WO2019093110A1 - Circular accelerator and particle beam treatment system - Google Patents

Circular accelerator and particle beam treatment system Download PDF

Info

Publication number
WO2019093110A1
WO2019093110A1 PCT/JP2018/039216 JP2018039216W WO2019093110A1 WO 2019093110 A1 WO2019093110 A1 WO 2019093110A1 JP 2018039216 W JP2018039216 W JP 2018039216W WO 2019093110 A1 WO2019093110 A1 WO 2019093110A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
circular accelerator
orbital plane
ions
magnetic field
Prior art date
Application number
PCT/JP2018/039216
Other languages
French (fr)
Japanese (ja)
Inventor
孝道 青木
隆光 羽江
風太郎 えび名
裕人 中島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019093110A1 publication Critical patent/WO2019093110A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons

Definitions

  • the present invention relates to an accelerator for accelerating heavy ions such as protons or carbon ions.
  • the accelerator has a circular vacuum vessel including a circular return yoke. Electrode for incidence” Are disposed on the entrance side of the beam exit path in the return yoke with respect to the central axis of the vacuum vessel, and the magnetic poles are disposed radially around the entrance electrode in the return yoke.
  • an orbit concentric area in which a plurality of beam orbits centering on the entrance electrode exist, and around the area from the entrance electrode in the vacuum vessel, alternately arranged with the magnetic poles.
  • An orbital eccentric region is formed in which a plurality of eccentric beam orbitals exist. In the orbital eccentric region, the beam orbital between the entrance electrode and the entrance of the beam outgoing path Becomes dense, the invention that the spacing between the beam orbit each other becomes wider "in 180 ° opposite the entrance to the beam emission path to base the incidence electrode is disclosed.
  • variable energy accelerator described in Patent Document 1 is a type of accelerator that accelerates a beam circulating in a main magnetic field by a high frequency electric field. Such an accelerator is expected to be used in the radiation medical field, but in order to efficiently use the installation space in a medical facility, it is desirable to be small. Then, this invention makes it a subject to provide the variable energy accelerator which is easy to achieve size reduction.
  • One of the representative circular accelerators of the present invention for achieving the above-mentioned object is an electromagnet containing an orbital plane in which the ions are accelerated, a circular accelerator for accelerating the ions to generate an ion beam, and the ions
  • the electromagnet has a high frequency cavity for forming an electric field for acceleration, and an emission path for extracting the ions after acceleration, and the electromagnet has a magnetic flux between the center of gravity of the orbital plane and the proximal end of the emission path.
  • a magnetic field distribution is formed on the orbital plane in which the magnetic flux density gradually decreases from the point where the density is maximum and the magnetic flux density is maximum toward the outer edge of the orbital plane, and the high frequency cavity forms the electric field.
  • a frequency modulator that modulates the frequency of the power applied to the first electrode and the first electrode.
  • FIG. 1 is a general outline of an accelerator 1 of Example 1;
  • FIG. 2 is a layout view of internal devices of an accelerator 1; It is a graph which shows the energy dependence of the circulation frequency of the accelerator 1. It is a design trajectory shape of the accelerator 1. It is a graph which shows the energy dependence of the main magnetic field of the accelerator 1. It is a figure which shows the movement on the normalization phase space of the circular beam of the accelerator 1.
  • FIG. FIG. 1 shows a particle beam therapy system using an accelerator 1;
  • the accelerator 1 of the present embodiment is a frequency modulation type variable energy accelerator.
  • the accelerator 1 is a circular accelerator having a temporally constant magnetic field as a main magnetic field and accelerating protons circulating in the main magnetic field by a high frequency electric field.
  • FIG. 1 shows its appearance.
  • the accelerator 1 has electromagnets 11 which can be divided up and down. The electromagnets 11 excite a main magnetic field in a vacuum region (hereinafter referred to as an orbital plane) through which a beam being accelerated passes.
  • a vacuum region hereinafter referred to as an orbital plane
  • FIG. 1 shows an example of the method, in which an accelerated beam is taken out, a through hole 111 for taking out a beam, through holes 112 and 113 for drawing out a conductor connected to the coil 13 of the electromagnet 11, and a high frequency power input A mouth 114 is provided.
  • the device connected to the through hole 114 in FIG. 1 is a high frequency power supply having a frequency modulation function.
  • the high frequency power source is connected to the dee electrode (first electrode) 221 installed in the inner space of the electromagnet 11 through the through hole 114.
  • the high frequency power supply has a function of outputting electric power at an appropriate frequency to accelerate ions circulating in the inner space of the electromagnet 11.
  • the rotary variable capacitance capacitor 212 is provided. .
  • the capacity is exemplified by one controlled by the servomotor 214, but is not limited thereto.
  • a supply line or the like for supplying power to the rotary variable capacitance capacitor 212 is omitted in the drawing.
  • a through hole 115 provided on the upper surface of the electromagnet 11 is an ion introduction path, and ions to be accelerated through the through hole 115 are inside the electromagnet 11, more precisely, inside the electromagnet 11. It is supplied to a generally disc-like space (track surface 20) defined by the trajectory of acceleration existing in the hollow part.
  • the position of the through hole 115 for introducing ions is different from that of a general circular accelerator and will be described in detail later.
  • FIG. 1 shows only the minimum configuration for explaining the appearance of the accelerator 1.
  • a vacuum pump for maintaining the inside of the accelerator 1 in vacuum and temperature control means for controlling temperature conditions are provided, but these are omitted.
  • FIG. 2 is a view of the electromagnet 11 of the accelerator 1 shown in FIG. 1 divided up and down and the electromagnet 11 on the lower side viewed from above.
  • the electromagnet 11 shown in FIG. 2 has the same structure as viewed from below, although there are some differences, such as the presence or absence of the through hole 115. Further, in the following description, the distinction between the upper side and the lower side of the electromagnet 11 is omitted, and the electromagnet 11 is simply referred to.
  • the electromagnet 11 mainly includes a return yoke portion 121, a top plate portion 122, a cylindrical magnetic pole portion 123, and a coil 13.
  • the return yoke portion 121 is a thick cylindrical member, and when the upper and lower electromagnets 11 are connected, one end thereof is a contact portion. The end opposite to the contact portion is connected to the top plate portion 122.
  • the top plate portion 122 is a disk-like member having a diameter that substantially matches the outer diameter of the return yoke portion 121. Therefore, the external appearance of the structure in which the return yoke portion 121 and the top plate portion 122 are fastened becomes a cylindrical structure whose one end is closed.
  • the magnetic pole portion 123 is formed in the space corresponding to the inner cylinder.
  • the magnetic pole portion 123 is a columnar member having the top plate portion 122 as a base portion and protruding into the space on the inner cylinder side of the return yoke portion 121.
  • the opposing magnetic pole portions 123 project from the top plate portion 122 so as not to contact each other to form a gap.
  • the return yoke portion 121, the top plate portion 122, and the magnetic pole portion 123 are formed by cutting out an ingot of pure iron, but members corresponding to the respective portions may be separately cut out and then connected. Depending on the size of the processing apparatus and the size of the prepared ingot, it may be integrally cut out. Also, as a matter of course, large members may be formed by combining smaller parts.
  • the coil 13 is disposed between the return yoke portion 121 and the magnetic pole portion 123, and the inner diameter of the coil 13 substantially matches the outer diameter of the magnetic pole portion 123 as shown in FIG.
  • the coil 13 and the return yoke portion 121 and the coil 13 and the magnetic pole portion 123 are respectively insulated.
  • a conductor connected to the coil 13 is pulled out from the through holes 112 and 113 and connected to a power supply provided outside the accelerator 1 and a current flows through the coil 13 to magnetize the magnetic pole portion 123 and to be described later Excite the magnetic field with a predetermined distribution.
  • a trim coil 60 is provided on the surface (magnetic pole surface 124) corresponding to the opposing surfaces of the magnetic pole portions 123 arranged in a pair at the top and bottom as a coil for finely adjusting the magnetic field generated by the coil 13 and the magnetic pole portion 123.
  • An aspect of the trim coil 60 in the present embodiment is a coil group having a plurality of different diameters as shown in FIG. 2, in which a coil with a smaller diameter is disposed on the inner diameter side of the larger diameter coil. Also, each coil is arranged such that the center is biased in one direction as shown in FIG.
  • the trim coil 60 and the pole face 124 are insulated by an insulating member (not shown) and fixed to the pole face 124 using a nonmagnetic member or an adhesive.
  • the magnitude of the current supplied to each of the coils constituting the trim coil 60 can be adjusted individually, and is connected to an external power supply through the through holes 112 and 113 in the same manner as the coil 13.
  • the trim coil current is adjusted before operation so as to approximate a main magnetic field distribution described later and achieve stable betatron oscillation.
  • the accelerator 1 having such a mechanical structure accelerates the ions supplied from the ion source 12 to generate an ion beam, and the orbit plane 20 is defined by the orbit of the ions during acceleration.
  • the position of the raceway surface 20 is in the space formed when the above-described return yoke portion 121 is vertically connected, and is equidistant to the upper and lower magnetic pole surfaces 124.
  • the raceway surface 20 is a disc-like space that is not a flat surface but a thickness in a strict sense, but is treated as a circular area having a diameter smaller than the inner diameter of the return yoke portion 121 for convenience of explanation.
  • the orbital plane 20 has a magnetic field distribution required for the desired acceleration.
  • By providing the cylindrical magnetic pole portion 123 it is possible to generate a magnetic field of 4.9 T over most of the required magnetic field strength in the orbital plane 20, that is, in the example shown in FIG.
  • the magnetic field distribution to be generated in the orbital plane 20 has a maximum position (incident point) when ions supplied from the ion source 12 get on the orbital plane 20 from the outer edge of the orbital plane 20 (ie, from that position).
  • the distribution gradually decreases toward the inner diameter surface of the coil 13, and such a distribution of the magnetic field strength is realized by the trim coil 60 described later.
  • the trim coil 60 is constituted by a plurality of coils with different diameters, and the magnetic field generated by each coil is superimposed to cause non-uniformity in the magnetic field in the orbital plane 20. If it is desired to maximize the magnetic field at the incident point as in this embodiment, the trim coil 60 is disposed at the position of the incident point by arranging the coil of the smallest diameter among the trim coils 60 so that the central axis passes through the incident point. The magnetic fields derived from all the coils that make up the signal can be superimposed and maximized.
  • the present invention is not limited to this mode, and the shape of the magnetic pole portion 123 may be adapted to the required magnetic field distribution.
  • the magnetic pole surface 124 may be processed to have a conical shape or a convex shape projecting toward the incident point.
  • the trim coil 60 can be omitted or the number of arranged coils can be reduced, the number of steps can be reduced.
  • the opposing surface of the cylindrical magnetic pole portion 123 and the opposing surface of the cylindrical magnetic pole portion 123 when the return yoke portion 121 is joined vertically A space defined from the inner diameter surface of the return yoke portion 121 can be widely provided as compared with the case where the magnetic pole portion 123 has a conical shape. Therefore, there is an advantage that the installation work of the die electrode and the coiler magnetic field generating coil 311 to be described later becomes easy and the fine adjustment of the arrangement becomes easy.
  • the magnetic field distribution is formed by the combination of the magnetic pole portion 123 and the trim coil 60, and the surface of the magnetic pole portion 123 with respect to the orbital plane 20 is parallel to the orbital plane 20.
  • ions are first incident on the accelerator 1 from the entrance section 130 in a low energy state.
  • the incident part 130 is provided with the ion source 12 and is supplied with power necessary for ion generation from the outside through the through hole 115.
  • the ions generated by the ion source 12 are extracted to the orbital plane 20 by the voltage applied to the extraction electrode.
  • the extracted ions are accelerated each time they pass through the acceleration gap 223 by the high frequency electric field excited by the high frequency cavity 21.
  • the high frequency cavity 21 excites an electric field in the acceleration gap 223 by the ⁇ / 4 resonant mode, and accelerates the ions by this electric field.
  • the high frequency cavity 21 has the incident point side as the front end and the opposite side as the rear end, the high frequency cavity 21 is connected to the dee electrode 221 on the rear end side and connected to the high frequency power source through the through hole 114 provided in the return yoke portion 121 Connection.
  • the connection portion corresponds to a part of the high frequency cavity 21 and may be regarded as a part of the dee electrode 221, but is defined as described above for the simplicity of description.
  • the Dee electrode 221 is formed to have a substantially fan shape whose central angle is an acute angle centered on the vicinity of the incident point and extends to the opposite side with respect to the proximal end of the emission path when the shape is projected onto the orbital plane 20 . As described later, the dee electrode 221 has a substantially symmetrical structure with respect to the axis of symmetry.
  • a beam (a set of ions in an accelerated state) is accelerated by an electric field excited in an acceleration gap 223 sandwiched by the ground electrode 222 opposite to the dee electrode 221.
  • This electric field is generated from a high frequency power source connected to the dee electrode, and the frequency of the electric field needs to be an integral multiple of the loop frequency of the beam in order to synchronize with the loop frequency of the aforementioned beam .
  • the frequency of the electric field is one time of the frequency of the beam.
  • the frequency of this electric field is several tens of megahertz, and is hereinafter referred to as a high frequency electric field.
  • the ground electrode 222 is provided in parallel with the end face of the dee electrode 221 with a certain gap (acceleration gap 223) between the dee electrode 221, and in other words, when the dee electrode 221 has a fan shape, it corresponds to a line corresponding to a radius. It is almost parallel to the other.
  • a high frequency electric field is formed by the difference between the voltage applied to the dee electrode 221 and the potential of the ground electrode 222, and the beam passes through the acceleration gap 223 twice when it makes a circuit around the orbital plane 20 around the incident point.
  • acceleration is received in each of two passes, it is necessary to reverse the potential difference between the acceleration from the dee electrode 221 toward the ground electrode 222 and the acceleration from the ground electrode 222 toward the dee electrode 221.
  • the ground electrode 222 is maintained at 0 V, and the potential of the dee electrode 221 is changed equally to plus and minus by the high frequency power supply.
  • the ground electrode 222 is configured such that the potential is kept constant during the acceleration period (the time required to obtain the desired energy), and the voltage applied to the dee electrode 221 is changed to the same upper and lower level based on this potential. May be
  • the arrangement of the dee electrode 221 and the ground electrode 222 may be interchanged. That is, the ground electrode 222 may be arranged such that the end surface of the ground electrode 222 is disposed on the end surface of the dee electrode 221 and the end surface of the dee electrode 221.
  • the beam accelerated by the above configuration is extracted from the accelerator 1 after being accelerated to have a predetermined energy.
  • the kicker magnetic field generating coil 311 is excited.
  • the kicker magnetic field generating coil 311 is disposed on the magnetic pole surface 124, and a current is supplied to the coil to make the coil A kicker magnetic field to be described later is superimposed and excited on the main magnetic field formed by the magnetic pole portion 13 and the magnetic pole portion 123.
  • a septum electromagnet 312 for extraction is provided at one location of the pole face 124, in addition to the septum electromagnet 312, one suitable for extraction may be employed.
  • the path for extracting the beam from the internal space of the electromagnet 11 to the outside is an emission path
  • the end of the septum electromagnet 312 projecting to the internal space side of the electromagnet 11 is the proximal end of the emission path.
  • the proximal end of this emission path is provided on a straight line in the order of the center of gravity of the orbital plane 20 (geometric center when the orbital plane 20 is a two-dimensional finite area), the ion incident point, and the proximal end. It is done.
  • the proximal end of the emission path is provided along the outer edge of the magnetic pole portion 123 in order to avoid interference with the beam traveling around the raceway surface 20.
  • the beam orbiting the orbital plane 20 is displaced from the design orbit, moves to impinge on the septum electromagnet 312 and then travels along the extraction channel 322 formed by the magnetic field of the septum electromagnet 312 Is taken out of the accelerator 1.
  • the arrangement of the kicker magnetic field generating coil 311 may be different from that in FIG. 2 as long as the above-described movement is realized with respect to the circulating beam. With the arrangement of FIG. 2, even if the kicker magnetic field is small, a sufficient change in position can be obtained by securing the distance to the septum electromagnet 312.
  • the magnetic pole portion 123, the coil 13, the trim coil 60, and the kicker magnetic field generating coil so that the deviation in the plane (the magnetic field component parallel to the orbital plane 20) with respect to the design orbit becomes substantially zero.
  • the shape and arrangement of the septum electromagnet 312 for taking out are plane symmetric with respect to the raceway surface 20.
  • the shapes of the magnetic pole portion 123, the dee electrode 221, the coil 13, and the trim coil 60 are symmetrical with respect to a straight line passing the incident point and the center of gravity of the orbital plane 20, and the main magnetic field is also symmetrical with respect to the straight line.
  • the main magnetic field is a magnetic field orthogonal to the orbital plane 20 unless otherwise specified.
  • the trajectory of the beam circulating inside the accelerator 1 will be described.
  • the beam is accelerated while orbiting in the orbital plane 20.
  • the kinetic energy of the extractable beam (hereinafter simply referred to as energy) is described as a minimum of 70 MeV to a maximum of 235 MeV, but is not limited thereto and the energy range may be set as needed.
  • energy The kinetic energy of the extractable beam
  • the higher the energy the smaller the frequency of the beam.
  • the relationship between these energies and the circulation frequency is shown in FIG.
  • the beam reaching 76 MHz and 235 MeV travels at 59 MHz.
  • the main magnetic field is uniform along the beam trajectory by the magnetic pole part 123 in order to realize this stability, and the magnetic field decreases as the energy increases. It becomes distribution. Under such a magnetic field, the beam betatron oscillates stably with respect to the radial direction of the orbital plane 20 and the direction perpendicular to the orbital plane 20, respectively.
  • the trajectory of each energy is shown in FIG.
  • the orbit has a circular orbit with a radius of 0.497 m corresponding to the orbit with the maximum energy of 252 MeV on the outermost side, and from that there are 51 circular orbits divided into 51 by magnetic rigidity (ratio of momentum to charge) up to 0 MeV. Is illustrated.
  • the dotted line is a line connecting the same circulation phase of each orbit, and is called an equal circulation phase line.
  • the accelerator 1 moves the center of the design trajectory of the beam corresponding to each energy in one direction in the orbital plane 20, particularly to the proximal end side of the emission path rather than the center of gravity of the orbital plane 20 as the beam accelerates.
  • the equi-rotational phase lines are plotted for every circulation phase ⁇ / 20 from the aggregation region.
  • the acceleration gap 223 formed between the dee electrode 221 and the opposing ground electrode 222 is installed along an equi-rotation phase line that rotates by ⁇ 90 degrees based on the line segment connecting the closest points of the orbits. .
  • the main magnetic field distribution in which the value of the magnetic field decreases as going outward in the deflection radius direction of the designed orbit It is formed.
  • the magnetic field is constant along the design trajectory.
  • the design trajectory is circular, and as the energy of the beam increases, the radius and orbit time of the trajectory increase.
  • particles slightly deviated from the design trajectory in the radial direction receive restoring forces that return them to the design trajectory, and at the same time, particles shifted in the direction perpendicular to the track surface also return the main magnetic field to the track surface.
  • the design trajectory refers to the trajectory drawn by the beam according to the energy, that is, corresponds to any energy of a collection of trajectories (points in the case of 0 MeV) that can be continuously defined from 0 MeV to 252 MeV. It means an orbit, and does not indicate only an orbit corresponding to a specific energy. Therefore, “deviation from the design trajectory in the radial direction (radial direction)” means that the energy does not substantially change from the original trajectory corresponding to a certain energy, but deviates from the trajectory. Further, the above-mentioned "restoring force” means the force that the beam deviated from the original trajectory in this way receives in the direction to return to the design trajectory according to the energy.
  • high frequency power is introduced from the high frequency power supply 210 through the input coupler 211, and a high frequency electric field is excited in the acceleration gap 223 between the dee electrode 221 and the ground electrode 222.
  • the frequency of the electric field is modulated correspondingly to the energy of the circulating beam in order to excite the high frequency electric field in synchronization with the circulation of the beam.
  • the high frequency cavity 21 using the resonance mode needs to sweep the high frequency in a range wider than the width of the resonance. Therefore, it is also necessary to change the resonant frequency of the cavity.
  • the control is performed by changing the capacitance of the rotary variable capacitance capacitor 212 connected to the dee electrode 221.
  • the rotary variable capacitor 212 controls the capacitance generated between the conductor plate directly connected to the rotation shaft and the outer conductor by the rotation angle of the rotation shaft 213. That is, the rotation angle of the rotating shaft 213 is changed as the beam accelerates.
  • a low energy beam is output from the ion source 12, and the beam is guided to the orbital plane 20.
  • the beam incident on the orbital plane 20 is accelerated by the high frequency electric field, and its energy increases and the turning radius of the orbit is increased. After that, the beam is accelerated while securing the traveling direction stability by the high frequency electric field. That is, instead of passing through the acceleration gap 223 at the time when the high frequency electric field is maximum, the acceleration gap 223 is allowed to pass when the high frequency electric field decreases temporally.
  • the particles accelerated in the phase of the predetermined acceleration electric field are accelerated in the same phase in the next turn.
  • particles accelerated in a phase earlier than the acceleration phase have a larger amount of acceleration than particles accelerated in the acceleration phase, they are accelerated in a delayed phase in the next turn.
  • particles that are accelerated at a phase later than the acceleration phase at that time are accelerated at the advanced phase in the next turn because the amount of acceleration is smaller than particles accelerated at the acceleration phase.
  • the particles having a timing shifted from the predetermined acceleration phase move in the direction returning to the acceleration phase, and by this action, they can be stably oscillated also in the phase plane (traveling direction) consisting of momentum and phase.
  • synchrotron vibration That is, the particles being accelerated are gradually accelerated while reaching synchrotron oscillation and reach a predetermined energy to be taken out.
  • any one or a plurality of coils of the kicker magnetic field generating coil 311 is selected based on the target energy and a predetermined excitation current is passed.
  • the beam of the target energy circulates along the design trajectory when the current is not supplied to the kicker magnetic field generating coil 311, but the target energy is reached when the current is supplied to the kicker magnetic field generating coil 311
  • the beam is deviated from the orbit by the kicking magnetic field caused by the kicker magnetic field generating coil 311. That is, betatron oscillation in the orbital plane is excited by the kicker magnetic field generating coil 311.
  • the position of the kick by the kicker magnetic field generation coil 311 and the position of the convergence point are in an appropriate positional relationship, it is possible to displace the beam radially outward at the convergence point by the kick by the kicker magnetic field generation coil 311.
  • the betatron vibration which is the vibration in the plane perpendicular to the orbit
  • the synchrotron vibration which is the vibration in the phase of momentum shift and acceleration high frequency.
  • betatron oscillation can be stably performed even at large displacements, but the magnetic field distribution of general accelerators including this accelerator has displacements of six or more poles.
  • the non-linear distribution reduces the convergence power and creates an upper limit on the amplitude of betatron oscillations. Since particles displaced above the upper limit are lost, it is necessary to reduce the non-linear distribution of the magnetic field and to reduce the disturbance given to the circulating beam in order to secure the beam volume.
  • the main magnetic field is formed to have the above-mentioned distribution.
  • one of the disturbances given to the beam is derived from acceleration by a high frequency electric field. While the beam does not change its spatial position at the time of acceleration, acceleration increases kinetic energy. Then, ions in the design trajectory before acceleration are also out of the design trajectory due to changes in kinetic energy, and are subjected to a disturbance that moves inward as displacement seen from the design trajectory.
  • the betatron oscillation that was stable with respect to the design trajectory before acceleration is based on the design trajectory after acceleration. It will be generated inside the orbit. We define this as a disturbance associated with acceleration.
  • the dee electrode 221 of the accelerator 1 of the present embodiment is provided with a device for preventing the amplitude of the betatron oscillation generated by the disturbance accompanying the acceleration from increasing.
  • the beam is accelerated in the gap between the dee electrode 221 and the ground electrode 222, but is subjected to two accelerations when the beam enters and leaves the area covered by the dee electrode 221 per round.
  • the displacement of the beam caused by the two accelerations can be made smaller by canceling out each other by optimizing the shape of the dee electrode 221.
  • the phase space is a plane defined by the displacement seen from the design trajectory and the inclination to the design trajectory as an axis, and the particles having stable betatron oscillation orbit in the phase space.
  • the phase space is further normalized by a normalization matrix represented by a Twiss parameter for each point of the orbit, which is called a normalized phase space, and in the non-accelerated situation, the betatron oscillation of the particle is a normalized phase space.
  • It can be regarded as a clockwise circular motion above (A).
  • A clockwise circular motion above
  • is a betatron frequency
  • the betatron frequency in the horizontal direction is about 0.99, which is slightly smaller than 1.
  • the acceleration disturbance can be viewed as a spatial movement in the normalized phase space. From the synchronization condition with the high frequency, the two acceleration gaps need to be separated by an angle ⁇ on the orbit. Then, the motion from one acceleration gap to the other is a circular motion at an angle ⁇ on the normalized phase space.
  • the former disturbance and the latter disturbance have substantially the same size (D).
  • the trajectory on the series of normalized phase spaces of B ⁇ C ⁇ D can be substantially closed, that is, the disturbance accompanying acceleration during one round can be reduced, and an increase in the amplitude of the betatron oscillation can be suppressed.
  • the displacement amount ⁇ x on the normalized phase space due to the disturbance due to the acceleration described above is expressed by Equation 1 using the dispersion function ⁇ in the orbit, the momentum ⁇ p obtained by acceleration, the momentum p of the particle, and the Twiss parameter ⁇ .
  • the width of the acceleration gap 223, that is, the distance between the dee electrode 221 and the ground electrode 222 is taken large on the side entering the dee electrode 221, and the transit time factor is lowered. Can be made smaller.
  • by adopting an asymmetrical shape it is possible to further reduce the disturbance associated with acceleration, and as a result, it is possible to increase the amount of beams that can be accelerated, as compared with the case of using a symmetrical Dee electrode.
  • the position of the acceleration gap may be slightly offset to shift the high frequency synchronization phase, or Alternatively, the shape of the ground electrode may be appropriately changed to change the electric field distribution between the left and right.
  • the beam is disturbed as it travels around in the accelerator, suppression of the increase in the betatron oscillation amplitude is achieved by making the trajectory on the normalized phase space resulting from the disturbance a closed trajectory. As a result, it becomes possible to realize a small accelerator with a large amount of removable beam.
  • the conventional cyclotron requires a degrader (attenuation member) for energy change, and a large proportion of the ion beam is lost when passing it.
  • the accelerator 1 of the present embodiment omits the installation of the degrader, or even if it is installed for the fine adjustment of the energy, since it is not necessary to cope with the wide energy region as in the prior art, the shielding performance of the ion beam It is possible to install a lower degrader and to improve the utilization efficiency of the ion beam.
  • the generation of neutrons and the like generated when the ion beam passes through the degrader can be suppressed, and the amount of the shielding member for shielding these can be reduced. That is, the degree of freedom in the arrangement of the accelerator is improved, which also contributes to the efficiency of the space required for the installation.
  • variable energy accelerators and cyclotrons keep the orbiting time constant regardless of energy by making the mean magnetic field in orbit proportional to the relativistic ⁇ factor of the beam (magnetic field distribution with this property is isochronous) Called the sex magnetic field).
  • isochronous magnetic field the beam stability in the orbital plane and in the direction perpendicular to the orbital plane is ensured by modulating the magnetic field along the orbit, but in order to achieve both isochronism and beam stability Requires the maximum (Hill) and minimum (Valley) of the magnetic field.
  • a nonuniform magnetic field with this distribution can be formed by narrowing the distance (gap) between the magnetic poles in the Hill region and wide in the Valley region.
  • the difference between the Hill magnetic field and the Valley magnetic field is practically limited to the extent of the saturation magnetic flux density of the magnetic pole material which is a ferromagnetic substance. That is, the difference between the Hill magnetic field and the Valley magnetic field is limited to about 2 Tesla.
  • the accelerated nuclide is carbon ion in the first embodiment.
  • This accelerator is a frequency modulation type variable energy accelerator that can extract carbon ions in the range of 140 MeV to 430 MeV kinetic energy per nucleon.
  • the operation principle, device configuration, and operation procedure are the same as those of the first embodiment and thus will be omitted. What is different is the relationship between the size of orbital radius and the relationship between magnetic field and energy, and the relationship between orbital frequency and energy, but from the accelerator shown in Example 1, the product of orbital radius and magnetic field is made proportional to the ratio of magnetic rigidity of beam.
  • the betatron vibration amplitude is obtained by setting the locus on the normalized phase space resulting from the disturbance as a closed locus.
  • the suppression of the increase of is achieved, which in turn makes it possible to realize a small accelerator with a large amount of removable beam.
  • FIG. 7 is a schematic view of this embodiment.
  • the particle beam treatment system 410 has an accelerator 1 that generates a particle beam (ion beam), and the ion beam emitted from the accelerator 1 travels inside the duct 400.
  • the ion beam traveling inside the duct 400 is deflected in a desired direction by the function of the deflection electromagnet 401, and a plurality of deflection electromagnets 401 are provided to be guided to an arbitrary position.
  • a plurality of quadrupole magnets 402 are installed in a path for transporting the ion beam (transport path), and the state of the ion beam is adjusted by the convergence or diverging action of the quadrupole electromagnets 402.
  • the outputs of the deflection electromagnet 401 and the quadrupole electromagnet 402 are configured to be adjusted by the energy of the passing ion beam, and the adjustment is controlled by the controller 408.
  • some of the deflection electromagnets 401 are configured to be rotatable about the rotation axis 407, and by this rotation, the irradiation field forming device described later can be carried to any rotation angle around the patient 409. it can.
  • Each of the deflection electromagnets 401 may be fixed to the floor or wall of the facility via a fixing tool, and the irradiation field forming apparatus may be held at a fixed position.
  • FIG. 7 gives an example in which two scanning electromagnets 403 are used.
  • the two scanning electromagnets 403 are such that the generated magnetic fields are orthogonal to each other, and the ion beam can be deflected to a desired position by controlling the outputs of the two orthogonal magnetic fields.
  • a position monitor 404 for detecting the passing position of the ion beam and a dose monitor 405 for measuring the dose of the irradiated ion beam are installed downstream of the scanning electromagnet 403 (the patient side of the scanning electromagnet 403).
  • a multi wire proportional chamber as a position monitor and an ionization chamber as a dose monitor can be used.
  • different types of monitors with suitable functionality may be utilized.
  • the irradiation field forming device may be of a type in which a beam forming member such as a scatterer, a collimator, a range shifter, or a ridge filter or an energy adjusting member is provided downstream of the scanning electromagnet 403.
  • a beam forming member such as a scatterer, a collimator, a range shifter, or a ridge filter or an energy adjusting member is provided downstream of the scanning electromagnet 403.
  • it may be an irradiation field forming apparatus in which only the scatterer is installed without the scanning electromagnet 403 being installed.
  • the installation positions of the position monitor 404 and the dose monitor 405 are not limited to the positions shown in FIG. 7 and may be installed in the middle of the transport path of the beam.
  • a support 406 for holding the patient 409 at a position suitable for treatment is provided on the downstream side of the scanning electromagnet 403.
  • the support base 406 is configured to be movable under the control of the control device 408.
  • the support stand 406 may be any type such as a bed type in which the patient 409 can take a supine or prone posture, or a type having a chair-like shape suitable for the patient 409 to take a sitting posture. .
  • the control device 408 controls the operations of the deflection electromagnet 401, the quadrupole electromagnet 402, the scanning electromagnet 403, the position monitor 404, the dose monitor 405, and the support stand 406 which have been described up to now.
  • the control device 408 has an input interface (not shown), and can receive operation instructions from the medical staff or his / her assistant. Although the control device 408 has been described as one device in this embodiment, this is an example, and a control device corresponding to each control target may be prepared, and these may be combined to form the control device 408.
  • the particle beam treatment system 410 When irradiating the affected area to be irradiated, the particle beam treatment system 410 having the above-described devices constitutes proton beam or carbon beam (irradiated) according to the position (depth) of the affected area with reference to the body surface (
  • the energy of the particle beam (collectively called particle beam) is set to an appropriate value and the patient is irradiated.
  • the kicker magnetic field generating coil 311 is operated to kick the ion beam from the designed trajectory, and the septum electromagnet 312 is operated to eject the ion beam from the accelerator 1
  • the emitted ion beam travels inside the duct 400 while being controlled in direction and state by the deflection electromagnet 401 and the quadrupole electromagnet 402, and is controlled by the scanning electromagnet 403 to a planned position.
  • the dose of the ion beam is measured by the dose monitor 405, and when the target dose is reached, the controller 408 stops the operation of the kicker magnetic field generating coil 311 of the accelerator 1 and the ion source 12. Thereafter, the above control is repeated so as to correspond to the next energy and irradiation dose defined in the treatment plan.
  • the ion beam of a wide energy necessary for treatment is emitted from the accelerator 1, the utilization efficiency of the ion beam as compared with the particle beam treatment system adopting the conventional cyclotron Can be dramatically improved.
  • the amount of beams that can be taken out is large, the irradiation time can be shortened, and the number of patients per unit of time that can be irradiated in the facility can also be increased.
  • the restriction of the magnetic field is small, it is easy to miniaturize, which contributes to the miniaturization of the whole particle beam therapy system.
  • the circular accelerator according to the present invention and the particle beam therapy system using the same have been described above by way of examples.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the electromagnet in the above-mentioned embodiment assumed what adopted the general coil of normal conduction, you may adopt the superconductivity magnet which used the superconductivity coil.
  • a frequency modulator a rotary variable capacitance capacitor has been exemplified, but this may be changed to a variable capacitance diode.
  • ions to be accelerated are not limited to protons, and helium or carbon may be adopted, and the magnetic field distribution and the frequency of the high frequency applied to the high frequency cavity may be adjusted according to the ion species to be accelerated and the required energy. .

Abstract

This circular accelerator for generating an ion beam by accelerating ions comprises: an electromagnet which includes an orbit plane for accelerating the ions; a high-frequency cavity for forming an electric field for accelerating the ions; and an exit route for extracting the ions after acceleration. The circular accelerator is characterized in that: the electromagnet forms on the orbit plane a magnetic field distribution such that the magnetic flux density is maximized between the center of gravity of the orbit plane and a proximal end portion of the exit route, and such that the magnetic flux density gradually decreases from the point at which the magnetic flux density is maximized to an outer edge of the orbit plane; and the high-frequency cavity is provided with a first electrode for forming the electric field and a frequency modulator for modulating the frequency of electric power applied to the first electrode.

Description

円形加速器および粒子線治療システムCircular accelerator and particle therapy system
本発明は陽子または炭素イオン等の重イオンを加速する加速器に関する。 The present invention relates to an accelerator for accelerating heavy ions such as protons or carbon ions.
 本発明の背景技術として、特許文献1に「エネルギーが異なるイオンビームを効率良く出射できる加速器を提供する。」として、「加速器は、円形のリターンヨークを含む円形の真空容器を有する。入射用電極が、真空容器の中心軸よりも、リターンヨーク内のビーム出射経路の入口側に配置される。磁極が、リターンヨーク内で入射用電極の周囲において入射用電極ら放射状に配置される。凹部が、リターンヨークの周方向で磁極と交互に配置される。真空容器内において、入射用電極を中心とする複数のビーム周回軌道が存在する軌道同心領域、及びこの領域の周囲に、入射用電極から偏心した複数のビーム周回軌道が存在する軌道偏心領域が形成される。軌道偏心領域では、入射用電極とビーム出射経路の入口の間でビーム周回軌道が密になり、入射用電極を基点にしてビーム出射経路の入口の180°反対側でビーム周回軌道相互間の間隔が広くなる」という発明が開示されている。 As background art of the present invention, as "providing an accelerator capable of efficiently emitting ion beams different in energy" in Patent Document 1, "the accelerator has a circular vacuum vessel including a circular return yoke. Electrode for incidence" Are disposed on the entrance side of the beam exit path in the return yoke with respect to the central axis of the vacuum vessel, and the magnetic poles are disposed radially around the entrance electrode in the return yoke. In the vacuum vessel, an orbit concentric area in which a plurality of beam orbits centering on the entrance electrode exist, and around the area from the entrance electrode in the vacuum vessel, alternately arranged with the magnetic poles. An orbital eccentric region is formed in which a plurality of eccentric beam orbitals exist. In the orbital eccentric region, the beam orbital between the entrance electrode and the entrance of the beam outgoing path Becomes dense, the invention that the spacing between the beam orbit each other becomes wider "in 180 ° opposite the entrance to the beam emission path to base the incidence electrode is disclosed.
国際公開2016/092621International Publication 2016/092621
 特許文献1に記載の可変エネルギー加速器は主磁場中を周回するビームを高周波電場で加速する類型の加速器である。このような加速器は放射線医療分野における利用を期待されているが、医療施設における設置スペースを効率的に使う上では、小型であることが望ましい。そこで本発明は、小型化を図りやすい可変エネルギー加速器を提供することを課題とする。 The variable energy accelerator described in Patent Document 1 is a type of accelerator that accelerates a beam circulating in a main magnetic field by a high frequency electric field. Such an accelerator is expected to be used in the radiation medical field, but in order to efficiently use the installation space in a medical facility, it is desirable to be small. Then, this invention makes it a subject to provide the variable energy accelerator which is easy to achieve size reduction.
 上記した目的を達成するにあたり代表的な本発明の円形加速器の一つは、イオンを加速させてイオンビームを生成する円形加速器において、前記イオンが加速される軌道面を内包した電磁石、前記イオンを加速させるための電場を形成する高周波空胴、加速後の前記イオンを取り出すための出射経路、を有し、前記電磁石は、前記軌道面の重心および前記出射経路の基端部との間において磁束密度が最大となり、前記磁束密度が最大となる点から前記軌道面の外縁に向けて磁束密度が漸減する磁場分布を前記軌道面上に形成し、前記高周波空胴は、前記電場を形成するための第1電極および前記第1電極に印加する電力の周波数を変調する周波数変調器を備えることを特徴とする。 One of the representative circular accelerators of the present invention for achieving the above-mentioned object is an electromagnet containing an orbital plane in which the ions are accelerated, a circular accelerator for accelerating the ions to generate an ion beam, and the ions The electromagnet has a high frequency cavity for forming an electric field for acceleration, and an emission path for extracting the ions after acceleration, and the electromagnet has a magnetic flux between the center of gravity of the orbital plane and the proximal end of the emission path. A magnetic field distribution is formed on the orbital plane in which the magnetic flux density gradually decreases from the point where the density is maximum and the magnetic flux density is maximum toward the outer edge of the orbital plane, and the high frequency cavity forms the electric field. And a frequency modulator that modulates the frequency of the power applied to the first electrode and the first electrode.
 本発明によれば、小型化を図りやすい可変エネルギー加速器を提供できる。 According to the present invention, it is possible to provide a variable energy accelerator which can be easily miniaturized.
実施例1の加速器1の全体概形である。1 is a general outline of an accelerator 1 of Example 1; 加速器1の内部機器配置図である。FIG. 2 is a layout view of internal devices of an accelerator 1; 加速器1の周回周波数のエネルギー依存性を示すグラフである。It is a graph which shows the energy dependence of the circulation frequency of the accelerator 1. 加速器1の設計軌道形状である。It is a design trajectory shape of the accelerator 1. 加速器1の主磁場のエネルギー依存性を示すグラフである。It is a graph which shows the energy dependence of the main magnetic field of the accelerator 1. 加速器1の周回ビームの規格化位相空間上の動きを示す図である。It is a figure which shows the movement on the normalization phase space of the circular beam of the accelerator 1. FIG. 加速器1を用いた粒子線治療システムを示す図である。FIG. 1 shows a particle beam therapy system using an accelerator 1;
本発明の好適な一実施例である実施例1の加速器を図1~図6を用いて以下に説明する。 The accelerator according to the first embodiment which is a preferred embodiment of the present invention will be described below with reference to FIGS.
本実施例の加速器1は周波数変調型可変エネルギー加速器である。この加速器1は時間的に一定な磁場を主磁場として持ち、主磁場中を周回する陽子を高周波電場によって加速する円形加速器である。図1はその外観を示す。加速器1は上下に分割可能な電磁石11を有し、これら電磁石11によって、加速中のビームが通過する真空領域(以下、軌道面と呼ぶ)に主磁場を励起する。 The accelerator 1 of the present embodiment is a frequency modulation type variable energy accelerator. The accelerator 1 is a circular accelerator having a temporally constant magnetic field as a main magnetic field and accelerating protons circulating in the main magnetic field by a high frequency electric field. FIG. 1 shows its appearance. The accelerator 1 has electromagnets 11 which can be divided up and down. The electromagnets 11 excite a main magnetic field in a vacuum region (hereinafter referred to as an orbital plane) through which a beam being accelerated passes.
 図1に基づき加速器1の大まかな外観を説明する。まず電磁石11の表面には、加速器1の内部と外部と連通させるための軌道面貫通口が複数設けられている。これらの貫通口は主に、加速器1の内部に設置される機器に対する電流供給線や、それらの機器に接続された信号線を外部空間へ引き出すために設けられるものと、加速されたビームを取り出す用途のために設けられているものがある。図1はその例を示しており、加速されたビームを取り出す取り出しビーム用貫通口111、電磁石11のコイル13に接続される導体を外部に引き出すための貫通口112、113、高周波電力入力用貫通口114が設けられている。 The rough appearance of the accelerator 1 will be described based on FIG. First, on the surface of the electromagnet 11, a plurality of track surface through holes for communicating the inside and the outside of the accelerator 1 are provided. Those through-holes are mainly provided for extracting current supply lines for equipment installed inside the accelerator 1 and signal lines connected to the equipment to the external space, and the accelerated beam is taken out Some are provided for use. FIG. 1 shows an example of the method, in which an accelerated beam is taken out, a through hole 111 for taking out a beam, through holes 112 and 113 for drawing out a conductor connected to the coil 13 of the electromagnet 11, and a high frequency power input A mouth 114 is provided.
 図1において貫通口114に接続されている機器は、周波数変調機能を有する高周波電源である。この高周波電源は貫通口114を介して、電磁石11の内空部に設置されるディー電極(第1電極)221に接続される。高周波電源は、電磁石11の内空部で周回するイオンを加速するために適切な周波数で電力を出力する機能を有しており、図1に示す例では回転式可変容量キャパシタ212を備えている。容量はサーボモータ214によって制御されるものを例示しているが、これに限られるものではない。なお回転式可変容量キャパシタ212に対して電力を供給するための供給線などは、図面上、省略している。 The device connected to the through hole 114 in FIG. 1 is a high frequency power supply having a frequency modulation function. The high frequency power source is connected to the dee electrode (first electrode) 221 installed in the inner space of the electromagnet 11 through the through hole 114. The high frequency power supply has a function of outputting electric power at an appropriate frequency to accelerate ions circulating in the inner space of the electromagnet 11. In the example shown in FIG. 1, the rotary variable capacitance capacitor 212 is provided. . The capacity is exemplified by one controlled by the servomotor 214, but is not limited thereto. A supply line or the like for supplying power to the rotary variable capacitance capacitor 212 is omitted in the drawing.
 また電磁石11の上面部に設けられた貫通口115はイオンの導入経路であり、この貫通口115を介して加速すべきイオンが、電磁石11の内空部、より正確には、電磁石11の内空部に存在する加速の軌道によって定義される概ね円盤状の空間(軌道面20)へと供給される。イオンを導入する貫通口115の位置は、一般的な円形加速器と異なっており、後段にて詳細に説明する。 Further, a through hole 115 provided on the upper surface of the electromagnet 11 is an ion introduction path, and ions to be accelerated through the through hole 115 are inside the electromagnet 11, more precisely, inside the electromagnet 11. It is supplied to a generally disc-like space (track surface 20) defined by the trajectory of acceleration existing in the hollow part. The position of the through hole 115 for introducing ions is different from that of a general circular accelerator and will be described in detail later.
 また図1には加速器1の外観を説明するにあたり最低限の構成のみを示している。実際には、加速器1の内部を真空に維持するための真空ポンプや、温度条件を管理するために温調手段が設けられているが、これらは省略している。 Further, FIG. 1 shows only the minimum configuration for explaining the appearance of the accelerator 1. In practice, a vacuum pump for maintaining the inside of the accelerator 1 in vacuum and temperature control means for controlling temperature conditions are provided, but these are omitted.
 次に、加速器1の内部構造について図2を用いて説明する。図2は、図1に示す加速器1の電磁石11を上下に分割し、下側となる電磁石11を上から見た図である。貫通口115の有無など一部は違いがあるものの、基本的には、図2の上側の電磁石11を下から見ると同様の構造を有する。また、以降の説明では、電磁石11について上側、下側等の区別は省略し、単に電磁石11と呼ぶ。 Next, the internal structure of the accelerator 1 will be described with reference to FIG. FIG. 2 is a view of the electromagnet 11 of the accelerator 1 shown in FIG. 1 divided up and down and the electromagnet 11 on the lower side viewed from above. Basically, the electromagnet 11 shown in FIG. 2 has the same structure as viewed from below, although there are some differences, such as the presence or absence of the through hole 115. Further, in the following description, the distinction between the upper side and the lower side of the electromagnet 11 is omitted, and the electromagnet 11 is simply referred to.
 電磁石11は、主な構成として、リターンヨーク部121、天板部122、円柱状の磁極部123、コイル13を有する。 The electromagnet 11 mainly includes a return yoke portion 121, a top plate portion 122, a cylindrical magnetic pole portion 123, and a coil 13.
 リターンヨーク部121は肉厚の円筒状の部材であり、上下の電磁石11を連結する際に、それぞれの一端が接触部となる。またこの接触部に対して反対側の端部は天板部122と連結されている。天板部122は、リターンヨーク部121の外径と実質的に一致する直径を有する円盤状の部材である。したがって、リターンヨーク部121と天板部122を締結した構造の外観は、片方の端部が閉じられた円筒状の構造体となる。 The return yoke portion 121 is a thick cylindrical member, and when the upper and lower electromagnets 11 are connected, one end thereof is a contact portion. The end opposite to the contact portion is connected to the top plate portion 122. The top plate portion 122 is a disk-like member having a diameter that substantially matches the outer diameter of the return yoke portion 121. Therefore, the external appearance of the structure in which the return yoke portion 121 and the top plate portion 122 are fastened becomes a cylindrical structure whose one end is closed.
 このような構造体において内筒に相当する空間に磁極部123が形成される。磁極部123は天板部122を基部とし、リターンヨーク部121の内筒側の空間に張り出す柱状の部材である。ただしリターンヨーク部121とは異なり、上下に対向配置された電磁石11を連結する際には、対向する磁極部123は互いに接触せず間隙を形成する程度に天板部122から張り出している。 In such a structure, the magnetic pole portion 123 is formed in the space corresponding to the inner cylinder. The magnetic pole portion 123 is a columnar member having the top plate portion 122 as a base portion and protruding into the space on the inner cylinder side of the return yoke portion 121. However, unlike the return yoke portion 121, when connecting the electromagnets 11 which are disposed to face each other in the vertical direction, the opposing magnetic pole portions 123 project from the top plate portion 122 so as not to contact each other to form a gap.
 これらリターンヨーク部121、天板部122、磁極部123は純鉄のインゴットから削り出し加工によって形成するが、それぞれの部位に対応する部材は、個別に削り出した後に連結してもよいし、加工装置や用意できるインゴットの大きさに応じて一体的に削り出してもよい。また当然ながら、大型の部材は、より小さいパーツを組み合わせて形成してもよい。 The return yoke portion 121, the top plate portion 122, and the magnetic pole portion 123 are formed by cutting out an ingot of pure iron, but members corresponding to the respective portions may be separately cut out and then connected. Depending on the size of the processing apparatus and the size of the prepared ingot, it may be integrally cut out. Also, as a matter of course, large members may be formed by combining smaller parts.
 リターンヨーク部121と磁極部123との間にはコイル13が設置され、図2に示すようにコイル13の内径は磁極部123の外径におおむね一致している。コイル13とリターンヨーク部121との間、コイル13と磁極部123との間はそれぞれ絶縁されている。貫通口112、113からコイル13に接続された導体が引き出され、加速器1の外部に設けられた電源と接続され、コイル13に電流を流すことによって磁極部123が磁化し、軌道面20に後述する所定の分布で磁場を励起する。 The coil 13 is disposed between the return yoke portion 121 and the magnetic pole portion 123, and the inner diameter of the coil 13 substantially matches the outer diameter of the magnetic pole portion 123 as shown in FIG. The coil 13 and the return yoke portion 121 and the coil 13 and the magnetic pole portion 123 are respectively insulated. A conductor connected to the coil 13 is pulled out from the through holes 112 and 113 and connected to a power supply provided outside the accelerator 1 and a current flows through the coil 13 to magnetize the magnetic pole portion 123 and to be described later Excite the magnetic field with a predetermined distribution.
 また上下一対に配置された磁極部123の互いの対向面に相当する表面(磁極面124)には、コイル13および磁極部123によって生じる磁場を微調整するためのコイルとして、トリムコイル60が設けられる。本実施例におけるトリムコイル60の態様は、図2に示すように複数の径が異なるコイル群であって、大きな径のコイル内径側により小さな径のコイルが配置されたものである。またそれぞれのコイルは、図2に示すように一方向に中心が偏る配置をとる。トリムコイル60と磁極面124との間には図示しない絶縁部材によって絶縁され、磁極面124に対して非磁性の部材や接着剤を用いて固定されている。トリムコイル60を構成するそれぞれのコイルに通電される電流の大きさは個別調整可能であり、コイル13と同様に貫通口112、113を介して外部電源に接続される。各系統個別に励磁電流を調整することで、後述の主磁場分布に近づけ、安定なベータトロン振動を実現するように運転前にトリムコイル電流が調整されている。 A trim coil 60 is provided on the surface (magnetic pole surface 124) corresponding to the opposing surfaces of the magnetic pole portions 123 arranged in a pair at the top and bottom as a coil for finely adjusting the magnetic field generated by the coil 13 and the magnetic pole portion 123. Be An aspect of the trim coil 60 in the present embodiment is a coil group having a plurality of different diameters as shown in FIG. 2, in which a coil with a smaller diameter is disposed on the inner diameter side of the larger diameter coil. Also, each coil is arranged such that the center is biased in one direction as shown in FIG. The trim coil 60 and the pole face 124 are insulated by an insulating member (not shown) and fixed to the pole face 124 using a nonmagnetic member or an adhesive. The magnitude of the current supplied to each of the coils constituting the trim coil 60 can be adjusted individually, and is connected to an external power supply through the through holes 112 and 113 in the same manner as the coil 13. By adjusting the excitation current individually for each system, the trim coil current is adjusted before operation so as to approximate a main magnetic field distribution described later and achieve stable betatron oscillation.
 このような機械的構造を有する加速器1により、イオン源12から供給されたイオンを加速しイオンビームは生成され、加速中のイオンの軌道によって軌道面20が定義される。軌道面20の位置は、先に述べたリターンヨーク部121を上下に連結した際に形成される空間内にあり、上下の磁極面124に対して等距離の関係にある。なお軌道面20は、厳密には平面ではなく厚みを有する円盤状の空間だが、説明の便宜上、リターンヨーク部121の内径よりも小さい直径の円状の領域として取り扱う。 The accelerator 1 having such a mechanical structure accelerates the ions supplied from the ion source 12 to generate an ion beam, and the orbit plane 20 is defined by the orbit of the ions during acceleration. The position of the raceway surface 20 is in the space formed when the above-described return yoke portion 121 is vertically connected, and is equidistant to the upper and lower magnetic pole surfaces 124. The raceway surface 20 is a disc-like space that is not a flat surface but a thickness in a strict sense, but is treated as a circular area having a diameter smaller than the inner diameter of the return yoke portion 121 for convenience of explanation.
 軌道面20には、所望の加速のために必要となる磁場分布が形成される。円柱状の磁極部123を設けることで、軌道面20において必要な磁場強度の大部分、すなわち図5に示す例であれば軌道面20の全体にわたって4.9Tの磁場を発生させることができる。 The orbital plane 20 has a magnetic field distribution required for the desired acceleration. By providing the cylindrical magnetic pole portion 123, it is possible to generate a magnetic field of 4.9 T over most of the required magnetic field strength in the orbital plane 20, that is, in the example shown in FIG.
 なお、軌道面20において発生させるべき磁場分布は、イオン源12から供給されるイオンが軌道面20の上に乗る際の位置(入射点)を最大として、その位置から軌道面20の外縁(すなわちコイル13の内径面)に向かうにつれて漸減するものであり、このような磁場強度の分布は後述するトリムコイル60によって実現される。 The magnetic field distribution to be generated in the orbital plane 20 has a maximum position (incident point) when ions supplied from the ion source 12 get on the orbital plane 20 from the outer edge of the orbital plane 20 (ie, from that position). The distribution gradually decreases toward the inner diameter surface of the coil 13, and such a distribution of the magnetic field strength is realized by the trim coil 60 described later.
 すなわちトリムコイル60を複数の径が異なるコイルによって構成し、各コイルにより生じる磁場を重畳させることで軌道面20における磁場に不均一性を生じさせる。本実施例のように入射点における磁場を最大としたい場合、入射点を中心軸が通過するように、トリムコイル60のうち最小径のコイルを配置することで、入射点の位置にトリムコイル60を構成する全コイル由来の磁場を重畳させ最大化することができる。ただしこの態様に限ることなく、磁極部123の形状を必要な磁場分布に応じたものとしてもよい。すなわち磁極面124が入射点に向かって突出するような円錐状または凸形状となるように加工してもよい。この場合、トリムコイル60を省略、またはコイルの配置数を少なくできるため工数等を低減できる。 That is, the trim coil 60 is constituted by a plurality of coils with different diameters, and the magnetic field generated by each coil is superimposed to cause non-uniformity in the magnetic field in the orbital plane 20. If it is desired to maximize the magnetic field at the incident point as in this embodiment, the trim coil 60 is disposed at the position of the incident point by arranging the coil of the smallest diameter among the trim coils 60 so that the central axis passes through the incident point. The magnetic fields derived from all the coils that make up the signal can be superimposed and maximized. However, the present invention is not limited to this mode, and the shape of the magnetic pole portion 123 may be adapted to the required magnetic field distribution. That is, the magnetic pole surface 124 may be processed to have a conical shape or a convex shape projecting toward the incident point. In this case, since the trim coil 60 can be omitted or the number of arranged coils can be reduced, the number of steps can be reduced.
 一方、本実施例のように円柱状の磁極部123とその表面に設けられたトリムコイル60の組み合わせは、リターンヨーク部121を上下で結合した際に、円柱状の磁極部123の対向面およびリターンヨーク部121の内径面から定められる空間を、磁極部123の形状を円錐状とする場合と比較して広く設けることができる。そのために後述するディー電極やキッカ磁場発生用コイル311の設置作業が容易となり、また配置の微調整などもしやすくなるという利点がある。本実施例は、磁極部123とトリムコイル60の組み合わせで磁場分布を形成しており、磁極部123の軌道面20に対する表面は、軌道面20に対して平行なものを採用した。 On the other hand, in the combination of the cylindrical magnetic pole portion 123 and the trim coil 60 provided on the surface as in the present embodiment, the opposing surface of the cylindrical magnetic pole portion 123 and the opposing surface of the cylindrical magnetic pole portion 123 when the return yoke portion 121 is joined vertically A space defined from the inner diameter surface of the return yoke portion 121 can be widely provided as compared with the case where the magnetic pole portion 123 has a conical shape. Therefore, there is an advantage that the installation work of the die electrode and the coiler magnetic field generating coil 311 to be described later becomes easy and the fine adjustment of the arrangement becomes easy. In the present embodiment, the magnetic field distribution is formed by the combination of the magnetic pole portion 123 and the trim coil 60, and the surface of the magnetic pole portion 123 with respect to the orbital plane 20 is parallel to the orbital plane 20.
 続いて、本実施例においてイオンを加速させるための機器について説明する。 Subsequently, an apparatus for accelerating ions in the present embodiment will be described.
 ビームを生成するにあたり、まず入射部130から低エネルギーの状態でイオンが加速器1に入射される。入射部130はイオン源12が設置されおり、貫通口115を通じて外部からイオンの発生に必要な電力を供給されている。イオン源12で生成されたイオンは引き出し電極に印加された電圧によって軌道面20に引き出される。引き出されたイオンは高周波空胴21によって励起される高周波電場によって加速ギャップ223を通過する毎に加速される。 In order to generate a beam, ions are first incident on the accelerator 1 from the entrance section 130 in a low energy state. The incident part 130 is provided with the ion source 12 and is supplied with power necessary for ion generation from the outside through the through hole 115. The ions generated by the ion source 12 are extracted to the orbital plane 20 by the voltage applied to the extraction electrode. The extracted ions are accelerated each time they pass through the acceleration gap 223 by the high frequency electric field excited by the high frequency cavity 21.
 高周波空胴21はλ/4型の共振モードによって加速ギャップ223に電場を励起させ、この電場によりイオンを加速する。高周波空胴21に関し、特に磁極部123の間であって、図1における鉛直方向から見た際に軌道面20と重なり、軌道面の一部を覆うように設置された部分をディー電極と定義する。 The high frequency cavity 21 excites an electric field in the acceleration gap 223 by the λ / 4 resonant mode, and accelerates the ions by this electric field. With regard to the high frequency cavity 21, in particular, a portion disposed between the magnetic pole portions 123 and overlapping the track surface 20 when viewed from the vertical direction in FIG. 1 and defining a portion of the track surface as a dee electrode Do.
 また高周波空胴21は、入射点側を先端とし反対側を後端とすると、後端側に、ディー電極221と接続され、リターンヨーク部121に設けられた貫通口114を通じて高周波電源と接続される接続部を有している。接続部は高周波空胴21の一部に相当し、ディー電極221の一部と捉えてもよいが、説明の簡単のために上記のように定義する。 Further, assuming that the high frequency cavity 21 has the incident point side as the front end and the opposite side as the rear end, the high frequency cavity 21 is connected to the dee electrode 221 on the rear end side and connected to the high frequency power source through the through hole 114 provided in the return yoke portion 121 Connection. The connection portion corresponds to a part of the high frequency cavity 21 and may be regarded as a part of the dee electrode 221, but is defined as described above for the simplicity of description.
 ディー電極221は、その形状を軌道面20に投影した際に、入射点近傍を中心として中心角が鋭角かつ出射経路の基端部に対して反対側へ広がる略扇形となるように形成される。なお後述のように対称軸を基準とするとディー電極221はほぼ左右対称の構造である。 The Dee electrode 221 is formed to have a substantially fan shape whose central angle is an acute angle centered on the vicinity of the incident point and extends to the opposite side with respect to the proximal end of the emission path when the shape is projected onto the orbital plane 20 . As described later, the dee electrode 221 has a substantially symmetrical structure with respect to the axis of symmetry.
 ビーム(加速状態にあるイオンの集合)はディー電極221と対向する接地電極222によって挟まれる加速ギャップ223に励起される電場によって加速される。この電場はディー電極に接続された高周波電源より発生させられるものであって、前述のビームの周回周波数に同期するために、電場の周波数はビームの周回周波数の整数倍であることが必要である。この加速器1では電場の周波数はビームの周回周波数の1倍としている。なお、この電場の周波数は数十MHzであり、以降では高周波電場と呼ぶ。 A beam (a set of ions in an accelerated state) is accelerated by an electric field excited in an acceleration gap 223 sandwiched by the ground electrode 222 opposite to the dee electrode 221. This electric field is generated from a high frequency power source connected to the dee electrode, and the frequency of the electric field needs to be an integral multiple of the loop frequency of the beam in order to synchronize with the loop frequency of the aforementioned beam . In this accelerator 1, the frequency of the electric field is one time of the frequency of the beam. The frequency of this electric field is several tens of megahertz, and is hereinafter referred to as a high frequency electric field.
 接地電極222は、ディー電極221とある程度のギャップ(加速ギャップ223)を間においてディー電極221の端面と平行に設けられており、換言すると、ディー電極221を扇形状とすると半径に相当する線に対しておおむね平行となっている。 The ground electrode 222 is provided in parallel with the end face of the dee electrode 221 with a certain gap (acceleration gap 223) between the dee electrode 221, and in other words, when the dee electrode 221 has a fan shape, it corresponds to a line corresponding to a radius. It is almost parallel to the other.
 ディー電極221に印加された電圧と接地電極222の電位との差により高周波電場は形成され、ビームは入射点を中心に軌道面20を一周するにあたって加速ギャップ223を2度通過する。2度の通過それぞれで加速を受けるが、ディー電極221から接地電極222に向かう加速と、接地電極222からディー電極221へ向かう加速とでは電位差を逆転させる必要がある。電位差を逆転する際の態様は様々だが、本実施例では、接地電極222は0Vを維持し、ディー電極221は高周波電源によりプラスとマイナスの双方へ同程度に電位が変化するものとしている。なお接地電極222は加速期間(所望のエネルギーを得るまでに要する時間)に電位が一定に保たれ、ディー電極221に印加される電圧がこの電位を基準に上下同程度に変更するように構成してもよい。 A high frequency electric field is formed by the difference between the voltage applied to the dee electrode 221 and the potential of the ground electrode 222, and the beam passes through the acceleration gap 223 twice when it makes a circuit around the orbital plane 20 around the incident point. Although acceleration is received in each of two passes, it is necessary to reverse the potential difference between the acceleration from the dee electrode 221 toward the ground electrode 222 and the acceleration from the ground electrode 222 toward the dee electrode 221. There are various modes for reversing the potential difference, but in the present embodiment, the ground electrode 222 is maintained at 0 V, and the potential of the dee electrode 221 is changed equally to plus and minus by the high frequency power supply. The ground electrode 222 is configured such that the potential is kept constant during the acceleration period (the time required to obtain the desired energy), and the voltage applied to the dee electrode 221 is changed to the same upper and lower level based on this potential. May be
 また、ディー電極221と接地電極222とは配置を入れ替えてもよい。すなわち接地電極222の端面がディー電極221の端面、ディー電極221の端面に接地電極222が配置されるように構成してもよい。 Also, the arrangement of the dee electrode 221 and the ground electrode 222 may be interchanged. That is, the ground electrode 222 may be arranged such that the end surface of the ground electrode 222 is disposed on the end surface of the dee electrode 221 and the end surface of the dee electrode 221.
 上記の構成により加速されるビームは所定のエネルギーを有するまで加速された後に、加速器1から取り出される。ビームを加速器1の外に取り出す際には、キッカ磁場発生用コイル311が励磁される、キッカ磁場発生用コイル311は、磁極面124に設置されており、このコイルに電流を流すことにより、コイル13および磁極部123によって形成される主磁場に対して後述するキッカ磁場が重畳励磁される。 The beam accelerated by the above configuration is extracted from the accelerator 1 after being accelerated to have a predetermined energy. When the beam is taken out of the accelerator 1, the kicker magnetic field generating coil 311 is excited. The kicker magnetic field generating coil 311 is disposed on the magnetic pole surface 124, and a current is supplied to the coil to make the coil A kicker magnetic field to be described later is superimposed and excited on the main magnetic field formed by the magnetic pole portion 13 and the magnetic pole portion 123.
 また、磁極面124の一か所に取り出し用のセプタム電磁石312が設けられるが、このセプタム電磁石312の他にも取り出しに適したものを採用してよい。電磁石11の内部空間から外部へとビームを取り出す経路を出射経路とすると、電磁石11の内部空間側に張り出したセプタム電磁石312の端部が、出射経路の基端部となる。この出射経路の基端部は、軌道面20の重心(軌道面20を二次元の有限領域とした場合の幾何中心)、イオンの入射点、基端部の順序で一直線上に並ぶように設けられている。また出射経路の基端部は、軌道面20を周回するビームとの干渉を避けるために、磁極部123の外縁に沿うように設けられている。 In addition, although a septum electromagnet 312 for extraction is provided at one location of the pole face 124, in addition to the septum electromagnet 312, one suitable for extraction may be employed. Assuming that the path for extracting the beam from the internal space of the electromagnet 11 to the outside is an emission path, the end of the septum electromagnet 312 projecting to the internal space side of the electromagnet 11 is the proximal end of the emission path. The proximal end of this emission path is provided on a straight line in the order of the center of gravity of the orbital plane 20 (geometric center when the orbital plane 20 is a two-dimensional finite area), the ion incident point, and the proximal end. It is done. Further, the proximal end of the emission path is provided along the outer edge of the magnetic pole portion 123 in order to avoid interference with the beam traveling around the raceway surface 20.
 軌道面20を周回するビームは、キッカ磁場の存在下では、設計軌道からずらされ、セプタム電磁石312へ入射するよう移動し、その後、セプタム電磁石312の磁場によって形成される取り出しチャネル322に沿ってビームは加速器1の外に取り出される。なおキッカ磁場発生用コイル311は、周回中のビームに対して上記のような移動を実現させるものであれば配置は図2と異なっていてもよい。図2の配置は、キッカ磁場が小さくとも、セプタム電磁石312に至るまでの距離を確保することで十分な位置の変化を得ることができる。 In the presence of the kicker magnetic field, the beam orbiting the orbital plane 20 is displaced from the design orbit, moves to impinge on the septum electromagnet 312 and then travels along the extraction channel 322 formed by the magnetic field of the septum electromagnet 312 Is taken out of the accelerator 1. The arrangement of the kicker magnetic field generating coil 311 may be different from that in FIG. 2 as long as the above-described movement is realized with respect to the circulating beam. With the arrangement of FIG. 2, even if the kicker magnetic field is small, a sufficient change in position can be obtained by securing the distance to the septum electromagnet 312.
 また、軌道面20において主磁場は設計軌道に対する面内の偏差(軌道面20と平行な磁場成分)がほぼ0となるように、磁極部123、コイル13、トリムコイル60、キッカ磁場発生用コイル311、取り出し用のセプタム電磁石312の形状と配置は軌道面20に対して面対称としている。磁極部123、ディー電極221、コイル13、トリムコイル60の形状は、入射点および軌道面20の重心を通る直線に対して左右が線対称の形状となっており、主磁場も該直線に関して対称性を有している。なお、以降では特に断らない限り、主磁場とは軌道面20に直交する磁場とする。 In addition, in the orbital plane 20, the magnetic pole portion 123, the coil 13, the trim coil 60, and the kicker magnetic field generating coil so that the deviation in the plane (the magnetic field component parallel to the orbital plane 20) with respect to the design orbit becomes substantially zero. 311, the shape and arrangement of the septum electromagnet 312 for taking out are plane symmetric with respect to the raceway surface 20. The shapes of the magnetic pole portion 123, the dee electrode 221, the coil 13, and the trim coil 60 are symmetrical with respect to a straight line passing the incident point and the center of gravity of the orbital plane 20, and the main magnetic field is also symmetrical with respect to the straight line. Have sex. Hereinafter, the main magnetic field is a magnetic field orthogonal to the orbital plane 20 unless otherwise specified.
 次に、本加速器1の内部を周回するビームの軌道について述べる。軌道面20中をビームは周回しながら加速される。取り出し可能なビームの運動エネルギー(以降では単にエネルギーと呼ぶ)は最小70MeVから最大235MeVとして以降を説明するが、これに限られることはなく必要に応じてエネルギーの範囲は設定してよい。ビームを加速するにあたって、エネルギーが大きいほどビームの周回周波数は小さくなる。これらのエネルギーと周回周波数の関係を図3に示している。入射直後のエネルギーでは76MHz,235MeVに達したビームは59MHzで周回する。 Next, the trajectory of the beam circulating inside the accelerator 1 will be described. The beam is accelerated while orbiting in the orbital plane 20. The kinetic energy of the extractable beam (hereinafter simply referred to as energy) is described as a minimum of 70 MeV to a maximum of 235 MeV, but is not limited thereto and the energy range may be set as needed. In accelerating the beam, the higher the energy, the smaller the frequency of the beam. The relationship between these energies and the circulation frequency is shown in FIG. At the energy immediately after incidence, the beam reaching 76 MHz and 235 MeV travels at 59 MHz.
 ビームは安定的に周回する必要があるため、この安定性を実現するにあたって、磁極部123によって、主磁場はビームの軌道に沿っては一様であり、かつエネルギーが高くなるにつれ磁場が低下する分布となる。このような磁場下においては、ビームは、軌道面20の動径方向と軌道面20に対して垂直な方向のそれぞれに対して安定にベータトロン振動する。 Since the beam needs to be stably circulated, the main magnetic field is uniform along the beam trajectory by the magnetic pole part 123 in order to realize this stability, and the magnetic field decreases as the energy increases. It becomes distribution. Under such a magnetic field, the beam betatron oscillates stably with respect to the radial direction of the orbital plane 20 and the direction perpendicular to the orbital plane 20, respectively.
 各エネルギーの軌道は図4に示す。周回軌道は最も外側に最大エネルギー252MeVの軌道に対応した半径0.497mの円軌道が存在し、そこから、0MeVまで磁気剛性率(運動量と電荷の比)で51分割した都合51本の円軌道を図示している。点線は各軌道の同一の周回位相を結んだ線であり、等周回位相線と呼ぶ。この加速器1はビームの加速に従って、それぞれのエネルギーに対応するビームの設計軌道の中心が軌道面20内で一方向、特に軌道面20の重心よりも出射経路の基端部側に移動する。 The trajectory of each energy is shown in FIG. The orbit has a circular orbit with a radius of 0.497 m corresponding to the orbit with the maximum energy of 252 MeV on the outermost side, and from that there are 51 circular orbits divided into 51 by magnetic rigidity (ratio of momentum to charge) up to 0 MeV. Is illustrated. The dotted line is a line connecting the same circulation phase of each orbit, and is called an equal circulation phase line. The accelerator 1 moves the center of the design trajectory of the beam corresponding to each energy in one direction in the orbital plane 20, particularly to the proximal end side of the emission path rather than the center of gravity of the orbital plane 20 as the beam accelerates.
 各設計軌道中心の移動の結果、異なる運動エネルギーの軌道が互いに近接している箇所と互いに遠隔している領域が存在する。軌道同士の最近点を結ぶと各軌道に直交する線分となり、また、軌道同士の最遠点を結ぶと軌道に直交する線分となり、この二つの線分は同一直線上に存在する。この直線を対称軸と定義すると、軌道の形状と主磁場の分布は対称軸を通り軌道面に垂直な面に対して面対称となる。等周回位相線は集約領域から周回位相π/20ごとにプロットしている。ディー電極221と対向する接地電極222の間に形成される加速ギャップ223は、軌道同士の最近点を結ぶ線分を基準としたときに±90度周回した等周回位相線に沿って設置される。 As a result of the movement of each designed track center, there are areas where tracks of different kinetic energy are close to each other and areas that are separated from each other. When the closest points of the trajectories are connected, they become line segments orthogonal to the trajectories, and when the farthest points of the trajectories are connected, they become line segments orthogonal to the trajectories, and these two line segments exist on the same straight line. If this straight line is defined as an axis of symmetry, the shape of the orbit and the distribution of the main magnetic field pass through the axis of symmetry and become plane symmetric with respect to a plane perpendicular to the orbital plane. The equi-rotational phase lines are plotted for every circulation phase π / 20 from the aggregation region. The acceleration gap 223 formed between the dee electrode 221 and the opposing ground electrode 222 is installed along an equi-rotation phase line that rotates by ± 90 degrees based on the line segment connecting the closest points of the orbits. .
 上記のような軌道構成と軌道周辺での安定なベータトロン振動を生じさせるために、本実施例の加速器1においては設計軌道の偏向半径方向外側に行くにつれ磁場の値が小さくなる主磁場分布を形成している。また、設計軌道に沿って磁場は一定である。よって、設計軌道は円形となり、ビームのエネルギーが高まるにつれその軌道半径・周回時間は増大する。このような体系では設計軌道から半径方向に微小にずれた粒子は設計軌道に戻すような復元力を受けると同時に軌道面に対して鉛直な方向にずれた粒子も軌道面に戻す方向に主磁場から復元力を受ける。 In order to generate the above orbit configuration and stable betatron oscillation around the orbit, in the accelerator 1 of this embodiment, the main magnetic field distribution in which the value of the magnetic field decreases as going outward in the deflection radius direction of the designed orbit It is formed. Also, the magnetic field is constant along the design trajectory. Thus, the design trajectory is circular, and as the energy of the beam increases, the radius and orbit time of the trajectory increase. In such a system, particles slightly deviated from the design trajectory in the radial direction receive restoring forces that return them to the design trajectory, and at the same time, particles shifted in the direction perpendicular to the track surface also return the main magnetic field to the track surface. Receive resilience from
 なお、設計軌道とは、エネルギーに応じてビームが描く軌道のことを指し、すなわち0MeVから252MeVまで連続的に定義できる軌道(0MeVの場合は点)の集合体のうちいずれかのエネルギーに対応する軌道を意味し、特定のエネルギーに対応する軌道のみを示すものではない。したがって「設計軌道から半径方向(動径方向)にずれる」とは、あるエネルギーに対応する本来の軌道から、エネルギーはほぼ変化しないもののその軌道からずれることを意味している。また上記の「復元力」とは、このように本来の軌道からずれたビームが、エネルギーに応じた設計軌道に戻す向きに受ける力を意味する。 The design trajectory refers to the trajectory drawn by the beam according to the energy, that is, corresponds to any energy of a collection of trajectories (points in the case of 0 MeV) that can be continuously defined from 0 MeV to 252 MeV. It means an orbit, and does not indicate only an orbit corresponding to a specific energy. Therefore, “deviation from the design trajectory in the radial direction (radial direction)” means that the energy does not substantially change from the original trajectory corresponding to a certain energy, but deviates from the trajectory. Further, the above-mentioned "restoring force" means the force that the beam deviated from the original trajectory in this way receives in the direction to return to the design trajectory according to the energy.
 上記のような復元力は、ビームのエネルギーが大きくなるにつれて適切に磁場を小さくしていけば、常に設計軌道からずれた粒子は設計軌道に戻そうとする向きに働き、設計軌道の近傍を振動することになる。これにより、安定にビームを周回・加速させることが可能である。この設計軌道を中心とする振動をベータトロン振動と呼ぶ。各エネルギーのビームにおける磁場の値を図5に示した。磁場は入射点で最大の5Tとなり、最外周では4.91Tまで低下する。 As described above, if the magnetic field is reduced appropriately as the energy of the beam increases, particles that deviate from the design trajectory always work in the direction to return to the design trajectory and vibrate near the design trajectory. It will be done. This makes it possible to stably orbit and accelerate the beam. Vibration centered on this design trajectory is called betatron vibration. The value of the magnetic field in each energy beam is shown in FIG. The magnetic field reaches a maximum of 5 T at the incident point and drops to 4.91 T at the outermost periphery.
 イオンの加速のためには、高周波電源210から入力カプラ211を通じて高周波電力が導入され、ディー電極221と接地電極222の間の加速ギャップ223に高周波電場が励起される。ビームの周回に同期して高周波電場を励起するために、電場の周波数を周回中のビームのエネルギーに対応して変調させる。 In order to accelerate ions, high frequency power is introduced from the high frequency power supply 210 through the input coupler 211, and a high frequency electric field is excited in the acceleration gap 223 between the dee electrode 221 and the ground electrode 222. The frequency of the electric field is modulated correspondingly to the energy of the circulating beam in order to excite the high frequency electric field in synchronization with the circulation of the beam.
 共振モードを用いた高周波空胴21は、共振の幅よりも広い範囲で高周波の周波数を掃引する必要がある。そのために空胴の共振周波数も変更する必要が有る。その制御はディー電極221に接続された回転式可変容量キャパシタ212の静電容量を変化させることで行う。回転式可変容量キャパシタ212は回転軸に直接接続された導体板と外部導体との間に生じる静電容量を回転軸213の回転角によって制御する。すなわち、ビームの加速に伴い回転軸213の回転角を変化させる。 The high frequency cavity 21 using the resonance mode needs to sweep the high frequency in a range wider than the width of the resonance. Therefore, it is also necessary to change the resonant frequency of the cavity. The control is performed by changing the capacitance of the rotary variable capacitance capacitor 212 connected to the dee electrode 221. The rotary variable capacitor 212 controls the capacitance generated between the conductor plate directly connected to the rotation shaft and the outer conductor by the rotation angle of the rotation shaft 213. That is, the rotation angle of the rotating shaft 213 is changed as the beam accelerates.
 加速器1のビーム入射から取り出しまでのビームの挙動を述べる。まずイオン源12から低エネルギーのビームが出力され、軌道面20にビームが導かれる。軌道面20に入射されたビームは高周波電場による加速を受けながら、そのエネルギーが増大するとともに、軌道の回転半径を増加させていく。その後ビームは高周波電場による進行方向安定性を確保しながら加速される。すなわち、高周波電場が最大となる時刻に加速ギャップ223を通過するのではなく、時間的に高周波電場が減少している時に加速ギャップ223を通過させる。 The behavior of the beam from beam incidence to extraction of the accelerator 1 will be described. First, a low energy beam is output from the ion source 12, and the beam is guided to the orbital plane 20. The beam incident on the orbital plane 20 is accelerated by the high frequency electric field, and its energy increases and the turning radius of the orbit is increased. After that, the beam is accelerated while securing the traveling direction stability by the high frequency electric field. That is, instead of passing through the acceleration gap 223 at the time when the high frequency electric field is maximum, the acceleration gap 223 is allowed to pass when the high frequency electric field decreases temporally.
 すると、高周波電場の周波数とビームの周回周波数はちょうど整数倍の比で同期させているため、所定の加速電場の位相で加速された粒子は次のターンも同じ位相で加速を受ける。一方、加速位相より早い位相で加速された粒子は加速位相で加速された粒子よりもその加速量が大きいため、次のターンでは遅れた位相で加速を受ける。また逆に有る時に加速位相より遅い位相で加速された粒子は加速位相で加速された粒子よりもその加速量が小さいため、次のターンでは進んだ位相で加速を受ける。このように、所定の加速位相からずれたタイミングの粒子は加速位相に戻る方向に動き、この作用によって、運動量と位相からなる位相平面(進行方向)内においても安定に振動することができる。 Then, since the frequency of the high frequency electric field and the circulating frequency of the beam are synchronized at an integral multiple ratio, the particles accelerated in the phase of the predetermined acceleration electric field are accelerated in the same phase in the next turn. On the other hand, since particles accelerated in a phase earlier than the acceleration phase have a larger amount of acceleration than particles accelerated in the acceleration phase, they are accelerated in a delayed phase in the next turn. On the other hand, particles that are accelerated at a phase later than the acceleration phase at that time are accelerated at the advanced phase in the next turn because the amount of acceleration is smaller than particles accelerated at the acceleration phase. As described above, the particles having a timing shifted from the predetermined acceleration phase move in the direction returning to the acceleration phase, and by this action, they can be stably oscillated also in the phase plane (traveling direction) consisting of momentum and phase.
 この振動をシンクロトロン振動と呼ぶ。すなわち、加速中の粒子はシンクロトロン振動をしながら、徐々に加速され、取り出しされる所定のエネルギーまで達する。所定の取り出しビームを目標のエネルギーで取り出すために、キッカ磁場発生用コイル311のいずれか一つもしくは複数のコイルが目標エネルギーを元に選択され所定の励磁電流が流される。 This vibration is called synchrotron vibration. That is, the particles being accelerated are gradually accelerated while reaching synchrotron oscillation and reach a predetermined energy to be taken out. In order to extract a predetermined extraction beam with a target energy, any one or a plurality of coils of the kicker magnetic field generating coil 311 is selected based on the target energy and a predetermined excitation current is passed.
 目標エネルギーのビームはキッカ磁場発生用コイル311に電流が流されていない場合はその設計軌道に沿って周回するが、キッカ磁場発生用コイル311に電流が流されていると、目標エネルギーに達したビームはキッカ磁場発生用コイル311起因のキック磁場によって軌道からずれる。すなわち、キッカ磁場発生用コイル311によって軌道面内のベータトロン振動が励起される。キッカ磁場発生用コイル311によるキックの位置と集約点の位置が適切な位置関係にある時、キッカ磁場発生用コイル311によるキックによって集約点においてビームを半径方向外側に変位させることが可能である。 The beam of the target energy circulates along the design trajectory when the current is not supplied to the kicker magnetic field generating coil 311, but the target energy is reached when the current is supplied to the kicker magnetic field generating coil 311 The beam is deviated from the orbit by the kicking magnetic field caused by the kicker magnetic field generating coil 311. That is, betatron oscillation in the orbital plane is excited by the kicker magnetic field generating coil 311. When the position of the kick by the kicker magnetic field generation coil 311 and the position of the convergence point are in an appropriate positional relationship, it is possible to displace the beam radially outward at the convergence point by the kick by the kicker magnetic field generation coil 311.
 ビームが主磁場中を周回しながら加速する一連の動作において、前述の通り軌道に対して垂直な面内の振動であるベータトロン振動と運動量ずれと加速高周波の位相における振動であるシンクロトロン振動をする。この二種の振動によってビームは所定のエネルギーまでそのビームをロスすることなく安定に加速することができる。しかしながら、上述の原理によって生じるベータトロン振動は軌道を外れた粒子に対して軌道に戻す方向の力、すなわち収束力が確保されることが必要であった。 In a series of operations in which the beam accelerates in the main magnetic field, as described above, the betatron vibration, which is the vibration in the plane perpendicular to the orbit, the synchrotron vibration, which is the vibration in the phase of momentum shift and acceleration high frequency. Do. These two types of vibration allow the beam to stably accelerate to a predetermined energy without losing the beam. However, the betatron oscillation generated by the above principle needs to secure a force in the direction back to the orbit for the particles which are out of orbit, that is, a convergence force.
 軌道変位に対して比例して収束力が大きくなる体系では大きな変位でも安定にベータトロン振動することが可能であるが、本加速器を含め、一般的な加速器の磁場分布には六極以上の変位に対して非線形に変化する成分がある。非線形な分布は収束力を低下させ、ベータトロン振動の振幅に上限を生じさせる。上限を超えて変位した粒子は失われるため、ビーム量を確保するには磁場の非線形分布を減少させることと周回中のビームに対して与えられる擾乱を小さくする必要がある。この擾乱への対策として、主磁場を先に述べた分布になるよう形成している。 In a system in which the convergence force increases in proportion to the orbital displacement, betatron oscillation can be stably performed even at large displacements, but the magnetic field distribution of general accelerators including this accelerator has displacements of six or more poles. There is a component that changes non-linearly with The non-linear distribution reduces the convergence power and creates an upper limit on the amplitude of betatron oscillations. Since particles displaced above the upper limit are lost, it is necessary to reduce the non-linear distribution of the magnetic field and to reduce the disturbance given to the circulating beam in order to secure the beam volume. As a countermeasure against this disturbance, the main magnetic field is formed to have the above-mentioned distribution.
 またビームに対して与えられる擾乱の一つに、高周波電場による加速に由来するものがある。ビームは加速を受けた時点ではその空間的な位置を変えないのに対し、加速によって運動エネルギーが増加する。すると、加速前に設計軌道上にいたイオンも運動エネルギーが変化したことによって設計軌道が外にずれ、設計軌道から見た変位として内側に移動する擾乱を受けたことになる。換言すると、加速前の設計軌道から加速後の設計軌道への遷移によって、加速前の設計軌道に対して安定的であったベータトロン振動が、加速後の設計軌道を基準とした際にこの設計軌道よりも内側にて生じているものとなる。これを加速に伴う擾乱と定義する。加速に伴う擾乱によって生じるベータトロン振動の振幅が大きくならないようにする工夫が本実施例の加速器1のディー電極221には施されている。 Moreover, one of the disturbances given to the beam is derived from acceleration by a high frequency electric field. While the beam does not change its spatial position at the time of acceleration, acceleration increases kinetic energy. Then, ions in the design trajectory before acceleration are also out of the design trajectory due to changes in kinetic energy, and are subjected to a disturbance that moves inward as displacement seen from the design trajectory. In other words, due to the transition from the design trajectory before acceleration to the design trajectory after acceleration, the betatron oscillation that was stable with respect to the design trajectory before acceleration is based on the design trajectory after acceleration. It will be generated inside the orbit. We define this as a disturbance associated with acceleration. The dee electrode 221 of the accelerator 1 of the present embodiment is provided with a device for preventing the amplitude of the betatron oscillation generated by the disturbance accompanying the acceleration from increasing.
 ディー電極221と接地電極222の間隙においてビームは加速されるが、一周当たりディー電極221に覆われた領域にビームが入る時とディー電極221から出るときの都合2回の加速を受ける。この2回の加速によって生じるビームの変位を、ディー電極221の形状を適正化することで互いに打ち消しあって小さくすることができる。その原理について図6を参照しつつ説明する。ベータトロン振動を記述するために規格化位相空間の概念を導入する。 The beam is accelerated in the gap between the dee electrode 221 and the ground electrode 222, but is subjected to two accelerations when the beam enters and leaves the area covered by the dee electrode 221 per round. The displacement of the beam caused by the two accelerations can be made smaller by canceling out each other by optimizing the shape of the dee electrode 221. The principle will be described with reference to FIG. We introduce the concept of normalized phase space to describe betatron oscillations.
 位相空間とは設計軌道から見た変位と設計軌道に対する傾きを軸として定められる平面であり、安定的なベータトロン振動をする粒子は位相空間上で周回運動をする。位相空間をさらに軌道の各点ごとのTwiss parameterによって表される規格化行列によって規格化したものを規格化位相空間といい、加速を受けていない状況では、粒子のベータトロン振動は規格化位相空間上での時計回りの円運動と見做すことができる(A)。図6に示すようにビームが軌道面20を1周すると規格化位相空間を2πνの角度だけ円運動する。ただしνはベータトロン振動数であり、水平方向のベータトロン振動数は1より微小に小さい0.99程度である。また実空間で考えると、x=0が設計軌道の位置に対応する。 The phase space is a plane defined by the displacement seen from the design trajectory and the inclination to the design trajectory as an axis, and the particles having stable betatron oscillation orbit in the phase space. The phase space is further normalized by a normalization matrix represented by a Twiss parameter for each point of the orbit, which is called a normalized phase space, and in the non-accelerated situation, the betatron oscillation of the particle is a normalized phase space. It can be regarded as a clockwise circular motion above (A). As shown in FIG. 6, when the beam travels around the orbital plane 20, it circularly moves in the normalized phase space by an angle of 2πν. However, ν is a betatron frequency, and the betatron frequency in the horizontal direction is about 0.99, which is slightly smaller than 1. Also, in real space, x = 0 corresponds to the position of the design trajectory.
 さて、規格化位相空間中で円運動する粒子に対して、加速の擾乱は規格化位相空間中の空間方向の移動と見ることができる。高周波との同期条件から二か所の加速ギャップは互いに周回軌道上で角度π離れる必要がある。すると、一方の加速ギャップから他方の加速ギャップへ向かう運動は規格化位相空間上では角度πνの円運動となる。 Now, for particles moving circularly in the normalized phase space, the acceleration disturbance can be viewed as a spatial movement in the normalized phase space. From the synchronization condition with the high frequency, the two acceleration gaps need to be separated by an angle π on the orbit. Then, the motion from one acceleration gap to the other is a circular motion at an angle ππ on the normalized phase space.
 ここで粒子が、ある加速ギャップを通過する瞬間を考えると、この通過で受けた加速に伴う擾乱により、規格化位相空間上において粒子は内側(x<0)に変位する(B)。つづいてνがほぼ1であることから、この粒子は、もう一方の加速ギャップに達するまでに規格化移動空間上で角度πνの円運動を終え、ほぼ変位が外向き(x>0)になった上で設計軌道にほぼ平行(x’≒0)になる(C)。そしてもう一方の加速ギャップを通過時に再度、加速に伴う擾乱を受ける。すると、本実施例の配置のように対称軸に対して、左右が線対称の加速ギャップ配置では、前者の擾乱と後者の擾乱がほぼ等しい大きさとなる(D)。結果、B・C・Dの一連の規格化位相空間上の軌跡をほぼ閉じさせる、すなわち一周する間にうける加速に伴う擾乱を小さくでき、ベータトロン振動の振幅の増加を抑えることができる。 Here, considering the moment when the particle passes through a certain acceleration gap, the particle is displaced inside (x <0) on the normalized phase space by the disturbance accompanying the acceleration received in this pass (B). Subsequently, since ν is approximately 1, this particle has finished circular motion at an angle π 上 on the normalized moving space by the time the other acceleration gap is reached, and the displacement is almost outward (x> 0). Then, it becomes almost parallel (x '≒ 0) to the design trajectory (C). Then, when passing through the other acceleration gap, it is subjected to the disturbance accompanying the acceleration again. Then, in the case of the acceleration gap arrangement in which the left and right lines are symmetrical with respect to the symmetry axis as in the arrangement of this embodiment, the former disturbance and the latter disturbance have substantially the same size (D). As a result, the trajectory on the series of normalized phase spaces of B · C · D can be substantially closed, that is, the disturbance accompanying acceleration during one round can be reduced, and an increase in the amplitude of the betatron oscillation can be suppressed.
 上述の加速に伴う擾乱による規格化位相空間上の変位量Δxは軌道における分散関数η、加速によって得られる運動量Δp、粒子の運動量p、Twiss parameter βを用いて式1によって表される。 The displacement amount Δx on the normalized phase space due to the disturbance due to the acceleration described above is expressed by Equation 1 using the dispersion function η in the orbit, the momentum Δp obtained by acceleration, the momentum p of the particle, and the Twiss parameter β.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 軌道上の対称軸に対して互いに対称な2点ではある運動量pの軌道におけるη、βは互いに等しく、加速ギャップ形状で定まるΔpも等しいため上記のように加速に伴う擾乱を小さくできる。さらに、運動量pが小さい箇所ではディー電極に入る時の加速によるΔp/pと出るときのΔp/pに差が生じる場合も考えられる。 Since η and β in the trajectory of a certain momentum p at two points symmetrical to each other on the orbital symmetry axis are equal to each other and Δp determined by the acceleration gap shape is also equal, the disturbance accompanying acceleration can be reduced as described above. Furthermore, it is also conceivable that a difference may occur between Δp / p due to acceleration when entering the Dee electrode and Δp / p when exiting when the momentum p is small.
 その場合は加速ギャップ223の位置は左右対称に保ちつつ、加速ギャップ223の幅すなわち、ディー電極221と接地電極222の間隔をディー電極221に入る側で大きくとり、トランジットタイムファクターを落とすことでΔpを小さくすることができる。この場合は、左右対称のディー電極形状とするよりも、非対称の形状をとることでさらに加速に伴う擾乱を小さくでき、結果として加速可能なビーム量を増加できる。 In that case, while keeping the position of the acceleration gap 223 symmetrical, the width of the acceleration gap 223, that is, the distance between the dee electrode 221 and the ground electrode 222 is taken large on the side entering the dee electrode 221, and the transit time factor is lowered. Can be made smaller. In this case, by adopting an asymmetrical shape, it is possible to further reduce the disturbance associated with acceleration, and as a result, it is possible to increase the amount of beams that can be accelerated, as compared with the case of using a symmetrical Dee electrode.
 また、電極に入る時の加速に伴う擾乱と電極から出るときの加速に伴う擾乱の大きさを調整するには加速ギャップの位置を微小にずらすことで高周波の同期位相をずらすことや、ディー電極あるいは接地電極形状を適切に変え、電場分布を左右で変えることなどが考えられる。いずれにせよ、ビームが加速器中を1周する際に擾乱を受けるが、擾乱を受けた結果生じる規格化位相空間上の軌跡を閉じた軌跡とすることでベータトロン振動振幅の増加の抑制は達成され、ひいては取り出し可能なビーム量の大きな小型加速器を実現可能となる。 Also, in order to adjust the magnitude of the disturbance associated with acceleration upon entering the electrode and the disturbance associated with acceleration upon exiting the electrode, the position of the acceleration gap may be slightly offset to shift the high frequency synchronization phase, or Alternatively, the shape of the ground electrode may be appropriately changed to change the electric field distribution between the left and right. In any case, although the beam is disturbed as it travels around in the accelerator, suppression of the increase in the betatron oscillation amplitude is achieved by making the trajectory on the normalized phase space resulting from the disturbance a closed trajectory. As a result, it becomes possible to realize a small accelerator with a large amount of removable beam.
 以上で説明した本実施例の加速器1に対し、従来のサイクロトロンであれば、エネルギー変更のためにディグレーダー(減衰部材)を必要とし、これを通過させる際にイオンビームの大きな割合が損失していた。しかし、本実施例の加速器1は、ディグレーダーの設置を省略、あるいはエネルギーの微調整のために設置するとしても従来のように広範なエネルギー領域に対応する必要が無いため、イオンビームの遮蔽性能が低いディグレーダーの設置が可能となり、イオンビームの利用効率を高めることができる。またディグレーダーの設置を省略等することで、イオンビームがディグレーダーを通過する際に生じる中性子等の発生も抑えられ、これらを遮蔽するための遮蔽部材の物量を低減できる。すなわち加速器の配置自由度が向上し、設置のために要するスペースの効率化にも寄与する。 In contrast to the accelerator 1 of the present embodiment described above, the conventional cyclotron requires a degrader (attenuation member) for energy change, and a large proportion of the ion beam is lost when passing it. The However, the accelerator 1 of the present embodiment omits the installation of the degrader, or even if it is installed for the fine adjustment of the energy, since it is not necessary to cope with the wide energy region as in the prior art, the shielding performance of the ion beam It is possible to install a lower degrader and to improve the utilization efficiency of the ion beam. Further, by omitting the installation of the degrader or the like, the generation of neutrons and the like generated when the ion beam passes through the degrader can be suppressed, and the amount of the shielding member for shielding these can be reduced. That is, the degree of freedom in the arrangement of the accelerator is improved, which also contributes to the efficiency of the space required for the installation.
 また従来の可変エネルギー加速器やサイクロトロンは、軌道上の平均磁場をビームの相対論的γファクターに比例させることで、周回の時間をエネルギーに依らず一定としている(この性質を持つ磁場分布を等時性磁場と呼ぶ)。等時性磁場下では軌道に沿って磁場を変調させることで軌道面内と軌道面に垂直な方向のビーム安定性を確保しているが、等時性とビームの安定性を両立するためには磁場の極大部(Hill)と極小部(Valley)が必要である。この分布のついた非一様な磁場は、磁極間の距離(ギャップ)をHill領域では狭く、Valley領域では広くとることで形成することができる。しかしながら、Hill磁場とValley磁場の差は強磁性体である磁極材料の飽和磁束密度程度が実用上限界である。すなわち、Hill磁場とValley磁場の差は2テスラ程度に制限される。 Also, conventional variable energy accelerators and cyclotrons keep the orbiting time constant regardless of energy by making the mean magnetic field in orbit proportional to the relativistic γ factor of the beam (magnetic field distribution with this property is isochronous) Called the sex magnetic field). Under isochronous magnetic field, the beam stability in the orbital plane and in the direction perpendicular to the orbital plane is ensured by modulating the magnetic field along the orbit, but in order to achieve both isochronism and beam stability Requires the maximum (Hill) and minimum (Valley) of the magnetic field. A nonuniform magnetic field with this distribution can be formed by narrowing the distance (gap) between the magnetic poles in the Hill region and wide in the Valley region. However, the difference between the Hill magnetic field and the Valley magnetic field is practically limited to the extent of the saturation magnetic flux density of the magnetic pole material which is a ferromagnetic substance. That is, the difference between the Hill magnetic field and the Valley magnetic field is limited to about 2 Tesla.
 一方、上述の従来加速器を小型化する場合、主磁場を高めて、ビーム軌道の偏向半径を小さくすることが必要であるが、主磁場と前述のHill磁場とValley磁場の差は比例関係にあり、前述の飽和磁束密度による限界が小型化を阻む要因となってしまうが、本実施例の加速器であれば、このような制限が緩和される構造を採用しているため小型化を図ることが可能となる。 On the other hand, in the case of miniaturizing the conventional accelerator described above, it is necessary to increase the main magnetic field to reduce the deflection radius of the beam trajectory, but the difference between the main magnetic field and the aforementioned Hill magnetic field and Valley magnetic field is proportional. Although the above-mentioned limit due to the saturation magnetic flux density will be a factor to hinder the miniaturization, in the case of the accelerator of this embodiment, the structure is adopted in which such limitation is relaxed, and therefore, the miniaturization can be achieved. It becomes possible.
 第2の実施例は第1の実施例において、加速核種を炭素イオンとしたものである。本加速器は炭素イオンを核子当り運動エネルギー140MeV~430MeVの範囲での取り出しが可能な周波数変調型可変エネルギー加速器である。動作原理・機器構成・操作手順は第1の実施例と同一であるので省略する。異なるのは軌道半径の大きさと磁場とエネルギーの関係、周回周波数とエネルギーの関係であるが、実施例1に示した加速器から、ビームの磁気剛性率の比に軌道半径と磁場の積を比例させることで実現できる。よって、実施例1と同様の手法によってビームが加速器中を1周する際に擾乱を受けるが、擾乱を受けた結果生じる規格化位相空間上の軌跡を閉じた軌跡とすることでベータトロン振動振幅の増加の抑制は達成され、ひいては取り出し可能なビーム量の大きな小型加速器を実現可能となる。 In the second embodiment, the accelerated nuclide is carbon ion in the first embodiment. This accelerator is a frequency modulation type variable energy accelerator that can extract carbon ions in the range of 140 MeV to 430 MeV kinetic energy per nucleon. The operation principle, device configuration, and operation procedure are the same as those of the first embodiment and thus will be omitted. What is different is the relationship between the size of orbital radius and the relationship between magnetic field and energy, and the relationship between orbital frequency and energy, but from the accelerator shown in Example 1, the product of orbital radius and magnetic field is made proportional to the ratio of magnetic rigidity of beam. It can be realized by Therefore, although the beam is subjected to disturbance as it travels around the accelerator in the same manner as in Example 1, the betatron vibration amplitude is obtained by setting the locus on the normalized phase space resulting from the disturbance as a closed locus. The suppression of the increase of is achieved, which in turn makes it possible to realize a small accelerator with a large amount of removable beam.
 第3の実施例として実施例1または実施例2に挙げた加速器を用いた粒子線治療システムについて説明する。図7は本実施例の概要図である。 As a third embodiment, a particle beam therapy system using the accelerator mentioned in the first embodiment or the second embodiment will be described. FIG. 7 is a schematic view of this embodiment.
 粒子線治療システム410は、粒子線(イオンビーム)を生成する加速器1を有し、加速器1から出射されたイオンビームはダクト400の内部を進む。ダクト400の内部を進むイオンビームは、偏向電磁石401の機能によって所望の方向へ偏向され、この偏向電磁石401が複数台設けられることで任意の位置まで導かれる。またイオンビームを輸送する経路(輸送経路)には複数台の四極電磁石402が設置され、四極電磁石402の収束または発散作用によってイオンビームの状態が調整される。偏向電磁石401や四極電磁石402の出力は通過するイオンビームのエネルギーによって調整されるように構成されており、その調整は制御装置408によって制御されている。また、一部の偏向電磁石401は、回転軸407を中心に回転可能に構成されており、この回転により、後述する照射野形成装置を、患者409を中心とした任意の回転角まで運ぶことができる。なお各偏向電磁石401が施設床面や壁面に固定具を介して固定され、照射野形成装置を定位置に保持してもよい。 The particle beam treatment system 410 has an accelerator 1 that generates a particle beam (ion beam), and the ion beam emitted from the accelerator 1 travels inside the duct 400. The ion beam traveling inside the duct 400 is deflected in a desired direction by the function of the deflection electromagnet 401, and a plurality of deflection electromagnets 401 are provided to be guided to an arbitrary position. Also, a plurality of quadrupole magnets 402 are installed in a path for transporting the ion beam (transport path), and the state of the ion beam is adjusted by the convergence or diverging action of the quadrupole electromagnets 402. The outputs of the deflection electromagnet 401 and the quadrupole electromagnet 402 are configured to be adjusted by the energy of the passing ion beam, and the adjustment is controlled by the controller 408. In addition, some of the deflection electromagnets 401 are configured to be rotatable about the rotation axis 407, and by this rotation, the irradiation field forming device described later can be carried to any rotation angle around the patient 409. it can. Each of the deflection electromagnets 401 may be fixed to the floor or wall of the facility via a fixing tool, and the irradiation field forming apparatus may be held at a fixed position.
 このような輸送機器を介して治療エリア近傍まで運ばれたイオンビームは照射野形成装置を通り患部に対して照射される。照射野形成装置には様々なタイプが存在するが、図7は走査電磁石403を2台使用している例を挙げている。2台の走査電磁石403は生成する磁場が互いに直交するものであって、2つの直交する磁場の出力をそれぞれ制御することにより、所望の位置へ向かうようイオンビームを偏向することができる。 The ion beam carried to the vicinity of the treatment area via such a transport device passes through the irradiation field forming device and is irradiated to the affected area. There are various types of irradiation field forming apparatuses, but FIG. 7 gives an example in which two scanning electromagnets 403 are used. The two scanning electromagnets 403 are such that the generated magnetic fields are orthogonal to each other, and the ion beam can be deflected to a desired position by controlling the outputs of the two orthogonal magnetic fields.
 走査電磁石403の下流(走査電磁石403よりも患者側)にはイオンビームの通過位置を検出する位置モニタ404や、照射されるイオンビームの線量を計測する線量モニタ405が設置される。各モニタについては、例えば、位置モニタとして多線式比例計数箱(multi wire porpotional chamber)、線量モニタとして電離箱が利用できる。当然ながら適した機能を有する異なる種類のモニタを利用してよい。 A position monitor 404 for detecting the passing position of the ion beam and a dose monitor 405 for measuring the dose of the irradiated ion beam are installed downstream of the scanning electromagnet 403 (the patient side of the scanning electromagnet 403). For each monitor, for example, a multi wire proportional chamber as a position monitor and an ionization chamber as a dose monitor can be used. Of course, different types of monitors with suitable functionality may be utilized.
 なお照射野形成装置は、走査電磁石403の下流側に散乱体、コリメータ、レンジシフタ、リッジフィルタ等のビーム成型部材やエネルギー調整部材が設けられている形式のものであってもよい。また走査電磁石403が設置されず散乱体のみが設置されている照射野形成装置であってもよい。また位置モニタ404や線量モニタ405の設置位置も、図7の位置に限られず、ビームの輸送経路の途中に設置してもよい。 The irradiation field forming device may be of a type in which a beam forming member such as a scatterer, a collimator, a range shifter, or a ridge filter or an energy adjusting member is provided downstream of the scanning electromagnet 403. In addition, it may be an irradiation field forming apparatus in which only the scatterer is installed without the scanning electromagnet 403 being installed. Further, the installation positions of the position monitor 404 and the dose monitor 405 are not limited to the positions shown in FIG. 7 and may be installed in the middle of the transport path of the beam.
 走査電磁石403の下流側には、患者409を治療に適した位置にて保持するための支持台406が設けられている。図7では省略しているが、この支持台406は制御装置408の制御により移動可能に構成されている。また支持台406は患者409が仰臥またはうつ伏せの姿勢をとることができるベッドタイプ、あるいは患者409が座位姿勢をとることに適した椅子のような形状をもつタイプなど任意のものを採用してよい。 On the downstream side of the scanning electromagnet 403, a support 406 for holding the patient 409 at a position suitable for treatment is provided. Although not shown in FIG. 7, the support base 406 is configured to be movable under the control of the control device 408. Also, the support stand 406 may be any type such as a bed type in which the patient 409 can take a supine or prone posture, or a type having a chair-like shape suitable for the patient 409 to take a sitting posture. .
 またこれまでに挙げた偏向電磁石401、四極電磁石402、走査電磁石403、位置モニタ404、線量モニタ405や支持台406は制御装置408によって動作が制御される。制御装置408は図示しない入力インターフェースを有しており、医療者またはその補助者の操作指示を受け付けることが可能となっている。なお、本実施例では制御装置408を一つの機器として説明したが、これは一例であって、制御対象ごとに対応する制御装置を用意して、これらを組み合わせて制御装置408としてもよい。 The control device 408 controls the operations of the deflection electromagnet 401, the quadrupole electromagnet 402, the scanning electromagnet 403, the position monitor 404, the dose monitor 405, and the support stand 406 which have been described up to now. The control device 408 has an input interface (not shown), and can receive operation instructions from the medical staff or his / her assistant. Although the control device 408 has been described as one device in this embodiment, this is an example, and a control device corresponding to each control target may be prepared, and these may be combined to form the control device 408.
 以上に挙げた機器を構成に有する粒子線治療システム410は、照射対象である患部を照射するにあたり、体表を基準としたときの患部の位置(深さ)によって照射する陽子線あるいは炭素線(以下ではまとめて粒子線と呼ぶ)のエネルギーを適切な値にして患者に照射する。照射する粒子線のエネルギーは治療計画によって定められるが、治療計画が定めた粒子線のエネルギーと照射量の情報は制御装置408に入力される。これを受け取った制御装置408は、指示されたエネルギーおよび照射量の粒子線が出射されるよう加速器1を制御する。より具体的にはイオン源12に対してイオンの供給動作を要求し、加速器1の高周波電源210に対しては、図3のグラフで示す初期周波数(E=0)から目標周波数(E=目標エネルギー)に向かって漸減する周波数の出力を要求する。 When irradiating the affected area to be irradiated, the particle beam treatment system 410 having the above-described devices constitutes proton beam or carbon beam (irradiated) according to the position (depth) of the affected area with reference to the body surface ( In the following, the energy of the particle beam (collectively called particle beam) is set to an appropriate value and the patient is irradiated. Although the energy of the particle beam to be irradiated is determined by the treatment plan, the information of the energy and the dose of the particle beam defined by the treatment plan is input to the control device 408. The control device 408 having received this controls the accelerator 1 so that particle beams of the instructed energy and irradiation amount are emitted. More specifically, the ion supply operation is requested to the ion source 12, and for the high frequency power supply 210 of the accelerator 1, from the initial frequency (E = 0) shown in the graph of FIG. It requires an output of decreasing frequency towards energy).
 それらの制御により目標エネルギーに達したイオンビームが生成されると、キッカ磁場発生用コイル311を動作させて設計軌道からイオンビームを蹴り出し、セプタム電磁石312を動作させてイオンビームを加速器1から出射させる。出射したイオンビームは偏向電磁石401や四極電磁石402によって方向や状態を制御されながらダクト400の内部を進行し、走査電磁石403によって計画された位置に向かうよう制御される。イオンビームの照射量は線量モニタ405によって計測され、目標とする照射量に達すると制御装置408が加速器1のキッカ磁場発生用コイル311やイオン源12の動作を停止させる。以降は、治療計画に定められた次のエネルギー、照射量に対応するよう上記の制御が繰り返される。 When an ion beam reaching the target energy is generated by these controls, the kicker magnetic field generating coil 311 is operated to kick the ion beam from the designed trajectory, and the septum electromagnet 312 is operated to eject the ion beam from the accelerator 1 Let The emitted ion beam travels inside the duct 400 while being controlled in direction and state by the deflection electromagnet 401 and the quadrupole electromagnet 402, and is controlled by the scanning electromagnet 403 to a planned position. The dose of the ion beam is measured by the dose monitor 405, and when the target dose is reached, the controller 408 stops the operation of the kicker magnetic field generating coil 311 of the accelerator 1 and the ion source 12. Thereafter, the above control is repeated so as to correspond to the next energy and irradiation dose defined in the treatment plan.
 本実施例の粒子線治療システムによれば、治療に必要な幅広いエネルギーのイオンビームが加速器1から出射されるため、従来のサイクロトロンを採用する粒子線治療システムと比較して、イオンビームの利用効率を飛躍的に向上することができる。また取り出し可能なビーム量が大きいため照射時間の短縮も図ることができ、施設で照射可能な時間当たりの患者数の増加も可能である。また、先に挙げたように磁場の制限が小さいため小型化を図りやすく、粒子線治療システム全体の小型化にも寄与する。 According to the particle beam treatment system of this embodiment, since the ion beam of a wide energy necessary for treatment is emitted from the accelerator 1, the utilization efficiency of the ion beam as compared with the particle beam treatment system adopting the conventional cyclotron Can be dramatically improved. Moreover, since the amount of beams that can be taken out is large, the irradiation time can be shortened, and the number of patients per unit of time that can be irradiated in the facility can also be increased. Further, as mentioned above, since the restriction of the magnetic field is small, it is easy to miniaturize, which contributes to the miniaturization of the whole particle beam therapy system.
 以上、本発明の円形加速器およびこれを利用した粒子線治療装置について実施例を挙げて説明した。なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The circular accelerator according to the present invention and the particle beam therapy system using the same have been described above by way of examples. The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
 例えば、上述の実施例における電磁石は、常伝導の一般的なコイルを採用したものを想定したが、超伝導コイルを用いた超伝導磁石を採用してもよい。また周波数変調器として、回転式可変容量キャパシタを例に挙げたが、これを可変容量式ダイオードに変更してもよい。また加速するイオンも陽子に限らず、ヘリウムや炭素などを採用してもよく、加速するイオン種と必要となるエネルギーに応じて、磁場分布および高周波空胴に印加する高周波の周波数を調整するとよい。 For example, although the electromagnet in the above-mentioned embodiment assumed what adopted the general coil of normal conduction, you may adopt the superconductivity magnet which used the superconductivity coil. In addition, as a frequency modulator, a rotary variable capacitance capacitor has been exemplified, but this may be changed to a variable capacitance diode. Also, ions to be accelerated are not limited to protons, and helium or carbon may be adopted, and the magnetic field distribution and the frequency of the high frequency applied to the high frequency cavity may be adjusted according to the ion species to be accelerated and the required energy. .
1 加速器
11 電磁石
111 取り出しビーム用貫通口
112~113 コイル接続用貫通口
114 高周波電力入力用貫通口
115 ビーム入射用貫通口
12 イオン源
13 コイル
121 リターンヨーク部
122 天板部
123 磁極部
124 磁極面
130 入射部
20 軌道面(軌道面)
21 高周波空胴
221 ディー電極(第1電極)
222 接地電極(第2電極)
223 加速ギャップ
210 高周波電源
211 入力カプラ
212 回転式可変容量キャパシタ(周波数変調器)
213 回転軸
214 サーボモータ
311 キッカ磁場発生用コイル
312 セプタム電磁石
322 取り出しチャネル
60 トリムコイル
400 ダクト
401 偏向電磁石
402 四極電磁石
403 走査電磁石
404 位置モニタ
405 線量モニタ
406 支持台
407 回転軸
408 制御装置
409 患者
410 粒子線治療システム
DESCRIPTION OF SYMBOLS 1 accelerator 11 electromagnet 111 extraction beam through hole 112 to 113 coil connection through hole 114 high frequency power input through hole 115 beam incident through hole 12 ion source 13 coil 121 return yoke portion 122 top plate portion 123 magnetic pole portion 124 magnetic pole surface 130 entrance portion 20 orbital plane (orbital plane)
21 high frequency cavity 221 dee electrode (first electrode)
222 Grounding electrode (second electrode)
223 Acceleration gap 210 High frequency power supply 211 Input coupler 212 Rotary variable capacitance capacitor (frequency modulator)
213 Rotary shaft 214 Servomotor 311 Kicker magnetic field generation coil 312 Septum electromagnet 322 Extraction channel 60 Trim coil 400 Duct 401 Deflection electromagnet 402 Quadrupole electromagnet 403 Scanning electromagnet 404 Position monitor 405 Dose monitor 406 Support stand 407 Rotary shaft 408 Control device 409 Patient 410 Particle therapy system

Claims (9)

  1.  イオンを加速させてイオンビームを生成する円形加速器において、
     前記イオンが加速される軌道面を内包した電磁石、
     前記イオンを加速させるための電場を形成する高周波空胴、
     加速後の前記イオンを取り出すための出射経路、を有し、
     前記電磁石は、前記軌道面の重心および前記出射経路の基端部との間において磁束密度が最大となり、前記磁束密度が最大となる点から前記軌道面の外縁に向けて磁束密度が漸減する磁場分布を前記軌道面上に形成し、
     前記高周波空胴は、前記電場を形成するための第1電極および前記第1電極に印加する電力の周波数を変調する周波数変調器を備える
     ことを特徴とする円形加速器。
    In a circular accelerator that accelerates ions to produce an ion beam,
    An electromagnet including a track surface in which the ions are accelerated,
    A high frequency cavity forming an electric field for accelerating the ions,
    An emission path for extracting the ions after acceleration;
    The electromagnet is a magnetic field in which the magnetic flux density is maximized between the center of gravity of the orbital plane and the proximal end of the emission path, and the magnetic flux density gradually decreases toward the outer edge of the orbital plane from the point where the magnetic flux density is maximal. Forming a distribution on the orbital plane,
    The above-mentioned high frequency cavity is provided with a frequency modulator which modulates the frequency of the 1st electrode for forming the above-mentioned electric field, and the electric power applied to the 1st electrode. A circular accelerator.
  2.  請求項1に記載の円形加速器であって、
     前記電磁石は、
     前記軌道面に対して突出する磁極部を有し、
     前記磁極部は、
     前記磁極部の前記軌道面に相対する表面に複数の径が異なるコイルが、大きな径のコイル内径側により小さな径のコイルが置かれるように設けられる、または前記磁極部の前記軌道面に相対する表面が前記軌道面に向かって突出する凸形状を有する
     ことを特徴とする円形加速器。
    A circular accelerator according to claim 1, wherein
    The electromagnet is
    It has a magnetic pole part which protrudes to the above-mentioned track surface,
    The magnetic pole portion is
    A plurality of coils with different diameters are provided on the surface of the magnetic pole portion facing the orbital plane, so that a coil with a smaller diameter is placed on the inner diameter side of the large diameter coil, or opposite to the orbital plane of the magnetic pole portion A circular accelerator characterized in that a surface has a convex shape projecting toward the orbital plane.
  3.  請求項2に記載の円形加速器であって、
     前記第1電極は、前記第1電極を前記軌道面に投影した際に、中心角が鋭角かつ前記出射経路の基端部の反対側へ広がる略扇形となるように形成され、
     前記扇形の円弧に相当する部分に前記周波数変調器との接続部が形成される
     ことを特徴とする円形加速器。
    A circular accelerator according to claim 2, wherein
    The first electrode is formed in a substantially fan shape whose central angle is an acute angle and extends to the opposite side of the proximal end of the emission path when the first electrode is projected onto the orbital plane,
    A connecting portion with the frequency modulator is formed in a portion corresponding to the fan-shaped arc.
  4.  請求項3に記載の円形加速器であって、
     略扇形の前記第1電極において半径に相当するそれぞれの辺に対してギャップを置いて対向するように設けられた第2電極を有し、
     前記第2電極は、前記イオンの加速期間において略等電位に保たれる
     ことを特徴とする円形加速器。
    A circular accelerator according to claim 3, wherein
    And a second electrode provided so as to face a gap corresponding to each side corresponding to a radius in the substantially fan-shaped first electrode,
    The circular accelerator according to claim 1, wherein the second electrode is maintained at substantially the same potential during the acceleration period of the ions.
  5.  請求項4に記載の円形加速器であって、
     前記第1電極および前記第2電極は、前記出射経路の基端部と前記軌道面の重心とを結ぶ直線に対して前記ギャップの配置が略線対称となるように設置される
     ことを特徴とする円形加速器。
    A circular accelerator according to claim 4, wherein
    The first electrode and the second electrode are disposed such that the arrangement of the gap is substantially line symmetrical with respect to a straight line connecting the proximal end of the emission path and the center of gravity of the orbital plane. Circular accelerator.
  6.  請求項4に記載の円形加速器であって、
     前記第1電極および前記第2電極は、前記出射経路の基端部と前記軌道面の重心とを結ぶ直線に対して前記ギャップの大きさが非対称となるように設置される
     ことを特徴とする円形加速器。
    A circular accelerator according to claim 4, wherein
    The first electrode and the second electrode are disposed such that the size of the gap is asymmetric with respect to a straight line connecting the proximal end of the emission path and the center of gravity of the orbital plane. Circular accelerator.
  7.  請求項4に記載の円形加速器であって、
     前記第1電極および前記第2電極は、前記軌道面において加速されるイオンが前記ギャップを通過する際に受ける擾乱について前記出射経路の基端部と前記軌道面の重心とを結ぶ直線に対して対称性を有するように設置される
     ことを特徴とする円形加速器。
    A circular accelerator according to claim 4, wherein
    The first electrode and the second electrode are connected to a straight line connecting the proximal end of the emission path and the center of gravity of the orbital plane, with respect to the disturbance received when ions accelerated in the orbital plane pass through the gap. A circular accelerator characterized in that it is installed to have symmetry.
  8.  請求項1に記載の円形加速器であって、
     前記周波数変調器は回転式可変容量コンデンサを有する
     ことを特徴とする円形加速器。
    A circular accelerator according to claim 1, wherein
    The circular accelerator, wherein the frequency modulator comprises a rotary variable capacitance capacitor.
  9.  請求項1に記載の円形加速器、
     前記円形加速器にて生成されたイオンビームを輸送する輸送経路、
     前記輸送経路を介して輸送されたイオンビームを偏向して所望の照射野を形成する照射野形成装置、
     を備える粒子線治療装置。
    A circular accelerator according to claim 1,
    A transport path for transporting the ion beam generated by the circular accelerator,
    An irradiation field forming device for deflecting the ion beam transported through the transportation path to form a desired irradiation field;
    Particle therapy apparatus comprising:
PCT/JP2018/039216 2017-11-13 2018-10-22 Circular accelerator and particle beam treatment system WO2019093110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-217881 2017-11-13
JP2017217881A JP6899754B2 (en) 2017-11-13 2017-11-13 Circular accelerator and particle beam therapy system

Publications (1)

Publication Number Publication Date
WO2019093110A1 true WO2019093110A1 (en) 2019-05-16

Family

ID=66437721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039216 WO2019093110A1 (en) 2017-11-13 2018-10-22 Circular accelerator and particle beam treatment system

Country Status (2)

Country Link
JP (1) JP6899754B2 (en)
WO (1) WO2019093110A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4195883A3 (en) * 2021-12-08 2023-10-25 Hitachi, Ltd. Circular accelerator and particle therapy system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7399127B2 (en) * 2021-02-08 2023-12-15 株式会社日立製作所 Accelerator and particle therapy systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524200A (en) * 2006-01-19 2009-06-25 マサチューセッツ・インスティテュート・オブ・テクノロジー Magnet structure for particle acceleration
WO2016092621A1 (en) * 2014-12-08 2016-06-16 株式会社日立製作所 Accelerator and particle beam irradiation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164399A (en) * 1998-11-30 2000-06-16 Mitsubishi Electric Corp Cyclotron device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524200A (en) * 2006-01-19 2009-06-25 マサチューセッツ・インスティテュート・オブ・テクノロジー Magnet structure for particle acceleration
WO2016092621A1 (en) * 2014-12-08 2016-06-16 株式会社日立製作所 Accelerator and particle beam irradiation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AOKI, TAKAMICHI ET AL.: "Proceedings of the 14th Annual Meeting", ANNUAL MEETING OF PARTICLE ACCELERATOR SOCIETY OF JAPAN, 3 August 2017 (2017-08-03), pages 150 - 154 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4195883A3 (en) * 2021-12-08 2023-10-25 Hitachi, Ltd. Circular accelerator and particle therapy system

Also Published As

Publication number Publication date
JP2019091553A (en) 2019-06-13
JP6899754B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP7002952B2 (en) A circular accelerator, a particle beam therapy system equipped with a circular accelerator, and how to operate the circular accelerator
JP4257741B2 (en) Charged particle beam accelerator, particle beam irradiation medical system using charged particle beam accelerator, and method of operating particle beam irradiation medical system
CN109923946B (en) Circular accelerator
WO2020049755A1 (en) Accelerator, and particle beam therapy system equipped with same
JP7240262B2 (en) Accelerator, particle beam therapy system and ion extraction method
WO2019093110A1 (en) Circular accelerator and particle beam treatment system
US11097126B2 (en) Accelerator and particle therapy system
WO2019097721A1 (en) Particle beam therapy system, accelerator, and method for operating accelerator
JP2019096404A (en) Circular accelerator and particle therapy system
WO2020044604A1 (en) Particle beam accelerator and particle beam therapy system
WO2022168484A1 (en) Accelerator and particle beam therapy system
JP2020064753A (en) Accelerator, and accelerator system and particle beam medical treatment system using the same
JP7319144B2 (en) Circular Accelerator, Particle Beam Therapy System, Operation Method of Circular Accelerator
JP7359702B2 (en) Particle beam therapy system, ion beam generation method, and control program
JP2022026175A (en) Accelerator and particle beam therapy equipment
WO2022130680A1 (en) Accelerator and particle beam therapy device
WO2024004238A1 (en) Accelerator and particle beam therapy device
WO2023162640A1 (en) Accelerator and particle beam treatment system comprising accelerator
JP7465042B2 (en) Circular accelerator and particle beam therapy system
JP6663618B2 (en) Accelerator and particle beam irradiation device
JP2024055638A (en) Circular accelerator, particle beam therapy device, and method of operating the circular accelerator
CN117356173A (en) Particle beam accelerator and particle beam treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18875169

Country of ref document: EP

Kind code of ref document: A1