WO2020044528A1 - Optical fiber scanner, lighting device and observation device - Google Patents

Optical fiber scanner, lighting device and observation device Download PDF

Info

Publication number
WO2020044528A1
WO2020044528A1 PCT/JP2018/032308 JP2018032308W WO2020044528A1 WO 2020044528 A1 WO2020044528 A1 WO 2020044528A1 JP 2018032308 W JP2018032308 W JP 2018032308W WO 2020044528 A1 WO2020044528 A1 WO 2020044528A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
elastic body
illumination light
fiber scanner
light
Prior art date
Application number
PCT/JP2018/032308
Other languages
French (fr)
Japanese (ja)
Inventor
宏行 瀧澤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/032308 priority Critical patent/WO2020044528A1/en
Publication of WO2020044528A1 publication Critical patent/WO2020044528A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to an optical fiber scanner, a lighting device, and an observation device.
  • an optical fiber scanner that scans illumination light by vibrating the tip of an optical fiber that guides illumination light in a direction orthogonal to the longitudinal direction by vibration of a piezoelectric element (for example, see Patent Document 1).
  • an elongated rectangular flat plate-type piezoelectric element is attached to four side surfaces of an elongated prismatic ferrule having a through hole through which an optical fiber passes. The vibration of the piezoelectric element is transmitted to the optical fiber via the prism ferrule, and vibrates the tip of the optical fiber in a direction orthogonal to the longitudinal direction.
  • an object of the present invention is to provide an optical fiber scanner, an illumination device, and an observation device that can easily be shortened.
  • One embodiment of the present invention includes an optical fiber that guides illumination light and emits the illumination light from a distal end, and a vibration unit that vibrates the distal end of the optical fiber in a direction that intersects a longitudinal axis of the optical fiber.
  • the vibrating portion is provided on at least one of a flat elastic body that holds the optical fiber in a state where the optical fiber penetrates in the thickness direction, and at least one end surface of the elastic body in the thickness direction, and at least intersects the longitudinal axis.
  • An optical fiber scanner including an electromechanical transducer that can expand and contract in three directions.
  • the electromechanical transducer when a voltage is applied to the electromechanical transducer, the electromechanical transducer is deformed to vibrate according to the voltage waveform, and the vibration of the electromechanical transducer is transmitted to the optical fiber via the elastic body.
  • the tip of the optical fiber is vibrated in at least three directions crossing the longitudinal axis of the optical fiber.
  • the elastic body is formed in a flat plate shape, the optical fiber is penetrated in the thickness direction of the elastic body, and the electromechanical transducer is arranged on any surface of the elastic body.
  • An optical fiber scanner whose dimensions are easily shortened can be constructed.
  • a light source that generates illumination light
  • any one of the above-described optical fiber scanners having a base end of the optical fiber connected to the light source, and a voltage is supplied to the electromechanical transducer.
  • a voltage supply unit a voltage supply unit.
  • Another aspect of the present invention is an observation apparatus including the illumination device, and a light detection unit that detects return light returning from the subject by irradiating the illumination light from the illumination device to the subject. is there.
  • FIG. 2 is a perspective view illustrating an optical fiber scanner provided in the observation device in FIG. 1.
  • FIG. 3 is a front view illustrating an example of electrode arrangement in a piezoelectric element of the optical fiber scanner of FIG. 2.
  • FIG. 3 is a diagram illustrating an example of vibration of an optical fiber by the optical fiber scanner of FIG. 2.
  • FIG. 5 is a diagram illustrating an example of vibration of an optical fiber by the same optical fiber scanner as in FIG. 4.
  • FIG. 13 is a front view showing a modification of the electrode arrangement example of FIG. 2 and showing a case where the electrodes are arranged while being equally divided into three parts in the circumferential direction.
  • FIG. 1 is a perspective view illustrating an optical fiber scanner provided in the observation device in FIG. 1.
  • FIG. 3 is a front view illustrating an example of electrode arrangement in a piezoelectric element of the optical fiber scanner of FIG. 2.
  • FIG. 3 is a diagram illustrating an example of vibration of an optical fiber by the optical fiber scanner of FIG. 2.
  • FIG. 10 is a front view showing a modification of the electrode arrangement example of FIG. 2 and showing a case where the electrodes are arranged unequally divided into three in the circumferential direction.
  • FIG. 8 is a front view showing a modification of the polarization direction in the electrode arrangement of FIG. 7.
  • FIG. 8 is a front view showing a modification of the polarization direction in the electrode arrangement of FIG. 7.
  • FIG. 8 is a front view showing a modification of the polarization direction in the electrode arrangement of FIG. 7. It is a longitudinal cross-sectional view which shows the modification of the observation device of FIG. It is a longitudinal cross-sectional view which shows the modification of the observation device of FIG.
  • the observation device 100 includes an illumination device 10 that irradiates illumination light to a subject, and a light detection unit 60 that detects return light returning from the object when the illumination light is emitted.
  • the illuminating device 10 includes a light source 50 that generates illumination light, an optical fiber scanner 1 having an illumination optical fiber 2 that guides illumination light emitted from the light source 50 and emits the light from the distal end, and an optical fiber 2.
  • the light-emitting device includes a condenser lens 11 disposed on the distal end side for condensing illumination light emitted from the optical fiber 2, and an elongated cylindrical rigid frame 12 for housing the optical fiber scanner 1 and the condenser lens 11. I have.
  • the lighting device 10 includes a voltage supply unit (not shown) that supplies a voltage to the piezoelectric element 5 described later.
  • the light detection unit 60 is provided on the outer peripheral surface of the frame body 12 of the lighting device 10 in a circumferential direction and is provided with a plurality of detection devices that guide return light (for example, reflected light of illumination light or fluorescence) from a subject. And a photodetector 14 for detecting return light guided by the detection optical fiber 13.
  • the optical fiber scanner 1 includes an optical fiber 2 that emits guided light from the tip and an optical fiber 2 that is a free end that can swing.
  • a vibrating section 3 for vibrating the distal end 2 a in a direction intersecting the longitudinal axis of the optical fiber 2.
  • the vibrating part 3 has a disc-shaped elastic body 4 for holding the optical fiber 2 in a state of penetrating in the thickness direction, and an end face around the longitudinal axis of the optical fiber 2 and the base end side of the elastic body 4 in the thickness direction.
  • a piezoelectric element (electromechanical conversion element) 5 arranged.
  • the elastic body 4 has a through hole 4a through which the optical fiber 2 passes at the position of the center of gravity.
  • the elastic body 4 is made of, for example, a metal material such as nickel or copper or a ceramic material such as zirconia, and is formed of a flexible elastic member that is hard to suppress vibration such as urethane resin or felt over the entire inner surface of the frame 12. It is fixed so that it can vibrate.
  • the optical fiber 2 is held in a cantilever state by the elastic body 4 on the inner wall of the through hole 4a by an adhesive or the like.
  • the elastic body 4 is provided with a cylindrical protrusion 6 extending the through hole 4 a in a direction along the longitudinal axis, integrally with the elastic body 4.
  • the optical fiber 2 is inserted into a through hole 4a extending inside the elastic body 4 and the convex portion 6, and is securely held.
  • the piezoelectric element 5 is formed in an arc shape with a central angle of 90 °, and has a uniform size (the same thickness and size) so as not to overlap four locations around the axis of the through hole 4a of the elastic body 4 so as not to overlap. They are arranged side by side. Here, the piezoelectric element 5 is adhered to the elastic body 4 by bonding with an adhesive.
  • the piezoelectric elements 5 disposed on both sides of the optical fiber 2 are polarized in different directions with respect to four positions around the axis of the through hole 4a. 8 are arranged.
  • the electrode 7 on the end face on the elastic body 4 side is a common electrode.
  • FIG. 3 when the same voltage is supplied to the electrodes 7, 8 of the piezoelectric element 5 disposed on both sides of the optical fiber 2, as shown in FIGS. 4 and 5, The one piezoelectric element 5 expands so that the diameter of the elastic body 4 increases, and the other piezoelectric element 5 contracts so that the diameter of the elastic body 4 decreases.
  • the radial direction around the longitudinal axis of the optical fiber 2 which is the central axis of the disc-shaped elastic body 4 That is, it is elastically deformed asymmetrically in a direction intersecting the longitudinal axis.
  • the tip 2a of the optical fiber 2 is optically scanned on a plane orthogonal to the longitudinal axis of the optical fiber 2 by changing the amplitude of the voltage supplied to the electrodes 7 and 8 for driving the piezoelectric element 5. Can be vibrated as follows.
  • the voltage amplitude is set such that the tip 2a of the optical fiber 2 is orthogonal to each other, and an alternating voltage whose amplitude gradually changes between 0 and a maximum value at a constant frequency is applied to each of the electrodes 7, 8.
  • the spiral scanning can be performed on the subject irradiated with the light emitted from the optical fiber 2.
  • an AC voltage having a different frequency and a constant amplitude between the electrodes 7 and 8 which are adjacent to each other in the circumferential direction of the elastic body 4 so-called Lissajous scanning or raster scanning can be performed.
  • the elastic body 4 that transmits the vibration of the piezoelectric element 5 to the optical fiber 2 is formed in a flat plate shape that penetrates the optical fiber 2 in the thickness direction.
  • the elastic body 4 is attached to the end face in the thickness direction. Thereby, it is easy to greatly reduce the length dimension as compared with the case where the optical fiber 2 is made to penetrate the conventional elongated columnar elastic body along the axial direction, and the frame 12 is greatly reduced. There is an advantage that the length can be reduced.
  • the length of the elastic body 4 the area in which the vibration reaches in the longitudinal direction of the frame body 12 is also reduced, so that the influence of the vibration on the optical system inside the optical fiber scanner 1 is also reduced.
  • the illumination device 10 and the observation device 100 including the optical fiber scanner 1 when the illumination device 10 and the observation device 100 are attached to the distal end of the flexible insertion portion and inserted into the body of a patient for use, the rigid portion becomes a hard portion.
  • the length of the optical fiber scanner 1 can be kept short and the insertion portion can be easily curved in accordance with the shape of the body cavity of the patient. Therefore, the illumination device 10 and the observation device 100 including the optical fiber scanner 1 according to the present embodiment are suitable for being used inside an object having an elongated and meandering shape like a blood vessel.
  • an image of the subject can be generated by storing the scanning position of the light emitted from the distal end 2a of the optical fiber 2 and the intensity of the light detected by the photodetector 14 in association with each other.
  • the piezoelectric element 5 divided into four in the circumferential direction of the longitudinal axis is arranged on at least one of the end faces in the plate thickness direction of the elastic body 4, but instead of this, as shown in FIG.
  • the piezoelectric element 5 may be divided into three or more.
  • the three piezoelectric elements 5 are arranged in three equally divided areas.
  • the three piezoelectric elements 5 are not arranged. It may be equally divided.
  • the number of the piezoelectric elements 5 is not limited, and the electrodes 7, 8 divided into three or more regions along the circumferential direction around the longitudinal axis of the elastic body 4 are divided into one or two piezoelectric elements 5.
  • the arrangement may be adopted.
  • the piezoelectric element 5 is disposed on the surface on the base end side of the elastic body 4, but instead, the piezoelectric element 5 is disposed on the surface on the distal end side as shown in FIG. You may.
  • the piezoelectric element 5 may be arranged on both end surfaces in the thickness direction of the elastic body 4, that is, both surfaces on the distal end side and the base end side. In this case, the force generated in each region in the circumferential direction is doubled as compared with the case where the piezoelectric element 5 is arranged only on one side, and the amplitude of the tip 2a of the optical fiber 2 can be easily increased. There is an advantage.
  • the piezoelectric element 5 has been exemplified as the electromechanical conversion element, a magnetostrictive element may be used.
  • the elastic body 4 is exemplified as a disk-shaped body, but may be a polygonal flat body. In this case, not only a perfect circle and a regular polygon, but also an ellipse, an arbitrary polygon (preferably having six or more corners), or a combination of these circles or polygons may be used.
  • a case has been described in which the piezoelectric element 5 is circular by arranging a plurality of arc-shaped piezoelectric elements, but a polygonal shape may be formed by arranging a plurality of isosceles triangular elements.
  • the elastic body 4 since the elastic body 4 has a disk shape or a polygonal flat plate shape, the shape of the electromechanical conversion element can be formed into an arc-shaped or triangular shape that can be easily molded.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

This optical fiber scanner (1) comprises: an optical fiber (2) through which illumination light is guided and from the tip (2a) of which the illumination light is emitted; and an oscillation part (3) that causes the tip (2a) of the optical fiber (2) to oscillate in a direction intersecting the long axis of the optical fiber (2). The oscillation part (3) comprises: a flat-plate-shaped elastic body (4) that holds the optical fiber (2) which traverses therethrough in the plate thickness direction; and, on at least one of the end surfaces of the elastic body (4) in the plate thickness direction, an electromechanical conversion element (5) that can expand and contract in at least three directions intersecting with the long axis.

Description

光ファイバスキャナ、照明装置および観察装置Optical fiber scanner, illumination device and observation device
 本発明は、光ファイバスキャナ、照明装置および観察装置に関するものである。 The present invention relates to an optical fiber scanner, a lighting device, and an observation device.
 照明光を導光する光ファイバの先端を圧電素子の振動によって長手方向に直交する方向に振動させることにより照明光を走査する光ファイバスキャナが知られている(例えば、特許文献1参照。)。特許文献1の光ファイバスキャナは、光ファイバを貫通させる貫通孔を細長い角柱形状のフェルールの4側面に細長い矩形の平板型圧電素子を取り付けている。圧電素子の振動は角柱フェルールを経由して光ファイバに伝達され、光ファイバの先端を長手方向に直交する方向に振動させる。 There is known an optical fiber scanner that scans illumination light by vibrating the tip of an optical fiber that guides illumination light in a direction orthogonal to the longitudinal direction by vibration of a piezoelectric element (for example, see Patent Document 1). In the optical fiber scanner disclosed in Patent Document 1, an elongated rectangular flat plate-type piezoelectric element is attached to four side surfaces of an elongated prismatic ferrule having a through hole through which an optical fiber passes. The vibration of the piezoelectric element is transmitted to the optical fiber via the prism ferrule, and vibrates the tip of the optical fiber in a direction orthogonal to the longitudinal direction.
特開2015-94158号公報JP-A-2015-94158
 しかしながら、特許文献1の光ファイバスキャナでは、光ファイバを振動させるために圧電素子の長手方向への伸縮を利用する。このため、光ファイバが十分に振幅できるように、角柱フェルールとその4側面に貼付された圧電素子とからなる駆動部の長さは十分に長くする必要がある。
 したがって、本発明は、容易に短尺化を図ることができる光ファイバスキャナ、照明装置および観察装置を提供することを目的とする。
However, the optical fiber scanner of Patent Document 1 utilizes the expansion and contraction of the piezoelectric element in the longitudinal direction to vibrate the optical fiber. For this reason, it is necessary to make the length of the driving unit including the prismatic ferrule and the piezoelectric elements attached to the four side surfaces thereof sufficiently long so that the optical fiber can sufficiently oscillate.
Therefore, an object of the present invention is to provide an optical fiber scanner, an illumination device, and an observation device that can easily be shortened.
 本発明の一態様は、照明光を導光して該照明光を先端から射出する光ファイバと、該光ファイバの先端を該光ファイバの長手軸に交差する方向に振動させる振動部とを備え、該振動部が、前記光ファイバを板厚方向に貫通した状態で保持する平板状の弾性体と、該弾性体の板厚方向の端面の少なくとも一方に設けられ、前記長手軸に交差する少なくとも3方向に伸縮可能な電気機械変換素子とを備える光ファイバスキャナである。 One embodiment of the present invention includes an optical fiber that guides illumination light and emits the illumination light from a distal end, and a vibration unit that vibrates the distal end of the optical fiber in a direction that intersects a longitudinal axis of the optical fiber. The vibrating portion is provided on at least one of a flat elastic body that holds the optical fiber in a state where the optical fiber penetrates in the thickness direction, and at least one end surface of the elastic body in the thickness direction, and at least intersects the longitudinal axis. An optical fiber scanner including an electromechanical transducer that can expand and contract in three directions.
 本態様によれば、電気機械変換素子に電圧が印加されると、電気機械変換素子が電圧波形に従って振動するように変形し、電気機械変換素子の振動が弾性体を介して光ファイバに伝達され、光ファイバの先端が該光ファイバの長手軸に交差する少なくとも3方向へ振動させられる。これにより、光ファイバによって導光されてきた照明光が射出される際に光ファイバの先端が光走査するように振動させられることにより、射出された照明光を照明する対象に対して走査させることができる。 According to this aspect, when a voltage is applied to the electromechanical transducer, the electromechanical transducer is deformed to vibrate according to the voltage waveform, and the vibration of the electromechanical transducer is transmitted to the optical fiber via the elastic body. The tip of the optical fiber is vibrated in at least three directions crossing the longitudinal axis of the optical fiber. Thus, when the illumination light guided by the optical fiber is emitted, the tip of the optical fiber is vibrated so as to optically scan, thereby causing the emitted illumination light to scan the object to be illuminated. Can be.
 すなわち、弾性体を平板状に形成し、光ファイバを弾性体の板厚方向に貫通させるとともに、弾性体のいずれかの表面に電気機械変換素子を配置したので、従来と比較して長手軸方向の寸法を容易に短尺化した光ファイバスキャナを構成することができる。 That is, the elastic body is formed in a flat plate shape, the optical fiber is penetrated in the thickness direction of the elastic body, and the electromechanical transducer is arranged on any surface of the elastic body. An optical fiber scanner whose dimensions are easily shortened can be constructed.
 また、本発明の他の態様は、照明光を発生する光源と、該光源に前記光ファイバの基端が接続される上記いずれかの光ファイバスキャナと、前記電気機械変換素子に電圧を供給する電圧供給部とを備える照明装置である。 According to another aspect of the present invention, a light source that generates illumination light, any one of the above-described optical fiber scanners having a base end of the optical fiber connected to the light source, and a voltage is supplied to the electromechanical transducer. And a voltage supply unit.
 また、本発明の他の態様は、上記照明装置と、該照明装置からの前記照明光が被写体に照射されることにより、前記被写体から戻る戻り光を検出する光検出部とを備える観察装置である。 Another aspect of the present invention is an observation apparatus including the illumination device, and a light detection unit that detects return light returning from the subject by irradiating the illumination light from the illumination device to the subject. is there.
 本発明によれば、容易に短尺化することができる光ファイバスキャナ、照明装置および観察装置を提供できる。 According to the present invention, it is possible to provide an optical fiber scanner, an illumination device, and an observation device that can be easily shortened.
本発明の一実施形態に係る観察装置を示す縦断面図である。It is a longitudinal section showing an observation device concerning one embodiment of the present invention. 図1の観察装置に備えられる光ファイバスキャナを示す斜視図である。FIG. 2 is a perspective view illustrating an optical fiber scanner provided in the observation device in FIG. 1. 図2の光ファイバスキャナの圧電素子における電極配置例を示す正面図である。FIG. 3 is a front view illustrating an example of electrode arrangement in a piezoelectric element of the optical fiber scanner of FIG. 2. 図2の光ファイバスキャナによる光ファイバの振動例を示す図である。FIG. 3 is a diagram illustrating an example of vibration of an optical fiber by the optical fiber scanner of FIG. 2. 図4と同様の光ファイバスキャナによる光ファイバの振動例を示す図である。FIG. 5 is a diagram illustrating an example of vibration of an optical fiber by the same optical fiber scanner as in FIG. 4. 図2の電極配置例の変形例を示し、電極が周方向に3等分割されて配置されている場合を示す正面図である。FIG. 13 is a front view showing a modification of the electrode arrangement example of FIG. 2 and showing a case where the electrodes are arranged while being equally divided into three parts in the circumferential direction. 図2の電極配置例の変形例を示し、電極が周方向に3つに不等分割されて配置されている場合を示す正面図である。FIG. 10 is a front view showing a modification of the electrode arrangement example of FIG. 2 and showing a case where the electrodes are arranged unequally divided into three in the circumferential direction. 図7の電極配置における分極方向の変形例を示す正面図である。FIG. 8 is a front view showing a modification of the polarization direction in the electrode arrangement of FIG. 7. 図7の電極配置における分極方向の変形例を示す正面図である。FIG. 8 is a front view showing a modification of the polarization direction in the electrode arrangement of FIG. 7. 図7の電極配置における分極方向の変形例を示す正面図である。FIG. 8 is a front view showing a modification of the polarization direction in the electrode arrangement of FIG. 7. 図1の観察装置の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the observation device of FIG. 図1の観察装置の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the observation device of FIG.
 本発明の一実施形態に係る光ファイバスキャナ1、照明装置10および観察装置100について、図面を参照して以下に説明する。
 本実施形態に係る観察装置100は、図1に示されるように、被写体に照明光を照射する照明装置10と、照明光が照射されることによって被写体から戻る戻り光を検出する光検出部60とを備えている。
An optical fiber scanner 1, an illumination device 10, and an observation device 100 according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the observation device 100 according to the present embodiment includes an illumination device 10 that irradiates illumination light to a subject, and a light detection unit 60 that detects return light returning from the object when the illumination light is emitted. And
 照明装置10は、照明光を発生する光源50と、光源50から発せられた照明光を導光して先端から射出する照明用の光ファイバ2を有する光ファイバスキャナ1と、光ファイバ2よりも先端側に配置され、光ファイバ2から射出された照明光を集光させる集光レンズ11と、光ファイバスキャナ1および集光レンズ11を収納する細長い円筒状の硬質な枠体12とを備えている。また、照明装置10は、後述する圧電素子5に電圧を供給する電圧供給部(図示略)を備えている。 The illuminating device 10 includes a light source 50 that generates illumination light, an optical fiber scanner 1 having an illumination optical fiber 2 that guides illumination light emitted from the light source 50 and emits the light from the distal end, and an optical fiber 2. The light-emitting device includes a condenser lens 11 disposed on the distal end side for condensing illumination light emitted from the optical fiber 2, and an elongated cylindrical rigid frame 12 for housing the optical fiber scanner 1 and the condenser lens 11. I have. In addition, the lighting device 10 includes a voltage supply unit (not shown) that supplies a voltage to the piezoelectric element 5 described later.
 光検出部60は、照明装置10の枠体12の外周面上に周方向に配列して設けられ、被写体からの戻り光(例えば、照明光の反射光または蛍光)を導光する複数の検出用の光ファイバ13と、検出用の光ファイバ13によって導光されてきた戻り光を検出する光検出器14とを備えている。 The light detection unit 60 is provided on the outer peripheral surface of the frame body 12 of the lighting device 10 in a circumferential direction and is provided with a plurality of detection devices that guide return light (for example, reflected light of illumination light or fluorescence) from a subject. And a photodetector 14 for detecting return light guided by the detection optical fiber 13.
 本実施形態に係る光ファイバスキャナ1は、図1および図2に示されるように、導光されてきた光を先端から射出させる光ファイバ2と、揺動自在な自由端である光ファイバ2の先端2aを光ファイバ2の長手軸に交差する方向に振動させる振動部3とを備えている。振動部3は、光ファイバ2を板厚方向に貫通した状態で保持する円板状の弾性体4と、光ファイバ2の長手軸回り且つ弾性体4の板厚方向の基端側の端面に配置された圧電素子(電気機械変換素子)5とを備えている。 As shown in FIGS. 1 and 2, the optical fiber scanner 1 according to the present embodiment includes an optical fiber 2 that emits guided light from the tip and an optical fiber 2 that is a free end that can swing. A vibrating section 3 for vibrating the distal end 2 a in a direction intersecting the longitudinal axis of the optical fiber 2. The vibrating part 3 has a disc-shaped elastic body 4 for holding the optical fiber 2 in a state of penetrating in the thickness direction, and an end face around the longitudinal axis of the optical fiber 2 and the base end side of the elastic body 4 in the thickness direction. And a piezoelectric element (electromechanical conversion element) 5 arranged.
 弾性体4は、その重心位置に、光ファイバ2を貫通させる貫通孔4aを備えている。弾性体4は、例えば、ニッケル、銅等の金属材料またはジルコニアのようなセラミック材料からなり、枠体12の内面に全周にわたって、ウレタン樹脂またはフェルト等の振動を抑制し難い柔軟な弾性部材により振動可能に固定されている。また、光ファイバ2は、貫通孔4aの内壁において接着剤等により弾性体4に片持ち状態で保持される。
 弾性体4には、貫通孔4aを長手軸に沿う方向に延長する円筒状の凸部6が、弾性体4と一体的に設けられている。光ファイバ2は、弾性体4および凸部6内を延びる貫通孔4a内に挿入され、確実に保持されている。
The elastic body 4 has a through hole 4a through which the optical fiber 2 passes at the position of the center of gravity. The elastic body 4 is made of, for example, a metal material such as nickel or copper or a ceramic material such as zirconia, and is formed of a flexible elastic member that is hard to suppress vibration such as urethane resin or felt over the entire inner surface of the frame 12. It is fixed so that it can vibrate. The optical fiber 2 is held in a cantilever state by the elastic body 4 on the inner wall of the through hole 4a by an adhesive or the like.
The elastic body 4 is provided with a cylindrical protrusion 6 extending the through hole 4 a in a direction along the longitudinal axis, integrally with the elastic body 4. The optical fiber 2 is inserted into a through hole 4a extending inside the elastic body 4 and the convex portion 6, and is securely held.
 圧電素子5は、中心角度90°の円弧形状に形成され、弾性体4の貫通孔4aの軸線回りの4箇所に対し、均等な大きさ(同一の厚さとサイズ)でもって重ならないように周方向に並べて配列されている。ここで、圧電素子5は、弾性体4に対して接着剤により接着されることにより貼着されている。 The piezoelectric element 5 is formed in an arc shape with a central angle of 90 °, and has a uniform size (the same thickness and size) so as not to overlap four locations around the axis of the through hole 4a of the elastic body 4 so as not to overlap. They are arranged side by side. Here, the piezoelectric element 5 is adhered to the elastic body 4 by bonding with an adhesive.
 圧電素子5は、光ファイバ2を挟んだ両側に配置されるものが、貫通孔4aの軸線回りの4箇所に対し異なる方向に分極されており、板厚方向に挟んだ両端面に電極7,8が配置されている。弾性体4側の端面の電極7は共通電極となっている。これにより、図3に示されるように、光ファイバ2を挟んだ両側に配置されている圧電素子5の電極7,8に同電位の電圧を供給すると、図4および図5に示されるように、一方の圧電素子5は弾性体4の径寸法が増大するように伸張し、他方の圧電素子5は弾性体4の径寸法が減少するように収縮する。ここで、圧電素子5に設けられる電極7,8の配置が等分割であるので、個々の圧電素子5により発生する力を均等にして、光ファイバ2の先端2aの振動軌跡を制御し易くすることができる。 The piezoelectric elements 5 disposed on both sides of the optical fiber 2 are polarized in different directions with respect to four positions around the axis of the through hole 4a. 8 are arranged. The electrode 7 on the end face on the elastic body 4 side is a common electrode. Thus, as shown in FIG. 3, when the same voltage is supplied to the electrodes 7, 8 of the piezoelectric element 5 disposed on both sides of the optical fiber 2, as shown in FIGS. 4 and 5, The one piezoelectric element 5 expands so that the diameter of the elastic body 4 increases, and the other piezoelectric element 5 contracts so that the diameter of the elastic body 4 decreases. Here, since the arrangement of the electrodes 7 and 8 provided on the piezoelectric element 5 is equally divided, the forces generated by the individual piezoelectric elements 5 are equalized, and the vibration trajectory of the tip 2a of the optical fiber 2 is easily controlled. be able to.
 これにより、光ファイバ2を挟んだ両側の圧電素子5が板厚方向に逆方向に湾曲する屈曲振動を生じる。そして、隣り合う圧電素子5の電極7に供給する電圧の位相を90°異ならせることにより、光ファイバ2の自由端である先端2aを片持ち状態で旋回させることができる。 This causes bending vibration in which the piezoelectric elements 5 on both sides of the optical fiber 2 are bent in the direction opposite to the thickness direction. By changing the phase of the voltage supplied to the electrodes 7 of the adjacent piezoelectric elements 5 by 90 °, the tip 2a, which is the free end of the optical fiber 2, can be rotated in a cantilever state.
 すなわち、光ファイバ2を挟んだ両側の圧電素子5が板厚方向の逆方向に湾曲する屈曲振動に伴い、円板状の弾性体4の中心軸である光ファイバ2の長手軸回りの径方向、すなわち長手軸に交差する方向に非対称に弾性変形する。そしてこの弾性変形を光ファイバ2の長手軸に直交する少なくとも3方向に発生させることで、光ファイバ2が片持ち状態で振れ回る、いわゆる振れ回り撓み振動によって、光ファイバ2の先端2aを旋回させることができる。ここで、圧電素子5を駆動するための電極7,8に供給する電圧の振幅を変化させることにより、光ファイバ2の先端2aを光ファイバ2の長手軸に直交する面に対して光走査するように振動させることができる。 That is, with the bending vibration in which the piezoelectric elements 5 on both sides of the optical fiber 2 are bent in the direction opposite to the thickness direction, the radial direction around the longitudinal axis of the optical fiber 2 which is the central axis of the disc-shaped elastic body 4 That is, it is elastically deformed asymmetrically in a direction intersecting the longitudinal axis. By generating this elastic deformation in at least three directions orthogonal to the longitudinal axis of the optical fiber 2, the optical fiber 2 swings in a cantilever state, that is, the tip end 2a of the optical fiber 2 is turned by so-called whirling bending vibration. be able to. Here, the tip 2a of the optical fiber 2 is optically scanned on a plane orthogonal to the longitudinal axis of the optical fiber 2 by changing the amplitude of the voltage supplied to the electrodes 7 and 8 for driving the piezoelectric element 5. Can be vibrated as follows.
 例えば、電圧の振幅を光ファイバ2の先端2aを互いに直交する方向とし、一定の周波数の下、振幅が0と最大値との間で徐々に変化するような交番電圧を各電極7,8に印加することにより、光ファイバ2からの射出光が照射される被写体上で螺旋状の走査を行えるようになる。また、弾性体4の円周方向に隣り合う電極7,8間で、周波数が異なり振幅が一定の交流電圧を印加することによって、いわゆる、リサージュ走査やラスター走査を実行することも可能になる。 For example, the voltage amplitude is set such that the tip 2a of the optical fiber 2 is orthogonal to each other, and an alternating voltage whose amplitude gradually changes between 0 and a maximum value at a constant frequency is applied to each of the electrodes 7, 8. By applying the voltage, the spiral scanning can be performed on the subject irradiated with the light emitted from the optical fiber 2. In addition, by applying an AC voltage having a different frequency and a constant amplitude between the electrodes 7 and 8 which are adjacent to each other in the circumferential direction of the elastic body 4, so-called Lissajous scanning or raster scanning can be performed.
 このように構成された本実施形態に係る光ファイバスキャナ1、照明装置10および観察装置100の作用について、以下に説明する。
 本実施形態に係る光ファイバスキャナ1によれば、圧電素子5の振動を光ファイバ2に伝達する弾性体4として、光ファイバ2を板厚方向に貫通させる平板状に形成され、圧電素子5が弾性体4の板厚方向の端面に貼付される。これにより、従来の細長い柱状の弾性体に軸方向に沿って光ファイバ2を貫通させていた場合と比較して、大幅に長さ寸法を低減することが容易であり、枠体12を大幅に短尺化することができるという利点がある。また、弾性体4の長さ寸法を低減することで、枠体12の長手方向に振動が届く面積も低減することから、光ファイバスキャナ1内部の光学系への振動の影響も低減する。
The operation of the optical fiber scanner 1, the illuminating device 10, and the observation device 100 according to the present embodiment configured as described above will be described below.
According to the optical fiber scanner 1 according to the present embodiment, the elastic body 4 that transmits the vibration of the piezoelectric element 5 to the optical fiber 2 is formed in a flat plate shape that penetrates the optical fiber 2 in the thickness direction. The elastic body 4 is attached to the end face in the thickness direction. Thereby, it is easy to greatly reduce the length dimension as compared with the case where the optical fiber 2 is made to penetrate the conventional elongated columnar elastic body along the axial direction, and the frame 12 is greatly reduced. There is an advantage that the length can be reduced. In addition, by reducing the length of the elastic body 4, the area in which the vibration reaches in the longitudinal direction of the frame body 12 is also reduced, so that the influence of the vibration on the optical system inside the optical fiber scanner 1 is also reduced.
 このような光ファイバスキャナ1を備える照明装置10および観察装置100によれば、可撓性の挿入部の先端に装着されて、患者の体内に挿入して使用される場合に、硬質部分となる光ファイバスキャナ1の長さを短く抑えて、患者の体腔の形状に合わせて挿入部を容易に湾曲させることができるという利点がある。よって、本実施形態に係る光ファイバスキャナ1を備える照明装置10および観察装置100は、血管のように細長くて曲がりくねった形状を有する対象の内部で使用するのに適している。 According to the illumination device 10 and the observation device 100 including the optical fiber scanner 1, when the illumination device 10 and the observation device 100 are attached to the distal end of the flexible insertion portion and inserted into the body of a patient for use, the rigid portion becomes a hard portion. There is an advantage that the length of the optical fiber scanner 1 can be kept short and the insertion portion can be easily curved in accordance with the shape of the body cavity of the patient. Therefore, the illumination device 10 and the observation device 100 including the optical fiber scanner 1 according to the present embodiment are suitable for being used inside an object having an elongated and meandering shape like a blood vessel.
 そして、光源50から発せられた光を光ファイバ2の基端に入射させ、圧電素子5に印加する電圧を振動させて光ファイバ2の先端2aを螺旋状に振動させることにより、光ファイバ2によって導光され光ファイバ2の先端2aから射出される光を被写体上において螺旋状に操作させることができる。光ファイバ2からの光の照射の結果、被写体から戻る戻り光は、枠体12の外周に配列された検出用の光ファイバ13によって受光され、光ファイバ2に接続されている光検出器14により検出される。 Then, light emitted from the light source 50 is incident on the base end of the optical fiber 2, and the voltage applied to the piezoelectric element 5 is vibrated to vibrate the tip 2 a of the optical fiber 2 in a helical manner. The light guided and emitted from the tip 2a of the optical fiber 2 can be spirally operated on the subject. The return light returning from the subject as a result of the irradiation of the light from the optical fiber 2 is received by the detection optical fibers 13 arranged on the outer periphery of the frame 12 and is detected by the photodetector 14 connected to the optical fiber 2. Is detected.
 これにより、光ファイバ2の先端2aから射出された光の走査位置と、光検出器14により検出された光の強度とを対応づけて記憶することにより、被写体の画像を生成することができる。 Thus, an image of the subject can be generated by storing the scanning position of the light emitted from the distal end 2a of the optical fiber 2 and the intensity of the light detected by the photodetector 14 in association with each other.
 なお、本実施形態においては、弾性体4の板厚方向の端面の少なくとも一方に長手軸の周方向に4分割された圧電素子5を配列したが、これに代えて、図6に示されるように、圧電素子5は3以上に分割されていればよい。図6の場合には、3個の圧電素子5を3等分の領域に配列しているが、これに代えて、図7から図10に示されるように、3個の圧電素子5は不等分割されていてもよい。共通電極である電極7をなくして、各圧電素子5の電極8間に印加する電圧を個別に切り替えることにより、光ファイバ2を挟んで両側に配置された圧電素子5に逆方向の屈曲振動を生じさせて、光ファイバ2を任意のパターンで振動させることができる。 In the present embodiment, the piezoelectric element 5 divided into four in the circumferential direction of the longitudinal axis is arranged on at least one of the end faces in the plate thickness direction of the elastic body 4, but instead of this, as shown in FIG. In addition, the piezoelectric element 5 may be divided into three or more. In the case of FIG. 6, the three piezoelectric elements 5 are arranged in three equally divided areas. Instead, as shown in FIGS. 7 to 10, the three piezoelectric elements 5 are not arranged. It may be equally divided. By eliminating the electrode 7 serving as the common electrode and individually switching the voltage applied between the electrodes 8 of the respective piezoelectric elements 5, bending vibration in the opposite direction is applied to the piezoelectric elements 5 disposed on both sides of the optical fiber 2. This can cause the optical fiber 2 to vibrate in an arbitrary pattern.
 また、圧電素子5の個数は限定されず、弾性体4の長手軸回りの円周方向に沿って3以上の領域に分割された電極7,8を、1個または2個の圧電素子5に配設したものを採用してもよい。電極7.8の分割領域の数よりも少なくなるように圧電素子5の個数を減らすことで、圧電素子5ごとの製造誤差や貼付位置のばらつきに伴う振動への影響を低減することができる。 The number of the piezoelectric elements 5 is not limited, and the electrodes 7, 8 divided into three or more regions along the circumferential direction around the longitudinal axis of the elastic body 4 are divided into one or two piezoelectric elements 5. The arrangement may be adopted. By reducing the number of the piezoelectric elements 5 so as to be smaller than the number of divided regions of the electrode 7.8, it is possible to reduce the influence on the vibration due to the manufacturing error of each piezoelectric element 5 and the variation of the sticking position.
 また、本実施形態においては、弾性体4の基端側の表面に圧電素子5を配置したが、これに代えて、図11に示されるように、先端側の表面に圧電素子5を配置してもよい。
 また、図12に示されるように、弾性体4の板厚方向の両端面、すなわち先端側および基端側の両表面に圧電素子5を配置することにしてもよい。この場合には、片面のみに圧電素子5が配置されている場合と比較して周方向の各領域において発生する力が倍増され、光ファイバ2の先端2aの振幅を容易に増大させることができるという利点がある。
Further, in the present embodiment, the piezoelectric element 5 is disposed on the surface on the base end side of the elastic body 4, but instead, the piezoelectric element 5 is disposed on the surface on the distal end side as shown in FIG. You may.
In addition, as shown in FIG. 12, the piezoelectric element 5 may be arranged on both end surfaces in the thickness direction of the elastic body 4, that is, both surfaces on the distal end side and the base end side. In this case, the force generated in each region in the circumferential direction is doubled as compared with the case where the piezoelectric element 5 is arranged only on one side, and the amplitude of the tip 2a of the optical fiber 2 can be easily increased. There is an advantage.
 また、電気機械変換素子として圧電素子5を例示したが、磁歪素子でもよい。
 また、弾性体4として円板状のものを例示したが、多角形平板状のものでもよい。この場合、正円形および正多角形のみならず、楕円形、任意の多角形(好ましくは6角以上の角部を有する)、またはこれら円形ないし多角形の組合せであってもよい。同様に、圧電素子5として、円弧形状のものを複数配列することで円形となる場合を例示したが、二等辺三角形状のものを複数配列することで多角形状となるようにしてもよい。このように、弾性体4が円板状または多角形平板状であることにより、電気機械変換素子の形状を円弧形状または三角形状のように成型し易い形状にすることができる。
Further, although the piezoelectric element 5 has been exemplified as the electromechanical conversion element, a magnetostrictive element may be used.
Further, the elastic body 4 is exemplified as a disk-shaped body, but may be a polygonal flat body. In this case, not only a perfect circle and a regular polygon, but also an ellipse, an arbitrary polygon (preferably having six or more corners), or a combination of these circles or polygons may be used. Similarly, a case has been described in which the piezoelectric element 5 is circular by arranging a plurality of arc-shaped piezoelectric elements, but a polygonal shape may be formed by arranging a plurality of isosceles triangular elements. As described above, since the elastic body 4 has a disk shape or a polygonal flat plate shape, the shape of the electromechanical conversion element can be formed into an arc-shaped or triangular shape that can be easily molded.
 1 光ファイバスキャナ
 2 光ファイバ
 2a 先端
 3 振動部
 4 弾性体
 5 圧電素子(電気機械変換素子)
 10 照明装置
 50 光源
 60 光検出部
 100 観察装置
DESCRIPTION OF SYMBOLS 1 Optical fiber scanner 2 Optical fiber 2a Tip 3 Vibration part 4 Elastic body 5 Piezoelectric element (electromechanical conversion element)
Reference Signs List 10 lighting device 50 light source 60 light detection unit 100 observation device

Claims (7)

  1.  照明光を導光して該照明光を先端から射出する光ファイバと、
     該光ファイバの先端を該光ファイバの長手軸に交差する方向に振動させる振動部とを備え、
     該振動部が、前記光ファイバを板厚方向に貫通した状態で保持する平板状の弾性体と、該弾性体の板厚方向の端面の少なくとも一方に設けられ、前記長手軸に交差する少なくとも3方向に伸縮可能な電気機械変換素子とを備える光ファイバスキャナ。
    An optical fiber for guiding the illumination light and emitting the illumination light from the tip,
    A vibrating unit for vibrating the tip of the optical fiber in a direction intersecting the longitudinal axis of the optical fiber,
    The vibrating portion is provided on at least one of a flat elastic body that holds the optical fiber in a state where the optical fiber penetrates in the thickness direction, and at least one of end faces in the thickness direction of the elastic body, and at least three crossing the longitudinal axis. An optical fiber scanner comprising: an electromechanical transducer capable of expanding and contracting in a direction.
  2.  前記電気機械変換素子が、前記弾性体の長手軸回りの周方向に沿って3以上に分割された領域に分極された電極を有する請求項1記載の光ファイバスキャナ。 The optical fiber scanner according to claim 1, wherein the electromechanical transducer has electrodes polarized in three or more divided regions along a circumferential direction around the longitudinal axis of the elastic body.
  3.  前記電極の配置が等分割である請求項2に記載の光ファイバスキャナ。 3. The optical fiber scanner according to claim 2, wherein the arrangement of the electrodes is equal.
  4.  前記電気機械変換素子が、前記弾性体の板厚方向の両端面に配置されている請求項1に記載の光ファイバスキャナ。 The optical fiber scanner according to claim 1, wherein the electromechanical transducer is disposed on both end faces in the thickness direction of the elastic body.
  5.  前記弾性体が円板状または多角形平板状である請求項1から請求項4のいずれかに記載の光ファイバスキャナ。 The optical fiber scanner according to any one of claims 1 to 4, wherein the elastic body has a disk shape or a polygonal flat plate shape.
  6.  照明光を発生する光源と、
     該光源に前記光ファイバの基端が接続される請求項1から請求項5のいずれかに記載の光ファイバスキャナと、
     前記電気機械変換素子に電圧を供給する電圧供給部とを備える照明装置。
    A light source for generating illumination light,
    The optical fiber scanner according to any one of claims 1 to 5, wherein a base end of the optical fiber is connected to the light source.
    A lighting device comprising: a voltage supply unit configured to supply a voltage to the electromechanical conversion element.
  7.  請求項6に記載の照明装置と、
     該照明装置からの前記照明光が被写体に照射されることにより、前記被写体から戻る戻り光を検出する光検出部とを備える観察装置。
    A lighting device according to claim 6,
    A light detection unit that detects return light returning from the subject when the subject is irradiated with the illumination light from the lighting device.
PCT/JP2018/032308 2018-08-31 2018-08-31 Optical fiber scanner, lighting device and observation device WO2020044528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/032308 WO2020044528A1 (en) 2018-08-31 2018-08-31 Optical fiber scanner, lighting device and observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/032308 WO2020044528A1 (en) 2018-08-31 2018-08-31 Optical fiber scanner, lighting device and observation device

Publications (1)

Publication Number Publication Date
WO2020044528A1 true WO2020044528A1 (en) 2020-03-05

Family

ID=69644037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032308 WO2020044528A1 (en) 2018-08-31 2018-08-31 Optical fiber scanner, lighting device and observation device

Country Status (1)

Country Link
WO (1) WO2020044528A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185787A1 (en) * 2015-05-21 2016-11-24 オリンパス株式会社 Optical-scanning-type observation system
WO2017094050A1 (en) * 2015-11-30 2017-06-08 オリンパス株式会社 Optical fiber scanner, illumination device, and observation device
JP2018015110A (en) * 2016-07-26 2018-02-01 オリンパス株式会社 Endoscope processor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185787A1 (en) * 2015-05-21 2016-11-24 オリンパス株式会社 Optical-scanning-type observation system
WO2017094050A1 (en) * 2015-11-30 2017-06-08 オリンパス株式会社 Optical fiber scanner, illumination device, and observation device
JP2018015110A (en) * 2016-07-26 2018-02-01 オリンパス株式会社 Endoscope processor

Similar Documents

Publication Publication Date Title
US10036887B2 (en) Optical fiber scanner, illumination system, and observation apparatus
JP6120624B2 (en) Optical fiber scanner, illumination device and observation device
WO2014054524A1 (en) Optical fiber scanner
US9874739B2 (en) Optical fiber scanner, illumination apparatus, and observation apparatus
US7190499B2 (en) Laser scanning unit
US20170176742A1 (en) Optical fiber scanner, illuminating device, and observation apparatus
JP2015198697A (en) Optical fiber scanner, illumination device and observation apparatus
WO2020044528A1 (en) Optical fiber scanner, lighting device and observation device
JP6253491B2 (en) Scanner unit, optical fiber scanner, illumination device and observation device
US20180252910A1 (en) Optical fiber scanner, illumination device, and observation device
JP6865221B2 (en) Fiber optic scanner, lighting and observation equipment
JP6553293B2 (en) Optical fiber scanner, illumination device and observation device
JP6103871B2 (en) Fiber optic scanner
JP2014137565A (en) Optical fiber scanner
WO2016189627A1 (en) Optical fiber scanner, illumination device, and observation device
WO2017068924A1 (en) Optical fiber scanner, lighting device, and observation device
WO2018073948A1 (en) Optical fibre scanner, illumination device, and observation device
WO2020044541A1 (en) Optical fiber scanner, illumination device, and observation device
WO2017168809A1 (en) Optical fibre scanner, illumination device, and observation device
WO2017183157A1 (en) Optical fiber scanner, illumination device, and observation device
WO2020044559A1 (en) Elastic body, optical fiber scanner, illumination device, and observation device
JPWO2017068651A1 (en) Optical fiber scanner, illumination device and observation device
WO2018163316A1 (en) Optical fiber scanner, lighting device, and observation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP