EP3617519A1 - Radialverdichterrotor, radialverdichter, getriebeverdichter - Google Patents
Radialverdichterrotor, radialverdichter, getriebeverdichter Download PDFInfo
- Publication number
- EP3617519A1 EP3617519A1 EP18190976.3A EP18190976A EP3617519A1 EP 3617519 A1 EP3617519 A1 EP 3617519A1 EP 18190976 A EP18190976 A EP 18190976A EP 3617519 A1 EP3617519 A1 EP 3617519A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shaft
- impeller
- radial compressor
- radial
- imp1
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005540 biological transmission Effects 0.000 claims description 4
- 101000599778 Homo sapiens Insulin-like growth factor 2 mRNA-binding protein 1 Proteins 0.000 abstract description 21
- 101000988591 Homo sapiens Minor histocompatibility antigen H13 Proteins 0.000 abstract description 21
- 102100029083 Minor histocompatibility antigen H13 Human genes 0.000 abstract description 21
- 101000960626 Homo sapiens Mitochondrial inner membrane protease subunit 2 Proteins 0.000 abstract description 13
- 101000828788 Homo sapiens Signal peptide peptidase-like 3 Proteins 0.000 abstract description 13
- 102100023501 Signal peptide peptidase-like 3 Human genes 0.000 abstract description 13
- 238000007906 compression Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/266—Rotors specially for elastic fluids mounting compressor rotors on shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/04—Blade-carrying members, e.g. rotors for radial-flow machines or engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/16—Combinations of two or more pumps ; Producing two or more separate gas flows
- F04D25/163—Combinations of two or more pumps ; Producing two or more separate gas flows driven by a common gearing arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/4206—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
- F04D29/4213—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/46—Fluid-guiding means, e.g. diffusers adjustable
- F04D29/462—Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/50—Inlet or outlet
- F05D2250/51—Inlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/40—Transmission of power
Definitions
- the invention relates to a radial compressor with a radial compressor rotor defined at the outset.
- the invention relates to a gear compressor with such a radial compressor rotor.
- Radial compressors of this type are preferably used, in particular in the version as geared compressors, each with corresponding radial compressor rotors for compressing air.
- Large compression capacities are required in particular for systems for separating air into the individual components.
- main air compressor main air compressor
- BAC booster air compressor
- Conventional MAC are usually designed as at least three-stage gear compressors. Arrangements with a gear compressor or gear compressor are already from the DE102010020145-A1 . DE102009015862-A1 . DE102014225136-A1 . DE102015200439-A1 . DE102015203287-A1 known.
- Compression systems of this type are correspondingly expensive because, as a rule, a gear and at least two compressor shafts are required, on the shaft ends of which the corresponding compressors can be attached.
- the high installation effort, the maintenance costs and the amount of the investment are simply undesirable from an economic point of view.
- the object of the invention is to alleviate these disadvantages.
- the invention proposes a radial compressor rotor.
- the invention also relates to a radial compressor or a gear compressor, each of which makes use of the radial compressor rotor according to the invention.
- a relatively high energy density can be achieved per stage, including that stage which has a connecting shaft according to the invention with the drive in the area of the axial suction - attached by means of an adapter flange to the first impeller or to the shaft.
- a pressure ratio ratio between inlet pressure and outlet pressure from the compressor
- the process fluid at an outlet pressure of for example to compress 1 bar up to 6 bar.
- the connecting shaft can preferably be a coupling flange or a coupling in order to enable the detachable connection of other rotor components, which are in particular attributable to the drive.
- the proposed design according to the invention enables not only a high energy density per impeller or per compression stage, but also a drive of the compressor rotor without an intermediate gear.
- the drive can be a gas turbine, a steam turbine or an electric motor, which transmits the respective speed inherent in the drive unit without conversion to the radial compressor rotor according to the invention.
- the arrangement according to the invention of the drive on the side of the axial suction of an impeller of the axially suction and radially extending impeller has the particular advantage that a so-called back-to-back arrangement is made possible without providing a gear for driving the radial compressor rotor.
- the back-to-back arrangement enables the axial suction, which is particularly favorable in terms of flow, without prior sharp deflection, as is provided in a single-shaft construction with corresponding impellers by means of the so-called feedback stages. Instead, the impellers suck in axially from opposite directions - arranged at the shaft ends - and the radial compressor rotor has radial bearing points between the two impellers in the back-to-back arrangement.
- the two impellers have a so-called flying arrangement on the shaft in terms of rotor dynamics with respect to the bearing.
- flying arrangement on the shaft in terms of rotor dynamics with respect to the bearing.
- the adapter flange is particularly advantageously fastened to the first impeller, the first impeller being attached axially to the shaft and being arranged axially between the shaft and the connecting shaft. It is basically possible to provide a connection by means of a Hirth toothing between the adapter flange and the first impeller and between the first impeller and the shaft.
- connection and centering between the adapter flange and the impeller by means of pins, in particular by means of tapered pins and by means of a plurality of axially extending screws arranged over the circumference in a certain diameter.
- pins in particular by means of tapered pins and by means of a plurality of axially extending screws arranged over the circumference in a certain diameter.
- This can take turns Pins or taper pins and screws can be arranged over the circumference on the same diameter.
- cylindrical pins and centering can also be provided by means of an at least partially tapered contact surface between the adapter flange and the impeller.
- connection of the shaft to the first impeller by means of a tie rod extending axially through the first impeller is particularly useful, so that the first impeller is attached to a first axial end of the shaft.
- this tie rod can also be used to axially attach the adapter flange to the connecting shaft on the first impeller.
- the shaft has at least one radial bearing point.
- the shaft has at least one axial bearing point.
- the invention can be developed particularly expediently in that the shaft has at least one radial bearing point a groove extending in the circumferential direction and axially, which essentially encompasses the area of the radial bearing in the axial and circumferential direction, and the shaft has a cover sleeve radially outside the groove, which Covering the groove radially outwards. In this way, the so-called Morton effect can be prevented, so that the radial compressor rotor runs more smoothly.
- any thermal influences from a so-called hot spot which can occur locally at a circumferential position of the radial bearing point, are not transmitted to the core area of the shaft, so that the straightness of the shaft from such a local thermal influence is not worsened.
- a radial compressor with a radial compressor rotor according to the invention and a housing with an inflow, which is at least axially configured as an annular channel has an adjustable inlet guide in the axial region of the ring channel, the inlet guide being by means of Rotation around a respective one Has vane longitudinally adjustable guide vanes and wherein the vane longitudinal axes run obliquely to the axis of the shaft, a movement gap is provided between the ends of the vane longitudinal axis of the guide vanes and the boundary contours, the guide vane ends being designed such that the height of the movement gap increases with increasing distance from the longitudinal axis of the vane .
- the guide vanes of the inlet guide apparatus can be adjusted in the circumferential direction in spite of the natural curvature of the ring channel and despite the guide vanes arranged obliquely to the axis of the radial compressor rotor, so that the desired flow technology of the respectively illuminated operating point can be set.
- the height of the movement gap increases with increasing distance from the longitudinal axis of the blade such that the guide blade ends have a rounded or round shape, preferably the blade ends are rounded in a spherical shape. In this way, a particularly wide angular adjustment range of the respective guide vanes of the inlet guide apparatus is ensured without the risk of jamming.
- the invention or the radial compressor rotor according to the invention can be used particularly expediently for a transmission compressor.
- a gear compressor comprises a gear box on which compressors are arranged, a large wheel arranged in the gear box, a plurality of pinion shafts with pinions which are arranged distributed around the large wheel, the pinions being in engagement with the large wheel, at least some of which Pinion shafts are attached to the shaft ends of the compressor impellers, with at least one pinion shaft, preferably exactly one pinion shaft, as a radial compressor rotor with the inventive one Arrangement of an adapter flange and a connecting shaft for a drive is provided.
- Figure 1 shows a schematically illustrated longitudinal section along an axis X of a radial compressor rotor RCR.
- the radial compressor rotor RCR is particularly well suited for use in a radial compressor RCP, as is shown in a schematic partial longitudinal section with an inlet guide device IGV in Figure 3 is shown or for a gear compressor GTC, as in Figure 4 is shown schematically with a radial compressor rotor RCR.
- FIG. 2 shows a detail of a shaft SH of the radial compressor rotor RCR, as in Figure 1 is shown, the detail in Figure 1 is marked with II.
- the in Figure 1 The radial compressor rotor RCR shown comprises a shaft SH which extends along the axis X, at least one impeller IMP1, IMP2, here a first impeller IMP1 and a second impeller IMP2 being axially attached to the shaft SH.
- the impellers IMP1, IMP2 suck in axially and discharge a process fluid PFL radially.
- the RCR radial compressor rotor also includes an adapter flange CPL, a connecting shaft CSH and a drive DRV.
- the first impeller IMP1 is attached using a tie rod TBL.
- the tie rod TBL is screwed axially into the SH shaft and clamps the impeller IMP1, IMP2 using a nut NUT.
- This method of fastening by means of the central tie rod TBL is the same on both axial sides of the shaft SH, the impeller IMP being fastened to the shaft SH by means of a separate nut NUT by means of the tie rod TBL.
- the first impeller is also axially connected to an adapter flange CPL, the adapter flange CPL surrounding the nut NUT for connecting the shaft SH to the first impeller IMP1 at the contact surface in the circumferential direction or having a central recess for the nut NUT.
- the nut NUT is preferably a separate component separate from the adapter flange CPL. It is also conceivable that the nut NUT axially braces both the first impeller IMP1 and the adapter flange CPL.
- Present in Figure 1 is not a one-piece design of the nut NUT and the adapter flange CPL on the part of the first impeller IMP1, but the nut NUT and the adapter flange CPL are separate components.
- the adapter flange CPL is secured against twisting and loosening by means of screws TSC and pins TPN.
- the pins TPN can be conical for the purpose of centering.
- a contact surface CFS between the adapter flange CPL and the first impeller IMP1 can be at least partially conical.
- a connecting shaft CSH is attached to the adapter flange CPL in the axial direction, a contact surface between the connecting shaft CSH and the adapter flange CPL being conically centered. Without this centering function, this contact surface CSF can have a flat design on the face.
- the adapter flange CPL has an internal thread ITH for attaching the connecting shaft CSH and the connecting shaft CSH has an external thread OTH.
- the direction of rotation of the internal thread ITH or external thread OTH, which interlock and fasten the connecting shaft CSH to the adapter flange CPL, is matched to the direction of rotation of the drive DRV, which is drivingly connected to the connecting shaft CSH, in such a way that a drive torque from the drive DRV transferred to the radial compressor rotor RCR does not lead to a loosening of this connection.
- the Figure 1 shows the preferred embodiment, wherein the adapter flange CPL is provided on the first impeller IMP1, the first impeller IMP1 being axially attached to the shaft SH and axially between the shaft SH and the connecting shaft CSH.
- Axial between the two impellers IMP1, IMP2 is the shaft SH, which extends in the axial direction and which has two radial bearing points RBE and one axial bearing point ABE.
- the axial side to which the first impeller IMP1 is attached is referred to as the axial end AX1 and the axial side of the shaft SH, which supports the second impeller IMP2, is referred to as the second axial end AX2.
- the Figure 1 shows an arrangement of the two impellers IMP1, IMP2 at the two axial ends AX1, AX2 in a so-called flying bearing, in which a radial bearing point RBE is provided only on one side of the two impellers IMP1, IMP2.
- the two impellers IMP1, IMP2 draw in a process fluid PFL from different axial directions and emit it radially, which is in the configuration of the Figure 1 is referred to as a so-called back-to-back arrangement of the two impellers IMP1, IMP2 on the shaft SH to one another.
- a Hirth toothing HRT is provided on the end of the shaft SH and on the end of the second impeller IMP2, which centers the components radially to one another and ensures reliable transmission of the torques.
- Such a connection is in principle also possible on the part of the first impeller IMP1.
- the in the embodiment of the Figure 1 The variant shown for connecting the first impeller IMP1 to the shaft instead provides radial centering by means of a recess RZS in the impeller, into which the shaft is fitted on the face side - here shrunk (radial shrink fit RSC).
- the axial or end face contact surface FFS between the first impeller IMP1 or the end face FFS in the recess RZS and the end face of the first shaft end AX1 essentially serves to transmit the torque under the axial prestress by means of the tie rod TBL.
- a friction-increasing means is advantageously provided axially between the end face of the first shaft end AX1 and the end face FFS in the recess RZS - here a disc DMT with axially protruding diamond tips.
- the Figure 2 shows the detail of the radial bearing point RBE from the Figure 1 of the RCR radial compressor rotor.
- the shaft is provided at the radial bearing point RBE with an axially and circumferentially extending groove GRV, which essentially covers or covers or covers the area of the radial bearing essentially axially and in the circumferential direction.
- the shaft SH also includes a cover sleeve SLV, which is arranged radially outside the groove GRV, so that the groove GRV is covered radially outwards.
- An arrangement “radially outside the groove GRV” is understood by the invention to mean that the sleeve SRV is at least partially arranged radially outside the groove.
- Embodiments in which the sleeve SLV at least partially also has elements within the groove GRV are not preferred by the invention, but are also not necessarily excluded from this. Accordingly, the sleeve SLV on the shaft SH non-positively, for. B. by means of a shrink connection or be non-positive and positive (also for example by means of a shrink connection). Because the groove GRV is located on the shaft SH, the mechanical requirements on the sleeve SLV are reduced compared to an embodiment in which a corresponding recess is provided in the sleeve SLV. Therefore, the entire arrangement is thinner with otherwise essentially the same mechanical properties.
- the Figure 3 shows in a fragmentary schematic longitudinal section a radial compressor RCP with a radial compressor rotor RCR according to the invention.
- the longitudinal section shows the detail of an adjustable inlet guide device IGV in an inflow INL of a housing CAS of the radial compressor RCP.
- the inflow is formed at least axially in sections as a ring channel ANC and the inlet guide device IGV is located in the axial region of the ring channel ANC.
- the inlet guide device IGV has adjustable guide vanes VNS, which change the fluidic properties of the compressor stage by rotating about a respective longitudinal blade axis VX.
- the blade longitudinal axis VX runs obliquely to the axis X of the shaft SH.
- Limiting contours LCI, LCO which delimit the ring channel ANC radially inward (LCI) and radially outward (LCO), are formed parallel to one another at least in the area of the inlet guide apparatus IGV or in the area of the guide vanes VNS.
- the ends of the guide blades VNS are provided with a rounded or round shape in the direction of the blade longitudinal axis VX, at least in such a way that the height HGT of a movement gap CLG between the boundary contours LCI, LCO and the guide vane ends with increasing distance from the blade longitudinal axis VX is increasingly formed.
- the height HGT of the movement gap CLG is particularly preferably designed with increasing distance from the blade longitudinal axis VX such that the guide blade ends have a rounded or round shape, preferably are rounded off in a spherical shape.
- FIG 4 shows the schematic representation of a gear compressor GTC in an axially sectioned plan view of the gear compressor GTC.
- the gear compressor GTC comprises a radial compressor rotor RCR or a radial compressor RCP in the design according to the invention.
- a pinion PNN is provided on the shaft SH of the radial compressor rotor RCR, which drives a large wheel BLG.
- At least one further pinion shaft PSH is driven by the large wheel BLG, as in the Figure 4 schematically indicated, further compressors CPM are arranged at the shaft ends.
- the casings CAS of the compressors CPM are attached to a gearbox GBX in which the large wheel BLG, the pinion PNN and the shafts SH are essentially arranged and stored.
- the drive DRV can be implemented without a corresponding transmission gear between the gear compressor GTC and the drive DRV, the drive DRV having the speed with the radial compressor rotor RCR in the nominal speed operation.
- the gear ratios and sizes of the large wheel BLG and the individual pinion PNN are designed as required. Due to the elimination of the need to drive the BLG large wheel, the space available for attaching the individual compressors CPM to the GBX gearbox has been improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Die Erfindung betrifft einen Radialverdichterrotor (RCR), insbesondere für einen Getriebeverdichter (GTC), umfassend:- eine Welle (SH), die sich entlang einer Achse (X) erstreckt,- mindestens ein Laufrad (IMP1, IMP2), das axial ansaugend und radial ausgebend ausgebildet ist,- ein Adapterflansch (CPL),- eine Anschlusswelle (CSH),- einen Antrieb (DRV). Daneben betrifft die Erfindung einen Radialverdichter (RCP), insbesondere einen Getriebeverdichter (GTC) mit einem Radialverdichterrotor (RCR) nach der Erfindung.
Description
- Die Erfindung betrifft einen Radialverdichterrotor, insbesondere für einen Getriebeverdichter, umfassend:
- eine Welle, die sich entlang einer Achse erstreckt,
- mindestens ein Laufrad, das axial ansaugend und radial ausgebend ausgebildet ist,
- ein Adapterflansch,
- eine Anschlusswelle,
- einen Antrieb.
- Daneben betrifft die Erfindung einen Radialverdichter mit einem eingangs definierten Radialverdichterrotor. Außerdem betrifft die Erfindung einen Getriebeverdichter mit einem derartigen Radialverdichterrotor.
- Bevorzugt werden derartige Radialverdichter, insbesondere in der Ausführung als Getriebeverdichter mit jeweils entsprechenden Radialverdichterrotoren zur Verdichtung von Luft eingesetzt. Insbesondere für Anlagen zur Zerlegung von Luft in die einzelnen Bestandteile werden große Verdichtungsleistungen benötigt. In der Regel erfolgt ein derartiger Verdichtungsprozess in zwei miteinander verknüpften Verdichtungsanlagen einem sogenannten Main-Air-Compressor (MAC = Hauptluftverdichter) und einem Booster-Air-Compressor (BAC = > zusätzliche Verdichtung). Herkömmliche MAC werden in der Regel als mindestens dreistufige Getriebeverdichter ausgeführt. Anordnungen mit einem Getriebeverdichter bzw. Getriebeverdichter sind bereits aus den
DE102010020145-A1 ,DE102009015862-A1 ,DE102014225136-A1 ,DE102015200439-A1 ,DE102015203287-A1 bekannt. - Derartige Verdichtungsanlagen sind dementsprechend teuer, weil in der Regel ein Getriebe und mindestens zwei Verdichterwellen benötigt werden, an dessen Wellenenden die entsprechenden Verdichter angebracht werden können. Der hohe Installationsaufwand, die Wartungskosten und die Höhe der Investition schlechthin sind schon aus wirtschaftlichen Gesichtspunkten unerwünscht.
- Die Erfindung hat es sich zur Aufgabe gemacht, diese Nachteile abzumindern.
- Zur Lösung der Aufgabe schlägt die Erfindung einen Radialverdichterrotor vor. Die Erfindung bezieht sich auch auf einen Radialverdichter oder einen Getriebeverdichter, die jeweils Gebrauch von dem erfindungsgemäßen Radialverdichterrotor machen.
- Infolge des erfindungsgemäßen Designs des Radialverdichterrotors kann pro Stufe eine verhältnismäßig hohe Energiedichte verwirklicht werden, einschließlich derjenigen Stufe, die im Bereich der axialen Ansaugung eine erfindungsgemäße Anschlusswelle mit dem Antrieb - angebracht mittels eines Adapterflanschs an dem ersten Laufrad oder an der Welle - aufweist. Auf diese Weise ist es möglich, pro Laufrad ein Druckverhältnis (Verhältnis zwischen Eintrittsdruck und Austrittsdruck aus dem Verdichter) von mindestens 2,0, bevorzugt mindestens 2,8 zu erzielen und dementsprechend in einer zweistufigen Bauweise (zwei Laufräder) das Prozessfluid bei einem Ausgangsdruck von beispielsweise 1 bar auf bis zu 6 bar zu verdichten.
- Bei der Anschlusswelle kann es sich bevorzugt um einen Kupplungsflansch oder eine Kupplung handeln, um den lösbaren Anschluss anderer Rotorbauteile zu ermöglichen, die insbesondere dem Antrieb zuzurechnen sind.
- Das vorgeschlagene erfindungsgemäße Design ermöglicht nicht nur eine hohe Energiedichte pro Laufrad bzw. pro Verdichtungsstufe, sondern auch einen Antrieb des Verdichterrotors ohne ein Zwischengetriebe. Beispielsweise kann der Antrieb eine Gasturbine, eine Dampfturbine oder ein Elektromotor sein, der die jeweilige, dem Antriebsaggregat innewohnende Drehzahl ohne Umwandlung auf den erfindungsgemäßen Radialverdichterrotor überträgt.
- Besonders bevorzugt befindet sich zwischen dem Antrieb und dem erfindungsgemäßen Radialverdichterrotor eine elastische Kupplung, die beispielsweise etwaige Drehschwingungen oder Biegeschwingungen dämpft und kleinere Fehlausrichtungen kompensiert.
- Die erfindungsgemäße Anordnung des Antriebs auf der Seite der axialen Ansaugung eines Laufrades des axial ansaugenden und radial ausgebenden Laufrades hat insbesondere auch den Vorteil, dass eine sogenannte Back-to-Back-Anordnung ermöglicht ist, ohne ein Getriebe zum Antrieb des Radialverdichterrotors vorzusehen. Die Back-to-Back-Anordnung ermöglicht hierbei das strömungstechnisch besonders günstige axiale Ansaugen ohne vorherige scharfe Umlenkung, wie es bei einer Einwellenkonstruktion mit entsprechenden Laufrädern mittels der sogenannten Rückführstufen vorgesehen ist. Stattdessen saugen die Laufräder axial aus entgegengesetzten Richtungen - an den Wellenenden angeordnet - an und der Radialverdichterrotor weist Radiallagerstellen zwischen den beiden Laufrädern in der Back-to-Back-Anordnung auf. Dementsprechend haben die beiden Laufräder rotordynamisch an der Welle hinsichtlich der Lagerung eine jeweils sogenannte fliegende Anordnung. Zusammengefasst kann für die Back-to-Back-Anordnung das Vorliegen von rotordynamischen und strömungstechnischen Vorteilen gegenüber einer vergleichbaren konventionellen fliegenden Reihenanordnung festgestellt werden.
- Besonders zweckmäßig ist der Adapterflansch an dem ersten Laufrad befestigt, wobei das erste Laufrad axial an der Welle angebracht ist und axial zwischen der Welle und der Anschlusswelle angeordnet ist. Hierbei ist es grundsätzlich möglich, zwischen dem Adapterflansch und dem ersten Laufrad sowie zwischen dem ersten Laufrad und der Welle jeweils eine Verbindung mittels einer Hirth-Verzahnung vorzusehen.
- Alternativ besonders sinnvoll ist zwischen Adapterflansch und Laufrad eine Verbindung und Zentrierung mittels Stiften, insbesondere mittels Kegelstiften und mittels mehrerer über den Umfang in einem bestimmten Durchmesser angeordneter axial sich erstreckender Schrauben vorgesehen. Hierbei können abwechselnd Stifte bzw. Kegelstifte und Schrauben über dem Umfang auf gleichem Durchmesser angeordnet sein. Alternativ zu den Kegelstiften können auch Zylinderstifte und eine Zentrierung mittels einer zumindest teilweise kegeligen Kontaktfläche zwischen Adapterflansch und Laufrad vorgesehen sein.
- Besonders sinnvoll ist die Verbindung der Welle mit dem ersten Laufrad mittels eines sich axial durch das erste Laufrad erstreckenden Zugankers, so dass das erste Laufrad an einem ersten Axialende der Welle angebracht ist. Als eine Option kann mittels dieses Zugankers auch der Adapterflansch zu der Anschlusswelle an dem ersten Laufrad axial angebracht werden.
- Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Welle mindestens eine Radiallagerstelle aufweist. Daneben ist es zweckmäßig, wenn die Welle mindestens eine Axiallagerstelle aufweist. Besonders sinnvoll kann die Erfindung weitergebildet werden, indem die Welle an mindestens einer Radiallagerstelle eine sich in Umfangsrichtung und axial erstreckende Nut aufweist, die im Wesentlichen axial und in Umfangsrichtung den Bereich des Radiallagers umfasst und die Welle eine Abdeckhülse radial außerhalb der Nut aufweist, die die Nut nach radial außen abdeckt. Auf diese Weise kann dem sogenannten Morton-Effekt vorgebeugt werden, so dass sich eine verbesserte Laufruhe des Radialverdichterrotors ergibt. Infolge der Hohlkammer, die sich mittels der Nut und der Abdeckung ergibt, übertragen sich etwaige thermische Einflüsse aus einem sogenannten Hot-Spot, der lokal an einer Umfangsposition der Radiallagerstelle auftreten kann, nicht auf den Kernbereich der Welle, so dass die Geradlinigkeit der Welle von einem derartigen lokalen thermischen Einfluss nicht verschlechtert wird.
- Insbesondere in dem Bereich des Adapterflanschs und der Anschlusswelle ist es sinnvoll, wenn ein Radialverdichter mit einem erfindungsgemäßen Radialverdichterrotor und einem Gehäuse mit einer Einströmung, die zumindest axial abschnittsweise als Ringkanal ausgebildet ist, die einen verstellbaren Eintrittsleitapparat im Axialbereich des Ringkanals aufweist, wobei der Eintrittsleitapparat mittels Drehung um eine jeweilige Schaufellängsachse verstellbare Leitschaufeln aufweist und wobei die Schaufellängsachsen schräg zur Achse der Welle verlaufen, jeweils ein Bewegungsspalt zwischen den Enden der Schaufellängsachse der Leitschaufeln und den Begrenzungskonturen vorgesehen ist, wobei die Leitschaufelenden derart ausgebildet sind, dass die Höhe des Bewegungsspalts mit zunehmendem Abstand von der Schaufellängsachse zunimmt. Auf diese Weise können die Leitschaufeln des Eintrittsleitapparates trotz der naturgemäßen Krümmung des Ringkanals in Umfangsrichtung und trotz der schräg zu der Achse des Radialverdichterrotors angeordneten Leitschaufeln verstellt werden, so dass die gewünschte Strömungstechnik des jeweils angestrahlten Betriebspunktes eingestellt werden kann.
- In diesem Zusammenhang ist es besonders sinnvoll, wenn die Höhe des Bewegungsspalts mit zunehmendem Abstand von der Schaufellängsachse derart zunimmt, dass die Leitschaufelenden eine abgerundete oder runde Form aufweisen, bevorzugt die Schaufelenden kugelförmig abgerundet sind. Auf diese Weise wird ein besonders weiter Winkelverstellbereich der jeweiligen Leitschaufeln des Eintrittsleitapparates ohne das Risiko eines Verklemmens gewährleistet.
- Eine zusätzliche Reduktion des Risikos des Verklemmens wird erzielt, wenn die radialen Begrenzungskonturen des Ringkanals im axialen Längsschnitt im Wesentlichen parallel zueinander verlaufen im Bereich der Leitschaufeln des Eintrittsleitapparates.
- Besonders zweckmäßig lässt sich die Erfindung bzw. der erfindungsgemäße Radialverdichterrotor für einen Getriebeverdichter nutzen. Ein derartiger Getriebeverdichter umfasst einen Getriebekasten, an dem Verdichter angeordnet sind, ein Großrad, angeordnet in dem Getriebekasten, mehrere Ritzelwellen mit Ritzeln, die um das Großrad herum verteilt angeordnet sind, wobei die Ritzel mit dem Großrad in Eingriff stehen, wobei mindestens an einigen der Ritzelwellen an den Wellenenden Laufräder der Verdichter angebracht sind, wobei mindestens eine Ritzelwelle, bevorzugt genau eine Ritzelwelle, als ein Radialverdichterrotor mit der erfindungsgemäßen Anordnung eines Adapterflanschs und einer Anschlusswelle für einen Antrieb vorgesehen ist.
- Im Folgenden ist die Erfindung anhand eines speziellen Ausführungsbeispiels unter Bezugnahme auf Zeichnungen näher dargestellt. Es zeigen:
- Figur 1
- eine schematische Darstellung eines Längsschnitts durch einen erfindungsgemäßen Radialverdichterrotor,
- Figur 2
- ein Detail des Längsschnitts durch einen erfindungsgemäßen Radialverdichterrotor im Bereich einer Radiallagerstelle,
- Figur 3
- einen Ausschnitt eines Längsschnitts durch einen Radialverdichter mit einem erfindungsgemäßen Radialverdichterrotor und einem Eintrittsleitapparat,
- Figur 4
- eine schematische Darstellung eines Schnitts durch einen Getriebeverdichter, umfassend einen erfindungsgemäßen Radialverdichterrotor
- Begriffe wie axial, tangential oder Umfangsrichtung beziehen sich - wenn nicht anders angegeben - stets auf eine Achse X eines Radialverdichterrotors RCR.
-
Figur 1 zeigt einen schematisch dargestellten Längsschnitt entlang einer Achse X eines Radialverdichterrotors RCR. Der Radialverdichterrotor RCR ist insbesondere gut geeignet für den Einsatz in einem Radialverdichter RCP, wie er in einem schematischen ausschnittsweisen Längsschnitt mit einem Eintrittsleitapparat IGV inFigur 3 dargestellt ist oder für einen Getriebeverdichter GTC, wie er inFigur 4 schematisch mit einem Radialverdichterrotor RCR wiedergegeben ist. - Die
Figur 2 zeigt ein Detail einer Welle SH des Radialverdichterrotors RCR, wie er inFigur 1 dargestellt ist, wobei das Detail inFigur 1 mit II ausgewiesen ist. - Der in
Figur 1 dargestellte Radialverdichterrotor RCR umfasst eine Welle SH, die sich entlang der Achse X erstreckt, wobei mindestens ein Laufrad IMP1, IMP2, hier ein erstes Laufrad IMP1 und ein zweites Laufrad IMP2 an der Welle SH axial angebracht ist. Die Laufräder IMP1, IMP2 saugen axial an und geben ein Prozessfluid PFL radial aus. - Daneben umfasst der Radialverdichterrotor RCR auch ein Adapterflansch CPL, eine Anschlusswelle CSH und einen Antrieb DRV. Das erste Laufrad IMP1 wird mittels eines Zugankers TBL angebracht. Der Zuganker TBL ist hierbei jeweils axial in die Welle SH eingeschraubt und klemmt das Laufrad IMP1, IMP2 mittels einer Mutter NUT. Diese Befestigungsweise mittels des zentralen Zugankers TBL ist auf beiden axialen Seiten der Welle SH die gleiche, wobei das Laufrad IMP jeweils mittels einer separaten Mutter NUT mittels des Zugankers TBL an der Welle SH befestigt ist.
- Das erste Laufrad steht hierbei außerdem axial mit einem Adapterflansch CPL in Verbindung, wobei der Adapterflansch CPL die Mutter NUT zur Verbindung der Welle SH mit dem ersten Laufrad IMP1 an der Kontaktfläche in Umfangsrichtung umgibt bzw. eine mittige Aussparung für die Mutter NUT aufweist. Bevorzugt ist die Mutter NUT ein separates Bauteil getrennt von dem Adapterflansch CPL. Es ist hierbei auch denkbar, dass die Mutter NUT sowohl das erste Laufrad IMP1 als auch der Adapterflansch CPL axial gegeneinander verspannt. Vorliegend in
Figur 1 ist nicht eine einstückige Ausbildung der Mutter NUT und des Adapterflanschs CPL seitens des ersten Laufrades IMP1 dargestellt sondern die Mutter NUT und der Adapterflanschs CPL sind voneinander getrennte Bauteile. Der Adapterflansch CPL ist mittels Schrauben TSC und Stiften TPN gegen Verdrehung und gegen ein Lösen gesichert. Die Stifte TPN können zum Zweck der Zentrierung kegelig ausgebildet sein. Alternativ kann eine Kontaktfläche CFS zwischen Adapterflansch CPL und ersten Laufrad IMP1 zumindest teilweise kegelig ausgebildet sein. - In Axialrichtung an der Adapterflansch CPL ist eine Anschlusswelle CSH angebracht, wobei eine Kontaktfläche zwischen der Anschlusswelle CSH und dem Adapterflansch CPL zentrierend konisch ausgebildet ist. Unter Verzicht auf diese Zentrierfunktion kann diese Kontaktfläche CSF eine stirnseitig plane Ausbildung aufweisen. Der Adapterflansch CPL weist zur Anbringung der Anschlusswelle CSH ein Innengewinde ITH und die Anschlusswelle CSH ein Außengewinde OTH auf. Der Drehsinn des Innengewindes ITH bzw. Außengewindes OTH, die ineinander eingreifen und die Anschlusswelle CSH an dem Adapterflansch CPL befestigen, ist auf die Drehrichtung des Antriebes DRV, der mit der Anschlusswelle CSH antreibend in Verbindung steht, derart abgestimmt, dass ein Antriebsdrehmoment aus dem Antrieb DRV übertragen auf den Radialverdichterrotor RCR nicht zu einem Lösen dieser Verbindung führt.
- Die
Figur 1 zeigt die bevorzugte Ausführungsform, wobei der Adapterflansch CPL an dem ersten Laufrad IMP1 vorgesehen ist, wobei das erste Laufrad IMP1 axial an der Welle SH angebracht und axial zwischen der Welle SH und der Anschlusswelle CSH angeordnet ist. Axial zwischen den beiden Laufrädern IMP1, IMP2 befindet sich die Welle SH, die sich in axialer Richtung erstreckt und die zwei Radiallagerstellen RBE und eine Axiallagerstelle ABE aufweist. - Die axiale Seite, an der das erste Laufrad IMP1 angebracht ist, ist als Axialende AX1 bezeichnet und die axiale Seite der Welle SH, die das zweite Laufrad IMP2 trägt, ist als zweites Axialende AX2 bezeichnet. Die
Figur 1 zeigt eine Anordnung der beiden Laufräder IMP1, IMP2 an den beiden Axialenden AX1, AX2 in einer sogenannten fliegenden Lagerung, bei der jeweils nur einseitig der beiden Laufräder IMP1, IMP2 eine radiallagerstelle RBE vorgesehen ist. Weiterhin saugen die beiden Laufräder IMP1, IMP2 aus unterschiedlichen Axialrichtungen ein Prozessfluid PFL an und geben dieses radial aus, was in der Konfiguration derFigur 1 als eine sogenannte Back-to-Back-Anordnung der beiden Laufräder IMP1, IMP2 an der Welle SH zueinander bezeichnet wird. - Zur Verbindung des zweiten Laufrads IMP2 und der Welle SH ist stirnseitig der Welle SH und stirnseitig des zweiten Laufrads IMP2 eine Hirth-Verzahnung HRT vorgesehen, die die Bauteile zueinander radial zentriert und für eine sichere Übertragung der Drehmomente sorgt.
- Seitens des ersten Laufrads IMP1 ist eine derartige Verbindung grundsätzlich auch möglich. Die in dem Ausführungsbeispiel der
Figur 1 dargestellte Variante zur Verbindung des ersten Laufrads IMP1 mit der Welle sieht stattdessen eine radiale Zentrierung mittels einer Ausnehmung RZS in dem Laufrad vor, in die die Welle stirnseitig eingepasst - hier eingeschrumpft (radialer Schrumpfsitz RSC)- ist. Die axialen bzw. stirnseitigen Kontaktfläche FFS zwischen dem ersten Laufrad IMP1 bzw. der Stirnfläche FFS in der Ausnehmung RZS und der Stirnseite des ersten Wellenendes AX1 dient unter der axialen Vorspannung mittels des Zugankers TBL im Wesentlichen der Übertragung des Drehmoments. Zur Erhöhung der Haftreibung ist vorteilhaft axial zwischen der Stirnseite des ersten Wellenendes AX1 und der Stirnfläche FFS in der Ausnehmung RZS ein reibungserhöhendes Mittel vorgesehen - hier eine Scheibe DMT mit axial hervorstehenden Diamantspitzen. - Die
Figur 2 zeigt das Detail der Radiallagerstelle RBE aus derFigur 1 des Radialverdichterrotors RCR. Die Welle ist an der Radiallagerstelle RBE mit einer sich axial und in Umfangsrichtung erstreckenden Nut GRV versehen, die im Wesentlichen axial und in Umfangsrichtung den Bereich des Radiallagers umfasst bzw. abdeckt oder überstreicht. Die Welle SH umfasst weiterhin eine Abdeckhülse SLV, die radial außerhalb der Nut GRV angeordnet ist, so dass die Nut GRV nach radial außen abgedeckt ist. Unter einer Anordnung "radial außerhalb der Nut GRV" versteht die Erfindung, dass die Hülse SRV zumindest teilweise radial außerhalb der Nut angeordnet ist. Ausführungsformen, bei denen die Hülse SLV zumindest zum Teil auch Elemente innerhalb der Nut GRV aufweist, sind von der Erfindung nicht bevorzugt, aber von dieser auch nicht unbedingt ausgeschlossen. Dementsprechend kann die Hülse SLV an der Welle SH kraftschlüssig, z. B. mittels einer Schrumpfverbindung oder kraft- und formschlüssig (ebenfalls beispielsweise mittels einer Schrumpfverbindung) ausgebildet sein. Dadurch dass die Nut GRV sich an der Welle SH befindet, sind die mechanischen Anforderungen an die Hülse SLV reduziert gegenüber einer Ausbildung, bei der eine entsprechende Aussparung in der Hülse SLV vorgesehen ist. Daher ist die gesamte Anordnung bei ansonsten im Wesentlichen gleichen mechanischen Eigenschaften dünner. - Die
Figur 3 zeigt in einem ausschnittsweisen schematischen Längsschnitt einen Radialverdichter RCP mit einem erfindungsgemäßen Radialverdichterrotor RCR. Der Längsschnittausschnitt zeigt das Detail eines verstellbaren Eintrittsleitapparates IGV in einer Einströmung INL eines Gehäuses CAS des Radialverdichters RCP. Die Einströmung ist zumindest axial abschnittsweise als Ringkanal ANC ausgebildet und der Eintrittsleitapparat IGV befindet sich im Axialbereich des Ringkanals ANC. Der Eintrittsleitapparat IGV weist verstellbare Leitschaufeln VNS auf, die mittels Drehung um eine jeweilige Schaufellängsachse VX die strömungstechnischen Eigenschaften der Verdichterstufe verändern. Die Schaufellängsachse VX verläuft schräg zur Achse X der Welle SH. Bevorzugt sind Begrenzungskonturen LCI, LCO, die den Ringkanal ANC nach radial innen (LCI) und radial außen (LCO) begrenzen zumindest im Bereich des Eintrittsleitapparates IGV bzw. im Bereich der Leitschaufeln VNS parallel zueinander ausgebildet. Um eine Drehbarkeit der Leitschaufeln VNS um die Schaufellängsachse VX ohne Klemmen zu ermöglichen, sind die Enden der Leitschaufeln VNS in Richtung der Schaufellängsachse VX mit einer abgerundeten oder runden Form versehen, zumindest derart ausgebildet, dass die Höhe HGT eines Bewegungsspalts CLG zwischen den Begrenzungskonturen LCI, LCO und den Leitschaufelenden mit zunehmendem Abstand von der Schaufellängsachse VX zunehmend ausgebildet ist. Auf diese Weise ist es ohne ein Klemmen möglich, die Leitschaufeln VNS in dem Ringkanal ANC zu verdrehen. Besonders bevorzugt ist die Höhe HGT des Bewegungsspalts CLG mit zunehmendem Abstand von der Schaufellängsachse VX derart ausgelegt, dass die Leitschaufelenden eine abgerundete oder runde Form aufweisen, bevorzugt kugelförmig abgerundet sind. -
Figur 4 zeigt die schematische Darstellung eines Getriebeverdichters GTC in einer axial geschnittenen Draufsicht auf den Getriebeverdichter GTC. Der Getriebeverdichter GTC umfasst einen Radialverdichterrotor RCR bzw. einen Radialverdichter RCP in erfindungsgemäßer Bauart. An der Welle SH des Radialverdicherrotors RCR ist ein Ritzel PNN vorgesehen, das ein Großrad BLG antreibt. Von dem Großrad BLG wird mindestens eine weitere Ritzelwelle PSH angetrieben, wie in derFigur 4 schematisch angedeutet, an dessen Wellenenden weitere Verdichter CPM angeordnet sind. Die Gehäuse CAS der Verdichter CPM sind an einem Getriebekasten GBX, in dem das Großrad BLG, die Ritzel PNN und die Wellen SH im Wesentlichen angeordnet und gelagert sind, angebracht. Infolge des Antriebs an dem erfindungsgemäßen Radialverdichterrotor RCR ist ein entsprechender Antrieb des Großrades BLG nicht erforderlich. Dementsprechend kann der Antrieb DRV ohne ein entsprechendes Übersetzungsgetriebe zwischen dem Getriebeverdichter GTC und dem Antrieb DRV realisiert werden, wobei der Antrieb DRV im Nenndrehzahlbetrieb die Drehzahl mit dem Radialverdichterrotor RCR aufweist. Je nach Platzerfordernis zur Anbringung der einzelnen Verdichter CPM an dem Getriebekasten GBX und je nach erforderlicher Drehzahl der einzelnen Verdichter CPM werden die Übersetzungsverhältnisse bzw. Größen des Großrades BLG und der einzelnen Ritzel PNN bedarfsgerecht ausgelegt. Aufgrund der entfallenden Notwendigkeit, das Großrad BLG anzutreiben, ist das Platzangebot zum Anbringen der einzelnen Verdichter CPM an dem Getriebekasten GBX verbessert.
Claims (11)
- Radialverdichterrotor (RCR), insbesondere für einen Getriebeverdichter (GTC), umfassend:- eine Welle (SH), die sich entlang einer Achse (X) erstreckt,- mindestens ein Laufrad (IMP1, IMP2), das axial ansaugend und radial ausgebend ausgebildet ist,- ein Adapterflansch (CPL),- eine Anschlusswelle (CSH),- einen Antrieb (DRV),dadurch gekennzeichnet,
dass mindestens ein erstes Laufrad (IMP1) an der Welle (SH) angebracht ist und das ansaugseitig des ersten Laufrades (IMP1) an dem ersten Laufrad (IMP1) oder an der Welle (SH) mittels des Adapterflanschs (CPL) die Anschlusswelle (CSH) angebracht ist,
wobei die Anschlusswelle (CSH) mit dem Antrieb (DRV) in Verbindung steht und eine Antriebsleistung von dem Antrieb (DRV) auf das erste Laufrad (IMP1) oder die Welle (SH) überträgt. - Radialverdichterrotor (RCR) nach Anspruch 1,
wobei der Adapterflansch (CPL) an dem ersten Laufrad (IMP1) axial angebracht ist, wobei das erste Laufrad (IMP1) axial an der Welle (SH) angebracht und axial zwischen der Welle (SH) und der Anschlusswelle (CSH) angeordnet ist. - Radialverdichterrotor (RCR) nach Anspruch 2,
wobei der Radialverdichterrotor (RCR) einen
Zuganker (TBL) umfasst und
wobei das erste Laufrad (IMP1) mittels des sich axial durch das erste Laufrad (IMP1) erstreckenden Zugankers (TBL) axial an einem ersten Axialende (AX1) der Welle (SH) angebracht ist. - Radialverdichterrotor (RCR) nach Anspruch 3,
wobei der Radialverdichterrotor (RCR) ein zweites Laufrad (IMP2) umfasst und
wobei an einem zweiten Axialende (AX2) der Welle (SH) das zweite Laufrad (IMP2) in einer Back-to-Back-Anordnung zu dem ersten Laufrad (IMP1) an der Welle (SH) angebracht ist. - Radialverdichterrotor (RCR) nach mindestens einem der vorhergehenden Ansprüche 1 - 4,
wobei die Welle (SH) mindestens eine Radiallagerstelle (RBE) aufweist. - Radialverdichterrotor nach mindestens einem der vorhergehenden Ansprüche 1 - 5, wobei die Welle (SH) mindestens eine Axiallagerstelle (ABE) aufweist.
- Radialverdichterrotor nach mindestens einem der vorhergehenden Anspruche 5, wobei die Welle (SH) an mindestens einer Radiallagerstelle (RBE) eine sich in Umfangsrichtung und axial erstreckende Nut (GRV) aufweist, die im Wesentlichen axial und in Umfangsrichtung den Bereich des Radiallagers umfasst und die Welle (SH) eine Abdeckhülse (SLV) radial außerhalb der Nut (GRV) aufweist, die die Nut (GRV) nach radial außen abdeckt.
- Radialverdichter (RCP) umfassend- einem Radialverdichterrotor (RCR) nach mindestens einem der Ansprüche 1 - 6,- ein Gehäuse (CAS) mit einer Einströmung (INL), die zumindest axial abschnittsweise als Ringkanal (ANC) ausgebildet ist, die einen verstellbaren Eintrittsleitapparat (IGV) im Axialbereich des Ringkanals (ANC) aufweist,wobei der Eintrittsleitapparat (IGV) mittels Drehung um eine jeweilige Schaufellängsachse (VX) verstellbare Leitschaufeln (VNS) aufweist,
wobei die Schaufellängsachse (VX) schräg zur Achse (X) der Welle (SH) verläuft,
wobei jeweils ein Bewegungsspalt (CLG) zwischen den Enden der Schaufellängsachse (VX) der Leitschaufeln (VNS) und den Begrenzungskonturen (LCI, LCO) vorgesehen ist, wobei die Leitschaufelenden derart ausgebildet sind, dass die Höhe (HGT) des Bewegungsspalts (CLG) mit zunehmenden Abstand von der Schaufellängsachse (VX) zunimmt. - Radialverdichter (RCP) nach Anspruch 8, wobei die Höhe (HGT) des Bewegungsspalts (CLG) mit zunehmendem Abstand von der Schaufellängsachse (VX) derart zunimmt, dass die Leitschaufelenden eine abgerundete oder runde Form aufweisen, bevorzugt die Leitschaufelenden kugelförmig abgerundet sind.
- Radialverdichter (RCP) nach Anspruch 8 oder 9, wobei
die radialen Begrenzungskonturen (LCI, LCO) des Ringkanals (ANC) im axialen Längsschnitt im Wesentlichen parallel zueinander verlaufen. - Getriebeverdichter (GTC) umfassend:- einen Getriebekasten (GBX), an dem Verdichter (CPM) angeordnet sind,- ein Großrad (BLG), angeordnet in dem Getriebekasten (GBX),- mehrere Ritzelwellen (PSH) mit Ritzeln (PNN), die um das Großrad (BLG) herum verteilt angeordnet sind, wobei die Ritzel (PNN) mit dem Großrad (BLG) in Eingriff stehen,- wobei mindestens an einigen der Ritzelwellen (PSH) an den Wellenenden Laufräder (IMP) der Verdichter (CPM) angebracht sind,dadurch gekennzeichnet,
dass mindestens eine Ritzelwelle (PSH), bevorzugt genau eine Ritzelwelle (PSH), als ein Radialverdichterrotor (RCR) nach mindestens einem der Ansprüche 1 - 7 ausgebildet ist.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18190976.3A EP3617519A1 (de) | 2018-08-27 | 2018-08-27 | Radialverdichterrotor, radialverdichter, getriebeverdichter |
PCT/EP2019/068569 WO2020043379A1 (de) | 2018-08-27 | 2019-07-10 | Radialverdichterrotor, radialverdichter, getriebeverdichter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18190976.3A EP3617519A1 (de) | 2018-08-27 | 2018-08-27 | Radialverdichterrotor, radialverdichter, getriebeverdichter |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3617519A1 true EP3617519A1 (de) | 2020-03-04 |
Family
ID=63407124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18190976.3A Withdrawn EP3617519A1 (de) | 2018-08-27 | 2018-08-27 | Radialverdichterrotor, radialverdichter, getriebeverdichter |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3617519A1 (de) |
WO (1) | WO2020043379A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022101277A1 (en) * | 2020-11-16 | 2022-05-19 | Atlas Copco Airpower, N.V. | Turbomachine with a shaft coupled to an impeller with an axially interposed friction ring |
US11401942B2 (en) * | 2020-05-15 | 2022-08-02 | Garrett Transportation I Inc | Fastener arrangement for rotating group of turbomachine |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB967091A (en) * | 1961-04-14 | 1964-08-19 | Borsig Ag | Improvements in or relating to three-stage radial-flow compressors |
US6294842B1 (en) * | 1997-12-19 | 2001-09-25 | Alliedsignal Inc. | Fog cycle for microturbine power generating system |
EP1144826A1 (de) * | 1998-12-24 | 2001-10-17 | AlliedSignal Inc. | Vorrichtung und verfahren zur leistungssteigerung einer turbine |
US6634853B1 (en) * | 2002-07-24 | 2003-10-21 | Sea Solar Power, Inc. | Compact centrifugal compressor |
DE102009015862A1 (de) | 2009-04-01 | 2010-10-07 | Siemens Aktiengesellschaft | Getriebeverdichterrotor für Kaltgasanwendungen |
DE102010020145A1 (de) | 2010-05-11 | 2011-11-17 | Siemens Aktiengesellschaft | Mehrstufiger Getriebeverdichter |
US20160084301A1 (en) * | 2013-04-24 | 2016-03-24 | Nuovo Pignone Srl | Rotating machinery with adaptive bearing journals and methods of operating |
DE102014225136A1 (de) | 2014-12-08 | 2016-06-09 | Siemens Aktiengesellschaft | Getriebeverdichter, Anordnung mit einem Antrieb und einem Getriebeverdichter |
DE102015200439A1 (de) | 2015-01-14 | 2016-07-14 | Siemens Aktiengesellschaft | Anordnung, Getriebeverdichter |
DE102015203287A1 (de) | 2015-02-24 | 2016-08-25 | Siemens Aktiengesellschaft | Getriebeverdichtergehäuse, Getriebeverdichter |
EP3121449A1 (de) * | 2015-07-22 | 2017-01-25 | Thermodyn | Unterwasserradialverdichter mit horizontaler welle und mit lediglich einem axialschublager |
US20170356451A1 (en) * | 2014-12-16 | 2017-12-14 | Nuovo Pignone Srl | Copmpression unit for high and low pressure services |
-
2018
- 2018-08-27 EP EP18190976.3A patent/EP3617519A1/de not_active Withdrawn
-
2019
- 2019-07-10 WO PCT/EP2019/068569 patent/WO2020043379A1/de active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB967091A (en) * | 1961-04-14 | 1964-08-19 | Borsig Ag | Improvements in or relating to three-stage radial-flow compressors |
US6294842B1 (en) * | 1997-12-19 | 2001-09-25 | Alliedsignal Inc. | Fog cycle for microturbine power generating system |
EP1144826A1 (de) * | 1998-12-24 | 2001-10-17 | AlliedSignal Inc. | Vorrichtung und verfahren zur leistungssteigerung einer turbine |
US6634853B1 (en) * | 2002-07-24 | 2003-10-21 | Sea Solar Power, Inc. | Compact centrifugal compressor |
DE102009015862A1 (de) | 2009-04-01 | 2010-10-07 | Siemens Aktiengesellschaft | Getriebeverdichterrotor für Kaltgasanwendungen |
DE102010020145A1 (de) | 2010-05-11 | 2011-11-17 | Siemens Aktiengesellschaft | Mehrstufiger Getriebeverdichter |
US20160084301A1 (en) * | 2013-04-24 | 2016-03-24 | Nuovo Pignone Srl | Rotating machinery with adaptive bearing journals and methods of operating |
DE102014225136A1 (de) | 2014-12-08 | 2016-06-09 | Siemens Aktiengesellschaft | Getriebeverdichter, Anordnung mit einem Antrieb und einem Getriebeverdichter |
US20170356451A1 (en) * | 2014-12-16 | 2017-12-14 | Nuovo Pignone Srl | Copmpression unit for high and low pressure services |
DE102015200439A1 (de) | 2015-01-14 | 2016-07-14 | Siemens Aktiengesellschaft | Anordnung, Getriebeverdichter |
DE102015203287A1 (de) | 2015-02-24 | 2016-08-25 | Siemens Aktiengesellschaft | Getriebeverdichtergehäuse, Getriebeverdichter |
EP3121449A1 (de) * | 2015-07-22 | 2017-01-25 | Thermodyn | Unterwasserradialverdichter mit horizontaler welle und mit lediglich einem axialschublager |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11401942B2 (en) * | 2020-05-15 | 2022-08-02 | Garrett Transportation I Inc | Fastener arrangement for rotating group of turbomachine |
WO2022101277A1 (en) * | 2020-11-16 | 2022-05-19 | Atlas Copco Airpower, N.V. | Turbomachine with a shaft coupled to an impeller with an axially interposed friction ring |
BE1028803B1 (nl) * | 2020-11-16 | 2022-06-14 | Atlas Copco Airpower Nv | Turbomachine |
US12055064B2 (en) | 2020-11-16 | 2024-08-06 | Atlas Copco Airpower Naamloze Vennootschap | Turbomachine with a shaft coupled to an impeller with an axially interposed friction ring |
Also Published As
Publication number | Publication date |
---|---|
WO2020043379A1 (de) | 2020-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE602005000116T2 (de) | Strahltriebwerks-Architektur mit zwei Fans an der Vorderseite | |
EP1979622B1 (de) | Verdichtereinheit | |
EP3408503B1 (de) | Strömungsmaschine mit beschaufeltem diffusor | |
EP3091177B1 (de) | Rotor für eine strömungsmaschine und verdichter | |
DE2436635B2 (de) | Hydraulische Maschine | |
EP2209995A1 (de) | Mehrstufiger turbomolekularpumpen-pumpenrotor | |
EP2824288B1 (de) | Flugtriebwerk | |
EP2884055A1 (de) | Verstellbare leitschaufeln mit kegelstumpf in einer lageranordnung | |
DE102004043036A1 (de) | Strömungsarbeitsmaschine mit Fluidentnahme | |
EP2617947B1 (de) | Fluggasturbine mit justierbarem Fan | |
EP3617519A1 (de) | Radialverdichterrotor, radialverdichter, getriebeverdichter | |
WO2015007443A1 (de) | Rotor für eine thermische strömungsmaschine | |
EP2778428B1 (de) | Verbindungsanordnung für ein Radialgebläse einer Dunstabzugshaube | |
WO2018059863A1 (de) | Anordnung zum verdichten | |
DE102011101197B4 (de) | Fluggasturbine mit hydraulischem oder pneumatischem Zusatzaggregatantrieb | |
EP3225789A1 (de) | Triebwerksbaugruppe mit fangehäuse und einlaufdiffusor | |
DE2631128A1 (de) | Deformierbarer lagersitz | |
EP3309360B1 (de) | Laufschaufelbaugruppe für ein triebwerk | |
DE102006005843B3 (de) | Reaktionsrad zur Verwendung in Turbinen- bzw. Verdichteranordnungen | |
AT502999A2 (de) | Laufrad eines ventilators | |
EP3577346B1 (de) | Turboverdichter mit integrierten strömungskanälen | |
WO2019115703A1 (de) | Diagonalventilatorrad mit erhöhter festigkeit | |
CH714391B1 (de) | Turbinenleitapparat. | |
DE2114222C2 (de) | Einrichtung zur Veraenderung der durch das Eigengewicht hervorgerufenen Durchbiegung eines Maschinengehaeuses | |
DE60036071T2 (de) | Ventilationsverlustmindernde Gewindemutter für einen Strömungsmaschinenrotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200905 |