WO2020042351A1 - 一种自主扰动触发湍流转捩的扰流装置及扰流片 - Google Patents

一种自主扰动触发湍流转捩的扰流装置及扰流片 Download PDF

Info

Publication number
WO2020042351A1
WO2020042351A1 PCT/CN2018/113737 CN2018113737W WO2020042351A1 WO 2020042351 A1 WO2020042351 A1 WO 2020042351A1 CN 2018113737 W CN2018113737 W CN 2018113737W WO 2020042351 A1 WO2020042351 A1 WO 2020042351A1
Authority
WO
WIPO (PCT)
Prior art keywords
spoiler
curve
flow
center
groove
Prior art date
Application number
PCT/CN2018/113737
Other languages
English (en)
French (fr)
Inventor
陆宏志
赵静
刘丽丽
惠俊鹏
刘敏华
赵民
康磊晶
赵月
李一帆
Original Assignee
中国运载火箭技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国运载火箭技术研究院 filed Critical 中国运载火箭技术研究院
Priority to US17/261,535 priority Critical patent/US20210294285A1/en
Publication of WO2020042351A1 publication Critical patent/WO2020042351A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/322Other means for varying the inherent hydrodynamic characteristics of hulls using aerodynamic elements, e.g. aerofoils producing a lifting force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/36Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/10Influencing air flow over aircraft surfaces by affecting boundary layer flow using other surface properties, e.g. roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/10Stabilising surfaces adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/34Adjustable control surfaces or members, e.g. rudders collapsing or retracting against or within other surfaces or other members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/08Boundary layer controls by influencing fluid flow by means of surface cavities, i.e. net fluid flow is null
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the invention relates to a spoiler and spoiler which triggers turbulent transition by autonomous disturbance, and belongs to the technical field of resistance control of a navigation body.
  • the navigating body must overcome resistance when navigating in the air and underwater.
  • the resistance of the navigating body is mainly composed of the friction resistance and pressure difference resistance on the surface of the object.
  • the pressure differential resistance occupies the main part, and the main part of the pressure differential resistance is generated by the shedding vortex flow at the bottom of the voyage body.
  • the shedding vortex not only causes the bottom pressure to fail to rise to the ambient pressure, which results in a large pressure difference resistance, but also due to the periodic large fluctuations in the bottom pressure, which bring unnecessary vibration to the voyage.
  • the way to eliminate the falling vortex at the bottom to reduce the differential pressure resistance is to improve the flow of the surface layer on the surface of the object upstream of the bottom, and stimulate the flow state to change from laminar to turbulent. Thereby, the energy of flow of the surface layer is enhanced, and the shedding vortex at the bottom is avoided.
  • the purpose of the present invention is to reduce the resistance of the navigation body and improve the overall performance, and to provide a spoiler and spoiler for autonomously triggering the turbulent transition, which can generate large circumferential disturbances with small structural changes and effectively trigger the turbulent transition. Alas.
  • a spoiling device that triggers turbulent transition by autonomous disturbance, including a groove, a spoiler, and an elastic member;
  • a groove is provided upstream of the bottom surface of the navigation body, and the spoiler is disposed in the groove, one end of which is fixed in the groove by a swing shaft, and the other end is connected to the bottom of the groove by an elastic member and can rotate around the swing axis;
  • the spoiler is a guide plane structure with continuously increasing curvature, and the upstream direction is parallel to the incoming flow direction, and the downstream direction is parallel to the circumferential direction.
  • the inner side curve, outer side curve or center curve of the spoiler is determined as follows:
  • a limiting structure is provided at one end of the spoiler, and the maximum opening angle and the minimum compression height of the spoiler are limited.
  • a plurality of dovetail grooves are arranged on the surface of the spoiler in parallel.
  • the centerline of the dovetail groove is determined as follows:
  • the opening width of the dovetail groove is not less than 2 mm, the opening angle is in the range of 60 to 90 degrees, and the opening depth is 0.5 to 1.0 times the opening width.
  • the surface of the spoiler is provided with a plurality of protrusions at equal intervals in the direction of the incoming flow.
  • the two ends of the protrusion are large and small at the middle, the width of the two ends is 0.1 to 0.2 times the protrusion pitch, and the two sides are arcs.
  • the center angle of the arc is 30 ° ⁇ 60 °, and the distance between the protrusions is 0.5 ⁇ 2.0 times the width of the spoiler.
  • the outer surface of the protrusion is arc-shaped, and the center angle of the arc is 60 ° -90 °.
  • the side surface of the spoiler is processed with a plurality of side edge serrations with randomly distributed sizes.
  • 5 to 50 grooves are uniformly distributed along the circumferential direction of the navigation body.
  • the circumferential length of the navigation body covered by the spoiler does not exceed half of the circumferential length of the navigation body.
  • the spoiler is a diversion plane structure with continuously increasing curvature.
  • the upstream direction is parallel to the incoming flow direction, and the downstream direction is parallel to the circumferential direction.
  • the inner side curve, outer side curve or center curve of the spoiler is determined as follows:
  • a limiting structure is provided at one end of the spoiler, and the maximum opening angle and the minimum compression height of the spoiler are limited.
  • a plurality of dovetail grooves are arranged on the surface of the spoiler in parallel.
  • the dovetail groove profile curve is determined as follows:
  • the opening width of the dovetail groove is not less than 2 mm, the opening angle is in the range of 60 to 90 degrees, and the opening depth is 0.5 to 1.0 times the opening width.
  • the surface of the spoiler is provided with a plurality of protrusions at equal intervals in the direction of the incoming flow.
  • the two ends of the protrusion are large and small at the middle, the width of the two ends is 0.1 to 0.2 times the protrusion pitch, and the two sides are arcs.
  • the center angle of the arc is 30 ° ⁇ 60 °, and the distance between the protrusions is 0.5 ⁇ 2.0 times the width of the spoiler.
  • the outer surface of the protrusion is arc-shaped, and the center angle of the arc is 60 ° -90 °.
  • the side surface of the spoiler is processed with a plurality of side edge serrations with randomly distributed sizes.
  • the present invention has the following advantages:
  • the device for triggering turbulent transition in the present invention adopts the method of installing spoilers in a plurality of grooves in the circumferential direction of the navigation body.
  • the invention sets the rated critical Reynolds number.
  • the flow speed is reduced and the density is low, the flow is laminar.
  • the pressure of the flow on the spoiler is reduced, and the force of the compression spring can eject the spoiler. .
  • the invention can automatically turn on the disturbance device when the disturbance is required to trigger the turbulent transition, and automatically close it when it is not needed, thereby realizing the autonomous control of the turbulent transition.
  • the present invention has two limiting surfaces at the end of the spoiler.
  • the opening angle does not exceed the maximum opening angle.
  • the limiting side keeps the spoiler from pressing down.
  • the limiting surfaces are two planes provided at one end of the spoiler, and the structure is simple and easy to implement.
  • the present invention can change the critical Reynolds number that can eject the spoiler by adjusting the force of the compression spring, so that the spoiler can be widely used in different navigation states and widely used in air and underwater scenarios.
  • the shape of the spoiler of the present invention is sickle-shaped, which guides the flow from the flow guide to the circumferential direction.
  • the circumferential flow is more conducive to disturbing the flow at the bottom of the voyage body and converts the flow from laminar to turbulent flow, thereby reducing the bottom. resistance.
  • the shape curve of the spoiler of the present invention uses a high-order continuous curve, which has a continuity of more than second order.
  • the continuous curve can effectively reduce the flow separation generated by the spoiler and thus reduce the frictional resistance caused by the spoiler itself. .
  • the present invention provides a high-order continuous curve equation, and only needs to determine the horizontal length and vertical height of the curve to obtain the curve coordinates.
  • index n By taking different values of the index n in the equation, relatively smooth or steep curve changes can be obtained. Therefore, to optimize this curve according to different design requirements, only one parameter n needs to be optimized, making the optimized design more concise.
  • the surface of the spoiler of the present invention has a dovetail groove in the flow direction.
  • the dovetail groove uses the same high-order continuous curve as the spoiler to play a role in guiding the flow from the axial flow to the circumferential flow.
  • the dovetail groove on the surface of the spoiler has a certain depth and angle, which can introduce the low-speed flow of the surface layer flow on the surface of the voyage body into the dovetail groove, reducing the flow mixing and generating additional frictional resistance.
  • the side edge of the spoiler of the present invention can be optionally installed with side edge serrations, which can be used in combination with a waist-shaped protrusion on the upper surface or with a dovetail groove on the top surface of the spoiler.
  • the random distribution of the side edge serrations can generate multi-scale spoilers Inducing eddies of different sizes can effectively trigger turbulent transitions.
  • the upper surface of the spoiler can be installed with a drum-shaped protrusion.
  • the protrusions at both ends can generate a normal vortex while guiding the flow from both ends to the center, and blend with the normal vortex to generate a three-dimensional vortex.
  • the structure is more conducive to the rapid development of flow into turbulence.
  • FIG. 1 is a schematic structural view of a groove of the present invention
  • FIG. 2 is a schematic diagram of the spoiler closed in the groove according to the present invention.
  • FIG. 3 is a schematic view of a spoiler of the present invention after being ejected by a compression spring
  • FIG. 4 is a top view of a spoiler and a dovetail groove on the upper surface of the present invention
  • FIG. 5 is a schematic diagram illustrating the definition of the shape curve of a spoiler and a dovetail groove
  • Figure 6 is a side view of the dovetail groove on the spoiler
  • FIG. 7 is a top view of the spoiler and the side edge sawtooth
  • Fig. 8 (a) is a partial plan view of a waist-shaped protrusion on the spoiler;
  • Fig. 8 (b) is a cross-sectional view taken along the line A-A of Fig. 8 (a);
  • Fig. 8 (c) is a cross-sectional view taken along the line B-B of Fig. 8 (a).
  • the spoiler can be automatically ejected from the groove when the flow speed is low.
  • the spoiler disturbs the flow, which triggers the change of the flow and changes from laminar flow to turbulent flow.
  • the spoiler is designed as a high-order smooth curve, which directs the flow from the axial flow to the circumferential flow, resulting in circumferential disturbance, which triggers the transition more effectively.
  • the surface of the spoiler has a dovetail groove to reduce the flow resistance of the spoiler. Or choose to install randomly distributed serrations on the side edges of the spoiler, or install waist drum-shaped protrusions on the surface of the spoiler, so as to realize the disturbance of the flow with little additional resistance.
  • a spoiler that autonomously disturbs a bottom flow to trigger a turbulent transition includes a groove 2, a spoiler 3, and a compression spring.
  • a groove is provided upstream 1-1 of the bottom surface of the navigation body 1, and the spoiler 3 is provided in the groove.
  • One end is fixed in the groove by a swing shaft, and the other end is connected to the bottom of the groove by a compression spring.
  • the other end of the spoiler can be rotated around a swing axis, and the rotation angle of one end of the spoiler is provided with a limiting device, so that the maximum opening angle of the spoiler is 10 °. 5 to 50 grooves are evenly distributed along the circumferential direction of the navigation body.
  • the size of the groove is slightly larger than the size of the spoiler.
  • the spoiler 3 is a sheet-like structure with constant width and continuously increasing curvature, and has a sickle shape.
  • the head is parallel to the direction of the incoming flow, and the tail is parallel to the circumferential direction. It is used to guide the circumferential flow in the future.
  • the width of the spoiler is 1% to 10% of the circumference of the navigation body, and the circumferential length covered by the spoiler does not exceed half of the circumference of the navigation body.
  • a high-order continuous curve needs to be used as the profile of the spoiler.
  • the shape curve (inner side curve, outer side curve, or center curve) of the spoiler uses a high-order continuous curve, and the dimensionless equation of the high-order continuous curve is:
  • n in equation (1) is 0.5, and the recommended value range is 0.3 to 0.7.
  • the value of x ranges from 0 to 1.
  • the spoiler surface has a spoiler structure.
  • a plurality of dovetail grooves 3-3 may be formed in parallel on the surface of the spoiler to form a spoiler structure.
  • the surface of the spoiler is processed with more than three parallel dovetail grooves of the same width.
  • the opening width h1 of the dovetail groove is usually not less than 2 mm, the opening angle ⁇ is in the range of 60 to 90 degrees, and the opening depth d1 is 0.5 to 1.0 times the opening width.
  • FIG. 2 shows a state where the spoiler is closed inside the groove.
  • One end of the spoiler is connected to the groove of the navigation body through the spoiler swing shaft 5, and the other end of the spoiler is positioned inside the groove by a compression spring 4.
  • FIG. 3 shows a state where the spoiler 3 is opened from the groove 2.
  • One end of the spoiler 3 is connected to the groove 2 of the navigation body 1 through the spoiler swing shaft 5, and the other end of the spoiler 3 is compressed by a compression spring 4.
  • the spoiler 3 pops up.
  • the compression spring 4 ejects the spoiler 3 from the groove.
  • the upper side 3-1 of the spoiler 3 will prevent the spoiler from being popped up too much, and ensure that the opening angle is not larger than the maximum opening angle ⁇ .
  • the upper limit side 3-1 has a raised limit portion, so that the spoiler can only be rotated to a set angle.
  • the critical state of flow When the Reynolds number is 1E5 (sailing body is navigating in water) or 1E6 (sailing body is navigating in the air), it is a critical state in which turbulent flow occurs in the flow. When the Reynolds number is greater than the critical state, the flow will occur autonomously Turbulent transition. When the Reynolds number is less than the critical state, the flow will not occur if there is no external disturbance. When the Reynolds number is less than the critical state, the compressive force of the flow is less than the elastic force of the compression spring. The compression spring ejects the spoiler, which disturbs the flow and forces the flow to turbulently. When the Reynolds number is greater than the critical state, the compressive force of the flow is greater than the elastic force of the compression spring, the spoiler is kept in the groove, and the flow turbulently occurs.
  • the spoiler After the spoiler pops up, it protrudes on the flowing surface layer.
  • the turbulent flow Through the sickle-shaped shape of the spoiler and the multiple dovetail grooves parallel to the surface of the spoiler, the turbulent flow generates small vortex flows, and the Part of the axial flow is guided to the circumferential flow, which disturbs the flow more effectively, triggers turbulence at the bottom of the voyage body, reduces the shedding vortex of the voyage body map, and reduces the bottom resistance.
  • the inside edge of the spoiler is processed with side edge serrations, and a plurality of side edges with random size serrations 3-4 along the inside of the sickle-shaped spoiler can generate multi-scale disturbances, causing Multi-scale vortices effectively trigger turbulence.
  • the angle ⁇ of the side edge sawtooth is 60 ° to 90 °.
  • the width d2 of the side edge sawtooth is related to the thickness of the local surface layer, and the value ranges from 3 to 20mm. Within this value range, the size of the side edge sawtooth is determined according to the discrete probability random distribution.
  • the upper surface may adopt a dovetail groove structure as shown in FIG. 4, or a protrusion 6 as shown in FIG. 8.
  • the upper surface of the spoiler can be processed with a drum-shaped protrusion 6, and the protrusions at both ends of the waist-shaped drum are large, so that the flow can be pushed from both ends to the center. Blending of normal flow and normal vortex is conducive to the generation of three-dimensional vortex structure, and it is more conducive to the rapid development of flow into turbulence.
  • the protrusions are evenly distributed on the surface of the spoiler.
  • the waist-shaped bulge is used to disturb the flow of the bottom layer.
  • the protrusions at both ends push the flow from both ends to the centerline of the spoiler, and blend with the normal vortex generated by the waist-shaped bulge as a whole to generate a three-dimensional vortex structure.
  • the distance d3 between the waist-drum-shaped protrusions 6 (the distance between the centerlines of the two protrusions) is 0.5 to 2.0 times the width of the spoiler.
  • the two ends of the waist-drum-shaped protrusion 6 are large and small at the middle, the waist-drum-shaped outline is an arc, the width d4 is the same as the width of the spoiler, and the center angle ⁇ of the arc is 30 ° to 60 °.
  • the size of the waisted bulge is determined by the width of the tip and the center angle.
  • the width d5 of the tip is 0.1 to 0.2 times the pitch d3 of the protrusion, and the value of the arc center angle ⁇ is 60 ° to 90. °, the surface of the waist-shaped bulge is arc-shaped.
  • the side edge serrations of the spoiler can be used in combination with the bulge on the upper surface or with the dovetail groove on the upper surface of the spoiler.
  • Side edges of the spoiler are provided with serrations, and waist-shaped protrusions are installed on the upper surface. Or install side edge serrations on the side and dovetail grooves on the upper surface.
  • the device is applied to the voyage body to automatically trigger the turbulent transition, thereby reducing the bottom resistance, and providing a basis for the voyage body to autonomously reduce drag.

Abstract

一种自主扰动触发湍流转捩的扰流装置及扰流片(3),在航行体周向多个凹槽(2)内安装扰流片(3),当流动会自主发生湍流转捩时,扰流片(3)在凹槽(2)内,航行体表面没有凸起,不会引起额外的流动阻力;设定额定的临界雷诺数,当流动速度降低、密度较低的状态下,流动为层流,这时候流动对扰流片(3)的压力降低,压缩弹簧(4)的作用力将扰流片(3)弹出。扰流片(3)弹出后会扰动流动底层的流动,将层流触发为湍流。通过设定压缩弹簧(4)的弹力,自动在需要扰动触发湍流转捩的时候,自动开启扰动装置,不需要的情况下,自动关闭,实现湍流转捩的自主控制。

Description

一种自主扰动触发湍流转捩的扰流装置及扰流片
本申请要求于2018年8月31日提交中国专利局的申请号为201811007947.X、发明名称为“一种自主扰动触发湍流转捩的扰流装置及扰流片”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种自主扰动触发湍流转捩的扰流装置及扰流片,属于航行体阻力控制技术领域。
背景技术
航行体在空中和水下航行时,要克服阻力。航行体的阻力主要由物体表面的摩擦阻力和压差阻力所组成。对于低速航行的航行体,压差阻力占据了主要部分,压差阻力的主要部分由航行体底部的脱落涡流动产生。脱落涡不仅仅造成底部压强无法回升到环境压强,带来较大的压差阻力,而且由于底部压强周期性大幅波动,给航行体带来不必要的振动作用力。
要降低压差阻力,需要有效消除底部的脱落涡。底部产生脱落涡的主要原因是流动的附面层能量很低,难以抵御底部流动偏转带来的强逆压梯度,因此带来局部流动分离,从而产生漩涡流动。所以消除底部脱落涡降低压差阻力的出路是在底部的上游改善物体表面附面层流动,激发流动状态从层流转捩为湍流状态。从而增强附面层流动的能量,避免底部产生脱落涡。
但是激发流动从层流转捩为湍流,往往会产生额外的阻力。因此需要发明一种方法不产生额外的阻力,能以较为有效的方法触发层流转捩为湍流,有效提高附面层能量,消除底部脱落涡,从而降低航行体的阻力,是工程设计中需要解决的问题。
发明内容
本发明的目的在降低航行体阻力,改善整体性能,提供一种自主扰动触 发湍流转捩的扰流装置及扰流片,以较小的结构变化产生较大的周向扰动,有效触发湍流转捩。
本发明目的通过如下技术方案予以实现:
提供一种自主扰动触发湍流转捩的扰流装置,包括凹槽、扰流片及弹性部件;
在航行体的底面的上游设置凹槽,所述扰流片设置凹槽内,一端通过摆动轴固定在凹槽内,另一端通过弹性部件连接到凹槽底部并能够绕摆动轴转动;
弹性部件在最大压缩状态时产生的对所述扰流片向外的推力与流动临界状态下的压迫力平衡。
优选的,所述扰流片为曲率连续增大的导流平面结构,上游与来流方向平行,下游与周向平行。
优选的,所述扰流片的内侧面曲线、外侧面曲线或中心曲线确定方式如下:
(1)建立无量纲方程为:
y=x n(1-x)(1+n-nx)+x
(2)选取n的值,范围为0.3~0.7;
(3)获取扰流片内侧面曲线、外侧面曲线或中心曲线的水平长度X0和垂直高度Y0;
(4)计算内侧面曲线、外侧面曲线或中心曲线坐标为(X,Y):
X=x·X0
Y=y·Y0。
优选的,扰流片一端设置限位结构,限位扰流片的最大打开角度以及最低压缩高度。
优选的,扰流片的表面平行设置多个燕尾槽。
优选的,所述燕尾槽中心线确定方式如下:
(1)建立无量纲方程为:
y=x n(1-x)(1+n-nx)+x
(2)选取n的值,范围为0.3~0.7;
(3)获取燕尾槽外形曲线的水平长度X1和垂直高度Y1;
(4)计算内侧面曲线、外侧面曲线或中心曲线坐标为(X,Y):
X=x·X1
Y=y·Y1。
优选的,所述燕尾槽的开口宽度不小于2mm,开口角度在60~90度范围,开口深度为0.5~1.0倍的开口宽度。
优选的,扰流片表面沿来流方向等间距设置多个凸起,凸起的两端大中间小,两个端部宽度为0.1~0.2倍的凸起间距,两个侧面为圆弧,圆弧的圆心角为30°~60°,凸起间距为扰流片宽度的0.5~2.0倍。
优选的,所述凸起的外表面为圆弧形,圆弧形的圆心角为60°~90°。
优选的,扰流片内侧面加工多个大小随机分布的侧缘锯齿。
优选的,航行体沿周向均匀分布5~50个凹槽。
优选的,扰流片覆盖的航行体周向长度不超过航行体的周向长度的一半。
同时提供一种扰流片,扰流片为曲率连续增大的导流平面结构,上游与来流方向平行,下游与周向平行。
优选的,所述扰流片的内侧面曲线、外侧面曲线或中心曲线确定方式如下:
(1)建立无量纲方程为:
y=x n(1-x)(1+n-nx)+x
(2)选取n的值,范围为0.3~0.7;
(3)获取扰流片内侧面曲线、外侧面曲线或中心曲线的水平长度X0和垂直高度Y0;
(4)计算内侧面曲线、外侧面曲线或中心曲线坐标为(X,Y):
X=x·X0
Y=y·Y0。
优选的,扰流片一端设置限位结构,限位扰流片的最大打开角度以及最低压缩高度。
优选的,扰流片的表面平行设置多个燕尾槽。
优选的,所述燕尾槽外形曲线确定方式如下:
(1)建立无量纲方程为:
y=x n(1-x)(1+n-nx)+x
(2)选取n的值,范围为0.3~0.7;
(3)获取燕尾槽外形曲线的水平长度X1和垂直高度Y1;
(4)计算内侧面曲线、外侧面曲线或中心曲线坐标为(X,Y):
X=x·X1
Y=y·Y1。
优选的,所述燕尾槽的开口宽度不小于2mm,开口角度在60~90度范围,开口深度为0.5~1.0倍的开口宽度。
优选的,扰流片表面沿来流方向等间距设置多个凸起,凸起的两端大中间小,两个端部宽度为0.1~0.2倍的凸起间距,两个侧面为圆弧,圆弧的圆心角为30°~60°,凸起间距为扰流片宽度的0.5~2.0倍。
优选的,所述凸起的外表面为圆弧形,圆弧形的圆心角为60°~90°。
优选的,扰流片内侧面加工多个大小随机分布的侧缘锯齿。
本发明与现有技术相比具有如下优点:
(1)本发明的触发湍流转捩的装置,采用在航行体周向多个凹槽内安装扰流片的方式,当流动会自主发生湍流转捩时,扰流片在凹槽内,航行体表面没有凸起,因此不会引起额外的流动阻力。本发明设定了额定的临界雷诺数,当流动速度降低、密度较低的状态下,流动为层流,这时候流动对扰流片的压力降低,压缩弹簧的作用力可以将扰流片弹出。扰流片弹出后会扰动流动底层的流动,将层流触发为湍流。本发明通过设定弹簧的弹力,可以自动在需要扰动触发湍流转捩的时候,自动开启扰动装置,不需要的情况下,自动关闭,实现湍流转捩的自主控制。
(2)本发明在扰流片的端部有两个限置面,当扰流片被压缩弹簧弹出,打开的角度不会超过最大打开角度。扰流片闭合在凹槽内部的时候限位侧面保持扰流片不会下压。限置面为设置在扰流片一端的两个平面,结构简单,易于实现。
(3)本发明可以通过调整压缩弹簧的作用力,改变可以将扰流片弹出的临界雷诺数,使得扰流装置能够广泛适用于不同的航行状态,广泛应用于空中及水下多种场景。
(4)本发明扰流片的外形为镰刀形,将流动从流向导向周向流动,周向流动更有利于扰动航行体底部的流动,将流动从层流转捩为湍流,从而减小底部的阻力。
(5)本发明扰流片的外形曲线使用高阶连续曲线,具有二阶以上的连续性,连续曲线可以有效减小扰流片产生的流动分离从而减小扰流片自身带来的摩擦阻力。
(6)本发明提供高阶连续曲线方程,仅需要确定曲线的水平长度和垂直高度即可获得曲线坐标,通过对方程中的指数n取不同的值可以获得较为平缓或陡峭的曲线变化。因此根据不同的设计要求优化此曲线,只需优化n这一个参数,使得优化设计更为简洁。
(7)本发明的扰流片表面在流动方向开燕尾槽,燕尾槽使用与扰流片相同的高阶连续曲线,起到将流动从轴向流动导向周向流动的作用。扰流片表面的燕尾槽,有一定的深度和角度可以将航行体表面的附面层流动的低速流动引入燕尾槽内,减少流动的掺混产生额外的摩擦阻力。
(8)本发明的扰流片侧面可以选择安装侧缘锯齿,可以与上表面腰鼓形凸起或者与扰流片上表面的燕尾槽组合使用,侧缘锯齿大小随机分布可以产生多尺度的扰流,诱发不同大小的漩涡有效触发湍流转捩。
(9)扰流片的上表面可以选择安装腰鼓形凸起,两端的凸起在产生法向涡的同时还将流动从两端导引到中心,与法向涡发生掺混,产生三维漩涡 结构,更为有利于流动快速发展为湍流。
附图说明
图1为本发明凹槽的结构形态示意图;
图2为本发明扰流片闭合在凹槽内部的示意图;
图3为本发明扰流片被压缩弹簧弹出后的示意图;
图4为本发明扰流片与上表面燕尾槽的俯视图;
图5为扰流片与燕尾槽的外形曲线定义的示意图;
图6为扰流片上的燕尾槽的侧视图;
图7为扰流片与侧缘锯齿的俯视图;
图8(a)为扰流片上腰鼓形凸起的局部俯视图;图8(b)为图8(a)的A-A剖视图;图8(c)为图8(a)的B-B剖视图。
具体实施方式
为了降低航行体的阻力,在底部的上游激发湍流转捩,提高附面层流动能量,消除底部脱落涡,从而降低底部阻力。而且要在很小额外阻力的前提下,有效触发湍流转捩。
由此提出了在底部的上游安装自动弹出的扰流片。利用预先设置的弹簧压缩力,可以在流动速度较低的情况下自动将扰流片从凹槽中弹出,扰流片对流动产生扰动,从而触发流动发生变化,从层流转捩为湍流状态。为了以很小的额外阻力实现较大的扰动,扰流片设计为高阶光滑的曲线,将流动从轴向流动导向周向流动,产生周向扰动,更为有效触发转捩。同时扰流片表面开燕尾槽,减小扰流片的流动阻力。或者选择在扰流片侧缘安装随机分布的锯齿,或者在扰流片表面安装腰鼓形凸起,从而以很小的额外阻力实现对流动的扰动。
参见图1自主扰动底层流动触发湍流转捩的扰流装置包括凹槽2、扰流片3、压缩弹簧。在航行体1的底面的上游1-1设置凹槽,所述扰流片3设置凹槽内,一端通过摆动轴固定在凹槽内,另一端通过压缩弹簧连接到凹槽 底部。扰流片的另一端可以绕摆动轴旋转,所述扰流片一端旋转的角度设置限位装置,使得扰流片的的最大打开角度为10°。航行体沿周向均匀分布5~50个凹槽。凹槽的尺寸略大于扰流片的尺寸。
所述扰流片3为等宽且曲率连续增大的片状结构,呈现镰刀形,头部与来流方向平行,尾部与周向平行,用于将来流导向周向流动。所述扰流片的宽度为1%~10%的航行体的周长,扰流片覆盖的周向长度不超过航行体的周长的一半。
为了减小流动从流向导向周向流动的阻力,需要采用高阶连续曲线作为扰流片的型面。在一个实施例中所述扰流片的外形曲线(内侧面曲线、外侧面曲线或中心曲线)使用高阶连续曲线,高阶连续曲线的无量纲方程为:
y=x n(1-x)(1+n-nx)+x        (1)
方程(1)中n的常规取值为0.5,推荐取值范围为0.3~0.7。x取值为0~1,求得y值后,按照设计要求的各条曲线的水平长度X0和垂直高度Y0,参见图5,使用公式(2)和(3)求得实际的曲线坐标X、Y,使用坐标数据加工扰流片外形。
X=x·X0        (2)
Y=y·Y0       (3)
扰流片表面具有扰流结构,在一个实施例中,参见图4,可以采用在扰流片的表面平行设置多个燕尾槽3-3的方式形成扰流结构。所述扰流片的表面加工3条以上的平行的相同宽度的燕尾槽。
扰流片外形曲线使用的高阶连续曲线。所述燕尾槽的外形曲线与扰流片使用相同的曲线公式(1)、(2)、(3)和相同的计算方法。
所述燕尾槽的开口宽度h1通常不小于2mm,开口角度β在60~90度范围,开口深度d1为0.5~1.0倍的开口宽度。
图2为扰流片闭合在凹槽内部的状态,扰流片的一端通过扰流片摆动轴5与航行体的凹槽连接,扰流片的另一端通过压缩弹簧4定位在凹槽内部。
当流体的流动速度较高、密度较高的状态下,流体的作用力大于压缩弹簧4的恢复力,将扰流片3压迫在凹槽2内部。这时候扰流片3闭合在凹槽2内部。此时的流动为湍流状态,不需要扰流片3弹起。扰流片的下限位侧面3-2限制扰流片被流动压得过低。
图3为扰流片3从凹槽2内打开状态,扰流片3的一端通过扰流片摆动轴5与航行体1的凹槽2连接,扰流片3的另一端通过压缩弹簧4将扰流片3弹出。
当流体的流动速度较低、密度较低的状态下,流体对扰流片3的压迫力降低,当流体作用力小于压缩弹簧4的弹力,压缩弹簧4将扰流片3弹出凹槽。扰流片3的上限位侧面3-1将防止扰流片被弹起过多,保证打开的角度不会大于最大打开角度α。上限位侧面3-1具有凸起限位部,使得扰流片只能旋转到设定角度。
压缩弹簧4的弹力,在压缩到最底端时刻,所产生的弹力与流动临界状态下的压迫力平衡。
流动临界状态的定义:当雷诺数为1E5(航行体在水中航行)或者1E6(航行体在空中航行),是流动发生湍流转捩的临界状态,当雷诺数大于临界状态,流动会自主地发生湍流转捩,当雷诺数小于临界状态,流动如果没有受到外界扰动,将不发生湍流转捩。当雷诺数小于临界状态,流动的压迫力小于压缩弹簧的弹力,压缩弹簧将扰流片弹出,对流动产生扰动,迫使流动发生湍流转捩。当雷诺数大于临界状态,流动的压迫力大于压缩弹簧的弹力,扰流片保持在凹槽内,流动自主发生湍流转捩。
扰流片弹出后凸起于流动的附面层,通过扰流片的镰刀形外形与扰流片表面的平行的多条燕尾槽,扰动流动产生小的漩涡流动,并且将附面层内的部分轴向流动导引到周向流动,更为有效扰动流动,在航行体底部触发湍流,消减航行体地图的脱落涡,从而减小底部阻力。
在一个实施例中,结合图7,扰流片内侧面加工侧缘锯齿,沿着镰刀形 扰流片的内侧多个大小随机分布的侧缘锯齿3-4,可以产生多尺度的扰动,引发多尺度的漩涡,有效触发湍流。侧缘锯齿的角度σ为60°~90°。侧缘锯齿的宽度d2与当地附面层厚度相关,取值在3~20mm,在此取值范围内根据离散型概率随机分布确定侧缘锯齿的大小。上表面可以采用如图4所示的燕尾槽结构,也可以采用如图8所示的凸起6。
在又一实施例中,如图8所示,扰流片的上表面可以加工腰鼓形凸起6,腰鼓形两端凸起较大,从而可以将流动从两端向中心推动,这种法向流动与法向涡发生掺混,有利于产生三维漩涡结构,更有利于流动快速发展为湍流。凸起均匀分布在扰流片表面。腰鼓形凸起用于扰动底层流动,两端的凸起将流动从两端向扰流片的中心线推动,与腰鼓形凸起整体产生的法向涡发生掺混,产生三维的漩涡结构。
腰鼓形凸起6之间的凸起间距d3(两个凸起的中心线之间的间距)为扰流片宽度的0.5~2.0倍。腰鼓形凸起6的两端大中间小,腰鼓形的外廓曲线为圆弧,宽度d4同扰流片的宽度,圆弧的圆心角θ为30°~60°。
参见图8(b)腰鼓形凸起的大小由端头宽度与圆心角决定,端头宽度d5取值为0.1~0.2倍的凸起间距d3,圆弧圆心角ω取值为60°~90°,腰鼓形凸起的表面为圆弧形。
扰流片的侧缘锯齿可以与上表面腰鼓形凸起或者与扰流片上表面的燕尾槽组合使用。扰流片侧面安装侧缘锯齿,上表面安装腰鼓形凸起。或者侧面安装侧缘锯齿,上表面安装燕尾槽。
该装置应用于航行体自主触发湍流转捩,从而减小底部阻力,为航行体的自主减阻提供了基础。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (21)

  1. 一种自主扰动触发湍流转捩的扰流装置,其特征在于,包括凹槽、扰流片及弹性部件;
    在航行体的底面的上游设置凹槽,所述扰流片设置凹槽内,一端通过摆动轴固定在凹槽内,另一端通过弹性部件连接到凹槽底部并能够绕摆动轴转动;
    弹性部件在最大压缩状态时产生的对所述扰流片向外的推力与流动临界状态下的压迫力平衡。
  2. 如权利要求1所述的自主扰动触发湍流转捩的扰流装置,其特征在于,所述扰流片为曲率连续增大的导流平面结构,上游与来流方向平行,下游与周向平行。
  3. 如权利要求1或2所述的自主扰动触发湍流转捩的扰流装置,其特征在于,所述扰流片的内侧面曲线、外侧面曲线或中心曲线确定方式如下:
    (1)建立无量纲方程为:
    y=x n(1-x)(1+n-nx)+x
    (2)选取n的值,范围为0.3~0.7;
    (3)获取扰流片内侧面曲线、外侧面曲线或中心曲线的水平长度X0和垂直高度Y0;
    (4)计算内侧面曲线、外侧面曲线或中心曲线坐标为(X,Y):
    X=x·X0
    Y=y·Y0。
  4. 如权利要求2所述的自主扰动触发湍流转捩的扰流装置,其特征在于,扰流片一端设置限位结构,限位扰流片的最大打开角度以及最低压缩高度。
  5. 如权利要求2所述的自主扰动触发湍流转捩的扰流装置,其特征在于,扰流片的表面平行设置多个燕尾槽。
  6. 如权利要求5所述的自主扰动触发湍流转捩的扰流装置,其特征在于,所述燕尾槽中心线确定方式如下:
    (1)建立无量纲方程为:
    y=x n(1-x)(1+n-nx)+x
    (2)选取n的值,范围为0.3~0.7;
    (3)获取燕尾槽外形曲线的水平长度X1和垂直高度Y1;
    (4)计算内侧面曲线、外侧面曲线或中心曲线坐标为(X,Y):
    X=x·X1
    Y=y·Y1。
  7. 如权利要求6所述的自主扰动触发湍流转捩的扰流装置,其特征在于,所述燕尾槽的开口宽度不小于2mm,开口角度在60~90度范围,开口深度为0.5~1.0倍的开口宽度。
  8. 如权利要求2所述的自主扰动触发湍流转捩的扰流装置,其特征在于,扰流片表面沿来流方向等间距设置多个凸起,凸起的两端大中间小,两个端部宽度为0.1~0.2倍的凸起间距,两个侧面为圆弧,圆弧的圆心角为30°~60°,凸起间距为扰流片宽度的0.5~2.0倍。
  9. 如权利要求8所述的自主扰动触发湍流转捩的扰流装置,其特征在于,所述凸起的外表面为圆弧形,圆弧形的圆心角为60°~90°。
  10. 如权利要求4-9之一所述的自主扰动触发湍流转捩的扰流装置,其特征在于,扰流片内侧面加工多个大小随机分布的侧缘锯齿。
  11. 如权利要求4-9之一所述的自主扰动触发湍流转捩的扰流装置,其特征在于,航行体沿周向均匀分布5~50个凹槽。
  12. 如权利要求11所述的自主扰动触发湍流转捩的扰流装置,其特征在于,扰流片覆盖的航行体周向长度不超过航行体的周向长度的一半。
  13. 一种扰流片,其特征在于,扰流片为曲率连续增大的导流平面结构,上游与来流方向平行,下游与周向平行。
  14. 如权利要求13所述的扰流片,其特征在于,所述扰流片的内侧面曲 线、外侧面曲线或中心曲线确定方式如下:
    (1)建立无量纲方程为:
    y=x n(1-x)(1+n-nx)+x
    (2)选取n的值,范围为0.3~0.7;
    (3)获取扰流片内侧面曲线、外侧面曲线或中心曲线的水平长度X0和垂直高度Y0;
    (4)计算内侧面曲线、外侧面曲线或中心曲线坐标为(X,Y):
    X=x·X0
    Y=y·Y0。
  15. 如权利要求14所述的扰流片,其特征在于,扰流片一端设置限位结构,限位扰流片的最大打开角度以及最低压缩高度。
  16. 如权利要求14所述的扰流片,其特征在于,扰流片的表面平行设置多个燕尾槽。
  17. 如权利要求16所述的扰流片,其特征在于,所述燕尾槽外形曲线确定方式如下:
    (1)建立无量纲方程为:
    y=x n(1-x)(1+n-nx)+x
    (2)选取n的值,范围为0.3~0.7;
    (3)获取燕尾槽外形曲线的水平长度X1和垂直高度Y1;
    (4)计算内侧面曲线、外侧面曲线或中心曲线坐标为(X,Y):
    X=x·X1
    Y=y·Y1。
  18. 如权利要求17所述的扰流片,其特征在于,所述燕尾槽的开口宽度不小于2mm,开口角度在60~90度范围,开口深度为0.5~1.0倍的开口宽度。
  19. 如权利要求14所述的扰流片,其特征在于,扰流片表面沿来流方向等间距设置多个凸起,凸起的两端大中间小,两个端部宽度为0.1~0.2倍 的凸起间距,两个侧面为圆弧,圆弧的圆心角为30°~60°,凸起间距为扰流片宽度的0.5~2.0倍。
  20. 如权利要求19所述的扰流片,其特征在于,所述凸起的外表面为圆弧形,圆弧形的圆心角为60°~90°。
  21. 如权利要求13-20之一所述的扰流片,其特征在于,扰流片内侧面加工多个大小随机分布的侧缘锯齿。
PCT/CN2018/113737 2018-08-31 2018-11-02 一种自主扰动触发湍流转捩的扰流装置及扰流片 WO2020042351A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/261,535 US20210294285A1 (en) 2018-08-31 2018-11-02 Spoiling apparatus for triggering turbulent transition by autonomous disturbance and spoilers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811007947.XA CN109050783B (zh) 2018-08-31 2018-08-31 一种自主扰动触发湍流转捩的扰流装置及扰流片
CN201811007947.X 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020042351A1 true WO2020042351A1 (zh) 2020-03-05

Family

ID=64758753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113737 WO2020042351A1 (zh) 2018-08-31 2018-11-02 一种自主扰动触发湍流转捩的扰流装置及扰流片

Country Status (3)

Country Link
US (1) US20210294285A1 (zh)
CN (1) CN109050783B (zh)
WO (1) WO2020042351A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111674503A (zh) * 2020-06-18 2020-09-18 合肥不止信息科技有限公司 基于行驶参数监测的逆风行船辅助调控装置及其控制系统
CN112815023B (zh) * 2021-02-07 2022-11-15 一汽解放汽车有限公司 液力缓速器及车辆
CN112986056A (zh) * 2021-02-09 2021-06-18 太原理工大学 一种降低圆管发展湍流段的减阻实验装置及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266382A1 (en) * 2007-10-22 2010-10-21 Actiflow B.V. Wind turbine with boundary layer control
CN102501942A (zh) * 2011-11-01 2012-06-20 大连理工大学 一种船舶扰流装置
CN102758728A (zh) * 2012-07-13 2012-10-31 华锐风电科技(集团)股份有限公司 控制绕流的叶片及方法和具有该叶片的风力机
CN103204186A (zh) * 2012-01-17 2013-07-17 朱晓义 运动装置
CN104260823A (zh) * 2014-10-08 2015-01-07 朱晓义 一种水中运动装置
CN106542046A (zh) * 2016-09-29 2017-03-29 中国运载火箭技术研究院 一种扰流式涡破碎尾部减阻装置
CN107600354A (zh) * 2017-10-06 2018-01-19 大连理工大学 一种减小船舶横摇运动的扰流系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174210B1 (en) * 1998-06-02 2001-01-16 Bombardier Inc. Watercraft control mechanism
DE10217111A1 (de) * 2002-04-17 2003-11-06 Roehm Gmbh Festkörper mit mikrostrukturierter Oberfläche
US6739554B1 (en) * 2003-06-02 2004-05-25 The United States Of America As Represented By The Secretary Of The Air Force Aircraft weapons bay acoustic resonance suppression system
US7607717B2 (en) * 2005-09-22 2009-10-27 Gm Global Technology Operations, Inc. Reversibly deployable spoiler
JP5669114B2 (ja) * 2013-06-28 2015-02-12 独立行政法人海上技術安全研究所 船舶の摩擦抵抗低減装置
CN105971769B (zh) * 2016-07-13 2017-07-04 西安航天动力测控技术研究所 小型固体火箭发动机正立式试车燃气导流器
CN206704327U (zh) * 2017-04-28 2017-12-05 林骋翔 一种控制气流的非光滑表面结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266382A1 (en) * 2007-10-22 2010-10-21 Actiflow B.V. Wind turbine with boundary layer control
CN102501942A (zh) * 2011-11-01 2012-06-20 大连理工大学 一种船舶扰流装置
CN103204186A (zh) * 2012-01-17 2013-07-17 朱晓义 运动装置
CN102758728A (zh) * 2012-07-13 2012-10-31 华锐风电科技(集团)股份有限公司 控制绕流的叶片及方法和具有该叶片的风力机
CN104260823A (zh) * 2014-10-08 2015-01-07 朱晓义 一种水中运动装置
CN106542046A (zh) * 2016-09-29 2017-03-29 中国运载火箭技术研究院 一种扰流式涡破碎尾部减阻装置
CN107600354A (zh) * 2017-10-06 2018-01-19 大连理工大学 一种减小船舶横摇运动的扰流系统

Also Published As

Publication number Publication date
CN109050783B (zh) 2020-02-14
US20210294285A1 (en) 2021-09-23
CN109050783A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020042351A1 (zh) 一种自主扰动触发湍流转捩的扰流装置及扰流片
US7832689B2 (en) Element for generating a fluid dynamic force
JP5676506B2 (ja) エネルギー効率を改善するためのウォータークラフトの駆動システム用プレノズル
KR20110007721A (ko) 선박용 방향타
CN106394874B (zh) 一种双后掠布局的乘波体
JP2020203677A (ja) 小型ダクト付き船舶
KR101066213B1 (ko) 정체류 감소 및 전진력 발생 기능을 가지는 날개형 유동개선 장치
KR101184077B1 (ko) 파형 벌브가 적용된 트위스트형 타
Damley-Strnad et al. Hydrodynamic performance and hysteresis response of hydrofoils in ventilated flows
KR101390309B1 (ko) 웨지 테일형 러더
JP2020006797A (ja) 舵システム
Maruyama Study on the physical mechanism of the Magnus effect
TWI722062B (zh) 減少船舶航行阻力的結構
Luo et al. The mechanism of jet vectoring using synthetic jet actuators
CN206171774U (zh) 一种适用于单尾船型的对转螺旋桨
Mehtar et al. Influence of spherical and pyramidical dimples and bumps on airfoil performance in subsonic flow
CN209852568U (zh) 一种导管式螺旋桨系统及飞行器
Lyubimov et al. A RANS/ILES study of the features of the flow in the spatial air intake of a supersonic business-class aircraft in throttle modes
Ericsson et al. Forebody flow control at conditions of naturally occurring separation asymmetry
Pradeep et al. Active flow control in circular and transitioning S-duct diffusers
KR102531811B1 (ko) 선미 덕트를 가진 선미 형상 및 선박
WO2019071446A1 (zh) 复合式复合涡流生成消波装置
Norris et al. Aerodynamic interference of yachts sailing upwind on opposite tacks
Modi et al. A Joukowski airfoil with momentum injection
WO2014109670A2 (en) Method and apparatus for achieving laminar flow of gas or liquid near cutting edges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931345

Country of ref document: EP

Kind code of ref document: A1