WO2016185787A1 - Optical-scanning-type observation system - Google Patents

Optical-scanning-type observation system Download PDF

Info

Publication number
WO2016185787A1
WO2016185787A1 PCT/JP2016/059140 JP2016059140W WO2016185787A1 WO 2016185787 A1 WO2016185787 A1 WO 2016185787A1 JP 2016059140 W JP2016059140 W JP 2016059140W WO 2016185787 A1 WO2016185787 A1 WO 2016185787A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
scanning
drive signal
vibration
magnitude
Prior art date
Application number
PCT/JP2016/059140
Other languages
French (fr)
Japanese (ja)
Inventor
熊井 克範
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016559388A priority Critical patent/JP6081679B1/en
Publication of WO2016185787A1 publication Critical patent/WO2016185787A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to an optical scanning observation system, and more particularly to an optical scanning observation system used for scanning a subject to acquire an image.
  • Japanese Unexamined Patent Application Publication No. 2013-244045 discloses a scanning type endoscope configured to scan a subject by swinging the tip of an illumination fiber that guides light emitted from a light source unit.
  • an actuator having an actuator provided with a second drive unit for oscillating the tip of the illumination fiber by vibrating along a vibration axis direction corresponding to the vertical direction is disclosed.
  • the scanning endoscope having the actuator in which the vibration axis directions of the linear vibration are set in two directions orthogonal to each other, such as the actuator disclosed in Japanese Unexamined Patent Publication No. 2013-244045.
  • vibration in a direction other than the vibration axis direction occurs, and the scanning path when actually scanning the object deviates from the originally intended scanning path.
  • the scanning accuracy associated with scanning decreases.
  • Japanese Patent Application Laid-Open No. 2013-244045 does not specifically mention a method that can solve the above-mentioned problems. Therefore, according to the configuration of the scanning endoscope disclosed in Japanese Patent Application Laid-Open No. 2013-244045, the variation in scanning accuracy that occurs according to the manufacturing variation at the time of manufacturing the actuator is likely to increase. The problem according to the above-mentioned problem has arisen.
  • the present invention has been made in view of the above-described circumstances, and provides an optical scanning observation system that can suppress variations in scanning accuracy that occur in accordance with manufacturing variations in scanning endoscopes as much as possible. It is an object.
  • An optical scanning observation system includes an optical fiber configured to transmit illumination light supplied from a light source unit, and to transmit the transmitted illumination light to an object from an emission end. And the output end can be swung by vibrating in the vibration axis direction set in the first direction in accordance with the input first drive signal.
  • the first actuator and the second drive signal are inputted, and the vibration is set in the second direction orthogonal or substantially orthogonal to the first direction according to the inputted second drive signal.
  • a second actuator capable of oscillating the emission end by oscillating in an axial direction; a magnitude of a vibration component in the first direction generated in response to vibration of the first actuator; From the first direction And the magnitude of the vibration component in the direction other than the second direction and the magnitude of the vibration component in the direction other than the second direction generated in response to the vibration of the second actuator.
  • a second drive signal, and a scan driver configured to generate and output the second drive signal.
  • FIG. The figure for demonstrating the temporal displacement of the irradiation position of the illumination light from the outermost point B to the center point A.
  • the figure for demonstrating the temporal displacement of the irradiation position of the illumination light detected according to supply of the drive signal CSY with respect to a 2nd actuator The figure for demonstrating an example of the structure which concerns on the modification of a 1st Example. The figure for demonstrating an example of the structure which concerns on the modification of a 1st Example. The figure for demonstrating an example of the structure which concerns on the modification of a 1st Example. The figure for demonstrating an example of a structure of the actuator part which concerns on a 2nd Example. The figure for demonstrating an example of a structure of the actuator part which concerns on the modification of a 2nd Example. The figure for demonstrating an example of a structure of the actuator part which concerns on the modification of a 2nd Example.
  • FIG. 1 is a diagram illustrating a configuration of a main part of an optical scanning observation system according to an embodiment.
  • the optical scanning observation system 1 includes a light source unit 2, an optical fiber 3, a scanning endoscope 4, an actuator unit 5, a scanning drive unit 6, and an optical fiber bundle 7. And a light detection unit 8, an image generation unit 9, a display device 10, and a control unit 11.
  • the light source unit 2 is configured to generate illumination light for illuminating a subject and supply it to the optical fiber 3. Further, the light source unit 2 is configured to perform or stop the supply of illumination light to the optical fiber 3 by being turned on or off based on the control of the control unit 11. Specifically, the light source unit 2 is, for example, a red (R) laser light source that can be switched to a light emitting state (on state) or a quenching state (off state) under the control of the control unit 11, and green (G).
  • R red
  • the laser light source for light and the laser light source for blue (B) light are provided, and light of at least one color can be supplied to the optical fiber 3 as illumination light.
  • the optical fiber 3 is composed of, for example, a single mode fiber.
  • An incident end including the light incident surface of the optical fiber 3 is connected to the light source unit 2. Further, the exit end including the light exit surface of the optical fiber 3 is disposed at the distal end of the scanning endoscope 4. That is, the optical fiber 3 is configured to transmit the illumination light supplied from the light source unit 2 and to emit the transmitted illumination light from the emission end to the subject.
  • the scanning endoscope 4 has an elongated shape that can be inserted into a body cavity of a subject, and is configured to scan a subject existing in the body cavity with illumination light supplied from the light source unit 2. Has been.
  • the optical fiber 3 and the optical fiber bundle 7 are inserted into the scanning endoscope 4 respectively.
  • the scanning endoscope 4 includes an actuator unit 5 configured to swing the emission end of the optical fiber 3 in accordance with a drive signal supplied from the scan drive unit 6, and a spiral shape.
  • a memory 16 in which at least information indicating a signal waveform for scanning the subject along the scanning path and information indicating a mechanical resonance frequency of the scanning endoscope 4 (described later) is stored. Yes.
  • FIG. 2 is a diagram for explaining an example of the configuration of the actuator unit according to the first embodiment.
  • the emission end of the optical fiber 3 is disposed between the optical fiber 3 and the actuator unit 5, and the actuator unit 5 is a bonding member disposed on the outer surface.
  • a ferrule 41 is arranged.
  • the ferrule 41 is made of, for example, zirconia (ceramic) or nickel.
  • the ferrule 41 has a quadrangular prism shape formed so that a cross section perpendicular to the longitudinal axis direction of the scanning endoscope 4 is a square centered on the central axis of the optical fiber 3.
  • Side surfaces 42a and 42c perpendicular to the X-axis direction perpendicular to the longitudinal axis direction, and side surfaces 42b and 42d perpendicular to the Y-axis direction perpendicular to the longitudinal axis direction and the X-axis direction, respectively. is doing.
  • the actuator unit 5 swings the emission end of the optical fiber 3 in accordance with the drive signal supplied from the scanning drive unit 6, thereby determining the irradiation position of the illumination light emitted to the subject via the emission end. It can be displaced along the scanning path. Further, for example, as shown in FIG. 2, the actuator unit 5 is arranged along the side surface 42a, the piezoelectric element 5a arranged along the side surface 42a, the piezoelectric element 5b arranged along the side surface 42b, and the side surface 42c. The piezoelectric element 5c and the piezoelectric element 5d arranged along the side surface 42d are included.
  • the piezoelectric elements 5a to 5d are formed in a rectangular parallelepiped shape having the same length, width and thickness, for example.
  • the piezoelectric elements 5a to 5d are configured to expand and contract in a direction parallel to the longitudinal axis of the scanning endoscope 4, for example, in accordance with a drive signal supplied from the scan drive unit 6.
  • the piezoelectric elements 5a and 5c are set such that the vibration axis direction of the linear vibration is set to the left and right direction corresponding to the X axis direction, and vibrate according to the drive signal supplied from the scanning drive unit 6 (reciprocal expansion and contraction).
  • the optical fiber 3 is configured to have a function as a first actuator capable of swinging the emission end portion.
  • the piezoelectric elements 5b and 5d are set such that the vibration axis direction of the linear vibration is set in the vertical direction corresponding to the Y-axis direction, and vibrate according to the drive signal supplied from the scanning drive unit 6 (reciprocal expansion and contraction).
  • the optical fiber 3 is configured to have a function as a second actuator capable of swinging the emission end portion.
  • the vibration axis directions of the linear vibration are set to two directions that are orthogonal or substantially orthogonal to each other.
  • the scanning drive unit 6 is constituted by a drive circuit having, for example, an amplifier and a signal generator.
  • the scanning drive unit 6 is configured to vibrate the first actuator including the piezoelectric elements 5a and 5c and the second actuator including the piezoelectric elements 5b and 5d, respectively, based on the control of the control unit 11.
  • a drive signal is generated, and the generated drive signal is supplied to the actuator unit 5.
  • the optical fiber bundle 7 is configured by bundling a plurality of optical fibers, for example.
  • the incident end of the optical fiber bundle 7 is disposed at the distal end of the scanning endoscope 4. Further, the emission end portion including the light emission surface of the optical fiber bundle 7 is connected to the light detection unit 8. That is, the optical fiber bundle 7 receives return light (reflected light) from the subject at the distal end portion of the scanning endoscope 4 and can transmit the received return light to the light detection unit 8. It is configured.
  • the light detection unit 8 includes, for example, a light detection element and an A / D converter.
  • the light detection unit 8 detects return light that is incident through the emission end of the optical fiber bundle 7, generates an electrical signal corresponding to the amount of the detected return light, and digitally converts the generated electrical signal.
  • the signals are converted into signals and sequentially output.
  • the image generation unit 9 includes, for example, an image processing circuit.
  • the image generation unit 9 can control the subject on one of the first spiral scanning path (described later) and the second spiral scanning path (described later) based on the control of the control unit 11, for example.
  • An observation image for one frame is generated by performing mapping processing for mapping the luminance value corresponding to the digital signal output from the light detection unit 8 as pixel information during the period of scanning the image, and the generated observation An image is output to the display device 10.
  • the display device 10 is composed of, for example, a liquid crystal display.
  • the display device 10 is configured to display an observation image output from the image generation unit 9.
  • the control unit 11 includes, for example, an integrated circuit including an arithmetic circuit and a control circuit, and is configured to control each of the light source unit 2, the scan driving unit 6, and the image generation unit 9.
  • the control unit 11 is configured to read information stored in the memory 16 when the power of the optical scanning observation system is turned on, for example. Further, the control unit 11 performs control for scanning the subject with a spiral scanning path while irradiating the subject with R light, G light, and B light in a time-sharing manner based on the information read from the memory 16, for example. Is configured to do.
  • the control unit 11 stores, for example, a first signal waveform as shown by a broken line in FIG. 3 and a second signal waveform as shown by a one-dot chain line in FIG.
  • the scan driver 6 is controlled to generate the drive signal DSX having the first signal waveform and the drive signal DSY having the second signal waveform, and R Control for repeatedly supplying light, G light, and B light to the optical fiber 3 in this order is performed on the light source unit 2.
  • the scanning drive unit 6 supplies the drive signal DSX generated based on the control of the control unit 11 to the piezoelectric elements 5 a and 5 c of the actuator unit 5, and the drive signal DSY generated based on the control of the control unit 11.
  • the first signal waveform indicated by a broken line in FIG. 3 is a waveform obtained by performing predetermined modulation on a sine wave, for example.
  • the second signal waveform indicated by the one-dot chain line in FIG. 3 is a waveform obtained by shifting the phase of the first signal waveform by 90 °, for example.
  • FIG. 3 is a diagram illustrating an example of a signal waveform of a drive signal supplied to the actuator unit of the scanning endoscope.
  • FIG. 4 is a diagram for explaining the temporal displacement of the irradiation position of the illumination light from the center point A to the outermost point B.
  • FIG. 5 is a diagram for explaining temporal displacement of the illumination light irradiation position from the outermost point B to the center point A.
  • illumination light is irradiated to a position corresponding to the center point A of the irradiation position of the illumination light on the surface of the subject.
  • the irradiation position of the illumination light on the surface of the subject is a first spiral shape that starts outward from the center point A.
  • the illumination light irradiation position on the surface of the subject is a second spiral that goes inward starting from the outermost point B.
  • illumination light is irradiated to the center point A on the surface of the subject.
  • the control unit 11 Based on the information read from the memory 16, the control unit 11, for example, during a period during which the subject is scanned by one of the first spiral scanning path and the second spiral scanning path.
  • the digital signal output from the light detection unit 8 is used to generate an image for one frame, and the light detection unit 8 is in a period during which the subject is scanned by another scanning path different from the one scanning path.
  • the image generation unit 9 is configured to perform control so as not to generate an image using a digital signal output from the image generation unit 9.
  • control unit 11 when the control unit 11 detects that a calibration switch (not shown) provided in an input device such as a keyboard is pressed, the control unit 11 outputs information read from the memory 16 and the light irradiation position detection device 101. And an operation related to calibration of the scanning endoscope 4 based on the output signal.
  • a calibration switch not shown
  • the light irradiation position detection device 101 includes a position detection element (PSD: Position Sensitive Detector) and the like. For example, when the light irradiation position detection apparatus 101 receives illumination light emitted from the scanning endoscope 4 on the light receiving surface, the light irradiation position detection apparatus 101 generates different voltages depending on the light reception position where the illumination light is received. The output signal having the amplitude corresponding to the magnitude of the generated voltage is generated and output. That is, the light irradiation position detection device 101 outputs an output signal indicating the light receiving position of the illumination light on the light receiving surface when the illumination light emitted from the scanning endoscope 4 is received by the light receiving surface. It is configured.
  • PSD Position Sensitive Detector
  • the operator connects each part of the optical scanning observation system 1 and turns on the power, and then places the distal end of the scanning endoscope 4 at a position facing the light receiving surface of the light irradiation position detection device 101.
  • an instruction for performing an operation related to calibration of the scanning endoscope 4 is performed.
  • the calibration switch is pressed in an arrangement state in which the irradiation position of the illumination light irradiated when the optical fiber 3 is stationary coincides with the center of the light receiving surface of the light irradiation position detection device 101 will be described. Will be described.
  • the control unit 11 When the optical scanning observation system 1 is turned on, the control unit 11 reads information stored in the memory 16, and based on the read information, mechanically due to vibrations of the piezoelectric elements 5a and 5c.
  • the resonance frequency frx and the mechanical resonance frequency frx due to the vibration of the piezoelectric elements 5b and 5d are specified.
  • the mechanical resonance frequency frx is, for example, a frequency that maximizes the amplitude in the X-axis direction of the emission end of the optical fiber 3 protruding from the tip of the ferrule 41 when the piezoelectric elements 5a and 5c vibrate.
  • the mechanical resonance frequency fry is, for example, a frequency that maximizes the amplitude in the Y-axis direction of the exit end of the optical fiber 3 protruding from the tip of the ferrule 41 when the piezoelectric elements 5b and 5d vibrate.
  • control unit 11 performs control for supplying predetermined illumination light to the optical fiber 3 immediately after detecting that the calibration switch is pressed, for example, and mechanical resonance.
  • Control for supplying a sine wave drive signal CSX having the frequency frx to the piezoelectric elements 5 a and 5 c of the actuator unit 5 for a certain period of time is performed on the scanning drive unit 6.
  • the illumination light emitted from the scanning endoscope 4 is received by the light receiving surface of the light irradiation position detection device 101 and the light receiving surface receives the illumination light.
  • Output signals indicating positions are sequentially output from the light irradiation position detection device 101.
  • control unit 11 determines the locus of the emission end of the optical fiber 3 oscillated by the vibration of the piezoelectric elements 5a and 5c, based on the output signals sequentially output from the light irradiation position detection device 101, and the piezoelectric elements 5a and 5c. This is detected as a temporal displacement of the irradiation position of the illumination light according to the supply of the drive signal CSX to 5c.
  • control unit 11 outputs a sinusoidal drive signal CSY having a mechanical resonance frequency fry of the actuator unit 5 after a predetermined time has elapsed after the supply of the drive signal CSX to the piezoelectric elements 5a and 5c is started.
  • Control for supplying the piezoelectric elements 5b and 5d for a certain period of time is performed on the scanning drive unit 6.
  • the illumination light emitted from the scanning endoscope 4 is received by the light receiving surface of the light irradiation position detection device 101 and the light receiving surface receives the illumination light.
  • Output signals indicating positions are sequentially output from the light irradiation position detection device 101.
  • control unit 11 uses the output signals sequentially output from the light irradiation position detection device 101 to change the locus of the emission end of the optical fiber 3 oscillated by the vibration of the piezoelectric elements 5b and 5d. This is detected as a temporal displacement of the irradiation position of the illumination light according to the supply of the drive signal CSY to 5d.
  • the scanning type endoscope is supplied in accordance with the supply of the drive signal CSX.
  • the temporal displacement of the irradiation position of the illumination light emitted from the mirror 4 is detected as a linear scanning locus LX that reciprocates within a predetermined range on the X axis as shown by the solid line in FIG.
  • a scanning endoscope is provided according to the supply of the drive signal CSY.
  • FIG. 6 is a diagram for explaining the temporal displacement of the irradiation position of the illumination light detected in response to the supply of the drive signal CSX to the first actuator.
  • FIG. 7 is a diagram for explaining temporal displacement of the irradiation position of the illumination light detected in response to the supply of the drive signal CSY to the second actuator.
  • the scanning endoscope 4 according to the supply of the drive signal CSX due to the vibration in the direction other than the X-axis direction generated according to the manufacturing error described above.
  • the scanning endoscope 4 according to the supply of the drive signal CSY is caused by the vibration in the direction other than the Y-axis direction generated according to the manufacturing error.
  • the detection results of the elliptical scanning trajectories EX and EY can be handled as an index indicating the magnitude of the manufacturing error of the actuator unit 5 caused by the displacement of the arrangement positions of the piezoelectric elements 5a to 5d. Therefore, in this embodiment, an adjustment coefficient used for adjusting the amplitude of at least one of the drive signal DSX and the drive signal DSY supplied to the actuator unit 5 based on the detection results of the elliptical scanning trajectories EX and EY.
  • the controller 11 Based on the detection results of the elliptical scanning trajectories EX and EY, for example, when the controller 11 detects that the elliptical scanning trajectories EX and EY are in the same rotation direction, the elliptical scanning trajectory
  • the lengths of the major axis and the minor axis in EX and the lengths of the major axis and the minor axis in the elliptical scanning locus EY are calculated, respectively.
  • the control unit 11 detects the length of the long axis of the elliptical scanning locus EX as the magnitude of the vibration component in the left-right direction set as the vibration axis direction of the linear vibration of the piezoelectric elements 5a and 5c.
  • the length of the short axis of the scanning trajectory EX is detected as the magnitude of the vibration component in a direction other than the left-right direction.
  • the control unit 11 detects the length of the major axis of the elliptical scanning locus EY as the magnitude of the vertical vibration component set as the vibration axis direction of the linear vibration of the piezoelectric elements 5b and 5d.
  • the length of the short axis of the scanning locus EY is detected as the magnitude of the vibration component in a direction other than the vertical direction.
  • the control unit 11 calculates the flatness ratio EXF using the lengths of the major axis and the minor axis in the elliptical scanning locus EX, and uses the lengths of the major axis and the minor axis in the elliptical scanning locus EY. EYF is calculated. Thereafter, the control unit 11 performs processing for calculating an adjustment coefficient used for adjusting the amplitude of at least one of the drive signal DSX and the drive signal DSY based on the flatness ratios EXF and EYF calculated as described above. Then, the calculated adjustment coefficient is stored in the memory 16 as information for calibration of the scanning endoscope 4, thereby completing the operation related to the calibration of the scanning endoscope 4.
  • the calculated adjustment coefficient ACX is stored in the memory 16 as information for calibration of the scanning endoscope 4, thereby completing the operation relating to the calibration of the scanning endoscope 4.
  • the calculated adjustment coefficient ACY is stored in the memory 16 as information for calibration of the scanning endoscope 4, thereby completing the operation related to the calibration of the scanning endoscope 4.
  • control unit 11 When the control unit 11 detects that the adjustment coefficient ACX is included in the information read from the memory 16 when the optical scanning observation system 1 is turned on, the control unit 11 performs the subject scan through the spiral scanning path. In addition to the control for generating the drive signal DSX and the drive signal DSY, for example, by multiplying the adjustment coefficient ACX by the amplitude of the signal waveform of the drive signal DSX, Control for adjusting the amplitude ratio of the signal DSY to ACX: 1 is performed on the scan driver 6.
  • control unit 11 when the control unit 11 detects that the adjustment coefficient ACY is included in the information read from the memory 16 when the optical scanning observation system 1 is turned on, the control unit 11 performs the subject scan through the spiral scanning path. In addition to the control for generating the drive signal DSX and the drive signal DSY, for example, by multiplying the adjustment coefficient ACY by the amplitude of the signal waveform of the drive signal DSY, the drive signal DSX and the drive signal are scanned. Control for adjusting the amplitude ratio of the signal DSY to 1: ACY is performed on the scan driver 6.
  • the amplitude of at least one of these even if the manufacturing error of the actuator unit 5 caused by the displacement of the placement positions of the piezoelectric elements 5a to 5d is relatively large, the subject is detected by the spiral scanning path. It is possible to prevent the scanning accuracy during scanning from being reduced as much as possible. Therefore, according to the present embodiment, it is possible to suppress as much as possible the variation in scanning accuracy that occurs in accordance with the manufacturing variation of the scanning endoscope.
  • the adjustment coefficient ACX or ACY calculated as described above is not limited to the information stored in the memory 16 as the calibration information for the scanning endoscope 4, but may be an actuator unit, for example. 5 may be reflected as an electrical parameter in an element or circuit involved in the supply of the drive signal DSX and the drive signal DSY to 5.
  • a variable resistor VRA is provided in the middle of a signal line for supplying a drive signal DSX from the scan drive unit 6 to the piezoelectric elements 5a and 5c
  • the scan drive unit 6 is a state in which a variable resistor VRB is provided in the middle of a signal line for supplying a drive signal DSY to the piezoelectric elements 5b and 5d, and the resistance ratio of the variable resistor VRA and the variable resistor VRB is 1: 1.
  • the adjustment coefficient ACX or ACY may be calculated and the resistance ratio between the variable resistor VRA and the variable resistor VRB may be set to ACX: 1 or 1: ACY using the calculated adjustment coefficient.
  • FIG. 8 is a diagram for explaining an example of a configuration according to a modification of the first embodiment.
  • FIG. 9 is a diagram for explaining an example of a configuration according to a modification of the first embodiment.
  • control unit 11 detects the angle ⁇ (0 ⁇ ⁇ 90 °) formed by the two vibration axes of the actuator unit 5, and Control that adjusts the phase shift of the drive signal DSY with respect to the drive signal DSX to 90 ° + ⁇ may be performed on the scanning drive unit 6.
  • FIG. 10 is a diagram for explaining an example of a configuration according to a modification of the first embodiment.
  • the ferrule 71 has side surfaces 72a, 72b, and 72c perpendicular to the longitudinal axis of the scanning endoscope 4 and perpendicular to the different axial directions TX, TY, and TZ, respectively. is doing. Further, the optical fiber 3 is fixedly arranged at the center of the ferrule 71.
  • the actuator unit 81 swings the emission end portion of the optical fiber 3 in accordance with the drive signal supplied from the scanning drive unit 6, thereby determining the irradiation position of the illumination light emitted to the subject via the emission end portion. It can be displaced along the scanning path.
  • the actuator section 81 includes a piezoelectric element 81a disposed along the side surface 72a, a piezoelectric element 81b disposed along the side surface 72b, and a piezoelectric element 81c disposed along the side surface 72c. It is configured.
  • the piezoelectric elements 81a to 81c are formed in a rectangular parallelepiped shape having the same length, width and thickness, for example.
  • the piezoelectric elements 81a to 81c are configured to expand and contract in a direction parallel to the longitudinal axis of the scanning endoscope 4, for example, in accordance with a driving signal supplied from the scanning driving unit 6.
  • the piezoelectric element 81a can oscillate the emission end of the optical fiber 3 by oscillating along the oscillation axis set in the TX axis direction in accordance with the drive signal supplied from the scanning drive unit 6. It is configured.
  • the piezoelectric element 81a is disposed on the side surface 72a at a position where one surface SK parallel to the TX axis direction and the end of the side surface 72b are aligned.
  • the piezoelectric element 81b can oscillate the emission end portion of the optical fiber 3 by vibrating along the vibration axis set in the TY axis direction according to the drive signal supplied from the scanning drive unit 6. It is configured. Further, the piezoelectric element 81b is arranged at a position on the side surface 72b such that one surface SL parallel to the TY axis direction and the end of the side surface 72c are aligned.
  • the piezoelectric element 81c can oscillate the emission end of the optical fiber 3 by vibrating along the vibration axis set in the TZ axis direction in accordance with the drive signal supplied from the scanning drive unit 6. It is configured.
  • the piezoelectric element 81c is disposed on the side surface 72c at a position where one surface SM parallel to the TZ axis direction and the end of the side surface 72a are aligned.
  • An operation related to calibration of the endoscope 4 may be performed.
  • the scanning endoscope 4 according to the present embodiment is configured to include, for example, an actuator unit 52 as shown in FIG. 11 instead of the actuator unit 5 shown in FIG.
  • FIG. 11 is a diagram for explaining an example of the configuration of the actuator unit according to the second embodiment.
  • the actuator unit 52 has a rotation direction of the elliptical scanning locus EX detected in response to the supply of the drive signal CSX and a rotation direction of the elliptical scanning locus EY detected in response to the supply of the drive signal CSY.
  • the arrangement positions of the piezoelectric elements 5a to 5d in the actuator unit 5 are defined so as to coincide with each other.
  • the actuator unit 52 arranges one surface SA parallel to the X-axis direction of the piezoelectric element 5a and the side surface 42b of the ferrule 41 so that Y in the piezoelectric element 5b.
  • One surface SB parallel to the axial direction and the side surface 42c of the ferrule 41 are arranged flush with each other, and one surface SC parallel to the X-axis direction of the piezoelectric element 5c and the side surface 42d of the ferrule 41 are arranged flush with each other.
  • one surface SD parallel to the Y-axis direction and the side surface 42a of the ferrule 41 are arranged on the same plane.
  • the piezoelectric elements 5 a and 5 c of the actuator unit 52 are arranged so as to be twice symmetrical with respect to the central axis of the optical fiber 3 in a cross section perpendicular to the longitudinal axis direction of the scanning endoscope 4.
  • the piezoelectric elements 5 b and 5 d of the actuator unit 52 are arranged so as to be symmetrical twice with respect to the central axis of the optical fiber 3 in a cross section perpendicular to the longitudinal axis direction of the scanning endoscope 4.
  • the rotation direction of the scanning locus EY can be matched.
  • the piezoelectric elements 5a to 5d are arranged while the ferrule 41 is brought into contact with the flat part of the positioning jig.
  • FIG. 12 is a diagram for explaining an example of a configuration of an actuator unit according to a modification of the second embodiment.
  • the actuator unit 53 arranges the surface SA of the piezoelectric element 5a in a stepped manner by shifting the surface SA of the ferrule 41 by the width P, and the surface SB of the piezoelectric element 5b is arranged.
  • the surface SC of the piezoelectric element 5c is displaced in a stepped manner by shifting the width P with respect to the side surface 42c of the ferrule 41, and the surface of the piezoelectric element 5d is disposed in a stepped shape by shifting the surface SC of the ferrule 41 by the width P.
  • the SD is configured to be stepped with a width P shifted from the side surface 42 a of the ferrule 41.
  • the surface SA to SD is coated with a width P.
  • the coating film and the side surfaces 42a to 42d are arranged flush with each other, and after fixing the piezoelectric elements 5a to 5d to the ferrule 41, What is necessary is just to perform the operation
  • the actuator portion 53 when the actuator portion 53 is manufactured with the above-described configuration, for example, before the piezoelectric elements 5a to 5d are fixed to the ferrule 41 with an adhesive or the like, a film having a width P is formed on each surface SA to SD.
  • the film and the side faces 42a to 42d are arranged flush with each other, and after fixing the piezoelectric elements 5a to 5d to the ferrule 41, the film is It is only necessary to perform the work of peeling off.
  • FIG. 13 is a diagram for explaining an example of a configuration of an actuator unit according to a modification of the second embodiment.
  • the actuator unit 54 arranges the surface SA of the piezoelectric element 5a so as to be aligned with the end of the C surface CB adjacent to the side surface 42b, and the surface SB of the piezoelectric element 5b is arranged on the side surface 42c.
  • the surface SC of the piezoelectric element 5c is aligned with the end of the C surface CD adjacent to the side surface 42d, and the surface SD of the piezoelectric element 5d is adjacent to the side surface 42a. It is arranged to be aligned with the end of the C plane CA.
  • the fixing surface when the piezoelectric elements 5a to 5d are fixed with an adhesive or the like is chamfered so as not to protrude from the side surfaces 42a to 42d. It is desirable to use a ferrule 45.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

The optical-scanning-type observation system according to the present invention has: an optical fiber for transmitting and emitting illumination light to a subject; a first actuator for oscillating in accordance with an oscillation axis direction set to a first direction; a second actuator for oscillating in accordance with an oscillation axis direction set to a second direction; and a scanning drive unit for generating and outputting a first drive signal supplied to the first actuator during scanning of the subject in a predetermined scanning path and a second drive signal supplied to the second actuator during scanning of the subject in a predetermined scanning path, on the basis of an oscillation component occurring in response to oscillation of the first actuator, and an oscillation component occurring in response to oscillation of the second actuator.

Description

光走査型観察システムOptical scanning observation system
 本発明は、光走査型観察システムに関し、特に、被写体を走査して画像を取得するために用いられる光走査型観察システムに関するものである。 The present invention relates to an optical scanning observation system, and more particularly to an optical scanning observation system used for scanning a subject to acquire an image.
 医療分野の内視鏡においては、被検者の負担を軽減するために、当該被検者の体腔内に挿入される挿入部を細径化するための種々の技術が提案されている。そして、このような技術の一例として、前述の挿入部に相当する部分に固体撮像素子を有しない走査型内視鏡が知られている。そして、例えば、日本国特開2013-244045号公報には、前述のような構成を有する走査型内視鏡が開示されている。 In endoscopes in the medical field, various techniques have been proposed for reducing the diameter of an insertion portion that is inserted into a body cavity of a subject in order to reduce the burden on the subject. As an example of such a technique, there is known a scanning endoscope that does not have a solid-state imaging device in a portion corresponding to the aforementioned insertion portion. For example, Japanese Unexamined Patent Application Publication No. 2013-244045 discloses a scanning endoscope having the above-described configuration.
 具体的には、日本国特開2013-244045号公報には、光源ユニットから出射される光を導光する照明ファイバの先端を揺動して被写体を走査するように構成された走査型内視鏡であって、挿入部の挿入軸に対して左右方向に相当する振動軸方向に沿って振動することにより当該照明ファイバの先端を揺動させるための第1の駆動部と、当該挿入軸に対して上下方向に相当する振動軸方向に沿って振動することにより当該照明ファイバの先端を揺動させるための第2の駆動部と、が設けられたアクチュエータを有するものが開示されている。 Specifically, Japanese Unexamined Patent Application Publication No. 2013-244045 discloses a scanning type endoscope configured to scan a subject by swinging the tip of an illumination fiber that guides light emitted from a light source unit. A first drive unit for oscillating the tip of the illumination fiber by vibrating along a vibration axis direction corresponding to a left-right direction with respect to the insertion axis of the insertion unit; On the other hand, an actuator having an actuator provided with a second drive unit for oscillating the tip of the illumination fiber by vibrating along a vibration axis direction corresponding to the vertical direction is disclosed.
 ここで、日本国特開2013-244045号公報に開示されたアクチュエータのような、直線振動の振動軸方向が相互に直交する2つの方向に設定されたアクチュエータを有する走査型内視鏡によれば、例えば、アクチュエータの製造時の製造誤差により、当該振動軸方向以外の他の方向の振動が発生し、被写体を実際に走査する際の走査経路が本来意図した走査経路から外れるため、当該被写体の走査に係る走査精度が低下してしまう、という問題点が存在している。 Here, according to the scanning endoscope having the actuator in which the vibration axis directions of the linear vibration are set in two directions orthogonal to each other, such as the actuator disclosed in Japanese Unexamined Patent Publication No. 2013-244045. For example, due to a manufacturing error at the time of manufacturing the actuator, vibration in a direction other than the vibration axis direction occurs, and the scanning path when actually scanning the object deviates from the originally intended scanning path. There is a problem in that the scanning accuracy associated with scanning decreases.
 しかし、日本国特開2013-244045号公報には、前述の問題点を解消可能な手法等について特に言及されていない。そのため、日本国特開2013-244045号公報に開示された走査型内視鏡の構成によれば、アクチュエータの製造時の製造ばらつきに応じて発生する走査精度のばらつきが大きくなり易くなってしまう、という前述の問題点に応じた課題が生じている。 However, Japanese Patent Application Laid-Open No. 2013-244045 does not specifically mention a method that can solve the above-mentioned problems. Therefore, according to the configuration of the scanning endoscope disclosed in Japanese Patent Application Laid-Open No. 2013-244045, the variation in scanning accuracy that occurs according to the manufacturing variation at the time of manufacturing the actuator is likely to increase. The problem according to the above-mentioned problem has arisen.
 本発明は、前述した事情に鑑みてなされたものであり、走査型内視鏡の製造ばらつきに応じて発生する走査精度のばらつきを極力抑制することが可能な光走査型観察システムを提供することを目的としている。 The present invention has been made in view of the above-described circumstances, and provides an optical scanning observation system that can suppress variations in scanning accuracy that occur in accordance with manufacturing variations in scanning endoscopes as much as possible. It is an object.
 本発明の一態様の光走査型観察システムは、光源部から供給される照明光を伝送し、当該伝送した照明光を出射端部から被写体へ出射するように構成された光ファイバと、第1の駆動信号が入力されるとともに、入力された前記第1の駆動信号に応じて第1の方向に設定された振動軸方向に振動することにより、前記出射端部を揺動させることが可能な第1のアクチュエータと、第2の駆動信号が入力されるとともに、入力された前記第2の駆動信号に応じて前記第1の方向に直交するまたは略直交する第2の方向に設定された振動軸方向に振動することにより、前記出射端部を揺動させることが可能な第2のアクチュエータと、前記第1のアクチュエータの振動に応じて発生する前記第1の方向の振動成分の大きさ及び前記第1の方向以外の方向の振動成分の大きさと、前記第2のアクチュエータの振動に応じて発生する前記第2の方向の振動成分の大きさ及び前記第2の方向以外の方向の振動成分の大きさと、に基づき、前記被写体を所定の走査経路で走査する際に前記第1のアクチュエータに供給される第1の駆動信号と、前記被写体を前記所定の走査経路で走査する際に前記第2のアクチュエータに供給される第2の駆動信号と、を生成して出力するように構成された走査駆動部と、を有する。 An optical scanning observation system according to an aspect of the present invention includes an optical fiber configured to transmit illumination light supplied from a light source unit, and to transmit the transmitted illumination light to an object from an emission end. And the output end can be swung by vibrating in the vibration axis direction set in the first direction in accordance with the input first drive signal. The first actuator and the second drive signal are inputted, and the vibration is set in the second direction orthogonal or substantially orthogonal to the first direction according to the inputted second drive signal. A second actuator capable of oscillating the emission end by oscillating in an axial direction; a magnitude of a vibration component in the first direction generated in response to vibration of the first actuator; From the first direction And the magnitude of the vibration component in the direction other than the second direction and the magnitude of the vibration component in the direction other than the second direction generated in response to the vibration of the second actuator. A first drive signal supplied to the first actuator when scanning the subject along a predetermined scanning path, and a second drive signal supplied when scanning the subject along the predetermined scanning path. A second drive signal, and a scan driver configured to generate and output the second drive signal.
実施例に係る光走査型観察システムの要部の構成を示す図。The figure which shows the structure of the principal part of the optical scanning type observation system which concerns on an Example. 第1の実施例に係るアクチュエータ部の構成の一例を説明するための図。The figure for demonstrating an example of a structure of the actuator part which concerns on a 1st Example. 走査型内視鏡のアクチュエータ部に供給される駆動信号の信号波形の一例を示す図。The figure which shows an example of the signal waveform of the drive signal supplied to the actuator part of a scanning endoscope. 中心点Aから最外点Bに至るまでの照明光の照射位置の時間的な変位を説明するための図。The figure for demonstrating the temporal displacement of the irradiation position of the illumination light from the center point A to the outermost point B. FIG. 最外点Bから中心点Aに至るまでの照明光の照射位置の時間的な変位を説明するための図。The figure for demonstrating the temporal displacement of the irradiation position of the illumination light from the outermost point B to the center point A. FIG. 第1のアクチュエータに対する駆動信号CSXの供給に応じて検出される照明光の照射位置の時間的な変位を説明するための図。The figure for demonstrating the temporal displacement of the irradiation position of the illumination light detected according to supply of the drive signal CSX with respect to a 1st actuator. 第2のアクチュエータに対する駆動信号CSYの供給に応じて検出される照明光の照射位置の時間的な変位を説明するための図。The figure for demonstrating the temporal displacement of the irradiation position of the illumination light detected according to supply of the drive signal CSY with respect to a 2nd actuator. 第1の実施例の変形例に係る構成の一例を説明するための図。The figure for demonstrating an example of the structure which concerns on the modification of a 1st Example. 第1の実施例の変形例に係る構成の一例を説明するための図。The figure for demonstrating an example of the structure which concerns on the modification of a 1st Example. 第1の実施例の変形例に係る構成の一例を説明するための図。The figure for demonstrating an example of the structure which concerns on the modification of a 1st Example. 第2の実施例に係るアクチュエータ部の構成の一例を説明するための図。The figure for demonstrating an example of a structure of the actuator part which concerns on a 2nd Example. 第2の実施例の変形例に係るアクチュエータ部の構成の一例を説明するための図。The figure for demonstrating an example of a structure of the actuator part which concerns on the modification of a 2nd Example. 第2の実施例の変形例に係るアクチュエータ部の構成の一例を説明するための図。The figure for demonstrating an example of a structure of the actuator part which concerns on the modification of a 2nd Example.
 以下、本発明の実施の形態について、図面を参照しつつ説明を行う。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1の実施例)
 図1から図10は、本発明の第1の実施例に係るものである。図1は、実施例に係る光走査型観察システムの要部の構成を示す図である。
(First embodiment)
1 to 10 relate to a first embodiment of the present invention. FIG. 1 is a diagram illustrating a configuration of a main part of an optical scanning observation system according to an embodiment.
 光走査型観察システム1は、例えば、図1に示すように、光源部2と、光ファイバ3と、走査型内視鏡4と、アクチュエータ部5と、走査駆動部6と、光ファイババンドル7と、光検出部8と、画像生成部9と、表示装置10と、制御部11と、を有して構成されている。 For example, as shown in FIG. 1, the optical scanning observation system 1 includes a light source unit 2, an optical fiber 3, a scanning endoscope 4, an actuator unit 5, a scanning drive unit 6, and an optical fiber bundle 7. And a light detection unit 8, an image generation unit 9, a display device 10, and a control unit 11.
 光源部2は、被写体を照明するための照明光を生成して光ファイバ3へ供給することができるように構成されている。また、光源部2は、制御部11の制御に基づいてオンまたはオフすることにより、光ファイバ3への照明光の供給を実施または停止するように構成されている。具体的には、光源部2は、例えば、制御部11の制御に応じて発光状態(オン状態)または消光状態(オフ状態)に切替可能な赤色(R)光用レーザ光源、緑色(G)光用レーザ光源、及び、青色(B)光用レーザ光源を具備するとともに、少なくとも1つの色の光を照明光として光ファイバ3に供給することができるように構成されている。 The light source unit 2 is configured to generate illumination light for illuminating a subject and supply it to the optical fiber 3. Further, the light source unit 2 is configured to perform or stop the supply of illumination light to the optical fiber 3 by being turned on or off based on the control of the control unit 11. Specifically, the light source unit 2 is, for example, a red (R) laser light source that can be switched to a light emitting state (on state) or a quenching state (off state) under the control of the control unit 11, and green (G). The laser light source for light and the laser light source for blue (B) light are provided, and light of at least one color can be supplied to the optical fiber 3 as illumination light.
 光ファイバ3は、例えば、シングルモードファイバ等により構成されている。光ファイバ3の光入射面を含む入射端部は、光源部2に接続されている。また、光ファイバ3の光出射面を含む出射端部は、走査型内視鏡4の先端部に配置されている。すなわち、光ファイバ3は、光源部2から供給される照明光を伝送し、当該伝送した照明光を出射端部から被写体へ出射することができるように構成されている。 The optical fiber 3 is composed of, for example, a single mode fiber. An incident end including the light incident surface of the optical fiber 3 is connected to the light source unit 2. Further, the exit end including the light exit surface of the optical fiber 3 is disposed at the distal end of the scanning endoscope 4. That is, the optical fiber 3 is configured to transmit the illumination light supplied from the light source unit 2 and to emit the transmitted illumination light from the emission end to the subject.
 走査型内視鏡4は、被検者の体腔内に挿入可能な細長形状を具備し、光源部2から供給される照明光により当該体腔内に存在する被写体を走査することができるように構成されている。 The scanning endoscope 4 has an elongated shape that can be inserted into a body cavity of a subject, and is configured to scan a subject existing in the body cavity with illumination light supplied from the light source unit 2. Has been.
 走査型内視鏡4の内部には、光ファイバ3と、光ファイババンドル7と、がそれぞれ挿通されている。また、走査型内視鏡4の内部には、走査駆動部6から供給される駆動信号に応じて光ファイバ3の出射端部を揺動するように構成されたアクチュエータ部5と、渦巻状の走査経路に沿って被写体を走査するための信号波形を示す情報、及び、走査型内視鏡4の機械的共振周波数を示す情報(後述)が少なくとも格納されているメモリ16と、が設けられている。 The optical fiber 3 and the optical fiber bundle 7 are inserted into the scanning endoscope 4 respectively. The scanning endoscope 4 includes an actuator unit 5 configured to swing the emission end of the optical fiber 3 in accordance with a drive signal supplied from the scan drive unit 6, and a spiral shape. There is provided a memory 16 in which at least information indicating a signal waveform for scanning the subject along the scanning path and information indicating a mechanical resonance frequency of the scanning endoscope 4 (described later) is stored. Yes.
 光ファイバ3及びアクチュエータ部5は、走査型内視鏡4の長手軸方向に垂直な断面において、例えば、図2に示す位置関係を具備するようにそれぞれ配置されている。図2は、第1の実施例に係るアクチュエータ部の構成の一例を説明するための図である。 The optical fiber 3 and the actuator unit 5 are arranged so as to have, for example, the positional relationship shown in FIG. 2 in a cross section perpendicular to the longitudinal axis direction of the scanning endoscope 4. FIG. 2 is a diagram for explaining an example of the configuration of the actuator unit according to the first embodiment.
 光ファイバ3とアクチュエータ部5との間には、図2に示すように、光ファイバ3の出射端部が貫通配置されるとともに、アクチュエータ部5が外表面上に配設された接合部材としてのフェルール41が配置されている。具体的には、フェルール41は、例えば、ジルコニア(セラミック)またはニッケル等により形成されている。 As shown in FIG. 2, the emission end of the optical fiber 3 is disposed between the optical fiber 3 and the actuator unit 5, and the actuator unit 5 is a bonding member disposed on the outer surface. A ferrule 41 is arranged. Specifically, the ferrule 41 is made of, for example, zirconia (ceramic) or nickel.
 フェルール41は、図2に示すように、走査型内視鏡4の長手軸方向に垂直な断面が光ファイバ3の中心軸を中心とする正方形になるように形成された四角柱形状を具備し、当該長手軸方向に直交するX軸方向に対して垂直な側面42a及び42cと、当該長手軸方向及び当該X軸方向にそれぞれ直交するY軸方向に対して垂直な側面42b及び42dとを有している。 As shown in FIG. 2, the ferrule 41 has a quadrangular prism shape formed so that a cross section perpendicular to the longitudinal axis direction of the scanning endoscope 4 is a square centered on the central axis of the optical fiber 3. Side surfaces 42a and 42c perpendicular to the X-axis direction perpendicular to the longitudinal axis direction, and side surfaces 42b and 42d perpendicular to the Y-axis direction perpendicular to the longitudinal axis direction and the X-axis direction, respectively. is doing.
 アクチュエータ部5は、走査駆動部6から供給される駆動信号に応じて光ファイバ3の出射端部を揺動することにより、当該出射端部を経て被写体へ出射される照明光の照射位置を所定の走査経路に沿って変位させることができるように構成されている。また、アクチュエータ部5は、例えば、図2に示すように、側面42aに沿って配置された圧電素子5aと、側面42bに沿って配置された圧電素子5bと、側面42cに沿って配置された圧電素子5cと、側面42dに沿って配置された圧電素子5dと、を有して構成されている。 The actuator unit 5 swings the emission end of the optical fiber 3 in accordance with the drive signal supplied from the scanning drive unit 6, thereby determining the irradiation position of the illumination light emitted to the subject via the emission end. It can be displaced along the scanning path. Further, for example, as shown in FIG. 2, the actuator unit 5 is arranged along the side surface 42a, the piezoelectric element 5a arranged along the side surface 42a, the piezoelectric element 5b arranged along the side surface 42b, and the side surface 42c. The piezoelectric element 5c and the piezoelectric element 5d arranged along the side surface 42d are included.
 圧電素子5a~5dは、例えば、相互に同一の長さ、幅及び厚さを具備する直方体形状に形成されている。また、圧電素子5a~5dは、例えば、走査駆動部6から供給される駆動信号に応じ、走査型内視鏡4の長手軸に対して平行な方向にそれぞれ伸縮するように構成されている。 The piezoelectric elements 5a to 5d are formed in a rectangular parallelepiped shape having the same length, width and thickness, for example. The piezoelectric elements 5a to 5d are configured to expand and contract in a direction parallel to the longitudinal axis of the scanning endoscope 4, for example, in accordance with a drive signal supplied from the scan drive unit 6.
 圧電素子5a及び5cは、直線振動の振動軸方向がX軸方向に相当する左右方向に設定されているとともに、走査駆動部6から供給される駆動信号に応じて振動することにより(相反する伸縮状態を維持しながら繰り返し伸縮することにより)、光ファイバ3の出射端部を揺動させることが可能な第1のアクチュエータとしての機能を具備して構成されている。 The piezoelectric elements 5a and 5c are set such that the vibration axis direction of the linear vibration is set to the left and right direction corresponding to the X axis direction, and vibrate according to the drive signal supplied from the scanning drive unit 6 (reciprocal expansion and contraction). By repeatedly expanding and contracting while maintaining the state), the optical fiber 3 is configured to have a function as a first actuator capable of swinging the emission end portion.
 圧電素子5b及び5dは、直線振動の振動軸方向がY軸方向に相当する上下方向に設定されているとともに、走査駆動部6から供給される駆動信号に応じて振動することにより(相反する伸縮状態を維持しながら繰り返し伸縮することにより)、光ファイバ3の出射端部を揺動させることが可能な第2のアクチュエータとしての機能を具備して構成されている。 The piezoelectric elements 5b and 5d are set such that the vibration axis direction of the linear vibration is set in the vertical direction corresponding to the Y-axis direction, and vibrate according to the drive signal supplied from the scanning drive unit 6 (reciprocal expansion and contraction). By repeatedly expanding and contracting while maintaining the state), the optical fiber 3 is configured to have a function as a second actuator capable of swinging the emission end portion.
 すなわち、以上に述べたような構成を具備するアクチュエータ部5によれば、直線振動の振動軸方向が相互に直交するまたは略直交する2つの方向に設定されている。 That is, according to the actuator unit 5 having the above-described configuration, the vibration axis directions of the linear vibration are set to two directions that are orthogonal or substantially orthogonal to each other.
 走査駆動部6は、例えば、アンプ及び信号発生器等を有する駆動回路により構成されている。また、走査駆動部6は、制御部11の制御に基づき、圧電素子5a及び5cを具備する第1のアクチュエータと、圧電素子5b及び5dを具備する第2のアクチュエータと、をそれぞれ振動させるための駆動信号を生成し、当該生成した駆動信号をアクチュエータ部5に供給するように構成されている。 The scanning drive unit 6 is constituted by a drive circuit having, for example, an amplifier and a signal generator. The scanning drive unit 6 is configured to vibrate the first actuator including the piezoelectric elements 5a and 5c and the second actuator including the piezoelectric elements 5b and 5d, respectively, based on the control of the control unit 11. A drive signal is generated, and the generated drive signal is supplied to the actuator unit 5.
 光ファイババンドル7は、例えば、複数の光ファイバを束ねて構成されている。光ファイババンドル7の入射端部は、走査型内視鏡4の先端部に配置されている。また、光ファイババンドル7の光出射面を含む出射端部は、光検出部8に接続されている。すなわち、光ファイババンドル7は、走査型内視鏡4の先端部において被写体からの戻り光(反射光)を受光するとともに、当該受光した戻り光を光検出部8へ伝送することができるように構成されている。 The optical fiber bundle 7 is configured by bundling a plurality of optical fibers, for example. The incident end of the optical fiber bundle 7 is disposed at the distal end of the scanning endoscope 4. Further, the emission end portion including the light emission surface of the optical fiber bundle 7 is connected to the light detection unit 8. That is, the optical fiber bundle 7 receives return light (reflected light) from the subject at the distal end portion of the scanning endoscope 4 and can transmit the received return light to the light detection unit 8. It is configured.
 光検出部8は、例えば、光検出素子及びA/D変換器等を具備して構成されている。また、光検出部8は、光ファイババンドル7の出射端部を経て入射される戻り光を検出し、当該検出した戻り光の光量に応じた電気信号を生成し、当該生成した電気信号をデジタル信号に変換して順次出力するように構成されている。 The light detection unit 8 includes, for example, a light detection element and an A / D converter. The light detection unit 8 detects return light that is incident through the emission end of the optical fiber bundle 7, generates an electrical signal corresponding to the amount of the detected return light, and digitally converts the generated electrical signal. The signals are converted into signals and sequentially output.
 画像生成部9は、例えば、画像処理回路等を具備して構成されている。また、画像生成部9は、制御部11の制御に基づき、例えば、第1の渦巻状の走査経路(後述)及び第2の渦巻状の走査経路(後述)のうちの一方の走査経路で被写体を走査している期間中に光検出部8から出力されるデジタル信号に応じた輝度値を画素情報としてマッピングするマッピング処理等を行うことにより1フレーム分の観察画像を生成し、当該生成した観察画像を表示装置10へ出力するように構成されている。 The image generation unit 9 includes, for example, an image processing circuit. In addition, the image generation unit 9 can control the subject on one of the first spiral scanning path (described later) and the second spiral scanning path (described later) based on the control of the control unit 11, for example. An observation image for one frame is generated by performing mapping processing for mapping the luminance value corresponding to the digital signal output from the light detection unit 8 as pixel information during the period of scanning the image, and the generated observation An image is output to the display device 10.
 表示装置10は、例えば、液晶ディスプレイ等により構成されている。また、表示装置10は、画像生成部9から出力される観察画像等を表示することができるように構成されている。 The display device 10 is composed of, for example, a liquid crystal display. The display device 10 is configured to display an observation image output from the image generation unit 9.
 制御部11は、例えば、演算回路及び制御回路等を含む集積回路を具備し、光源部2、走査駆動部6及び画像生成部9のそれぞれに対して制御を行うように構成されている。 The control unit 11 includes, for example, an integrated circuit including an arithmetic circuit and a control circuit, and is configured to control each of the light source unit 2, the scan driving unit 6, and the image generation unit 9.
 制御部11は、例えば、光走査型観察システムの電源が投入された際に、メモリ16に格納されている情報を読み込むように構成されている。また、制御部11は、メモリ16から読み込んだ情報に基づき、例えば、R光、G光及びB光を時分割で被写体に照射しつつ、渦巻状の走査経路で当該被写体を走査するための制御を行うように構成されている。 The control unit 11 is configured to read information stored in the memory 16 when the power of the optical scanning observation system is turned on, for example. Further, the control unit 11 performs control for scanning the subject with a spiral scanning path while irradiating the subject with R light, G light, and B light in a time-sharing manner based on the information read from the memory 16, for example. Is configured to do.
 具体的には、制御部11は、例えば、図3の破線で示すような第1の信号波形と、図3の一点鎖線で示すような第2の信号波形と、がメモリ16に格納されている場合において、当該第1の信号波形を具備する駆動信号DSXと、当該第2の信号波形を具備する駆動信号DSYと、を生成させるための制御を走査駆動部6に対して行うとともに、R光、G光及びB光をこの順番で繰り返し光ファイバ3に供給させるための制御を光源部2に対して行う。また、走査駆動部6は、制御部11の制御に基づいて生成した駆動信号DSXをアクチュエータ部5の圧電素子5a及び5cに供給するとともに、制御部11の制御に基づいて生成した駆動信号DSYをアクチュエータ部5の圧電素子5b及び5dに供給する。なお、図3の破線で示した第1の信号波形は、例えば、所定の変調を正弦波に施して得られる波形である。また、図3の一点鎖線で示した第2の信号波形は、例えば、前述の第1の信号波形の位相を90°ずらして得られる波形である。図3は、走査型内視鏡のアクチュエータ部に供給される駆動信号の信号波形の一例を示す図である。 Specifically, the control unit 11 stores, for example, a first signal waveform as shown by a broken line in FIG. 3 and a second signal waveform as shown by a one-dot chain line in FIG. In this case, the scan driver 6 is controlled to generate the drive signal DSX having the first signal waveform and the drive signal DSY having the second signal waveform, and R Control for repeatedly supplying light, G light, and B light to the optical fiber 3 in this order is performed on the light source unit 2. Further, the scanning drive unit 6 supplies the drive signal DSX generated based on the control of the control unit 11 to the piezoelectric elements 5 a and 5 c of the actuator unit 5, and the drive signal DSY generated based on the control of the control unit 11. This is supplied to the piezoelectric elements 5b and 5d of the actuator unit 5. Note that the first signal waveform indicated by a broken line in FIG. 3 is a waveform obtained by performing predetermined modulation on a sine wave, for example. Further, the second signal waveform indicated by the one-dot chain line in FIG. 3 is a waveform obtained by shifting the phase of the first signal waveform by 90 °, for example. FIG. 3 is a diagram illustrating an example of a signal waveform of a drive signal supplied to the actuator unit of the scanning endoscope.
 そして、以上に述べたような制御及び動作が行われることにより、光ファイバ3の出射端部が渦巻状に揺動されるとともに、図4及び図5に示すような渦巻状の走査経路に沿って被写体の表面が走査される。図4は、中心点Aから最外点Bに至るまでの照明光の照射位置の時間的な変位を説明するための図である。図5は、最外点Bから中心点Aに至るまでの照明光の照射位置の時間的な変位を説明するための図である。 Then, by performing the control and operation as described above, the emission end of the optical fiber 3 is swung in a spiral shape, and along the spiral scanning path as shown in FIGS. 4 and 5. The surface of the subject is scanned. FIG. 4 is a diagram for explaining the temporal displacement of the irradiation position of the illumination light from the center point A to the outermost point B. FIG. FIG. 5 is a diagram for explaining temporal displacement of the illumination light irradiation position from the outermost point B to the center point A. FIG.
 具体的には、まず、時刻T1においては、被写体の表面における照明光の照射位置の中心点Aに相当する位置に照明光が照射される。その後、駆動信号DSX及びDSYの振幅(信号レベル)が時刻T1から時刻T2にかけて増加するに伴い、被写体の表面における照明光の照射位置が、中心点Aを起点として外側へ向かう第1の渦巻状の走査経路に沿って変位し、さらに、時刻T2に達すると、被写体の表面における照明光の照射位置の最外点Bに照明光が照射される。そして、駆動信号DSX及びDSYの振幅(信号レベル)が時刻T2から時刻T3にかけて減少するに伴い、被写体の表面における照明光の照射位置が、最外点Bを起点として内側へ向かう第2の渦巻状の走査経路に沿って変位し、さらに、時刻T3に達すると、被写体の表面における中心点Aに照明光が照射される。 Specifically, first, at time T1, illumination light is irradiated to a position corresponding to the center point A of the irradiation position of the illumination light on the surface of the subject. Thereafter, as the amplitudes (signal levels) of the drive signals DSX and DSY increase from time T1 to time T2, the irradiation position of the illumination light on the surface of the subject is a first spiral shape that starts outward from the center point A. When the time T2 is reached and the time T2 is reached, the outermost point B of the illumination light irradiation position on the surface of the subject is irradiated with the illumination light. Then, as the amplitudes (signal levels) of the drive signals DSX and DSY decrease from the time T2 to the time T3, the illumination light irradiation position on the surface of the subject is a second spiral that goes inward starting from the outermost point B. When the point is displaced along the scanning path and further reaches time T3, illumination light is irradiated to the center point A on the surface of the subject.
 制御部11は、メモリ16から読み込んだ情報に基づき、例えば、第1の渦巻状の走査経路及び第2の渦巻状の走査経路のうちの一方の走査経路で被写体を走査している期間中に光検出部8から出力されるデジタル信号を用いて1フレーム分の画像を生成させるとともに、当該一方の走査経路とは異なる他方の走査経路で当該被写体を走査している期間中に光検出部8から出力されるデジタル信号を用いた画像を生成させないようにするための制御を画像生成部9に対して行うように構成されている。 Based on the information read from the memory 16, the control unit 11, for example, during a period during which the subject is scanned by one of the first spiral scanning path and the second spiral scanning path. The digital signal output from the light detection unit 8 is used to generate an image for one frame, and the light detection unit 8 is in a period during which the subject is scanned by another scanning path different from the one scanning path. The image generation unit 9 is configured to perform control so as not to generate an image using a digital signal output from the image generation unit 9.
 制御部11は、例えば、キーボード等の入力装置に設けられたキャリブレーションスイッチ(不図示)が押下されたことを検知した際に、メモリ16から読み込んだ情報と、光照射位置検出装置101から出力される出力信号と、に基づき、走査型内視鏡4の較正に係る動作を行うように構成されている。 For example, when the control unit 11 detects that a calibration switch (not shown) provided in an input device such as a keyboard is pressed, the control unit 11 outputs information read from the memory 16 and the light irradiation position detection device 101. And an operation related to calibration of the scanning endoscope 4 based on the output signal.
 光照射位置検出装置101は、位置検出素子(PSD:Position Sensitive Detector)等を具備して構成されている。また、光照射位置検出装置101は、例えば、走査型内視鏡4から出射される照明光を受光面で受光した際に、当該照明光を受光した受光位置に応じて異なる電圧を発生するとともに、当該発生した電圧の大きさに相当する電圧値を振幅とする出力信号を生成して出力するように構成されている。すなわち、光照射位置検出装置101は、走査型内視鏡4から出射される照明光を受光面で受光した際に、当該受光面における当該照明光の受光位置を示す出力信号を出力するように構成されている。 The light irradiation position detection device 101 includes a position detection element (PSD: Position Sensitive Detector) and the like. For example, when the light irradiation position detection apparatus 101 receives illumination light emitted from the scanning endoscope 4 on the light receiving surface, the light irradiation position detection apparatus 101 generates different voltages depending on the light reception position where the illumination light is received. The output signal having the amplitude corresponding to the magnitude of the generated voltage is generated and output. That is, the light irradiation position detection device 101 outputs an output signal indicating the light receiving position of the illumination light on the light receiving surface when the illumination light emitted from the scanning endoscope 4 is received by the light receiving surface. It is configured.
 続いて、以上に述べたような構成を具備する光走査型観察システム1の動作等について説明する。 Subsequently, the operation of the optical scanning observation system 1 having the configuration as described above will be described.
 作業者は、光走査型観察システム1の各部を接続して電源を投入した後、走査型内視鏡4の先端部を光照射位置検出装置101の受光面に対向する位置に配置した状態において、キャリブレーションスイッチを押下することにより、走査型内視鏡4の較正に係る動作を実施させるための指示を行う。なお、以降においては、光ファイバ3の静止時に照射される照明光の照射位置が光照射位置検出装置101の受光面の中心に一致するような配置状態でキャリブレーションスイッチが押下された場合を例に挙げて説明を行う。 The operator connects each part of the optical scanning observation system 1 and turns on the power, and then places the distal end of the scanning endoscope 4 at a position facing the light receiving surface of the light irradiation position detection device 101. By pressing the calibration switch, an instruction for performing an operation related to calibration of the scanning endoscope 4 is performed. In the following, an example in which the calibration switch is pressed in an arrangement state in which the irradiation position of the illumination light irradiated when the optical fiber 3 is stationary coincides with the center of the light receiving surface of the light irradiation position detection device 101 will be described. Will be described.
 制御部11は、光走査型観察システム1の電源が投入された際に、メモリ16に格納されている情報を読み込み、さらに、当該読み込んだ情報に基づき、圧電素子5a及び5cの振動による機械的共振周波数frxと、圧電素子5b及び5dの振動による機械的共振周波数frxと、をそれぞれ特定する。 When the optical scanning observation system 1 is turned on, the control unit 11 reads information stored in the memory 16, and based on the read information, mechanically due to vibrations of the piezoelectric elements 5a and 5c. The resonance frequency frx and the mechanical resonance frequency frx due to the vibration of the piezoelectric elements 5b and 5d are specified.
 なお、機械的共振周波数frxは、例えば、圧電素子5a及び5cが振動した際に、フェルール41の先端から突出した光ファイバ3の出射端部のX軸方向の振幅が最大になるような周波数として走査型内視鏡4毎に取得されるパラメータである。また、機械的共振周波数fryは、例えば、圧電素子5b及び5dが振動した際に、フェルール41の先端から突出した光ファイバ3の出射端部のY軸方向の振幅が最大になるような周波数として走査型内視鏡4毎に取得されるパラメータである。すなわち、メモリ16には、走査型内視鏡4の機械的共振周波数を示す情報として、例えば、機械的共振周波数frx及びfryの値をそれぞれ特定可能な情報が格納されている。 The mechanical resonance frequency frx is, for example, a frequency that maximizes the amplitude in the X-axis direction of the emission end of the optical fiber 3 protruding from the tip of the ferrule 41 when the piezoelectric elements 5a and 5c vibrate. This is a parameter acquired for each scanning endoscope 4. The mechanical resonance frequency fry is, for example, a frequency that maximizes the amplitude in the Y-axis direction of the exit end of the optical fiber 3 protruding from the tip of the ferrule 41 when the piezoelectric elements 5b and 5d vibrate. This is a parameter acquired for each scanning endoscope 4. That is, the memory 16 stores, as information indicating the mechanical resonance frequency of the scanning endoscope 4, for example, information that can specify the values of the mechanical resonance frequencies frx and fry, respectively.
 一方、制御部11は、例えば、キャリブレーションスイッチが押下されたことを検知した直後に、所定の照明光を光ファイバ3に供給させるための制御を光源部2に対して行うとともに、機械的共振周波数frxを有する正弦波の駆動信号CSXをアクチュエータ部5の圧電素子5a及び5cに一定時間供給させるための制御を走査駆動部6に対して行う。そして、このような制御部11の制御に応じ、走査型内視鏡4から出射された照明光が光照射位置検出装置101の受光面で受光されるとともに、当該受光面における当該照明光の受光位置を示す出力信号が光照射位置検出装置101から順次出力される。また、制御部11は、光照射位置検出装置101から順次出力される出力信号に基づき、圧電素子5a及び5cの振動により揺動された光ファイバ3の出射端部の軌跡を、圧電素子5a及び5cに対する駆動信号CSXの供給に応じた照明光の照射位置の時間的な変位として検出する。 On the other hand, the control unit 11 performs control for supplying predetermined illumination light to the optical fiber 3 immediately after detecting that the calibration switch is pressed, for example, and mechanical resonance. Control for supplying a sine wave drive signal CSX having the frequency frx to the piezoelectric elements 5 a and 5 c of the actuator unit 5 for a certain period of time is performed on the scanning drive unit 6. Then, under the control of the control unit 11, the illumination light emitted from the scanning endoscope 4 is received by the light receiving surface of the light irradiation position detection device 101 and the light receiving surface receives the illumination light. Output signals indicating positions are sequentially output from the light irradiation position detection device 101. Further, the control unit 11 determines the locus of the emission end of the optical fiber 3 oscillated by the vibration of the piezoelectric elements 5a and 5c, based on the output signals sequentially output from the light irradiation position detection device 101, and the piezoelectric elements 5a and 5c. This is detected as a temporal displacement of the irradiation position of the illumination light according to the supply of the drive signal CSX to 5c.
 また、制御部11は、例えば、圧電素子5a及び5cに対する駆動信号CSXの供給を開始してから一定時間が経過した後に、機械的共振周波数fryを有する正弦波の駆動信号CSYをアクチュエータ部5の圧電素子5b及び5dに一定時間供給させるための制御を走査駆動部6に対して行う。そして、このような制御部11の制御に応じ、走査型内視鏡4から出射された照明光が光照射位置検出装置101の受光面で受光されるとともに、当該受光面における当該照明光の受光位置を示す出力信号が光照射位置検出装置101から順次出力される。また、制御部11は、光照射位置検出装置101から順次出力される出力信号に基づき、圧電素子5b及び5dの振動により揺動された光ファイバ3の出射端部の軌跡を、圧電素子5b及び5dに対する駆動信号CSYの供給に応じた照明光の照射位置の時間的な変位として検出する。 For example, the control unit 11 outputs a sinusoidal drive signal CSY having a mechanical resonance frequency fry of the actuator unit 5 after a predetermined time has elapsed after the supply of the drive signal CSX to the piezoelectric elements 5a and 5c is started. Control for supplying the piezoelectric elements 5b and 5d for a certain period of time is performed on the scanning drive unit 6. Then, under the control of the control unit 11, the illumination light emitted from the scanning endoscope 4 is received by the light receiving surface of the light irradiation position detection device 101 and the light receiving surface receives the illumination light. Output signals indicating positions are sequentially output from the light irradiation position detection device 101. Further, the control unit 11 uses the output signals sequentially output from the light irradiation position detection device 101 to change the locus of the emission end of the optical fiber 3 oscillated by the vibration of the piezoelectric elements 5b and 5d. This is detected as a temporal displacement of the irradiation position of the illumination light according to the supply of the drive signal CSY to 5d.
 ここで、例えば、圧電素子5a及び5cの中心同士を結ぶ線分が図2のX軸に沿うように配置された理想的な配置状態においては、駆動信号CSXの供給に応じて走査型内視鏡4から出射される照明光の照射位置の時間的な変位が、図6の実線で示すような、X軸上の所定の範囲内を往復する直線状の走査軌跡LXとして検出される。また、例えば、圧電素子5b及び5dの中心同士を結ぶ線分が図2のY軸に沿うように配置された理想的な配置状態においては、駆動信号CSYの供給に応じて走査型内視鏡4から出射される照明光の照射位置の時間的な変位が、図7の実線で示すような、Y軸上の所定の範囲内を往復する直線状の走査軌跡LYとして検出される。図6は、第1のアクチュエータに対する駆動信号CSXの供給に応じて検出される照明光の照射位置の時間的な変位を説明するための図である。図7は、第2のアクチュエータに対する駆動信号CSYの供給に応じて検出される照明光の照射位置の時間的な変位を説明するための図である。 Here, for example, in an ideal arrangement state in which the line segment connecting the centers of the piezoelectric elements 5a and 5c is arranged along the X axis in FIG. 2, the scanning type endoscope is supplied in accordance with the supply of the drive signal CSX. The temporal displacement of the irradiation position of the illumination light emitted from the mirror 4 is detected as a linear scanning locus LX that reciprocates within a predetermined range on the X axis as shown by the solid line in FIG. Further, for example, in an ideal arrangement state in which a line segment connecting the centers of the piezoelectric elements 5b and 5d is arranged along the Y axis in FIG. 2, a scanning endoscope is provided according to the supply of the drive signal CSY. The temporal displacement of the irradiation position of the illumination light emitted from 4 is detected as a linear scanning locus LY that reciprocates within a predetermined range on the Y axis, as indicated by the solid line in FIG. FIG. 6 is a diagram for explaining the temporal displacement of the irradiation position of the illumination light detected in response to the supply of the drive signal CSX to the first actuator. FIG. 7 is a diagram for explaining temporal displacement of the irradiation position of the illumination light detected in response to the supply of the drive signal CSY to the second actuator.
 しかし、アクチュエータ部5の実際の製造工程においては、前述のような理想的な配置状態で圧電素子5a~5dを配置することが非常に困難であるとともに、圧電素子5a~5dの配置位置のずれによる製造誤差が発生しやすい。そのため、圧電素子5a及び5cの実際の配置状態においては、前述の製造誤差に応じて発生するX軸方向以外の他の方向の振動により、駆動信号CSXの供給に応じて走査型内視鏡4から出射される照明光の照射位置の時間的な変位が、例えば、図6の一点鎖線で示すような、X軸方向に長軸を有しかつY軸方向に短軸を有する楕円状の走査軌跡EXとして検出される。また、圧電素子5b及び5dの実際の配置状態においては、前述の製造誤差に応じて発生するY軸方向以外の他の方向の振動により、駆動信号CSYの供給に応じて走査型内視鏡4から出射される照明光の照射位置の時間的な変位が、例えば、図7の一点鎖線で示すような、Y軸方向に長軸を有しかつX軸方向に短軸を有する楕円状の走査軌跡EYとして検出される。 However, in the actual manufacturing process of the actuator unit 5, it is very difficult to arrange the piezoelectric elements 5a to 5d in the ideal arrangement state as described above, and the displacement of the arrangement positions of the piezoelectric elements 5a to 5d is difficult. Manufacturing error is likely to occur. Therefore, in the actual arrangement state of the piezoelectric elements 5a and 5c, the scanning endoscope 4 according to the supply of the drive signal CSX due to the vibration in the direction other than the X-axis direction generated according to the manufacturing error described above. The temporal displacement of the irradiation position of the illumination light emitted from the elliptical scan having a major axis in the X-axis direction and a minor axis in the Y-axis direction, as shown by a one-dot chain line in FIG. It is detected as a trajectory EX. In the actual arrangement state of the piezoelectric elements 5b and 5d, the scanning endoscope 4 according to the supply of the drive signal CSY is caused by the vibration in the direction other than the Y-axis direction generated according to the manufacturing error. The temporal displacement of the irradiation position of the illumination light emitted from the elliptical scan having a major axis in the Y-axis direction and a minor axis in the X-axis direction as indicated by a one-dot chain line in FIG. It is detected as a locus EY.
 すなわち、楕円状の走査軌跡EX及びEYの検出結果は、圧電素子5a~5dの配置位置のずれにより発生するアクチュエータ部5の製造誤差の大きさを表す指標として扱うことができる。そこで、本実施例においては、楕円状の走査軌跡EX及びEYの検出結果に基づき、アクチュエータ部5に供給される駆動信号DSX及び駆動信号DSYのうちの少なくとも一方の振幅の調整に用いる調整係数を算出するための処理を行うことにより、前述の製造誤差が比較的大きい場合であっても、渦巻状の走査経路で被写体を走査する際の走査経路を本来意図した(図4及び図5に例示した)走査経路から極力外れないようにしている。このような調整係数の算出に係る処理の具体例について、以下に説明する。 That is, the detection results of the elliptical scanning trajectories EX and EY can be handled as an index indicating the magnitude of the manufacturing error of the actuator unit 5 caused by the displacement of the arrangement positions of the piezoelectric elements 5a to 5d. Therefore, in this embodiment, an adjustment coefficient used for adjusting the amplitude of at least one of the drive signal DSX and the drive signal DSY supplied to the actuator unit 5 based on the detection results of the elliptical scanning trajectories EX and EY. By performing the process for calculation, even when the above-described manufacturing error is relatively large, the scanning path when the subject is scanned by the spiral scanning path is originally intended (illustrated in FIGS. 4 and 5). To avoid deviating from the scanning path as much as possible. A specific example of processing related to the calculation of the adjustment coefficient will be described below.
 制御部11は、楕円状の走査軌跡EX及びEYの検出結果に基づき、例えば、当該楕円状の走査軌跡EX及びEYが相互に同じ回転方向であることを検出した際に、楕円状の走査軌跡EXにおける長軸及び短軸の長さと、楕円状の走査軌跡EYにおける長軸及び短軸の長さと、をそれぞれ算出する。 Based on the detection results of the elliptical scanning trajectories EX and EY, for example, when the controller 11 detects that the elliptical scanning trajectories EX and EY are in the same rotation direction, the elliptical scanning trajectory The lengths of the major axis and the minor axis in EX and the lengths of the major axis and the minor axis in the elliptical scanning locus EY are calculated, respectively.
 すなわち、制御部11は、楕円状の走査軌跡EXの長軸の長さを圧電素子5a及び5cの直線振動の振動軸方向として設定された左右方向の振動成分の大きさとして検出し、楕円状の走査軌跡EXの短軸の長さを当該左右方向以外の方向の振動成分の大きさとして検出するようにしている。また、制御部11は、楕円状の走査軌跡EYの長軸の長さを圧電素子5b及び5dの直線振動の振動軸方向として設定された上下方向の振動成分の大きさとして検出し、楕円状の走査軌跡EYの短軸の長さを当該上下方向以外の方向の振動成分の大きさとして検出するようにしている。 That is, the control unit 11 detects the length of the long axis of the elliptical scanning locus EX as the magnitude of the vibration component in the left-right direction set as the vibration axis direction of the linear vibration of the piezoelectric elements 5a and 5c. The length of the short axis of the scanning trajectory EX is detected as the magnitude of the vibration component in a direction other than the left-right direction. Further, the control unit 11 detects the length of the major axis of the elliptical scanning locus EY as the magnitude of the vertical vibration component set as the vibration axis direction of the linear vibration of the piezoelectric elements 5b and 5d. The length of the short axis of the scanning locus EY is detected as the magnitude of the vibration component in a direction other than the vertical direction.
 制御部11は、楕円状の走査軌跡EXにおける長軸及び短軸の長さを用いて扁平率EXFを算出し、楕円状の走査軌跡EYにおける長軸及び短軸の長さを用いて扁平率EYFを算出する。その後、制御部11は、前述のように算出した扁平率EXF及びEYFに基づき、駆動信号DSX及び駆動信号DSYのうちの少なくとも一方の振幅の調整に用いる調整係数を算出するための処理を行うとともに、当該算出した調整係数を走査型内視鏡4の較正用の情報としてメモリ16に格納することにより、走査型内視鏡4の較正に係る動作を完了する。 The control unit 11 calculates the flatness ratio EXF using the lengths of the major axis and the minor axis in the elliptical scanning locus EX, and uses the lengths of the major axis and the minor axis in the elliptical scanning locus EY. EYF is calculated. Thereafter, the control unit 11 performs processing for calculating an adjustment coefficient used for adjusting the amplitude of at least one of the drive signal DSX and the drive signal DSY based on the flatness ratios EXF and EYF calculated as described above. Then, the calculated adjustment coefficient is stored in the memory 16 as information for calibration of the scanning endoscope 4, thereby completing the operation related to the calibration of the scanning endoscope 4.
 具体的には、制御部11は、扁平率EYFを扁平率EXFで除することにより得られる比の値(=EYF/EXF)を、駆動信号DSXの振幅の調整に用いる調整係数ACXとして算出するとともに、当該算出した調整係数ACXを走査型内視鏡4の較正用の情報としてメモリ16に格納することにより、走査型内視鏡4の較正に係る動作を完了する。 Specifically, the control unit 11 calculates a ratio value (= EYF / EXF) obtained by dividing the flat rate EYF by the flat rate EXF as an adjustment coefficient ACX used for adjusting the amplitude of the drive signal DSX. At the same time, the calculated adjustment coefficient ACX is stored in the memory 16 as information for calibration of the scanning endoscope 4, thereby completing the operation relating to the calibration of the scanning endoscope 4.
 または、制御部11は、扁平率EXFを扁平率EYFで除することにより得られる比の値(=EXF/EYF)を、駆動信号DSYの振幅の調整に用いる調整係数ACYとして算出するとともに、当該算出した調整係数ACYを走査型内視鏡4の較正用の情報としてメモリ16に格納することにより、走査型内視鏡4の較正に係る動作を完了する。 Alternatively, the control unit 11 calculates a ratio value (= EXF / EYF) obtained by dividing the flatness ratio EXF by the flatness ratio EYF as an adjustment coefficient ACY used for adjusting the amplitude of the drive signal DSY, and The calculated adjustment coefficient ACY is stored in the memory 16 as information for calibration of the scanning endoscope 4, thereby completing the operation related to the calibration of the scanning endoscope 4.
 そして、制御部11は、光走査型観察システム1の電源の投入時にメモリ16から読み込んだ情報の中に調整係数ACXが含まれていることを検出した場合には、渦巻状の走査経路で被写体を走査する際に、駆動信号DSX及び駆動信号DSYを生成させるための制御に加え、例えば、当該調整係数ACXを当該駆動信号DSXの信号波形の振幅に乗じることにより、当該駆動信号DSXと当該駆動信号DSYとの振幅比がACX:1になるように調整するための制御を走査駆動部6に対して行う。 When the control unit 11 detects that the adjustment coefficient ACX is included in the information read from the memory 16 when the optical scanning observation system 1 is turned on, the control unit 11 performs the subject scan through the spiral scanning path. In addition to the control for generating the drive signal DSX and the drive signal DSY, for example, by multiplying the adjustment coefficient ACX by the amplitude of the signal waveform of the drive signal DSX, Control for adjusting the amplitude ratio of the signal DSY to ACX: 1 is performed on the scan driver 6.
 また、制御部11は、光走査型観察システム1の電源の投入時にメモリ16から読み込んだ情報の中に調整係数ACYが含まれていることを検出した場合には、渦巻状の走査経路で被写体を走査する際に、駆動信号DSX及び駆動信号DSYを生成させるための制御に加え、例えば、当該調整係数ACYを当該駆動信号DSYの信号波形の振幅に乗じることにより、当該駆動信号DSXと当該駆動信号DSYとの振幅比が1:ACYになるように調整するための制御を走査駆動部6に対して行う。 In addition, when the control unit 11 detects that the adjustment coefficient ACY is included in the information read from the memory 16 when the optical scanning observation system 1 is turned on, the control unit 11 performs the subject scan through the spiral scanning path. In addition to the control for generating the drive signal DSX and the drive signal DSY, for example, by multiplying the adjustment coefficient ACY by the amplitude of the signal waveform of the drive signal DSY, the drive signal DSX and the drive signal are scanned. Control for adjusting the amplitude ratio of the signal DSY to 1: ACY is performed on the scan driver 6.
 以上に述べたように、本実施例によれば、楕円状の走査軌跡EX及びEYの検出結果に基づいて算出される調整係数を用い、アクチュエータ部5に供給される駆動信号DSX及び駆動信号DSYのうちの少なくとも一方の振幅を調整することにより、圧電素子5a~5dの配置位置のずれにより発生するアクチュエータ部5の製造誤差が比較的大きい場合であっても、渦巻状の走査経路で被写体を走査する際の走査精度を極力低下させないようにすることができる。従って、本実施例によれば、走査型内視鏡の製造ばらつきに応じて発生する走査精度のばらつきを極力抑制することができる。 As described above, according to the present embodiment, the drive signal DSX and the drive signal DSY supplied to the actuator unit 5 using the adjustment coefficient calculated based on the detection results of the elliptical scanning trajectories EX and EY. By adjusting the amplitude of at least one of these, even if the manufacturing error of the actuator unit 5 caused by the displacement of the placement positions of the piezoelectric elements 5a to 5d is relatively large, the subject is detected by the spiral scanning path. It is possible to prevent the scanning accuracy during scanning from being reduced as much as possible. Therefore, according to the present embodiment, it is possible to suppress as much as possible the variation in scanning accuracy that occurs in accordance with the manufacturing variation of the scanning endoscope.
 なお、本実施例によれば、前述のように算出された調整係数ACXまたはACYが、走査型内視鏡4の較正用の情報としてメモリ16に格納されるものに限らず、例えば、アクチュエータ部5に対する駆動信号DSX及び駆動信号DSYの供給に関与する素子または回路等における電気的パラメータとして反映されるようにしてもよい。 According to the present embodiment, the adjustment coefficient ACX or ACY calculated as described above is not limited to the information stored in the memory 16 as the calibration information for the scanning endoscope 4, but may be an actuator unit, for example. 5 may be reflected as an electrical parameter in an element or circuit involved in the supply of the drive signal DSX and the drive signal DSY to 5.
 具体的には、例えば、図8に示すように、走査駆動部6から圧電素子5a及び5cに対して駆動信号DSXを供給するための信号線の途中に可変抵抗器VRAを設け、走査駆動部6から圧電素子5b及び5dに対して駆動信号DSYを供給するための信号線の途中に可変抵抗器VRBを設け、可変抵抗器VRAと可変抵抗器VRBとの抵抗比を1:1にした状態で調整係数ACXまたはACYを算出し、当該算出した調整係数を用いて可変抵抗器VRAと可変抵抗器VRBとの抵抗比をACX:1または1:ACYに設定するようにしてもよい。図8は、第1の実施例の変形例に係る構成の一例を説明するための図である。 Specifically, for example, as shown in FIG. 8, a variable resistor VRA is provided in the middle of a signal line for supplying a drive signal DSX from the scan drive unit 6 to the piezoelectric elements 5a and 5c, and the scan drive unit 6 is a state in which a variable resistor VRB is provided in the middle of a signal line for supplying a drive signal DSY to the piezoelectric elements 5b and 5d, and the resistance ratio of the variable resistor VRA and the variable resistor VRB is 1: 1. Then, the adjustment coefficient ACX or ACY may be calculated and the resistance ratio between the variable resistor VRA and the variable resistor VRB may be set to ACX: 1 or 1: ACY using the calculated adjustment coefficient. FIG. 8 is a diagram for explaining an example of a configuration according to a modification of the first embodiment.
 また、本実施例によれば、直線振動の振動軸が相互に直交するまたは略直交する2つの方向に設定される限りにおいては、例えば、図9に示すような、アクチュエータ部5から圧電素子5c及び5dを取り除いて形成したアクチュエータ部51であっても、アクチュエータ部5と略同様の作用効果を得ることができる。図9は、第1の実施例の変形例に係る構成の一例を説明するための図である。 Further, according to the present embodiment, as long as the vibration axes of the linear vibration are set in two directions that are orthogonal or substantially orthogonal to each other, for example, from the actuator unit 5 to the piezoelectric element 5c as shown in FIG. Even if the actuator part 51 is formed by removing 5d and 5d, substantially the same effect as the actuator part 5 can be obtained. FIG. 9 is a diagram for explaining an example of a configuration according to a modification of the first embodiment.
 一方、本実施例に係る構成及び動作等を適宜変形することにより、例えば、制御部11が、アクチュエータ部5の2つの振動軸のなす角度θ(0<θ<90°)を検出するとともに、駆動信号DSXに対する駆動信号DSYの位相のずれを90°+θに調整するような制御を走査駆動部6に対して行うようにしてもよい。 On the other hand, by appropriately modifying the configuration and operation according to the present embodiment, for example, the control unit 11 detects the angle θ (0 <θ <90 °) formed by the two vibration axes of the actuator unit 5, and Control that adjusts the phase shift of the drive signal DSY with respect to the drive signal DSX to 90 ° + θ may be performed on the scanning drive unit 6.
 また、本実施例に係る構成及び動作等を適宜変形することにより、例えば、図10に示すような、3つの側面72a、72b及び72cを有し、走査型内視鏡4の長手軸方向に垂直な断面が光ファイバ3の中心軸を中心とする正三角形になるように形成された三角柱形状のフェルール71と、アクチュエータ部81と、を有して構成された走査型内視鏡4の較正に係る動作を行うようにしてもよい。図10は、第1の実施例の変形例に係る構成の一例を説明するための図である。 Further, by appropriately modifying the configuration and operation according to the present embodiment, for example, as shown in FIG. 10, it has three side surfaces 72 a, 72 b, and 72 c and is arranged in the longitudinal axis direction of the scanning endoscope 4. Calibration of the scanning endoscope 4 configured to include a triangular prism-shaped ferrule 71 formed so that the vertical cross section is an equilateral triangle centered on the central axis of the optical fiber 3, and the actuator unit 81. You may make it perform the operation | movement which concerns on. FIG. 10 is a diagram for explaining an example of a configuration according to a modification of the first embodiment.
 フェルール71は、図10に示すように、走査型内視鏡4の長手軸に直交しかつ相互に異なる3つの軸方向TX、TY及びTZに対してそれぞれ垂直な側面72a、72b及び72cを有している。また、フェルール71の中心には、光ファイバ3が固定配置されている。 As shown in FIG. 10, the ferrule 71 has side surfaces 72a, 72b, and 72c perpendicular to the longitudinal axis of the scanning endoscope 4 and perpendicular to the different axial directions TX, TY, and TZ, respectively. is doing. Further, the optical fiber 3 is fixedly arranged at the center of the ferrule 71.
 アクチュエータ部81は、走査駆動部6から供給される駆動信号に応じて光ファイバ3の出射端部を揺動することにより、当該出射端部を経て被写体へ出射される照明光の照射位置を所定の走査経路に沿って変位させることができるように構成されている。また、アクチュエータ部81は、側面72aに沿って配置された圧電素子81aと、側面72bに沿って配置された圧電素子81bと、側面72cに沿って配置された圧電素子81cと、を有して構成されている。 The actuator unit 81 swings the emission end portion of the optical fiber 3 in accordance with the drive signal supplied from the scanning drive unit 6, thereby determining the irradiation position of the illumination light emitted to the subject via the emission end portion. It can be displaced along the scanning path. The actuator section 81 includes a piezoelectric element 81a disposed along the side surface 72a, a piezoelectric element 81b disposed along the side surface 72b, and a piezoelectric element 81c disposed along the side surface 72c. It is configured.
 圧電素子81a~81cは、例えば、相互に同一の長さ、幅及び厚さを具備する直方体形状に形成されている。また、圧電素子81a~81cは、例えば、走査駆動部6から供給される駆動信号に応じ、走査型内視鏡4の長手軸に対して平行な方向にそれぞれ伸縮するように構成されている。 The piezoelectric elements 81a to 81c are formed in a rectangular parallelepiped shape having the same length, width and thickness, for example. The piezoelectric elements 81a to 81c are configured to expand and contract in a direction parallel to the longitudinal axis of the scanning endoscope 4, for example, in accordance with a driving signal supplied from the scanning driving unit 6.
 圧電素子81aは、走査駆動部6から供給される駆動信号に応じ、TX軸方向に設定された振動軸に沿って振動することにより、光ファイバ3の出射端部を揺動させることができるように構成されている。また、圧電素子81aは、側面72aにおいて、TX軸方向に平行な1つの面SKと側面72bの端部とが揃うような位置に配置されている。 The piezoelectric element 81a can oscillate the emission end of the optical fiber 3 by oscillating along the oscillation axis set in the TX axis direction in accordance with the drive signal supplied from the scanning drive unit 6. It is configured. In addition, the piezoelectric element 81a is disposed on the side surface 72a at a position where one surface SK parallel to the TX axis direction and the end of the side surface 72b are aligned.
 圧電素子81bは、走査駆動部6から供給される駆動信号に応じ、TY軸方向に設定された振動軸に沿って振動することにより、光ファイバ3の出射端部を揺動させることができるように構成されている。また、圧電素子81bは、側面72bにおいて、TY軸方向に平行な1つの面SLと側面72cの端部とが揃うような位置に配置されている。 The piezoelectric element 81b can oscillate the emission end portion of the optical fiber 3 by vibrating along the vibration axis set in the TY axis direction according to the drive signal supplied from the scanning drive unit 6. It is configured. Further, the piezoelectric element 81b is arranged at a position on the side surface 72b such that one surface SL parallel to the TY axis direction and the end of the side surface 72c are aligned.
 圧電素子81cは、走査駆動部6から供給される駆動信号に応じ、TZ軸方向に設定された振動軸に沿って振動することにより、光ファイバ3の出射端部を揺動させることができるように構成されている。また、圧電素子81cは、側面72cにおいて、TZ軸方向に平行な1つの面SMと側面72aの端部とが揃うような位置に配置されている。 The piezoelectric element 81c can oscillate the emission end of the optical fiber 3 by vibrating along the vibration axis set in the TZ axis direction in accordance with the drive signal supplied from the scanning drive unit 6. It is configured. In addition, the piezoelectric element 81c is disposed on the side surface 72c at a position where one surface SM parallel to the TZ axis direction and the end of the side surface 72a are aligned.
 すなわち、本実施例に係る構成及び動作等を適宜変形することにより、以上に述べたような、直線振動の振動軸方向が相互に異なる3つの方向に設定されたアクチュエータ部81を有する走査型内視鏡4の較正に係る動作を行うようにしてもよい。 That is, by appropriately modifying the configuration, operation, and the like according to the present embodiment, as described above, the scanning type having the actuator unit 81 in which the vibration axis directions of the linear vibration are set in three different directions from each other. An operation related to calibration of the endoscope 4 may be performed.
(第2の実施例)
 図11から図13は、本発明の第2の実施例に係るものである。
(Second embodiment)
11 to 13 relate to a second embodiment of the present invention.
 なお、本実施例においては、第1の実施例と同様の構成等を有する部分に関する詳細な説明を省略するとともに、第1の実施例と異なる構成等を有する部分に関して主に説明を行う。 In the present embodiment, detailed description of portions having the same configuration as the first embodiment will be omitted, and portions having configurations different from the first embodiment will be mainly described.
 本実施例の走査型内視鏡4は、図2に示したアクチュエータ部5の代わりに、例えば、図11に示すようなアクチュエータ部52を有して構成されている。図11は、第2の実施例に係るアクチュエータ部の構成の一例を説明するための図である。 The scanning endoscope 4 according to the present embodiment is configured to include, for example, an actuator unit 52 as shown in FIG. 11 instead of the actuator unit 5 shown in FIG. FIG. 11 is a diagram for explaining an example of the configuration of the actuator unit according to the second embodiment.
 アクチュエータ部52は、駆動信号CSXの供給に応じて検出される楕円状の走査軌跡EXの回転方向と、駆動信号CSYの供給に応じて検出される楕円状の走査軌跡EYの回転方向と、が一致するように、アクチュエータ部5における圧電素子5a~5dの配置位置を規定したものとして構成されている。 The actuator unit 52 has a rotation direction of the elliptical scanning locus EX detected in response to the supply of the drive signal CSX and a rotation direction of the elliptical scanning locus EY detected in response to the supply of the drive signal CSY. The arrangement positions of the piezoelectric elements 5a to 5d in the actuator unit 5 are defined so as to coincide with each other.
 具体的には、アクチュエータ部52は、図11に示すように、圧電素子5aにおけるX軸方向に平行な1つの面SAとフェルール41の側面42bとを面一に配置し、圧電素子5bにおけるY軸方向に平行な1つの面SBとフェルール41の側面42cとを面一に配置し、圧電素子5cにおけるX軸方向に平行な1つの面SCとフェルール41の側面42dとを面一に配置し、圧電素子5dにおけるY軸方向に平行な1つの面SDとフェルール41の側面42aとを面一に配置して構成されている。すなわち、アクチュエータ部52の圧電素子5a及び5cは、走査型内視鏡4の長手軸方向に垂直な断面において、光ファイバ3の中心軸に対して2回対称となるように配置されている。また、アクチュエータ部52の圧電素子5b及び5dは、走査型内視鏡4の長手軸方向に垂直な断面において、光ファイバ3の中心軸に対して2回対称となるように配置されている。 Specifically, as shown in FIG. 11, the actuator unit 52 arranges one surface SA parallel to the X-axis direction of the piezoelectric element 5a and the side surface 42b of the ferrule 41 so that Y in the piezoelectric element 5b. One surface SB parallel to the axial direction and the side surface 42c of the ferrule 41 are arranged flush with each other, and one surface SC parallel to the X-axis direction of the piezoelectric element 5c and the side surface 42d of the ferrule 41 are arranged flush with each other. In the piezoelectric element 5d, one surface SD parallel to the Y-axis direction and the side surface 42a of the ferrule 41 are arranged on the same plane. That is, the piezoelectric elements 5 a and 5 c of the actuator unit 52 are arranged so as to be twice symmetrical with respect to the central axis of the optical fiber 3 in a cross section perpendicular to the longitudinal axis direction of the scanning endoscope 4. In addition, the piezoelectric elements 5 b and 5 d of the actuator unit 52 are arranged so as to be symmetrical twice with respect to the central axis of the optical fiber 3 in a cross section perpendicular to the longitudinal axis direction of the scanning endoscope 4.
 以上に述べたように、本実施例によれば、駆動信号CSXの供給に応じて検出される楕円状の走査軌跡EXの回転方向と、駆動信号CSYの供給に応じて検出される楕円状の走査軌跡EYの回転方向と、を一致させることができる。また、本実施例によれば、例えば、アクチュエータ部52の製造時において、位置合わせ用の冶具の平坦部にフェルール41を当接させながら圧電素子5a~5dを配置するような作業を行うことにより、圧電素子5a~5dの配置位置のずれの発生を容易に防止することができ、すなわち、圧電素子5a~5dの配置位置のずれによるアクチュエータ部52の製造誤差の発生頻度を大幅に低減することができる。そのため、本実施例によれば、走査型内視鏡の製造ばらつきに応じて発生する走査精度のばらつきを極力抑制することができる。 As described above, according to the present embodiment, the rotation direction of the elliptical scanning locus EX detected in response to the supply of the drive signal CSX and the elliptical shape detected in response to the supply of the drive signal CSY. The rotation direction of the scanning locus EY can be matched. Further, according to the present embodiment, for example, when the actuator unit 52 is manufactured, the piezoelectric elements 5a to 5d are arranged while the ferrule 41 is brought into contact with the flat part of the positioning jig. Further, it is possible to easily prevent the displacement of the arrangement positions of the piezoelectric elements 5a to 5d, that is, to greatly reduce the frequency of production errors of the actuator unit 52 due to the displacement of the arrangement positions of the piezoelectric elements 5a to 5d. Can do. Therefore, according to the present embodiment, it is possible to suppress as much as possible the variation in scanning accuracy that occurs according to the manufacturing variation of the scanning endoscope.
 本実施例においては、以上に述べたようなアクチュエータ部52に限らず、例えば、図12に示すような配置位置に圧電素子5a~5dを配置して構成されたアクチュエータ部53であっても、アクチュエータ部52と略同様の作用効果を得ることができる。図12は、第2の実施例の変形例に係るアクチュエータ部の構成の一例を説明するための図である。 In the present embodiment, not only the actuator unit 52 as described above, but also, for example, the actuator unit 53 configured by arranging the piezoelectric elements 5a to 5d at the arrangement positions as shown in FIG. It is possible to obtain substantially the same effect as the actuator unit 52. FIG. 12 is a diagram for explaining an example of a configuration of an actuator unit according to a modification of the second embodiment.
 具体的には、アクチュエータ部53は、図12に示すように、圧電素子5aにおける面SAをフェルール41の側面42bに対して幅Pだけずらして段差状に配置し、圧電素子5bにおける面SBをフェルール41の側面42cに対して幅Pだけずらして段差状に配置し、圧電素子5cにおける面SCをフェルール41の側面42dに対して幅Pだけずらして段差状に配置し、圧電素子5dにおける面SDをフェルール41の側面42aに対して幅Pだけずらして段差状に配置して構成されている。 Specifically, as shown in FIG. 12, the actuator unit 53 arranges the surface SA of the piezoelectric element 5a in a stepped manner by shifting the surface SA of the ferrule 41 by the width P, and the surface SB of the piezoelectric element 5b is arranged. The surface SC of the piezoelectric element 5c is displaced in a stepped manner by shifting the width P with respect to the side surface 42c of the ferrule 41, and the surface of the piezoelectric element 5d is disposed in a stepped shape by shifting the surface SC of the ferrule 41 by the width P. The SD is configured to be stepped with a width P shifted from the side surface 42 a of the ferrule 41.
 なお、前述のような構成でアクチュエータ部53を製造する際には、例えば、圧電素子5a~5dをフェルール41に接着剤等で固定する前に、面SA~SDの各面に幅Pの塗膜を形成し、圧電素子5a~5dをフェルール41に固定する際に、当該塗膜と側面42a~42dとを面一に配置し、圧電素子5a~5dをフェルール41に固定した後で、当該塗膜を溶かすような作業を行えばよい。 When manufacturing the actuator unit 53 with the above-described configuration, for example, before the piezoelectric elements 5a to 5d are fixed to the ferrule 41 with an adhesive or the like, the surface SA to SD is coated with a width P. When the film is formed and the piezoelectric elements 5a to 5d are fixed to the ferrule 41, the coating film and the side surfaces 42a to 42d are arranged flush with each other, and after fixing the piezoelectric elements 5a to 5d to the ferrule 41, What is necessary is just to perform the operation | work which melts a coating film.
 または、前述のような構成でアクチュエータ部53を製造する際には、例えば、圧電素子5a~5dをフェルール41に接着剤等で固定する前に、面SA~SDの各面に幅Pのフィルムを貼り付け、圧電素子5a~5dをフェルール41に固定する際に、当該フィルムと側面42a~42dとを面一に配置し、圧電素子5a~5dをフェルール41に固定した後で、当該フィルムを剥がすような作業を行えばよい。 Alternatively, when the actuator portion 53 is manufactured with the above-described configuration, for example, before the piezoelectric elements 5a to 5d are fixed to the ferrule 41 with an adhesive or the like, a film having a width P is formed on each surface SA to SD. When the piezoelectric elements 5a to 5d are fixed to the ferrule 41, the film and the side faces 42a to 42d are arranged flush with each other, and after fixing the piezoelectric elements 5a to 5d to the ferrule 41, the film is It is only necessary to perform the work of peeling off.
 一方、本実施例においては、以上に述べたようなアクチュエータ部51及び53に限らず、例えば、図13に示すような、フェルール41に対して面取り加工を施すことにより新たに形成された4つのC面CA、CB、CC及びCDを有し、走査型内視鏡4の長手軸方向に垂直な断面が光ファイバ3の中心軸を中心とする八角形になるように形成された八角柱形状のフェルール45に対応する位置に圧電素子5a~5dを配置して構成されたアクチュエータ部54であっても、アクチュエータ部52と略同様の作用効果を得ることができる。図13は、第2の実施例の変形例に係るアクチュエータ部の構成の一例を説明するための図である。 On the other hand, in the present embodiment, not only the actuator parts 51 and 53 as described above, but also four newly formed by chamfering the ferrule 41 as shown in FIG. An octagonal prism shape having C planes CA, CB, CC, and CD and having a cross section perpendicular to the longitudinal axis direction of the scanning endoscope 4 becomes an octagon centered on the central axis of the optical fiber 3 Even in the actuator portion 54 configured by arranging the piezoelectric elements 5a to 5d at positions corresponding to the ferrule 45, substantially the same operational effects as the actuator portion 52 can be obtained. FIG. 13 is a diagram for explaining an example of a configuration of an actuator unit according to a modification of the second embodiment.
 具体的には、アクチュエータ部54は、図13に示すように、圧電素子5aにおける面SAを側面42bに隣接するC面CBの端部に揃えて配置し、圧電素子5bにおける面SBを側面42cに隣接するC面CCの端部に揃えて配置し、圧電素子5cにおける面SCを側面42dに隣接するC面CDの端部に揃えて配置し、圧電素子5dにおける面SDを側面42aに隣接するC面CAの端部に揃えて配置して構成されている。 Specifically, as shown in FIG. 13, the actuator unit 54 arranges the surface SA of the piezoelectric element 5a so as to be aligned with the end of the C surface CB adjacent to the side surface 42b, and the surface SB of the piezoelectric element 5b is arranged on the side surface 42c. The surface SC of the piezoelectric element 5c is aligned with the end of the C surface CD adjacent to the side surface 42d, and the surface SD of the piezoelectric element 5d is adjacent to the side surface 42a. It is arranged to be aligned with the end of the C plane CA.
 なお、前述のような構成でアクチュエータ部54を製造する際には、例えば、圧電素子5a~5dを接着剤等で固定する際の固定面が側面42a~42dからはみ出さないように面取りされたフェルール45を用いることが望ましい。 When the actuator unit 54 is manufactured with the above-described configuration, for example, the fixing surface when the piezoelectric elements 5a to 5d are fixed with an adhesive or the like is chamfered so as not to protrude from the side surfaces 42a to 42d. It is desirable to use a ferrule 45.
 なお、本発明は、上述した実施例及び変形例に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更や応用が可能であることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiments and modifications, and various modifications and applications can be made without departing from the spirit of the invention.
 本出願は、2015年5月21日に日本国に出願された特願2015-103881号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。 This application is filed on the basis of priority claim of Japanese Patent Application No. 2015-103881 filed in Japan on May 21, 2015, and the above disclosure is disclosed in the present specification, claims, It shall be cited in the drawing.

Claims (8)

  1.  光源部から供給される照明光を伝送し、当該伝送した照明光を出射端部から被写体へ出射するように構成された光ファイバと、
     第1の駆動信号が入力されるとともに、入力された前記第1の駆動信号に応じて第1の方向に設定された振動軸方向に振動することにより、前記出射端部を揺動させることが可能な第1のアクチュエータと、
     第2の駆動信号が入力されるとともに、入力された前記第2の駆動信号に応じて前記第1の方向に直交するまたは略直交する第2の方向に設定された振動軸方向に振動することにより、前記出射端部を揺動させることが可能な第2のアクチュエータと、
     前記第1のアクチュエータの振動に応じて発生する前記第1の方向の振動成分の大きさ及び前記第1の方向以外の方向の振動成分の大きさと、前記第2のアクチュエータの振動に応じて発生する前記第2の方向の振動成分の大きさ及び前記第2の方向以外の方向の振動成分の大きさと、に基づき、前記被写体を所定の走査経路で走査する際に前記第1のアクチュエータに供給される第1の駆動信号と、前記被写体を前記所定の走査経路で走査する際に前記第2のアクチュエータに供給される第2の駆動信号と、を生成して出力するように構成された走査駆動部と、
     を有することを特徴とする光走査型観察システム。
    An optical fiber configured to transmit illumination light supplied from the light source unit and to output the transmitted illumination light from the emission end to the subject;
    When the first drive signal is input, the emission end is swung by vibrating in the vibration axis direction set in the first direction according to the input first drive signal. A possible first actuator;
    When the second drive signal is input, the second drive signal vibrates in the vibration axis direction set in the second direction orthogonal to or substantially orthogonal to the first direction according to the input second drive signal. A second actuator capable of swinging the emitting end,
    Generated in response to the magnitude of the vibration component in the first direction and the magnitude of the vibration component in a direction other than the first direction generated according to the vibration of the first actuator, and the vibration of the second actuator Based on the magnitude of the vibration component in the second direction and the magnitude of the vibration component in a direction other than the second direction, the first subject is supplied to the first actuator when scanning the subject along a predetermined scanning path. A first drive signal that is generated and a second drive signal that is supplied to the second actuator when the subject is scanned along the predetermined scanning path. A drive unit;
    An optical scanning observation system comprising:
  2.  前記第1のアクチュエータは、前記第1の駆動信号に応じた振動により、前記出射端部を前記第1の方向に長軸を有する第1の楕円状の軌跡で揺動し、
     前記第2のアクチュエータは、前記第2の駆動信号に応じた振動により、前記出射端部を前記第2の方向に長軸を有し、かつ、前記第1の楕円状の軌跡と同じ回転方向で回転する第2の楕円状の軌跡で揺動する
     ことを特徴とする請求項1に記載の光走査型観察システム。
    The first actuator swings the emission end portion along a first elliptical locus having a long axis in the first direction by vibration according to the first drive signal,
    The second actuator has a major axis in the second direction of the emission end portion by vibration according to the second drive signal, and has the same rotation direction as the first elliptical locus. 2. The optical scanning observation system according to claim 1, wherein the optical scanning observation system swings along a second elliptical trajectory rotating at a position.
  3.  前記走査駆動部は、前記第1の楕円状の軌跡の長軸及び短軸の長さで定義される第1の扁平率と前記第2の楕円状の軌跡の長軸および短軸の長さで定義される第2の扁平率との比と一致する振幅比を有する前記第2の駆動信号と前記第1の駆動信号とを生成する
     ことを特徴とする請求項2に記載の光走査型観察システム。
    The scanning drive unit includes a first oblateness defined by a length of a major axis and a minor axis of the first elliptical locus, and a length of a major axis and a minor axis of the second elliptical locus. 3. The optical scanning type according to claim 2, wherein the second drive signal and the first drive signal having an amplitude ratio that matches a ratio with a second flatness ratio defined in (1) are generated. Observation system.
  4.  前記第1のアクチュエータの振動に応じて発生する前記第1の方向の振動成分の大きさ及び前記第1の方向以外の方向の振動成分の大きさと、前記第2のアクチュエータの振動に応じて発生する前記第2の方向の振動成分の大きさ及び前記第2の方向以外の方向の振動成分の大きさと、をそれぞれ検出した検出結果に基づき、前記第1の駆動信号と前記第2の駆動信号との振幅比を調整するための制御を前記走査駆動部に対して行うように構成された制御部をさらに有する
     ことを特徴とする請求項1に記載の光走査型観察システム。
    Generated in response to the magnitude of the vibration component in the first direction and the magnitude of the vibration component in a direction other than the first direction generated according to the vibration of the first actuator, and the vibration of the second actuator The first drive signal and the second drive signal based on detection results of detecting the magnitude of the vibration component in the second direction and the magnitude of the vibration component in a direction other than the second direction, respectively. The optical scanning observation system according to claim 1, further comprising a control unit configured to perform control for adjusting an amplitude ratio with respect to the scanning drive unit.
  5.  前記制御部は、前記第1のアクチュエータの振動により前記出射端部が第1の楕円状の軌跡で揺動され、かつ、前記第2のアクチュエータの振動により前記出射端部が前記第1の楕円状の軌跡と同じ回転方向で回転する第2の楕円状の軌跡で揺動されたことを検出した際に、前記第1の楕円状の軌跡の長軸の長さを前記第1の方向の振動成分の大きさとして検出し、前記第1の楕円状の軌跡の短軸の長さを前記第1の方向以外の方向の振動成分の大きさとして検出し、前記第2の楕円状の軌跡の長軸の長さを前記第2の方向の振動成分の大きさとして検出し、前記第2の楕円状の軌跡の短軸の長さを前記第2の方向以外の方向の振動成分の大きさとして検出する
     ことを特徴とする請求項4に記載の光走査型観察システム。
    The control unit is configured such that the emission end portion is swung along a first elliptical locus by the vibration of the first actuator, and the emission end portion is moved to the first ellipse by the vibration of the second actuator. When detecting that the second elliptical trajectory rotating in the same rotational direction as the elliptical trajectory is detected, the length of the major axis of the first elliptical trajectory is determined in the first direction. Detecting the magnitude of the vibration component, detecting the length of the short axis of the first elliptical locus as the magnitude of the vibration component in a direction other than the first direction, and detecting the second elliptical locus Is detected as the magnitude of the vibration component in the second direction, and the length of the minor axis of the second elliptical trajectory is detected as the magnitude of the vibration component in a direction other than the second direction. The optical scanning observation system according to claim 4, wherein the optical scanning observation system is detected.
  6.  前記制御部は、前記第1の楕円状の軌跡の長軸及び短軸の長さを用いて算出される第1の扁平率と、前記第2の楕円状の軌跡の長軸及び短軸の長さを用いて算出される第2の扁平率と、に基づいて前記振幅比を調整するための制御を前記走査駆動部に対して行う
     ことを特徴とする請求項5に記載の光走査型観察システム。
    The control unit is configured to calculate a first flatness calculated using the lengths of the major axis and the minor axis of the first elliptical locus, and a major axis and a minor axis of the second elliptical locus. The optical scanning type according to claim 5, wherein control for adjusting the amplitude ratio is performed on the scanning drive unit based on a second flatness ratio calculated using a length. Observation system.
  7.  前記第1のアクチュエータを構成する第1の圧電素子及び第2の圧電素子を前記光ファイバの中心軸に対して2回対称になるようにそれぞれ配置するための第1の側面及び第2の側面と、前記第2のアクチュエータを構成する第3の圧電素子及び第4の圧電素子を前記光ファイバの中心軸に対して2回対称になるようにそれぞれ配置するための第3の側面及び第4の側面と、を備えて形成された四角柱形状のフェルールをさらに有する
     ことを特徴とする請求項1に記載の光走査型観察システム。
    A first side surface and a second side surface for arranging the first piezoelectric element and the second piezoelectric element constituting the first actuator so as to be two-fold symmetrical with respect to the central axis of the optical fiber, respectively. And a third side surface and a fourth side surface for arranging the third piezoelectric element and the fourth piezoelectric element constituting the second actuator so as to be twice symmetrical with respect to the central axis of the optical fiber, respectively. The optical scanning observation system according to claim 1, further comprising: a quadrangular prism-shaped ferrule formed to include a side surface of
  8.  前記所定の走査経路が渦巻状の走査経路である
     ことを特徴とする請求項1に記載の光走査型観察システム。
    The optical scanning observation system according to claim 1, wherein the predetermined scanning path is a spiral scanning path.
PCT/JP2016/059140 2015-05-21 2016-03-23 Optical-scanning-type observation system WO2016185787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016559388A JP6081679B1 (en) 2015-05-21 2016-03-23 Optical scanning observation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015103881 2015-05-21
JP2015-103881 2015-05-21

Publications (1)

Publication Number Publication Date
WO2016185787A1 true WO2016185787A1 (en) 2016-11-24

Family

ID=57320070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059140 WO2016185787A1 (en) 2015-05-21 2016-03-23 Optical-scanning-type observation system

Country Status (2)

Country Link
JP (1) JP6081679B1 (en)
WO (1) WO2016185787A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163316A1 (en) * 2017-03-08 2018-09-13 オリンパス株式会社 Optical fiber scanner, lighting device, and observation device
WO2020044528A1 (en) * 2018-08-31 2020-03-05 オリンパス株式会社 Optical fiber scanner, lighting device and observation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012249521A (en) * 2012-09-18 2012-12-13 Seiko Epson Corp Piezoelectric actuator
JP2013244045A (en) * 2012-05-23 2013-12-09 Olympus Corp Scanning endoscope apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244045A (en) * 2012-05-23 2013-12-09 Olympus Corp Scanning endoscope apparatus
JP2012249521A (en) * 2012-09-18 2012-12-13 Seiko Epson Corp Piezoelectric actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163316A1 (en) * 2017-03-08 2018-09-13 オリンパス株式会社 Optical fiber scanner, lighting device, and observation device
WO2020044528A1 (en) * 2018-08-31 2020-03-05 オリンパス株式会社 Optical fiber scanner, lighting device and observation device

Also Published As

Publication number Publication date
JPWO2016185787A1 (en) 2017-06-08
JP6081679B1 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6113096B2 (en) Endoscope
JP6438221B2 (en) Optical scanning actuator and optical scanning device
JP5452781B1 (en) Scanning endoscope and method of manufacturing scanning endoscope
JP5210894B2 (en) Optical scanning endoscope
JP6274949B2 (en) Optical fiber scanner, illumination device and observation device
WO2015182137A1 (en) Optical scanning-type endoscope device
JP6057743B2 (en) Optical scanning device
JP5702023B2 (en) Scanning endoscope system and method of operating scanning endoscope system
JP6081679B1 (en) Optical scanning observation system
WO2014057774A1 (en) Endoscope device
US20170065156A1 (en) Scanning-type endoscope
JP5993531B1 (en) Scanning endoscope
WO2017094050A1 (en) Optical fiber scanner, illumination device, and observation device
WO2016143160A1 (en) Scanning endoscope system
WO2016116962A1 (en) Optical scanning method and optical scanning device
JP6033501B1 (en) Scanning endoscope
WO2017130452A1 (en) Scanning endoscope processor
WO2014087798A1 (en) Scanning endoscope system
WO2016181711A1 (en) Scanning endoscope

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016559388

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796181

Country of ref document: EP

Kind code of ref document: A1