WO2020043929A1 - Tintas de inyección cerámicas digitales para vidrio y procedimiento para obtener las mismas - Google Patents

Tintas de inyección cerámicas digitales para vidrio y procedimiento para obtener las mismas Download PDF

Info

Publication number
WO2020043929A1
WO2020043929A1 PCT/ES2019/070583 ES2019070583W WO2020043929A1 WO 2020043929 A1 WO2020043929 A1 WO 2020043929A1 ES 2019070583 W ES2019070583 W ES 2019070583W WO 2020043929 A1 WO2020043929 A1 WO 2020043929A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
inks
glycol
pigment
ink
Prior art date
Application number
PCT/ES2019/070583
Other languages
English (en)
French (fr)
Inventor
Javier FERNÁNDEZ VÁZQUEZ
Tri Ratna TULADHAR
Original Assignee
Tecglass Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecglass Sl filed Critical Tecglass Sl
Priority to US17/272,310 priority Critical patent/US11993723B2/en
Priority to EP19855637.5A priority patent/EP3845614A4/en
Publication of WO2020043929A1 publication Critical patent/WO2020043929A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/12Printing inks based on waxes or bitumen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2107Ink jet for multi-colour printing characterised by the ink properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • B41M1/34Printing on other surfaces than ordinary paper on glass or ceramic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/007Digital printing on surfaces other than ordinary paper on glass, ceramic, tiles, concrete, stones, etc.
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/34Hot-melt inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents

Definitions

  • the object of the present invention is the development of novel ceramic inkjet inks for non-porous substrates (such as glass and metals), whereby the viscosity of the inks at the jet application temperature of 33-50 ° C It is 8-20 mPa.s and increases substantially by a factor of more than 5 (to more than 100 mPa.s) after unloading on the substrate.
  • the invention also relates to processing / formulation steps and the adjustment of the volumetric and dynamic properties suitable for (i) inkjet printing in the printhead channel and (ii) the desirable high viscosity after discharge onto the glass substrate
  • inks can be reliably sprayed onto a ceramic surface such as glass using commercial drop-on-demand inkjet devices, and mitigate ink splatter, diffusion during and after discharge and eliminate / reduce image defects due to dust contamination in the environment on wet inks after printing. After spray application, these inks can be dried at room temperature without the use of any external heating source such as IR lamp or stove without side effects on image definition and dust contamination problems.
  • Digital ceramic inks for glass surfaces contain glass frit and inorganic pigment as the main functional components.
  • Standard commercial inkjet systems have very strict requirements in terms of both physical and chemical properties to meet the criteria of printheads and jet application.
  • Most industrial inkjet printheads require a fluid viscosity of less than 50 mPa.s to eject the droplet at a speed greater than 5 m / s.
  • the high solids content and the particle size in the ink is a problem for the inkjet print head in terms of nozzle blocking and reliable jet application.
  • on-demand drop inkjet ink should have • 8-20 mPa.s of volumetric viscosity at the spray application temperature,
  • the temperature has a considerable influence on the viscosity of the ink.
  • the viscosity of most inkjet inks drops almost 50% when the temperature doubles. Quite often, these inks are printed above room temperature to bring the viscosity of the ink within the specifications of the print head.
  • the object of the invention is the development of novel ceramic inkjet inks for non-porous substrates (such as glass and metals), whereby the viscosity of the inks at the jet application temperature of 33-50 ° C is 8-20 mPa.s and increases substantially by a factor of more than 5 (greater than 100 mPa.s) after discharging onto the substrate.
  • the invention also relates to processing / formulation steps and the adjustment of the volumetric and dynamic properties suitable for (i) inkjet printing in the printhead channel and (ii) the desirable high viscosity after discharge onto the glass substrate
  • inks can be reliably sprayed onto a ceramic surface such as glass using commercial drop-on-demand inkjet devices, and mitigate ink splatter, diffusion during and after discharge and eliminate / reduce image defects due to dust contamination in the environment on wet inks after printing. After spray application, these inks can be dried at room temperature without the use of any external heating source such as IR lamp or stove without side effects on image definition and dust contamination problems.
  • the inventions relate to a formulation of novel ceramic inkjet ink compositions that results in (i) hybrid thermoplastic ink and (ii) hybrid photosensitive ink.
  • the key features are that both families of inks are liquid at room temperature and within the specifications of the printhead at jet application temperatures, but change to high viscosity liquid (> 100 mPa.s) on the substrate after the download
  • the hybrid thermoplastic inkjet ink is designed such that the viscosity is about 6-20 mPa.s at a jet application temperature of 33 ° C and above and significantly increases to more than 100 mPa.s when the Ink temperature drops by less than 10 ° C at ambient conditions. In Compared to this, the viscosity of the standard inkjet ink increases by a maximum factor of 2 or less for a 10 ° C drop in temperatures.
  • Wet inks on the substrate can be subsequently air dried or use any form of conventional drying technique, followed by tempering or high temperature cooking.
  • the hybrid photosensitive inkjet ink is designed such that the viscosity is about 6-20 mPa.s at a jet application temperature of 33 ° C and above. After discharge onto the substrate, the viscosity of the ink increases significantly by more than 100 mPa.s by partial curing of the ink using a UV, IR or LED lamp.
  • the highly viscous wet inks on the substrate can then be air dried or use any form of conventional drying technique, followed by tempering or high temperature cooking (500-750 ° C) to melt the frit on the substrates for color and properties late.
  • Dust problems Delay / eliminate defects caused by the discharge of any air pollution such as dust on wet paint.
  • the key ink components of glass inks are:
  • the final composition of the ink has 30-60% solids consisting of glass frits and inorganic pigments with a volumetric particle size: Dgo_ V oi ⁇ 1.5 mGTI.
  • the frit is the key component of ceramic inkjet inks that are designed to meet both the chemical and mechanical properties of final cooked / tempered glass. Detailed compositions are varied depending on the required glass transition temperature of frit, tempering requirements and final substrate, resistance to acids and bases.
  • the frit is prepared by fusing a variety of minerals in an oven and then rapidly cooling the molten materials.
  • the glass frit used for the ceramic recipe is mainly composed of S1O 2 , B 2 O 3 and B ⁇ 2 O 3 or ZnO.
  • Several families of glass frits are used, namely bismuth and / or zinc based frits.
  • composition can be a combination of B2O3 , U2O and ZnO, or B2C> 3 and ZnO, or B2O3 and Li 2 0, O ZnO and Li 2 0.
  • the glass frit composition is in the form of particles having a volumetric distribution of the particle size Dv 90 of less than 1.5 pm, measured by laser diffraction. "% By weight” means the percentage by weight of the total weight of the glass frit composition.
  • Inorganic pigments can be metal oxides such as chromium oxide, titanium dioxide (for white) or mixed oxides and iron oxide for different colors.
  • the pigments are heat-resistant inorganic pigments that have an average size of 2-3 micrometers, chemically inert and stable in ultraviolet light. They have high durability and coverage power.
  • inorganic pigments examples include bluish green cobalt chromite spinel, cobalt aluminate spinel blue, iron oxide red, manganese ferrite, nickel rutile yellow, antimony and titanium, black copper chromite spinel, manganese ferrite , rutile white and titanium dioxide anatase, green cobalt titanate spinel and teal cobalt chromite spinel Bright vivid yellow, orange and red colors that are capable of withstanding mild conditions are inorganic pigments in the cadmium range, such as yellow 37 (cadmium sulphide), orange 20, red 108 (cadmium sulfoselenide) and yellow 35 (sulfide of zinc and cadmium).
  • the carriers may be a mixture of linear C10-C24 alloys, preferably linear C10-C22 alloys, more preferably C12-C18 linear alloys.
  • Alcohols such as methyl alcohol, ethyl alcohol, propylene alcohols, butyl alcohols
  • glycols such as methyl glycol (MG), ethyl glycol, propyl glycol, butyl glycol (BG); glycol ethers, such as methoxy propanol (PM), ethoxypropanol (EP), diacetonepropanol (DAA), methoxybutanol, dipropylene glycol monomethyl ether (DPM), tripropylene glycol methyl ether (TPM), propylene glycol monomethyl ether (PM) di- or tripropylethylene glycol (DP) polypropylene glycol (BD) ; esters, such as methyl acetate, ethyl acetate (ETAC), propyl acetate (IPAC), butyl acetate (BUAC), methoxypropyl acetate (PMA), ethyl-3-ethoxypropanol (EEP); ketones,
  • Suitable carriers may be mixtures of alkane waxes with a low melting point of 40-100 ° C, being solid at room temperature. Examples of such low melting paraffin wax carriers are.
  • One or more solvents may be mixtures of acrylate monomers, dimers and / or oligomers and photoinitiators.
  • solvents could be mixtures of N-vinylcaprolactam (O b Hi 3 NO) (1-vinyl-2-pyrrolidone), multifunctional acrylate, acrylic acid, monoalkylaryl or alkylaryl, polyethylene glycol diacrylate and photoinitiators such as 2-benzyl- 2-dimethylamino-4-morpholinobutyrophenone.
  • Anti-aging / antistatic agents such as Aerosil and Disparlon, rheology additives, etc.
  • ° Gripping agents hydroxypropylcellulose, methacrylic and alkyd resins. Physical properties of the ink
  • the high volumetric shear viscosity at room temperature is between 8-50 mPa.s
  • the ink formulation is adjusted with appropriate resins / additives to give a good grip after drying the ink on the substrate at a temperature> 200 ° C, for manual handling.
  • the present invention also relates to a process for producing ceramic inkjet ink as a process comprising the following steps:
  • A) Prepare a glass frit paste (FP) by grinding and crushing the frit powder in the presence of a dispersing agent and a solvent, to achieve a volumetric distribution of pigment particle size D V 9o of less than 1, 5 p.m;
  • B) prepare a pigment paste (PP) by grinding and crushing inorganic pigment particles in the presence of a dispersing agent and a solvent, to achieve a volumetric distribution of Dv90 pigment particle size of less than 1 pm;
  • step (C) adding a diluent consisting of a mixture of solvents and additives to the concentrated ink of step (C), to achieve specific final formulations in the deposition medium, which has a final solids content of 30-60% by weight of the total weight of the mixture and the desired ink properties;
  • step (E) filter the mixture of step (D) through a micrometer pore size filter, thus obtaining a ceramic inkjet ink having a viscosity of 6-20 mPa.
  • a ceramic inkjet ink having a viscosity of 6-20 mPa.
  • the frits are supplied in powder form with a particle size of less than 10 micrometers.
  • the stability and particle size of the frit are maintained by multiple stages that involve the grinding of the jet ground frit powder (average particle size of 8-12 micrometers) is carried out in a high shear powder mixing mixer of frit with specific dispersant, resins (such as polyacrylate, polyalkyd and polyamide resins) with the selected choice of solvents (non-polar aliphatic hydrocarbon, family of polar glycol ethers, aqueous water, thermoplastic paraffin wax or mixture of one or many solvents ).
  • resins such as polyacrylate, polyalkyd and polyamide resins
  • solvents non-polar aliphatic hydrocarbon, family of polar glycol ethers, aqueous water, thermoplastic paraffin wax or mixture of one or many solvents
  • wet milling in a special chamber component such as zirconia, silicon nitrite and / or silicon carbide, wet milling can be carried out in batches in multi-step operations until the desired particle size is obtained.
  • a special chamber component such as zirconia, silicon nitrite and / or silicon carbide
  • the final composition is a well dispersed frit paste with a final particle size ⁇ 1.5 mhi.
  • Examples of ground frit paste (FP) with different types of solvent are shown below.
  • Inorganic color pigments are provided externally and are supplied as powders.
  • Standard inorganic pigments have sizes larger than 2-3 micrometers and are unsuitable for inkjet applications.
  • the pigment paste of step B comprises 45-85% by weight of pigment, 2-20% by weight of dispersing agent and 10-55% by weight of solvent.
  • the pigment is ground and crushed in the presence of a dispersing agent and a solvent, thereby resulting in a pigment paste having a volumetric distribution of Dv90 pigment particle size of less than 1 pm, preferably less than 1 pm.
  • the combination of the dispersing agent and the crushing step is crucial to obtain a highly stable pigment paste with negligible / zero sedimentation for a long time.
  • the grinding of the pigment powder (average particle size of 7-20 micrometers) is carried out by premixing pigment powder with specific dispersant, resins, the selected solvent choice (non-polar aliphatic hydrocarbon, polar glycol ether family, water aqueous, thermoplastic paraffin wax).
  • wet milling using basket mill or a special chamber component such as zirconia, silicon nitrite and / or silicon carbide. Wet milling can be carried out in batches in multi-step operations until the size is obtained of desired particle.
  • the dispersing agent is a copolymer with acid group (Disperbyk 110, Disperbyk 111), alkyl ammonium salt of copolymer with acid groups (Disperbyk-180), solution of high molecular weight copolymers with groups similar to pigment (Disperbyk 182, Disperbyk 184, Disperbyk 190), copolymer with groups related to the pigment (Disperbyk 191, Disperbyk 192, Disperbyk 194, Tego Dispers 7502, Tego Dispers 752W, Tego Dispers 656), block copolymer with groups related to the pigment ( Disperbyk 2155), alkylamino salt solution of an acidic polymer of greater molecular weight (Anti-terra-250), structured acrylate copolymer with groups related to the pigment (Disperbyk 2010, Disperbyk 2015), polyvinylpyrrolidone (PVP K-15, PVP K-30, PVP K-60), polymeric hyperdispersant (Solsperse J9
  • Dispersant Disperbyk 194N 7%
  • the final ceramic inkjet ink may also comprise additives, such as carriers, rheology agents, surfactants, anti-settling / antistatic agents, flow and leveling agents, anti-foaming / deaerating agents and resins.
  • additives such as carriers, rheology agents, surfactants, anti-settling / antistatic agents, flow and leveling agents, anti-foaming / deaerating agents and resins.
  • Appropriate additives can improve surface grip after drying at a temperature greater than or equal to 150 ° C, for manual handling.
  • the additives may be in an amount of up to 10% by weight to improve jet application and substrate adhesion yields.
  • % by weight is meant percentage by weight of the total weight of the ceramic inkjet ink.
  • Suitable surfactants may be a solution of polyether modified polydimethylsiloxane (commercially available as BYK-301, BYK-302, BYK 306, BYK 337, BYK 341), polyether modified polydimethylsiloxane (commercially available as BYK-307), solution of a Polyester modified polydimethylsiloxane (commercially available as BYK-310, BYK-313), polyester modified polymethylalkylsiloxane solution (commercially available as BYK-315), polyether modified dimethylpolysiloxane (commercially available as BYK378) or a mixture thereof.
  • polyether modified polydimethylsiloxane commercially available as BYK-301, BYK-302, BYK 306, BYK 337, BYK 341
  • polyether modified polydimethylsiloxane commercially available as BYK-307
  • solution of a Polyester modified polydimethylsiloxane commercially available as BY
  • Suitable flow and leveling agents may be a silicone-free polymer solution of polyester-modified acrylic polymer, special dimethylpolysiloxanes (commercially available as Tego Flow ATF 2), polyether siloxane copolymer (commercially available as Tego Glide 100, Tego Wet 240) or a mixture thereof.
  • Suitable deaerating / antifoaming agents may be silicone free (commercially available as BYK 051, BYK 052, BYK 053, BYK 054, BYK 055, BYK 057, BYK 1752, BYK-A 535), hydrophobic solids emulsion, emulsifiers and foam-destroying polysiloxanes (commercially available as BYK-610), fluoromodified silicone antifoam (commercially available as Dynoadd F-470), silicone-free anionic (commercially available as Dynoadd F-603), organomodified polysiloxane (commercially available as Tego Airex 900) , deaerating organic polymers with silicone tips (commercially available as Tego Airex 990, Tego Airex 991), deaerating without silicone (commercially available as Tego Airex 920), polyacrylate solution (commercially available as Tego Flow ZFS 460), or a mixture of the same.
  • silicone free commercial
  • Suitable rheology and anti-settling agents may be modified urea solution (commercially available as BYK 410, BYK 420), urea modified polyurethane solution (commercially available as BYK-425), polyurethane solution with a highly branched structure (commercially available as BYK-428), high molecular weight urea modified polyamide solution (commercially available as BYK-430, BYK-431) hybridized amide (commercially available as Disparlon AQH 800), nonionic polyurethane based thickener (commercially available as Tego ViscoPlus 3000, Tego ViscoPlus 3030, Tego ViscoPlus 3060), pyrolysis silica (Aerosil qualities) or a mixture thereof.
  • BYK 410, BYK 420 urea modified polyurethane solution
  • BYK-425 polyurethane solution with a highly branched structure
  • BYK-428 high molecular weight urea modified polyamide solution
  • hybridized amide
  • Suitable resins can be hydroxypropylcellulose, hydroxyethylcellulose, hydroxymethylcellulose, nitrocellulose, polyacrylics (including thermoplastic, thermosetting, water-dilutable and non-aqueous dispersion acrylics), of polyester, amino, polyurethane, polyisocyanates, polyalkyd, polyamide, polyaldehyde allyhyde, polyaldehyde mixture thereof.
  • polyacrylics including thermoplastic, thermosetting, water-dilutable and non-aqueous dispersion acrylics
  • polyester amino, polyurethane, polyisocyanates
  • polyalkyd polyamide
  • polyaldehyde allyhyde polyaldehyde mixture thereof.
  • examples of such resins could be Klucel qualities, the Degalan series, Neocryls 73, Nebores BS 35-60, Paraloid B67, Paroloid B82, Eurola AL1905Q, Rapsolate 7470, Laropal A81, Nytex 846, Wingtack 86
  • Figure 1a shows the stationary shear profile at 25 and 33 ° C for standard ink.
  • Figure 1b shows the stationary shear profile at 25 and 33 ° C for hybrid ink A.
  • Figure 2 shows the effect of dust contamination on wet printed samples with (a) standard blue inks and (b) hybrid blue ink A.
  • Figure 3 shows the effect of dust contamination on wet printed samples with (a) standard yellow inks and (b) with hybrid yellow ink.
  • the high viscosity also eliminates ink splatter and retards the diffusion of ink along the edges, especially when multiple drops are deposited. This helps retain line / image definitions.
  • the hybrid thermoplastic inks a small amount of concentrated solution of low melting thermoplastic material is introduced into the formulation at the deposition stage, after preparing the concentrated frit and the pigment paste.
  • the main carrier in the frit and pigment paste and therefore the final ink could be constituted by any type of solvent (non-polar, polar or aqueous).
  • Suitable thermoplastic materials may be mixtures of alkane paraffin waxes with a low melting point of 35-60 ° C, which are solid at room temperature.
  • Figures 1 (a) and 1 (b) clearly demonstrate that, at the jet application temperature, both standard and hybrid A ink had a similar viscosity profile of about 12 mPa.s. However, hybrid ink A showed a significant increase in viscosity when the temperature dropped to 25 ° C compared to the modest increase for standard ink (without thermoplastic wax).
  • the spray application tests of such inks showed a very reliable jet application and the elimination of visible defects on the printed samples as a result of dust contamination.
  • the photographs illustrate a scenario by which, for thermoplastic hybrid inks, dust is seen floating on top of the inks, while in the case of standard ink, the powder enters the paint and sticks to the glass. Drying and tempering clearly show a visible crater and image defects in the case of standard inks and no such defects are seen on the hybrid inks.
  • the example of photographs is shown in Figures 2 (a) and 2 (b) and 3 (a) and 3 (b) for ceramic blue and yellow inks.
  • Figure 1 shows the effect of dust contamination on wet printed samples with (a) standard yellow inks, in which the surrounding dust leads to a considerable number of defects such as craters as they stand out, and (b) with ink Hybrid yellow, with a low or negligible influence of dust on the final image, no visible craters are visible.
  • the viscosity of the ink increases dramatically after being discharged onto the substrate (directly after spray application) by introducing a small amount of photosensitive solvents such as UV-sensitive multifunctional acrylates (e.g., Sartomer 506, Sartomer 399, Ebercryl 965), LED-sensitive solvents or infrared-sensitive resins in the inks during deposition during stage D after preparing the concentrated frit and pigment paste.
  • photosensitive solvents such as UV-sensitive multifunctional acrylates (e.g., Sartomer 506, Sartomer 399, Ebercryl 965), LED-sensitive solvents or infrared-sensitive resins in the inks during deposition during stage D after preparing the concentrated frit and pigment paste.
  • the carrier in the frit and the pigment paste and therefore the final ink could be constituted by any type of solvent (non-polar, polar or aqueous).
  • the example of the recipe is illustrated in the rheology of standard and photosensitive hybrid inks in the following table.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)

Abstract

Tintas de chorro de tinta cerámicas para sustratos no porosos (tales como vidrios y metales), mediante las cuales la viscosidad de las tintas a la temperatura de aplicación de chorro de 33-50ºC es de 8-20 mPa.s y aumenta sustancialmente en un factor de más de 5 (a más de 100 mPa.s) después de descargar sobre el sustrato. La invención se refiere también a etapas de procesamiento/formulación y al ajuste de las propiedades volumétricas y dinámicas adecuadas para (i) impresión por chorro de tinta en el canal del cabezal de impresión y (ii) la alta viscosidad deseable después de descarga sobre el sustrato de vidrio. La tinta comprende: Composición de frita de vidrio que está en forma de partículas que tienen una distribución volumétrica del tamaño de partícula Dv90 de menos de 1,5 µm, portadores (30-50 % en peso) y aditivos (0-10 %). La tinta de cerámica mitiga la salpicadura de tinta, difusión durante y después de la descarga y elimina/reduce los defectos de imagen debido a contaminaciones de polvo del entorno sobre tintas húmedas después de impresión.

Description

TINTAS DE INYECCIÓN CERÁMICAS DIGITALES PARA VIDRIO Y
PROCEDIMIENTO PARA OBTENER LAS MISMAS
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
Es el objeto de la presente invención el desarrollo de tintas de chorro de tinta cerámicas novedosas para sustratos no porosos (tales como vidrios y metales), mediante las cuales la viscosidad de las tintas a la temperatura de aplicación de chorro de 33-50 °C es de 8-20 mPa.s y aumenta sustancialmente en un factor de más de 5 (a más de 100 mPa.s) después de descargar sobre el sustrato. La invención se refiere también a etapas de procesamiento/formulación y al ajuste de las propiedades volumétricas y dinámicas adecuadas para (i) impresión por chorro de tinta en el canal del cabezal de impresión y (ii) la alta viscosidad deseable después de descarga sobre el sustrato de vidrio. Estas tintas pueden aplicarse a chorro fiablemente sobre una superficie cerámica tal como vidrio usando dispositivos de chorro de tinta de gota bajo demanda comerciales, y mitigan la salpicadura de tinta, la difusión durante y después de la descarga y eliminan/reducen los defectos de imagen debidos a contaminaciones de polvo por el entorno sobre tintas húmedas después de la impresión. Después de la aplicación a chorro, estas tintas pueden secarse a temperatura ambiente sin el uso de ninguna fuente de calentamiento externo tal como lámpara IR o estufa sin efectos secundarios sobre la definición de imagen y problemas de contaminación de polvo.
ANTECEDENTES DE LA INVENCIÓN
Las tintas cerámicas digitales para superficie de vidrio contienen frita de vidrio y pigmento inorgánico como componentes funcionales principales. Los sistemas de chorro de tinta comerciales estándares tienen requisitos muy estrictos en términos tanto de propiedades físicas como químicas para satisfacer los criterios de cabezales de impresión y aplicación a chorro. La mayoría de los cabezales de impresión de chorro de tinta industriales requieren una viscosidad fluida menor de 50 mPa.s para expulsar la gota a una velocidad mayor de 5 m/s. El alto contenido de sólidos y el tamaño de partícula en la tinta es un problema para el cabezal de impresión de chorro de tinta en términos de bloqueo de la boquilla y aplicación a chorro fiable. Típicamente, la tinta de chorro de tinta de gota bajo demanda debería tener • 8-20 mPa.s de viscosidad volumétrica a la temperatura de aplicación a chorro,
• 20-40 mN/m de tensión superficial,
• < 1 mhi de tamaño de partícula/pigmento altamente estable para fiabilidad de impresión y para prevenir el bloqueo de boquilla.
Las tintas cerámicas comerciales actuales para vidrio tienen más de un 40 % en peso de sólidos constituidos por fritas y pigmentos. La viscosidad de tales tintas es generalmente viscoelástica, mediante la cual la viscosidad disminuye al aumentar las tasas de cizallamiento. A menudo, la viscosidad a tasa de cizallamiento menor (a tasa de cizallamiento 1) podría ser un factor de casi dos o más a la viscosidad a una tasa de cizallamiento de 100-1000.
La temperatura tiene una influencia considerable sobre la viscosidad de la tinta. La viscosidad de la mayoría de las tintas de chorro de tinta cae casi un 50 % cuando se duplica la temperatura. Bastante a menudo, estas tintas se imprimen por encima de temperatura ambiente para llevar la viscosidad de la tinta dentro de las especificaciones del cabezal de impresión.
Al contrario que las baldosas de cerámica, al no ser el vidrio un sustrato absorbente, hay varias dificultades para imprimir tinta de chorro de tinta sobre vidrio. A menudo, el polvo del entorno se descarga sobre el sustrato de tinta húmedo mientras la tinta experimenta secado. En consecuencia, el polvo penetra en la tinta y da como resultado defectos de postimpresión tales como ojos de pez y cráteres que son claramente visibles en la imagen final cuando la tinta se seca y templa. Para impresión, cuando se requiere un alto volumen de deposición, a menudo la tinta migra debido a su mayor grosor y da como resultado la pérdida de definiciones de línea fina. Por ello, es altamente recomendable imprimir en un entorno de sala limpia (libre de polvo) para prevenir problemas relacionados con el polvo descargado sobre el sustrato impreso.
Es por lo tanto el objetivo de la presente invención superar los inconvenientes del estado de la técnica, a saber:
- aumentar la estabilidad de tinta y reducir significativamente la sedimentación de tintas cerámicas altamente cargadas de partículas que contienen frita de vidrio y pigmentos inorgánicos;
- rebajar el voltaje de accionamiento del cabezal de impresión requerido para aplicar a chorro debido a una caída significativa de la viscosidad a la temperatura de aplicación a chorro;
- eliminar la salpicadura de tinta y retardar la difusión de tinta a lo largo de los bordes;
- retardar/eliminar los defectos causados por la descarga de cualquier contaminación aérea tal como polvo en la pintura húmeda.
DESCRIPCIÓN DE LA INVENCIÓN
Como se ha mencionado anteriormente, el objeto de la invención es el desarrollo de tintas de chorro de tinta cerámicas novedosas para sustratos no porosos (tales como vidrio y metales), mediante las cuales la viscosidad de las tintas a la temperatura de aplicación a chorro de 33-50°C es de 8-20 mPa.s y aumenta sustancialmente por un factor de más de 5 (mayor de 100 mPa.s) después de descargar sobre el sustrato. La invención se refiere también a etapas de procesamiento/formulación y al ajuste de las propiedades volumétricas y dinámicas adecuadas para (i) impresión por chorro de tinta en el canal del cabezal de impresión y (ii) la alta viscosidad deseable después de descarga sobre el sustrato de vidrio. Estas tintas pueden aplicarse a chorro fiablemente sobre una superficie cerámica tal como vidrio usando dispositivos de chorro de tinta de gota bajo demanda comerciales, y mitigan la salpicadura de tinta, la difusión durante y después de la descarga y eliminan/reducen los defectos de imagen debidos a contaminaciones de polvo por el entorno sobre tintas húmedas después de la impresión. Después de la aplicación a chorro, estas tintas pueden secarse a temperatura ambiente sin el uso de ninguna fuente de calentamiento externo tal como lámpara IR o estufa sin efectos secundarios sobre la definición de imagen y problemas de contaminación de polvo.
Las invenciones se refieren a una formulación de composiciones de tinta de chorro de tinta cerámicas novedosas que da como resultado (i) tinta termoplástica híbrida y (ii) tinta fotosensible híbrida. Los rasgos clave son que ambas familias de tintas son líquidas a temperatura ambiente y dentro de las especificaciones del cabezal de impresión a las temperaturas de aplicación a chorro, pero cambian a líquido de alta viscosidad (>100 mPa.s) sobre el sustrato después de la descarga.
La tinta de chorro de tinta termoplástica híbrida se diseña de tal modo que la viscosidad sea de alrededor de 6-20 mPa.s a una temperatura de aplicación a chorro de 33°C y superior y aumente significativamente a más de 100 mPa.s cuando la temperatura de tinta cae en menos de 10°C a condiciones ambientales. En comparación con esto, la viscosidad de la tinta de chorro de tinta estándar aumenta por un factor máximo de 2 o menos para una caída de 10°C de las temperaturas. Las tintas húmedas sobre el sustrato pueden secarse al aire posteriormente o usar cualquier forma de técnica de secado convencional, seguido de templado o cocción a alta temperatura.
La tinta de chorro de tinta fotosensible híbrida se diseña de tal modo que la viscosidad sea de alrededor de 6-20 mPa.s a una temperatura de aplicación de chorro de 33°C y superior. Tras la descarga sobre sustrato, la viscosidad de la tinta aumenta significativamente en más de 100 mPa.s por curado parcial de la tinta usando una lámpara de UV, IR o LED. Las tintas húmedas altamente viscosas sobre el sustrato pueden secarse entonces al aire o usar cualquier forma de técnica de secado convencional, seguido de templado o cocción a alta temperatura (500-750°C) para fundir la frita sobre los sustratos para el color y propiedades finales.
Tal tinta de chorro de tinta novedosa con tal cambio drástico en la viscosidad de tinta tiene beneficios clave:
• En frasco:
° Alta estabilidad de tinta y sedimentación insignificante de tintas cerámicas altamente cargadas de partículas que contienen frita de vidrio y pigmentos inorgánicos en el frasco, debido a la alta viscosidad de la tinta a temperatura ambiente.
• Durante la impresión:
- Rebaja el voltaje de accionamiento del cabezal de impresión requerido para aplicar a chorro debido a una caída significativa de la viscosidad a la temperatura de aplicación a chorro (33 °C y mayor).
• Sobre sustrato no poroso:
° Después de aplicación a chorro, una vez la gota se descarga sobre el sustrato, la viscosidad de la tinta aumenta rápidamente dando como resultado muchos beneficios. ■ Definición de imagen: La alta viscosidad elimina también la salpicadura de tinta y retarda la difusión de tinta a lo largo de los bordes, especialmente cuando se depositan múltiples gotas. Esto ayuda a retener las definiciones de línea/imagen.
■ Problemas de polvo: Retarda/elimina los defectos causados por la descarga de cualquier contaminación aérea tal como polvo en la pintura húmeda.
• Debido a la tinta de alta viscosidad en condiciones ambientales, se retarda la migración entrante del polvo sobre la superficie de tinta húmeda, dando como resultado una "baja captación de suciedad" y por ello reduce significativamente los defectos tales como ojos de pez y cráteres sobre la superficie impresa final.
Los componentes de tinta clave de las tintas para vidrio son:
La composición final de la tinta tiene un 30-60 % de sólidos consistentes en fritas de vidrio y pigmentos inorgánicos con un tamaño de partícula volumétrico: Dgo_Voi < 1 ,5 mGTI.
Frita (15-50 % en peso)
La frita es el componente clave de las tintas de chorro de tinta cerámicas que se diseñan para satisfacer tanto las propiedades químicas como mecánicas del vidrio cocido/templado final. Las composiciones detalladas son variadas dependiendo de la temperatura de transición vitrea de frita requerida, requisitos de templado y sustrato final, resistencia a ácidos y bases. La frita se prepara fusionando una variedad de minerales en un horno y enfriando entonces rápidamente los materiales fundidos. La frita de vidrio usada para la receta de cerámica está compuesta principalmente por S1O2, B2O3 y BÍ2O3 o bien ZnO. Se usan varias familias de fritas de vidrio, a saber fritas basadas en bismuto y/o cinc.
Los componentes comunes de las composiciones de familias de fritas son:
- 20-49 % en peso de S1O2,
- 3-20 % en peso de B2O3,
- 1-9 % en peso de Na20,
- 0,1-5 % en peso de K20, - 1-7 % en peso de "PO2,
- 0,01-1 % en peso de AI2O3,
Y el resto de la composición puede ser una combinación de B2O3, U2O y ZnO, o B2C>3 y ZnO, o B2O3 y Li20, O ZnO y Li20.
Ejemplos de composición de frita de vidrio de bismuto/cinc (Frita F1)
- 20-49 % en peso de S1O2,
- 3-20 % en peso de B2O3,
- 1-9 % en peso de Na20,
- 0, 1-5 % en peso de K2O,
- 1-7 % en peso de "PO2,
- 0,01-1 % en peso de AI2O3,
- 40-55 % en peso de BÍ2O3,
- 0,5-3 % en peso de ZnO,
-0, 1-4 % en peso de U2O,
- mezcla de otros óxidos tales como CaO, BaO, MgO, P2O5, Fe2Ü3 y SrO en una cantidad menor de 10 % en peso;
Ejemplos de composición de frita de vidrio de bismuto/cinc libre de litio (Frita F2)
- 20-49 % en peso de S1O2,
- 3-20 % en peso de B2O3,
- 1-9 % en peso de Na2Ü,
- 0, 1-5 % en peso de K2O,
- 1-7 % en peso de "PO2,
- 0,01-1 % en peso de AI2O3,
- 50-60 % en peso de BÍ2O3,
- 7-12 % en peso de ZnO,
- mezcla de otros óxidos tales como CaO, BaO, MgO, P2O5, Fe2Ü3 y SrO en una cantidad menor de 10 % en peso;
Ejemplos de composición de frita de bismuto (Frita F3)
- 20-49 % en peso de S1O2,
- 3-20 % en peso de B2O3, - 1-9 % en peso de Na20,
- 0,1-5 % en peso de K20,
- 1-7 % en peso de Ti02,
- 0,01-1 % en peso de AI2C>3,
- 45-55 % en peso de Bi2C>3,
- 0,1-4 % en peso de Li20,
- mezcla de otros óxidos tales como CaO, BaO, MgO, P2Os, Fe2C>3 y SrO en una cantidad menor de 10 % en peso.
Ejemplos de composición de frita de Zn (Frita F4)
- 20-49 % en peso de Si02,
- 3-20 % en peso de B2C>3,
- 1-9 % en peso de Na20,
- 0,1-5 % en peso de K20,
- 1-7 % en peso de Ti02,
- 0,01-1 % en peso de AI2C>3,
- 7-15 % en peso de ZnO,
- 1-5 % en peso de Li20.
La composición de frita de vidrio está en forma de partículas que tienen una distribución volumétrica del tamaño de partícula Dv90 de menos de 1 ,5 pm, medido por difracción láser. Se entiende por "% en peso" el porcentaje en peso del peso total de la composición de frita de vidrio.
Pigmentos (1-25 % en peso)
Los pigmentos inorgánicos pueden ser óxidos de metales tales como óxido de cromo, dióxido de titanio (para blanco) u óxidos mixtos y óxido de hierro para diferentes colores. Los pigmentos son pigmentos inorgánicos termorresistentes que tienen un tamaño medio de 2-3 micrómetros, químicamente inertes y estables a la luz ultravioleta. Tienen una alta durabilidad y potencia de cobertura.
Son ejemplos de pigmentos inorgánicos adecuados verde azulado espinela de cromita de cobalto, azul espinela de aluminato de cobalto, rojo de óxido de hierro, ferrita de manganeso, amarillo rutilo de níquel, antimonio y titanio, negro espinela de cromita de cobre, ferrita de manganeso, blanco rutilo y anatasa de dióxido de titanio, verde espinela de titanato de cobalto y verde azulado espinela de cromita de cobalto los colores vivos brillantes amarillo, naranja y rojo que son capaces de soportar condiciones de templado son pigmentos inorgánicos en la gama del cadmio, tales como amarillo 37 (sulfuro de cadmio), naranja 20, rojo 108 (sulfoseleniuro de cadmio) y amarillo 35 (sulfuro de cinc y cadmio).
Portadores:
Disolventes al 30-50 % que contienen una mezcla de disolventes para satisfacer requisitos específicos.
• Disolventes de secado lento para prevenir el secado de tinta en la boquilla y prevenir el bloqueo de la boquilla.
• Disolvente de secado rápido para prevenir el traspaso/difusión de tinta después de descargar sobre el sustrato.
Tintas no polares
• Uno o más hidrocarburos de cadena lineal tales como queroseno, nafta; alifáticos tales como ciclohexano, éter de petróleo, trementina mineral, aguarrás o una mezcla de los mismos. Los portadores pueden ser una mezcla de aléanos C10-C24 lineales, preferiblemente aléanos C10-C22 lineales, más preferiblemente aléanos C12-C18 lineales.
Tintas polares
• Uno o más alcoholes, tales como alcohol metílico, alcohol etílico, alcoholes propíneos, alcoholes butílicos; glicoles, tales como metilglicol (MG), etilglicol, propilglicol, butilglicol (BG); glicoléteres, tales como metoxi propanol (PM), etoxipropanol (EP), diacetonapropanol (DAA), metoxibutanol, dipropilenglicolmonometiléter (DPM), tripropilenglicolmetiléter (TPM), propilenglicolmonometiléter (PM) di- o tripropilenglicolmonopropiléter (DPnP, TPnP), butildiglicol (BDG); ésteres, tales como acetato de metilo, acetato de etilo (ETAC), acetato de propilo (IPAC), acetato de butilo (BUAC), acetato de metoxipropilo (PMA), etil-3-etoxipropanol (EEP); cetonas, tales como acetona, metiletilcetona (MEK), metilbutilcetona y ciclohexanona.
Tintas acuosas
Contienen agua y una mezcla de uno o más alcoholes, tales como alcohol metílico, alcohol etílico, alcoholes propílicos, alcoholes butílicos; glicoles, tales como metilglicol (MG), etilglicol, propilglicol, butilglicol (BG); glicoléteres, tales como metoxipropanol (PM), etoxipropanol (EP), dicetonapropanol (DAA), metoxibutanol, dipropilenglicolmonometiléter (DPM), tripropilenglicolmetiléter (TPM), propilenglicolmonometiléter (PM), di- o tripropilenglicolmonopropiléter (DPnP, TPnP), butildiglicol, (BDG); ásteres, tales como acetato de metilo, acetato de etilo (ETAC), acetato de propilo (IPAC), acetato de butilo (BUAC), acetato de metoxipropilo (PMA), etil-3-etoxipropanol (EEP) o una mezcla de los mismos.
Termoplásticos
• Los portadores adecuados pueden ser mezclas de ceras de alcano con un bajo punto de fusión de 40-100 °C, siendo sólidas a temperatura ambiente. Son ejemplos de tales portadores cera de parafina de bajo punto de fusión.
Disolvente fotosensible
• Uno o más disolventes pueden ser mezclas de monómeros, dímeros y/u oligómeros de acrilato y fotoiniciadores. Los ejemplos de tales disolventes podrían ser mezclas de N-vinilcaprolactama (ObHi3NO) (1-vinil-2-pirrolidona), acrilato multifuncional, ácido acrílico, monoalquilarilo o alquiladlo, diacrilato de polietilenglicol y fotoiniciadores tales como 2-bencil-2-dimetilamino-4-morfolinobutirofenona.
Aditivos
• Aditivos: 0-10 % para satisfacer los requisitos de aplicación a chorro y sustrato específicos.
° Agente de control de viscosidad (si se requiere),
° Tensioactivo (reduce la tensión superficial a 20-30 mN/m si se requiere),
° Aglutinantes: Resinas (acrílicas, alquídicas, basadas en amino),
° Agentes antisedimentación/antiestáticos: como Aerosil y Disparlon, aditivos de reología, etc.
° Agente dispersante/humectante,
° Agente antiespumante/desaireante,
° Agentes de agarre: hidroxipropilcelulosa, metacrílicos y resinas alquídicas. Propiedades físicas de la tinta
Requisitos de cabezal de impresión y aplicación a chorro:
•A pesar del mayor tamaño de partícula y mayor contenido de sólidos, las propiedades de la tinta están estrechamente controladas y optimizadas para satisfacer las condiciones de cabezal de impresión y en vuelo para generar gotas fiables.
° Viscosidad: 6-20 mPa.s a la temperatura de aplicación a chorro y condiciones de aplicación a chorro
■ La alta viscosidad volumétrica de cizallamiento a temperatura ambiente es de entre 8-50 mPa.s
° Tensión superficial: 20-40 mN/m (dependiente del proceso y el sustrato)
° Tamaño de partícula: <= 1 ,5 micrómetros (dependiente del sistema)
■ alta estabilidad de partícula para una aplicación a chorro fiable.
Requisitos de sustrato:
• Después de descarga:
° Las propiedades de tinta se ajustan especialmente para
■ prevenir la salpicadura de gotas, traspaso y difusión después de descarga sobre superficies duras tales como vidrio;
■ retener la definición de bordes de la imagen impresa durante secado y templado.
• Secado
° La formulación de tinta se ajusta con resinas/aditivos apropiados para dar un buen agarre después del secado de tinta sobre el sustrato a temperatura > 200 °C, para manejo manual.
• Propiedades del templado final: ° La composición de la frita (uno de los componentes principales de la tinta de chorro de tinta cerámica) se afina durante la preparación de frita para satisfacer los requisitos de sustrato final después del templado tales como
■ temperatura de transición vitrea para fundirse y fusionarse con las superficies cerámicas
■ resistencia a ácidos
■ resistencia a arañazos.
° El tamaño tipo de pigmento y su interacción de partícula se ajustan durante la formulación para satisfacer
■ el color de templado final
■ la potencia de cobertura y opacidad.
La presente invención se refiere también a un proceso para producir la tinta de chorro de tinta cerámica como un proceso que comprende las siguientes etapas:
A) preparar una pasta de frita de vidrio (FP) por molienda y trituración del polvo de frita en presencia de un agente dispersante y un disolvente, para conseguir una distribución volumétrica de tamaño de partícula de pigmento DV9o de menos de 1 ,5 pm;
B) preparar una pasta de pigmento (PP) por molienda y trituración de partículas de pigmento inorgánico en presencia de un agente dispersante y un disolvente, para conseguir una distribución volumétrica de tamaño de partícula de pigmento Dv90 de menos de 1 pm;
C) mezclar la pasta de frita de la etapa (A) y la pasta de pigmento de la etapa (B) en un mezclador de alto cizallamiento o mezclador de perlas;
D) añadir un diluyente constituido por una mezcla de disolventes y aditivos a la tinta concentrada de la etapa (C), para conseguir formulaciones finales específicas en el medio de deposición, que tiene un contenido final de sólidos de 30-60 % en peso del peso total de la mezcla y las propiedades de tinta deseadas; y
E) filtrar la mezcla de la etapa (D) a través de un filtro de tamaño de poro micrométrico, obteniendo así una tinta de chorro de tinta cerámica que tiene una viscosidad de 6-20 mPa.s a la temperatura de aplicación a chorro y condiciones de aplicación a chorro.
Pasta de frita: Las fritas se suministran en forma de polvo con un tamaño de partícula de menos de 10 micrómetros. La estabilidad y tamaño de partícula de la frita se mantienen mediante múltiples etapas que implican la molienda del polvo de frita molido a chorro (tamaño medio de partícula de 8-12 micrómetros) se lleva a cabo en un mezclador de alto cizallamiento de mezclado de polvo de frita con dispersante específico, resinas (tales como resinas de poliacrilato, polialquídicas y de poliamida) con la elección seleccionada de disolventes (hidrocarburo alifático no polar, familia de glicoléteres polares, agua acuosa, cera de parafina termoplástica o mezcla de uno o muchos disolventes).
Esto es seguido entonces por molienda en húmedo en un componente de cámara especial tal como circonia, nitrito de silicio y/o carburo de silicio la molienda en húmedo puede llevarse a cabo en lotes en operaciones de múltiples pasos hasta obtener el tamaño de partícula deseado.
La composición final es una pasta de frita bien dispersada con un tamaño final de partícula < 1 ,5 mhi. Se muestran a continuación ejemplos de pasta de frita molida (FP) con diferentes tipos de disolvente.
Figure imgf000013_0001
Se mezclan inicialmente todos los componentes en un mezclador de alto cizallamiento y se muelen entonces en un molino de cesta o molino húmedo horizontal con cámara de trituración de circonia durante más de 24 horas. Esto daba como resultado una frita altamente estable sin sedimentación o mínima y se obtiene un tamaño de partícula <=1 ,5 m.
B: Pasta de pigmento inorgánico
Los pigmentos de color inorgánicos se proporcionan externamente y se suministran como polvos. Los pigmentos inorgánicos estándares tienen tamaños mayores de 2-3 micrómetros y son inadecuados para aplicaciones de chorro de tinta.
Preferiblemente, la pasta de pigmento de la etapa B comprende 45-85 % en peso de pigmento, 2-20 % en peso de agente dispersante y 10-55 % en peso de disolvente.
El pigmento se muele y tritura en presencia de un agente dispersante y un disolvente, dando por tanto como resultado una pasta de pigmento que tiene una distribución volumétrica de tamaño de partícula de pigmento Dv90 de menos de 1 pm, preferiblemente menos de 1 pm. La combinación del agente dispersante y la etapa de trituración es crucial para obtener una pasta de pigmento altamente estable con sedimentación despreciable/nula durante largo tiempo.
La molienda del polvo de pigmento (tamaño medio de partícula de 7-20 micrómetros) se lleva a cabo por premezclado de polvo de pigmento con dispersante específico, resinas, la elección seleccionada de disolvente (hidrocarburo alifático no polar, familia de glicoléteres polares, agua acuosa, cera de parafina termoplástica).
Esto es seguido entonces por molienda en húmedo usando molino de cesta o un componente de cámara especial tal como circonia, nitrito de silicio y/o carburo de silicio la molienda en húmedo puede llevarse a cabo en lotes en operaciones de múltiples pasos hasta obtener el tamaño de partícula deseado.
La elección de las etapas de dispersante y trituración es crucial para obtener una pasta de pigmento altamente estable con poca/ninguna sedimentación durante largo tiempo.
Preferiblemente, el agente dispersante es un copolímero con grupo ácido (Disperbyk 110, Disperbyk 111), sal de alquilolamonio de copolímero con grupos ácidos (Disperbyk-180), solución de copolímeros de alto peso molecular con grupos afines al pigmento (Disperbyk 182, Disperbyk 184, Disperbyk 190), copolímero con grupos afines al pigmento (Disperbyk 191 , Disperbyk 192, Disperbyk 194, Tego Dispers 7502, Tego Dispers 752W, Tego Dispers 656), copolímero de bloque con grupos afines al pigmento (Disperbyk 2155), solución de sal de alquilolamino de un polímero ácido de mayor peso molecular (Anti-terra-250), copolímero de acrilato estructurado con grupos afines al pigmento (Disperbyk 2010, Disperbyk 2015), polivinilpirrolidona (PVP K-15, PVP K-30, PVP K-60), hiperdispersante polimerico (Solsperse J930, Solsperse J945, Solsperse J955, Solsperse J980, Solsperse J981 , Solsperse J944, Solsperse J950, Solsperse J955), poliuretano de alto peso molecular (Efka PU 4009, EFKA PU 4010), sales de ácido carboxílico de alto peso molecular (Efka Fa4564) o una mezcla de los mismos.
Se dan a continuación ejemplos de pasta de pigmento usados en las formulaciones de tinta finales.
PP1 : Pasta de pigmento negra 1- no polar
• Pigmento inorgánico: Negro espinela= 60 %
• Aglutinante: Resinas de poliamida= 3 %
• Portador: Hidrocarburos n-alcanos C14-C18= 37 %
PP2: Pasta de pigmento blanco 1- no polar
• Pigmento inorgánicUGo: Negro espinela= 60 %
• Dispersante: Disperbyk 194 N= 5 %
• Portador: Hidrocarburos n-alcanos C14-C18= 35 %
PP3: Pasta de pigmento negra 2- polar
• Pigmento inorgánico: Negro espinela= 65 %
• Dispersante Disperbyk 194N= 7 %
• Portador: DPM= 23 %
PP4: Pasta de pigmento negro 3- acuosa
• Pigmento inorgánico: Negro espinela= 55 %
• Dispersante Disperbyk 194N: 10 %
• Aditivos: PVP 30= 3 %
• Portador: Agua= 22 %
• DPM: 10 % PP5: Pasta de pigmento azul 4: Termoplásticos
• Pigmento inorgánico: Azul espinela= 50 %
• Cera de parafina: 30 %
• Disolvente hidrocarburo alifático: 20 %
• Temperatura de molienda: 60°C
Formulaciones de tinta de chorro de tinta
La tinta de chorro de tinta cerámica final puede comprender también aditivos, tales como portadores, agentes de reología, tensioactivos, agentes antisedimentación/antiestáticos, agentes de flujo y nivelación, agentes antiespumantes/desairantes y resinas. Los aditivos apropiados pueden mejorar el agarre de superficie después de secar a una temperatura mayor o igual a 150 °C, para manejo manual.
Los aditivos pueden estar en una cantidad de hasta 10 % en peso para mejorar los rendimientos de aplicación a chorro y adhesión a sustrato. Con "% en peso" se entiende porcentaje en peso del peso total de la tinta de chorro de tinta cerámica.
Los tensioactivos adecuados pueden ser una solución de polidimetilsiloxano modificado con poliéter (comercialmente disponible como BYK-301 , BYK-302, BYK 306, BYK 337, BYK 341), polidimetilsiloxano modificado con poliéter (comercialmente disponible como BYK-307), solución de un polidimetilsiloxano modificado con poliéster (comercialmente disponible como BYK-310, BYK-313), solución de polimetilalquilsiloxano modificado con poliéster (comercialmente disponible como BYK- 315), dimetilpolisiloxano modificado con poliéter (comercialmente disponible como BYK378) o una mezcla de los mismos.
Los agentes de flujo y nivelación adecuados pueden ser una solución polimérica sin silicona de polímero acrílico modificado con poliéster, dimetilpolisiloxanos especiales (comercialmente disponibles como Tego Flow ATF 2), copolímero de polietersiloxano (comercialmente disponible como Tego Glide 100, Tego Wet 240) o una mezcla de los mismos.
Los agentes desaireantes/antiespumantes adecuados pueden ser libres de silicona (comercialmente disponibles como BYK 051 , BYK 052, BYK 053, BYK 054, BYK 055, BYK 057, BYK 1752, BYK-A 535), emulsión de sólidos hidrófobos, emulsionantes y polisiloxanos destructores de espuma (comercialmente disponibles como BYK-610), antiespumante de silicona fluoromodificado (comercialmente disponible como Dynoadd F-470), aniónico sin silicona (comercialmente disponible como Dynoadd F-603), polisiloxano organomodificado (comercialmente disponible como Tego Airex 900), polímeros orgánicos desaireantes con punta de silicona (comercialmente disponibles como Tego Airex 990, Tego Airex 991), desaireante sin silicona (comercialmente disponible como Tego Airex 920), solución de poliacrilato (comercialmente disponible como Tego Flow ZFS 460), o una mezcla de los mismos.
Los agentes de reología y antisedimentación adecuados pueden ser solución de urea modificada (comercialmente disponible como BYK 410, BYK 420), solución de poliuretano modificado con urea (comercialmente disponible como BYK-425), solución de poliuretano con una estructura altamente ramificada (comercialmente disponible como BYK-428), solución de poliamida polar modificada con urea de alto peso molecular (comercialmente disponible como BYK-430, BYK-431) amida hibridada (comercialmente disponible como Disparlon AQH 800), espesante basado en poliuretano no iónico (comercialmente disponible como Tego ViscoPlus 3000, Tego ViscoPlus 3030, Tego ViscoPlus 3060), sílice de pirólisis (calidades Aerosil) o una mezcla de los mismos.
Las resinas adecuadas pueden ser hidroxipropilcelulosa, hidroxietilcelulosa, hidroximetilcelulosa, nitrocelulosa, poliacrílicas (incluyendo acrílicas termoplásticas, termoendurecibles, diluibles en agua y en dispersión no acuosa), de poliéster, amino, poliuretano, poliisocianatos, polialquídica, poliamida, polialdehído, hidrocarburo alifático o una mezcla de las mismas. Los ejemplos de tales resinas podrían ser calidades Klucel, la serie Degalan, Neocryls 73, Nebores BS 35-60, Paraloid B67, Paroloid B82, Eurola AL1905Q, Rapsolato 7470, Laropal A81 , Nytex 846, Wingtack 86, Wingtack 95.
EXPLICACIÓN DE LAS FIGURAS
Como complemento de la presente descripción, y con el fin de ayudar a hacer más fácilmente comprensibles las características de la invención, de acuerdo con una realización ejemplar práctica preferida de la misma, dicha descripción se acompaña por un conjunto de dibujos que constituyen una parte integral de la misma, que a modo de ilustración y no de limitación representa lo siguiente. La Figura 1a muestra el perfil de cizallamiento estacionario a 25 y 33°C para tinta estándar.
La Figura 1b muestra el perfil de cizallamiento estacionario a 25 y 33°C para tinta híbrida A.
La Figura 2: muestra el efecto de la contaminación de polvo sobre las muestras impresas húmedas con (a) tintas azules estándares y (b) tinta azul híbrida A.
La Figura 3: muestra el efecto de la contaminación de polvo sobre las muestras impresas húmedas con (a) tintas amarillas estándares y (b) con tinta amarilla híbrida.
REALIZACIÓN PREFERIDA DE LA INVENCIÓN
Tintas termoplásticas híbridas
Es bastante preferible tener una tinta de alta viscosidad una vez la tinta se descarga sobre el sustrato de vidrio. Esto tiene muchas ventajas:
• La tinta de alta viscosidad retarda la migración del polvo contaminado que se descarga sobre la parte superior penetrando en la pintura y causando ojos de pez y cráteres.
• La alta viscosidad elimina también la salpicadura de tinta y retarda la difusión de tinta a lo largo de los bordes, especialmente cuando se depositan múltiples gotas. Esto ayuda a retener las definiciones de línea/imagen.
Sin embargo, la mayoría de los cabezales de impresión tienen limitación de viscosidad en términos de capacidad de aplicación a chorro. Para satisfacer los requisitos de viscosidad, a menudo estas tintas de chorro de tinta cerámicas se aplican a chorro a 30-50 °C, a una viscosidad a la temperatura de aplicación a chorro de 8-20 mPa.s. Tras descargarse sobre el sustrato, la temperatura de la tinta puede alcanzar rápidamente la temperatura de sustrato de 20-25 °C, lo que a menudo conduciría a un aumento de la viscosidad de tal tinta a aproximadamente 16-40 mPa.s.
En la formulación novedosa, las tintas termoplásticas híbridas, se introduce una pequeña cantidad de solución concentrada de material termoplástico de bajo punto de fusión en la formulación en la etapa de deposición, después de preparar la frita concentrada y la pasta de pigmento. El portador principal en la frita y la pasta de pigmento y por ello la tinta final podría estar constituido por cualquier tipo de disolvente (no polar, polar o acuoso). Los materiales termoplásticos adecuados pueden ser mezclas de ceras de parafina de alcano con un bajo punto de fusión de 35-60 °C, que son sólidas a temperatura ambiente.
La clave del beneficio de tener una pequeña cantidad de parafina en las tintas es alterar significativamente el comportamiento de viscosidad frente a temperatura. Con la elección correcta de la parafina, a la temperatura de aplicación de chorro (en este caso 33°C), la presencia de tal componente tiene una influencia baja o despreciable sobre la viscosidad y es similar a las tintas estándares (alrededor de 12-13 mPa.s) dentro de la especificación de los requisitos de cabezal de impresión. Sin embargo, cuando la temperatura cae a 25°C, la viscosidad aumentaba por un factor significativo debido a la transición de fase de la cera. En el ejemplo ilustrado a continuación, las tintas híbridas con cera, la viscosidad es casi 10 veces o más hasta alrededor de 140 mPa.s cuando la temperatura cae a 25 °C. En el caso de la tinta estándar sin cera de parafina, la viscosidad solo aumentaba de 12 a 14 mPa.s. Se muestran cambios detallados de la viscosidad de tinta a 25 y 33 °C en el ejemplo de las comparaciones por receta del cambio de reología de tintas estándares e híbridas que se ilustra en la tabla siguiente.
Figure imgf000020_0001
Las Figuras 1(a) y 1 (b) demuestran claramente que, a la temperatura de aplicación a chorro, tanto la tinta estándar como la híbrida A tenían un perfil de viscosidad similar de alrededor de 12 mPa.s. Sin embargo, la tinta híbrida A mostraba un aumento significativo de la viscosidad cuando la temperatura caía a 25°C en comparación con el modesto aumento para la tinta estándar (sin cera termoplástica).
La formulación de tales tintas híbridas con tal variación de viscosidad drástica ofrece ventajas significativas:
(i) A las temperaturas de aplicación a chorro, la viscosidad de las tintas en el canal está dentro de la especificación del cabezal de impresión, requiriendo por tanto menos voltaje de accionamiento para expulsar la tinta.
(ii) Después de descargarse sobre superficies de cerámica duras, tales como vidrio, se eliminan efectos indeseados tales como salpicadura de gotas, transferencia y difusión de las tintas. Además, se minimizan los defectos causados por la descarga de polvo sobre las tintas húmedas. Debido a la alta viscosidad de la tinta y la presencia de cera sobre la capa superior, el polvo flota sobre la superficie del sustrato, en lugar de penetrar en el vidrio, y se eliminan por tanto defectos tales como ojos de pez y cráteres sobre el vidrio templado final.
(iii) Debido a la rápida ganancia de viscosidad una vez se aplica a chorro la tinta sobre el sustrato a temperatura ambiente, se protege la estructura de los puntos para una reproducción precisa del color y por ello se retiene la definición de bordes de la imagen impresa durante el secado y templado.
Los ensayos de aplicación a chorro de tales tintas mostraron una aplicación a chorro muy fiable y la eliminación de defectos visibles sobre las muestras impresas como resultado de contaminaciones de polvo. Las fotografías ilustran un escenario mediante el cual, para las tintas híbridas termoplásticas, se ve el polvo flotando sobre la parte superior de las tintas, mientras que en el caso de la tinta estándar, el polvo entra en la pintura y se pega al vidrio. El secado y templado muestran claramente un cráter visible y defectos de imagen en el caso de tintas estándares y no se ve ninguno de tales defectos sobre las tintas híbridas. Se muestra el ejemplo de fotografías en las Figuras 2(a) y 2(b) y 3(a) y 3(b) para tintas azules y amarillas cerámicas.
En la Figura 2(a), puede observarse el efecto de la contaminación de polvo sobre muestras impresas húmedas con tintas azules estándares, cuyos efectos son que el polvo del entorno conduce a un número considerable de defectos tales como cráteres como se destacan, mientras que en la Figura 2(b), de tinta azul híbrida A con una influencia baja o despreciable del polvo sobre la imagen final, no hay cráteres apreciables visibles.
La Figura 1 muestra el efecto de la contaminación de polvo sobre muestras impresas húmedas con (a) tintas amarillas estándares, en las que el polvo del entorno conduce a un número considerable de defectos tales como cráteres como se destacan, y (b) con tinta amarilla híbrida, con una influencia baja o despreciable del polvo sobre la imagen final, no hay cráteres apreciables visibles.
Tintas fotosensibles híbridas
En esta formulación novedosa, la viscosidad de la tinta aumenta drásticamente después de descargarse sobre el sustrato (directamente después de aplicación a chorro) al introducir una pequeña cantidad de disolventes fotosensibles tales como acrilatos multifuncionales sensibles a UV (p.ej., Sartomer 506, Sartomer 399, Ebercryl 965), disolventes sensibles a LED o resinas sensibles a infrarrojos en las tintas en la deposición durante la etapa D después de preparar la frita concentrada y pasta de pigmento. El portador en la frita y la pasta de pigmento y por ello la tinta final podría estar constituido por cualquiera tipo de disolvente (no polar, polar o acuoso).
Una vez la tinta se descarga sobre el sustrato, se inicia un curado parcial de estos disolventes en presencia de su fuente de luz, aumentando significativamente por tanto la viscosidad de tinta mientras que se retiene en forma de líquido.
La clave del beneficio de aumentar la viscosidad de tinta sobre el sustrato es la misma que se describe anteriormente para tinta termoplástica híbrida, principalmente retener la definición de imagen, eliminar la salpicadura y difusión de gota y mitigar los defectos causados por el polvo que se descarga sobre la tinta de recubrimiento.
Se ilustra el ejemplo de la receta en la reología de las tintas estándares y fotosensibles híbridas en la tabla siguiente.
Figure imgf000023_0001

Claims

REIVINDICACIONES
1. Tintas de inyección cerámicas digitales para vidrio que comprenden:
- composición de frita de vidrio, 25-60 % en peso, que está en forma de partículas que tienen una distribución volumétrica del tamaño de partícula Dv90 de menos de 1 ,5 pm, medido por difracción láser;
- pigmentos inorgánicos, 1-25 % en peso, que comprenden óxidos de metales y son pigmentos inorgánicos termorresistentes que tienen un tamaño medio de 2-3 micrómetros, químicamente inertes y estables a la luz ultravioleta;
- portadores, 30-40 % en peso, que comprenden principalmente disolventes polares, no polares o acuosos;
- aditivos, 0-10 % en peso; caracterizadas porque los disolventes son también mezclas de menos de 10 % en peso de ceras de alcano con un bajo punto de fusión de 40-100 °C, siendo sólidas a temperatura ambiente.
2. Tintas de inyección cerámicas digitales para vidrio según la reivindicación 1 , caracterizadas porque:
- la composición de frita de vidrio tiene en % en peso del peso total de la composición de frita de vidrio:
° 20-49 % en peso de S1O2,
° 3-20 % en peso de B2O3,
° 1-9 % en peso de Na20,
° 01-5 % en peso de K2O,
° 1-7 % en peso de T1O2,
° % en peso de AI2O3, y el resto de la composición hasta 100 % en peso es una combinación de, U2O y ZnO, o ZnO o B2O3 y U2O, o ZnO y U2O,
- los óxidos metálicos de los pigmentos inorgánicos, 1-25 % en peso, son tales como óxido de cromo, dióxido de titanio, para blanco, u óxidos mixtos, óxido de hierro para diferentes colores, son pigmentos inorgánicos termorresistentes que tienen un tamaño medio de 2-3 micrómetros, químicamente inertes y estables a la luz ultravioleta;
- los portadores, 30-40 % en peso, son adicionalmente de uno de los siguientes tipos:
° tintas no polares
° tintas polares
° tinta acuosa
- los aditivos, 0-10 % en peso, son uno o una combinación de: portadores, agentes de reología, tensioactivos, agentes antisedimentción/antiestáticos, agentes de flujo y nivelación, agentes antiespumantes/desaireantes y resinas; los aditivos pueden estar en una cantidad de hasta 10 % en peso.
3. Tintas de inyección cerámicas digitales para vidrio según la reivindicación
3, en las que la composición de frita de vidrio es una de las siguientes:
- composición de frita de vidrio de bismuto/cinc, frita F1
- 20-49 % en peso de S1O2,
- 3-20 % en peso de B2O3,
- 1-9 % en peso de Na20,
- 0,1-5 % en peso de K20,
- 1-7 % en peso de T1O2,
- 0,01-1 % en peso de AI2O3,
- 40-55 % en peso de BÍ2O3,
- 0,5-3 % en peso de ZnO,
-0,1-4 % en peso de U2O,
- mezcla de otros óxidos tales como CaO, BaO, MgO, P2O5, Fe2C>3 y SrO en una cantidad menor de 10 % en peso;
- composición de frita de bismuto/cinc sin litio, frita F2
- 20-49 % en peso de S1O2,
- 3-20 % en peso de B2O3,
- 1-9 % en peso de Na20,
- 0,1-5 % en peso de K20, - 1-7 % en peso de T1O2,
- 0,01-1 % en peso de AI2O3,
- 50-60 % en peso de BÍ2O3,
- 7-12 % en peso de ZnO,
- mezcla de otros óxidos tales como CaO, BaO, MgO, P2O5, Fe2C>3 y SrO en una cantidad menor de 10 % en peso;
- composición de frita de bismuto, frita F3
- 20-49 % en peso de S1O2,
- 3-20 % en peso de B2O3,
- 1-9 % en peso de Na20,
- 0,1-5 % en peso de K2O,
- 1-7 % en peso de T1O2,
- 0,01-1 % en peso de AI2O3,
- 45-55 % en peso de BÍ2O3,
- 0,1-4 % en peso de U2O,
- mezcla de otros óxidos tales como CaO, BaO, MgO, P2O5, Fe203y SrO en una cantidad menor de 10 % en peso.
- composición de frita de Zn, frita F4
- 20-49 % en peso de S1O2,
- 3-20 % en peso de B2O3,
- 1-9 % en peso de Na2Ü,
- 0,1-5 % en peso de K2O,
- 1-7 % en peso de T1O2,
- 0,01-1 % en peso de AI2O3,
- 7-15 % en peso de ZnO,
- 1-5 % en peso de U2O.
4. Tintas de inyección cerámicas digitales para vidrio según la reivindicación
2 ó 3 , caracterizadas porque los pigmentos inorgánicos son verde azulado espinela de cromita de cobalto, azul espinela de aluminato de cobalto, rojo de óxido de hierro, ferrita de manganeso, amarillo rutilo de níquel, antimonio y titanio, negro espinela de cromita de cobre, ferrita de manganeso, blanco rutilo y anatasa de dióxido de titanio, verde espinela de titanato de cobalto y verde azulado espinela de cromita de cobalto; los colores vivos brillantes amarillo, naranja y rojo que son capaces de soportar condiciones de templado son pigmentos inorgánicos en la gama del cadmio, tales como amarillo 37 (sulfuro de cadmio), naranja 20, rojo 108 (sulfoseleniuro de cadmio) y amarillo 35 (sulfuro de cinc y cadmio).
5. Tintas de inyección de cerámica digitales para vidrio según cualquier reivindicación anterior de 2 a 4, caracterizadas porque los portadores son una mezcla de aléanos C10-C24 lineales, preferiblemente aléanos C10-C22 lineales, más preferiblemente aléanos C12-C18 lineales.
6. Tintas de inyección cerámicas digitales para vidrio según cualquier reivindicación anterior de 2 a 5 , caracterizadas porque los portadores son uno o más alcoholes tales como alcohol metílico, alcohol etílico, alcoholes propílicos, alcoholes butílicos; glicoles, tales como metilglicol (MG), etilglicol, propilglicol, butilglicol (BG); glicoléteres, tales como metoxi propanol (PM), etoxipropanol (EP), diacetonapropanol (DAA), metoxibutanol, dipropilenglicolmonometiléter (DPM), tripropilenglicolmetiléter (TPM), propilenglicolmonometiléter (PM), di- o tripropilenglicolmonopropiléter (DPnP, TPnP), butildiglicol (BDG); ásteres tales como acetato de metilo, acetato de etilo (ETAC), acetato de propilo (IPAC), acetato de butilo (BUAC), acetato de metoxipropilo (PMA), etil-3-etoxipropanol (EEP); cetonas, tales como acetona, metiletilcetona (MEK), metilbutilcetona y ciclohexanona.
7. Tintas de inyección cerámicas digitales para vidrio según cualquier reivindicación anterior de 2 a 6 , caracterizadas porque los portadores son agua y una mezcla de uno o más alcoholes tales como alcohol metílico, alcohol etílico, alcoholes propílicos, alcoholes butílicos; glicoles, tales como metilglicol (MG), etilglicol, propilglicol, butilglicol (BG); glicoléteres, tales como metoxi propanol (PM), etoxipropanol (EP), diacetonapropanol (DAA), metoxibutanol, dipropilenglicolmonometiléter (DPM), tripropilenglicolmetiléter (TPM), propilenglicolmonometiléter (PM), di- o tripropilenglicolmonopropiléter (DPnP, TPnP), butildiglicol (BDG); ásteres tales como acetato de metilo, acetato de etilo (ETAC), acetato de propilo (IPAC), acetato de butilo (BUAC), acetato de metoxipropilo (PMA), etil-3-etoxipropanol (EEP) o una mezcla de los mismos.
8. Procedimiento para fabricar las tintas cerámicas digitales para vidrio según cualquier reivindicación anterior, caracterizado porque comprende las siguientes etapas: A) preparar una pasta de frita de vidrio (FP) por molienda y trituración del polvo de frita en presencia de un agente dispersante y un disolvente, para conseguir una distribución volumétrica de tamaño de partícula de pigmento Dv9o de menos de 1 ,5 pm;
B) preparar una pasta de pigmento (PP) por molienda y trituración de partículas de pigmento inorgánico en presencia de un agente dispersante y un disolvente, para conseguir una distribución de tamaño de partícula volumétrica de pigmento Dv90 de menos de 1 pm;
C) mezclar la pasta de frita de la etapa (A) y la pasta de pigmento de la etapa (B) en un mezclador de alto cizallamiento o mezclador de perlas;
D) añadir un diluyente constituido por una mezcla de disolventes y aditivos a la tinta concentrada de la etapa (C), para conseguir formulaciones finales específicas en el medio de deposición, que tiene un contenido final de sólidos de 30-60 % en peso del peso total de la mezcla y las propiedades de tinta deseadas; y
E) filtrar la mezcla de la etapa (D) a través de un filtro de tamaño de poro micrométrico, obteniendo así una tinta de chorro de tinta cerámica que tiene una viscosidad de 6-20 mPa.s a la temperatura de aplicación a chorro y condiciones de aplicación a chorro.
9. Procedimiento para la fabricación de tintas cerámicas digitales según la reivindicación 7, caracterizado porque la molienda para la preparación de la pasta de frita se lleva a cabo mediante un mezclador de mezclado por cizallamiento de polvo de frita con dispersante, resinas, tales como resinas de poliacrilato, polialquídicas y de poliamida, una selección de disolventes, de entre hidrocarburo alifático no polar, familia de glicoléteres polares, agua acuosa, termoplásticos, cera de parafina o una mezcla de uno o muchos disolventes; seguido de molienda en húmedo en un componente de cámara tal como circonia, nitrito de silicio y/o carburo de silicio, y la composición final es pasta de frita dispersada con un tamaño de partícula final < 1 ,5mhi.
10 Procedimiento para la fabricación de tintas cerámicas digitales según la reivindicación 9, caracterizado porque la pasta de frita molida húmeda es una de la siguiente tabla:
Figure imgf000028_0001
Figure imgf000029_0001
11. Procedimiento para la fabricación de la tintas cerámicas digitales según la reivindicación 8, caracterizado porque la pasta de pigmento inorgánico comprende 45- 85 % en peso de pigmento, 2-20 % en peso de agente dispersante y 10-55 % en peso de disolvente, en el que el pigmento se muele y tritura en presencia de un agente dispersante y un disolvente, en el que la molienda del polvo de pigmento (tamaño medio de partícula de 7-20 micrómetros) se lleva a cabo por premezclado del polvo de pigmento con dispersante específico, resinas y la elección seleccionada de disolventes (hidrocarburo alifático no polar, familia de glicoléteres polares, agua acuosa, termoplástico y cera de parafina), esto es seguido entonces por molienda en húmedo usando molino de cesta o componentes de cámara tales como circonia, nitrito de silicio y/o carburo de silicio; la molienda en húmedo puede llevarse a cabo en lotes en operaciones de múltiples pasos hasta obtener el tamaño de partícula deseado.
12. Procedimiento para la fabricación de las tintas cerámicas digitales según la reivindicación 11 , caracterizado porque el agente dispersante es un copolímero con grupo ácido, Disperbyk 110, Disperbyk 111 ; sal de alquilolamonio de copolímero con grupos ácidos, Disperbyk- 180; solución de copolímeros de bloque de alto peso molecular con grupos afines al pigmento, Disperbyk 182, Disperbyk 184, Disperbyk 190; copolímero con grupos afines al pigmento, Disperbyk 191 , Disperbyk 192, Disperbyk 194, Bykjet 9142Tego Dispers 7502, Tego Dispers 752W; copolímero de bloque con grupos afines al pigmento, Disperbyk 2155; solución de sal de alquilolamonio de un polímero ácido de mayor peso molecular, Anti-terra-250; copolímero de acrilato estructurado con grupos afines al pigmento, Disperbyk 2010, Disperbyk 2015; polivinilpirrolidona, PVP K-15, PVP K-30, PVP K-60; hiperdispersante polimérico, Solsperse J930, Solsperse J945, Solsperse J955, Solsperse J980, Solsperse J981 , Solsperse J944, Solsperse J950, Solsperse J955; poliuretano de alto peso molecular, Efka PU 4009, EFKA PU 4010; sales de ácido carboxílico de alto peso molecular, Efka Fa4564 o una mezcla de los mismos.
PCT/ES2019/070583 2018-08-31 2019-08-30 Tintas de inyección cerámicas digitales para vidrio y procedimiento para obtener las mismas WO2020043929A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/272,310 US11993723B2 (en) 2018-08-31 2019-08-30 Digital ceramic inkjet inks for glass and method for obtaining same
EP19855637.5A EP3845614A4 (en) 2018-08-31 2019-08-30 Digital ceramic inkjet inks for glass and method for obtaining same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201830857 2018-08-31
ES201830857A ES2745546B2 (es) 2018-08-31 2018-08-31 Tintas de inyeccion ceramicas digitales para vidrio y procedimiento para obtener las mismas

Publications (1)

Publication Number Publication Date
WO2020043929A1 true WO2020043929A1 (es) 2020-03-05

Family

ID=69631290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070583 WO2020043929A1 (es) 2018-08-31 2019-08-30 Tintas de inyección cerámicas digitales para vidrio y procedimiento para obtener las mismas

Country Status (3)

Country Link
EP (1) EP3845614A4 (es)
ES (1) ES2745546B2 (es)
WO (1) WO2020043929A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4166616A1 (de) 2021-10-18 2023-04-19 Schott Ag Keramische druckfarbe, insbesondere für einen tintenstrahldruck, zur herstellung einer beschichtung auf einer glaskeramik und beschichtete glaskeramikplatte
ES2955477A1 (es) * 2023-01-10 2023-12-01 Tecglass Sl Procedimiento de obtencion y aplicacion de una tinta digital para impresion sobre un vidrio que tiene una pelicula funcional y tinta obtenida mediante dicho procedimiento

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200000488A1 (it) * 2022-01-13 2023-07-13 Sicer S P A Veicolo per inchiostri digitali ceramici

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003736A1 (en) * 2013-07-08 2015-01-15 Fenzi Spa Ceramic inkjet ink
EP2826825A1 (en) * 2013-07-15 2015-01-21 Dip-Tech Ltd. Ceramic inkjet inks
US20150119486A1 (en) * 2013-10-30 2015-04-30 Xerox Corporation Curable aqueous latex inks for indirect printing
WO2016096632A1 (en) * 2014-12-18 2016-06-23 Agfa Graphics Nv Uv curable inkjet inks for printing on glass
WO2017070236A1 (en) * 2015-10-19 2017-04-27 Electronics For Imaging, Inc. Radiation-curable inkjet ink for application to glass, ceramic, or metal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237349A (ja) * 1994-02-25 1995-09-12 Narumi China Corp インク,インクリボン,転写紙及びその製造方法
JP4368640B2 (ja) * 2002-08-23 2009-11-18 セーレン株式会社 無機質基材へのインクジェットプリント方法
US20080090034A1 (en) * 2006-09-18 2008-04-17 Harrison Daniel J Colored glass frit
EP3242915B1 (en) * 2015-01-07 2021-09-08 Fenzi SPA Glass frit composition and ceramic inkjet ink comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015003736A1 (en) * 2013-07-08 2015-01-15 Fenzi Spa Ceramic inkjet ink
EP2826825A1 (en) * 2013-07-15 2015-01-21 Dip-Tech Ltd. Ceramic inkjet inks
US20150119486A1 (en) * 2013-10-30 2015-04-30 Xerox Corporation Curable aqueous latex inks for indirect printing
WO2016096632A1 (en) * 2014-12-18 2016-06-23 Agfa Graphics Nv Uv curable inkjet inks for printing on glass
WO2017070236A1 (en) * 2015-10-19 2017-04-27 Electronics For Imaging, Inc. Radiation-curable inkjet ink for application to glass, ceramic, or metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4166616A1 (de) 2021-10-18 2023-04-19 Schott Ag Keramische druckfarbe, insbesondere für einen tintenstrahldruck, zur herstellung einer beschichtung auf einer glaskeramik und beschichtete glaskeramikplatte
DE102021126968A1 (de) 2021-10-18 2023-04-20 Schott Ag Keramische Druckfarbe, insbesondere für einen Tintenstrahldruck, zur Herstellung einer Beschichtung auf einer Glaskeramik und beschichtete Glaskeramikplatte
ES2955477A1 (es) * 2023-01-10 2023-12-01 Tecglass Sl Procedimiento de obtencion y aplicacion de una tinta digital para impresion sobre un vidrio que tiene una pelicula funcional y tinta obtenida mediante dicho procedimiento

Also Published As

Publication number Publication date
ES2745546A1 (es) 2020-03-02
US20210395543A1 (en) 2021-12-23
ES2745546B2 (es) 2020-09-22
EP3845614A4 (en) 2021-12-29
EP3845614A1 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2020043930A1 (es) Tintas de inyección cerámicas digitales para vidrio y procedimiento para obtener las mismas
ES2896048T3 (es) Composición de frita de vidrio y tinta cerámica de inyección de chorro que comprende la misma
ES2345985T3 (es) Tinta para superficies ceramicas.
WO2020043929A1 (es) Tintas de inyección cerámicas digitales para vidrio y procedimiento para obtener las mismas
EP2682272B1 (en) Ink jet recording method and printed material
WO2015003736A1 (en) Ceramic inkjet ink
WO2007036942A2 (en) Ink providing etch-like effect for printing on ceramic surfaces
ES2751849B2 (es) Tinta de inyeccion de tinta para sustrato ceramico
EP2826825A1 (en) Ceramic inkjet inks
JP6958813B2 (ja) インクジェット記録方法
JP7122057B2 (ja) 粒子混合物、キット、インク、方法及び物品
ES2751729B2 (es) Tintas de inyeccion ceramicas digitales para vidrio y procedimiento para obtener las mismas
JP2017105951A (ja) インクジェット記録用インク、インクジェット記録方法、インクジェット記録用ヘッド及びインクジェット記録装置
US11993723B2 (en) Digital ceramic inkjet inks for glass and method for obtaining same
JP5816565B2 (ja) インク、被印字基材、印字装置、印字方法、被印字基材の製造方法
EP2772365B1 (en) Record and method for manufacturing record
JP2015205952A (ja) インクセット及びそれを用いた印刷方法
WO2022259742A1 (ja) 非水性インク組成物、インクセット、記録物、記録方法、及び記録物の製造方法
JPH0333172A (ja) ジェット印刷用非水系インキ
JP7141791B2 (ja) 顔料水分散液の製造方法
JP2008222981A (ja) 水系顔料分散体および水系顔料インクの製造方法及びこれを用いた記録装置、記録物
JP2015039827A (ja) インクジェット記録媒体
JP2009235153A (ja) 非水系インク組成物およびインクジェット記録方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019855637

Country of ref document: EP

Effective date: 20210331