WO2020043379A1 - Radialverdichterrotor, radialverdichter, getriebeverdichter - Google Patents

Radialverdichterrotor, radialverdichter, getriebeverdichter Download PDF

Info

Publication number
WO2020043379A1
WO2020043379A1 PCT/EP2019/068569 EP2019068569W WO2020043379A1 WO 2020043379 A1 WO2020043379 A1 WO 2020043379A1 EP 2019068569 W EP2019068569 W EP 2019068569W WO 2020043379 A1 WO2020043379 A1 WO 2020043379A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
impeller
radial
radial compressor
imp1
Prior art date
Application number
PCT/EP2019/068569
Other languages
English (en)
French (fr)
Inventor
Rosario Montante
Attilla Yildiz
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2020043379A1 publication Critical patent/WO2020043379A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/163Combinations of two or more pumps ; Producing two or more separate gas flows driven by a common gearing arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power

Definitions

  • the invention relates to a radial compressor rotor, in particular for a gear compressor, comprising:
  • At least one impeller which is designed to be axially suction and ra dial dispensing
  • the invention relates to a radial compressor with egg nem defined radial compressor rotor.
  • the invention relates to a gear compressor with one of the radial compressor rotor.
  • Radial compressors of this type are preferably used, in particular in the design as geared compressors, each with corresponding radial compressor rotors for compressing air.
  • Large compression capacities are required in particular for systems for separating air into the individual components.
  • MAC main air compressor
  • BAC booster air compressor
  • Conventional MAC are usually designed as at least three-stage gear compressors.
  • Compression systems of this type are accordingly expensive because, as a rule, one gear and at least two torsion terwellen are required, at the shaft ends of the corresponding compressors can be attached.
  • the high installation costs, the maintenance costs and the amount of the investment per se are undesirable from an economic point of view.
  • the invention has set itself the task of reducing this kauei le.
  • the invention proposes a Radialver dichterrotor according to claim 1.
  • the invention also relates to a radial compressor or a transmission compressor, each of which make use of the radial compressor rotor according to the invention.
  • a relatively high energy density can be realized per stage, including that stage which, in the area of the axial suction, has a connection shaft according to the invention with the drive - attached by means of an adapter flange to the first impeller.
  • a pressure ratio ratio between inlet pressure and outlet pressure from the compressor
  • the process fluid at an outlet pressure from 1 bar to 6 bar, for example.
  • the connecting shaft may preferably be a coupling flange or a coupling in order to enable the releasable connection of other rotor components, which are in particular attributable to the drive.
  • the proposed design according to the invention not only enables a high energy density per impeller or per compression stage, but also drives the compressor rotor without an intermediate gear.
  • the drive can be a gas turbine, a steam turbine or an electric motor that contains the particular one that is inherent in the drive unit Transfers speed without conversion to the Radialver dichterrotor invention.
  • the arrangement of the drive according to the invention on the side of the axial suction of an impeller of the axially suction and radially extending impeller has in particular also the part before that a so-called back-to-back arrangement is possible without providing a gear for driving the radial compressor rotor.
  • the back-to-back arrangement enables the fluidically particularly favorable axial suction without prior sharp deflection, as is provided in a single-shaft construction with corresponding impellers by means of the so-called return stages. Instead, the impellers suck in axially from opposite directions - arranged at the shaft ends - and the radial compressor rotor has radial bearing points between the two impellers in the back-to-back arrangement.
  • the two impellers have a so-called flying arrangement on the shaft in terms of rotor dynamics with respect to the bearing.
  • flying arrangement on the shaft in terms of rotor dynamics with respect to the bearing.
  • the adapter flange is particularly advantageously fastened to the first impeller, the first impeller being attached axially to the shaft and being arranged axially between the shaft and the connecting shaft. It is basically possible to provide a connection by means of a Hirth toothing between the adapter flange and the first impeller and between the first impeller and the shaft.
  • connection and centering by means of pins in particular especially provided by means of tapered pins and by means of several axially extending screws arranged over the circumference in a certain diameter.
  • alternating pins or tapered pins and screws can be arranged over the order to the same diameter.
  • cylindrical pins and a centering can also be provided by means of an at least partially conical contact surface between the adapter flange and the impeller.
  • this tie rod can also be used to axially attach the adapter flange to the connecting shaft on the first impeller.
  • the shaft has at least one radial bearing point.
  • the shaft has at least one thrust bearing.
  • the invention can be developed particularly expediently in that the shaft on at least one radio bearing point has a groove extending in the circumferential direction and axially, which essentially extends axially and in the circumferential direction of the area of the radial bearing and the shaft has a cover sleeve radially outside the groove has, which covers the groove radially outwards. In this way, the so-called Morton effect can be prevented, so that there is an improved smooth running of the radial compressor rotor.
  • any thermal influences from a so-called hot spot which can occur locally at a circumferential position of the radial bearing point, are not transferred to the core area of the shaft, so that the straightness of the Wave from such a local thermal influence is not ver deteriorated.
  • a radial compressor with a radial compressor rotor according to the invention and a housing with an inflow which is at least axially section is designed as an annular channel, which has an adjustable inlet guide in the axial region of the ring channel, the inlet guide having guide vanes which can be adjusted by rotation about a respective longitudinal axis of the blade, and wherein the longitudinal axes of the blade extend obliquely to the axis of the shaft, in each case a movement gap between the ends of the longitudinal axis of the guide vane and the limitation contours is provided, the guide vane ends being formed in such a way that the height of the movement gap increases with increasing distance from the longitudinal axis of the vane.
  • the guide vanes of the inlet nozzle can be adjusted in spite of the natural curvature of the ring channel in the circumferential direction and despite the guide vanes arranged obliquely to the axis of the radial compressor, so that the desired flow technology of the respective operating point can be set.
  • the height of the movement gap increases with increasing distance from the longitudinal axis of the blade such that the guide blade ends have a rounded or round shape, preferably the blade ends are rounded in a spherical shape. In this way, a particularly wide angle adjustment range of the respective guide vanes of the inlet guide device is ensured without the risk of jamming.
  • Such a gear compressor comprises a gear box on which compressors are arranged, a large wheel arranged in the gear box, a plurality of pinion shafts with pinions which are arranged distributed around the large wheel, the pinions being in engagement with the large wheel, at least some of them of the pinion shafts on the shaft the impellers of the compressors are attached, at least one pinion shaft, preferably exactly one pinion shaft, being provided as a radial compressor rotor with the inventive arrangement of an adapter flange and a connecting shaft for a drive.
  • FIG. 1 shows a schematic illustration of a longitudinal section through a radial compressor rotor according to the invention
  • Figure 2 shows a detail of the longitudinal section through an invent
  • Figure 3 shows a section of a longitudinal section through a
  • FIG. 4 shows a schematic illustration of a section through a gear compressor, comprising a radial compressor rotor according to the invention
  • FIG. 1 shows a schematically illustrated longitudinal section along an axis X of a radial compressor rotor RCR.
  • the radial compressor rotor RCR is particularly well suited for use in a radial compressor RCP, as is shown in a schematic partial longitudinal section with an inlet guide device IGV in FIG. 3, or for a gear compressor GTC, as is shown schematically in FIG. 4 with a radial compressor rotor RCR is reproduced.
  • FIG. 2 shows a detail of a shaft SH of the radial compressor rotor RCR, as shown in FIG. 1, the detail being indicated by II in FIG. 1.
  • the radial compressor rotor RCR shown in FIG. 1 comprises a shaft SH which extends along the axis X, at least one impeller IMP1, IMP2, here a first impeller IMP1 and a second impeller IMP2 being axially attached to the shaft SH.
  • the impellers IMP1, IMP2 suck in axially and give off a process fluid PFL radially.
  • the RCR radial compressor rotor also includes an adapter flange CPL, a connecting shaft CSH and a drive DRV.
  • the first impeller IMP1 is attached using a tie rod TBL.
  • the tie rod TBL is screwed axially into the SH shaft and clamps the impeller IMP1, IMP2 using a nut NUT.
  • This method of fastening by means of the central tie rod TBL is the same on both axial sides of the shaft SH, the impeller IMP being fastened to the shaft SH by means of a separate nut NUT by means of the tie rod TBL.
  • the first impeller is also axially connected to an adapter flange CPL, the adapter
  • flange CPL surrounds the nut NUT for connecting the shaft SH to the first impeller IMP1 on the contact surface in the circumferential direction or has a central recess for the nut NUT.
  • the nut NUT is preferably a separate component separate from the adapter flange CPL. It is also conceivable that the nut NUT axially clamps both the first impeller IMP1 and the adapter flange CPL against each other.
  • Figure 1 is not a one-piece formation of the nut NUT and the adapter flange CPL from the first impeller IMP1 shown but the nut NUT and the adapter flange CPL are separate construction parts.
  • the adapter flange CPL is secured against twisting and loosening by means of screws TSC and pins TPN.
  • the pins TPN can be conical for the purpose of centering.
  • a CFS contact surface can be see adapter flange CPL and first impeller IMP1 be at least partially conical.
  • a connecting shaft CSH is attached to the adapter flange CPL in the axial direction, with a contact surface between the connecting shaft CSH and the adapter flange CPL having a conical centering design. If this centering function is dispensed with, this contact surface CSF can have a flat design on the end face.
  • the adapter flange CPL has an internal thread ITH for attaching the connecting shaft CSH and the connecting shaft CSH has an external thread OTH.
  • the direction of rotation of the internal thread ITH or external thread OTH, which engage with one another and attach the connecting shaft CSH to the adapter flange CPL, is matched to the direction of rotation of the drive DRV, which is drivingly connected to the connecting shaft CSH, in such a way that a drive torque transferred from the DRV drive to the radial compressor rotor RCR does not lead to a loosening of this connection.
  • FIG. 1 shows the preferred embodiment, the adapter flange CPL being provided on the first impeller IMP1, the first impeller IMP1 being attached axially to the shaft SH and being arranged axially between the shaft SH and the connecting shaft CSH.
  • Axially between the two impellers IMP1, IMP2 is the shaft SH, which extends in the axial direction and which has two radial bearing points RBE and one axial bearing point ABE.
  • FIG. 1 shows an arrangement of the two impellers IMP1, IMP2 on the two axillary loins AX1, AX2 in a so-called flying bearing, in which only one side of the two impellers IMP1, IMP2 is provided with a radial bearing point RBE. Furthermore, the two impellers IMP1, IMP2 suck in a process fluid PFL from different axial directions and emit this radially, which in the configuration of FIG. 1 is a so-called Back-to-back arrangement of the two impellers IMP1, IMP2 on the shaft SH is referred to each other.
  • a Hirth serration HRT is provided on the end of the SH shaft and on the end of the second IMP2 impeller, which radially centers the components relative to one another and ensures reliable transmission of the torques.
  • Such a connection is in principle also possible on the part of the first impeller IMP1.
  • the variant shown in the exemplary embodiment of FIG. 1 for connecting the first impeller IMP1 to the shaft instead provides a radial centering by means of a recess RZS in the impeller, into which the shaft is fitted on the end face - here shrunk in (radial shrink fit RSC) - is.
  • the axial or end face contact surface FFS between the first impeller IMP1 or the end face FFS in the recess RZS and the end face of the first shaft end AX1 is used under the axial preload by means of the tie rod TBL essentially to transmit the torque.
  • a friction-increasing agent is advantageously provided axially between the end face of the first shaft AX1 and the end face FFS in the recess RZS - in this case a disc be DMT with axially protruding diamond tips.
  • FIG. 2 shows the detail of the radial bearing point RBE from FIG. 1 of the radial compressor rotor RCR.
  • the shaft is provided at the radial bearing point RBE with an axially and in the circumferential direction extending groove GRV, which essentially covers or covers or covers the area of the radial bearing in the axial and circumferential direction.
  • the shaft SH also includes a cover sleeve SLV, which is arranged radially outside the groove GRV, so that the groove GRV is covered radially outwards.
  • An arrangement “radially outside the groove GRV” is understood by the invention to mean that the sleeve SRV is at least partially arranged radially outside the groove.
  • Embodiments in which the sleeve SLV at least partly also have elements inside the groove GRV are from the invention not preferred, but not without this things excluded. Accordingly, the sleeve SLV on the shaft SH non-positively, for. B. by means of a Schrumpfver connection or non-positive and positive (also example, by means of a shrink connection).
  • the fact that the groove GRV is located on the shaft SH reduces the mechanical requirements on the sleeve SLV compared to a design in which a corresponding recess is provided in the sleeve SLV. Therefore, the entire arrangement is thinner with otherwise essentially the same mechanical properties.
  • FIG. 3 shows a partial longitudinal section of a radial compressor RCP with an inventive radial compressor rotor RCR.
  • the longitudinal section shows the detail of an adjustable inlet guide device IGV in an inflow INL of a housing CAS of the radial compressor RCP.
  • the inflow is designed at least axially from sections as an ANC ring channel and the IGV inlet guide is located in the axial region of the ANC ring channel.
  • the inlet guide device IGV has adjustable guide vanes in VNS, which change the flow properties of the compressor stage by rotating about a respective longitudinal blade axis VX.
  • the blade longitudinal axis VX runs obliquely to the axis X of the shaft SH.
  • Limitation contours LCI, LCO which limit the ring channel ANC radially inwardly (LCI) and radially outwardly (LCO), are preferably formed parallel to one another, at least in the area of the inlet guide vane IGV or in the area of the guide vanes.
  • the ends of the guide vanes VNS in the direction of the blade longitudinal axis VX are provided with a rounded or rounded shape, at least in such a way that the height HGT of a movement gap CLG between the Limiting contours LCI, LCO and the guide vane ends with increasing distance from the blade longitudinal axis VX is increasing increasing.
  • the height HGT of the movement gap CLG is particularly preferably designed with increasing distance from the blade longitudinal axis VX in such a way that the guide blade ends have a rounded dete or round shape, are preferably rounded spherically.
  • FIG. 4 shows the schematic representation of a transmission compressor GTC in an axially sectioned plan view of the transmission compressor GTC.
  • the gear compressor GTC comprises a radial compressor rotor RCR or a radial compressor RCP in the design according to the invention.
  • a pinion PNN is provided on the shaft SH of the radial compressor rotor RCR, which drives a large wheel BLG.
  • At least one additional pinion shaft PSH is driven by the large wheel BLG, as indicated schematically in FIG. 4, at the shaft ends of which further compressors CPM are arranged.
  • the casings CAS of the compressors CPM are attached to a gearbox GBX in which the large wheel BLG, the pinion PNN and the shafts SH are essentially arranged and stored.
  • the DRV drive can be implemented without a corresponding step-up gear between the GTC geared compressor and the DRV drive, the DRV drive having the speed with the radial compressor rotor RCR in nominal speed operation.
  • the gear ratios or sizes of the large wheel BLG and the individual pinion PNN are designed as required. Due to the elimination of the need to drive the BLG large wheel, the space available for attaching the individual compressors CPM to the GBX gearbox has been improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft einen Radialverdichterrotor (RCR), insbesondere für einen Getriebeverdichter (GTC), umfassend: eine Welle (SH), die sich entlang einer Achse (X) erstreckt, mindestens ein Laufrad (IMP1, IMP2), das axial ansaugend und radial ausgebend ausgebildet ist, ein Adapterflansch (CPL), eine Anschlusswelle (CSH), einen Antrieb (DRV). Daneben betrifft die Erfindung einen Radialverdichter (RCP), insbesondere einen Getriebeverdichter (GTC) mit einem Radialverdichterrotor (RCR) nach der Erfindung.

Description

Beschreibung
Radialverdichterrotor, Radialverdichter, Getriebeverdichter
Die Erfindung betrifft einen Radialverdichterrotor, insbeson dere für einen Getriebeverdichter, umfassend:
- eine Welle, die sich entlang einer Achse erstreckt,
- mindestens ein Laufrad, das axial ansaugend und ra dial ausgebend ausgebildet ist,
- ein Adapterflansch,
- eine Anschlusswelle,
- einen Antrieb.
Daneben betrifft die Erfindung einen Radialverdichter mit ei nem eingangs definierten Radialverdichterrotor. Außerdem be trifft die Erfindung einen Getriebeverdichter mit einem der artigen Radialverdichterrotor.
Bevorzugt werden derartige Radialverdichter, insbesondere in der Ausführung als Getriebeverdichter mit jeweils entspre chenden Radialverdichterrotoren zur Verdichtung von Luft ein gesetzt. Insbesondere für Anlagen zur Zerlegung von Luft in die einzelnen Bestandteile werden große Verdichtungsleistun gen benötigt. In der Regel erfolgt ein derartiger Verdich tungsprozess in zwei miteinander verknüpften Verdichtungsan lagen einem sogenannten Main-Air-Compressor (MAC = Hauptluft verdichter) und einem Booster-Air-Compressor (BAC = > zusätz liche Verdichtung) . Herkömmliche MAC werden in der Regel als mindestens dreistufige Getriebeverdichter ausgeführt.
Anordnungen mit einem Getriebeverdichter bzw. Getriebever dichter sind bereits aus den DE102010020145-A1,
DE102009015862-Al , DE102014225136-A1 , DE102015200439-A1 , DE102015203287-A1 bekannt.
Aus den EP 3 121 449 Al, EP 1 144 826 Al und US 6 294 842 Bl sind bereits gattungsgemäße Anordnungen bekannt.
Derartige Verdichtungsanlagen sind dementsprechend teuer, weil in der Regel ein Getriebe und mindestens zwei Verdreh- terwellen benötigt werden, an dessen Wellenenden die entspre chenden Verdichter angebracht werden können. Der hohe Instal lationsaufwand, die Wartungskosten und die Höhe der Investi tion schlechthin sind schon aus wirtschaftlichen Gesichts punkten unerwünscht.
Die Erfindung hat es sich zur Aufgabe gemacht, diese Nachtei le abzumindern.
Zur Lösung der Aufgabe schlägt die Erfindung einen Radialver dichterrotor nach Anspruch 1 vor. Die Erfindung bezieht sich auch auf einen Radialverdichter oder einen Getriebeverdich ter, die jeweils Gebrauch von dem erfindungsgemäßen Radial verdichterrotor machen.
Infolge des erfindungsgemäßen Designs des Radialverdichterro tors kann pro Stufe eine verhältnismäßig hohe Energiedichte verwirklicht werden, einschließlich derjenigen Stufe, die im Bereich der axialen Ansaugung eine erfindungsgemäße An schlusswelle mit dem Antrieb - angebracht mittels eines Adap- terflanschs an dem ersten Laufrad - aufweist. Auf diese Weise ist es möglich, pro Laufrad ein Druckverhältnis (Verhältnis zwischen Eintrittsdruck und Austrittsdruck aus dem Verdich ter) von mindestens 2,0, bevorzugt mindestens 2,8 zu erzielen und dementsprechend in einer zweistufigen Bauweise (zwei Laufräder) das Prozessfluid bei einem Ausgangsdruck von bei spielsweise 1 bar auf bis zu 6 bar zu verdichten.
Bei der Anschlusswelle kann es sich bevorzugt um einen Kupp lungsflansch oder eine Kupplung handeln, um den lösbaren An schluss anderer Rotorbauteile zu ermöglichen, die insbesonde re dem Antrieb zuzurechnen sind.
Das vorgeschlagene erfindungsgemäße Design ermöglicht nicht nur eine hohe Energiedichte pro Laufrad bzw. pro Verdich tungsstufe, sondern auch einen Antrieb des Verdichterrotors ohne ein Zwischengetriebe. Beispielsweise kann der Antrieb eine Gasturbine, eine Dampfturbine oder ein Elektromotor sein, der die jeweilige, dem Antriebsaggregat innewohnende Drehzahl ohne Umwandlung auf den erfindungsgemäßen Radialver dichterrotor überträgt.
Besonders bevorzugt befindet sich zwischen dem Antrieb und dem erfindungsgemäßen Radialverdichterrotor eine elastische Kupplung, die beispielsweise etwaige Drehschwingungen oder Biegeschwingungen dämpft und kleinere Fehlausrichtungen kom pensiert .
Die erfindungsgemäße Anordnung des Antriebs auf der Seite der axialen Ansaugung eines Laufrades des axial ansaugenden und radial ausgebenden Laufrades hat insbesondere auch den Vor teil, dass eine sogenannte Back-to-Back-Anordnung ermöglicht ist, ohne ein Getriebe zum Antrieb des Radialverdichterrotors vorzusehen. Die Back-to-Back-Anordnung ermöglicht hierbei das strömungstechnisch besonders günstige axiale Ansaugen ohne vorherige scharfe Umlenkung, wie es bei einer Einwellenkon struktion mit entsprechenden Laufrädern mittels der sogenann ten Rückführstufen vorgesehen ist. Stattdessen saugen die Laufräder axial aus entgegengesetzten Richtungen - an den Wellenenden angeordnet - an und der Radialverdichterrotor weist Radiallagerstellen zwischen den beiden Laufrädern in der Back-to-Back-Anordnung auf. Dementsprechend haben die beiden Laufräder rotordynamisch an der Welle hinsichtlich der Lagerung eine jeweils sogenannte fliegende Anordnung. Zusam mengefasst kann für die Back-to-Back-Anordnung das Vorliegen von rotordynamischen und strömungstechnischen Vorteilen ge genüber einer vergleichbaren konventionellen fliegenden Rei henanordnung festgestellt werden.
Besonders zweckmäßig ist der Adapterflansch an dem ersten Laufrad befestigt, wobei das erste Laufrad axial an der Welle angebracht ist und axial zwischen der Welle und der An schlusswelle angeordnet ist. Hierbei ist es grundsätzlich möglich, zwischen dem Adapterflansch und dem ersten Laufrad sowie zwischen dem ersten Laufrad und der Welle jeweils eine Verbindung mittels einer Hirth-Verzahnung vorzusehen.
Alternativ besonders sinnvoll ist zwischen Adapterflansch und Laufrad eine Verbindung und Zentrierung mittels Stiften, ins- besondere mittels Kegelstiften und mittels mehrerer über den Umfang in einem bestimmten Durchmesser angeordneter axial sich erstreckender Schrauben vorgesehen. Hierbei können ab wechselnd Stifte bzw. Kegelstifte und Schrauben über dem Um fang auf gleichem Durchmesser angeordnet sein. Alternativ zu den Kegelstiften können auch Zylinderstifte und eine Zentrie rung mittels einer zumindest teilweise kegeligen Kontaktflä che zwischen Adapterflansch und Laufrad vorgesehen sein.
Besonders sinnvoll ist die Verbindung der Welle mit dem ers ten Laufrad mittels eines sich axial durch das erste Laufrad erstreckenden Zugankers, so dass das erste Laufrad an einem ersten Axialende der Welle angebracht ist. Als eine Option kann mittels dieses Zugankers auch der Adapterflansch zu der Anschlusswelle an dem ersten Laufrad axial angebracht werden.
Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Welle mindestens eine Radiallagerstelle aufweist. Daneben ist es zweckmäßig, wenn die Welle mindestens eine Axiallager stelle aufweist. Besonders sinnvoll kann die Erfindung wei tergebildet werden, indem die Welle an mindestens einer Radi allagerstelle eine sich in Umfangsrichtung und axial erstre ckende Nut aufweist, die im Wesentlichen axial und in Um fangsrichtung den Bereich des Radiallagers umfasst und die Welle eine Abdeckhülse radial außerhalb der Nut aufweist, die die Nut nach radial außen abdeckt. Auf diese Weise kann dem sogenannten Morton-Effekt vorgebeugt werden, so dass sich ei ne verbesserte Laufruhe des Radialverdichterrotors ergibt. Infolge der Hohlkammer, die sich mittels der Nut und der Ab deckung ergibt, übertragen sich etwaige thermische Einflüsse aus einem sogenannten Hot-Spot, der lokal an einer Umfangspo sition der Radiallagerstelle auftreten kann, nicht auf den Kernbereich der Welle, so dass die Geradlinigkeit der Welle von einem derartigen lokalen thermischen Einfluss nicht ver schlechtert wird.
Insbesondere in dem Bereich des Adapterflanschs und der An schlusswelle ist es sinnvoll, wenn ein Radialverdichter mit einem erfindungsgemäßen Radialverdichterrotor und einem Ge häuse mit einer Einströmung, die zumindest axial abschnitts- weise als Ringkanal ausgebildet ist, die einen verstellbaren Eintrittsleitapparat im Axialbereich des Ringkanals aufweist, wobei der Eintrittsleitapparat mittels Drehung um eine jewei lige Schaufellängsachse verstellbare Leitschaufein aufweist und wobei die Schaufellängsachsen schräg zur Achse der Welle verlaufen, jeweils ein Bewegungsspalt zwischen den Enden der Schaufellängsachse der Leitschaufein und den Begrenzungskon turen vorgesehen ist, wobei die Leitschaufelenden derart aus gebildet sind, dass die Höhe des Bewegungsspalts mit zuneh mendem Abstand von der Schaufellängsachse zunimmt. Auf diese Weise können die Leitschaufein des Eintrittsleitapparates trotz der naturgemäßen Krümmung des Ringkanals in Umfangs richtung und trotz der schräg zu der Achse des Radialverdich terrotors angeordneten Leitschaufein verstellt werden, so dass die gewünschte Strömungstechnik des jeweils angestrahl ten Betriebspunktes eingestellt werden kann.
In diesem Zusammenhang ist es besonders sinnvoll, wenn die Höhe des Bewegungsspalts mit zunehmendem Abstand von der Schaufellängsachse derart zunimmt, dass die Leitschaufelenden eine abgerundete oder runde Form aufweisen, bevorzugt die Schaufelenden kugelförmig abgerundet sind. Auf diese Weise wird ein besonders weiter Winkelverstellbereich der jeweili gen Leitschaufein des Eintrittsleitapparates ohne das Risiko eines Verklemmens gewährleistet.
Eine zusätzliche Reduktion des Risikos des Verklemmens wird erzielt, wenn die radialen Begrenzungskonturen des Ringkanals im axialen Längsschnitt im Wesentlichen parallel zueinander verlaufen im Bereich der Leitschaufein des Eintrittsleitappa rates .
Besonders zweckmäßig lässt sich die Erfindung bzw. der erfin dungsgemäße Radialverdichterrotor für einen Getriebeverdich ter nutzen. Ein derartiger Getriebeverdichter umfasst einen Getriebekasten, an dem Verdichter angeordnet sind, ein Groß rad, angeordnet in dem Getriebekasten, mehrere Ritzelwellen mit Ritzeln, die um das Großrad herum verteilt angeordnet sind, wobei die Ritzel mit dem Großrad in Eingriff stehen, wobei mindestens an einigen der Ritzelwellen an den Wellenen- den Laufräder der Verdichter angebracht sind, wobei mindes tens eine Ritzelwelle, bevorzugt genau eine Ritzelwelle, als ein Radialverdichterrotor mit der erfindungsgemäßen Anordnung eines Adapterflanschs und einer Anschlusswelle für einen An trieb vorgesehen ist.
Im Folgenden ist die Erfindung anhand eines speziellen Aus führungsbeispiels unter Bezugnahme auf Zeichnungen näher dar gestellt. Es zeigen:
Figur 1 eine schematische Darstellung eines Längsschnitts durch einen erfindungsgemäßen Radialverdichterro tor,
Figur 2 ein Detail des Längsschnitts durch einen erfin
dungsgemäßen Radialverdichterrotor im Bereich einer Radiallagerstelle,
Figur 3 einen Ausschnitt eines Längsschnitts durch einen
Radialverdichter mit einem erfindungsgemäßen Radi alverdichterrotor und einem Eintrittsleitapparat,
Figur 4 eine schematische Darstellung eines Schnitts durch einen Getriebeverdichter, umfassend einen erfin- dungsgemäßen Radialverdichterrotor
Begriffe wie axial, tangential oder Umfangsrichtung beziehen sich - wenn nicht anders angegeben - stets auf eine Achse X eines Radialverdichterrotors RCR.
Figur 1 zeigt einen schematisch dargestellten Längsschnitt entlang einer Achse X eines Radialverdichterrotors RCR. Der Radialverdichterrotor RCR ist insbesondere gut geeignet für den Einsatz in einem Radialverdichter RCP, wie er in einem schematischen ausschnittsweisen Längsschnitt mit einem Ein- trittsleitapparat IGV in Figur 3 dargestellt ist oder für ei nen Getriebeverdichter GTC, wie er in Figur 4 schematisch mit einem Radialverdichterrotor RCR wiedergegeben ist. Die Figur 2 zeigt ein Detail einer Welle SH des Radialver dichterrotors RCR, wie er in Figur 1 dargestellt ist, wobei das Detail in Figur 1 mit II ausgewiesen ist.
Der in Figur 1 dargestellte Radialverdichterrotor RCR umfasst eine Welle SH, die sich entlang der Achse X erstreckt, wobei mindestens ein Laufrad IMP1, IMP2, hier ein erstes Laufrad IMP1 und ein zweites Laufrad IMP2 an der Welle SH axial ange bracht ist. Die Laufräder IMP1, IMP2 saugen axial an und ge ben ein Prozessfluid PFL radial aus.
Daneben umfasst der Radialverdichterrotor RCR auch ein Adap terflansch CPL, eine Anschlusswelle CSH und einen Antrieb DRV. Das erste Laufrad IMP1 wird mittels eines Zugankers TBL angebracht. Der Zuganker TBL ist hierbei jeweils axial in die Welle SH eingeschraubt und klemmt das Laufrad IMP1, IMP2 mit tels einer Mutter NUT. Diese Befestigungsweise mittels des zentralen Zugankers TBL ist auf beiden axialen Seiten der Welle SH die gleiche, wobei das Laufrad IMP jeweils mittels einer separaten Mutter NUT mittels des Zugankers TBL an der Welle SH befestigt ist.
Das erste Laufrad steht hierbei außerdem axial mit einem Adapterflansch CPL in Verbindung, wobei der Adapter
flansch CPL die Mutter NUT zur Verbindung der Welle SH mit dem ersten Laufrad IMP1 an der Kontaktflache in Umfangsrich tung umgibt bzw. eine mittige Aussparung für die Mutter NUT aufweist. Bevorzugt ist die Mutter NUT ein separates Bauteil getrennt von dem Adapterflansch CPL. Es ist hierbei auch denkbar, dass die Mutter NUT sowohl das erste Laufrad IMP1 als auch der Adapterflansch CPL axial gegeneinander ver spannt. Vorliegend in Figur 1 ist nicht eine einstückige Aus bildung der Mutter NUT und des Adapterflanschs CPL seitens des ersten Laufrades IMP1 dargestellt sondern die Mutter NUT und der Adapterflanschs CPL sind voneinander getrennte Bau teile. Der Adapterflansch CPL ist mittels Schrauben TSC und Stiften TPN gegen Verdrehung und gegen ein Lösen gesichert. Die Stifte TPN können zum Zweck der Zentrierung kegelig aus gebildet sein. Alternativ kann eine Kontaktflache CFS zwi- sehen Adapterflansch CPL und ersten Laufrad IMP1 zumindest teilweise kegelig ausgebildet sein.
In Axialrichtung an der Adapterflansch CPL ist eine An schlusswelle CSH angebracht, wobei eine Kontaktflache zwi schen der Anschlusswelle CSH und dem Adapterflansch CPL zent rierend konisch ausgebildet ist. Unter Verzicht auf diese Zentrierfunktion kann diese Kontaktflache CSF eine stirnsei tig plane Ausbildung aufweisen. Der Adapterflansch CPL weist zur Anbringung der Anschlusswelle CSH ein Innengewinde ITH und die Anschlusswelle CSH ein Außengewinde OTH auf. Der Drehsinn des Innengewindes ITH bzw. Außengewindes OTH, die ineinander eingreifen und die Anschlusswelle CSH an dem Adap terflansch CPL befestigen, ist auf die Drehrichtung des An triebes DRV, der mit der Anschlusswelle CSH antreibend in Verbindung steht, derart abgestimmt, dass ein Antriebsdrehmo ment aus dem Antrieb DRV übertragen auf den Radialverdichter rotor RCR nicht zu einem Lösen dieser Verbindung führt.
Die Figur 1 zeigt die bevorzugte Ausführungsform, wobei der Adapterflansch CPL an dem ersten Laufrad IMP1 vorgesehen ist, wobei das erste Laufrad IMP1 axial an der Welle SH angebracht und axial zwischen der Welle SH und der Anschlusswelle CSH angeordnet ist. Axial zwischen den beiden Laufrädern IMP1, IMP2 befindet sich die Welle SH, die sich in axialer Richtung erstreckt und die zwei Radiallagerstellen RBE und eine Axial lagerstelle ABE aufweist.
Die axiale Seite, an der das erste Laufrad IMP1 angebracht ist, ist als Axialende AX1 bezeichnet und die axiale Seite der Welle SH, die das zweite Laufrad IMP2 trägt, ist als zweites Axialende AX2 bezeichnet. Die Figur 1 zeigt eine An ordnung der beiden Laufräder IMP1, IMP2 an den beiden Axia lenden AX1, AX2 in einer sogenannten fliegenden Lagerung, bei der jeweils nur einseitig der beiden Laufräder IMP1, IMP2 ei ne radiallagerstelle RBE vorgesehen ist. Weiterhin saugen die beiden Laufräder IMP1, IMP2 aus unterschiedlichen Axialrich tungen ein Prozessfluid PFL an und geben dieses radial aus, was in der Konfiguration der Figur 1 als eine sogenannte Back-to-Back-Anordnung der beiden Laufräder IMP1, IMP2 an der Welle SH zueinander bezeichnet wird.
Zur Verbindung des zweiten Laufrads IMP2 und der Welle SH ist stirnseitig der Welle SH und stirnseitig des zweiten Lauf rads IMP2 eine Hirth-Verzahnung HRT vorgesehen, die die Bau teile zueinander radial zentriert und für eine sichere Über tragung der Drehmomente sorgt.
Seitens des ersten Laufrads IMP1 ist eine derartige Verbin dung grundsätzlich auch möglich. Die in dem Ausführungsbei spiel der Figur 1 dargestellte Variante zur Verbindung des ersten Laufrads IMP1 mit der Welle sieht stattdessen eine ra diale Zentrierung mittels einer Ausnehmung RZS in dem Laufrad vor, in die die Welle stirnseitig eingepasst - hier einge schrumpft (radialer Schrumpfsitz RSC) - ist. Die axialen bzw. stirnseitigen Kontaktfläche FFS zwischen dem ersten Lauf rad IMP1 bzw. der Stirnfläche FFS in der Ausnehmung RZS und der Stirnseite des ersten Wellenendes AX1 dient unter der axialen Vorspannung mittels des Zugankers TBL im Wesentlichen der Übertragung des Drehmoments. Zur Erhöhung der Haftreibung ist vorteilhaft axial zwischen der Stirnseite des ersten Wel lenendes AX1 und der Stirnfläche FFS in der Ausnehmung RZS ein reibungserhöhendes Mittel vorgesehen - hier eine Schei be DMT mit axial hervorstehenden Diamantspitzen .
Die Figur 2 zeigt das Detail der Radiallagerstelle RBE aus der Figur 1 des Radialverdichterrotors RCR. Die Welle ist an der Radiallagerstelle RBE mit einer sich axial und in Um fangsrichtung erstreckenden Nut GRV versehen, die im Wesent lichen axial und in Umfangsrichtung den Bereich des Radialla gers umfasst bzw. abdeckt oder überstreicht. Die Welle SH um fasst weiterhin eine Abdeckhülse SLV, die radial außerhalb der Nut GRV angeordnet ist, so dass die Nut GRV nach radial außen abgedeckt ist. Unter einer Anordnung „radial außerhalb der Nut GRV" versteht die Erfindung, dass die Hülse SRV zu mindest teilweise radial außerhalb der Nut angeordnet ist. Ausführungsformen, bei denen die Hülse SLV zumindest zum Teil auch Elemente innerhalb der Nut GRV aufweist, sind von der Erfindung nicht bevorzugt, aber von dieser auch nicht unbe- dingt ausgeschlossen. Dementsprechend kann die Hülse SLV an der Welle SH kraftschlüssig, z. B. mittels einer Schrumpfver bindung oder kraft- und formschlüssig (ebenfalls beispiels weise mittels einer Schrumpfverbindung) ausgebildet sein. Dadurch dass die Nut GRV sich an der Welle SH befindet, sind die mechanischen Anforderungen an die Hülse SLV reduziert ge genüber einer Ausbildung, bei der eine entsprechende Ausspa rung in der Hülse SLV vorgesehen ist. Daher ist die gesamte Anordnung bei ansonsten im Wesentlichen gleichen mechanischen Eigenschaften dünner.
Die Figur 3 zeigt in einem ausschnittsweisen schematischen Längsschnitt einen Radialverdichter RCP mit einem erfindungs gemäßen Radialverdichterrotor RCR. Der Längsschnittausschnitt zeigt das Detail eines verstellbaren Eintrittsleitapparates IGV in einer Einströmung INL eines Gehäuses CAS des Radial verdichters RCP. Die Einströmung ist zumindest axial ab schnittsweise als Ringkanal ANC ausgebildet und der Ein- trittsleitapparat IGV befindet sich im Axialbereich des Ring kanals ANC. Der Eintrittsleitapparat IGV weist verstellbare Leitschaufein VNS auf, die mittels Drehung um eine jeweilige Schaufellängsachse VX die strömungstechnischen Eigenschaften der Verdichterstufe verändern. Die Schaufellängsachse VX ver läuft schräg zur Achse X der Welle SH. Bevorzugt sind Begren zungskonturen LCI, LCO, die den Ringkanal ANC nach radial in nen (LCI) und radial außen (LCO) begrenzen zumindest im Be reich des Eintrittsleitapparates IGV bzw. im Bereich der Leitschaufein VNS parallel zueinander ausgebildet. Um eine Drehbarkeit der Leitschaufein VNS um die Schaufellängsachse VX ohne Klemmen zu ermöglichen, sind die Enden der Leitschau feln VNS in Richtung der Schaufellängsachse VX mit einer ab gerundeten oder runden Form versehen, zumindest derart ausge bildet, dass die Höhe HGT eines Bewegungsspalts CLG zwischen den Begrenzungskonturen LCI, LCO und den Leitschaufelenden mit zunehmendem Abstand von der Schaufellängsachse VX zuneh mend ausgebildet ist. Auf diese Weise ist es ohne ein Klemmen möglich, die Leitschaufein VNS in dem Ringkanal ANC zu ver drehen. Besonders bevorzugt ist die Höhe HGT des Bewegungs spalts CLG mit zunehmendem Abstand von der Schaufellängsachse VX derart ausgelegt, dass die Leitschaufelenden eine abgerun- dete oder runde Form aufweisen, bevorzugt kugelförmig abge rundet sind.
Figur 4 zeigt die schematische Darstellung eines Getriebever dichters GTC in einer axial geschnittenen Draufsicht auf den Getriebeverdichter GTC. Der Getriebeverdichter GTC umfasst einen Radialverdichterrotor RCR bzw. einen Radialverdichter RCP in erfindungsgemäßer Bauart. An der Welle SH des Radial- verdicherrotors RCR ist ein Ritzel PNN vorgesehen, das ein Großrad BLG antreibt. Von dem Großrad BLG wird mindestens ei ne weitere Ritzelwelle PSH angetrieben, wie in der Figur 4 schematisch angedeutet, an dessen Wellenenden weitere Ver dichter CPM angeordnet sind. Die Gehäuse CAS der Verdichter CPM sind an einem Getriebekasten GBX, in dem das Großrad BLG, die Ritzel PNN und die Wellen SH im Wesentlichen angeordnet und gelagert sind, angebracht. Infolge des Antriebs an dem erfindungsgemäßen Radialverdichterrotor RCR ist ein entspre chender Antrieb des Großrades BLG nicht erforderlich. Dement sprechend kann der Antrieb DRV ohne ein entsprechendes Über setzungsgetriebe zwischen dem Getriebeverdichter GTC und dem Antrieb DRV realisiert werden, wobei der Antrieb DRV im Nenn drehzahlbetrieb die Drehzahl mit dem Radialverdichterrotor RCR aufweist. Je nach Platzerfordernis zur Anbringung der einzelnen Verdichter CPM an dem Getriebekasten GBX und je nach erforderlicher Drehzahl der einzelnen Verdichter CPM werden die Übersetzungsverhältnisse bzw. Größen des Großrades BLG und der einzelnen Ritzel PNN bedarfsgerecht ausgelegt. Aufgrund der entfallenden Notwendigkeit, das Großrad BLG an zutreiben, ist das Platzangebot zum Anbringen der einzelnen Verdichter CPM an dem Getriebekasten GBX verbessert.

Claims

Patentansprüche
1. Radialverdichterrotor (RCR) , insbesondere für einen Ge triebeverdichter (GTC) , umfassend:
- eine Welle (SH) , die sich entlang einer Achse (X) erstreckt,
- mindestens ein Laufrad (IMP1, IMP2), das axial an saugend und radial ausgebend ausgebildet ist,
- ein Adapterflansch (CPL) ,
- eine Anschlusswelle (CSH) ,
- einen Antrieb (DRV) ,
dadurch gekennzeichnet,
dass mindestens ein erstes Laufrad (IMP1) an der Wel le (SH) angebracht ist und das ansaugseitig des ersten Laufrades (IMP1) an dem ersten Laufrad (IMP1) mittels des Adapterflanschs (CPL) die Anschlusswelle (CSH) an gebracht ist,
wobei die Anschlusswelle (CSH) mit dem Antrieb (DRV) in Verbindung steht und eine Antriebsleistung von dem An trieb (DRV) auf das erste Laufrad (IMP1) oder die Wel le (SH) überträgt.
2. Radialverdichterrotor (RCR) nach Anspruch 1,
wobei der Adapterflansch (CPL) an dem ersten Lauf rad (IMP1) axial angebracht ist, wobei das erste Lauf rad (IMP1) axial an der Welle (SH) angebracht und axial zwischen der Welle (SH) und der Anschlusswelle (CSH) angeordnet ist.
3. Radialverdichterrotor (RCR) nach Anspruch 2,
wobei der Radialverdichterrotor (RCR) einen Zugan ker (TBL) umfasst und
wobei das erste Laufrad (IMP1) mittels des sich axial durch das erste Laufrad (IMP1) erstreckenden Zugan kers (TBL) axial an einem ersten Axialende (AX1) der Welle (SH) angebracht ist.
4. Radialverdichterrotor (RCR) nach Anspruch 3,
wobei der Radialverdichterrotor (RCR) ein zweites Lauf rad (IMP2) umfasst und
wobei an einem zweiten Axialende (AX2) der Welle (SH) das zweite Laufrad (IMP2) in einer Back-to-Back- Anordnung zu dem ersten Laufrad (IMP1) an der Wel le (SH) angebracht ist.
5. Radialverdichterrotor (RCR) nach mindestens einem der vorhergehenden Ansprüche 1 - 4,
wobei die Welle (SH) mindestens eine Radiallagerstel le (RBE) aufweist.
6. Radialverdichterrotor nach mindestens einem der vorher gehenden Ansprüche 1 - 5, wobei die Welle (SH) mindes tens eine Axiallagerstelle (ABE) aufweist.
7. Radialverdichterrotor nach mindestens einem der vorher gehenden Ansprüche 5, wobei die Welle (SH) an mindes tens einer Radiallagerstelle (RBE) eine sich in Um fangsrichtung und axial erstreckende Nut (GRV) auf weist, die im Wesentlichen axial und in Umfangsrichtung den Bereich des Radiallagers umfasst und die Welle (SH) eine Abdeckhülse (SLV) radial außerhalb der Nut (GRV) aufweist, die die Nut (GRV) nach radial außen abdeckt.
8. Radialverdichter (RCP) umfassend
- einem Radialverdichterrotor (RCR) nach mindestens ei nem der Ansprüche 1 - 6,
- ein Gehäuse (CAS) mit einer Einströmung (INL), die zumindest axial abschnittsweise als Ringkanal (ANC) ausgebildet ist, die einen verstellbaren Eintrittsleit apparat (IGV) im Axialbereich des Ringkanals (ANC) auf weist,
wobei der Eintrittsleitapparat (IGV) mittels Drehung um eine jeweilige Schaufellängsachse (VX) verstellbare Leitschaufein (VNS) aufweist,
wobei die Schaufellängsachse (VX) schräg zur Achse (X) der Welle (SH) verläuft,
wobei jeweils ein Bewegungsspalt (CLG) zwischen den En- den der Schaufellängsachse (VX) der Leitschaufein (VNS) und den Begrenzungskonturen (LCI, LCO) vorgesehen ist, wobei die Leitschaufelenden derart ausgebildet sind, dass die Höhe (HGT) des Bewegungsspalts (CLG) mit zu nehmenden Abstand von der Schaufellängsachse (VX) zu nimmt .
9. Radialverdichter (RCP) nach Anspruch 8, wobei die Hö he (HGT) des Bewegungsspalts (CLG) mit zunehmendem Ab stand von der Schaufellängsachse (VX) derart zunimmt, dass die Leitschaufelenden eine abgerundete oder runde Form aufweisen, bevorzugt die Leitschaufelenden kugel förmig abgerundet sind.
10. Radialverdichter (RCP) nach Anspruch 8 oder 9, wobei die radialen Begrenzungskonturen (LCI, LCO) des Ringka nals (ANC) im axialen Längsschnitt im Wesentlichen pa rallel zueinander verlaufen.
11. Getriebeverdichter (GTC) umfassend:
- einen Getriebekasten (GBX) , an dem Verdichter (CPM) angeordnet sind,
- ein Großrad (BLG) , angeordnet in dem Getriebekas
ten (GBX) ,
- mehrere Ritzelwellen (PSH) mit Ritzeln (PNN) , die um das Großrad (BLG) herum verteilt angeordnet sind, wobei die Ritzel (PNN) mit dem Großrad (BLG) in Ein griff stehen,
- wobei mindestens an einigen der Ritzelwellen (PSH) an den Wellenenden Laufräder (IMP) der Verdich ter (CPM) angebracht sind,
dadurch gekennzeichnet,
dass mindestens eine Ritzelwelle (PSH) , bevorzugt genau eine Ritzelwelle (PSH) , als ein Radialverdichterro tor (RCR) nach mindestens einem der Ansprüche 1 - 7 ausgebildet ist.
PCT/EP2019/068569 2018-08-27 2019-07-10 Radialverdichterrotor, radialverdichter, getriebeverdichter WO2020043379A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18190976.3A EP3617519A1 (de) 2018-08-27 2018-08-27 Radialverdichterrotor, radialverdichter, getriebeverdichter
EP18190976.3 2018-08-27

Publications (1)

Publication Number Publication Date
WO2020043379A1 true WO2020043379A1 (de) 2020-03-05

Family

ID=63407124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/068569 WO2020043379A1 (de) 2018-08-27 2019-07-10 Radialverdichterrotor, radialverdichter, getriebeverdichter

Country Status (2)

Country Link
EP (1) EP3617519A1 (de)
WO (1) WO2020043379A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401942B2 (en) * 2020-05-15 2022-08-02 Garrett Transportation I Inc Fastener arrangement for rotating group of turbomachine
BE1028803B1 (nl) * 2020-11-16 2022-06-14 Atlas Copco Airpower Nv Turbomachine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB967091A (en) * 1961-04-14 1964-08-19 Borsig Ag Improvements in or relating to three-stage radial-flow compressors
US6294842B1 (en) 1997-12-19 2001-09-25 Alliedsignal Inc. Fog cycle for microturbine power generating system
EP1144826A1 (de) 1998-12-24 2001-10-17 AlliedSignal Inc. Vorrichtung und verfahren zur leistungssteigerung einer turbine
US6634853B1 (en) * 2002-07-24 2003-10-21 Sea Solar Power, Inc. Compact centrifugal compressor
DE102009015862A1 (de) 2009-04-01 2010-10-07 Siemens Aktiengesellschaft Getriebeverdichterrotor für Kaltgasanwendungen
DE102010020145A1 (de) 2010-05-11 2011-11-17 Siemens Aktiengesellschaft Mehrstufiger Getriebeverdichter
US20160084301A1 (en) * 2013-04-24 2016-03-24 Nuovo Pignone Srl Rotating machinery with adaptive bearing journals and methods of operating
DE102014225136A1 (de) 2014-12-08 2016-06-09 Siemens Aktiengesellschaft Getriebeverdichter, Anordnung mit einem Antrieb und einem Getriebeverdichter
DE102015200439A1 (de) 2015-01-14 2016-07-14 Siemens Aktiengesellschaft Anordnung, Getriebeverdichter
DE102015203287A1 (de) 2015-02-24 2016-08-25 Siemens Aktiengesellschaft Getriebeverdichtergehäuse, Getriebeverdichter
EP3121449A1 (de) 2015-07-22 2017-01-25 Thermodyn Unterwasserradialverdichter mit horizontaler welle und mit lediglich einem axialschublager
US20170356451A1 (en) * 2014-12-16 2017-12-14 Nuovo Pignone Srl Copmpression unit for high and low pressure services

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB967091A (en) * 1961-04-14 1964-08-19 Borsig Ag Improvements in or relating to three-stage radial-flow compressors
US6294842B1 (en) 1997-12-19 2001-09-25 Alliedsignal Inc. Fog cycle for microturbine power generating system
EP1144826A1 (de) 1998-12-24 2001-10-17 AlliedSignal Inc. Vorrichtung und verfahren zur leistungssteigerung einer turbine
US6634853B1 (en) * 2002-07-24 2003-10-21 Sea Solar Power, Inc. Compact centrifugal compressor
DE102009015862A1 (de) 2009-04-01 2010-10-07 Siemens Aktiengesellschaft Getriebeverdichterrotor für Kaltgasanwendungen
DE102010020145A1 (de) 2010-05-11 2011-11-17 Siemens Aktiengesellschaft Mehrstufiger Getriebeverdichter
US20160084301A1 (en) * 2013-04-24 2016-03-24 Nuovo Pignone Srl Rotating machinery with adaptive bearing journals and methods of operating
DE102014225136A1 (de) 2014-12-08 2016-06-09 Siemens Aktiengesellschaft Getriebeverdichter, Anordnung mit einem Antrieb und einem Getriebeverdichter
US20170356451A1 (en) * 2014-12-16 2017-12-14 Nuovo Pignone Srl Copmpression unit for high and low pressure services
DE102015200439A1 (de) 2015-01-14 2016-07-14 Siemens Aktiengesellschaft Anordnung, Getriebeverdichter
DE102015203287A1 (de) 2015-02-24 2016-08-25 Siemens Aktiengesellschaft Getriebeverdichtergehäuse, Getriebeverdichter
EP3121449A1 (de) 2015-07-22 2017-01-25 Thermodyn Unterwasserradialverdichter mit horizontaler welle und mit lediglich einem axialschublager

Also Published As

Publication number Publication date
EP3617519A1 (de) 2020-03-04

Similar Documents

Publication Publication Date Title
EP0903465B1 (de) Verdichterradbefestigung für schnellaufende Turbomaschinen
DE4122008C2 (de)
DE602005000116T2 (de) Strahltriebwerks-Architektur mit zwei Fans an der Vorderseite
DE602005000974T2 (de) Turbomaschine mit gegenläufigem Gebläse
EP1394364B1 (de) Turbolader und Schaufellagerring hierfür
DE60311725T2 (de) Anordnung eines Verdichterlaufrades
EP2565422B1 (de) Hilfsgerätegetriebeeinrichtung für ein Triebwerk
EP3524781B1 (de) Verbindungseinrichtung für eine verstellbare schaufel einer gasturbine
EP2216516A1 (de) Berstschutzvorrichtung für Radialverdichter
EP3091179B1 (de) Rotoranordnung für eine strömungsmaschine und verdichter
EP0834645A1 (de) Verdichterradbefestigung für Turbolader
WO2020043379A1 (de) Radialverdichterrotor, radialverdichter, getriebeverdichter
EP2884055A1 (de) Verstellbare leitschaufeln mit kegelstumpf in einer lageranordnung
EP2617947B1 (de) Fluggasturbine mit justierbarem Fan
EP3064706A1 (de) Leitschaufelreihe für eine axial durchströmte Strömungsmaschine
EP1746290A1 (de) Radialverdichter
DE102007032228A1 (de) Selbstansaugende Pumpenaggregation
EP2826958A1 (de) Rotor für eine thermische Strömungsmaschine
DE102010039889A1 (de) Vorrichtung zur Anordnung eines Verdichterrads an einer Antriebswelle einer Strömungsmaschine
DE3722530A1 (de) Turbinentriebwerk
DE4131713C2 (de)
EP2522819B1 (de) Befestigung einer Axiallagerscheibe in einer magnetgelagerten Turbomaschine mittels einer Schrumpfscheibenverbindung
EP3225789A1 (de) Triebwerksbaugruppe mit fangehäuse und einlaufdiffusor
DE2631125C2 (de)
DE102011101197B4 (de) Fluggasturbine mit hydraulischem oder pneumatischem Zusatzaggregatantrieb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746009

Country of ref document: EP

Kind code of ref document: A1