WO2020044604A1 - Particle beam accelerator and particle beam therapy system - Google Patents

Particle beam accelerator and particle beam therapy system Download PDF

Info

Publication number
WO2020044604A1
WO2020044604A1 PCT/JP2019/005847 JP2019005847W WO2020044604A1 WO 2020044604 A1 WO2020044604 A1 WO 2020044604A1 JP 2019005847 W JP2019005847 W JP 2019005847W WO 2020044604 A1 WO2020044604 A1 WO 2020044604A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
particle beam
frequency
electric field
frequency electric
Prior art date
Application number
PCT/JP2019/005847
Other languages
French (fr)
Japanese (ja)
Inventor
知新 堀
隆光 羽江
孝道 青木
孝義 関
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020044604A1 publication Critical patent/WO2020044604A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/10Arrangements for ejecting particles from orbits

Definitions

  • the present invention relates to a particle accelerator and a particle therapy system.
  • Patent Document 1 discloses a voltage source for sweeping a high frequency voltage in a cavity to accelerate particles from a particle source which is a plasma column, and a particle source in a cavity. It is described that an accelerator is constituted by a magnet moving on an orbit, a regenerator, and a ferromagnetic device arranged in a cavity with a space from the regenerator to eliminate a magnetic field bump formed by the magnet.
  • Patent Literature 1 discloses a configuration of a particle beam accelerator called a synchrocyclotron used in a particle beam therapy system.
  • a particle beam accelerator called a synchrocyclotron is an injection device that includes an ion source, a main magnetic field magnet that generates a main magnetic field for stably circulating the beam, and an acceleration cavity that applies a high-frequency electric field to accelerate the beam in the circumferential direction
  • a gradient magnet for intentionally displacing the beam from the balanced orbit and applying a magnetic field to the beam, and an exit channel for extracting the beam displaced from the balanced orbit outside the accelerator and guiding it to a downstream beam transport system.
  • the beam incident from the ion source orbits, feeling the main magnetic field.
  • the beam is accelerated to a predetermined energy by adjusting the phase of the high-frequency electric field for acceleration so as to match the timing of the orbiting beam passing through the gap of the acceleration cavity.
  • the frequency at which the beam circulates varies depending on the energy, so that the frequency of the high-frequency electric field for acceleration needs to be modulated accordingly.
  • a gradient magnetic field including a quadrupole magnetic field and a hexapole magnetic field is applied to the beam that has reached a predetermined energy.
  • the betatron frequency in the beam orbiting plane that is, the horizontal tune is designed to be around 1 (typically 0.95 or more and less than 1). Increases, and the beam is greatly displaced from the equilibrium trajectory to reach the output channel.
  • the output channel is a magnet called a septum, and a magnetic field opposite to the main magnetic field is applied to the beam to expand the radius of curvature of the beam and completely depart the beam orbit from the equilibrium orbit.
  • the beam that has escaped from the equilibrium orbit jumps out of the accelerator and is guided to the irradiation device via the transport system. Since the energy of the beam extracted in this manner is fixed, the energy is adjusted by reducing the beam energy by passing the beam through a scatterer called a degrader at any stage up to the irradiation device.
  • the present invention includes a plurality of means for solving the above-mentioned problems.
  • a particle beam accelerator for generating a static magnetic field, a frequency modulatable and a beam acceleration
  • a first high-frequency electric field applying device that applies a high-frequency electric field for applying a high-frequency electric field
  • a second high-frequency electric field applying device that applies a high-frequency electric field having a frequency different from that of the first high-frequency electric field applying device.
  • FIG. 1 is a configuration diagram of a particle beam therapy system according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view of a main magnetic field magnet arranged in the accelerator of the particle beam therapy system according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the main magnetic field magnet according to the first embodiment taken along a vertical plane.
  • FIG. 3 is a plan view of the main magnetic field magnet according to the first embodiment as viewed from an intermediate plane. It is sectional drawing by the intermediate plane of the high frequency kicker in Example 1.
  • FIG. 3 is a cross-sectional view of the high-frequency kicker according to the first embodiment, taken along a vertical plane.
  • FIG. 3 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the first embodiment.
  • FIG. 3 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the first embodiment.
  • FIG. 3 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the first embodiment.
  • FIG. 9 is a plan view of a main magnetic field magnet according to a second embodiment of the present invention as viewed from an intermediate plane.
  • FIG. 10 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the second embodiment.
  • FIG. 10 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the second embodiment.
  • FIG. 10 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the second embodiment.
  • FIG. 10 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the second embodiment. It is sectional drawing by the intermediate plane of the high frequency kicker in Example 2.
  • the first problem is to share the output channel of the beam from low energy to high energy.
  • the second problem is to reduce the magnetic field required for the septum.
  • the third problem is to apply a gradient magnetic field selectively to the extracted beam.
  • a magnetic field is often used to generate a static gradient magnetic field near the beam path of the maximum energy in order to extract only the beam with the maximum energy.
  • a structure in which a gradient magnetic field is selectively applied to a beam of any energy from low energy to high energy for example, in the case of a proton beam therapy system, from 70 MeV to 230 MeV, as needed to extract. I need a way.
  • variable energy small particle beam accelerator which solves these three problems without using the above-described degrader, and a particle beam therapy apparatus including the accelerator will be described with reference to the drawings.
  • FIG. 1 is a configuration diagram of the particle beam therapy system according to the first embodiment.
  • FIG. 2 is a perspective view of the main magnetic field magnet arranged in the accelerator.
  • FIG. 3 is a sectional view of the main magnetic field magnet taken along a vertical plane.
  • 4 is a plan view of the main magnetic field magnet viewed from an intermediate plane,
  • FIG. 5 is a cross-sectional view of the high-frequency kicker taken along an intermediate plane,
  • FIG. 6 is a cross-sectional view of the high-frequency kicker taken along a vertical plane, and
  • FIGS. It is the top view which expanded one of the parts.
  • the particle beam therapy system 1001 is installed on the floor of a building (not shown).
  • the particle beam therapy system 1001 includes an ion beam generator 1002, a beam transport system 1013, a rotating gantry 1006, an irradiation device 1007, and a control system 1065.
  • the ion beam generator 1002 includes an ion source 1003 and an accelerator 1004 to which the ion source 1003 is connected. Details of the accelerator 1004 will be described later.
  • the beam transport system 1013 has a beam path 1048 reaching the irradiation device 1007, and a plurality of quadrupole electromagnets 1046, a deflection electromagnet 1041, and a plurality of quadrupole electromagnets are provided on the beam path 1048 from the accelerator 1004 toward the irradiation device 1007. 1047, a bending electromagnet 1042, quadrupole electromagnets 1049 and 1050, and bending electromagnets 1043 and 1044 are arranged in this order.
  • a part of the beam path 1048 of the beam transport system 1013 is installed in the rotating gantry 1006, and the bending electromagnet 1042, the quadrupole electromagnets 1049 and 1050, and the bending electromagnets 1043 and 1044 are also installed in the rotating gantry 1006.
  • the beam path 1048 is connected to an emission channel 1019 provided in the accelerator 1004.
  • the rotating gantry 1006 is configured to be rotatable about a rotating shaft 1045, and is a rotating device that rotates the irradiation device 1007 around the rotating shaft 1045.
  • the irradiation device 1007 includes two scanning electromagnets 1051 and 1052, a beam position monitor 1053, and a dose monitor 1054.
  • the scanning electromagnets 1051 and 1052, the beam position monitor 1053, and the dose monitor 1054 are arranged along the central axis of the irradiation device 1007, that is, along the beam axis.
  • the scanning electromagnets 1051 and 1052, the beam position monitor 1053, and the dose monitor 1054 are arranged in a casing (not shown) of the irradiation device 1007.
  • the beam position monitor 1053 and the dose monitor 1054 are arranged downstream of the scanning electromagnets 1051 and 1052.
  • the scanning electromagnet 1051 and the scanning electromagnet 1052 deflect the ion beam, respectively, and scan the ion beam in directions perpendicular to each other on a plane perpendicular to the central axis of the irradiation device 1007.
  • the beam position monitor 1053 measures the passing position of the irradiated beam.
  • the dose monitor 1054 measures the dose of the irradiated beam.
  • the irradiation device 1007 is attached to the rotating gantry 1006, and is arranged downstream of the bending electromagnet 1044.
  • a treatment table 1055 on which the patient 1056 lies is arranged so as to face the irradiation device 1007.
  • the control system 1065 includes a central control unit 1066, an accelerator / transport system control unit 1069, a scan control unit 1070, a rotation control unit 1088, and a database 1072.
  • the central controller 1066 has a central processing unit (CPU) 1067 and a memory 1068 connected to the CPU 1067.
  • the accelerator / transport system controller 1069, the scanning controller 1070, the rotation controller 1088, and the database 1072 are connected to the CPU 1067 in the central controller 1066.
  • the particle beam therapy system 1001 further has a treatment planning device 1073, and the treatment planning device 1073 is connected to the database 1072.
  • the irradiation energy and the irradiation angle of the particle beam are created as a treatment plan by the treatment planning device 1073 prior to the irradiation of the particle beam, and the irradiation is executed based on the treatment plan.
  • the CPU 1067 of the central controller 1066 reads various operation control programs related to irradiation of each device constituting the particle beam therapy system 1001 from the treatment plan stored in the database 1072, executes the read program, and executes the accelerator. Outputting a command via the transport system control device 1069, the scan control device 1070, and the rotation control device 1088, controls the operation of each device in the particle beam therapy system 1001.
  • the control processing of the operation to be executed may be integrated into one program, may be divided into a plurality of programs, or may be a combination thereof.
  • Part or all of the program may be realized by dedicated hardware or may be modularized. Furthermore, various programs may be installed in each device by a program distribution server or an external storage medium.
  • the control devices may be independent devices connected by a wired or wireless network, or two or more control devices may be integrated.
  • the beam current measuring device 1098 includes a moving device 1017 and a position detector 1039.
  • the high-frequency power supply 1036 inputs electric power to the high-frequency acceleration cavity 1037 provided in the accelerator 1004 through the waveguide 1010 and generates a high-frequency electric field for accelerating a beam between the electrode connected to the high-frequency acceleration cavity 1037 and the ground electrode.
  • the accelerator 1004 of this embodiment it is necessary to modulate the resonance frequency of the high-frequency acceleration cavity 1037 in accordance with the energy of the beam.
  • the inductance or the capacitance may be adjusted.
  • a known method can be used for adjusting the inductance and the capacitance.
  • a high-frequency acceleration cavity 1037 is connected to a variable capacitor for control.
  • the main magnetic field magnet 1 is a magnet that generates a static magnetic field, and has, as main components, an upper return yoke 4 and a lower return yoke 5 that have a substantially disk shape when viewed from the vertical direction as shown in FIG. are doing.
  • the upper return yoke 4 and the lower return yoke 5 have a shape that is substantially vertically symmetric with respect to the intermediate plane 2.
  • the intermediate plane 2 substantially passes through the center of the main magnetic field magnet 1 in the vertical direction, and substantially coincides with the orbital plane drawn by the beam being accelerated.
  • the upper return yoke 4 and the lower return yoke 5 have a shape that is perpendicular to the intermediate plane 2 and is generally plane-symmetric with respect to the vertical plane 3 that is a plane passing through the center of the main magnetic field magnet 1 with respect to the intermediate plane 2.
  • an intersecting portion of the intermediate plane 2 with the main magnetic field magnet 1 is indicated by an alternate long and short dash line, and an intersecting portion of the vertical plane 3 with the main magnetic field magnet 1 is indicated by a broken line.
  • An ion source 1003 is arranged in the upper return yoke 4.
  • a coil 6 is arranged in a space surrounded by the upper return yoke 4 and the lower return yoke 5 symmetrically with respect to the intermediate plane 2.
  • the ion source 1003 is installed outside the main magnetic field magnet 1 assuming an external ion source, and the through-hole 24 is provided in correspondence with the ion source 1003. May be installed inside.
  • the coil 6 is a superconducting coil, which is installed inside a cryostat (not shown) and is cooled by a refrigerant such as liquid helium or heat transfer from a refrigerator (not shown).
  • the coil 6 is connected to the coil excitation power supply 1057 by the coil extraction wiring 1022 shown in FIG.
  • a vacuum vessel 7 is provided inside the coil 6 in a space surrounded by the upper return yoke 4 and the lower return yoke 5.
  • an upper magnetic pole 8 is disposed on a surface of the upper return yoke 4 facing the lower return yoke 5. Further, a lower magnetic pole 9 is disposed on a surface of the lower return yoke 5 facing the upper return yoke 4. The upper magnetic pole 8 and the lower magnetic pole 9 are arranged in plane symmetry with respect to the intermediate plane 2.
  • the upper return yoke 4, the lower return yoke 5, the upper magnetic pole 8, and the lower magnetic pole 9 are made of, for example, pure iron with low impurity concentration, low carbon steel, or the like.
  • the vacuum container 7 is made of stainless steel or the like.
  • the coil 6 is made of a superconducting wire using a superconductor such as niobium titanium.
  • a space for rotating and accelerating the ion beam is formed between the upper magnetic pole 8 and the lower magnetic pole 9.
  • the emission channel 1019 includes an electromagnet called a septum, and is connected to the emission channel power supply 1082 shown in FIG. By supplying a current from the power supply for emission channel 1082 to the electromagnet provided in the emission channel 1019, the ion beam that has reached the emission channel 1019 is adjusted and sent to the beam transport system 1013.
  • FIG. 4 is a plan view of the facing surface 10 as viewed from the intermediate plane 2. Since the main magnetic field magnet 1 has a plane-symmetric structure with respect to the intermediate plane 2, a detailed structure of the main magnetic field magnet 1 will be described below with reference to FIGS.
  • Concave portions 21a, 21b, 21c, 21d and convex portions 22a, 22b, 22c, 22d are formed on a surface of the upper magnetic pole 8 and the lower magnetic pole 9 facing the intermediate plane 2, respectively. As shown, the concave portions 21a, 21b, 21c, 21d and the convex portions 22a, 22b, 22c, 22d are alternately arranged along the circling direction of the beam orbit 23.
  • the concave portions 21a, 21b, 21c, 21d and the convex portions 22a, 22b, 22c, 22d may be formed integrally with the upper magnetic pole 8 and the lower magnetic pole 9, or may be formed as a separate member and then formed as an upper magnetic pole. At the time of assembly, it may be engaged with the surface of the lower magnetic pole 8 or the lower magnetic pole 9 by a known method such as welding or bolting.
  • the material is desirably the same as the upper magnetic pole 8 and the lower magnetic pole 9.
  • a gradient magnetic field magnet 31 (peeler), a gradient magnetic field magnet 32 (regenerator), and a high-frequency kicker 40 are provided in the concave portion 21a in which the emission channel 1019 is disposed in the vicinity. .
  • the gradient magnets 31 and 32 are coils that generate a gradient magnetic field for displacing the beam trajectory.
  • the gradient magnetic field magnet 31 is preferably a coil that generates a gradient magnetic field in which the magnetic field distribution of the generated gradient magnetic field decreases in the magnetic field strength radially outward of the accelerator 1004.
  • the gradient magnetic field magnet 32 is a coil that generates a gradient magnetic field in which the magnetic field distribution of the generated gradient magnetic field increases in radial direction and the magnetic field strength increases outward.
  • the gradient magnetic field magnets 31 and 32 can be replaced with a structure integrally formed with the concave portion 21a instead of the coil.
  • a structure integrally formed with the concave portion 21a examples include a structure manufactured as a separate member and then engaged with the concave portion 21a by a known method such as welding or bolting. More specifically, a magnetic substance can be further added to the surface of the concave portion 21a, or the surface shape of the concave portion 21a can be processed.
  • the gradient magnetic field magnet 31 is disposed near the convex portion 22d of the concave portion 21a and the gradient magnetic field magnet 32 is disposed near the convex portion 22a of the concave portion 21a, This position can be reversed.
  • the magnetic field in the region from the outer peripheral surface of the magnetic pole to the inner peripheral surface of the yoke decreases radially outward, the gradient that generates a gradient magnetic field in which the magnetic field intensity decreases radially outward.
  • the magnetic field magnet 31 may be omitted in some cases.
  • the gradient magnetic field generated by the gradient magnetic field magnets 31 and 32 desirably includes at least a quadrupole magnetic field component, and desirably includes a multipolar magnetic field having four or more poles or a dipole magnetic field.
  • the through hole 18 is a through hole for installing the beam transport system 1013.
  • the through hole 19 is provided so as to be symmetric with the through hole 18 with respect to the vertical plane 3 in order to increase the symmetry of the main magnetic field magnet and to increase the accuracy of the magnetic field generated by the main magnetic field magnet. .
  • FIG. 5 is a sectional view of the high-frequency kicker 40 taken along the intermediate plane 2.
  • FIG. 6 is a sectional view of the high-frequency kicker 40 taken along the vertical plane 3.
  • the high-frequency kicker 40 shown in FIGS. 2, 5, and 6 is a device for applying a high-frequency electric field having a frequency different from that of the high-frequency accelerating cavity 1037, and is similar to the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 as shown in FIG. Are arranged in a space interposed between the concave portions 21a.
  • An emission channel 1019 for extracting a beam accelerated to a predetermined energy out of the accelerator 1004 is provided in a magnetic pole outer peripheral region of the concave portion 21 a provided with the gradient magnetic field magnet 31, the gradient magnetic field magnet 32, and the high frequency kicker 40. .
  • the high-frequency kicker 40 includes a ground electrode 41 and a high-voltage electrode 42.
  • the ground electrode 41 is provided on the inner peripheral side
  • the high-voltage electrode 42 is provided on the outer peripheral side.
  • the ground electrode 41 and the high-voltage electrode 42 have shapes substantially parallel to the curve of the beam trajectory so that the high-frequency electric field acts in a direction orthogonal to the beam trajectory in the intermediate plane. Designed for
  • a metal projection 43 is attached to the ground electrode 41, so that the concentration of the high-frequency electric field generated between the ground electrode 41 and the high-voltage electrode 42 can be increased.
  • the high-voltage electrode 42 Since a high-frequency voltage is applied to the high-voltage electrode 42, the high-voltage electrode 42 is supported by the ground electrode 41 via the insulating support 45 as shown in FIG.
  • the ground electrode 41 is supported by the upper magnetic pole 8 and the lower magnetic pole 9 via a non-magnetic support 44.
  • the ground electrode 41 and the high-voltage electrode 42 are both vertically divided about the intermediate plane 2 through which the beam passes.
  • the high-frequency kicker 40 of the present embodiment has a shape with an open end face as shown in FIG. 6, the end face may be closed with a ground electrode except for a beam passage hole to form a resonator structure.
  • the main magnetic field magnet 1 In order to determine the size of the main magnetic field magnet 1, it is necessary to determine the magnetic field strength and the radius of the beam orbit at the highest energy. As the magnetic field generated by the main magnetic field magnet 1 is larger, the spread of the beam trajectory becomes smaller, and the accelerator 1004 and, consequently, the particle beam therapy system 1001 can be downsized.
  • the magnetic field at the incident point was set to 5 [T]
  • the beam radius of the highest energy was set to 1 [m].
  • the position of the incident point of the beam to be accelerated and the position of the center O1 of the maximum beam energy trajectory are matched.
  • the magnetic field is designed based on the principle of weak convergence in order to stably circulate the beam.
  • an amount called an n index as shown in the following equation (1) is used.
  • B is the magnetic field in the intermediate plane 2
  • is the radius of curvature of the beam orbit
  • the magnetic field gradient ⁇ B / ⁇ r is perpendicular to the beam traveling direction on the intermediate plane 2 with respect to the direction in which the beam energy increases. The derivative of the magnetic field is shown.
  • ⁇ B / ⁇ r is ⁇ 1 [T / m].
  • the value should be smaller than 0.
  • ⁇ B / ⁇ r is -0.5 [T / m].
  • the beam radius of the highest energy is 1 [m]
  • the magnetic field on this orbit is 4.5 [T].
  • the magnetic pole shape is often axially symmetric in order to generate an axially symmetric magnetic field distribution. Then, the magnetic field B becomes a constant value along the beam circling direction.
  • the principle of weak convergence does not necessarily require that B is constant in the beam circling direction, and is valid even when B is an average magnetic field in the beam circling direction. That is, the strength of the magnetic field may be distributed in the beam circling direction.
  • the four concave portions 21a, 21b, 21c, and 21d and the four convex portions 22a, 22b, 22c, and 22d distribute the magnetic field in the beam circling direction, and the magnetic field in the beam circulating direction.
  • the average was designed to decrease according to equation (1) with increasing beam energy.
  • the distance between the upper magnetic pole 8 and the lower magnetic pole 9 becomes shorter, so that the region is sandwiched between the upper and lower concave portions 21a, 21b, 21c, and 21d.
  • the magnetic field is larger than in the region that has been set.
  • the narrowing of the angular widths ⁇ 1 , ⁇ 2 , ⁇ 3 ,..., ⁇ n of the protruding portions 22 a, 22 b, 22 c, and 22 d depends on the present embodiment when viewed from the center O 1 of the beam orbit. Means that the angular width of the concave portions 21a, 21b, 21c, 21d becomes wider as the beam energy increases.
  • the magnetic field in the region between the concave portions 21a, 21b, 21c, and 21d and the magnetic field in the region between the convex portions 22a, 22b, 22c, and 22d are considered to be constant values, and are determined by Expression (1). Adjustment may be made so that the angular width of the projections 22a, 22b, 22c, 22d decreases in accordance with the decrease in the average magnetic field.
  • L n is a turn in a decrease followed by an increase with increasing beam energy (L x> L 2> L 1) (L x> L n) relationship.
  • the protrusions 22a, 22b, 22c, and 22d have a tangent at a boundary between the protrusion 22c and the recess 21d and a tangent at a boundary between the protrusion 22c and the recess 21c on the opposite side.
  • ⁇ ′ 1 > ⁇ ′ 2 are reduced as the beam energy increases.
  • the magnetic field obtained in this way can have an average magnetic field for the highest energy beam of 4.5 [T], which is the same value as when the magnetic poles are axisymmetric, so that the size of the accelerator is the same.
  • the magnetic field with respect to the beam having the highest energy is uniformly 4.5 [T]. T].
  • the magnetic field to be generated by the emission channel 1019 for beam extraction is provided.
  • the beam accelerated to the maximum energy senses the gradient magnetic field generated by the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32, so that a resonance phenomenon occurs in the horizontal movement of the beam, and the beam moves from the equilibrium orbit. Is increased, and the beam reaching the exit channel 1019 is extracted outside the accelerator.
  • the gradient magnetic field generated by the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 is corrected radially inward of the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 so that the influence of the gradient magnetic field is sufficiently small inside the beam orbit of the maximum energy. It is desirable to install a magnetic material and a coil (not shown).
  • the low-energy beam approaching the extraction energy must be destabilized in the horizontal direction. It is necessary to balance the two of acceleration.
  • a mechanism for selectively applying a gradient magnetic field such as applying a gradient magnetic field generated by the gradient magnetic field magnets 31 and 32 only at that timing, is required.
  • the mechanism for this is the high-frequency kicker 40.
  • the role of the high-frequency kicker 40 is to make the beam to be extracted selectively feel the magnetic field of the gradient magnetic field magnets 31 and 32.
  • the beam that is incident and accelerated from the ion source gradually increases its average orbital radius, and finally passes through the inside of the high-frequency kicker 40.
  • the high-frequency power source 1036 is turned off to cut off the high-frequency electric field excited between the electrode connected to the high-frequency accelerating cavity 1037 and the ground electrode. Turn on.
  • the frequency of the high-frequency kicker 40 is set to be substantially the same as f rev ⁇ ⁇ . Then, a high-frequency electric field of the high-frequency kicker 40 is applied.
  • the beam trajectory receives a radially outward force, and the beam trajectory is gradually shifted radially outward, and finally, the gradient magnetic field magnets 31 and 32 are generated. It reaches a position where the user can feel the gradient magnetic field.
  • the beam that has begun to feel the gradient magnetic field of the gradient magnetic field magnets 31 and 32 begins to diverge in the amplitude of the horizontal betatron motion, and finally reaches the exit channel 1019 and is taken out of the accelerator.
  • the accelerator 1004 includes a main magnetic field magnet 1 that generates a static magnetic field, and a high-frequency acceleration that can modulate a frequency and applies a high-frequency electric field for accelerating a beam.
  • the main magnetic field magnet 1 includes a cavity 1037 and a high-frequency kicker 40 for applying a high-frequency electric field having a frequency different from that of the high-frequency acceleration cavity 1037.
  • the main magnetic field magnet 1 is fixed to the upper return yoke 4 and the lower return yoke 5.
  • the upper magnetic pole 8 and the lower magnetic pole 9 are arranged at a plane symmetric position with respect to the intermediate plane 2 in a space sandwiched between the upper magnetic pole 8 and the lower magnetic pole 9.
  • the concave portions 21a, 21b, 21c, 21d and the convex portions 22a, 22b, 22c, 22d cross along the beam circling direction.
  • the high-frequency kicker 40 is arranged in space between the concave portion 21a.
  • the high-performance and large-sized emission channel 1019 provided only in one is provided.
  • a beam having a predetermined energy can be extracted without arranging a septum electromagnet in which measures such as conversion are taken. Therefore, it is possible to provide a small particle beam accelerator 1004 in which the energy of the extracted beam is continuously variable without using a plurality of emission channels and without using a degrader.
  • the accelerator 1004 having such a configuration is suitable for a particle beam therapy system which is expected to realize a high irradiation dose rate and improve the treatment throughput of a patient.
  • the gradient magnetic field magnets 31 and 32 for generating a gradient magnetic field for displacing the beam trajectory are arranged in a space between the concave portions 21 a provided with the high frequency kicker 40, the high frequency kicker 40 is displaced.
  • the arrangement can be such that the low-energy beam surely senses the gradient magnetic field. This allows the beam of predetermined energy to reach the emission channel 1019 more efficiently by expanding the horizontal betatron oscillation amplitude in the horizontal direction, and it is possible to extract the beam outside the accelerator.
  • an emission channel 1019 for extracting a beam accelerated to a predetermined energy to the outside of the accelerator 1004 is provided in a magnetic pole outer peripheral region of the concave portion 21 a provided with the high frequency kicker 40, so that the beam is displaced by the high frequency kicker 40.
  • the beam with the increased horizontal betatron oscillation amplitude can more easily reach the exit channel 1019.
  • the convex portions 22a, 22b, 22c, and 22d have a main magnetic field due to the fact that the angular width ⁇ of the convex portions 22a, 22b, 22c, and 22d as viewed from the center of the beam orbit decreases as the beam energy increases. Is increased, the beam can be accelerated stably without increasing the size of the accelerator. Further, the magnetic field strength in the outer peripheral region of the magnetic pole where the entrance of the exit channel 1019 serving as the exit of the accelerated beam can be reduced. For this reason, it is possible to provide a small accelerator having a main magnetic field magnet from which a beam can be easily extracted without using a difficult method such as high performance and large size of the septum.
  • the high-frequency electric field by the high-frequency accelerating cavity 1037 is shut off, and the application of the high-frequency electric field by the high-frequency kicker 40 is started, so that the energy of the beam to be extracted can be selected with high accuracy. it can.
  • the component of the multipole magnetic field generated by the gradient magnetic field magnet 32 has a magnetic field gradient in which the magnetic field strength increases toward the radially outer side
  • the component of the multipole magnetic field generated by the gradient magnetic field magnet 31 Has a magnetic field gradient that reduces the magnetic field strength toward the radially outer side, which can destabilize the betatron oscillation in the orbital plane for the beam with the specific energy to be extracted. Therefore, it is possible to obtain an effect that a beam having an arbitrary energy can be more easily extracted.
  • Example 2 Second Embodiment A particle accelerator and a particle beam therapy system according to a second embodiment of the present invention will be described with reference to FIGS.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 10 is a plan view of the main magnetic field magnet according to the second embodiment viewed from an intermediate plane.
  • 11 to 14 are enlarged plan views of one of the projections of the main magnetic field magnet.
  • FIG. 15 is a cross-sectional view of the high-frequency kicker taken along an intermediate plane.
  • the particle beam accelerator of the second embodiment is different from the particle beam accelerator of the first embodiment in the shape of the surfaces of the upper magnetic pole and the lower magnetic pole in the main magnetic field magnet.
  • can be redefined from a function of the radial distance r to a function of the kinetic energy K.
  • FIG. 10 is a plan view of the opposing surface 10 according to the second embodiment as viewed from the intermediate plane 2. About the same structure etc. as Example 1, the same number is diverted and pointed out.
  • the beam incident point is O2
  • the orbital center of the highest energy beam orbit 126 is O4
  • the orbital center of the intermediate energy beam orbit 127 is O3
  • the center of the energy beam orbit accelerated from the middle is O3.
  • the width 128 from the incident point to the beam orbit of the maximum energy is set to 0.1 [m]. Then, assuming that ⁇ B / -r is -1.0 [T / m] as in the first embodiment, the magnetic field for the highest energy is 4.9 [T].
  • ⁇ nA narrows according to the increase of the beam energy according to Expressions (2) and (3) ( ⁇ 1A > ⁇ 2A > ⁇ 3A >>...> ⁇ nA ).
  • the angle widths ⁇ 1B , ⁇ 2B ,..., ⁇ nB of the convex portion 122d when viewed from the centers O3, O5, and O4 of the beam orbit are expressed by the equations (2) and ( According to 3), the beam energy becomes narrower as the beam energy increases ( ⁇ 1B > ⁇ 2B >>...> ⁇ nB ).
  • the distance L 1A , L 2A ,..., L nA at which the accelerated beam passes through one convex portion 122c increases as the beam energy increases, as shown in FIG. increase (L 2A> L 1A) to turn to decrease after the (L 2A> L xA> L nA) relationship.
  • the angle between the tangent to the boundary between the convex portion 122c and the concave portion 121d and the tangent to the boundary line between the convex portion 122c and the concave portion 121c on the opposite side is a beam. It decreases with increasing energy, after which the two tangents become parallel. Thereafter, the angle becomes larger ( ⁇ ′ 3A >>... ⁇ ′ nA ).
  • the convex portion 122c and the convex portion 122b symmetrical with respect to the vertical plane 3 are the same as the convex portion 122c.
  • the convex portion 122a having a shape symmetrical to the convex portion 122d and the vertical plane 3 is the same as the convex portion 122d.
  • the average magnetic field along the beam circling direction can be set to the same value as 4.9 [T] when the magnetic poles are axisymmetric, so that the size of the accelerator is axisymmetric. Is equivalent to
  • the magnetic field for the beam with the highest energy is constant at 4.9 [T] along the beam circling direction, but in the second embodiment, 4.9 in the concave portions 121a, 121b, 121c, and 121d.
  • the magnetic field is less than [T], and the magnetic field exceeds 4.9 [T] in the convex portions 122a, 122b, 122c, and 122d.
  • the entrance of the emission channel 1019 for taking out the beam accelerated to the predetermined energy to the outside of the accelerator 1004 is set near the magnetic pole outer peripheral surface 125 of the concave portion 121a.
  • the magnetic field to be generated by the emission channel 1019 for beam extraction can be made smaller than the axially symmetric magnetic pole shape, and the beam extraction can be facilitated.
  • the orbital center O4 of the highest energy does not coincide with the incident point O2, and the incident point O2 is shifted toward the beam entrance of the exit channel 1019.
  • the center of the beam trajectory is shifted in this way, the low-energy beam trajectory approaches the entrance of the emission channel 1019 on the concave portion 121a side, so that a region where the beam trajectory is dense is formed on the emission channel 1019 side.
  • the energy band of the beam orbit passing through the high-frequency kicker 40 increases. That is, as compared with the first embodiment, the second embodiment passes through the high-frequency kicker 40 to a lower energy beam orbit.
  • the lower-energy beam orbit than in the first embodiment can be applied to the gradient magnetic field generated by the gradient magnetic field magnets 31 and 32. Can be passed nearby.
  • the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 is preferably arranged in a direction in which the beam trajectory is shifted by the high-frequency kicker 40 and is closer to the vertical plane 3.
  • the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 have the smallest volume of the concave portion 121a in the space between the concave portions 121a, 121b, 121c, and 121d. It is preferable to arrange them in a space between them.
  • the low energy beam displaced by the high frequency kicker 40 can surely feel the gradient magnetic field, and the amplitude of the betatron oscillation in the horizontal direction increases. Reaches the emission channel 1019 and can be taken out of the accelerator.
  • the particle beam accelerator and the particle beam therapy system according to the second embodiment of the present invention can provide substantially the same effects as those of the particle beam accelerator and the particle beam therapy system according to the first embodiment.
  • the space between the concave portions 121a in which the high-frequency kicker 40 and the gradient magnetic field magnets 31 and 32 are arranged has the smallest volume among the spaces between the concave portions 121a, 121b, 121c and 121d.
  • a region where the beam orbit becomes dense can be provided on the outer periphery of the magnetic pole where the entrance of the emission channel 1019 is installed.
  • the magnetic field to be generated by the emission channel 1019 for beam extraction can be reduced as compared with the case where the magnetic pole shape is symmetrical with respect to the axis. Therefore, from these effects, it is possible to more easily extract the beam accelerated to the predetermined energy.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, for a part of the configuration of each embodiment, it is also possible to add / delete / replace another configuration.
  • the particles to be accelerated are not specified. That is, regardless of whether protons are supplied from the ion source 1003 or carbon ions are supplied from the ion source 1003, the frequency of the high-frequency accelerating cavity 1037 is adjusted in accordance with each of the accelerating particles to stably rotate the beam. Can be done.
  • the particles to be accelerated are not limited to the protons and carbon ions described above, but may be heavy particle ions other than carbon ions such as helium ions.
  • the number of the concave portions and the number of the convex portions provided in the upper magnetic pole 8 and the lower magnetic pole 9 are each four, but the number of the concave portions and the convex portions is not limited to four. If it is an integer of 3 or more, it is possible to generate a magnetic field such that the beam circulates stably.
  • the ion beam generator directly connects the ion beam generator and the rotating gantry or the irradiation device without providing the beam transport system. Can be.
  • the rotating gantry 1006 is used as an apparatus for irradiating a particle beam used for treatment
  • a fixed irradiation apparatus can be used.
  • the number of irradiation devices is not limited to one, and a plurality of irradiation devices can be provided.
  • the scanning method using the scanning electromagnets 1051 and 1052 has been described as an irradiation method.
  • An irradiation method that forms a dose distribution can also be applied to the present invention.
  • the accelerator is used for particle beam therapy.
  • the application of the accelerator is not limited to particle beam therapy, and the accelerator can be used for high energy experiments, PET (Positron Emission Tomography) drug generation, and the like.
  • High frequency kicker (second high frequency electric field applying device) 41 Ground electrode 42 High voltage electrode 43 Projection 44 Nonmagnetic support 45 Insulating support 128 Beam trajectory width 1001 Particle beam therapy system 1004 Accelerator (particle beam accelerator) 1019: emission channel 1037: high-frequency accelerating cavity (first high-frequency electric field applying device)

Abstract

The present invention is provided with: a main magnetic field magnet 1 for generating a static magnetic field; a frequency-variable high-frequency acceleration cavity 1037 for applying a high-frequency electric field for beam acceleration; and a high-frequency kicker 40 for applying a high-frequency electric field having a different frequency from that of the high-frequency acceleration cavity 1037. Concave parts 21a, 21b, 21c, 21d and convex parts 22a, 22b, 22c, 22d are alternately disposed along a beam orbit direction on surfaces of an upper magnetic pole 8 and a lower magnetic pole 9 of the main magnetic field magnet 1 facing an intermediate plane 2, and the high-frequency kicker 40 is disposed in a space between the concave parts 21a.

Description

粒子線加速器および粒子線治療システムParticle accelerator and particle beam therapy system
 本発明は、粒子線加速器および粒子線治療システムに関する。 The present invention relates to a particle accelerator and a particle therapy system.
 磁場フラッターを使用したシンクロサイクロトロン粒子加速器の一例として、特許文献1には、空洞内で高周波電圧を掃引して粒子をプラズマ柱である粒子源から加速するための電圧源と、粒子を空洞内で軌道上を移動させる磁石と、再生器と、再生器から空間を隔てて空洞内で配置され、磁石で形成される磁場バンプを解消する強磁性装置で加速器を構成することが記載されている。 As an example of a synchrocyclotron particle accelerator using a magnetic field flutter, Patent Document 1 discloses a voltage source for sweeping a high frequency voltage in a cavity to accelerate particles from a particle source which is a plasma column, and a particle source in a cavity. It is described that an accelerator is constituted by a magnet moving on an orbit, a regenerator, and a ferromagnetic device arranged in a cavity with a space from the regenerator to eliminate a magnetic field bump formed by the magnet.
特開2016-213198号公報JP 2016-213198 A
 近年、粒子線治療に用いられる粒子線治療システムの小型化が進行している。特許文献1には、粒子線治療システムに用いられる、シンクロサイクロトロンと呼ばれる粒子線加速器の構成について開示されている。 Recently, the size of particle beam therapy systems used for particle beam therapy has been reduced. Patent Literature 1 discloses a configuration of a particle beam accelerator called a synchrocyclotron used in a particle beam therapy system.
 一般に、シンクロサイクロトロンと呼ばれる粒子線加速器は、イオン源を含む入射装置、ビームを安定に周回させるための主磁場を生成する主磁場磁石、高周波電場を印加してビームを周方向に加速する加速空洞、意図的にビームを平衡軌道から変位させる磁場をビームに作用させる勾配磁石、ならびに平衡軌道から変位させられたビームを加速器外に取り出し下流のビーム輸送系へと誘導する出射チャネルを備えている。 Generally, a particle beam accelerator called a synchrocyclotron is an injection device that includes an ion source, a main magnetic field magnet that generates a main magnetic field for stably circulating the beam, and an acceleration cavity that applies a high-frequency electric field to accelerate the beam in the circumferential direction A gradient magnet for intentionally displacing the beam from the balanced orbit and applying a magnetic field to the beam, and an exit channel for extracting the beam displaced from the balanced orbit outside the accelerator and guiding it to a downstream beam transport system.
 シンクロサイクロトロンからビームが取り出される機序は以下のようになる。 機 The mechanism for extracting the beam from the synchrocyclotron is as follows.
 まず、イオン源から入射されたビームが主磁場を感じて周回運動する。周回運動するビームが加速空洞のギャップを通過するタイミングに合うように加速用高周波電場の位相を調整することで、ビームは所定のエネルギーまで加速されていく。シンクロサイクロトロンでは、ビームが周回する振動数がエネルギーにより異なるので、加速用高周波電場の周波数もそれに合わせて変調する必要がある。 First, the beam incident from the ion source orbits, feeling the main magnetic field. The beam is accelerated to a predetermined energy by adjusting the phase of the high-frequency electric field for acceleration so as to match the timing of the orbiting beam passing through the gap of the acceleration cavity. In a synchrocyclotron, the frequency at which the beam circulates varies depending on the energy, so that the frequency of the high-frequency electric field for acceleration needs to be modulated accordingly.
 所定のエネルギーに到達したビームには、四極磁場や六極磁場を含む勾配磁場を作用させる。シンクロサイクロトロンでは、ビーム周回面内のベータトロン振動数、すなわち水平チューンが1付近(典型的には0.95以上1未満)に設計されるため、勾配磁場を感じたビームの水平方向ベータトロン振動の振幅が増大し、ビームは平衡軌道から大きく変位して出射チャネルに到達する。 (4) A gradient magnetic field including a quadrupole magnetic field and a hexapole magnetic field is applied to the beam that has reached a predetermined energy. In the synchrocyclotron, the betatron frequency in the beam orbiting plane, that is, the horizontal tune is designed to be around 1 (typically 0.95 or more and less than 1). Increases, and the beam is greatly displaced from the equilibrium trajectory to reach the output channel.
 出射チャネルは、セプタムと呼ばれる磁石で主磁場と逆向きの磁場をビームに作用させてビームの曲率半径を拡大させ、ビーム軌道を平衡軌道から完全に離脱させる。 The output channel is a magnet called a septum, and a magnetic field opposite to the main magnetic field is applied to the beam to expand the radius of curvature of the beam and completely depart the beam orbit from the equilibrium orbit.
 平衡軌道から離脱したビームは加速器外に飛び出し、輸送系を経て照射装置へと導かれる。こうして取り出されるビームのエネルギーは固定されているため、照射装置までの何れかの段階でビームをディグレーダと呼ばれる散乱体を通過させて、ビームエネルギーを減少させることでエネルギーが調整される。 ビ ー ム The beam that has escaped from the equilibrium orbit jumps out of the accelerator and is guided to the irradiation device via the transport system. Since the energy of the beam extracted in this manner is fixed, the energy is adjusted by reducing the beam energy by passing the beam through a scatterer called a degrader at any stage up to the irradiation device.
 しかしながら、ディグレーダによるビームエネルギーの調整は、ビーム電流の低下が避けられない、との課題がある。ビーム電流の低下は、一回当たりのビーム照射による線量率の低下をもたらす。 調整 However, there is a problem that the adjustment of the beam energy by the degrader inevitably decreases the beam current. A reduction in beam current results in a reduction in dose rate due to a single beam irradiation.
 従って、ビーム電流を低下させずにエネルギー調整ができれば、シンクロサイクロトロンを用いた粒子線治療のスループットが向上する、といえる。 Therefore, it can be said that if the energy can be adjusted without reducing the beam current, the throughput of particle beam therapy using a synchrocyclotron will be improved.
 本発明の目的は、ディグレーダを用いないエネルギー可変の小型粒子線加速器およびその粒子線加速器を備えた粒子線治療システムを提供することである。 目的 It is an object of the present invention to provide a small energy beam accelerator that does not use a degrader and has variable energy, and a particle beam therapy system including the particle beam accelerator.
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、粒子線加速器であって、静磁場を生成する主磁場磁石と、周波数が変調可能で、ビームを加速するための高周波電場を印加する第1高周波電場印加装置と、前記第1高周波電場印加装置とは異なる周波数の高周波電場を印加する第2高周波電場印加装置と、を備え、前記主磁場磁石は、リターンヨークおよび前記リターンヨークに固定された一対の磁極を有し、前記一対の磁極は、前記一対の磁極に挟まれた空間にある中間平面に対して面対称な位置に配置され、前記磁極の前記中間平面に対向する面には、ビーム周回方向に沿って凹部と凸部とが交互に配置されており、前記第2高周波電場印加装置は、前記凹部に挟まれた空間に配置されていることを特徴とする。 The present invention includes a plurality of means for solving the above-mentioned problems. For example, a particle beam accelerator, a main magnetic field magnet for generating a static magnetic field, a frequency modulatable and a beam acceleration A first high-frequency electric field applying device that applies a high-frequency electric field for applying a high-frequency electric field, and a second high-frequency electric field applying device that applies a high-frequency electric field having a frequency different from that of the first high-frequency electric field applying device. A return yoke and a pair of magnetic poles fixed to the return yoke, wherein the pair of magnetic poles are arranged at plane-symmetric positions with respect to an intermediate plane in a space sandwiched between the pair of magnetic poles; On the surface facing the intermediate plane, concave portions and convex portions are alternately arranged along the beam circling direction, and the second high-frequency electric field applying device is arranged in a space sandwiched by the concave portions. That And butterflies.
 本発明によれば、ディグレーダを用いないエネルギー可変の小型粒子線加速器を提供することができる。上記した以外の課題、構成、および効果は、以下の実施例の説明により明らかにされる。 According to the present invention, it is possible to provide an energy-variable small particle beam accelerator that does not use a degrader. Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
本発明の実施例1における粒子線治療システムの構成図である。1 is a configuration diagram of a particle beam therapy system according to Embodiment 1 of the present invention. 実施例1における粒子線治療システムの加速器内に配置された主磁場磁石の斜視図である。FIG. 2 is a perspective view of a main magnetic field magnet arranged in the accelerator of the particle beam therapy system according to the first embodiment. 実施例1における主磁場磁石を垂直平面による断面図である。FIG. 3 is a cross-sectional view of the main magnetic field magnet according to the first embodiment taken along a vertical plane. 実施例1における主磁場磁石を中間平面からみた平面図である。FIG. 3 is a plan view of the main magnetic field magnet according to the first embodiment as viewed from an intermediate plane. 実施例1における高周波キッカの中間平面による断面図である。It is sectional drawing by the intermediate plane of the high frequency kicker in Example 1. 実施例1における高周波キッカの垂直平面による断面図である。FIG. 3 is a cross-sectional view of the high-frequency kicker according to the first embodiment, taken along a vertical plane. 実施例1における主磁場磁石の凸部の一つを拡大した平面図である。FIG. 3 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the first embodiment. 実施例1における主磁場磁石の凸部の一つを拡大した平面図である。FIG. 3 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the first embodiment. 実施例1における主磁場磁石の凸部の一つを拡大した平面図である。FIG. 3 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the first embodiment. 本発明の実施例2における主磁場磁石を中間平面から見た平面図である。FIG. 9 is a plan view of a main magnetic field magnet according to a second embodiment of the present invention as viewed from an intermediate plane. 実施例2における主磁場磁石の凸部の一つを拡大した平面図である。FIG. 10 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the second embodiment. 実施例2における主磁場磁石の凸部の一つを拡大した平面図である。FIG. 10 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the second embodiment. 実施例2における主磁場磁石の凸部の一つを拡大した平面図である。FIG. 10 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the second embodiment. 実施例2における主磁場磁石の凸部の一つを拡大した平面図である。FIG. 10 is an enlarged plan view of one of the protrusions of the main magnetic field magnet in the second embodiment. 実施例2における高周波キッカの中間平面による断面図である。It is sectional drawing by the intermediate plane of the high frequency kicker in Example 2.
 最初に、シンクロサイクロトロン型の粒子線加速器において、ディグレーダを用いずに可変エネルギーを実現するために解決すべき主な3つの課題について説明する。 First, three major issues to be solved in order to achieve variable energy without using a degrader in a synchrocyclotron type particle beam accelerator will be described.
 第1の課題は、低エネルギーから高エネルギーまでのビームの出射チャネルを共通化することである。 The first problem is to share the output channel of the beam from low energy to high energy.
 数種類のエネルギーを取り出すだけならば、複数の出射チャネルを設置することで対応できると考えられる。しかしながら、陽子線治療を例に挙げると、およそ70MeVから230MeVの範囲で連続的にエネルギーを変化させることが望まれる。このため、取り出すビームを連続的にエネルギー可変とする場合には、エネルギーごとに出射チャネルを設置するよりも、出射チャネルを共通化することが望まれる。 な ら ば If only a few types of energy are extracted, it is considered that a plurality of emission channels can be installed to cope with this. However, taking proton beam therapy as an example, it is desirable to change the energy continuously in the range of approximately 70 MeV to 230 MeV. For this reason, in the case where the beam to be taken out is made continuously variable in energy, it is desired that the output channel be shared rather than providing the output channel for each energy.
 第2の課題は、セプタムに要求される磁場を低減することである。 The second problem is to reduce the magnetic field required for the septum.
 シンクロサイクロトロンの主磁場は時間的に一定であるから、低エネルギービームほど曲率半径が小さいことになる。従って、加速器の外に取り出すために必要となるセプタムの磁場の大きさも、低エネルギーになるほど大きくなる。低エネルギービームを取り出すためにセプタムが生成すべき磁場を低減する最も単純な方法は主磁場を低下させることであるが、これは加速器サイズの増大を意味する。このため、小型であるというシンクロサイクロトロンの長所が失われてしまう。従って、加速器サイズの増大をもたらさずに、セプタムに要求される磁場を低減する必要がある。 (4) Since the main magnetic field of the synchrocyclotron is constant over time, the radius of curvature is smaller for lower energy beams. Therefore, the magnitude of the magnetic field of the septum required to take it out of the accelerator also increases as the energy becomes lower. The simplest way to reduce the magnetic field that the septum must generate to extract the low energy beam is to lower the main magnetic field, which means an increase in accelerator size. For this reason, the advantage of the synchrocyclotron being small is lost. Therefore, there is a need to reduce the required magnetic field of the septum without increasing the size of the accelerator.
 第3の課題は、取り出すビームに選択的に勾配磁場を作用させることである。 The third problem is to apply a gradient magnetic field selectively to the extracted beam.
 通常のシンクロサイクロトロンでは、最大エネルギーのビームのみを取り出すため、最大エネルギーのビーム軌道の近傍に、磁性体で静的な勾配磁場を生成させておくことがしばしば行われる。 In a normal synchrocyclotron, a magnetic field is often used to generate a static gradient magnetic field near the beam path of the maximum energy in order to extract only the beam with the maximum energy.
 しかし、低エネルギービームにも勾配磁場を作用させて取り出すためには、低エネルギービームの近傍にも静的な勾配磁場を生成する必要があるが、これを実現することは困難である。これは、低エネルギービームの近傍に低エネルギービームを取り出すための静的な多極磁場を生成しておくと、ビームがそのエネルギーに達したときに静的な勾配磁場の影響を受けて取り出されるためである。すなわち、ビームをより大きいエネルギーまで加速することができなくなってしまうことになる。 However, in order to apply a gradient magnetic field to a low-energy beam and extract it, it is necessary to generate a static gradient magnetic field near the low-energy beam, but this is difficult to achieve. This means that if a static multipole magnetic field is generated near the low-energy beam to extract the low-energy beam, the beam will be extracted under the influence of the static gradient magnetic field when the beam reaches its energy. That's why. That is, the beam cannot be accelerated to a higher energy.
 従って、低エネルギーから高エネルギーの任意のエネルギーのビーム、例えば陽子線治療システムの場合には、70MeVから230MeVのエネルギーのビームに対して、取り出す必要に応じて選択的に勾配磁場を作用させる構造・方法が必要である。 Therefore, a structure in which a gradient magnetic field is selectively applied to a beam of any energy from low energy to high energy, for example, in the case of a proton beam therapy system, from 70 MeV to 230 MeV, as needed to extract. I need a way.
 以下、上述したようなディグレーダを用いずに、これら3つの課題を解決した本発明のエネルギー可変の小型粒子線加速器、およびそれを備えた粒子線治療装置の実施例について図面を用いて説明する。 Hereinafter, embodiments of a variable energy small particle beam accelerator according to the present invention, which solves these three problems without using the above-described degrader, and a particle beam therapy apparatus including the accelerator will be described with reference to the drawings.
 <実施例1> 
 図1は本実施例1における粒子線治療システムの構成図である。図2は加速器内に配置された主磁場磁石の斜視図である。図3は主磁場磁石の垂直平面による断面図である。図4は主磁場磁石を中間平面から見た平面図、図5は高周波キッカの中間平面による断面図、図6は高周波キッカの垂直平面による断面図、図7乃至図9は主磁場磁石の凸部の一つを拡大した平面図である。
<Example 1>
FIG. 1 is a configuration diagram of the particle beam therapy system according to the first embodiment. FIG. 2 is a perspective view of the main magnetic field magnet arranged in the accelerator. FIG. 3 is a sectional view of the main magnetic field magnet taken along a vertical plane. 4 is a plan view of the main magnetic field magnet viewed from an intermediate plane, FIG. 5 is a cross-sectional view of the high-frequency kicker taken along an intermediate plane, FIG. 6 is a cross-sectional view of the high-frequency kicker taken along a vertical plane, and FIGS. It is the top view which expanded one of the parts.
 まず、図1を用いて粒子線治療システムの全体構成を説明する。 First, the overall configuration of the particle beam therapy system will be described with reference to FIG.
 図1において、粒子線治療システム1001は、建屋(図示省略)の床面に設置される。この粒子線治療システム1001は、イオンビーム発生装置1002、ビーム輸送系1013、回転ガントリー1006、照射装置1007および制御システム1065を備えている。 In FIG. 1, the particle beam therapy system 1001 is installed on the floor of a building (not shown). The particle beam therapy system 1001 includes an ion beam generator 1002, a beam transport system 1013, a rotating gantry 1006, an irradiation device 1007, and a control system 1065.
 イオンビーム発生装置1002は、イオン源1003、このイオン源1003が接続される加速器1004を有している。加速器1004の詳細は後述する。 The ion beam generator 1002 includes an ion source 1003 and an accelerator 1004 to which the ion source 1003 is connected. Details of the accelerator 1004 will be described later.
 ビーム輸送系1013は、照射装置1007に達するビーム経路1048を有しており、このビーム経路1048に、加速器1004から照射装置1007に向かって、複数の四極電磁石1046、偏向電磁石1041、複数の四極電磁石1047、偏向電磁石1042、四極電磁石1049,1050、および偏向電磁石1043,1044がこの順に配置されることで構成されている。 The beam transport system 1013 has a beam path 1048 reaching the irradiation device 1007, and a plurality of quadrupole electromagnets 1046, a deflection electromagnet 1041, and a plurality of quadrupole electromagnets are provided on the beam path 1048 from the accelerator 1004 toward the irradiation device 1007. 1047, a bending electromagnet 1042, quadrupole electromagnets 1049 and 1050, and bending electromagnets 1043 and 1044 are arranged in this order.
 ビーム輸送系1013のビーム経路1048の一部は、回転ガントリー1006に設置されており、偏向電磁石1042、四極電磁石1049,1050および偏向電磁石1043,1044も回転ガントリー1006に設置されている。ビーム経路1048は、加速器1004に設けられた出射チャネル1019に接続されている。 A part of the beam path 1048 of the beam transport system 1013 is installed in the rotating gantry 1006, and the bending electromagnet 1042, the quadrupole electromagnets 1049 and 1050, and the bending electromagnets 1043 and 1044 are also installed in the rotating gantry 1006. The beam path 1048 is connected to an emission channel 1019 provided in the accelerator 1004.
 回転ガントリー1006は、回転軸1045を中心に回転可能に構成されており、照射装置1007を回転軸1045の周りで旋回させる回転装置である。 The rotating gantry 1006 is configured to be rotatable about a rotating shaft 1045, and is a rotating device that rotates the irradiation device 1007 around the rotating shaft 1045.
 照射装置1007は、2台の走査電磁石1051,1052、ビーム位置モニタ1053および線量モニタ1054を備えている。これら走査電磁石1051,1052、ビーム位置モニタ1053および線量モニタ1054は、照射装置1007の中心軸、すなわちビーム軸に沿って配置されている。走査電磁石1051,1052、ビーム位置モニタ1053および線量モニタ1054は照射装置1007のケーシング(図示省略)内に配置されている。 The irradiation device 1007 includes two scanning electromagnets 1051 and 1052, a beam position monitor 1053, and a dose monitor 1054. The scanning electromagnets 1051 and 1052, the beam position monitor 1053, and the dose monitor 1054 are arranged along the central axis of the irradiation device 1007, that is, along the beam axis. The scanning electromagnets 1051 and 1052, the beam position monitor 1053, and the dose monitor 1054 are arranged in a casing (not shown) of the irradiation device 1007.
 ビーム位置モニタ1053および線量モニタ1054は、走査電磁石1051,1052の下流に配置される。走査電磁石1051および走査電磁石1052は、それぞれイオンビームを偏向し、イオンビームを照射装置1007の中心軸に垂直な平面内において互いに直交する方向に走査する。ビーム位置モニタ1053は照射されるビームの通過位置を計測する。線量モニタ1054は照射されるビームの線量を計測する。 The beam position monitor 1053 and the dose monitor 1054 are arranged downstream of the scanning electromagnets 1051 and 1052. The scanning electromagnet 1051 and the scanning electromagnet 1052 deflect the ion beam, respectively, and scan the ion beam in directions perpendicular to each other on a plane perpendicular to the central axis of the irradiation device 1007. The beam position monitor 1053 measures the passing position of the irradiated beam. The dose monitor 1054 measures the dose of the irradiated beam.
 照射装置1007は、回転ガントリー1006に取り付けられており、偏向電磁石1044の下流に配置される。 The irradiation device 1007 is attached to the rotating gantry 1006, and is arranged downstream of the bending electromagnet 1044.
 照射装置1007の下流側には、患者1056が横たわる治療台1055が、照射装置1007に対向するように配置される。 治療 On the downstream side of the irradiation device 1007, a treatment table 1055 on which the patient 1056 lies is arranged so as to face the irradiation device 1007.
 制御システム1065は、中央制御装置1066、加速器・輸送系制御装置1069、走査制御装置1070、回転制御装置1088およびデータベース1072を有する。 The control system 1065 includes a central control unit 1066, an accelerator / transport system control unit 1069, a scan control unit 1070, a rotation control unit 1088, and a database 1072.
 中央制御装置1066は、中央演算装置(CPU)1067およびCPU1067に接続されたメモリ1068を有する。加速器・輸送系制御装置1069、走査制御装置1070、回転制御装置1088およびデータベース1072は、中央制御装置1066内のCPU1067に接続されている。 The central controller 1066 has a central processing unit (CPU) 1067 and a memory 1068 connected to the CPU 1067. The accelerator / transport system controller 1069, the scanning controller 1070, the rotation controller 1088, and the database 1072 are connected to the CPU 1067 in the central controller 1066.
 粒子線治療システム1001は更に治療計画装置1073を有しており、治療計画装置1073はデータベース1072に接続されている。粒子線治療システム1001では、粒子線の照射エネルギーや照射角度などが粒子線の照射に先立って治療計画装置1073で治療計画として作成されており、この治療計画に基づいて照射が実行される。 The particle beam therapy system 1001 further has a treatment planning device 1073, and the treatment planning device 1073 is connected to the database 1072. In the particle beam therapy system 1001, the irradiation energy and the irradiation angle of the particle beam are created as a treatment plan by the treatment planning device 1073 prior to the irradiation of the particle beam, and the irradiation is executed based on the treatment plan.
 中央制御装置1066のCPU1067は、データベース1072に保存されている治療計画から粒子線治療システム1001を構成する各機器の照射に関係する各種の動作制御プログラムを読み込み、読み込んだプログラムを実行して、加速器・輸送系制御装置1069、走査制御装置1070、回転制御装置1088を介して指令を出力することで、粒子線治療システム1001内の各機器の動作を制御する。 The CPU 1067 of the central controller 1066 reads various operation control programs related to irradiation of each device constituting the particle beam therapy system 1001 from the treatment plan stored in the database 1072, executes the read program, and executes the accelerator. Outputting a command via the transport system control device 1069, the scan control device 1070, and the rotation control device 1088, controls the operation of each device in the particle beam therapy system 1001.
 なお、実行される動作の制御処理は、1つのプログラムにまとめられていても、それぞれが複数のプログラムに分かれていても良く、更にはそれらの組み合わせでも良い。 The control processing of the operation to be executed may be integrated into one program, may be divided into a plurality of programs, or may be a combination thereof.
 また、プログラムの一部またはすべては専用ハードウェアで実現しても良く、モジュール化されていても良い。更には、各種プログラムは、プログラム配布サーバや外部記憶メディアによって各装置にインストールされていても良い。 一部 Part or all of the program may be realized by dedicated hardware or may be modularized. Furthermore, various programs may be installed in each device by a program distribution server or an external storage medium.
 また、各制御装置は、各々が独立した装置で有線あるいは無線のネットワークで接続されたものであっても、2つ以上が一体化していてもよい。 The control devices may be independent devices connected by a wired or wireless network, or two or more control devices may be integrated.
 ビーム電流測定装置1098は、移動装置1017および位置検出器1039を含んでいる。 The beam current measuring device 1098 includes a moving device 1017 and a position detector 1039.
 高周波電源1036は、加速器1004内に設置された高周波加速空洞1037に導波管1010を通じて電力を入力し、高周波加速空洞1037に接続された電極と接地電極との間にビームを加速する高周波電場を励起させる。 The high-frequency power supply 1036 inputs electric power to the high-frequency acceleration cavity 1037 provided in the accelerator 1004 through the waveguide 1010 and generates a high-frequency electric field for accelerating a beam between the electrode connected to the high-frequency acceleration cavity 1037 and the ground electrode. Excite.
 本実施例の加速器1004では、高周波加速空洞1037の共振周波数をビームのエネルギーに対応して変調させる必要がある。周波数を変調させるためには、インダクタンスか静電容量を調整すればよい。 加速 In the accelerator 1004 of this embodiment, it is necessary to modulate the resonance frequency of the high-frequency acceleration cavity 1037 in accordance with the energy of the beam. In order to modulate the frequency, the inductance or the capacitance may be adjusted.
 インダクタンスや静電容量の調整方法は公知の方法を用いることができる。例えば、静電容量を調整する場合であれば、高周波加速空洞1037に可変容量キャパシタを接続して制御する。 は A known method can be used for adjusting the inductance and the capacitance. For example, when adjusting the capacitance, a high-frequency acceleration cavity 1037 is connected to a variable capacitor for control.
 次いで、加速器1004を構成する主磁場磁石1の詳細について図2以降を用いて説明する。 Next, details of the main magnetic field magnet 1 constituting the accelerator 1004 will be described with reference to FIG.
 主磁場磁石1は、静磁場を生成する磁石であり、主な構成として、図2に示すように鉛直方向から見て略円盤状の形状をなす上リターンヨーク4と下リターンヨーク5とを有している。 The main magnetic field magnet 1 is a magnet that generates a static magnetic field, and has, as main components, an upper return yoke 4 and a lower return yoke 5 that have a substantially disk shape when viewed from the vertical direction as shown in FIG. are doing.
 上リターンヨーク4と下リターンヨーク5とは、中間平面2に対してほぼ上下対称な形状を有している。この中間平面2は、おおむね主磁場磁石1の鉛直方向中心を通り、加速中のビームが描く軌道面にほぼ一致する。また上リターンヨーク4と下リターンヨーク5は、中間平面2に垂直かつおおむね主磁場磁石1の中間平面2に対する中心を通過する平面である垂直平面3に対して面対称な形状をしている。 The upper return yoke 4 and the lower return yoke 5 have a shape that is substantially vertically symmetric with respect to the intermediate plane 2. The intermediate plane 2 substantially passes through the center of the main magnetic field magnet 1 in the vertical direction, and substantially coincides with the orbital plane drawn by the beam being accelerated. The upper return yoke 4 and the lower return yoke 5 have a shape that is perpendicular to the intermediate plane 2 and is generally plane-symmetric with respect to the vertical plane 3 that is a plane passing through the center of the main magnetic field magnet 1 with respect to the intermediate plane 2.
 なお、図2では、中間平面2の主磁場磁石1に対する交差部分を一点鎖線、垂直平面3の主磁場磁石1に対する交差部分を破線で示している。 In FIG. 2, an intersecting portion of the intermediate plane 2 with the main magnetic field magnet 1 is indicated by an alternate long and short dash line, and an intersecting portion of the vertical plane 3 with the main magnetic field magnet 1 is indicated by a broken line.
 上リターンヨーク4にはイオン源1003が配置されている。 イ オ ン An ion source 1003 is arranged in the upper return yoke 4.
 図3に示すように、上リターンヨーク4と下リターンヨーク5に囲まれた空間内にはコイル6が中間平面2に対して面対称に配置されている。 コ イ ル As shown in FIG. 3, a coil 6 is arranged in a space surrounded by the upper return yoke 4 and the lower return yoke 5 symmetrically with respect to the intermediate plane 2.
 なお、実施例1では、外部イオン源を想定して主磁場磁石1の外側にイオン源1003を設置し、これに対応して貫通孔24を設けているが、イオン源1003は主磁場磁石1の内部に設置してもよい。 In the first embodiment, the ion source 1003 is installed outside the main magnetic field magnet 1 assuming an external ion source, and the through-hole 24 is provided in correspondence with the ion source 1003. May be installed inside.
 コイル6は超電導コイルであり、クライオスタット(図示省略)の内部に設置されており、液体ヘリウムなどの冷媒、または冷凍機(図示省略)からの伝熱によって冷却される。このコイル6は、図1に示したコイル引出配線1022によってコイル励磁用電源1057に接続されている。 The coil 6 is a superconducting coil, which is installed inside a cryostat (not shown) and is cooled by a refrigerant such as liquid helium or heat transfer from a refrigerator (not shown). The coil 6 is connected to the coil excitation power supply 1057 by the coil extraction wiring 1022 shown in FIG.
 上リターンヨーク4および下リターンヨーク5に囲まれた空間内のコイル6の内側には真空容器7が設けられている。 真空 A vacuum vessel 7 is provided inside the coil 6 in a space surrounded by the upper return yoke 4 and the lower return yoke 5.
 真空容器7の内部には、上リターンヨーク4の下リターンヨーク5に対向する面には上部磁極8が配置されている。また、下リターンヨーク5の上リターンヨーク4に対向する面には下部磁極9が配置されている。これら上部磁極8と下部磁極9とは中間平面2に対して面対称に配置されている。 上部 Inside the vacuum vessel 7, an upper magnetic pole 8 is disposed on a surface of the upper return yoke 4 facing the lower return yoke 5. Further, a lower magnetic pole 9 is disposed on a surface of the lower return yoke 5 facing the upper return yoke 4. The upper magnetic pole 8 and the lower magnetic pole 9 are arranged in plane symmetry with respect to the intermediate plane 2.
 これら上リターンヨーク4や下リターンヨーク5、上部磁極8、下部磁極9は、例えば、不純物濃度を低減させた純鉄や、低炭素鋼等によって構成する。真空容器7は、ステンレスなどによって構成する。コイル6は、ニオブチタン等の超電導体を用いた超電導線材で構成する。 The upper return yoke 4, the lower return yoke 5, the upper magnetic pole 8, and the lower magnetic pole 9 are made of, for example, pure iron with low impurity concentration, low carbon steel, or the like. The vacuum container 7 is made of stainless steel or the like. The coil 6 is made of a superconducting wire using a superconductor such as niobium titanium.
 イオンビームを周回させ加速させる空間は、これら上部磁極8と下部磁極9の間に形成される。 A space for rotating and accelerating the ion beam is formed between the upper magnetic pole 8 and the lower magnetic pole 9.
 出射チャネル1019はセプタムと呼ばれる電磁石を備えており、貫通孔15から図1に示した出射チャネル用電源1082に接続されている。出射チャネル用電源1082から出射チャネル1019に備えられた電磁石に電流を通電することで、出射チャネル1019に到達したイオンビームが整えられ、ビーム輸送系1013へと送られる。 The emission channel 1019 includes an electromagnet called a septum, and is connected to the emission channel power supply 1082 shown in FIG. By supplying a current from the power supply for emission channel 1082 to the electromagnet provided in the emission channel 1019, the ion beam that has reached the emission channel 1019 is adjusted and sent to the beam transport system 1013.
 図4は、対向面10を中間平面2からみた平面図である。主磁場磁石1は中間平面2に対して面対称な構造であるため、以下では、図3および図4を用いて、主磁場磁石1の詳細構造について説明する。 FIG. 4 is a plan view of the facing surface 10 as viewed from the intermediate plane 2. Since the main magnetic field magnet 1 has a plane-symmetric structure with respect to the intermediate plane 2, a detailed structure of the main magnetic field magnet 1 will be described below with reference to FIGS.
 上部磁極8および下部磁極9の中間平面2に対向する面には、ぞれぞれ、凹部21a,21b,21c,21d、凸部22a,22b,22c,22dが形成されており、図4に示すように、これら凹部21a,21b,21c,21dと凸部22a,22b,22c,22dはビーム軌道23の周回方向に沿って交互に配置されている。 Concave portions 21a, 21b, 21c, 21d and convex portions 22a, 22b, 22c, 22d are formed on a surface of the upper magnetic pole 8 and the lower magnetic pole 9 facing the intermediate plane 2, respectively. As shown, the concave portions 21a, 21b, 21c, 21d and the convex portions 22a, 22b, 22c, 22d are alternately arranged along the circling direction of the beam orbit 23.
 これら凹部21a,21b,21c,21dおよび凸部22a,22b,22c,22dとは、上部磁極8や下部磁極9と一体で形成されたものとしてもよいし、別部材として製作した後で上部磁極8や下部磁極9の表面に組立の際に溶接やボルト締めなどの公知の方法で係合してもよい。材料については上部磁極8や下部磁極9と同じとすることが望ましい。 The concave portions 21a, 21b, 21c, 21d and the convex portions 22a, 22b, 22c, 22d may be formed integrally with the upper magnetic pole 8 and the lower magnetic pole 9, or may be formed as a separate member and then formed as an upper magnetic pole. At the time of assembly, it may be engaged with the surface of the lower magnetic pole 8 or the lower magnetic pole 9 by a known method such as welding or bolting. The material is desirably the same as the upper magnetic pole 8 and the lower magnetic pole 9.
 また、図4に示すように、出射チャネル1019が近傍に配置されている凹部21aには、勾配磁場磁石31(ピーラー)、勾配磁場磁石32(リジェネレータ)、および高周波キッカ40が設置されている。 In addition, as shown in FIG. 4, a gradient magnetic field magnet 31 (peeler), a gradient magnetic field magnet 32 (regenerator), and a high-frequency kicker 40 are provided in the concave portion 21a in which the emission channel 1019 is disposed in the vicinity. .
 勾配磁場磁石31,32はビームの軌道を変位させるための勾配磁場を生成するコイルである。このうち、勾配磁場磁石31は、発生させる勾配磁場の磁場分布が、加速器1004の径方向外側に向かって磁場強度が減少する勾配磁場を生成するコイルであることが望ましい。また、勾配磁場磁石32は、発生させる勾配磁場の磁場分布が径、方向外側に向かって磁場強度が増大する勾配磁場を生成するコイルであることが望ましい。 The gradient magnets 31 and 32 are coils that generate a gradient magnetic field for displacing the beam trajectory. Among them, the gradient magnetic field magnet 31 is preferably a coil that generates a gradient magnetic field in which the magnetic field distribution of the generated gradient magnetic field decreases in the magnetic field strength radially outward of the accelerator 1004. Further, it is desirable that the gradient magnetic field magnet 32 is a coil that generates a gradient magnetic field in which the magnetic field distribution of the generated gradient magnetic field increases in radial direction and the magnetic field strength increases outward.
 なお、勾配磁場磁石31,32は、コイルの替わりに、凹部21aと一体で形成された構造物で代用することができる。このような構造物としては、例えば、別部材として製作した後で凹部21aに溶接やボルト止めなどの公知の方法で係合したものが挙げられる。より具体的には、凹部21aの表面に磁性体をさらに付加する、あるいは凹部21aの表面形状を加工することができる。 The gradient magnetic field magnets 31 and 32 can be replaced with a structure integrally formed with the concave portion 21a instead of the coil. Examples of such a structure include a structure manufactured as a separate member and then engaged with the concave portion 21a by a known method such as welding or bolting. More specifically, a magnetic substance can be further added to the surface of the concave portion 21a, or the surface shape of the concave portion 21a can be processed.
 また、実施例1では、勾配磁場磁石31は凹部21aのうち凸部22dの近くに、勾配磁場磁石32は凹部21aのうち凸部22aの近くに配置されている場合について記載しているが、この位置は逆の場合もありえる。 In the first embodiment, the case where the gradient magnetic field magnet 31 is disposed near the convex portion 22d of the concave portion 21a and the gradient magnetic field magnet 32 is disposed near the convex portion 22a of the concave portion 21a, This position can be reversed.
 また、磁極外周面より外側でヨーク内周面にいたるまでの領域における磁場は、径方向外側に向かって減少しているため、径方向外側に向かって磁場強度が減少する勾配磁場を生成する勾配磁場磁石31は省略できることもある。 In addition, since the magnetic field in the region from the outer peripheral surface of the magnetic pole to the inner peripheral surface of the yoke decreases radially outward, the gradient that generates a gradient magnetic field in which the magnetic field intensity decreases radially outward. The magnetic field magnet 31 may be omitted in some cases.
 また、これらの勾配磁場磁石31,32が生成する勾配磁場は、少なくとも4極磁場成分が含まれ、4極以上の多極磁場、あるいは2極磁場が含まれていることが望ましい。 The gradient magnetic field generated by the gradient magnetic field magnets 31 and 32 desirably includes at least a quadrupole magnetic field component, and desirably includes a multipolar magnetic field having four or more poles or a dipole magnetic field.
 貫通孔18は、ビーム輸送系1013を設置するための貫通孔である。この貫通孔19は、主磁場磁石の対称性を高めて主磁場磁石が生成する磁場を高精度化するために、垂直平面3に対して貫通孔18と面対称になるように設けられている。 The through hole 18 is a through hole for installing the beam transport system 1013. The through hole 19 is provided so as to be symmetric with the through hole 18 with respect to the vertical plane 3 in order to increase the symmetry of the main magnetic field magnet and to increase the accuracy of the magnetic field generated by the main magnetic field magnet. .
 図5に、高周波キッカ40の中間平面2による断面図を示す。また、図6に、高周波キッカ40の垂直平面3による断面図を示す。 FIG. 5 is a sectional view of the high-frequency kicker 40 taken along the intermediate plane 2. FIG. 6 is a sectional view of the high-frequency kicker 40 taken along the vertical plane 3.
 図2や図5、図6に示す高周波キッカ40は、高周波加速空洞1037とは異なる周波数の高周波電場を印加する装置であり、図4に示すように勾配磁場磁石31や勾配磁場磁石32と同様に凹部21aに挟まれた空間に配置されている。 The high-frequency kicker 40 shown in FIGS. 2, 5, and 6 is a device for applying a high-frequency electric field having a frequency different from that of the high-frequency accelerating cavity 1037, and is similar to the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 as shown in FIG. Are arranged in a space interposed between the concave portions 21a.
 これら勾配磁場磁石31や勾配磁場磁石32、高周波キッカ40が備えられた凹部21aの磁極外周領域に、所定エネルギーに加速されたビームを加速器1004の外に取り出すための出射チャネル1019が設けられている。 An emission channel 1019 for extracting a beam accelerated to a predetermined energy out of the accelerator 1004 is provided in a magnetic pole outer peripheral region of the concave portion 21 a provided with the gradient magnetic field magnet 31, the gradient magnetic field magnet 32, and the high frequency kicker 40. .
 図5や図6に示すように、高周波キッカ40は、接地電極41と高圧電極42とから構成され、内周側に接地電極41、外周側に高圧電極42が対向して設置されている。また、接地電極41と高圧電極42とは、図2や図6に示すように、中間平面内でビーム軌道と直交する方向に高周波電場が作用するように、ビーム軌道のカーブにおおよそ平行な形状に設計されている。 As shown in FIGS. 5 and 6, the high-frequency kicker 40 includes a ground electrode 41 and a high-voltage electrode 42. The ground electrode 41 is provided on the inner peripheral side, and the high-voltage electrode 42 is provided on the outer peripheral side. As shown in FIGS. 2 and 6, the ground electrode 41 and the high-voltage electrode 42 have shapes substantially parallel to the curve of the beam trajectory so that the high-frequency electric field acts in a direction orthogonal to the beam trajectory in the intermediate plane. Designed for
 図5や図6に示すように、接地電極41には金属製の突起部43を取り付け、接地電極41と高圧電極42との間に生じる高周波電場の集中を高めることができる。 As shown in FIGS. 5 and 6, a metal projection 43 is attached to the ground electrode 41, so that the concentration of the high-frequency electric field generated between the ground electrode 41 and the high-voltage electrode 42 can be increased.
 高圧電極42は高周波電圧が印加されるため、図6に示すように、絶縁支持体45を介して接地電極41に支持される。接地電極41は、非磁性支持体44を介して上部磁極8や下部磁極9に支持される。 (6) Since a high-frequency voltage is applied to the high-voltage electrode 42, the high-voltage electrode 42 is supported by the ground electrode 41 via the insulating support 45 as shown in FIG. The ground electrode 41 is supported by the upper magnetic pole 8 and the lower magnetic pole 9 via a non-magnetic support 44.
 接地電極41、および高圧電極42とは、ともにビームが通過する中間平面2を中心にして上下に分割されている。本実施例の高周波キッカ40は、図6に示すように端面が開いた形状であるが、ビーム通過孔を除いて端面を接地電極で閉塞し、共振器構造とすることもできる。 The ground electrode 41 and the high-voltage electrode 42 are both vertically divided about the intermediate plane 2 through which the beam passes. Although the high-frequency kicker 40 of the present embodiment has a shape with an open end face as shown in FIG. 6, the end face may be closed with a ground electrode except for a beam passage hole to form a resonator structure.
 磁極構造の効果を説明するために、主磁場磁石1の設計手順について図7乃至図9を用いて説明する。 設計 In order to explain the effect of the magnetic pole structure, a design procedure of the main magnetic field magnet 1 will be described with reference to FIGS.
 まず、主磁場磁石1の大きさを決めるために、磁場強度と最高エネルギーにおけるビーム軌道の半径を定める必要がある。主磁場磁石1が生成する磁場が大きいほど、ビーム軌道の広がりが小さくなり、加速器1004、ひいては粒子線治療システム1001を小型化することができる。 First, in order to determine the size of the main magnetic field magnet 1, it is necessary to determine the magnetic field strength and the radius of the beam orbit at the highest energy. As the magnetic field generated by the main magnetic field magnet 1 is larger, the spread of the beam trajectory becomes smaller, and the accelerator 1004 and, consequently, the particle beam therapy system 1001 can be downsized.
 本実施例では、入射地点での磁場を5[T]、最高エネルギーのビーム半径を1[m]とすることにした。なお、本実施例では、加速するビームの入射点と最大ビームエネルギー軌道の中心O1との位置を一致させておく。 In this example, the magnetic field at the incident point was set to 5 [T], and the beam radius of the highest energy was set to 1 [m]. In this embodiment, the position of the incident point of the beam to be accelerated and the position of the center O1 of the maximum beam energy trajectory are matched.
 次に、ビームが安定に周回する理想磁場分布を求めなければならない。そのため、本実施例では、ビームを安定周回させるために、弱収束の原理に基づいて磁場を設計した。 Next, we need to find the ideal magnetic field distribution in which the beam circulates stably. Therefore, in the present embodiment, the magnetic field is designed based on the principle of weak convergence in order to stably circulate the beam.
 弱収束の原理を用いた加速器では、一般に、下記式(1)で示すようなnインデックスと呼ばれる量 加速 In an accelerator using the principle of weak convergence, generally, an amount called an n index as shown in the following equation (1) is used.
Figure JPOXMLDOC01-appb-M000001
 を0より大きく0.2以下になるように磁場分布が設計される。ここで、Bは中間平面2における磁場、ρはビーム軌道の曲率半径であり、磁場勾配∂B/∂rは、中間平面2の上で、ビーム進行方向と垂直でビームエネルギーが大きくなる方向に対する磁場の微分を示している。
Figure JPOXMLDOC01-appb-M000001
Is designed to be larger than 0 and equal to or smaller than 0.2. Here, B is the magnetic field in the intermediate plane 2, ρ is the radius of curvature of the beam orbit, and the magnetic field gradient ∂B / ∂r is perpendicular to the beam traveling direction on the intermediate plane 2 with respect to the direction in which the beam energy increases. The derivative of the magnetic field is shown.
 上述のように、本実施例では、磁場強度を5[T]、最高エネルギーのビーム半径(最大軌道半径)を1[m]としたので、∂B/∂rは-1[T/m]以上で0より小さくすべきとなった。ここでは、∂B/∂rは-0.5[T/m]とすることにする。すると、最高エネルギーのビーム半径は1[m]だから、この軌道上における磁場は4.5[T]となる。 As described above, in this embodiment, since the magnetic field intensity is 5 [T] and the beam radius of the highest energy (maximum orbital radius) is 1 [m], ∂B / ∂r is −1 [T / m]. As described above, the value should be smaller than 0. Here, ∂B / ∂r is -0.5 [T / m]. Then, since the beam radius of the highest energy is 1 [m], the magnetic field on this orbit is 4.5 [T].
 一般に、弱収束の原理によってビームを収束させる円形加速器では、軸対称な磁場分布を生成するために、磁極形状も軸対称とすることが多い。そうすると、磁場Bはビーム周回方向に沿って一定値となる。しかし、弱収束の原理は、必ずしもBがビーム周回方向に一定であることを要請せず、Bがビーム周回方向に対する平均磁場である場合でも成立する。すなわち、ビーム周回方向に磁場の強弱が分布していてよい。 円 形 Generally, in a circular accelerator that converges a beam based on the principle of weak convergence, the magnetic pole shape is often axially symmetric in order to generate an axially symmetric magnetic field distribution. Then, the magnetic field B becomes a constant value along the beam circling direction. However, the principle of weak convergence does not necessarily require that B is constant in the beam circling direction, and is valid even when B is an average magnetic field in the beam circling direction. That is, the strength of the magnetic field may be distributed in the beam circling direction.
 そこで、本実施例では、4つの凹部21a,21b,21c,21dと4つの凸部22a,22b,22c,22dとによってビーム周回方向に磁場の強弱が分布するように、かつビーム周回方向の磁場平均がビームエネルギーの増大に従って式(1)に従って減少するように設計した。 Therefore, in this embodiment, the four concave portions 21a, 21b, 21c, and 21d and the four convex portions 22a, 22b, 22c, and 22d distribute the magnetic field in the beam circling direction, and the magnetic field in the beam circulating direction. The average was designed to decrease according to equation (1) with increasing beam energy.
 また、上下の凸部22a,22b,22c,22dで挟まれた領域では、上部磁極8および下部磁極9との間の距離が短くなることから、上下の凹部21a,21b,21c,21dで挟まれた領域よりも磁場が大きくなる。 Further, in a region sandwiched between the upper and lower convex portions 22a, 22b, 22c, and 22d, the distance between the upper magnetic pole 8 and the lower magnetic pole 9 becomes shorter, so that the region is sandwiched between the upper and lower concave portions 21a, 21b, 21c, and 21d. The magnetic field is larger than in the region that has been set.
 そこで、図7に示すように、ビームエネルギーが増大して磁極外周面25に近づくに従って、ビーム周回軌道の中心O1から見たときの凸部22a,22b,22c,22dの角度幅θ,θ,・・・,θが狭まっていく(θ>θ>θ>・・・>θ)ようにした。なお、図7では、代表して凸部22cのみを示す。図8や図9も同様である。 Therefore, as shown in FIG. 7, as the beam energy increases and approaches the magnetic pole outer peripheral surface 25, the angular widths θ 1 , θ of the convex portions 22a, 22b, 22c, 22d as viewed from the center O1 of the beam orbit. 2,..., it was to θ n is gradually narrowed (θ 1> θ 2> θ 3>···> θ n) as. In FIG. 7, only the protrusion 22c is shown as a representative. 8 and 9 are the same.
 このように凸部22a,22b,22c,22dの角度幅θ,θ,θ,…,θを狭めていくことは、本実施例においては、ビーム周回軌道の中心O1からみたときの凹部21a,21b,21c,21dの角度幅はビームエネルギーの増大に従って広がっていくことを意味する。 As described above, the narrowing of the angular widths θ 1 , θ 2 , θ 3 ,..., Θ n of the protruding portions 22 a, 22 b, 22 c, and 22 d depends on the present embodiment when viewed from the center O 1 of the beam orbit. Means that the angular width of the concave portions 21a, 21b, 21c, 21d becomes wider as the beam energy increases.
 第一近似としては、凹部21a,21b,21c,21dに挟まれた領域と凸部22a,22b,22c,22dに挟まれた領域の磁場は、それぞれ一定値と考え、式(1)で定まる平均磁場の減少に合わせて、凸部22a,22b,22c,22dの角度幅が減少していくように調整すればよい。 As a first approximation, the magnetic field in the region between the concave portions 21a, 21b, 21c, and 21d and the magnetic field in the region between the convex portions 22a, 22b, 22c, and 22d are considered to be constant values, and are determined by Expression (1). Adjustment may be made so that the angular width of the projections 22a, 22b, 22c, 22d decreases in accordance with the decrease in the average magnetic field.
 すなわち、凹部21a,21b,21c,21dに挟まれた領域における磁場をB、凸部22a,22b,22c,22dで挟まれた領域における磁場をBとすると、下記式(2)  That is, the recess 21a, 21b, 21c, a magnetic field B v in region sandwiched 21d, protruding portions 22a, 22b, 22c, when the magnetic field and B h in a region sandwiched by 22 d, the following formula (2)
Figure JPOXMLDOC01-appb-M000002
 の関係からθを決めればよい。ここでθの単位はラジアンであり、B<B(r)<Bである。
Figure JPOXMLDOC01-appb-M000002
May be determined from the relationship. Here, the unit of θ is radian, and Bv <B (r) < Bh .
 このように設計した凸部22a,22b,22c,22dでは、図8に示すように、加速されるビームが1つの凸部22a,22b,22c,22dを通過する距離L,L,…,Lが、ビームエネルギーの増大に伴って増加(L>L>L)した後に減少に転ずる(L>L)関係となる。 In the convex portions 22a, 22b, 22c, 22d designed in this way, as shown in FIG. 8, the distances L 1 , L 2 ,... In which the accelerated beam passes through one convex portion 22a, 22b, 22c, 22d. , L n is a turn in a decrease followed by an increase with increasing beam energy (L x> L 2> L 1) (L x> L n) relationship.
 さらには、凸部22a,22b,22c,22dでは、図9に示すように、凸部22cと凹部21dとの境界の接線と、その反対側の凸部22cと凹部21cとの境界の接線との間の角度がビームエネルギーの増大に従って小さくなる(θ’>θ’)。その後、2本の接線が平行になり、その後、角度が大きくなる関係となっている。 Further, as shown in FIG. 9, the protrusions 22a, 22b, 22c, and 22d have a tangent at a boundary between the protrusion 22c and the recess 21d and a tangent at a boundary between the protrusion 22c and the recess 21c on the opposite side. Are reduced as the beam energy increases (θ ′ 1 > θ ′ 2 ). Thereafter, the two tangent lines become parallel, and thereafter, the angle increases.
 このようにして得られる磁場は、最高エネルギーのビームに対する平均磁場は、磁極を軸対称形状にした場合と同じ値の4.5[T]とできるから、加速器のサイズは同等である。一方、軸対称の磁極形状では、最高エネルギーのビームに対する磁場は一様に4.5[T]であるが、本実施例では凹部では4.5[T]未満、凸部では4.5[T]を超える磁場となっている。 磁場 The magnetic field obtained in this way can have an average magnetic field for the highest energy beam of 4.5 [T], which is the same value as when the magnetic poles are axisymmetric, so that the size of the accelerator is the same. On the other hand, in the case of the axially symmetric magnetic pole shape, the magnetic field with respect to the beam having the highest energy is uniformly 4.5 [T]. T].
 そこで、所定のエネルギーに加速されたビームを加速器1004の外に取り出す出射チャネル1019の入り口を凹部21aの磁極外周面25近傍に設置することで、出射チャネル1019がビーム取り出しのために生成すべき磁場を軸対称の磁極形状よりも小さくすることができ、ビーム取り出しを容易にすることができる。 Therefore, by setting the entrance of the emission channel 1019 for taking out the beam accelerated to the predetermined energy to the outside of the accelerator 1004 near the magnetic pole outer peripheral surface 25 of the concave portion 21a, the magnetic field to be generated by the emission channel 1019 for beam extraction is provided. Can be made smaller than the axially symmetric magnetic pole shape, and beam extraction can be facilitated.
 次に、高周波キッカ40、勾配磁場磁石31、勾配磁場磁石32の効果を説明する。 Next, the effects of the high-frequency kicker 40, the gradient magnetic field magnet 31, and the gradient magnetic field magnet 32 will be described.
 通常と同じ構造のシンクロサイクロトロンでは、最大エネルギーまで加速されたビームが勾配磁場磁石31と勾配磁場磁石32が生成する勾配磁場を感じることで、ビームの水平方向運動に共鳴現象が生じて平衡軌道からの変位が増大し、出射チャネル1019に到達したビームが加速器外に取り出される。 In a synchrocyclotron having the same structure as usual, the beam accelerated to the maximum energy senses the gradient magnetic field generated by the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32, so that a resonance phenomenon occurs in the horizontal movement of the beam, and the beam moves from the equilibrium orbit. Is increased, and the beam reaching the exit channel 1019 is extracted outside the accelerator.
 このとき、最大エネルギーよりも低いエネルギーのビームが勾配磁場磁石31や勾配磁場磁石32が形成する勾配磁場を感じて周回運動が不安定化することは避けなければならない。 At this time, it is necessary to avoid that the beam having an energy lower than the maximum energy feels the gradient magnetic field formed by the gradient magnetic field magnet 31 or the gradient magnetic field magnet 32 and the orbital motion becomes unstable.
 そのため、勾配磁場磁石31と勾配磁場磁石32が生成する勾配磁場の影響が最大エネルギーのビーム軌道の内側では十分小さくなるように、勾配磁場磁石31と勾配磁場磁石32よりも径方向内側に補正用の磁性体やコイルを設置することが望ましい(図示省略)。 For this reason, the gradient magnetic field generated by the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 is corrected radially inward of the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 so that the influence of the gradient magnetic field is sufficiently small inside the beam orbit of the maximum energy. It is desirable to install a magnetic material and a coil (not shown).
 更に、低エネルギービームを取り出すためには、取り出しエネルギーに近づいた低エネルギービームについては水平方向に不安定化させること、より加速が必要な低エネルギービームについては安定周回させながら所定の取り出し高エネルギーまで加速すること、との2つを両立させる必要がある。 Furthermore, in order to extract a low-energy beam, the low-energy beam approaching the extraction energy must be destabilized in the horizontal direction. It is necessary to balance the two of acceleration.
 そのために、低エネルギービームを取り出す場合には、そのタイミングのみ勾配磁場磁石31,32が生成する勾配磁場を作用させるといった、勾配磁場を選択的に作用させる機構が必要となる。そのための機構が高周波キッカ40である。この高周波キッカ40の役割は、この取り出し対象のビームに選択的に勾配磁場磁石31,32の磁場を感じさせることである。 た め Therefore, when extracting a low energy beam, a mechanism for selectively applying a gradient magnetic field, such as applying a gradient magnetic field generated by the gradient magnetic field magnets 31 and 32 only at that timing, is required. The mechanism for this is the high-frequency kicker 40. The role of the high-frequency kicker 40 is to make the beam to be extracted selectively feel the magnetic field of the gradient magnetic field magnets 31 and 32.
 すなわち、イオン源から入射されて加速されるビームは、徐々にその平均軌道半径を拡大していき、ついには高周波キッカ40の内部を通過するようになる。 That is, the beam that is incident and accelerated from the ion source gradually increases its average orbital radius, and finally passes through the inside of the high-frequency kicker 40.
 所望の取り出し対象のエネルギーにビームが到達した段階で、高周波電源1036をオフにして高周波加速空洞1037に接続された電極と接地電極との間に励起させていた高周波電場を遮断し、高周波キッカ40をオンにする。 When the beam reaches the desired energy to be extracted, the high-frequency power source 1036 is turned off to cut off the high-frequency electric field excited between the electrode connected to the high-frequency accelerating cavity 1037 and the ground electrode. Turn on.
 高周波キッカ40に到達したビームが加速器を周回する周波数をfrev、同ビームの水平方向ベータトロン振動数の小数部をδνとするとき、高周波キッカ40の周波数をfrev×δνと略同一に設定して高周波キッカ40の高周波電場を印加する。 When the frequency at which the beam reaching the high-frequency kicker 40 orbits the accelerator is f rev , and the fractional part of the horizontal betatron frequency of the beam is δν, the frequency of the high-frequency kicker 40 is set to be substantially the same as f rev × δν. Then, a high-frequency electric field of the high-frequency kicker 40 is applied.
 これにより、ビーム軌道は高周波キッカ40の内部を通過するたびに径方向外側向きの力を受け、徐々にビーム軌道は径方向外側にずらされていき、ついには勾配磁場磁石31,32が生成する勾配磁場を感じる位置に到達する。 As a result, each time the beam trajectory passes through the inside of the high-frequency kicker 40, the beam trajectory receives a radially outward force, and the beam trajectory is gradually shifted radially outward, and finally, the gradient magnetic field magnets 31 and 32 are generated. It reaches a position where the user can feel the gradient magnetic field.
 勾配磁場磁石31,32の勾配磁場を感じ始めたビームは、水平方向ベータトロン運動の振幅が発散し始め、ついには出射チャネル1019に到達し、加速器外に取り出されることになる。 The beam that has begun to feel the gradient magnetic field of the gradient magnetic field magnets 31 and 32 begins to diverge in the amplitude of the horizontal betatron motion, and finally reaches the exit channel 1019 and is taken out of the accelerator.
 次に、本実施例の効果について説明する。 Next, effects of the present embodiment will be described.
 上述した本発明の実施例1の粒子線治療システム1001のうち加速器1004は、静磁場を生成する主磁場磁石1と、周波数が変調可能で、ビームを加速するための高周波電場を印加する高周波加速空洞1037と、高周波加速空洞1037とは異なる周波数の高周波電場を印加する高周波キッカ40と、を備え、主磁場磁石1は、上リターンヨーク4に固定された上部磁極8と下リターンヨーク5に固定された下部磁極9との一対の磁極を有し、上部磁極8、下部磁極9は、上部磁極8、下部磁極9に挟まれた空間にある中間平面2に対して面対称な位置に配置され、上部磁極8、下部磁極9の中間平面2に対向する面には、ビーム周回方向に沿って凹部21a,21b,21c,21dと凸部22a,22b,22c,22dとが交互に配置されており、高周波キッカ40は、凹部21aに挟まれた空間に配置されている。 In the particle beam therapy system 1001 according to the first embodiment of the present invention, the accelerator 1004 includes a main magnetic field magnet 1 that generates a static magnetic field, and a high-frequency acceleration that can modulate a frequency and applies a high-frequency electric field for accelerating a beam. The main magnetic field magnet 1 includes a cavity 1037 and a high-frequency kicker 40 for applying a high-frequency electric field having a frequency different from that of the high-frequency acceleration cavity 1037. The main magnetic field magnet 1 is fixed to the upper return yoke 4 and the lower return yoke 5. The upper magnetic pole 8 and the lower magnetic pole 9 are arranged at a plane symmetric position with respect to the intermediate plane 2 in a space sandwiched between the upper magnetic pole 8 and the lower magnetic pole 9. On the surface of the upper magnetic pole 8 and the lower magnetic pole 9 facing the intermediate plane 2, the concave portions 21a, 21b, 21c, 21d and the convex portions 22a, 22b, 22c, 22d cross along the beam circling direction. Are arranged in the high-frequency kicker 40 is arranged in space between the concave portion 21a.
 このような凹部21aに挟まれた空間に配置されている高周波キッカ40によって、周波数変調が可能な高周波加速空洞1037を備えた加速器において、1つだけ配置された出射チャネル1019に高性能化・大型化等の対策を施したセプタム電磁石を配置することなく、所定エネルギーのビームを取り出すことができる。従って、複数の出射チャネルを用いることなく、またディグレーダを用いることなく、取り出しビームのエネルギーを連続的に可変とした小型の粒子線の加速器1004を提供することができる。 In the accelerator provided with the high-frequency acceleration cavity 1037 capable of frequency modulation by the high-frequency kicker 40 arranged in the space sandwiched between the recesses 21a, the high-performance and large-sized emission channel 1019 provided only in one is provided. A beam having a predetermined energy can be extracted without arranging a septum electromagnet in which measures such as conversion are taken. Therefore, it is possible to provide a small particle beam accelerator 1004 in which the energy of the extracted beam is continuously variable without using a plurality of emission channels and without using a degrader.
 このような構成の加速器1004は、高い照射線量率を実現して患者の治療スループットを向上させることが期待される粒子線治療システムに好適なものである。 加速 The accelerator 1004 having such a configuration is suitable for a particle beam therapy system which is expected to realize a high irradiation dose rate and improve the treatment throughput of a patient.
 また、高周波キッカ40が備えられた凹部21aに挟まれた空間に、ビームの軌道を変位させるための勾配磁場を生成する勾配磁場磁石31,32が配置されているため、高周波キッカ40で変位させた低エネルギービームが確実に勾配磁場を感じる配置関係とすることができる。これにより、水平方向のベータトロン振動振幅を拡大させて、より効率的に出射チャネル1019に所定エネルギーのビームを到達させることができ、加速器外に取り出すことが可能となる。 Further, since the gradient magnetic field magnets 31 and 32 for generating a gradient magnetic field for displacing the beam trajectory are arranged in a space between the concave portions 21 a provided with the high frequency kicker 40, the high frequency kicker 40 is displaced. The arrangement can be such that the low-energy beam surely senses the gradient magnetic field. This allows the beam of predetermined energy to reach the emission channel 1019 more efficiently by expanding the horizontal betatron oscillation amplitude in the horizontal direction, and it is possible to extract the beam outside the accelerator.
 更に、高周波キッカ40が備えられた凹部21aの磁極外周領域に、所定エネルギーに加速されたビームを加速器1004の外に取り出すための出射チャネル1019が設けられていることで、高周波キッカ40で変位させられて水平方向のベータトロン振動振幅が拡大したビームをより容易に出射チャネル1019に到達させることができる。 Further, an emission channel 1019 for extracting a beam accelerated to a predetermined energy to the outside of the accelerator 1004 is provided in a magnetic pole outer peripheral region of the concave portion 21 a provided with the high frequency kicker 40, so that the beam is displaced by the high frequency kicker 40. The beam with the increased horizontal betatron oscillation amplitude can more easily reach the exit channel 1019.
 また、凸部22a,22b,22c,22dは、ビーム周回軌道の中心から見たときの凸部22a,22b,22c,22dの角度幅θがビームエネルギーの増大に従って狭まっていくことにより、主磁場を増大させた場合でも、加速器を大型化することなくビームを安定して加速することができる。また、加速されたビームの取り出し口となる出射チャネル1019の入口が配置される磁極の外周領域の磁場強度を弱めることができる。このため、セプタムの高性能化・大型化等の困難な方法を用いることなく、ビーム取り出しが容易な主磁場磁石を備えた小型の加速器を提供することができる。 The convex portions 22a, 22b, 22c, and 22d have a main magnetic field due to the fact that the angular width θ of the convex portions 22a, 22b, 22c, and 22d as viewed from the center of the beam orbit decreases as the beam energy increases. Is increased, the beam can be accelerated stably without increasing the size of the accelerator. Further, the magnetic field strength in the outer peripheral region of the magnetic pole where the entrance of the exit channel 1019 serving as the exit of the accelerated beam can be reduced. For this reason, it is possible to provide a small accelerator having a main magnetic field magnet from which a beam can be easily extracted without using a difficult method such as high performance and large size of the septum.
 更に、ビームが所望のエネルギーまで加速されると、高周波加速空洞1037による高周波電場を遮断し、高周波キッカ40による高周波電場の印加を開始することで、取り出すビームのエネルギーを高精度に選択することができる。 Further, when the beam is accelerated to a desired energy, the high-frequency electric field by the high-frequency accelerating cavity 1037 is shut off, and the application of the high-frequency electric field by the high-frequency kicker 40 is started, so that the energy of the beam to be extracted can be selected with high accuracy. it can.
 また、勾配磁場磁石32によって発生させる多極磁場の成分は、径方向外周側に向かって磁場強度が増大する磁場勾配を有していることや、勾配磁場磁石31によって発生させる多極磁場の成分は、径方向外周側に向かって磁場強度が減少する磁場勾配も有していることで、取り出したい特定エネルギーとなったビームに対して周回軌道面内のベータトロン振動を不安定化させることができるため、任意エネルギーのビームをより容易に取り出すことができる、との効果が得られる。 Further, the component of the multipole magnetic field generated by the gradient magnetic field magnet 32 has a magnetic field gradient in which the magnetic field strength increases toward the radially outer side, and the component of the multipole magnetic field generated by the gradient magnetic field magnet 31 Has a magnetic field gradient that reduces the magnetic field strength toward the radially outer side, which can destabilize the betatron oscillation in the orbital plane for the beam with the specific energy to be extracted. Therefore, it is possible to obtain an effect that a beam having an arbitrary energy can be more easily extracted.
 <実施例2>
 本発明の実施例2の粒子線加速器および粒子線治療システムについて、図10乃至図15を用いて説明する。実施例1と同じ構成には同一の符号を示し、説明は省略する。
<Example 2>
Second Embodiment A particle accelerator and a particle beam therapy system according to a second embodiment of the present invention will be described with reference to FIGS. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図10は、実施例2における主磁場磁石を中間平面からみた平面図である。図11乃至図14は、主磁場磁石の凸部の一つを拡大した平面図である。図15は、高周波キッカの中間平面による断面図である。 FIG. 10 is a plan view of the main magnetic field magnet according to the second embodiment viewed from an intermediate plane. 11 to 14 are enlarged plan views of one of the projections of the main magnetic field magnet. FIG. 15 is a cross-sectional view of the high-frequency kicker taken along an intermediate plane.
 実施例2の粒子線加速器と、上述した実施例1の粒子線加速器とでは、主磁場磁石内の上部磁極および下部磁極の対向面の形状が異なっている。以下、図10以降を用いて説明する。 The particle beam accelerator of the second embodiment is different from the particle beam accelerator of the first embodiment in the shape of the surfaces of the upper magnetic pole and the lower magnetic pole in the main magnetic field magnet. Hereinafter, description will be made with reference to FIG.
 粒子線加速器では、ビームの運動エネルギーをK、静止エネルギーをE、光速をc、荷電粒子の電荷数をqとおくと、下記式(3) In the particle accelerator, if the kinetic energy of the beam is K, the static energy is E 0 , the speed of light is c, and the number of charges of the charged particles is q, the following equation (3) is obtained.
Figure JPOXMLDOC01-appb-M000003
 の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000003
Holds.
 上記の式(3)と実施例1において説明した式(2)とを組み合わせると、θは径方向距離rの関数から運動エネルギーKの関数に見直すことができる。 組 み 合 わ せ る By combining the above equation (3) with the equation (2) described in the first embodiment, θ can be redefined from a function of the radial distance r to a function of the kinetic energy K.
 特に、ビーム軌道の中心が磁極の中心と一致している場合はr=ρとなるが、実施例2では、ビーム軌道の中心が磁極の中心と一致しておらず、加速するビームの入射点O2と最大ビームエネルギー軌道の中心O4、および加速器のビームの周回軌道の中心O3,O5,O6との位置が異なる場合を示している。 In particular, when the center of the beam orbit coincides with the center of the magnetic pole, r = ρ. However, in the second embodiment, the center of the beam orbit does not coincide with the center of the magnetic pole, and the incident point of the accelerating beam is set. A case is shown in which the position of O2 is different from the center O4 of the maximum beam energy orbit and the centers O3, O5 and O6 of the orbit of the beam of the accelerator.
 図10は、実施例2における対向面10を中間平面2からみた平面図である。実施例1と同様の構造物等については、同じ番号を流用して指し示している。 FIG. 10 is a plan view of the opposing surface 10 according to the second embodiment as viewed from the intermediate plane 2. About the same structure etc. as Example 1, the same number is diverted and pointed out.
 図10において、ビーム入射点はO2であり、最高エネルギーのビーム軌道126の軌道中心はO4であり、その中間のエネルギーのビーム軌道127の軌道中心はO3、中間より加速したエネルギーのビーム軌道の中心はO5,O6である。 In FIG. 10, the beam incident point is O2, the orbital center of the highest energy beam orbit 126 is O4, the orbital center of the intermediate energy beam orbit 127 is O3, and the center of the energy beam orbit accelerated from the middle is O3. Are O5 and O6.
 実施例2では、入射点から最大エネルギーのビーム軌道までの幅128を0.1[m]とすることにした。すると、実施例1と同様に∂B/∂rを-1.0[T/m]とすると、最高エネルギーに対する磁場は4.9[T]ということになる。 In the second embodiment, the width 128 from the incident point to the beam orbit of the maximum energy is set to 0.1 [m]. Then, assuming that ∂B / -r is -1.0 [T / m] as in the first embodiment, the magnetic field for the highest energy is 4.9 [T].
 この実施例2においても、図11に示すように、ビーム周回軌道の中心O3,O5,O6,O4から見た時の凸部122cの角度幅θ1A,θ2A,θ3A,・・・,θnAは、式(2)および式(3)に従って、ビームエネルギーの増大に従って狭まっている(θ1A>θ2A>θ3A>…>θnA)。 Also in the second embodiment, as shown in FIG. 11, the angular widths θ 1A , θ 2A , θ 3A ,... Of the convex portion 122c as viewed from the centers O3, O5, O6, O4 of the beam orbit. θ nA narrows according to the increase of the beam energy according to Expressions (2) and (3) (θ 1A > θ 2A > θ 3A >>...> θ nA ).
 同様に、図12に示すように、ビーム周回軌道の中心O3,O5,O4から見た時の凸部122dの角度幅θ1B,θ2B,…,θnBは、式(2)および式(3)に従って、ビームエネルギーの増大に従って狭まっている(θ1B>θ2B>…>θnB)。 Similarly, as shown in FIG. 12, the angle widths θ 1B , θ 2B ,..., Θ nB of the convex portion 122d when viewed from the centers O3, O5, and O4 of the beam orbit are expressed by the equations (2) and ( According to 3), the beam energy becomes narrower as the beam energy increases (θ 1B > θ 2B >>...> Θ nB ).
 このように設計した凸部122cでは、図13に示すように、加速されるビームが一つの凸部122cを通過する距離L1A,L2A,…,LnAが、ビームエネルギーの増大に伴って増加(L2A>L1A)した後に減少に転ずる(L2A>LxA>LnA)関係となる。 13, the distance L 1A , L 2A ,..., L nA at which the accelerated beam passes through one convex portion 122c increases as the beam energy increases, as shown in FIG. increase (L 2A> L 1A) to turn to decrease after the (L 2A> L xA> L nA) relationship.
 さらには、図14に示すように、凸部122cでは、凸部122cと凹部121dの境界線の接線と、その反対側の凸部122cと凹部121cの境界線の接線との間の角度がビームエネルギーの増大に従って小さくなり、その後、2本の接線が平行になる。その後、角度が大きくなっていく(θ’3A>…>θ’nA)関係となっている。 Further, as shown in FIG. 14, in the convex portion 122c, the angle between the tangent to the boundary between the convex portion 122c and the concave portion 121d and the tangent to the boundary line between the convex portion 122c and the concave portion 121c on the opposite side is a beam. It decreases with increasing energy, after which the two tangents become parallel. Thereafter, the angle becomes larger (θ ′ 3A >>... Θ ′ nA ).
 図示は省略しているが、凸部122cと垂直平面3に対して対称な形状の凸部122bについても、凸部122cと同様である。また、凸部122dと垂直平面3に対して対称な形状の凸部122aについても、凸部122dと同様である。 が Although illustration is omitted, the convex portion 122c and the convex portion 122b symmetrical with respect to the vertical plane 3 are the same as the convex portion 122c. Further, the convex portion 122a having a shape symmetrical to the convex portion 122d and the vertical plane 3 is the same as the convex portion 122d.
 このようにして得られる磁場は、ビーム周回方向に沿った平均磁場は、磁極を軸対称形状にした場合の4.9[T]と同じ値にできるから、加速器のサイズは軸対称形状の場合と同等である。 In the magnetic field obtained in this way, the average magnetic field along the beam circling direction can be set to the same value as 4.9 [T] when the magnetic poles are axisymmetric, so that the size of the accelerator is axisymmetric. Is equivalent to
 一方、軸対称の磁極形状では、最高エネルギーのビームに対する磁場はビーム周回方向に沿って4.9[T]と一定であるが、実施例2では凹部121a,121b,121c,121dでは4.9[T]未満、凸部122a,122b,122c,122dでは4.9[T]を超える磁場となっている。 On the other hand, in the axially symmetric magnetic pole shape, the magnetic field for the beam with the highest energy is constant at 4.9 [T] along the beam circling direction, but in the second embodiment, 4.9 in the concave portions 121a, 121b, 121c, and 121d. The magnetic field is less than [T], and the magnetic field exceeds 4.9 [T] in the convex portions 122a, 122b, 122c, and 122d.
 そこで、実施例2においても、所定エネルギーに加速されたビームを加速器1004の外に取り出す出射チャネル1019の入り口を凹部121aの磁極外周面125の近傍に設置する。これにより、出射チャネル1019がビーム取り出しのために生成すべき磁場を、軸対称形状の磁極形状よりも小さくすることができ、ビーム取り出しを容易にすることができる。 Therefore, also in the second embodiment, the entrance of the emission channel 1019 for taking out the beam accelerated to the predetermined energy to the outside of the accelerator 1004 is set near the magnetic pole outer peripheral surface 125 of the concave portion 121a. Thereby, the magnetic field to be generated by the emission channel 1019 for beam extraction can be made smaller than the axially symmetric magnetic pole shape, and the beam extraction can be facilitated.
 また、最高エネルギーの軌道中心O4と入射点O2が一致せず、入射点O2が出射チャネル1019のビーム入口方向へとずれている。このようにビーム軌道の中心をずらすと、凹部121a側では低エネルギーのビーム軌道を出射チャネル1019の入り口に近づくため、出射チャネル1019側にビーム周回軌道が密になる領域が形成される。 Also, the orbital center O4 of the highest energy does not coincide with the incident point O2, and the incident point O2 is shifted toward the beam entrance of the exit channel 1019. When the center of the beam trajectory is shifted in this way, the low-energy beam trajectory approaches the entrance of the emission channel 1019 on the concave portion 121a side, so that a region where the beam trajectory is dense is formed on the emission channel 1019 side.
 そのため、図15に示したように、高周波キッカ40を通過するビーム軌道のエネルギー帯が増加することになる。すなわち、実施例1と比較したとき、実施例2の方が、より低エネルギーのビーム軌道まで高周波キッカ40を通過することになる。 Therefore, as shown in FIG. 15, the energy band of the beam orbit passing through the high-frequency kicker 40 increases. That is, as compared with the first embodiment, the second embodiment passes through the high-frequency kicker 40 to a lower energy beam orbit.
 従って、より低エネルギーのビーム軌道に対して高周波キッカ40による高周波電場を印加することができるので、実施例1よりもより低エネルギーのビーム軌道を、勾配磁場磁石31,32の生成する勾配磁場の近くを通過させることができる。 Therefore, since a high-frequency electric field by the high-frequency kicker 40 can be applied to the lower-energy beam orbit, the lower-energy beam orbit than in the first embodiment can be applied to the gradient magnetic field generated by the gradient magnetic field magnets 31 and 32. Can be passed nearby.
 このとき、低エネルギービームは高エネルギービームよりも曲率半径が小さいため、勾配磁場磁石31と勾配磁場磁石32が生成する勾配磁場を低エネルギービームが感じるためには、勾配磁場磁石31と勾配磁場磁石32は、高周波キッカ40によってビーム軌道がずらされる方向に配置され、かつ、垂直平面3に近い方が好ましい。 At this time, since the low energy beam has a smaller radius of curvature than the high energy beam, in order for the low energy beam to feel the gradient magnetic field generated by the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32, the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 is preferably arranged in a direction in which the beam trajectory is shifted by the high-frequency kicker 40 and is closer to the vertical plane 3.
 すなわち、上述のように、勾配磁場磁石31と勾配磁場磁石32は、高周波キッカ40と同様に、複数の凹部121a,121b,121c,121dに挟まれた空間の中で、体積が最も小さい凹部121aに挟まれた空間に配置することが好適である。 That is, as described above, similarly to the high-frequency kicker 40, the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 have the smallest volume of the concave portion 121a in the space between the concave portions 121a, 121b, 121c, and 121d. It is preferable to arrange them in a space between them.
 このように勾配磁場磁石31と勾配磁場磁石32を配置することで、高周波キッカ40で変位させられた低エネルギービームが確実に勾配磁場を感じることになり、水平方向のベータトロン振動振幅が拡大し、出射チャネル1019に到達し、加速器外に取り出すことが可能となる。 By arranging the gradient magnetic field magnet 31 and the gradient magnetic field magnet 32 in this way, the low energy beam displaced by the high frequency kicker 40 can surely feel the gradient magnetic field, and the amplitude of the betatron oscillation in the horizontal direction increases. Reaches the emission channel 1019 and can be taken out of the accelerator.
 その他の構成・動作は、前述した実施例1の粒子線加速器および粒子線治療システムと略同じ構成・動作であり、詳細は省略する。 The other configurations and operations are substantially the same as those of the particle accelerator and the particle therapy system according to the first embodiment described above, and the details are omitted.
 本発明の実施例2の粒子線加速器および粒子線治療システムにおいても、前述した実施例1の粒子線加速器および粒子線治療システムとほぼ同様な効果が得られる。 に お い て The particle beam accelerator and the particle beam therapy system according to the second embodiment of the present invention can provide substantially the same effects as those of the particle beam accelerator and the particle beam therapy system according to the first embodiment.
 また、高周波キッカ40および勾配磁場磁石31,32が配置される凹部121aに挟まれた空間は、複数の凹部121a,121b,121c,121dに挟まれた空間の中で最も体積が小さいことにより、出射チャネル1019の入口が設置される磁極外周部に、ビーム周回軌道が密になる領域を設けることができる。また、出射チャネル1019がビーム取り出しのために生成すべき磁場を、軸対象の磁極形状とする場合に比べて小さくすることができる。従って、これらの効果から、より容易に所定エネルギーに加速されたビームの取り出しを行うことができる。 Further, the space between the concave portions 121a in which the high-frequency kicker 40 and the gradient magnetic field magnets 31 and 32 are arranged has the smallest volume among the spaces between the concave portions 121a, 121b, 121c and 121d. A region where the beam orbit becomes dense can be provided on the outer periphery of the magnetic pole where the entrance of the emission channel 1019 is installed. Further, the magnetic field to be generated by the emission channel 1019 for beam extraction can be reduced as compared with the case where the magnetic pole shape is symmetrical with respect to the axis. Therefore, from these effects, it is possible to more easily extract the beam accelerated to the predetermined energy.
 <その他> 
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
<Others>
Note that the present invention is not limited to the above-described embodiment, and includes various modifications. The above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 In addition, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, for a part of the configuration of each embodiment, it is also possible to add / delete / replace another configuration.
 例えば、上記の実施例1,2の説明では、加速する粒子を特に指定していない。すなわち、陽子をイオン源1003から供給しても、炭素イオンをイオン源1003から供給しても、高周波加速空洞1037の周波数を加速する粒子それぞれにあわせて調整することによって、安定にビームを加速周回させることができる。また、加速する粒子は、上述した陽子や炭素イオンに限られず、ヘリウムイオン等の炭素イオン以外の重粒子イオンとすることができる。 For example, in the description of the first and second embodiments, the particles to be accelerated are not specified. That is, regardless of whether protons are supplied from the ion source 1003 or carbon ions are supplied from the ion source 1003, the frequency of the high-frequency accelerating cavity 1037 is adjusted in accordance with each of the accelerating particles to stably rotate the beam. Can be done. The particles to be accelerated are not limited to the protons and carbon ions described above, but may be heavy particle ions other than carbon ions such as helium ions.
 また、上記の実施例1,2の説明では、上部磁極8や下部磁極9に設ける凹部と凸部の数をそれぞれ4つとしたが、凹部や凸部の数は4つに限るものではなく、3以上の整数であれば、ビームが安定周回するような磁場を生成することが可能である。 In the description of the first and second embodiments, the number of the concave portions and the number of the convex portions provided in the upper magnetic pole 8 and the lower magnetic pole 9 are each four, but the number of the concave portions and the convex portions is not limited to four. If it is an integer of 3 or more, it is possible to generate a magnetic field such that the beam circulates stably.
 また、粒子線治療システム1001がビーム輸送系1013を備えている場合について説明したが、粒子線治療システムはビーム輸送系を設けずにイオンビーム発生装置と回転ガントリーや照射装置とを直接接続することができる。 Although the case where the particle beam therapy system 1001 includes the beam transport system 1013 has been described, the ion beam generator directly connects the ion beam generator and the rotating gantry or the irradiation device without providing the beam transport system. Can be.
 また、治療に用いる粒子線を照射する装置として回転ガントリー1006を用いる場合について説明したが、固定された照射装置を用いることができる。また、照射装置は一つに限られず、複数設けることができる。 Although the case where the rotating gantry 1006 is used as an apparatus for irradiating a particle beam used for treatment has been described, a fixed irradiation apparatus can be used. The number of irradiation devices is not limited to one, and a plurality of irradiation devices can be provided.
 また、照射方法として走査電磁石1051,1052を用いるスキャニング方式の場合について説明したが、ワブラー法や二重散乱体法など粒子線の分布を広げた後、コリメータやボーラスを用いて標的の形状に合わせた線量分布を形成する照射法も本発明に適用することができる。 In addition, the scanning method using the scanning electromagnets 1051 and 1052 has been described as an irradiation method. An irradiation method that forms a dose distribution can also be applied to the present invention.
 また、加速器が粒子線治療に用いられる場合について説明したが、加速器の用途は粒子線治療に限られず、高エネルギー実験やPET(Positron Emission Tomography)薬剤生成等に用いるものとすることができる。 Also, the case where the accelerator is used for particle beam therapy has been described. However, the application of the accelerator is not limited to particle beam therapy, and the accelerator can be used for high energy experiments, PET (Positron Emission Tomography) drug generation, and the like.
1…主磁場磁石
2…中間平面
3…垂直平面
4…上リターンヨーク
5…下リターンヨーク
6…コイル
7…真空容器
8…上部磁極
9…下部磁極
15,16,17,18,19,24…貫通孔
20…対称軸
21a,21b,21c,21d,121a,121b,121c,121d…凹部
22a,22b,22c,22d,122a,122b,122c,122d…凸部
23,126,127…ビーム軌道
25,125…磁極外周面
31,32…勾配磁場磁石
40…高周波キッカ(第2高周波電場印加装置)
41…接地電極
42…高圧電極
43…突起部
44…非磁性支持体
45…絶縁支持体
128…ビーム軌道の幅
1001…粒子線治療システム
1004…加速器(粒子線加速器)
1019…出射チャネル
1037…高周波加速空洞(第1高周波電場印加装置)
DESCRIPTION OF SYMBOLS 1 ... Main magnetic field magnet 2 ... Intermediate plane 3 ... Vertical plane 4 ... Upper return yoke 5 ... Lower return yoke 6 ... Coil 7 ... Vacuum container 8 ... Upper magnetic pole 9 ... Lower magnetic poles 15, 16, 17, 18, 19, 24 ... Through-hole 20: Symmetry axes 21a, 21b, 21c, 21d, 121a, 121b, 121c, 121d: Concave parts 22a, 22b, 22c, 22d, 122a, 122b, 122c, 122d: Convex parts 23, 126, 127 ... Beam trajectory 25 , 125 ... magnetic pole outer peripheral surfaces 31, 32 ... gradient magnetic field magnet 40 ... high frequency kicker (second high frequency electric field applying device)
41 Ground electrode 42 High voltage electrode 43 Projection 44 Nonmagnetic support 45 Insulating support 128 Beam trajectory width 1001 Particle beam therapy system 1004 Accelerator (particle beam accelerator)
1019: emission channel 1037: high-frequency accelerating cavity (first high-frequency electric field applying device)

Claims (9)

  1.  粒子線加速器であって、
     静磁場を生成する主磁場磁石と、
     周波数が変調可能で、ビームを加速するための高周波電場を印加する第1高周波電場印加装置と、
     前記第1高周波電場印加装置とは異なる周波数の高周波電場を印加する第2高周波電場印加装置と、を備え、
     前記主磁場磁石は、リターンヨークおよび前記リターンヨークに固定された一対の磁極を有し、
     前記一対の磁極は、前記一対の磁極に挟まれた空間にある中間平面に対して面対称な位置に配置され、
     前記磁極の前記中間平面に対向する面には、ビーム周回方向に沿って凹部と凸部とが交互に配置されており、
     前記第2高周波電場印加装置は、前記凹部に挟まれた空間に配置されている
     ことを特徴とする粒子線加速器。
    A particle accelerator,
    A main magnetic field magnet for generating a static magnetic field;
    A first high-frequency electric field applying device whose frequency is modulatable and applies a high-frequency electric field for accelerating the beam;
    A second high-frequency electric field applying device that applies a high-frequency electric field having a different frequency from the first high-frequency electric field applying device,
    The main magnetic field magnet has a return yoke and a pair of magnetic poles fixed to the return yoke,
    The pair of magnetic poles is disposed at a plane-symmetric position with respect to an intermediate plane in a space between the pair of magnetic poles,
    On the surface of the magnetic pole facing the intermediate plane, concave portions and convex portions are alternately arranged along the beam circling direction,
    The particle beam accelerator, wherein the second high-frequency electric field applying device is disposed in a space interposed between the concave portions.
  2.  請求項1に記載の粒子線加速器において、
     前記第2高周波電場印加装置が備えられた前記凹部に挟まれた空間に、前記ビームの軌道を変位させるための勾配磁場を生成する勾配磁場磁石が配置されている
     ことを特徴とする粒子線加速器。
    The particle beam accelerator according to claim 1,
    A gradient magnetic field magnet for generating a gradient magnetic field for displacing the trajectory of the beam is disposed in a space between the concave portions provided with the second high-frequency electric field applying device. A particle accelerator. .
  3.  請求項1に記載の粒子線加速器において、
     前記第2高周波電場印加装置が備えられた前記凹部の磁極外周領域に、所定エネルギーに加速されたビームを前記粒子線加速器の外に取り出すための出射チャネルが設けられている
     ことを特徴とする粒子線加速器。
    The particle beam accelerator according to claim 1,
    An emission channel for taking out a beam accelerated to a predetermined energy out of the particle beam accelerator is provided in a magnetic pole outer peripheral region of the concave portion provided with the second high-frequency electric field applying device. Line accelerator.
  4.  請求項2に記載の粒子線加速器において、
     前記第2高周波電場印加装置および前記勾配磁場磁石が配置される前記凹部に挟まれた空間は、複数の前記凹部に挟まれた空間の中で最も体積が小さい
     ことを特徴とする粒子線加速器。
    The particle beam accelerator according to claim 2,
    The particle beam accelerator, wherein the space between the concave portions in which the second high-frequency electric field applying device and the gradient magnetic field magnet are arranged has the smallest volume among the spaces between the plurality of concave portions.
  5.  請求項1に記載の粒子線加速器において、
     前記凸部は、ビーム周回軌道の中心から見たときの前記凸部の角度幅がビームエネルギーの増大に従って狭まっていく
     ことを特徴とする粒子線加速器。
    The particle beam accelerator according to claim 1,
    The particle beam accelerator, wherein the angular width of the convex portion as viewed from the center of the beam orbit is narrowed as the beam energy increases.
  6.  請求項1に記載の粒子線加速器において、
     前記ビームが所望のエネルギーまで加速されると、前記第1高周波電場印加装置による高周波電場を遮断し、前記第2高周波電場印加装置による高周波電場の印加を開始する
     ことを特徴とする粒子線加速器。
    The particle beam accelerator according to claim 1,
    When the beam is accelerated to a desired energy, the high-frequency electric field applied by the first high-frequency electric field applying device is cut off, and the application of the high-frequency electric field by the second high-frequency electric field applying device is started.
  7.  請求項2に記載の粒子線加速器において、
     前記勾配磁場磁石によって発生させる多極磁場の成分は、径方向外周側に向かって前記静磁場の強度が増大する磁場勾配を有している
     ことを特徴とする粒子線加速器。
    The particle beam accelerator according to claim 2,
    A component of the multipole magnetic field generated by the gradient magnetic field magnet has a magnetic field gradient in which the intensity of the static magnetic field increases toward a radially outer peripheral side.
  8.  請求項7に記載の粒子線加速器において、
     前記勾配磁場磁石によって発生させる多極磁場の成分は、径方向外周側に向かって前記静磁場の強度が減少する磁場勾配を有している
     ことを特徴とする粒子線加速器。
    The particle beam accelerator according to claim 7,
    A component of the multipole magnetic field generated by the gradient magnetic field magnet has a magnetic field gradient in which the intensity of the static magnetic field decreases toward a radially outer peripheral side.
  9.  請求項1に記載の粒子線加速器を備えた
     ことを特徴とする粒子線治療システム。
    A particle beam therapy system comprising the particle beam accelerator according to claim 1.
PCT/JP2019/005847 2018-08-31 2019-02-18 Particle beam accelerator and particle beam therapy system WO2020044604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163888A JP2020035728A (en) 2018-08-31 2018-08-31 Particle beam accelerator and particle beam therapy system
JP2018-163888 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020044604A1 true WO2020044604A1 (en) 2020-03-05

Family

ID=69645137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005847 WO2020044604A1 (en) 2018-08-31 2019-02-18 Particle beam accelerator and particle beam therapy system

Country Status (2)

Country Link
JP (1) JP2020035728A (en)
WO (1) WO2020044604A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3876679A1 (en) * 2020-03-06 2021-09-08 Ion Beam Applications Synchrocyclotron for extracting beams of various energies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022190590A (en) * 2021-06-14 2022-12-26 株式会社日立製作所 Particle beam accelerator and particle beam therapy system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329796A (en) * 1998-05-11 1999-11-30 Mitsubishi Electric Corp Isochronous cyclotron
WO2016174700A1 (en) * 2015-04-27 2016-11-03 株式会社日立製作所 Circular accelerator
JP2017204337A (en) * 2016-05-09 2017-11-16 日本メジフィジックス株式会社 Cyclotron controller, cyclotron, cyclotron control program, and production method of radioactive medicine
JP2018060803A (en) * 2017-11-22 2018-04-12 住友重機械工業株式会社 cyclotron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329796A (en) * 1998-05-11 1999-11-30 Mitsubishi Electric Corp Isochronous cyclotron
WO2016174700A1 (en) * 2015-04-27 2016-11-03 株式会社日立製作所 Circular accelerator
JP2017204337A (en) * 2016-05-09 2017-11-16 日本メジフィジックス株式会社 Cyclotron controller, cyclotron, cyclotron control program, and production method of radioactive medicine
JP2018060803A (en) * 2017-11-22 2018-04-12 住友重機械工業株式会社 cyclotron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3876679A1 (en) * 2020-03-06 2021-09-08 Ion Beam Applications Synchrocyclotron for extracting beams of various energies
JP2021141062A (en) * 2020-03-06 2021-09-16 イオン ビーム アプリケーションズ ソシエテ アノニムIon Beam Applications S.A. Synchrocyclotron for extracting beam having various energy
US11160159B2 (en) 2020-03-06 2021-10-26 Ion Beam Applications S.A. Synchrocyclotron for extracting beams of various energies
JP7288473B2 (en) 2020-03-06 2023-06-07 イオン ビーム アプリケーションズ ソシエテ アノニム A synchrocyclotron for extracting beams of various energies

Also Published As

Publication number Publication date
JP2020035728A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2020044604A1 (en) Particle beam accelerator and particle beam therapy system
JP7240262B2 (en) Accelerator, particle beam therapy system and ion extraction method
WO2019220714A1 (en) Particle beam accelerator and particle beam treatment system
WO2019097904A1 (en) Accelerator and particle beam therapy system
JP2019096404A (en) Circular accelerator and particle therapy system
WO2019097721A1 (en) Particle beam therapy system, accelerator, and method for operating accelerator
JP2020170688A (en) Particle Beam Accelerator and Particle Beam Therapy System
WO2019093110A1 (en) Circular accelerator and particle beam treatment system
US20230389169A1 (en) Accelerator and particle therapy system
WO2022168484A1 (en) Accelerator and particle beam therapy system
JP2020064753A (en) Accelerator, and accelerator system and particle beam medical treatment system using the same
WO2018096648A1 (en) Accelerator and particle beam irradiation device
JP7319144B2 (en) Circular Accelerator, Particle Beam Therapy System, Operation Method of Circular Accelerator
WO2022264475A1 (en) Particle beam accelerator and particle beam therapy system
JP2022026175A (en) Accelerator and particle beam therapy equipment
EP4240117A1 (en) Accelerator and particle therapy system
WO2024079992A1 (en) Accelerator and particle beam therapy device
US20240023225A1 (en) Accelerator and particle therapy system
JP6663618B2 (en) Accelerator and particle beam irradiation device
JP7303138B2 (en) Circular accelerator, particle beam therapy system, isotope production system, and radiopharmaceutical production system
WO2019097618A1 (en) Particle ray accelerator and particle ray therapeutic device using same
JP2024057808A (en) Accelerators and particle beam therapy equipment
JP2024055638A (en) Circular accelerator, particle beam therapy device, and method of operating the circular accelerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854898

Country of ref document: EP

Kind code of ref document: A1