に限定されるものではなく、適宜変更することができる。 The cleaning device realized by changing the catalyst in the basic configuration of the light irradiation catalyst-based etching device 100 according to the present invention is not limited to the above-described embodiment, and can be appropriately changed.
 また、別の観点から、本開示は、例えば紫外線(UV)を利用(援用)した研磨装置(定盤や研磨用のパッド含む)に適用できる。特に触媒基準エッチング法を利用した平坦加工に好適に使用できるものであり、被加工物の表面を加工するために使用される光照射触媒基準エッチングの装置(定盤や研磨用のパッド含む)に関する。 From another viewpoint, the present disclosure can be applied to, for example, a polishing apparatus (including a surface plate and a polishing pad) utilizing (involving) ultraviolet light (UV). Particularly, the present invention relates to a light irradiation catalyst-based etching apparatus (including a surface plate and a polishing pad) used for processing a surface of a workpiece, which can be suitably used for flat processing using a catalyst-based etching method. .
 近年、触媒基準エッチング法のメリットを延ばし、触媒基準エッチング法のデメリットを補完するために、被加工物の表面にダメージを残すことなく平坦度を高めるように、被加工物の表面に光を照射させながら被加工物の平坦加工を行う光照射触媒基準エッチング法が提案されている(例えば、特許文献1(特開2012-64972号公報)参照)。 In recent years, in order to extend the merits of the catalyst-based etching method and complement the disadvantages of the catalyst-based etching method, light is irradiated on the surface of the workpiece so as to increase the flatness without leaving damage on the surface of the workpiece. There has been proposed a light irradiation catalyst-based etching method for flattening a workpiece while performing the same (for example, see Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-64972)).
 特許文献1の段落[0032]などに記載の光照射触媒基準エッチング法を用いた光照射触媒基準エッチング装置は、処理液で内部が満たされた容器と、定盤回転軸の上端に連結されて容器内に回転自在に配置され容器の底面を兼ねる定盤と、ホルダ回転軸の下端に連結されて被加工面の表面を下向きにした状態で被加工物を着脱自在に保持するホルダと、定盤の下方に配置される光源と、を有している。定盤は、光透過性に優れた固体酸性触媒、例えば石英によって構成されている。被加工物の下側の表面には、光源により、定盤を通じて、光、例えば紫外線光が照射される。なお、定盤は、光透過性に優れたサファイアやジルコニアなどで構成されていてもよい。触媒基準エッチング法では、被加工物のステップ端から除去反応が進行する。これに加えて、紫外線を照射する光源を備えることで、紫外線光を受けた被加工物のステップ端以外からも触媒基準エッチング法の反応による加工が可能になる。 A light irradiation catalyst reference etching apparatus using a light irradiation catalyst reference etching method described in paragraph [0032] of Patent Document 1 and the like is connected to a container filled with a processing liquid and an upper end of a platen rotating shaft. A surface plate rotatably disposed in the container and also serving as the bottom surface of the container; and a holder connected to the lower end of the holder rotating shaft and detachably holding the workpiece with the surface of the surface to be processed facing downward. A light source disposed below the board. The platen is made of a solid acidic catalyst having excellent light transmittance, for example, quartz. The lower surface of the workpiece is irradiated with light, for example, ultraviolet light, by a light source through a surface plate. Note that the surface plate may be made of sapphire, zirconia, or the like having excellent light transmittance. In the catalyst-based etching method, a removal reaction proceeds from a step end of a workpiece. In addition, by providing a light source for irradiating ultraviolet light, it is possible to perform processing by a reaction based on the catalyst-based etching method from a portion other than the step end of the workpiece that has received the ultraviolet light.
 従来の光照射触媒基準エッチング法に用いられる定盤は、紫外線照射部の光源から照射される紫外線光の透過性に優れた材料、例えば石英などを材料として形成されている。近年、被加工物の大型化のニーズが発生し、今後は、より大型化していく可能性も高い。被加工物のサイズが大型化することで、被加工物の単位面積当たりの荷重を保とうとすると、光透過可能な定盤に高荷重がかかる必要性が生じ、定盤へのモーメント加重も増加する。定盤は、厚みが従来のものと同じままで、サイズが大型化すると、例えば石英などを材料として形成されているため、強度が弱く、破損しやすい。一方、定盤の厚みを破損しないように厚くすると、コスト増につながる。そのため、光照射触媒基準エッチング装置において、紫外線照射部からの光を被加工物の被加工面まで透過しつつ、強度も確保されたコスト増につながらない光透過可能な定盤が必要であった。 定 The surface plate used in the conventional light irradiation catalyst-based etching method is formed of a material having excellent transparency of ultraviolet light irradiated from a light source of an ultraviolet irradiation unit, such as quartz. In recent years, there has been a need to increase the size of a workpiece, and there is a high possibility that the size of the workpiece will increase in the future. As the size of the workpiece increases, if the load per unit area of the workpiece is to be maintained, it becomes necessary to apply a high load to the light-transmittable surface plate, and the moment load on the surface plate also increases. I do. When the size of the surface plate is increased while maintaining the same thickness as that of the conventional plate, the surface plate is formed of, for example, quartz or the like, and therefore has low strength and is easily damaged. On the other hand, if the thickness of the surface plate is increased so as not to be damaged, the cost increases. Therefore, in the light irradiation catalyst-based etching apparatus, a surface plate capable of transmitting light from an ultraviolet irradiation unit to a surface to be processed of a workpiece and securing the strength and not causing an increase in cost is required.
 本発明は、強度を確保できると共に紫外線照射部からの光を被加工物の被加工面まで透過可能な定盤を備える例えば紫外線(UV)を利用(援用)した研磨装置を提供することを目的とする。特に光照射触媒基準エッチング装置を提供することを目的とする。 An object of the present invention is to provide a polishing apparatus utilizing (incorporating), for example, ultraviolet light (UV) having a surface plate capable of securing strength and transmitting light from an ultraviolet irradiation unit to a surface to be processed of a workpiece. And In particular, it is an object of the present invention to provide a light irradiation catalyst reference etching apparatus.
 上記課題を解決するために以下の手段がある。
<1>
 光照射触媒基準エッチングに用いられ、被加工物の加工に有効な波長の光を出射する光照射部と、
 前記光照射部から出射された光が通過する1又は複数の定盤側貫通開口を有し、前記光照射部により出射された光を透過させることに適さない材料により形成される定盤と、
 前記定盤の上方側に配置され、前記光照射部により出射された光が通過する1又は複数の底板側貫通開口を有する底板を備える桶部と、
 前記1又は複数の底板側貫通開口を塞ぐように前記桶部に配置される光透過部材と、
 前記桶部における前記底板の上方側に配置されるパッド部と、を備える光照射触媒基準エッチング装置。
<2>
 前記定盤は、金属材料、紫外線に耐性を有すると共に強度を有する材料又は紫外線に耐性を有する表面処理が施されている材料で形成される<1>に記載の光照射触媒基準エッチング装置。
<3>
 前記桶部は、前記定盤に対して着脱可能である<1>又は<2>に記載の光照射触媒基準エッチング装置。
<4>
 被加工物の加工に有効な波長の光を透過する前記光透過部材は、止水処理部において前記底板に止水処理が施された状態で取り付けられており、
 前記1又は複数の定盤側貫通開口は、前記光透過部材における前記止水処理部に対応しない部分に設けられる<1>から<3>のいずれか1項に記載の光照射触媒基準エッチング装置。
<5>
 前記定盤、前記桶部及び前記パッド部のうちの少なくともいずれかは、90度以下の水成分又は酸素成分の少なくともいずれかに耐性を有する<1>から<4>のいずれか1項に記載の光照射触媒基準エッチング装置。
<6>
 <1>から<5>に記載の光照射触媒基準エッチング装置で使用する定盤、桶部、光透過部材、触媒パッドの少なくともいずれかの物質。
<7>
 光照射触媒基準エッチングに用いられ、被加工物の加工に有効な波長の光を出射する光照射部と、
 前記光照射部から出射された光が通過する1又は複数の定盤側貫通開口を有し、前記光照射部により出射された光を透過させることに適さない材料により形成される定盤と、
 前記定盤の周縁から立ち上がる周壁部と、
 前記1又は複数の定盤側貫通開口を塞ぐように前記定盤に配置される光透過部材と、
 前記定盤の上方側に配置されるパッド部と、を備える光照射触媒基準エッチング装置。
The following means are available to solve the above problems.
<1>
A light irradiation unit that is used for light irradiation catalyst-based etching and emits light having a wavelength that is effective for processing a workpiece;
A surface plate having one or a plurality of platen-side through openings through which light emitted from the light irradiation unit passes, and formed of a material that is not suitable for transmitting light emitted by the light irradiation unit;
A tub portion provided with a bottom plate having one or a plurality of bottom plate-side through openings, which is disposed above the surface plate and through which light emitted by the light irradiation unit passes,
A light transmitting member arranged in the tub portion to close the one or more bottom plate side through openings;
A light irradiation catalyst-based etching apparatus, comprising: a pad portion disposed above the bottom plate in the tub portion.
<2>
The light irradiation catalyst reference etching apparatus according to <1>, wherein the platen is formed of a metal material, a material having resistance to ultraviolet light and having strength, or a material having a surface treatment having resistance to ultraviolet light.
<3>
The light irradiation catalyst reference etching apparatus according to <1> or <2>, wherein the tub portion is detachable from the surface plate.
<4>
The light transmitting member that transmits light having a wavelength that is effective for processing the workpiece is attached in a state where the bottom plate has been subjected to water stop processing in a water stop processing unit,
The light-irradiation catalyst-based etching apparatus according to any one of <1> to <3>, wherein the one or a plurality of platen-side through-openings are provided in a portion of the light transmitting member that does not correspond to the water stopping section. .
<5>
At least any one of the surface plate, the trough part, and the pad part is resistant to at least one of a water component and an oxygen component of 90 degrees or less, according to any one of <1> to <4>. Light irradiation catalyst based etching equipment.
<6>
At least one of a surface plate, a trough, a light transmitting member, and a catalyst pad used in the light irradiation catalyst reference etching apparatus according to any one of <1> to <5>.
<7>
A light irradiation unit which is used for light irradiation catalyst-based etching and emits light having a wavelength effective for processing a workpiece;
A surface plate having one or a plurality of surface plate side through openings through which light emitted from the light irradiation unit passes, and formed of a material that is not suitable for transmitting light emitted by the light irradiation unit,
A peripheral wall rising from the periphery of the surface plate;
A light transmitting member disposed on the surface plate so as to close the one or more surface plate side through openings;
A light irradiation catalyst-based etching apparatus, comprising: a pad portion disposed above the surface plate.
 以上のような本実施形態の光照射触媒基準エッチング装置によれば、以下の効果を得ることができる。 According to the light irradiation catalyst-based etching apparatus of the present embodiment as described above, the following effects can be obtained.
 (1)光照射触媒基準エッチング装置100、200は、触媒基準エッチングに用いられ、紫外線光を出射するUVランプ125、225と、UVランプ125、225から出射された紫外線光が通過する複数のスリット溝141又は複数の貫通孔211aを有し、紫外線光を透過しない材料により形成される支持定盤140、210と、支持定盤140、210の上方側に配置され、紫外線光が通過する複数のスリット溝151a又は複数の貫通孔221aを有する底板151、221を備えた桶容器150、220と、複数のスリット溝151a又は複数の貫通孔221aを塞ぐように桶容器150、220に配置される紫外線透過部材157、212と、桶容器150、220における底板151、221の上方側に配置される触媒パッド155、240と、を備える。これにより、UVランプ125、225により照射される紫外線光により触媒基準エッチングを促進させつつ、支持定盤140、210の強度を確保できる。 (1) The light irradiation catalyst-based etching apparatuses 100 and 200 are used for catalyst-based etching, and are UV lamps 125 and 225 that emit ultraviolet light, and a plurality of slits through which ultraviolet light emitted from the UV lamps 125 and 225 passes. Support plats 140 and 210 having a groove 141 or a plurality of through holes 211a and formed of a material that does not transmit ultraviolet light, and a plurality of support plats disposed above the support plats 140 and 210 and through which the ultraviolet light passes. Vat containers 150 and 220 provided with bottom plates 151 and 221 having slit grooves 151a or a plurality of through holes 221a, and ultraviolet rays arranged in vat containers 150 and 220 so as to cover the plurality of slit grooves 151a or the plurality of through holes 221a. Permeating members 157 and 212 and a catalyst disposed above bottom plates 151 and 221 in trough containers 150 and 220, respectively. It includes a head 155,240, the. Thus, the strength of the supporting platens 140 and 210 can be ensured while promoting the catalyst-based etching by the ultraviolet light emitted from the UV lamps 125 and 225.
 (2)また、支持定盤140、210は、金属材料、紫外線に耐性を有すると共に強度を有する材料又は紫外線に耐性を有する表面処理が施されている材料で形成される。これにより、支持定盤140、210の強度を確保できる。よって、支持定盤140、210の上方側に配置される部材の総荷重が増大しても、支持定盤140、210の破損を抑制できる。被加工物Wの大口径化に伴う触媒基準エッチング加工時の接触面積の増大により、単位面積当たりの荷重を維持して増加する目的で、加工時に加える加重が増大しても、支持定盤140、210の破損を抑制できる。これにより、被加工物の大型化による定盤部分の大型化の影響で荷重が増加するが、モーメント方向からの荷重による支持定盤140、210の破損を抑制できる。 {Circle around (2)} The supporting platens 140 and 210 are formed of a metal material, a material having a resistance to ultraviolet rays and having a strength, or a surface-treated material having a resistance to ultraviolet rays. Thereby, the strength of the support bases 140 and 210 can be secured. Therefore, even if the total load of the members arranged above the support surface plates 140 and 210 increases, breakage of the support surface plates 140 and 210 can be suppressed. Due to the increase in the contact area at the time of the catalyst-based etching processing accompanying the increase in the diameter of the workpiece W, even if the load applied during the processing increases for the purpose of maintaining and increasing the load per unit area, the support surface plate 140 , 210 can be suppressed. As a result, the load increases due to the effect of increasing the size of the surface plate portion due to the increase in the size of the workpiece. However, breakage of the support surface plates 140 and 210 due to the load from the moment direction can be suppressed.
 (3)また、桶容器150、220は、支持定盤140、210に対して着脱可能である。そのため、桶容器150、220の取り扱いが容易である。また、CMPの研磨装置に桶容器150、220を取り付けるスペースがある場合には、研磨装置に桶容器150、220を取り付けることで、水を用いた触媒基準エッチングにおいて、触媒パッド155、240を使用することが可能になる。支持定盤140、210に光を下から照射する穴が無い場合などには、触媒パッド155、240には、貫通した溝が形成されていなくてよい。 (3) Further, the tub containers 150 and 220 are detachable from the support surface plates 140 and 210. Therefore, handling of the tub containers 150 and 220 is easy. Also, if there is space for attaching the tub containers 150 and 220 to the CMP polishing apparatus, the catalyzer pads 155 and 240 can be used in the catalyst-based etching using water by attaching the tub containers 150 and 220 to the polishing apparatus. It becomes possible to do. In the case where there is no hole for irradiating light from below on the support platens 140, 210, the catalyst pads 155, 240 need not have a penetrating groove.
 (4)また、紫外線透過部材157、212は、止水処理部157a、212aにおいて底板151、221に止水処理が施された状態で取り付けられており、支持定盤140、210における複数のスリット溝141又は複数の貫通孔211aは、紫外線透過部材157、212における止水処理部157a、212aに対応しない部分に設けられる。そのため、止水処理部157a、212aにおいて、UVランプ125、225から照射される紫外線光による劣化を生じさせることを抑制できる。 (4) Further, the ultraviolet transmitting members 157 and 212 are attached to the bottom plates 151 and 221 in the water stopping sections 157a and 212a in a state where the water blocking processing is performed. The groove 141 or the plurality of through-holes 211a are provided in portions of the ultraviolet transmitting members 157, 212 that do not correspond to the water stopping sections 157a, 212a. Therefore, it is possible to prevent the water stoppage processing units 157a and 212a from deteriorating due to the ultraviolet light emitted from the UV lamps 125 and 225.
 なお、本発明に係る光照射触媒基準エッチング装置100は、前述した実施形態に限定されるものではなく、適宜変更することができる。 The light irradiation catalyst-based etching apparatus 100 according to the present invention is not limited to the above-described embodiment, and can be appropriately changed.
 また、前記実施形態の第1装置例及び第2装置例について、以下の他の実施形態に変更してもよい。
 例えば、図2~図6に示す前記実施形態の光照射触媒基準エッチング装置100の第1装置例において、光照射触媒基準エッチング装置100の支持定盤140は、前記第1装置例のスリット溝141に代えて、紫外線を照射したい被加工物Wの加工したい表面全体や大部分の大きさに対応した紫外線用の紫外線照射用開口を有していても良い。そして、紫外線照射用開口の下にUVランプ125を設けて、UVランプ125により紫外線を照射する。UVランプ125により紫外線を照射した後に、研磨ヘッド163による研磨加工を行う。
Further, the first device example and the second device example of the above embodiment may be changed to other embodiments described below.
For example, in the first apparatus example of the light irradiation catalyst-based etching apparatus 100 of the embodiment shown in FIGS. 2 to 6, the support platen 140 of the light irradiation catalyst-based etching apparatus 100 has the slit grooves 141 of the first apparatus example. Instead, the workpiece W to be irradiated with ultraviolet light may have an ultraviolet light irradiation opening for ultraviolet light corresponding to the entire surface to be processed or most of the size. Then, a UV lamp 125 is provided below the UV irradiation opening, and UV light is irradiated by the UV lamp 125. After irradiating ultraviolet rays with the UV lamp 125, polishing processing is performed by the polishing head 163.
 そして、研磨加工を行う場合には、図2において、基台110を平行レール(図示せず)に沿って図2おける紙面の前後方向(図2を貫く方向)に移動させ、紫外線照射用開口が無い部分で、前記実施形態と同様に、主軸160を下降させて、研磨ヘッド163に支持又は保持させた被加工物Wを、触媒パッド155に当接または近接させる。その後、支持定盤140を駆動モータ182により図2の紙面の左右へ振動させ、この状態で、基台110を一定範囲で揺動させる。主軸160の回転は、この状態で、させてもさせなくても任意で良い。加工後、再び紫外線照射用開口へ被加工物Wを戻して紫外線を照射した後に、研磨加工する動作を繰り返しても良い。なお、UVランプ125に被加工物Wを対向させた状態で、主軸160(研磨ヘッド163)を回転させれば、被加工物Wの研磨面に、より均一に、紫外線を照射可能である。
 この手法のメリットは、被加工物Wの加工したい表面の全面に一度紫外線を照射できるため、表面をあと数nm加工したい場合などに、往復回数を設定することで、数nmにおおよそ近い量で被加工物Wの表面を加工する制御が可能である。
When the polishing process is performed, the base 110 is moved along a parallel rail (not shown) in the front-rear direction (the direction penetrating through FIG. 2) in FIG. In the portion where there is no, as in the above-described embodiment, the main shaft 160 is lowered to bring the workpiece W supported or held by the polishing head 163 into contact with or close to the catalyst pad 155. Thereafter, the support platen 140 is vibrated to the left and right on the paper surface of FIG. 2 by the drive motor 182, and in this state, the base 110 is swung within a certain range. In this state, the rotation of the main shaft 160 may or may not be optional. After the processing, the workpiece W may be returned to the ultraviolet irradiation opening again to irradiate the ultraviolet rays, and then the polishing operation may be repeated. If the spindle 160 (polishing head 163) is rotated with the workpiece W facing the UV lamp 125, the polishing surface of the workpiece W can be more uniformly irradiated with ultraviolet rays.
The merit of this method is that since the entire surface of the surface of the workpiece W to be processed can be irradiated with ultraviolet light once, when the surface is to be processed by several nm, for example, by setting the number of reciprocations, the amount can be reduced to a value close to several nm. It is possible to control the processing of the surface of the workpiece W.
 また、例えば、図7~図10に示す前記実施形態の光照射触媒基準エッチング装置200の第2装置例の場合は、支持定盤210が加工時に回転する方式のため、第1装置例の他の実施形態に類する動作をさせるために、支持定盤210は、外径部に、前記第2装置例の底板側貫通開口221aに代えて、紫外線を照射したい被加工物Wの加工したい表面全体や大部分の大きさ分に対応した紫外線照射用開口を有していても良い。そして、紫外線照射用開口の下に光照射部225を設けて、研磨ヘッド260を上げた状態で、外径部において、光照射部225により紫外線を照射する。光照射部225により紫外線を照射した後に、光照射部225を支持定盤210の内径部へ移動させる。 Further, for example, in the case of the second apparatus example of the light irradiation catalyst reference etching apparatus 200 of the embodiment shown in FIG. 7 to FIG. 10, since the support platen 210 rotates at the time of processing, other than the first apparatus example In order to perform an operation similar to the above embodiment, the supporting surface plate 210 is provided on the outer diameter portion instead of the bottom plate side through-opening 221a of the second device example, and the entire surface of the workpiece W to be irradiated with the ultraviolet light to be processed. Alternatively, an opening for ultraviolet irradiation corresponding to most of the size may be provided. Then, a light irradiation unit 225 is provided below the ultraviolet irradiation opening, and ultraviolet light is irradiated from the light irradiation unit 225 to the outer diameter portion with the polishing head 260 raised. After irradiating the light irradiating unit 225 with ultraviolet light, the light irradiating unit 225 is moved to the inner diameter portion of the support platen 210.
 そして、研磨ヘッド260に支持又は保持された被加工物Wを下げて、触媒パッド240に当接又は近接させる。続けて、触媒基準エッチング加工を行い、加工後、再び、研磨ヘッド260を上げた状態で、光照射部225を外径部へ移動し、被加工物Wへの紫外線照射を行う。この動作を繰り返す。なお、内径部や中央部に光照射部225を設けることで、研磨ヘッド260を上げた状態で、光照射後に外径部で触媒基準エッチング加工の加工動作を繰り返しても良い。内径部や中央部に光照射部225が存在する場合は、その周辺に中空の駆動機構270の下方側回転軸271が存在する構造になる。外径部をベアリングで保持しても良い。
 この手法のメリットは、被加工物Wの加工したい表面の全面に一度紫外線を照射できるため、表面をあと数nm加工したい場合などに、往復回数を設定することで、数nmにおおよそ近い量で被加工物Wの表面を加工する制御が可能である。
Then, the workpiece W supported or held by the polishing head 260 is lowered and brought into contact with or close to the catalyst pad 240. Subsequently, the catalyst-based etching process is performed. After the processing, the light irradiation unit 225 is moved to the outer diameter portion with the polishing head 260 raised again, and the workpiece W is irradiated with ultraviolet light. This operation is repeated. By providing the light irradiating unit 225 at the inner diameter portion or the center portion, the processing operation of the catalyst-based etching process may be repeated at the outer diameter portion after the light irradiation with the polishing head 260 raised. When the light irradiation part 225 is present at the inner diameter part or the center part, the lower rotation shaft 271 of the hollow drive mechanism 270 is present around the light irradiation part 225. The outer diameter portion may be held by a bearing.
The merit of this method is that since the entire surface of the surface of the workpiece W to be processed can be irradiated with ultraviolet light once, when the surface is to be processed by several nm, for example, by setting the number of reciprocations, the amount can be reduced to a value close to several nm. It is possible to control the processing of the surface of the workpiece W.
 200 触媒基準エッチング装置(触媒基準装置)
 240 触媒パッド(触媒体)
 W 被加工物
200 Catalyst based etching system (catalyst based system)
240 Catalyst pad (catalyst body)
W Workpiece

Claims (6)

  1.  被加工物の表面を触媒基準の反応によって当接又は近接した部分のみ除去するための触媒層を備えた触媒体と、
     前記被加工物の表面を前記触媒体の表面に触媒膜が剥がれないように当接又は近接させた後に、触媒基準の反応による除去に必要な表面形成処理動作を実行する処理実行部と、を備える触媒基準装置。
    A catalyst body provided with a catalyst layer for removing only a portion in contact with or close to the surface of the workpiece by a catalyst-based reaction,
    After the surface of the workpiece is abutted or brought close to the surface of the catalyst body so that the catalyst film is not peeled off, a processing execution unit that performs a surface forming processing operation required for removal by a catalyst-based reaction, Equipped catalyst reference device.
  2.  前記触媒基準の反応とは、触媒基準エッチング又は触媒基準クリーニングであり、
     前記処理実行部により実行される処理動作は、触媒基準エッチングに必要な平坦化の処理又は触媒基準クリーニングの成立に必要な主動作の少なくともいずれかである請求項1に記載の触媒基準装置。
    The catalyst-based reaction is catalyst-based etching or catalyst-based cleaning,
    2. The catalyst reference device according to claim 1, wherein the processing operation performed by the processing execution unit is at least one of a flattening process required for catalyst-based etching and a main operation required for establishing catalyst-based cleaning. 3.
  3.  前記触媒体の表面と前記被加工物の表面とが平行な状態と、前記触媒体の表面と前記被加工物の表面とが平行ではない状態とを含む範囲において可動するように、前記触媒体及び前記被加工物の少なくともいずれかを傾かせることが可能な傾き可動機構部を備える請求項1又は2に記載の触媒基準装置。 The catalyst body such that the surface of the catalyst body and the surface of the workpiece are parallel, and the catalyst body is movable in a range including a state in which the surface of the catalyst body and the surface of the workpiece are not parallel. 3. The catalyst reference device according to claim 1, further comprising a tilt movable mechanism that can tilt at least one of the workpieces. 4.
  4.  前記傾き可動機構部は、前記触媒体の表面又は前記被加工物の表面の表面方向において、前記触媒体の表面又は前記被加工物の表面の両端部の高さの差が0.01mm以上となる範囲まで、前記触媒体及び前記被加工物の少なくともいずれかを傾かせることが可能である請求項3に記載の触媒基準装置。 The inclination movable mechanism portion, in the surface direction of the surface of the catalyst body or the surface of the workpiece, the difference in height between both ends of the surface of the catalyst body or the surface of the workpiece is 0.01 mm or more. The catalyst reference device according to claim 3, wherein at least one of the catalyst body and the workpiece can be tilted to a certain extent.
  5.  前記傾き可動機構部は、前記触媒体の表面に対する前記被加工物の表面の傾斜角度が相対的に0.03°以上になるように、前記触媒体及び前記被加工物の少なくともいずれかを傾かせることが可能である請求項3に記載の触媒基準装置。 The tilt movable mechanism unit tilts at least one of the catalyst body and the workpiece such that a tilt angle of a surface of the workpiece with respect to a surface of the catalyst body is relatively 0.03 ° or more. The catalyst reference device according to claim 3, wherein the reference device can be heated.
  6.  請求項1から5のいずれかに記載の装置動作に対応した触媒パッド。 A catalyst pad corresponding to the operation of the device according to any one of claims 1 to 5.
PCT/JP2019/030190 2018-08-31 2019-08-01 Catalyst reference device WO2020044927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019555055A JP6757011B2 (en) 2018-08-31 2019-08-01 Catalyst reference device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-163884 2018-08-31
JP2018163884 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020044927A1 true WO2020044927A1 (en) 2020-03-05

Family

ID=69643527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030190 WO2020044927A1 (en) 2018-08-31 2019-08-01 Catalyst reference device

Country Status (2)

Country Link
JP (1) JP6757011B2 (en)
WO (1) WO2020044927A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200411331A1 (en) * 2019-06-28 2020-12-31 Flosfia Inc. Method of etching object and etching device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297804A (en) * 2002-01-31 2003-10-17 Ebara Corp Substrate processing device and method
JP2011129596A (en) * 2009-12-15 2011-06-30 Osaka Univ Polishing tool and polishing apparatus
WO2015159973A1 (en) * 2014-04-18 2015-10-22 株式会社荏原製作所 Substrate processing device, substrate processing system, and substrate processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187948B1 (en) * 2016-03-11 2017-08-30 東邦エンジニアリング株式会社 Flat processing apparatus, operation method thereof, and manufacturing method of workpiece

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297804A (en) * 2002-01-31 2003-10-17 Ebara Corp Substrate processing device and method
JP2011129596A (en) * 2009-12-15 2011-06-30 Osaka Univ Polishing tool and polishing apparatus
WO2015159973A1 (en) * 2014-04-18 2015-10-22 株式会社荏原製作所 Substrate processing device, substrate processing system, and substrate processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200411331A1 (en) * 2019-06-28 2020-12-31 Flosfia Inc. Method of etching object and etching device

Also Published As

Publication number Publication date
JPWO2020044927A1 (en) 2020-09-03
JP6757011B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP4887266B2 (en) Flattening method
US20190228994A1 (en) Flattening method and flattening apparatus
KR101692574B1 (en) Polishing method and polishing apparatus
KR102515687B1 (en) Wafer producing apparatus
JP5682076B2 (en) Polishing tool and polishing apparatus
KR20010021285A (en) Apparatus and method for cleaning semiconductor substrate
KR20180134285A (en) Apparatus for generating wafer
US6119708A (en) Method and apparatus for cleaning the edge of a thin disc
SG176107A1 (en) Flow-through washing method and flow-through washing apparatus
US10256120B2 (en) Systems, methods and apparatus for post-chemical mechanical planarization substrate buff pre-cleaning
KR20190017680A (en) Dressing apparatus and dressing method for substrate rear surface polishing member
WO2020044927A1 (en) Catalyst reference device
JP2020035988A (en) Workpiece cleaning method and cleaning device
JP4599323B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP2020035987A (en) Method and apparatus for working workpiece
JP2020035989A (en) Light irradiation catalyst-based etching device
JP2015128161A (en) Polishing method
TW202042298A (en) Catalyst reference device
JP6887016B2 (en) Gettering layer forming apparatus, gettering layer forming method and computer storage medium
JP2003141717A (en) Method of manufacturing glass substrate for information recording medium
JP2020178085A (en) Surface removal processing device
JP7426898B2 (en) Cleaning body, cleaning device and cleaning method
JPH11320385A (en) Polishing method and its device
JP2023084785A (en) Washing method and washing device of plate for holding wafer substrate
KR20050070767A (en) An apparatus for eliminating particle of cleaning member of semiconductor wafer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019555055

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856363

Country of ref document: EP

Kind code of ref document: A1