WO2020040217A1 - Modified polyolefin resin and method for producing same - Google Patents

Modified polyolefin resin and method for producing same Download PDF

Info

Publication number
WO2020040217A1
WO2020040217A1 PCT/JP2019/032692 JP2019032692W WO2020040217A1 WO 2020040217 A1 WO2020040217 A1 WO 2020040217A1 JP 2019032692 W JP2019032692 W JP 2019032692W WO 2020040217 A1 WO2020040217 A1 WO 2020040217A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin resin
modified polyolefin
amine compound
compound
hydrocarbon group
Prior art date
Application number
PCT/JP2019/032692
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 仁美
勝 神埜
咲 山本
実 矢田
高本 直輔
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2020538446A priority Critical patent/JP7377804B2/en
Publication of WO2020040217A1 publication Critical patent/WO2020040217A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • C09D123/36Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing nitrogen, e.g. by nitration
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/06Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment
    • C09J123/36Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing nitrogen, e.g. by nitration
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/06Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention relates to a modified polyolefin resin and a method for producing the same.
  • Patent Document 1 discloses that a polyolefin resin is modified by graft polymerization of the following (A-1) and / or chlorination with the following (A-2) and graft polymerization of (B).
  • Polyolefin resins are described.
  • A-1 One or more polarizers selected from unsaturated carboxylic acids, derivatives and anhydrides of unsaturated carboxylic acids, and (meth) acrylates represented by the general formula (I).
  • Patent Document 1 describes that the modified polyolefin resin is excellent in adhesion to a polyolefin substrate composed of a polyolefin such as polypropylene and polyethylene, that is, a nonpolar substrate.
  • a solution of the modified polyolefin resin may be prepared.
  • the modified polyolefin resin of Patent Literature 1 is poor in liquid state (for example, poor in solubility in a solvent, and the solution is cloudy).
  • an object of the present invention is to provide a modified polyolefin resin having excellent adhesion to a nonpolar substrate and excellent solubility in a solvent when preparing a solution.
  • H 2 NR 11 (1) HNR 21 R 22 (2)
  • R 11 represents a linear or branched saturated hydrocarbon group or a linear or branched unsaturated hydrocarbon group
  • R 21 and R 22 Each independently represents a linear or branched saturated hydrocarbon group, or a linear or branched unsaturated hydrocarbon group.
  • the amine compound (C) is an amine compound represented by the formula (1), and in the formula (1), R 11 is an alkyl group or an alkenyl group having 6 to 22 carbon atoms.
  • the modified polyolefin resin according to [4].
  • a method for producing a modified polyolefin resin comprising a compound (B) of the formula (I) and an amine compound (C) having a hydrocarbon group.
  • the polyolefin resin (A) is graft-modified with the compound (B) to obtain an acid-modified polyolefin resin, and then the acid-modified polyolefin resin and the amine compound (C) are combined.
  • amine compound (C) is an amine compound (C1) represented by the following formula (1) or an amine compound (C2) represented by the following formula (2).
  • H 2 NR 11 (1) HNR 21 R 22 (2)
  • R 11 represents a linear or branched saturated hydrocarbon group or a linear or branched unsaturated hydrocarbon group
  • R 21 and R 22 Each independently represents a linear or branched saturated hydrocarbon group, or a linear or branched unsaturated hydrocarbon group.
  • the amine compound (C) is an amine compound represented by the formula (1), and in the formula (1), R 11 is an alkyl group or an alkenyl group having 6 to 22 carbon atoms.
  • the method for producing a modified polyolefin resin according to [14].
  • the modified polyolefin resin of the present invention can exhibit excellent adhesion to a non-polar substrate, and exhibit excellent solubility in a solvent when preparing a solution.
  • the modified polyolefin resin of the present invention is a modified resin in which the polyolefin resin (A) has been modified with a modifying component.
  • the modifying component contains a specific compound (B) and a specific amine compound (C).
  • non-polar substrate for example, a substrate made of a polyolefin resin (polyolefin substrate) may be mentioned.
  • polyolefin substrates are generally known as hard-to-adhere substrates, and it is often difficult to bond substrates of the same type, to substrates of different types, or to paint.
  • polyethylene substrates have poor adhesion and adhesion.
  • the modified polyolefin resin of the present invention also has excellent adhesion to a polyethylene substrate.
  • a polymer containing a structural unit derived from ethylene is preferable from the viewpoint of further improving the adhesion to a polyethylene substrate.
  • the polymer containing a structural unit derived from ethylene include an ethylene homopolymer and a copolymer of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms.
  • Examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1- Pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 1-octene, 3-ethyl-1-hexene, 1-octene and 1-decene; , Propylene and 1-butene are preferred, and propylene is more preferred.
  • the ⁇ -olefin may be used alone or in combination of two or more.
  • the content of the structural unit derived from the ⁇ -olefin having 4 to 10 carbon atoms is preferably 20% by mass or less in the structural unit of the copolymer.
  • a copolymer of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms a copolymer of ethylene and propylene and a copolymer of ethylene, propylene and 1-butene are preferable.
  • the copolymer of ethylene and an ⁇ -olefin having 3 to 10 carbon atoms contains 2 to 2 structural units derived from ethylene in a total of 100% by weight of the structural units derived from ethylene and the structural units derived from the ⁇ -olefin.
  • the constituent unit derived from ⁇ -olefin is preferably contained in an amount of 70 to 98% by weight, more preferably 75 to 95% by weight, still more preferably 80 to 93% by weight, and still more preferably 85 to 93% by weight. 92% by weight.
  • the polyolefin resin (A) a propylene homopolymer or a copolymer of propylene and an ⁇ -olefin having 4 to 10 carbon atoms may be used. When these are used, a modified polyolefin resin having excellent adhesion to a nonpolar substrate can be obtained.
  • the content of the structural unit derived from the ⁇ -olefin having 4 to 10 carbon atoms is preferably 20% by mass or less in the structural unit of the copolymer.
  • a copolymer of propylene and an ⁇ -olefin having 4 to 10 carbon atoms a copolymer of propylene and 1-butene is preferable.
  • the polyolefin resin (A) may be used alone or in combination of two or more.
  • the polyolefin resin (A) may be a random copolymer or a block copolymer. It is preferable that the polyolefin resin (A) does not contain a structural unit derived from an ⁇ -olefin having 4 or more carbon atoms.
  • the weight average molecular weight of the polyolefin resin (A) is not particularly limited.
  • the weight average molecular weight of the modified polyolefin resin is preferably from 15,000 to 300,000, more preferably from 30,000 to 300,000, and even more preferably from 100,000 to 300,000. It is particularly preferably from 200,000 to 300,000. For this reason, when the weight average molecular weight of the polyolefin resin (A) is larger than 300,000, it may be degraded in the presence of heat or radicals such that the weight average molecular weight of the resulting modified polyolefin resin falls within the above range. preferable.
  • the weight average molecular weight is a value measured by gel permeation chromatography (standard substance: polystyrene).
  • GPC can be performed under the following conditions. Measuring equipment: HLC-8320GPC (manufactured by Tosoh Corporation) Eluent: tetrahydrofuran Column: TSKgel (Tosoh Corporation)
  • the compound (B) is at least one selected from ⁇ , ⁇ -unsaturated carboxylic acids and acid anhydrides thereof.
  • the compound (B) may be used alone or in combination of two or more.
  • the ⁇ , ⁇ -unsaturated carboxylic acid include fumaric acid, maleic acid, itaconic acid, mesaconic acid, citraconic acid, aconitic acid, and nadic acid.
  • the acid anhydride include an acid anhydride having a cyclic structure (preferably, a cyclic structure containing a —CO—O—CO— group), and examples thereof include maleic anhydride, citraconic anhydride, itaconic anhydride, and anhydride.
  • Aconitic acid is preferred, and maleic anhydride and itaconic anhydride are more preferred.
  • maleic anhydride, itaconic anhydride, and maleic acid are preferable, and maleic anhydride is more preferable, from the viewpoint of improving the adhesion to the nonpolar substrate.
  • the amine compound (C) has a hydrocarbon group.
  • the hydrocarbon group may be any of a saturated hydrocarbon group and an unsaturated hydrocarbon group, and may be any of linear, branched and cyclic. Examples of the hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group, and an alkyl group and an alkenyl group are preferable.
  • the hydrocarbon group may have a substituent containing a hetero atom (eg, an atom other than a carbon atom and a hydrogen atom such as an oxygen atom) as necessary.
  • the number of carbon atoms of the hydrocarbon group is usually 6 or more, 7 or more, preferably 8 or more, and more preferably 12 or more.
  • the upper limit is preferably 22 or less.
  • the number of carbon atoms is preferably from 6 to 22, 7 to 22, 8 to 22, or 12 to 22.
  • the above-mentioned adhesion and solubility can be improved in a well-balanced manner. Further, when the modified polyolefin resin is applied, tackiness can be reduced.
  • the amine compound (C) may have at least one hydrocarbon group, and may have two or more hydrocarbon groups.
  • the amine compound (C) is a compound having one or more nitrogen atoms, and usually has one nitrogen atom.
  • Examples of the amine compound (C) include an amine compound (C1) represented by the general formula (1) and an amine compound (C2) represented by the general formula (2).
  • the amine compound (C1) may be used alone or in combination of two or more. The same applies to the amine compound (C2).
  • One or more amine compounds (C1) and one or more amine compounds (C2) may be used in combination.
  • R 11 represents a linear or branched saturated hydrocarbon group or a linear or branched unsaturated hydrocarbon group.
  • the linear or branched saturated hydrocarbon group is usually a linear or branched alkyl group, and a linear alkyl group is preferable.
  • the number of carbon atoms of the linear alkyl group is usually 6 or more, 7 or more, preferably 8 or more, and more preferably 12 or more.
  • the upper limit is preferably 22 or less.
  • the number of carbon atoms is preferably from 6 to 22, 7 to 22, 8 to 22, or 12 to 22.
  • the adhesion between the resulting modified polyolefin resin and the non-polar substrate may decrease, and the tack may increase. If the number of carbon atoms is too large, the solubility may be reduced when the modified polyolefin resin is used as a solution.
  • the linear or branched unsaturated hydrocarbon group may have one double bond or triple bond, or may have two or more double bonds or triple bonds.
  • Examples of the linear or branched unsaturated hydrocarbon group include a linear or branched alkenyl group and a linear or branched alkynyl group, and a linear alkenyl group is preferable.
  • the number of carbon atoms of the linear alkenyl group is preferably 8 or more, more preferably 12 or more.
  • the upper limit is preferably 22 or less.
  • the number of carbon atoms is preferably from 6 to 22, 7 to 22, 8 to 22, or 12 to 22.
  • the above-mentioned adhesion and solubility can be improved in a well-balanced manner.
  • the tack can be reduced. If the number of carbon atoms is too small, the adhesion between the resulting modified polyolefin resin and the non-polar substrate may decrease, and the tack may increase. If the number of carbon atoms is too large, the solubility may be reduced when the modified polyolefin resin is used as a solution.
  • R 21 and R 22 each independently represent a linear or branched saturated hydrocarbon group or a linear or branched unsaturated hydrocarbon group.
  • the preferred ranges and reasons for the linear or branched saturated hydrocarbon group and the linear or branched unsaturated hydrocarbon group are the same as those described for the amine compound (C1).
  • the amine compound (C1) is preferred because of the easiness of modification to the polyolefin resin (A).
  • R 11 has 8 to 8 carbon atoms. 22 alkyl groups are more preferred, with dodecylamine, stearylamine, caprylamine, oleylamine being even more preferred.
  • the modified polyolefin resin usually contains an imide bond or an amide bond derived from the compound (B) and the amine compound (C).
  • the modified polyolefin resin has a structure derived from the compound (B) grafted to the polyolefin resin (A) (graft modification).
  • a structure derived from the amine compound (C) is added via the structure derived from the compound (B) (additional modification). Therefore, the modified polyolefin resin has a hydrocarbon group (R 11 , R 21 or R 22 ) derived from the amine compound (C). It is considered that the modified polyolefin resin is excellent in the above-mentioned adhesion since the hydrocarbon group is introduced.
  • an acid anhydride of an unsaturated carboxylic acid when used as the compound (B), it reacts with the amine compound (C) at the acid anhydride group to generate an imide bond.
  • an unsaturated carboxylic acid when used as the compound (B), it reacts with the amine compound (C) at the carboxy group to generate an amide bond.
  • All of the structures derived from the grafted compound (B) may not react with the amine compound (C) to form an imide bond or an amide bond. That is, it is only necessary that at least a part of the structure derived from the grafted compound (B) reacts with the amine compound (C) to form an imide bond or an amide bond.
  • a hydrocarbon group can be introduced into the modified polyolefin resin in a preferable amount. Therefore, it is preferable to use an acid anhydride of an unsaturated carboxylic acid and the amine compound (C1) in combination as the compound (B). According to this combination, the above-mentioned adhesion and solubility can be improved in a better balance.
  • the weight average molecular weight of the modified polyolefin resin is preferably from 15,000 to 300,000, more preferably from 30,000 to 150,000, even more preferably from 30,000 to 100,000, It is particularly preferred that it is between 50,000 and 100,000.
  • weight average molecular weight is in the above range, the above-mentioned adhesion and solubility can be improved in a well-balanced manner.
  • the amount of the compound (B) introduced into the modified polyolefin resin is, for example, 0.1 to 20% by weight based on 100% by weight of the modified polyolefin resin.
  • the modified weight (addition weight) of the amine compound (C) in the modified polyolefin resin is, for example, 0.1 to 30% by weight based on 100% by weight of the modified polyolefin resin.
  • the graft weight of the compound (B) can be determined by an alkali titration method. When the modified weight of the compound (B) and the amine compound (C) is in the above range, the above-mentioned adhesion and solubility can be improved in a well-balanced manner.
  • the modified polyolefin resin may be further graft-modified with a radical polymerizable monomer. That is, the modifying component may contain a radical polymerizable monomer together with the compound (B) and the amine compound (C).
  • the radical polymerizable monomer examples include (meth) acrylic compounds and vinyl compounds.
  • the (meth) acrylic compound is a compound containing at least one (meth) acryloyl group (meaning an acryloyl group and / or a methacryloyl group) in a molecule.
  • radical polymerizable monomer examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, cyclohexyl (meth) acrylate, hydroxyethyl (meth) acrylate, isobornyl ( (Meth) acrylate, glycidyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) Acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, hydroxyethyl (meth) acrylate, 2-hydroxyethyl
  • methyl (meth) acrylate, ethyl (meth) acrylate, cyclohexyl (meth) acrylate, and lauryl (meth) acrylate are preferable, and these methacrylates are more preferable. These can be used alone or in combination of two or more, and the mixing ratio can be freely set.
  • the (meth) acrylic compound a compound containing at least 20% by weight of at least one compound selected from (meth) acrylic esters represented by the following general formula (I) is preferable.
  • the (meth) acrylic compound is used, the molecular weight distribution of the modified polyolefin resin can be narrowed, and the solvent solubility of the modified polypropylene resin and the compatibility with other resins can be further improved.
  • CH 2 CR 1 COOR 2 (I)
  • R 1 H or CH 3
  • R 2 C n H 2n + 1
  • n is an integer of 1 to 18.
  • n is preferably an integer of 8 to 18.
  • the graft weight of the radically polymerizable monomer in the modified polyolefin resin is preferably from 0.1 to 30% by weight, more preferably from 0.5 to 20% by weight. If the graft weight is less than 0.1% by weight, the solubility of the modified polyolefin resin, the compatibility with other resins, and the adhesiveness may decrease. If the amount is more than 30% by weight, the reactivity is high, so that an ultrahigh molecular weight body is formed to deteriorate the solvent solubility, which is not preferable, or the amount of homopolymer and copolymer not grafted to the polyolefin skeleton is increased, which is preferable. May not be.
  • the introduction amount (graft weight) of the radical polymerizable monomer in the non-chlorinated modified polyolefin resin is preferably 0.5 to 30% by weight, more preferably 1 to 20% by weight. %.
  • the graft weight of the (meth) acrylate can be determined by 1 H-NMR.
  • polyolefin resins such as polypropylene and polyethylene are general-purpose thermoplastic resins, and are inexpensive and have many excellent properties such as moldability, chemical resistance, weather resistance, water resistance, and electrical properties. For this reason, it has been conventionally used in a wide range of fields as a sheet, a film, a molded product and the like.
  • base materials polyolefin base materials
  • base materials made of these polyolefin resins have low polarity and are crystalline, unlike polar base materials such as polyurethane resins, polyamide resins, acrylic resins, polyester resins, and metals.
  • polar base materials such as polyurethane resins, polyamide resins, acrylic resins, polyester resins, and metals.
  • the surface of the object to be treated (plastic substrate) is treated relatively deeper than the plasma treatment. For this reason, when a corona discharge treatment is performed on a thin film (eg, a film having a thickness of 15 ⁇ m or less or less than 8 ⁇ m), holes are easily formed. Therefore, there is a fact that such a thin film cannot substantially use corona discharge treatment.
  • a corona discharge treatment is performed on a thin film (eg, a film having a thickness of 15 ⁇ m or less or less than 8 ⁇ m)
  • a thin film eg, a film having a thickness of 15 ⁇ m or less or less than 8 ⁇ m
  • a method has been devised in which a pretreatment agent having adhesiveness to a substrate is applied to the surface of the substrate in advance.
  • WO 2005/082963 describes that a polar group is imparted to a polyolefin by graft modification with an unsaturated carboxylic acid and an acrylic derivative.
  • a method has been found in which this is used as a coating agent to increase the affinity with the polypropylene substrate and improve the adhesiveness.
  • Polyethylene is roughly classified into low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and the like, depending on the manufacturing method and the density involved.
  • Reasons for difficulty in adhering to these substrates include, for example, the non-polarity and low surface energy of polyethylene and the high crystallinity.
  • Patent Document 1 describes a polyolefin resin modified with a polarity-imparting agent and a copolymer of ethylene having an unsaturated bond at one terminal and an ⁇ -olefin having 3 to 10 carbon atoms. . It has been found that this modified polyolefin resin has an adhesive property to various polyethylenes that have not been surface-treated, and that the modified polyolefin resin exhibits a sufficient adhesive strength when treated at a low temperature. Further, it has been shown that the modified polyolefin resin adhesive having low tackiness is useful. However, when the solution is applied at the time of coating, the liquid is poor and becomes cloudy. Therefore, a modified polyolefin resin which is good in liquid form and excellent in transparency is required.
  • the modified polyolefin resin of the present invention has excellent adhesive strength to a substrate of a composition containing a non-polar resin such as polyethylene (eg, LDPE, LLDPE, HDPE) and is used as a solution.
  • a non-polar resin such as polyethylene (eg, LDPE, LLDPE, HDPE)
  • the liquid at the time is good and excellent in transparency.
  • it has excellent adhesive strength even to a substrate that has not been subjected to surface treatment such as corona treatment.
  • the modified polyolefin resin of the present invention may be a chlorinated polyolefin resin.
  • the chlorinated polyolefin resin is a resin in which the polyolefin resin (A) has been modified by the above-described modifying component and is further chlorinated.
  • Chlorinated modified polyolefin resins can also exhibit the above-mentioned adhesion, solubility and transparency. Therefore, it is suitable as a heat sealant, an adhesive, a primer, or a binder for paint or ink.
  • the method for producing the modified polyolefin resin of the present invention is not particularly limited, as long as the modified polyolefin resin is obtained by modifying the polyolefin resin (A) with a modifying component.
  • the method for producing a modified polyolefin resin includes a modification step of modifying a polyolefin resin (A) with a modifying component to obtain a modified polyolefin resin.
  • the polyolefin resin (A) is graft-modified with the compound (B) to obtain an acid-modified polyolefin resin.
  • a radical generator may be used.
  • a solution method in which the compound (B) is dissolved in a solvent such as toluene by heating and a radical generator is added; the compound (B) and a compound such as a Banbury mixer, a kneader, and an extruder are added to a device.
  • a melt kneading method in which a radical generator is added and kneaded is used.
  • the compound (B) may be added all at once or sequentially.
  • the compound (B) is used in an amount of 0.1 to 20 parts by mass based on 100 parts by mass of the polyolefin resin (A) from the viewpoint of grafting the compound (B) in a preferable amount. Is preferred.
  • the radical generator can be appropriately selected from known ones, but an organic peroxide compound is preferred.
  • organic peroxide compound include di-t-butyl peroxide, dicumyl peroxide, t-butyl cumyl peroxide, benzoyl peroxide, dilauryl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) -cyclohexane, cyclohexanone peroxide, t-butylperoxybenzoate, t- Butylperoxyisobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisopropylcarbonate, cumylperoxyoctoate , 2,5
  • the amount of the radical generator to be added is preferably at least 1% by mass, more preferably at least 10% by mass, based on 100% by mass of the compound (B) used. When the content is 1% by mass or more, graft efficiency can be maintained.
  • the upper limit of the addition amount is preferably 200% by mass or less, more preferably 100% by mass or less. When the content is 200% by mass or less, the reaction can be performed economically.
  • the acid value of the acid-modified polyolefin resin is usually 0.5 mg KOH / g or more, preferably 5 mg KOH / g or more, more preferably 10 mg KOH / g or more.
  • the upper limit is usually 115 mgKOH / g or less, preferably 85 mgKOH / g or less, more preferably 60 mgKOH / g or less, particularly preferably 40 mgKOH / g or less and 30 mgKOH / g or less.
  • the weight-average molecular weight of the acid-modified polyolefin resin is usually 15,000 or more, preferably 20,000 or more, more preferably 30,000 or more, and particularly preferably 500,000 or more.
  • the upper limit is usually 300,000 or less, preferably 150,000 or less, more preferably 100,000 or less.
  • the compound (B) not graft-polymerized to the polyolefin resin (A), that is, the unreacted product may be removed by extraction with a poor solvent, for example.
  • a poor solvent for example.
  • the acid-modified polyolefin resin is reacted with the amine compound (C) (addition reaction) to obtain a modified polyolefin resin.
  • a method for obtaining a modified polyolefin resin a solution method in which an acid-modified polyolefin resin and an amine compound (C) are heated and dissolved in a solvent such as toluene or xylene to react; a device such as a Banbury mixer, a kneader or an extruder is used.
  • a melt-kneading method in which a modified polyolefin resin and an amine compound (C) are added and kneaded, and if necessary, heated to react, is used.
  • the amine compound (C) may be added all at once or sequentially.
  • the amine compound (C) is preferably used in an amount of 0.1 to 30 parts by mass based on 100 parts by mass of the acid-modified polyolefin resin.
  • the above-mentioned modified polyolefin resin is obtained.
  • the modified polyolefin resin is further graft-modified with a radical polymerizable monomer
  • a radical polymerizable monomer for example, the polyolefin resin (A) is graft-modified with the compound (B) and a radical polymerizable monomer to obtain an acid-modified polyolefin resin.
  • a radical generator may be used as described above.
  • the acid-modified polyolefin resin is reacted with the amine compound (C) (addition reaction) to obtain a modified polyolefin resin.
  • a (meth) acrylic compound when used as the radical polymerizable monomer, at least one or more compounds selected from the (meth) acrylic acid esters represented by the formula (I) in the (meth) acrylic compound may be used in the form of 20 Preferably, it is used in an amount of at least weight%.
  • the radical polymerizable monomer is preferably used in such an amount that the graft weight in the modified polyolefin resin falls within the above range.
  • the acid-modified polyolefin resin contains a structure derived from the cyclic structure.
  • the structure derived from the cyclic structure in the acid-modified polyolefin resin may have a ring-closed structure (maintain the cyclic structure) or may have a ring-opened structure due to the influence of moisture in the air. Mixed.
  • the ratio (%) of the ring-closing state to the structure derived from the cyclic structure (total of the ring-closing structure and the ring-opening structure) of the acid-modified polyolefin resin is referred to as the ring-closing ratio.
  • the ring closure rate at the start of the reaction between the acid-modified polyolefin resin and the amine compound (C) is preferably at least 75%, more preferably at least 80%.
  • the upper limit of the ring closure ratio may be 100% or less, and is not particularly limited.
  • the ring closure rate can be adjusted, for example, by a dehydration reaction of the acid-modified polyolefin resin.
  • the dehydration reaction may be performed by heat treatment, and the heating temperature at that time is preferably 100 ° C. or higher.
  • the heat treatment may be performed in a nitrogen atmosphere as needed.
  • the chlorination step is a step of chlorinating the modified polyolefin resin (non-chlorinated modified polyolefin resin) obtained in the above-described modification step with chlorine to obtain a chlorinated modified polyolefin resin.
  • the chlorination can be performed by a conventionally known method.
  • a non-chlorinated modified polyolefin resin that does not undergo chlorination is suitable for bonding substances whose components derived from chlorine are not desirable to remain.
  • the timing of performing the chlorination step is not particularly limited, and may be performed prior to the above-described modification step, may be performed during the modification step, or may be performed after the modification step.
  • the heat sealant, adhesive, primer, or binder for paint or ink of the present invention contains the above-mentioned modified polyolefin resin.
  • the modified polyolefin resin of the present invention may be used as a modified polyolefin resin composition, if necessary, in combination with other components.
  • the modified polyolefin resin or the modified polyolefin resin composition is suitable as a binder such as a heat sealant, an adhesive, a primer, a binder for paints, a binder for inks, etc. due to the excellent adhesiveness, solubility and transparency described above.
  • Other components include curing agents, solvents, dispersion media, antioxidants, light stabilizers, ultraviolet absorbers, pigments, dyes, and inorganic fillers. These may be used alone or in combination of two or more.
  • the curing agent examples include a polyisocyanate compound, an epoxy compound, a polyamine compound, a polyol compound, and a curing agent in which the functional group of these compounds is protected by a protective group.
  • a catalyst such as an organotin compound or a tertiary amine compound may be used in combination depending on the purpose.
  • solvent or dispersion medium examples include aromatic hydrocarbons (eg, toluene, xylene), esters (eg, ethyl acetate, butyl acetate, propyl acetate), aliphatic or alicyclic hydrocarbons (eg, cyclohexane, methylcyclohexane) , Ethylcyclohexane, nonane, decane), alcohols (eg, methanol, ethanol, propanol, isopropanol, butanol), and glycol ethers (eg, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol-t-butyl ether).
  • aromatic hydrocarbons eg, toluene, xylene
  • esters eg, ethyl acetate, butyl acetate, propyl acetate
  • aliphatic or alicyclic hydrocarbons e
  • the modified polyolefin resin composition may contain other components used in the adhesive (for example, known adhesives such as a polyester-based adhesive, a polyurethane-based adhesive, and an acrylic-based adhesive) as long as the desired effect is not impaired.
  • Other components used for the heat sealant, other components used for the primer, and other components used for the binder may be blended.
  • Example 1 As the polyolefin resin (A), an olefin copolymer having a propylene component of 89% by weight, an ethylene component of 11% by weight and a weight average molecular weight of 260,000 was used. With respect to 100% by weight of the olefin copolymer, 4% by weight of maleic anhydride and 1.5% by weight of 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane were used. The mixture was supplied to an extruder and melted and kneaded at 210 ° C. to cause a reaction. Thus, an acid-modified polyolefin resin (A1) was obtained.
  • the weight-average molecular weight and acid value of the obtained acid-modified polyolefin resin (A1) were 98,000 and 24.3 mgKOH / g, respectively.
  • 100 parts by weight of the acid-modified polyolefin resin (A1) and 100 parts by weight of xylene were heated and stirred at 140 ° C. under a nitrogen stream. Heating was performed until the resin was completely dissolved and the ring closure ratio of maleic anhydride became 80% or more. After that, 8 parts by weight of stearylamine was added and reacted for 2 hours.
  • the obtained reaction solution was blown on a vat and dried to obtain a modified polyolefin resin (A).
  • the weight average molecular weight of the obtained modified polyolefin resin (A) was 78,000.
  • the ring closure ratio R was measured by the following method. First, a modified polyolefin resin was dissolved in an organic solvent to obtain a solution. Next, the solution is applied to a KBr plate and dried to form a thin film, and infrared absorption of 400 to 4000 cm ⁇ 1 is measured by FT-IR (eg, “FT / IR-4100”, manufactured by JASCO Corporation). The spectrum was observed. The analysis was performed with attached software (eg, “Spectro Manager”, JASCO Corporation). The peak appearing at a wave number of 1700 to 1750 cm ⁇ 1 was assigned to the peak derived from the carbonyl group of the ⁇ , ⁇ -unsaturated carboxylic acid derivative that had been opened, and the peak height was designated as A.
  • FT-IR eg, “FT / IR-4100”
  • the peak appearing at a wave number of 1750 to 1820 cm -1 was assigned to the peak derived from the carbonyl group of the closed ⁇ , ⁇ -unsaturated carboxylic acid derivative, and the peak height was designated as B. Then, the ring closure ratio R (%) was calculated from the formula of (B / (A + B) ⁇ 100).
  • Example 2 A modified polyolefin resin (A) was obtained in the same manner as in Example 1, except that 5 parts by weight of laurylamine was used instead of 8 parts by weight of stearylamine. The weight average molecular weight of the obtained modified polyolefin resin (A) was 73,000.
  • Example 3 A modified polyolefin resin (A) was obtained in the same manner as in Example 1, except that 8 parts by weight of oleylamine was used instead of 8 parts by weight of stearylamine.
  • the weight average molecular weight of the obtained modified polyolefin resin (A) was 73,000.
  • Example 4 A modified polyolefin resin (A) was obtained in the same manner as in Example 1, except that 4 parts by weight of caprylamine was used instead of 8 parts by weight of stearylamine. The weight average molecular weight of the obtained modified polyolefin resin (A) was 76,000.
  • Example 5 As the polyolefin resin (A), an olefin copolymer having a propylene component of 80% by weight and a butene component of 20% by weight and a weight average molecular weight of 300,000 was used. Using 4% by weight of maleic anhydride and 3% by weight of di-tert-butyl peroxide with respect to 100% by weight of this olefin copolymer, supply them to a twin-screw extruder, melt-knead at 210 ° C. and react. I let it. Thus, an acid-modified polyolefin resin (A2) was obtained.
  • the weight-average molecular weight and the acid value of the obtained acid-modified polyolefin resin (A2) were 74,000 and 17.8 mgKOH / g, respectively.
  • a modified polyolefin resin (A) was obtained in the same manner as in Example 1, except that the acid-modified polyolefin resin (A2) was used.
  • the weight average molecular weight of the obtained modified polyolefin resin (A) was 73,000.
  • Example 6 As the polyolefin resin (A), an olefin copolymer having a propylene component of 88% by weight, an ethylene component of 12% by weight and a weight average molecular weight of 49,000 was used. 4% by weight of maleic anhydride, 1.5% by weight of 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane and 3% by weight of lauryl methacrylate were added to 114% by weight of the olefin copolymer. These were supplied to a twin-screw extruder, and were melt-kneaded at 170 ° C. and reacted.
  • an acid-modified polyolefin resin (A3) was obtained.
  • the weight-average molecular weight and the acid value of the obtained acid-modified polyolefin resin (A3) were 72,000 and 19.3 mgKOH / g, respectively.
  • a modified polyolefin resin (A) was obtained in the same manner as in Example 1, except that the acid-modified polyolefin resin (A3) was used.
  • the weight average molecular weight of the resulting modified polyolefin resin (A) was 60,000.
  • Peel strength is 200 gf / 15 mm or more

Abstract

The present invention addresses the problem of providing a modified polyolefin resin which exhibits excellent adhesion to a non-polar substrate and which exhibits excellent solubility in a solvent in the preparation of a solution. The present invention is a modified polyolefin resin in which a polyolefin resin (A) is modified by a modifying component that contains: at least one type of a compound (B) selected from among an α,β-unsaturated carboxylic acid and anhydrides thereof; and an amine compound (C). The modifying component may further contain a radical-polymerizable monomer. The modified polyolefin resin can be used as a heat-sealing agent, an adhesive, a primer, a binder for a coating material or a binder for an ink.

Description

変性ポリオレフィン樹脂およびその製造方法Modified polyolefin resin and method for producing the same
 本発明は、変性ポリオレフィン樹脂およびその製造方法に関する。 << The present invention relates to a modified polyolefin resin and a method for producing the same.
 特許文献1には、ポリオレフィン樹脂に対して、以下の(A-1)がグラフト重合されおよび/または以下の(A-2)で塩素化され、かつ、(B)がグラフト重合されてなる変性ポリオレフィン樹脂が記載されている。
 (A-1)不飽和カルボン酸、不飽和カルボン酸の誘導体および無水物、ならびに一般式(I)で表される(メタ)アクリル酸エステルから選ばれる一種以上の極性付与剤。
CH2=CR1COOR2・・・(I)
(式(I)中、R1=HまたはCH3、R2=Cn2n+1、n=1~18の整数)
 (A-2)塩素
 (B)片末端に不飽和結合を有する主鎖末端の割合が90%以上である、エチレン単位が80~100モル%であり炭素原子数3~10のα-オレフィン単位が0~20モル%であるエチレンα-オレフィン共重合体。
Patent Document 1 discloses that a polyolefin resin is modified by graft polymerization of the following (A-1) and / or chlorination with the following (A-2) and graft polymerization of (B). Polyolefin resins are described.
(A-1) One or more polarizers selected from unsaturated carboxylic acids, derivatives and anhydrides of unsaturated carboxylic acids, and (meth) acrylates represented by the general formula (I).
CH 2 = CR 1 COOR 2 (I)
(In the formula (I), R 1 = H or CH 3 , R 2 = C n H 2n + 1 , n = 1 to 18)
(A-2) Chlorine (B) α-olefin unit having 80 to 100 mol% of ethylene units and 3 to 10 carbon atoms, wherein the proportion of main chain terminals having an unsaturated bond at one terminal is 90% or more. Is an ethylene α-olefin copolymer having a content of 0 to 20 mol%.
 特許文献1には、上記変性ポリオレフィン樹脂は、ポリプロピレン、ポリエチレン等のポリオレフィンからなるポリオレフィン基材、すなわち非極性基材との付着性に優れると記載されている。 Patent Document 1 describes that the modified polyolefin resin is excellent in adhesion to a polyolefin substrate composed of a polyolefin such as polypropylene and polyethylene, that is, a nonpolar substrate.
特許第4848011号公報Japanese Patent No. 4848011
 特許文献1の変性ポリオレフィン樹脂を非極性基材に塗工するために、該変性ポリオレフィン樹脂の溶液を調製することがある。しかしながら、特許文献1の変性ポリオレフィン樹脂は、液状が悪い(たとえば、溶剤への溶解性が悪く、溶液が白濁している)。 溶液 In order to apply the modified polyolefin resin of Patent Document 1 to a non-polar substrate, a solution of the modified polyolefin resin may be prepared. However, the modified polyolefin resin of Patent Literature 1 is poor in liquid state (for example, poor in solubility in a solvent, and the solution is cloudy).
 そこで、本発明は、非極性基材との付着性に優れるとともに、溶液を調製する際、溶剤への溶解性に優れる変性ポリオレフィン樹脂を提供することを目的とする。 Therefore, an object of the present invention is to provide a modified polyolefin resin having excellent adhesion to a nonpolar substrate and excellent solubility in a solvent when preparing a solution.
 本発明者らは、鋭意検討した結果、ポリオレフィン樹脂が、特定の変性成分により変性されている変性ポリオレフィン樹脂により、上記課題を解決できることを見出し、本発明を完成した。 As a result of diligent studies, the present inventors have found that a polyolefin resin modified with a specific modifying component can solve the above problems, and have completed the present invention.
 すなわち、本発明は以下を提供する。
 [1] ポリオレフィン樹脂(A)が変性成分により変性されている変性ポリオレフィン樹脂であって、上記変性成分は、α,β-不飽和カルボン酸およびその酸無水物から選ばれる1種以上の化合物(B)と、炭化水素基を有するアミン化合物(C)とを含む、変性ポリオレフィン樹脂。
 [2] 上記変性ポリオレフィン樹脂が、上記化合物(B)および上記アミン化合物(C)に由来するイミド結合またはアミド結合を含む、[1]に記載の変性ポリオレフィン樹脂。
 [3] 上記アミン化合物(C)が有する炭化水素基が、炭素原子数6~22のアルキル基又はアルケニル基である、[1]または[2]に記載の変性ポリオレフィン樹脂。
 [4] 上記アミン化合物(C)が、下記式(1)で表されるアミン化合物(C1)または下記式(2)で表されるアミン化合物(C2)である、[1]~[3]のいずれか1つに記載の変性ポリオレフィン樹脂。
 H2NR11     (1)
 HNR2122    (2)
 (式(1)中、R11は、直鎖状もしくは分岐状の飽和炭化水素基、または直鎖状もしくは分岐状の不飽和炭化水素基を表し、式(2)中、R21およびR22は、それぞれ独立に、直鎖状もしくは分岐状の飽和炭化水素基、または直鎖状もしくは分岐状の不飽和炭化水素基を表す。)
 [5] 上記アミン化合物(C)が、上記式(1)で表されるアミン化合物であり、上記式(1)中、R11が、炭素原子数6~22のアルキル基又はアルケニル基である、[4]に記載の変性ポリオレフィン樹脂。
 [6] 上記ポリオレフィン樹脂(A)が、エチレンから導かれる構成単位を含む重合体である、[1]~[5]のいずれか1つに記載の変性ポリオレフィン樹脂。
 [7] 上記変性成分が、さらに、ラジカル重合性モノマーを含む、[1]~[6]のいずれか1つに記載の変性ポリオレフィン樹脂。
 [8] 上記変性ポリオレフィン樹脂が、塩素化変性ポリオレフィン樹脂である、[1]~[7]のいずれか1つに記載の変性ポリオレフィン樹脂。
 [9] [1]~[8]のいずれか1つに記載の変性ポリオレフィン樹脂を含むヒートシール剤、接着剤、プライマー、又は、塗料用若しくはインキ用バインダー。
 [10] ポリオレフィン樹脂(A)を変性成分により変性して、変性ポリオレフィン樹脂を得る変性工程を含み、上記変性成分は、α,β-不飽和カルボン酸およびその酸無水物から選ばれる1種以上の化合物(B)と、炭化水素基を有するアミン化合物(C)とを含む、変性ポリオレフィン樹脂の製造方法。
 [11] 上記変性工程が、上記ポリオレフィン樹脂(A)を、上記化合物(B)によりグラフト変性して、酸変性ポリオレフィン樹脂を得、次いで、上記酸変性ポリオレフィン樹脂と上記アミン化合物(C)とを反応させて、上記変性ポリオレフィン樹脂を得る工程である、[10]に記載の変性ポリオレフィン樹脂の製造方法。
 [12] 上記変性ポリオレフィン樹脂が、上記化合物(B)および上記アミン化合物(C)に由来するイミド結合またはアミド結合を含む、[10]または[11]に記載の変性ポリオレフィン樹脂の製造方法。
 [13] 上記アミン化合物(C)が有する炭化水素基が、炭素原子数6~22のアルキル基又はアルケニル基である、[10]~[12]のいずれか1つに記載の変性ポリオレフィン樹脂の製造方法。
 [14] 上記アミン化合物(C)が、下記式(1)で表されるアミン化合物(C1)または下記式(2)で表されるアミン化合物(C2)である、[10]~[13]のいずれか1つに記載の変性ポリオレフィン樹脂の製造方法。
 H2NR11     (1)
 HNR2122    (2)
 (式(1)中、R11は、直鎖状もしくは分岐状の飽和炭化水素基、または直鎖状もしくは分岐状の不飽和炭化水素基を表し、式(2)中、R21およびR22は、それぞれ独立に、直鎖状もしくは分岐状の飽和炭化水素基、または直鎖状もしくは分岐状の不飽和炭化水素基を表す。)
 [15] 上記アミン化合物(C)が、上記式(1)で表されるアミン化合物であり、上記式(1)中、R11が、炭素原子数6~22のアルキル基又はアルケニル基である、[14]に記載の変性ポリオレフィン樹脂の製造方法。
 [16] 上記ポリオレフィン樹脂(A)が、エチレンから導かれる構成単位を含む重合体である、[10]~[15]のいずれか1つに記載の変性ポリオレフィン樹脂の製造方法。
 [17] さらに、上記変性工程で得られた上記変性ポリオレフィン樹脂を、塩素により塩素化して、塩素化変性ポリオレフィン樹脂を得る塩素化工程を含む、[10]~[16]のいずれか1つに記載の変性ポリオレフィン樹脂の製造方法。
That is, the present invention provides the following.
[1] A modified polyolefin resin in which the polyolefin resin (A) is modified with a modifying component, wherein the modifying component is at least one compound selected from α, β-unsaturated carboxylic acids and acid anhydrides thereof. A modified polyolefin resin containing B) and an amine compound (C) having a hydrocarbon group.
[2] The modified polyolefin resin according to [1], wherein the modified polyolefin resin contains an imide bond or an amide bond derived from the compound (B) and the amine compound (C).
[3] The modified polyolefin resin according to [1] or [2], wherein the hydrocarbon group contained in the amine compound (C) is an alkyl group or an alkenyl group having 6 to 22 carbon atoms.
[4] [1] to [3], wherein the amine compound (C) is an amine compound (C1) represented by the following formula (1) or an amine compound (C2) represented by the following formula (2). The modified polyolefin resin according to any one of the above.
H 2 NR 11 (1)
HNR 21 R 22 (2)
(In the formula (1), R 11 represents a linear or branched saturated hydrocarbon group or a linear or branched unsaturated hydrocarbon group, and in the formula (2), R 21 and R 22 Each independently represents a linear or branched saturated hydrocarbon group, or a linear or branched unsaturated hydrocarbon group.)
[5] The amine compound (C) is an amine compound represented by the formula (1), and in the formula (1), R 11 is an alkyl group or an alkenyl group having 6 to 22 carbon atoms. And the modified polyolefin resin according to [4].
[6] The modified polyolefin resin according to any one of [1] to [5], wherein the polyolefin resin (A) is a polymer containing a structural unit derived from ethylene.
[7] The modified polyolefin resin according to any one of [1] to [6], wherein the modified component further contains a radical polymerizable monomer.
[8] The modified polyolefin resin according to any one of [1] to [7], wherein the modified polyolefin resin is a chlorinated modified polyolefin resin.
[9] A heat sealant, an adhesive, a primer, or a paint or ink binder containing the modified polyolefin resin according to any one of [1] to [8].
[10] A step of modifying the polyolefin resin (A) with a modifying component to obtain a modified polyolefin resin, wherein the modifying component is at least one selected from α, β-unsaturated carboxylic acids and acid anhydrides thereof. A method for producing a modified polyolefin resin, comprising a compound (B) of the formula (I) and an amine compound (C) having a hydrocarbon group.
[11] In the modification step, the polyolefin resin (A) is graft-modified with the compound (B) to obtain an acid-modified polyolefin resin, and then the acid-modified polyolefin resin and the amine compound (C) are combined. The method for producing a modified polyolefin resin according to [10], which is a step of reacting to obtain the modified polyolefin resin.
[12] The method for producing a modified polyolefin resin according to [10] or [11], wherein the modified polyolefin resin contains an imide bond or an amide bond derived from the compound (B) and the amine compound (C).
[13] The modified polyolefin resin according to any one of [10] to [12], wherein the hydrocarbon group contained in the amine compound (C) is an alkyl group or an alkenyl group having 6 to 22 carbon atoms. Production method.
[14] [10] to [13], wherein the amine compound (C) is an amine compound (C1) represented by the following formula (1) or an amine compound (C2) represented by the following formula (2). The method for producing a modified polyolefin resin according to any one of the above.
H 2 NR 11 (1)
HNR 21 R 22 (2)
(In the formula (1), R 11 represents a linear or branched saturated hydrocarbon group or a linear or branched unsaturated hydrocarbon group, and in the formula (2), R 21 and R 22 Each independently represents a linear or branched saturated hydrocarbon group, or a linear or branched unsaturated hydrocarbon group.)
[15] The amine compound (C) is an amine compound represented by the formula (1), and in the formula (1), R 11 is an alkyl group or an alkenyl group having 6 to 22 carbon atoms. And the method for producing a modified polyolefin resin according to [14].
[16] The method for producing a modified polyolefin resin according to any one of [10] to [15], wherein the polyolefin resin (A) is a polymer containing a structural unit derived from ethylene.
[17] The method according to any one of [10] to [16], further including a chlorination step of chlorinating the modified polyolefin resin obtained in the modification step with chlorine to obtain a chlorinated modified polyolefin resin. A method for producing the modified polyolefin resin as described above.
 本発明の変性ポリオレフィン樹脂は、非極性基材に対し優れた付着性を示すことができるとともに、溶液を調製する際、溶剤に対し優れた溶解性を示すことができる。 (4) The modified polyolefin resin of the present invention can exhibit excellent adhesion to a non-polar substrate, and exhibit excellent solubility in a solvent when preparing a solution.
 <変性ポリオレフィン樹脂>
 本発明の変性ポリオレフィン樹脂は、ポリオレフィン樹脂(A)が変性成分により変性されている変性樹脂である。変性成分は、特定の化合物(B)および特定のアミン化合物(C)を含む。これにより、本発明の変性ポリオレフィン樹脂は、非極性基材に対し優れた付着性を示し得るとともに、溶液を調製する際、溶剤へ良好な溶解性を示すことができるので、透明性に優れる溶液が得られる。
<Modified polyolefin resin>
The modified polyolefin resin of the present invention is a modified resin in which the polyolefin resin (A) has been modified with a modifying component. The modifying component contains a specific compound (B) and a specific amine compound (C). Thereby, the modified polyolefin resin of the present invention can exhibit excellent adhesion to a non-polar substrate, and when preparing a solution, can exhibit good solubility in a solvent, so that a solution having excellent transparency can be obtained. Is obtained.
 上記非極性基材としては、たとえば、ポリオレフィン樹脂からなる基材(ポリオレフィン基材)が挙げられる。ポリオレフィン基材は、通常、難付着性基材として知られており、同種基材同士の接着および異種基材との接着や、塗装が困難であることが多い。一般に、ポリエチレン基材は、付着性および接着性により乏しい。本発明の変性ポリオレフィン樹脂は、ポリエチレン基材との付着性にも優れる。 As the non-polar substrate, for example, a substrate made of a polyolefin resin (polyolefin substrate) may be mentioned. Polyolefin substrates are generally known as hard-to-adhere substrates, and it is often difficult to bond substrates of the same type, to substrates of different types, or to paint. Generally, polyethylene substrates have poor adhesion and adhesion. The modified polyolefin resin of the present invention also has excellent adhesion to a polyethylene substrate.
 ポリオレフィン樹脂(A)としては、ポリエチレン基材との付着性をより向上させる観点から、エチレンから導かれる構成単位を含む重合体が好適である。エチレンから導かれる構成単位を含む重合体としては、エチレン単独重合体、エチレンと炭素原子数3~10のα-オレフィンとの共重合体が挙げられる。α-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、1-オクテン、3-エチル-1-ヘキセン、1-オクテン、1-デセンが挙げられ、プロピレンおよび1-ブテンが好ましく、プロピレンがより好ましい。α-オレフィンは、1種単独でも2種以上を組み合わせてもよい。上記共重合体において、炭素原子数4~10のα-オレフィンから導かれる構成単位は、共重合体の構成単位中20質量%以下であることが好ましい。エチレンと炭素原子数3~10のα-オレフィンとの共重合体としては、エチレンとプロピレンとの共重合体、エチレンとプロピレンと1-ブテンとの共重合体が好適である。エチレンと炭素原子数3~10のα-オレフィンとの共重合体は、エチレンから導かれる構成単位およびα-オレフィンから導かれる構成単位の合計100重量%において、エチレンから導かれる構成単位を2~30重量%の量で含むことが好ましく、より好ましくは5~25重量%であり、さらに好ましくは7~20重量%であり、さらにより好ましくは8~15重量%を含むことである。α-オレフィンから導かれる構成単位は70~98重量%の量で含むことが好ましく、より好ましくは75~95重量%であり、さらに好ましくは80~93重量%であり、さらにより好ましくは85~92重量%である。 As the polyolefin resin (A), a polymer containing a structural unit derived from ethylene is preferable from the viewpoint of further improving the adhesion to a polyethylene substrate. Examples of the polymer containing a structural unit derived from ethylene include an ethylene homopolymer and a copolymer of ethylene and an α-olefin having 3 to 10 carbon atoms. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1- Pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 1-octene, 3-ethyl-1-hexene, 1-octene and 1-decene; , Propylene and 1-butene are preferred, and propylene is more preferred. The α-olefin may be used alone or in combination of two or more. In the above copolymer, the content of the structural unit derived from the α-olefin having 4 to 10 carbon atoms is preferably 20% by mass or less in the structural unit of the copolymer. As a copolymer of ethylene and an α-olefin having 3 to 10 carbon atoms, a copolymer of ethylene and propylene and a copolymer of ethylene, propylene and 1-butene are preferable. The copolymer of ethylene and an α-olefin having 3 to 10 carbon atoms contains 2 to 2 structural units derived from ethylene in a total of 100% by weight of the structural units derived from ethylene and the structural units derived from the α-olefin. Preferably, it comprises 30% by weight, more preferably 5 to 25% by weight, even more preferably 7 to 20% by weight, even more preferably 8 to 15% by weight. The constituent unit derived from α-olefin is preferably contained in an amount of 70 to 98% by weight, more preferably 75 to 95% by weight, still more preferably 80 to 93% by weight, and still more preferably 85 to 93% by weight. 92% by weight.
 ポリオレフィン樹脂(A)としては、プロピレン単独重合体、プロピレンと炭素数4~10のα-オレフィンとの共重合体を用いてもよい。これらを用いた場合、非極性基材との付着性に優れる変性ポリオレフィン樹脂を得ることができる。上記共重合体において、炭素原子数4~10のα-オレフィンから導かれる構成単位は、共重合体の構成単位中20質量%以下であることが好ましい。プロピレンと炭素原子数4~10のα-オレフィンとの共重合体としては、プロピレンと1-ブテンとの共重合体が好適である。 As the polyolefin resin (A), a propylene homopolymer or a copolymer of propylene and an α-olefin having 4 to 10 carbon atoms may be used. When these are used, a modified polyolefin resin having excellent adhesion to a nonpolar substrate can be obtained. In the above copolymer, the content of the structural unit derived from the α-olefin having 4 to 10 carbon atoms is preferably 20% by mass or less in the structural unit of the copolymer. As a copolymer of propylene and an α-olefin having 4 to 10 carbon atoms, a copolymer of propylene and 1-butene is preferable.
 ポリオレフィン樹脂(A)は、1種単独で用いても2種以上を組み合わせて用いてもよい。ポリオレフィン樹脂(A)が共重合体であるときは、ランダム共重合体であっても、ブロック共重合体であってもよい。ポリオレフィン樹脂(A)は、炭素原子数4以上のα-オレフィンから導かれる構成単位を含まないことが好ましい。 The polyolefin resin (A) may be used alone or in combination of two or more. When the polyolefin resin (A) is a copolymer, it may be a random copolymer or a block copolymer. It is preferable that the polyolefin resin (A) does not contain a structural unit derived from an α-olefin having 4 or more carbon atoms.
 ポリオレフィン樹脂(A)の重量平均分子量は、特に限定されない。しかし、変性ポリオレフィン樹脂の重量平均分子量は、15,000~300,000であることが好ましく、30,000~300,000であることがより好ましく、100,000~300,000であることがさらに好ましく、200,000~300,000であることが特に好ましい。このため、ポリオレフィン樹脂(A)の重量平均分子量が300,000より大きい場合は、得られる変性ポリオレフィン樹脂の重量平均分子量が上記範囲となるように、熱またはラジカルの存在下で減成することが好ましい。本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(標準物質:ポリスチレン)によって測定された値である。たとえば、GPCは、下記の条件で行うことができる。
 測定機器:HLC-8320GPC(東ソー株式会社製)
 溶離液:テトラヒドロフラン
 カラム:TSKgel(東ソー株式会社製)
The weight average molecular weight of the polyolefin resin (A) is not particularly limited. However, the weight average molecular weight of the modified polyolefin resin is preferably from 15,000 to 300,000, more preferably from 30,000 to 300,000, and even more preferably from 100,000 to 300,000. It is particularly preferably from 200,000 to 300,000. For this reason, when the weight average molecular weight of the polyolefin resin (A) is larger than 300,000, it may be degraded in the presence of heat or radicals such that the weight average molecular weight of the resulting modified polyolefin resin falls within the above range. preferable. In the present specification, the weight average molecular weight is a value measured by gel permeation chromatography (standard substance: polystyrene). For example, GPC can be performed under the following conditions.
Measuring equipment: HLC-8320GPC (manufactured by Tosoh Corporation)
Eluent: tetrahydrofuran Column: TSKgel (Tosoh Corporation)
 化合物(B)は、α,β-不飽和カルボン酸およびその酸無水物から選ばれる1種以上である。このように、化合物(B)は、1種単独で用いても2種以上を組み合わせて用いてもよい。α,β-不飽和カルボン酸としては、例えば、フマル酸、マレイン酸、イタコン酸、メサコン酸、シトラコン酸、アコニット酸、ナジック酸が挙げられる。酸無水物としては、例えば、環状構造(好ましくは、-CO-O-CO-基を含む環状構造)を有する酸無水物が挙げられ、無水マレイン酸、無水シトラコン酸、無水イタコン酸、及び無水アコニット酸が好ましく、無水マレイン酸、無水イタコン酸がより好ましい。これらのうちで、非極性基材との付着性を向上させる観点から、無水マレイン酸、無水イタコン酸、マレイン酸が好適であり、無水マレイン酸がより好適である。 The compound (B) is at least one selected from α, β-unsaturated carboxylic acids and acid anhydrides thereof. Thus, the compound (B) may be used alone or in combination of two or more. Examples of the α, β-unsaturated carboxylic acid include fumaric acid, maleic acid, itaconic acid, mesaconic acid, citraconic acid, aconitic acid, and nadic acid. Examples of the acid anhydride include an acid anhydride having a cyclic structure (preferably, a cyclic structure containing a —CO—O—CO— group), and examples thereof include maleic anhydride, citraconic anhydride, itaconic anhydride, and anhydride. Aconitic acid is preferred, and maleic anhydride and itaconic anhydride are more preferred. Among these, maleic anhydride, itaconic anhydride, and maleic acid are preferable, and maleic anhydride is more preferable, from the viewpoint of improving the adhesion to the nonpolar substrate.
 アミン化合物(C)は、炭化水素基を有する。炭化水素基は、飽和炭化水素基および不飽和炭化水素基のいずれでもよく、直鎖状、分岐状および環状のいずれでもよい。炭化水素基としては、たとえば、アルキル基、アルケニル基、アルキニル基が挙げられ、アルキル基およびアルケニル基が好ましい。炭化水素基は、必要に応じてヘテロ原子(例、酸素原子等の、炭素原子および水素原子以外の原子)を含む置換基を有していてもよい。炭化水素基の炭素原子数は、通常6以上または7以上であり、8以上が好ましく、12以上がより好ましい。上限は、22以下が好ましい。炭素原子数は、6~22、7~22、8~22または12~22が好ましい。炭素原子数が上記範囲にあると、上述した付着性および溶解性をバランスよく向上できる。また、変性ポリオレフィン樹脂を塗工する際、タックを小さくできる。 The amine compound (C) has a hydrocarbon group. The hydrocarbon group may be any of a saturated hydrocarbon group and an unsaturated hydrocarbon group, and may be any of linear, branched and cyclic. Examples of the hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group, and an alkyl group and an alkenyl group are preferable. The hydrocarbon group may have a substituent containing a hetero atom (eg, an atom other than a carbon atom and a hydrogen atom such as an oxygen atom) as necessary. The number of carbon atoms of the hydrocarbon group is usually 6 or more, 7 or more, preferably 8 or more, and more preferably 12 or more. The upper limit is preferably 22 or less. The number of carbon atoms is preferably from 6 to 22, 7 to 22, 8 to 22, or 12 to 22. When the number of carbon atoms is in the above range, the above-mentioned adhesion and solubility can be improved in a well-balanced manner. Further, when the modified polyolefin resin is applied, tackiness can be reduced.
 アミン化合物(C)は、少なくとも1つ炭化水素基を有していればよく、2以上の炭化水素基を有していてもよい。 The amine compound (C) may have at least one hydrocarbon group, and may have two or more hydrocarbon groups.
 アミン化合物(C)は、1または2以上の窒素原子を有する化合物であり、通常は1つの窒素原子を有する。アミン化合物(C)としては、例えば、一般式(1)で表されるアミン化合物(C1)および一般式(2)で表されるアミン化合物(C2)である。アミン化合物(C1)は、1種単独で用いても2種以上を組み合わせて用いてもよい。アミン化合物(C2)についても同様である。アミン化合物(C1)1種以上と、アミン化合物(C2)1種以上とを組み合わせて用いてもよい。 The amine compound (C) is a compound having one or more nitrogen atoms, and usually has one nitrogen atom. Examples of the amine compound (C) include an amine compound (C1) represented by the general formula (1) and an amine compound (C2) represented by the general formula (2). The amine compound (C1) may be used alone or in combination of two or more. The same applies to the amine compound (C2). One or more amine compounds (C1) and one or more amine compounds (C2) may be used in combination.
 一般式(1)を以下に示す。
 H2NR11     (1)
 式(1)中、R11は、直鎖状もしくは分岐状の飽和炭化水素基、または直鎖状もしくは分岐状の不飽和炭化水素基を表す。
The general formula (1) is shown below.
H 2 NR 11 (1)
In the formula (1), R 11 represents a linear or branched saturated hydrocarbon group or a linear or branched unsaturated hydrocarbon group.
 直鎖状もしくは分岐状の飽和炭化水素基は、通常は、直鎖状もしくは分岐状のアルキル基であり、直鎖状のアルキル基が好適である。直鎖状のアルキル基の炭素原子数は、通常6以上または7以上であり、8以上が好ましく、12以上がより好ましい。上限は、22以下が好ましい。炭素原子数は、6~22、7~22、8~22または12~22であることが好ましい。炭素原子数が上記範囲にあると、上述した付着性および溶解性をバランスよく向上できる。変性ポリオレフィン樹脂を塗工する際、タックを小さくできる。炭素原子数が6よりも小さすぎると、得られる変性ポリオレフィン樹脂と非極性基材との付着性が低下する場合があり、またタックが大きくなる場合がある。また、炭素原子数が22よりも大きすぎると、変性ポリオレフィン樹脂を溶液とする場合、溶解性が低下する場合がある。 The linear or branched saturated hydrocarbon group is usually a linear or branched alkyl group, and a linear alkyl group is preferable. The number of carbon atoms of the linear alkyl group is usually 6 or more, 7 or more, preferably 8 or more, and more preferably 12 or more. The upper limit is preferably 22 or less. The number of carbon atoms is preferably from 6 to 22, 7 to 22, 8 to 22, or 12 to 22. When the number of carbon atoms is in the above range, the above-mentioned adhesion and solubility can be improved in a well-balanced manner. When coating the modified polyolefin resin, the tack can be reduced. If the number of carbon atoms is less than 6, the adhesion between the resulting modified polyolefin resin and the non-polar substrate may decrease, and the tack may increase. If the number of carbon atoms is too large, the solubility may be reduced when the modified polyolefin resin is used as a solution.
 直鎖状もしくは分岐状の不飽和炭化水素基は、二重結合または三重結合を1つ有していてもよく、二重結合または三重結合を2つ以上有していてもよい。直鎖状もしくは分岐状の不飽和炭化水素基としては、たとえば、直鎖状もしくは分岐状のアルケニル基、直鎖状もしくは分岐状のアルキニル基が挙げられ、直鎖状のアルケニル基が好適である。直鎖状のアルケニル基の炭素原子数は、8以上が好ましく、12以上がより好ましい。上限は、22以下が好ましい。炭素原子数は、6~22、7~22、8~22または12~22であることが好ましい。炭素原子数が上記範囲にあると、上述した付着性および溶解性をバランスよく向上できる。変性ポリオレフィン樹脂を塗工する際、タックを小さくできる。炭素原子数が6よりも小さすぎると、得られる変性ポリオレフィン樹脂と非極性基材との付着性が低下する場合があり、タックが大きくなる場合がある。炭素原子数が22よりも大きすぎると、変性ポリオレフィン樹脂を溶液とする場合、溶解性が低下する場合がある。 The linear or branched unsaturated hydrocarbon group may have one double bond or triple bond, or may have two or more double bonds or triple bonds. Examples of the linear or branched unsaturated hydrocarbon group include a linear or branched alkenyl group and a linear or branched alkynyl group, and a linear alkenyl group is preferable. . The number of carbon atoms of the linear alkenyl group is preferably 8 or more, more preferably 12 or more. The upper limit is preferably 22 or less. The number of carbon atoms is preferably from 6 to 22, 7 to 22, 8 to 22, or 12 to 22. When the number of carbon atoms is in the above range, the above-mentioned adhesion and solubility can be improved in a well-balanced manner. When coating the modified polyolefin resin, the tack can be reduced. If the number of carbon atoms is too small, the adhesion between the resulting modified polyolefin resin and the non-polar substrate may decrease, and the tack may increase. If the number of carbon atoms is too large, the solubility may be reduced when the modified polyolefin resin is used as a solution.
 一般式(2)を以下に示す。
 HNR2122    (2)
 式(2)中、R21およびR22は、それぞれ独立に、直鎖状もしくは分岐状の飽和炭化水素基、または直鎖状もしくは分岐状の不飽和炭化水素基を表す。直鎖状もしくは分岐状の飽和炭化水素基および直鎖状もしくは分岐状の不飽和炭化水素基について、好ましい範囲およびその理由は、アミン化合物(C1)での説明と同様である。
The general formula (2) is shown below.
HNR 21 R 22 (2)
In the formula (2), R 21 and R 22 each independently represent a linear or branched saturated hydrocarbon group or a linear or branched unsaturated hydrocarbon group. The preferred ranges and reasons for the linear or branched saturated hydrocarbon group and the linear or branched unsaturated hydrocarbon group are the same as those described for the amine compound (C1).
 これらのうちで、ポリオレフィン樹脂(A)に対する変性のしやすさから、アミン化合物(C1)が好適であり、アミン化合物(C1)において、式(1)中、R11が、炭素原子数8~22のアルキル基がより好適であり、ドデシルアミン、ステアリルアミン、カプリルアミン、オレイルアミンがさらに好適である。これにより、上述した付着性、溶解性およびタック性をバランスよく向上できる。 Of these, the amine compound (C1) is preferred because of the easiness of modification to the polyolefin resin (A). In the amine compound (C1), in the formula (1), R 11 has 8 to 8 carbon atoms. 22 alkyl groups are more preferred, with dodecylamine, stearylamine, caprylamine, oleylamine being even more preferred. Thereby, the above-mentioned adhesion, solubility and tackiness can be improved in a well-balanced manner.
 変性ポリオレフィン樹脂は、通常、化合物(B)およびアミン化合物(C)に由来するイミド結合またはアミド結合を含む。いいかえると、変性ポリオレフィン樹脂は、ポリオレフィン樹脂(A)に、化合物(B)由来の構造がグラフトされている(グラフト変性)。さらに、この化合物(B)由来の構造を介して、アミン化合物(C)由来の構造が付加されている(付加変性)。したがって、変性ポリオレフィン樹脂は、アミン化合物(C)由来の炭化水素基(R11、R21またはR22)が付加されている。変性ポリオレフィン樹脂では、この炭化水素基が導入されているため、上述した付着性に優れると考えられる。 The modified polyolefin resin usually contains an imide bond or an amide bond derived from the compound (B) and the amine compound (C). In other words, the modified polyolefin resin has a structure derived from the compound (B) grafted to the polyolefin resin (A) (graft modification). Further, a structure derived from the amine compound (C) is added via the structure derived from the compound (B) (additional modification). Therefore, the modified polyolefin resin has a hydrocarbon group (R 11 , R 21 or R 22 ) derived from the amine compound (C). It is considered that the modified polyolefin resin is excellent in the above-mentioned adhesion since the hydrocarbon group is introduced.
 通常、化合物(B)として不飽和カルボン酸の酸無水物を用いた場合は、その酸無水物基部分でアミン化合物(C)と反応して、イミド結合を生成する。通常、化合物(B)として不飽和カルボン酸を用いた場合は、そのカルボキシ基部分でアミン化合物(C)と反応して、アミド結合を生成する。グラフトされた化合物(B)由来の構造のすべてが、アミン化合物(C)と反応してイミド結合またはアミド結合をしていなくてもよい。すなわち、グラフトされた化合物(B)由来の構造の少なくとも一部が、アミン化合物(C)と反応してイミド結合またはアミド結合を形成していればよい。 Generally, when an acid anhydride of an unsaturated carboxylic acid is used as the compound (B), it reacts with the amine compound (C) at the acid anhydride group to generate an imide bond. Usually, when an unsaturated carboxylic acid is used as the compound (B), it reacts with the amine compound (C) at the carboxy group to generate an amide bond. All of the structures derived from the grafted compound (B) may not react with the amine compound (C) to form an imide bond or an amide bond. That is, it is only necessary that at least a part of the structure derived from the grafted compound (B) reacts with the amine compound (C) to form an imide bond or an amide bond.
 これらのうちで、変性ポリオレフィン樹脂に炭化水素基が好ましい量で導入できるため、化合物(B)として不飽和カルボン酸の酸無水物と、アミン化合物(C1)とを組み合わせて用いることが好ましい。この組み合わせによれば、上述した付着性および溶解性をよりバランスよく向上できる。 の う ち Among these, a hydrocarbon group can be introduced into the modified polyolefin resin in a preferable amount. Therefore, it is preferable to use an acid anhydride of an unsaturated carboxylic acid and the amine compound (C1) in combination as the compound (B). According to this combination, the above-mentioned adhesion and solubility can be improved in a better balance.
 変性ポリオレフィン樹脂の重量平均分子量は、15,000~300,000であることが好ましく、30,000~150,000であることがより好ましく、30,000~100,000であることがさらに好ましく、50,000~100,000であることが特に好ましい。重量平均分子量が上記範囲にあると、上述した付着性および溶解性をバランスよく向上できる。 The weight average molecular weight of the modified polyolefin resin is preferably from 15,000 to 300,000, more preferably from 30,000 to 150,000, even more preferably from 30,000 to 100,000, It is particularly preferred that it is between 50,000 and 100,000. When the weight average molecular weight is in the above range, the above-mentioned adhesion and solubility can be improved in a well-balanced manner.
 変性ポリオレフィン樹脂中の化合物(B)の導入量(グラフト重量)は、変性ポリオレフィン樹脂を100重量%とした場合に、たとえば0.1~20重量%である。変性ポリオレフィン樹脂中のアミン化合物(C)の変性重量(付加重量)は、変性ポリオレフィン樹脂を100重量%とした場合に、たとえば0.1~30重量%である。化合物(B)のグラフト重量は、アルカリ滴定法により求めることができる。化合物(B)およびアミン化合物(C)の変性重量が上記範囲にあると、上述した付着性および溶解性をバランスよく向上できる。 (4) The amount of the compound (B) introduced into the modified polyolefin resin (graft weight) is, for example, 0.1 to 20% by weight based on 100% by weight of the modified polyolefin resin. The modified weight (addition weight) of the amine compound (C) in the modified polyolefin resin is, for example, 0.1 to 30% by weight based on 100% by weight of the modified polyolefin resin. The graft weight of the compound (B) can be determined by an alkali titration method. When the modified weight of the compound (B) and the amine compound (C) is in the above range, the above-mentioned adhesion and solubility can be improved in a well-balanced manner.
 変性ポリオレフィン樹脂は、さらに、ラジカル重合性モノマーでグラフト変性されていてもよい。すなわち、変性成分は、化合物(B)およびアミン化合物(C)とともに、ラジカル重合性モノマーを含んでいてもよい。 The modified polyolefin resin may be further graft-modified with a radical polymerizable monomer. That is, the modifying component may contain a radical polymerizable monomer together with the compound (B) and the amine compound (C).
 ラジカル重合性モノマーとしては、(メタ)アクリル化合物、ビニル化合物が挙げられる。(メタ)アクリル化合物とは、分子中に(メタ)アクリロイル基(アクリロイル基および/またはメタアクリロイル基を意味する。)を少なくとも1個含む化合物である。ラジカル重合性モノマーの例としては、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、アセトアセトキシエチル(メタ)アクリレート、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-メチレン-ビス(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、n-ブチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ドデシルビニルエーテル等が挙げられる。中でも、メチル(メタ)アクリレート、エチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレートが好ましく、中でもこれらのメタアクリレートがより好ましい。これらは単独、あるいは2種以上を混合して使用することができ、その混合割合を自由に設定することができる。 (4) Examples of the radical polymerizable monomer include (meth) acrylic compounds and vinyl compounds. The (meth) acrylic compound is a compound containing at least one (meth) acryloyl group (meaning an acryloyl group and / or a methacryloyl group) in a molecule. Examples of the radical polymerizable monomer include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, cyclohexyl (meth) acrylate, hydroxyethyl (meth) acrylate, isobornyl ( (Meth) acrylate, glycidyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) Acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, hydroxyethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate N, N-dimethylaminoethyl (meth) acrylate, acetoacetoxyethyl (meth) acrylate, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) Acrylamide, N-butyl (meth) acrylamide, N-isobutyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-methylene-bis (meth) acrylamide, N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylamide, (meth) acryloylmorpholine, n-butyl vinyl ether, 4-hydroxybutyl vinyl ether, dode Vinyl ether and the like. Among them, methyl (meth) acrylate, ethyl (meth) acrylate, cyclohexyl (meth) acrylate, and lauryl (meth) acrylate are preferable, and these methacrylates are more preferable. These can be used alone or in combination of two or more, and the mixing ratio can be freely set.
 (メタ)アクリル化合物としては、下記一般式(I)で示される(メタ)アクリル酸エステルから選ばれる少なくとも1種以上の化合物を、20重量%以上含むものが好ましい。上記(メタ)アクリル化合物を用いると、変性ポリオレフィン樹脂の分子量分布を狭くすることができ、変性ポリプロピレン樹脂の溶剤溶解性や他樹脂との相溶性をより向上させることができる。
 CH2=CR1COOR2   (I)
 式(I)中、R1=HまたはCH3、R2=Cn2n+1、n=1~18の整数である。nは、8~18の整数であることが好ましい。
As the (meth) acrylic compound, a compound containing at least 20% by weight of at least one compound selected from (meth) acrylic esters represented by the following general formula (I) is preferable. When the (meth) acrylic compound is used, the molecular weight distribution of the modified polyolefin resin can be narrowed, and the solvent solubility of the modified polypropylene resin and the compatibility with other resins can be further improved.
CH 2 = CR 1 COOR 2 (I)
In the formula (I), R 1 = H or CH 3 , R 2 = C n H 2n + 1 , and n is an integer of 1 to 18. n is preferably an integer of 8 to 18.
 ラジカル重合性モノマーの変性ポリオレフィン樹脂中のグラフト重量は、0.1~30重量%が好ましく、より好ましくは、0.5~20重量%である。0.1重量%よりもグラフト重量が少ないと、変性ポリオレフィン樹脂の溶解性ならびに他樹脂との相溶性および接着性が低下する場合がある。30重量%より多いと、反応性が高いために超高分子量体を形成して溶剤溶解性が悪化して好ましくない場合、またはポリオレフィン骨格にグラフトしないホモポリマーおよびコポリマーの生成量が増加して好ましくない場合がある。極性付与剤として塩素を用いない場合、非塩素化変性ポリオレフィン樹脂中での、ラジカル重合性モノマーの導入量(グラフト重量)は、0.5~30重量%が好ましく、より好ましくは1~20重量%である。(メタ)アクリル酸エステルのグラフト重量は、1H-NMRにより求めることができる。 The graft weight of the radically polymerizable monomer in the modified polyolefin resin is preferably from 0.1 to 30% by weight, more preferably from 0.5 to 20% by weight. If the graft weight is less than 0.1% by weight, the solubility of the modified polyolefin resin, the compatibility with other resins, and the adhesiveness may decrease. If the amount is more than 30% by weight, the reactivity is high, so that an ultrahigh molecular weight body is formed to deteriorate the solvent solubility, which is not preferable, or the amount of homopolymer and copolymer not grafted to the polyolefin skeleton is increased, which is preferable. May not be. When chlorine is not used as the polarity-imparting agent, the introduction amount (graft weight) of the radical polymerizable monomer in the non-chlorinated modified polyolefin resin is preferably 0.5 to 30% by weight, more preferably 1 to 20% by weight. %. The graft weight of the (meth) acrylate can be determined by 1 H-NMR.
 ところで、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂は、熱可塑性の汎用樹脂であり、安価で成形性、耐薬品性、耐候性、耐水性、電気特性等多くの優れた性質を有する。このため、従来、シート、フィルム、成形物等として、幅広い分野で使用されている。しかし、これらポリオレフィン樹脂からなる基材(ポリオレフィン基材)は、ポリウレタン系樹脂、ポリアミド樹脂、アクリル系樹脂、ポリエステル樹脂、金属等の極性基材とは異なり、極性が低く、かつ結晶性であるため、難付着性基材として知られている。したがって、同種および異種基材同士の接着および塗装が困難であるという欠点を有する。 By the way, polyolefin resins such as polypropylene and polyethylene are general-purpose thermoplastic resins, and are inexpensive and have many excellent properties such as moldability, chemical resistance, weather resistance, water resistance, and electrical properties. For this reason, it has been conventionally used in a wide range of fields as a sheet, a film, a molded product and the like. However, base materials (polyolefin base materials) made of these polyolefin resins have low polarity and are crystalline, unlike polar base materials such as polyurethane resins, polyamide resins, acrylic resins, polyester resins, and metals. , Known as a non-adhesive substrate. Therefore, there is a drawback that it is difficult to bond and coat the same type and different types of substrates.
 この欠点を改善するために、薬剤による化学的処理、コロナ放電処理、プラズマ処理、火炎処理等の処理により、ポリオレフィン基材表面に極性基を導入する種々の手法が試みられてきている。しかし、これらの手法は、特殊な装置が必要であること、経時的に効果が低減すること等の欠点を有する。 改善 In order to remedy this drawback, various methods for introducing a polar group into the surface of a polyolefin substrate by a chemical treatment with a chemical, a corona discharge treatment, a plasma treatment, a flame treatment or the like have been attempted. However, these methods have drawbacks such as the necessity of a special device and the effect decreasing over time.
 易接着処理として多く使用されているコロナ放電処理は、処理対象(プラスチック基材)の表面に対して、比較的(プラズマ処理よりも)深く表面処理される。このため、薄いフィルム(例、厚さ15μm以下または8μm未満のフィルム)にコロナ放電処理を行うと穴が開きやすい。したがって、このような薄いフィルムにはコロナ放電処理を実質使用できないといった実情がある。 (4) In the corona discharge treatment, which is often used as the easy adhesion treatment, the surface of the object to be treated (plastic substrate) is treated relatively deeper than the plasma treatment. For this reason, when a corona discharge treatment is performed on a thin film (eg, a film having a thickness of 15 μm or less or less than 8 μm), holes are easily formed. Therefore, there is a fact that such a thin film cannot substantially use corona discharge treatment.
 これに対して、基材に対し接着性を有する前処理剤を予め基材表面に塗工する方法が考案されている。たとえば、国際公開第2005/082963号パンフレットには、不飽和カルボン酸およびアクリル誘導体によるグラフト変性によってポリオレフィンに極性基を付与することが記載されている。これをコーティング剤として用いて、ポリプロピレン基材との親和性を高め、接着性の向上を図る方法が見出されている。これらの方法は、ポリプロピレン基材等の各種極性基材への塗装および接着を可能にしたが、より非極性で接着性の乏しいポリエチレン基材には、実用上必要な接着効果がない。 On the other hand, a method has been devised in which a pretreatment agent having adhesiveness to a substrate is applied to the surface of the substrate in advance. For example, WO 2005/082963 describes that a polar group is imparted to a polyolefin by graft modification with an unsaturated carboxylic acid and an acrylic derivative. A method has been found in which this is used as a coating agent to increase the affinity with the polypropylene substrate and improve the adhesiveness. These methods have enabled coating and adhesion to various polar substrates such as a polypropylene substrate, but a non-polar and poorly adherent polyethylene substrate does not have a practically necessary adhesive effect.
 ポリエチレンは、製法およびそれに伴う密度の違いから、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等に大別分類される。これらの基材への接着が困難である理由としては、たとえば、ポリエチレンが非極性かつ低表面エネルギーであること、および高結晶性であることが挙げられる。 Polyethylene is roughly classified into low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and the like, depending on the manufacturing method and the density involved. Reasons for difficulty in adhering to these substrates include, for example, the non-polarity and low surface energy of polyethylene and the high crystallinity.
 これに対して、特許文献1には、極性付与剤、ならびに片末端不飽和結合を有するエチレンおよび炭素原子数3~10のα-オレフィンの共重合体で変性されたポリオレフィン樹脂が記載されている。この変性ポリオレフィン樹脂について、表面処理されていない各種ポリエチレンとの接着性を有すること、低温の処理で十分な接着力を発現することが見出されている。さらに、タックの少ない変性ポリオレフィン樹脂接着剤として有用であることが示されている。しかし、塗工する際に溶液としたときの液状が悪く、白濁する。このため、液状が良好で透明性に優れる変性ポリオレフィン樹脂が求められる。 On the other hand, Patent Document 1 describes a polyolefin resin modified with a polarity-imparting agent and a copolymer of ethylene having an unsaturated bond at one terminal and an α-olefin having 3 to 10 carbon atoms. . It has been found that this modified polyolefin resin has an adhesive property to various polyethylenes that have not been surface-treated, and that the modified polyolefin resin exhibits a sufficient adhesive strength when treated at a low temperature. Further, it has been shown that the modified polyolefin resin adhesive having low tackiness is useful. However, when the solution is applied at the time of coating, the liquid is poor and becomes cloudy. Therefore, a modified polyolefin resin which is good in liquid form and excellent in transparency is required.
 これに対して、本発明の変性ポリオレフィン樹脂は、ポリエチレン(例、LDPE、LLDPE、HDPE)等の非極性樹脂を含む組成物の基材に対して優れた接着力を有し、かつ溶液としたときの液状が良好で透明性に優れる。さらに、コロナ処理等の表面処理を行っていない基材に対しても、優れた接着力を有する。 On the other hand, the modified polyolefin resin of the present invention has excellent adhesive strength to a substrate of a composition containing a non-polar resin such as polyethylene (eg, LDPE, LLDPE, HDPE) and is used as a solution. The liquid at the time is good and excellent in transparency. Furthermore, it has excellent adhesive strength even to a substrate that has not been subjected to surface treatment such as corona treatment.
 本発明の変性ポリオレフィン樹脂は、塩素化ポリオレフィン樹脂でもよい。塩素化ポリオレフィン樹脂は、ポリオレフィン樹脂(A)が上述した変性成分により変性され、さらに塩素化されている樹脂である。塩素化変性ポリオレフィン樹脂も、上述した付着性、溶解性および透明性を発揮し得る。このため、ヒートシール剤、接着剤、プライマー、または塗料用もしくはインキ用バインダーとして好適である。 変 性 The modified polyolefin resin of the present invention may be a chlorinated polyolefin resin. The chlorinated polyolefin resin is a resin in which the polyolefin resin (A) has been modified by the above-described modifying component and is further chlorinated. Chlorinated modified polyolefin resins can also exhibit the above-mentioned adhesion, solubility and transparency. Therefore, it is suitable as a heat sealant, an adhesive, a primer, or a binder for paint or ink.
 <変性ポリオレフィン樹脂の製造方法>
 本発明の変性ポリオレフィン樹脂の製造方法としては、ポリオレフィン樹脂(A)を変性成分により変性して変性ポリオレフィン樹脂が得られる限り、特に限定されない。たとえば、変性ポリオレフィン樹脂の製造方法は、ポリオレフィン樹脂(A)を変性成分により変性して、変性ポリオレフィン樹脂を得る変性工程を含む。
<Method for producing modified polyolefin resin>
The method for producing the modified polyolefin resin of the present invention is not particularly limited, as long as the modified polyolefin resin is obtained by modifying the polyolefin resin (A) with a modifying component. For example, the method for producing a modified polyolefin resin includes a modification step of modifying a polyolefin resin (A) with a modifying component to obtain a modified polyolefin resin.
 より具体的には、変性工程では、まず、ポリオレフィン樹脂(A)を、化合物(B)によりグラフト変性して、酸変性ポリオレフィン樹脂を得る。グラフト重合反応の際には、ラジカル発生剤を用いてもよい。酸変性ポリオレフィン樹脂を得る方法としては、トルエン等の溶剤に化合物(B)を加熱溶解し、ラジカル発生剤を添加する溶液法;バンバリーミキサー、ニーダー、押出機等の機器に、化合物(B)およびラジカル発生剤を添加し混練する溶融混練法が挙げられる。ここで、化合物(B)は一括添加しても、逐次添加してもよい。 More specifically, in the modification step, first, the polyolefin resin (A) is graft-modified with the compound (B) to obtain an acid-modified polyolefin resin. At the time of the graft polymerization reaction, a radical generator may be used. As a method for obtaining the acid-modified polyolefin resin, a solution method in which the compound (B) is dissolved in a solvent such as toluene by heating and a radical generator is added; the compound (B) and a compound such as a Banbury mixer, a kneader, and an extruder are added to a device. A melt kneading method in which a radical generator is added and kneaded is used. Here, the compound (B) may be added all at once or sequentially.
 グラフト重合反応の際には、化合物(B)は、化合物(B)を好ましい量でグラフトする観点から、ポリオレフィン樹脂(A)100質量部に対して、0.1~20質量部の量で用いることが好ましい。 In the graft polymerization reaction, the compound (B) is used in an amount of 0.1 to 20 parts by mass based on 100 parts by mass of the polyolefin resin (A) from the viewpoint of grafting the compound (B) in a preferable amount. Is preferred.
 ラジカル発生剤は、公知のものより適宜選択できるが、有機過酸化物系化合物が好ましい。有機過酸化物系化合物としては、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、ジラウリルパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、シクロヘキサノンパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクトエート、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサンが挙げられる。これらのうちで、ジ-t-ブチルパーオキサイド、ジラウリルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサンが好ましい。 The radical generator can be appropriately selected from known ones, but an organic peroxide compound is preferred. Examples of the organic peroxide compound include di-t-butyl peroxide, dicumyl peroxide, t-butyl cumyl peroxide, benzoyl peroxide, dilauryl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) -cyclohexane, cyclohexanone peroxide, t-butylperoxybenzoate, t- Butylperoxyisobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisopropylcarbonate, cumylperoxyoctoate , 2,5-dimethyl- 5- bis (t-butylperoxy) hexane and the like. Of these, di-t-butyl peroxide, dilauryl peroxide, and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane are preferred.
 ラジカル発生剤の添加量は、使用する化合物(B)100質量%に対し、好ましくは1質量%以上であり、より好ましくは10質量%以上である。1質量%以上であるとグラフト効率を保つことができる。添加量の上限は、好ましくは200質量%以下であり、より好ましくは100質量%以下である。200質量%以下であると経済的に反応を行い得る。 The amount of the radical generator to be added is preferably at least 1% by mass, more preferably at least 10% by mass, based on 100% by mass of the compound (B) used. When the content is 1% by mass or more, graft efficiency can be maintained. The upper limit of the addition amount is preferably 200% by mass or less, more preferably 100% by mass or less. When the content is 200% by mass or less, the reaction can be performed economically.
 酸変性ポリオレフィン樹脂の酸価は、通常0.5mgKOH/g以上であり、5mgKOH/g以上が好ましく、10mgKOH/g以上がより好ましい。上限は、通常115mgKOH/g以下であり、85mgKOH/g以下が好ましく、60mgKOH/g以下がより好ましく、40mgKOH/g以下、30mgKOH/g以下が特に好ましい。 The acid value of the acid-modified polyolefin resin is usually 0.5 mg KOH / g or more, preferably 5 mg KOH / g or more, more preferably 10 mg KOH / g or more. The upper limit is usually 115 mgKOH / g or less, preferably 85 mgKOH / g or less, more preferably 60 mgKOH / g or less, particularly preferably 40 mgKOH / g or less and 30 mgKOH / g or less.
 酸変性ポリオレフィン樹脂の重量平均分子量は、通常15,000以上であり、20,000以上が好ましく、30,000以上がより好ましく、500,000以上が特に好ましい。上限は、通常300,000以下であり、150,000以下が好ましく、100,000以下がより好ましい。 The weight-average molecular weight of the acid-modified polyolefin resin is usually 15,000 or more, preferably 20,000 or more, more preferably 30,000 or more, and particularly preferably 500,000 or more. The upper limit is usually 300,000 or less, preferably 150,000 or less, more preferably 100,000 or less.
 酸変性ポリオレフィン樹脂を得る際、ポリオレフィン樹脂(A)にグラフト重合しない化合物(B)、すなわち未反応物は、たとえば貧溶媒で抽出して除去してもよい。このようにして、酸変性ポリオレフィン樹脂が得られる。 When obtaining the acid-modified polyolefin resin, the compound (B) not graft-polymerized to the polyolefin resin (A), that is, the unreacted product may be removed by extraction with a poor solvent, for example. Thus, an acid-modified polyolefin resin is obtained.
 次いで、酸変性ポリオレフィン樹脂とアミン化合物(C)とを反応(付加反応)させて、変性ポリオレフィン樹脂を得る。変性ポリオレフィン樹脂を得る方法としては、トルエン、キシレン等の溶剤に、酸変性ポリオレフィン樹脂およびアミン化合物(C)を加熱溶解して反応させる溶液法;バンバリーミキサー、ニーダー、押出機等の機器に、酸変性ポリオレフィン樹脂およびアミン化合物(C)を添加し混練して、必要に応じて加熱して反応させる溶融混練法が挙げられる。ここで、アミン化合物(C)は一括添加しても、逐次添加してもよい。 Next, the acid-modified polyolefin resin is reacted with the amine compound (C) (addition reaction) to obtain a modified polyolefin resin. As a method for obtaining a modified polyolefin resin, a solution method in which an acid-modified polyolefin resin and an amine compound (C) are heated and dissolved in a solvent such as toluene or xylene to react; a device such as a Banbury mixer, a kneader or an extruder is used. A melt-kneading method in which a modified polyolefin resin and an amine compound (C) are added and kneaded, and if necessary, heated to react, is used. Here, the amine compound (C) may be added all at once or sequentially.
 アミン化合物(C)の付加反応の際には、アミン化合物(C)は、酸変性ポリオレフィン樹脂100質量部に対して、0.1~30質量部の量で用いることが好ましい。このようにして、上述した変性ポリオレフィン樹脂が得られる。 In the addition reaction of the amine compound (C), the amine compound (C) is preferably used in an amount of 0.1 to 30 parts by mass based on 100 parts by mass of the acid-modified polyolefin resin. Thus, the above-mentioned modified polyolefin resin is obtained.
 変性ポリオレフィン樹脂が、さらに、ラジカル重合性モノマーでグラフト変性されていている場合は、以下のように製造することができる。たとえば、変性工程では、まず、ポリオレフィン樹脂(A)を、化合物(B)およびラジカル重合性モノマーによりグラフト変性して、酸変性ポリオレフィン樹脂を得る。グラフト重合反応の際には、上述のようにラジカル発生剤を用いてもよい。次いで、酸変性ポリオレフィン樹脂とアミン化合物(C)とを反応(付加反応)させて、変性ポリオレフィン樹脂を得る。 When the modified polyolefin resin is further graft-modified with a radical polymerizable monomer, it can be produced as follows. For example, in the modification step, first, the polyolefin resin (A) is graft-modified with the compound (B) and a radical polymerizable monomer to obtain an acid-modified polyolefin resin. At the time of the graft polymerization reaction, a radical generator may be used as described above. Next, the acid-modified polyolefin resin is reacted with the amine compound (C) (addition reaction) to obtain a modified polyolefin resin.
 ここで、ラジカル重合性モノマーとして(メタ)アクリル化合物を用いる場合は、(メタ)アクリル化合物中、式(I)で示される(メタ)アクリル酸エステルから選ばれる少なくとも1種以上の化合物を、20重量%以上の量で用いることが好ましい。ラジカル重合性モノマーは、変性ポリオレフィン樹脂中のグラフト重量が上述した範囲となるような量で用いることが好ましい。 Here, when a (meth) acrylic compound is used as the radical polymerizable monomer, at least one or more compounds selected from the (meth) acrylic acid esters represented by the formula (I) in the (meth) acrylic compound may be used in the form of 20 Preferably, it is used in an amount of at least weight%. The radical polymerizable monomer is preferably used in such an amount that the graft weight in the modified polyolefin resin falls within the above range.
 酸変性ポリオレフィン樹脂の変性成分としての化合物(B)が-CO-O-CO-基を含む環状構造を有する酸無水物を含む場合、酸変性ポリオレフィン樹脂は環状構造に由来する構造を含む。酸変性ポリオレフィン樹脂中の環状構造に由来する構造は、閉環構造(環状構造を維持)を取る場合とまたは空気中の水分などの影響で開環構造となる場合とがあり、通常は両構造が混在している。本明細書において、酸変性ポリオレフィン樹脂が有する環状構造に由来する構造(閉環構造と開環構造の合計)に占める閉環状態の比率(%)を、閉環率と言う。酸変性ポリオレフィン樹脂とアミン化合物(C)との反応開始時における閉環率は、75%以上が好ましく、80%以上がより好ましい。閉環率が高いことにより、反応をより効率的に進行させることができ、付着性および溶解性のより良好な変性ポリオレフィン樹脂を得ることができる。閉環率の上限は100%以下であればよく、特に限定されない。閉環率の調整は、例えば、酸変性ポリオレフィン樹脂の脱水反応によることができる。脱水反応は、加熱処理によればよく、その際の加熱温度は100℃以上が好ましい。加熱処理は、必要に応じて窒素雰囲気下で行ってもよい。 場合 When the compound (B) as a modifying component of the acid-modified polyolefin resin contains an acid anhydride having a cyclic structure containing a -CO-O-CO- group, the acid-modified polyolefin resin contains a structure derived from the cyclic structure. The structure derived from the cyclic structure in the acid-modified polyolefin resin may have a ring-closed structure (maintain the cyclic structure) or may have a ring-opened structure due to the influence of moisture in the air. Mixed. In the present specification, the ratio (%) of the ring-closing state to the structure derived from the cyclic structure (total of the ring-closing structure and the ring-opening structure) of the acid-modified polyolefin resin is referred to as the ring-closing ratio. The ring closure rate at the start of the reaction between the acid-modified polyolefin resin and the amine compound (C) is preferably at least 75%, more preferably at least 80%. When the ring closure ratio is high, the reaction can proceed more efficiently, and a modified polyolefin resin having better adhesion and solubility can be obtained. The upper limit of the ring closure ratio may be 100% or less, and is not particularly limited. The ring closure rate can be adjusted, for example, by a dehydration reaction of the acid-modified polyolefin resin. The dehydration reaction may be performed by heat treatment, and the heating temperature at that time is preferably 100 ° C. or higher. The heat treatment may be performed in a nitrogen atmosphere as needed.
 閉環率は、閉環しているα,β-不飽和カルボン酸誘導体のカルボニル基由来のピーク及び開環しているα,β-不飽和カルボン酸誘導体のカルボニル基由来のピークを赤外吸光スペクトルにより測定し、各測定値から以下の式により算出できる:
(式)
 閉環率R(%)={B/(A+B)}×100
  A:開環しているα,β-不飽和カルボン酸誘導体のカルボニル基由来のピーク高さ
  B:閉環しているα,β-不飽和カルボン酸誘導体のカルボニル基由来のピーク高さ
The ring closure rate is determined by measuring the peak derived from the carbonyl group of the closed α, β-unsaturated carboxylic acid derivative and the peak derived from the carbonyl group of the opened α, β-unsaturated carboxylic acid derivative by infrared absorption spectrum. It can be measured and calculated from each measurement by the following formula:
(formula)
Ring closure ratio R (%) = {B / (A + B)} × 100
A: peak height derived from the carbonyl group of the α, β-unsaturated carboxylic acid derivative which is open B: peak height derived from the carbonyl group of the α, β-unsaturated carboxylic acid derivative which is closed
 塩素化変性ポリオレフィン樹脂の製造方法としては、たとえば、上述した変性工程とともに、さらに塩素化工程を含む方法が挙げられる。塩素化工程は、上述した変性工程で得られた変性ポリオレフィン樹脂(非塩素化変性ポリオレフィン樹脂)を、塩素により塩素化して、塩素化変性ポリオレフィン樹脂を得る工程である。塩素化は、従来公知の方法で行うことができる。塩素化を行わない非塩素化変性ポリオレフィン樹脂は、塩素に由来する成分の残存が好ましくない物質の接着に好適である。塩素化工程を行う時期は特に限定されず、上述した変性工程に先立って実施してもよいし、変性工程の途中で実施してもよいし、変性工程の後に実施してもよい。 As a method for producing the chlorinated modified polyolefin resin, for example, a method including a chlorination step in addition to the above-mentioned modification step can be mentioned. The chlorination step is a step of chlorinating the modified polyolefin resin (non-chlorinated modified polyolefin resin) obtained in the above-described modification step with chlorine to obtain a chlorinated modified polyolefin resin. The chlorination can be performed by a conventionally known method. A non-chlorinated modified polyolefin resin that does not undergo chlorination is suitable for bonding substances whose components derived from chlorine are not desirable to remain. The timing of performing the chlorination step is not particularly limited, and may be performed prior to the above-described modification step, may be performed during the modification step, or may be performed after the modification step.
 <変性ポリオレフィン樹脂の用途>
 本発明のヒートシール剤、接着剤、プライマー、または塗料用もしくはインキ用バインダーは、上述した変性ポリオレフィン樹脂を含む。本発明の変性ポリオレフィン樹脂は、必要に応じて他の成分と組み合わせて、変性ポリオレフィン樹脂組成物として用いてもよい。変性ポリオレフィン樹脂または変性ポリオレフィン樹脂組成物は、上述した優れた付着性、溶解性および透明性により、ヒートシール剤、接着剤、プライマー、塗料用バインダー、インキ用バインダー等のバインダーとして好適である。
<Uses of modified polyolefin resin>
The heat sealant, adhesive, primer, or binder for paint or ink of the present invention contains the above-mentioned modified polyolefin resin. The modified polyolefin resin of the present invention may be used as a modified polyolefin resin composition, if necessary, in combination with other components. The modified polyolefin resin or the modified polyolefin resin composition is suitable as a binder such as a heat sealant, an adhesive, a primer, a binder for paints, a binder for inks, etc. due to the excellent adhesiveness, solubility and transparency described above.
 他の成分としては、硬化剤、溶媒、分散媒、酸化防止剤、光安定剤、紫外線吸収剤、顔料、染料、無機充填剤が挙げられる。これらは、1種単独で用いても2種以上を組み合わせて用いてもよい。 Other components include curing agents, solvents, dispersion media, antioxidants, light stabilizers, ultraviolet absorbers, pigments, dyes, and inorganic fillers. These may be used alone or in combination of two or more.
 硬化剤としては、ポリイソシアネート化合物、エポキシ化合物、ポリアミン化合物、ポリオール化合物、これらの化合物が有する官能基が保護基で保護された硬化剤が挙げられる。硬化剤を配合する場合は、目的に応じて有機スズ化合物、第三級アミン化合物等の触媒を併用してもよい。 Examples of the curing agent include a polyisocyanate compound, an epoxy compound, a polyamine compound, a polyol compound, and a curing agent in which the functional group of these compounds is protected by a protective group. When blending a curing agent, a catalyst such as an organotin compound or a tertiary amine compound may be used in combination depending on the purpose.
 溶媒または分散媒としては、たとえば、芳香族炭化水素(例、トルエン、キシレン)、エステル(例、酢酸エチル、酢酸ブチル、酢酸プロピル)、脂肪族または脂環式炭化水素(例、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ノナン、デカン)、アルコール(例、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール)、グリコールエーテル(例、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコール-t-ブチルエーテル)が挙げられる。 Examples of the solvent or dispersion medium include aromatic hydrocarbons (eg, toluene, xylene), esters (eg, ethyl acetate, butyl acetate, propyl acetate), aliphatic or alicyclic hydrocarbons (eg, cyclohexane, methylcyclohexane) , Ethylcyclohexane, nonane, decane), alcohols (eg, methanol, ethanol, propanol, isopropanol, butanol), and glycol ethers (eg, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol-t-butyl ether).
 さらに、変性ポリオレフィン樹脂組成物は、所望の効果を阻害しない範囲で、接着剤に用いられる他の成分(例、ポリエステル系接着剤、ポリウレタン系接着剤、アクリル系接着剤等の公知の接着剤)、ヒートシール剤に用いられる他の成分、プライマーに用いられる他の成分、バインダーに用いられる他の成分が配合されていてもよい。 Further, the modified polyolefin resin composition may contain other components used in the adhesive (for example, known adhesives such as a polyester-based adhesive, a polyurethane-based adhesive, and an acrylic-based adhesive) as long as the desired effect is not impaired. Other components used for the heat sealant, other components used for the primer, and other components used for the binder may be blended.
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 [実施例1]
 ポリオレフィン樹脂(A)として、プロピレン成分89重量%、エチレン成分11重量%で、重量平均分子量が260,000であるオレフィン共重合体を用いた。このオレフィン共重合体100重量%に対し、無水マレイン酸4重量%と2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン1.5重量%とを用い、これらを二軸押出機に供給し、210℃で溶融混練して反応させた。これにより、酸変性ポリオレフィン樹脂(A1)を得た。得られた酸変性ポリオレフィン樹脂(A1)の重量平均分子量、酸価は、それぞれ98,000、24.3mgKOH/gであった。
 撹拌機、冷却管、および滴下ロートを取りつけた四つ口フラスコ中で、酸変性ポリオレフィン樹脂(A1)100重量部とキシレン100重量部とをあわせ、窒素気流下にて140℃で加熱撹拌した。樹脂が完全に溶解し、かつ無水マレイン酸の閉環率が80%以上となるまで加熱を行った。そののち、ステアリルアミンを8重量部添加し、2時間反応させた。得られた反応溶液をバット上にブローし、乾燥させ、変性ポリオレフィン樹脂(A)を得た。得られた変性ポリオレフィン樹脂(A)の重量平均分子量は、78,000であった。
[Example 1]
As the polyolefin resin (A), an olefin copolymer having a propylene component of 89% by weight, an ethylene component of 11% by weight and a weight average molecular weight of 260,000 was used. With respect to 100% by weight of the olefin copolymer, 4% by weight of maleic anhydride and 1.5% by weight of 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane were used. The mixture was supplied to an extruder and melted and kneaded at 210 ° C. to cause a reaction. Thus, an acid-modified polyolefin resin (A1) was obtained. The weight-average molecular weight and acid value of the obtained acid-modified polyolefin resin (A1) were 98,000 and 24.3 mgKOH / g, respectively.
In a four-necked flask equipped with a stirrer, a condenser, and a dropping funnel, 100 parts by weight of the acid-modified polyolefin resin (A1) and 100 parts by weight of xylene were heated and stirred at 140 ° C. under a nitrogen stream. Heating was performed until the resin was completely dissolved and the ring closure ratio of maleic anhydride became 80% or more. After that, 8 parts by weight of stearylamine was added and reacted for 2 hours. The obtained reaction solution was blown on a vat and dried to obtain a modified polyolefin resin (A). The weight average molecular weight of the obtained modified polyolefin resin (A) was 78,000.
 閉環率Rの測定は、以下の方法によった。
 先ず、変性ポリオレフィン樹脂を有機溶剤に溶解して溶液を得た。次に、KBr板に該溶液を塗布、乾燥して薄膜を形成し、FT-IR(例、「FT/IR-4100」、日本分光社製)にて、400~4000cm-1の赤外吸光スペクトルを観測した。解析は、付属ソフトウェア(例、「Spectro Manager」、日本分光社)によって行った。
 波数1700~1750cm-1に現れるピークを、開環しているα,β-不飽和カルボン酸誘導体のカルボニル基由来のピークに帰属し、ピーク高さをAとした。波数1750~1820cm-1に現れるピークを、閉環しているα,β-不飽和カルボン酸誘導体のカルボニル基由来のピークに帰属し、ピーク高さをBとした。そして、閉環率R(%)を(B/(A+B)×100)の式から算出した。
The ring closure ratio R was measured by the following method.
First, a modified polyolefin resin was dissolved in an organic solvent to obtain a solution. Next, the solution is applied to a KBr plate and dried to form a thin film, and infrared absorption of 400 to 4000 cm −1 is measured by FT-IR (eg, “FT / IR-4100”, manufactured by JASCO Corporation). The spectrum was observed. The analysis was performed with attached software (eg, “Spectro Manager”, JASCO Corporation).
The peak appearing at a wave number of 1700 to 1750 cm −1 was assigned to the peak derived from the carbonyl group of the α, β-unsaturated carboxylic acid derivative that had been opened, and the peak height was designated as A. The peak appearing at a wave number of 1750 to 1820 cm -1 was assigned to the peak derived from the carbonyl group of the closed α, β-unsaturated carboxylic acid derivative, and the peak height was designated as B. Then, the ring closure ratio R (%) was calculated from the formula of (B / (A + B) × 100).
 [実施例2]
 ステアリルアミンを8重量部用いる代わりに、ラウリルアミンを5重量部用いた他は、実施例1と同様にして、変性ポリオレフィン樹脂(A)を得た。得られた変性ポリオレフィン樹脂(A)の重量平均分子量は、73,000であった。
[Example 2]
A modified polyolefin resin (A) was obtained in the same manner as in Example 1, except that 5 parts by weight of laurylamine was used instead of 8 parts by weight of stearylamine. The weight average molecular weight of the obtained modified polyolefin resin (A) was 73,000.
 [実施例3]
 ステアリルアミンを8重量部用いる代わりに、オレイルアミンを8重量部用いた他は、実施例1と同様にして、変性ポリオレフィン樹脂(A)を得た。得られた変性ポリオレフィン樹脂(A)の重量平均分子量は、73,000であった。
[Example 3]
A modified polyolefin resin (A) was obtained in the same manner as in Example 1, except that 8 parts by weight of oleylamine was used instead of 8 parts by weight of stearylamine. The weight average molecular weight of the obtained modified polyolefin resin (A) was 73,000.
 [実施例4]
 ステアリルアミンを8重量部用いる代わりに、カプリルアミンを4重量部用いた他は、実施例1と同様にして、変性ポリオレフィン樹脂(A)を得た。得られた変性ポリオレフィン樹脂(A)の重量平均分子量は、76,000であった。
[Example 4]
A modified polyolefin resin (A) was obtained in the same manner as in Example 1, except that 4 parts by weight of caprylamine was used instead of 8 parts by weight of stearylamine. The weight average molecular weight of the obtained modified polyolefin resin (A) was 76,000.
 [実施例5]
 ポリオレフィン樹脂(A)として、プロピレン成分80重量%、ブテン成分20重量%で、重量平均分子量が300,000であるオレフィン共重合体を用いた。このオレフィン共重合体100重量%に対し、無水マレイン酸4重量%とジ-tert-ブチルパーオキサイド3重量%とを用い、これらを二軸押出機に供給し、210℃で溶融混練して反応させた。これにより、酸変性ポリオレフィン樹脂(A2)を得た。得られた酸変性ポリオレフィン樹脂(A2)の重量平均分子量、酸価は、それぞれ74,000、17.8mgKOH/gであった。
 酸変性ポリオレフィン樹脂(A2)を用いた他は、実施例1と同様にして変性ポリオレフィン樹脂(A)を得た。得られた変性ポリオレフィン樹脂(A)の重量平均分子量は、73,000であった。
[Example 5]
As the polyolefin resin (A), an olefin copolymer having a propylene component of 80% by weight and a butene component of 20% by weight and a weight average molecular weight of 300,000 was used. Using 4% by weight of maleic anhydride and 3% by weight of di-tert-butyl peroxide with respect to 100% by weight of this olefin copolymer, supply them to a twin-screw extruder, melt-knead at 210 ° C. and react. I let it. Thus, an acid-modified polyolefin resin (A2) was obtained. The weight-average molecular weight and the acid value of the obtained acid-modified polyolefin resin (A2) were 74,000 and 17.8 mgKOH / g, respectively.
A modified polyolefin resin (A) was obtained in the same manner as in Example 1, except that the acid-modified polyolefin resin (A2) was used. The weight average molecular weight of the obtained modified polyolefin resin (A) was 73,000.
 [実施例6]
 ポリオレフィン樹脂(A)として、プロピレン成分88重量%、エチレン成分12重量%で、重量平均分子量が49,000であるオレフィン共重合体を用いた。このオレフィン共重合体114重量%に対し、無水マレイン酸4重量%、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン1.5重量%、およびラウリルメタクリレート3重量%を用い、これらを二軸押出機に供給し、170℃で溶融混練して反応させた。これにより、酸変性ポリオレフィン樹脂(A3)を得た。得られた酸変性ポリオレフィン樹脂(A3)の重量平均分子量、酸価は、それぞれ72,000、19.3mgKOH/gであった。
 酸変性ポリオレフィン樹脂(A3)を用いた他は、実施例1と同様にして変性ポリオレフィン樹脂(A)を得た。得られた変性ポリオレフィン樹脂(A)の重量平均分子量は、60,000であった。
[Example 6]
As the polyolefin resin (A), an olefin copolymer having a propylene component of 88% by weight, an ethylene component of 12% by weight and a weight average molecular weight of 49,000 was used. 4% by weight of maleic anhydride, 1.5% by weight of 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane and 3% by weight of lauryl methacrylate were added to 114% by weight of the olefin copolymer. These were supplied to a twin-screw extruder, and were melt-kneaded at 170 ° C. and reacted. Thus, an acid-modified polyolefin resin (A3) was obtained. The weight-average molecular weight and the acid value of the obtained acid-modified polyolefin resin (A3) were 72,000 and 19.3 mgKOH / g, respectively.
A modified polyolefin resin (A) was obtained in the same manner as in Example 1, except that the acid-modified polyolefin resin (A3) was used. The weight average molecular weight of the resulting modified polyolefin resin (A) was 60,000.
 [比較例1]
 実施例1と同様にして、酸変性ポリオレフィン樹脂(A1)を得た。酸変性ポリオレフィン樹脂(A1)とアミン化合物(C)との反応は行わなかった。
[Comparative Example 1]
An acid-modified polyolefin resin (A1) was obtained in the same manner as in Example 1. The reaction between the acid-modified polyolefin resin (A1) and the amine compound (C) was not performed.
 [比較例2]
 実施例6と同様にして、酸変性ポリオレフィン樹脂(A3)を得た。酸変性ポリオレフィン樹脂(A3)とアミン化合物(C)との反応は行わなかった。
[Comparative Example 2]
An acid-modified polyolefin resin (A3) was obtained in the same manner as in Example 6. The reaction between the acid-modified polyolefin resin (A3) and the amine compound (C) was not performed.
 [比較例3]
 プロピレン成分97モル%、エチレン成分3モル%で、重量平均分子量が80,000、Tm=72℃)であるオレフィン共重合体100重量部、無水マレイン酸5重量部、ラウリルメタクリレート3重量部、ポリエチレン(重量平均分子量2,000、片末端不飽和結合を有する主鎖末端97%、エチレン単位100モル%、Mw/Mn1.5)40重量部、およびジ-t-ブチルパーオキサイド1.5重量部を、170℃に設定した二軸押出機を用いて混練反応した。押出機内にて減圧脱気を行い、残留する未反応物を除去した。得られた変性ポリオレフィン樹脂は、重量平均分子量が66,000であった。
[Comparative Example 3]
97 parts by weight of a propylene component, 3 parts by weight of an ethylene component, 100 parts by weight of an olefin copolymer having a weight average molecular weight of 80,000 and Tm = 72 ° C.), 5 parts by weight of maleic anhydride, 3 parts by weight of lauryl methacrylate, polyethylene (Weight-average molecular weight: 2,000, main chain terminal having an unsaturated bond at one end: 97%, ethylene unit: 100 mol%, Mw / Mn 1.5) 40 parts by weight, and di-t-butyl peroxide 1.5 parts by weight Was subjected to a kneading reaction using a twin-screw extruder set at 170 ° C. Vacuum deaeration was performed in the extruder to remove remaining unreacted substances. The resulting modified polyolefin resin had a weight average molecular weight of 66,000.
 <評価方法>
 実施例1~6、比較例1~3で得られた変性ポリオレフィン樹脂について、下記の方法にしたがって評価を行った。評価結果を表1に示す。
<Evaluation method>
The modified polyolefin resins obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were evaluated according to the following methods. Table 1 shows the evaluation results.
 (付着試験)
 まず、トルエンに固形分15%となるように変性ポリオレフィン樹脂を溶解した溶液を調製した。次に、表面処理が施されていないアルミニウムフィルムに、♯16のマイヤーバーを用いて、上記溶液を塗工し、23℃、湿度50%の環境下で24時間乾燥した。乾燥後、樹脂塗布面に表面処理が施されていないポリエチレンフィルム(直鎖状低密度ポリエチレン(LLDPE)または高密度ポリエチレン(HDPE)フィルム)を重ね合わせ、No.276ヒートシールテスタ(安田精機製作所)を用い、圧力2.0kgf/cm2、10sの条件でヒートシールを行った。各試験片を15mm幅となるように切断し、引張試験機を用いて100mm/minで引き剥がし、その剥離強度を測定した。3回試験を行って、その平均値を剥離強度とし、以下の評価基準に従い評価を行った。剥離はすべて変性ポリオレフィン樹脂層とポリエチレンフィルムとの間で起こった。
(Adhesion test)
First, a solution in which a modified polyolefin resin was dissolved in toluene so as to have a solid content of 15% was prepared. Next, the aluminum film that had not been subjected to the surface treatment was coated with the above solution using a # 16 Meyer bar, and dried under an environment of 23 ° C. and 50% humidity for 24 hours. After drying, a polyethylene film (linear low-density polyethylene (LLDPE) or high-density polyethylene (HDPE) film) that has not been subjected to a surface treatment is overlaid on the resin-coated surface. Using a 276 heat seal tester (Yasuda Seiki Seisakusho), heat seal was performed under the conditions of a pressure of 2.0 kgf / cm 2 and 10 s. Each test piece was cut to a width of 15 mm, peeled off at 100 mm / min using a tensile tester, and the peel strength was measured. The test was performed three times, and the average value was defined as the peel strength, and the evaluation was performed according to the following evaluation criteria. All exfoliation occurred between the modified polyolefin resin layer and the polyethylene film.
 ・評価基準
 A:剥離強度が200gf/15mm以上
 B:剥離強度が150gf/15mm以上200gf/15mm未満
 C:剥離強度が100gf/15mm以上150gf/15mm未満
 D:剥離強度が100gf/15mm未満
-Evaluation criteria A: Peel strength is 200 gf / 15 mm or more B: Peel strength is 150 gf / 15 mm or more and less than 200 gf / 15 mm C: Peel strength is 100 gf / 15 mm or more and less than 150 gf / 15 mm D: Peel strength is less than 100 gf / 15 mm
 (タック試験)
 まず、トルエンに固形分15%となるように変性ポリオレフィン樹脂を溶解した溶液を調製した。次に、表面処理が施されていないポリエチレンフィルムに、#10のマイヤーバーを用いて、上記溶液を塗工し、23℃、湿度50%の環境下で24時間乾燥した。乾燥後、塗布面が重なるようにフィルムを折り曲げ、指で軽く押さえた後で引きはがし、そのはがれやすさからタック性を評価した。
(Tack test)
First, a solution in which a modified polyolefin resin was dissolved in toluene so as to have a solid content of 15% was prepared. Next, the above solution was applied to a polyethylene film that had not been subjected to a surface treatment using a # 10 Meyer bar, and dried under an environment of 23 ° C. and 50% humidity for 24 hours. After drying, the film was bent so that the coated surfaces overlap, and the film was lightly pressed with a finger, peeled off, and the tackiness was evaluated from the ease of peeling.
 ・評価基準
 A:指を離した直後にフィルムが乖離し、タックは認められない
 B:指を離した後、数秒後までにフィルムが乖離する
 C:指を離した後、10秒以上経過してもフィルムが乖離しない
-Evaluation criteria A: The film separates immediately after releasing the finger, and no tack is recognized. B: The film separates within several seconds after releasing the finger. C: 10 seconds or more have elapsed after releasing the finger. Even if the film does not separate
 (溶液外観)
 まず、トルエンに固形分15%となるように変性ポリオレフィン樹脂を溶解した溶液を調製した。次に、上記溶液を225mL瓶に入れ、21℃の恒温室に静置し、一週間経過後の溶液外観を目視で確認した。溶解性の評価として、試料の入った瓶を横方向から観察し、反対側にある文字が見えるか見えないかで確認を行った。
(Solution appearance)
First, a solution in which a modified polyolefin resin was dissolved in toluene so as to have a solid content of 15% was prepared. Next, the solution was placed in a 225 mL bottle, and allowed to stand in a constant temperature room at 21 ° C., and the appearance of the solution after one week had been visually observed. As an evaluation of solubility, the bottle containing the sample was observed from the lateral direction, and it was confirmed whether characters on the opposite side were visible or invisible.
 ・評価基準
 A:横から見た際に、反対側にある文字がはっきりと見える(クリア)
 B:文字が見えない(濁)
-Evaluation criteria A: When viewed from the side, the character on the opposite side is clearly visible (clear)
B: Characters are not visible (turbid)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (17)

  1.  ポリオレフィン樹脂(A)が変性成分により変性されており、
     前記変性成分は、α,β-不飽和カルボン酸およびその酸無水物から選ばれる1種以上の化合物(B)と、炭化水素基を有するアミン化合物(C)とを含む、
     変性ポリオレフィン樹脂。
    The polyolefin resin (A) is modified by a modifying component,
    The modifying component includes at least one compound (B) selected from α, β-unsaturated carboxylic acids and acid anhydrides thereof, and an amine compound (C) having a hydrocarbon group.
    Modified polyolefin resin.
  2.  前記変性ポリオレフィン樹脂が、前記化合物(B)および前記アミン化合物(C)に由来するイミド結合またはアミド結合を含む、請求項1に記載の変性ポリオレフィン樹脂。 The modified polyolefin resin according to claim 1, wherein the modified polyolefin resin contains an imide bond or an amide bond derived from the compound (B) and the amine compound (C).
  3.  前記アミン化合物(C)が有する炭化水素基が、炭素原子数6~22のアルキル基又はアルケニル基である、請求項1または2に記載の変性ポリオレフィン樹脂。 The modified polyolefin resin according to claim 1, wherein the hydrocarbon group contained in the amine compound (C) is an alkyl group or an alkenyl group having 6 to 22 carbon atoms.
  4.  前記アミン化合物(C)が、下記式(1)で表されるアミン化合物(C1)または下記式(2)で表されるアミン化合物(C2)である、請求項1~3のいずれか1項に記載の変性ポリオレフィン樹脂。
     H2NR11     (1)
     HNR2122    (2)
     (式(1)中、R11は、直鎖状もしくは分岐状の飽和炭化水素基、または直鎖状もしくは分岐状の不飽和炭化水素基を表し、式(2)中、R21およびR22は、それぞれ独立に、直鎖状もしくは分岐状の飽和炭化水素基、または直鎖状もしくは分岐状の不飽和炭化水素基を表す。)
    The amine compound (C) according to any one of claims 1 to 3, wherein the amine compound (C) is an amine compound (C1) represented by the following formula (1) or an amine compound (C2) represented by the following formula (2). 3. The modified polyolefin resin according to item 1.
    H 2 NR 11 (1)
    HNR 21 R 22 (2)
    (In the formula (1), R 11 represents a linear or branched saturated hydrocarbon group or a linear or branched unsaturated hydrocarbon group, and in the formula (2), R 21 and R 22 Each independently represents a linear or branched saturated hydrocarbon group, or a linear or branched unsaturated hydrocarbon group.)
  5.  前記アミン化合物(C)が、前記式(1)で表されるアミン化合物であり、前記式(1)中、R11が、炭素原子数6~22のアルキル基又はアルケニル基である、請求項4に記載の変性ポリオレフィン樹脂。 The amine compound (C) is an amine compound represented by the formula (1), and in the formula (1), R 11 is an alkyl group or an alkenyl group having 6 to 22 carbon atoms. 5. The modified polyolefin resin according to 4.
  6.  前記ポリオレフィン樹脂(A)が、エチレンから導かれる構成単位を含む重合体である、請求項1~5のいずれか1項に記載の変性ポリオレフィン樹脂。 The modified polyolefin resin according to any one of claims 1 to 5, wherein the polyolefin resin (A) is a polymer containing a structural unit derived from ethylene.
  7.  前記変性成分が、さらに、ラジカル重合性モノマーを含む、請求項1~6のいずれか1項に記載の変性ポリオレフィン樹脂。 The modified polyolefin resin according to any one of claims 1 to 6, wherein the modified component further contains a radical polymerizable monomer.
  8.  前記変性ポリオレフィン樹脂が、塩素化変性ポリオレフィン樹脂である、請求項1~7のいずれか1項に記載の変性ポリオレフィン樹脂。 変 性 The modified polyolefin resin according to any one of claims 1 to 7, wherein the modified polyolefin resin is a chlorinated modified polyolefin resin.
  9.  請求項1~8のいずれか1項に記載の変性ポリオレフィン樹脂を含むヒートシール剤、接着剤、プライマー、又は、塗料用若しくはインキ用バインダー。 A heat sealant, an adhesive, a primer, or a paint or ink binder containing the modified polyolefin resin according to any one of claims 1 to 8.
  10.  ポリオレフィン樹脂(A)を変性成分により変性して、変性ポリオレフィン樹脂を得る変性工程を含み、
     前記変性成分は、α,β-不飽和カルボン酸およびその酸無水物から選ばれる1種以上の化合物(B)と、炭化水素基を有するアミン化合物(C)とを含む、
     変性ポリオレフィン樹脂の製造方法。
    A modifying step of modifying the polyolefin resin (A) with a modifying component to obtain a modified polyolefin resin,
    The modifying component includes at least one compound (B) selected from α, β-unsaturated carboxylic acids and acid anhydrides thereof, and an amine compound (C) having a hydrocarbon group.
    A method for producing a modified polyolefin resin.
  11.  前記変性工程が、前記ポリオレフィン樹脂(A)を、前記化合物(B)によりグラフト変性して、酸変性ポリオレフィン樹脂を得、次いで、前記酸変性ポリオレフィン樹脂と前記アミン化合物(C)とを反応させて、前記変性ポリオレフィン樹脂を得る工程である、請求項10に記載の変性ポリオレフィン樹脂の製造方法。 In the modification step, the polyolefin resin (A) is graft-modified with the compound (B) to obtain an acid-modified polyolefin resin, and then the acid-modified polyolefin resin is reacted with the amine compound (C). The method for producing a modified polyolefin resin according to claim 10, which is a step of obtaining the modified polyolefin resin.
  12.  前記変性ポリオレフィン樹脂が、前記化合物(B)および前記アミン化合物(C)に由来するイミド結合またはアミド結合を含む、請求項10または11に記載の変性ポリオレフィン樹脂の製造方法。 The method for producing a modified polyolefin resin according to claim 10 or 11, wherein the modified polyolefin resin contains an imide bond or an amide bond derived from the compound (B) and the amine compound (C).
  13.  前記アミン化合物(C)が有する炭化水素基が、炭素原子数6~22のアルキル基またはアルケニル基である、請求項10~12のいずれか1項に記載の変性ポリオレフィン樹脂の製造方法。 The method for producing a modified polyolefin resin according to any one of claims 10 to 12, wherein the hydrocarbon group contained in the amine compound (C) is an alkyl group or an alkenyl group having 6 to 22 carbon atoms.
  14.  前記アミン化合物(C)が、下記式(1)で表されるアミン化合物(C1)または下記式(2)で表されるアミン化合物(C2)である、請求項10~13のいずれか1項に記載の変性ポリオレフィン樹脂の製造方法。
     H2NR11     (1)
     HNR2122    (2)
     (式(1)中、R11は、直鎖状もしくは分岐状の飽和炭化水素基、または直鎖状もしくは分岐状の不飽和炭化水素基を表し、式(2)中、R21およびR22は、それぞれ独立に、直鎖状もしくは分岐状の飽和炭化水素基、または直鎖状もしくは分岐状の不飽和炭化水素基を表す。)
    14. The amine compound according to claim 10, wherein the amine compound (C) is an amine compound (C1) represented by the following formula (1) or an amine compound (C2) represented by the following formula (2). 3. The method for producing a modified polyolefin resin according to item 1.
    H 2 NR 11 (1)
    HNR 21 R 22 (2)
    (In the formula (1), R 11 represents a linear or branched saturated hydrocarbon group or a linear or branched unsaturated hydrocarbon group, and in the formula (2), R 21 and R 22 Each independently represents a linear or branched saturated hydrocarbon group, or a linear or branched unsaturated hydrocarbon group.)
  15.  前記アミン化合物(C)が、前記式(1)で表されるアミン化合物であり、前記式(1)中、R11が、炭素原子数6~22のアルキル基又はアルケニル基である、請求項14に記載の変性ポリオレフィン樹脂の製造方法。 The amine compound (C) is an amine compound represented by the formula (1), and in the formula (1), R 11 is an alkyl group or an alkenyl group having 6 to 22 carbon atoms. 15. The method for producing a modified polyolefin resin according to 14.
  16.  前記ポリオレフィン樹脂(A)が、エチレンから導かれる構成単位を含む重合体である、請求項10~15のいずれか1項に記載の変性ポリオレフィン樹脂の製造方法。 The method for producing a modified polyolefin resin according to any one of claims 10 to 15, wherein the polyolefin resin (A) is a polymer containing a structural unit derived from ethylene.
  17.  さらに、前記変性工程で得られた前記変性ポリオレフィン樹脂を、塩素により塩素化して、塩素化変性ポリオレフィン樹脂を得る塩素化工程を含む、請求項10~16のいずれか1項に記載の変性ポリオレフィン樹脂の製造方法。 The modified polyolefin resin according to any one of claims 10 to 16, further comprising a chlorination step of chlorinating the modified polyolefin resin obtained in the modification step with chlorine to obtain a chlorinated modified polyolefin resin. Manufacturing method.
PCT/JP2019/032692 2018-08-24 2019-08-21 Modified polyolefin resin and method for producing same WO2020040217A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020538446A JP7377804B2 (en) 2018-08-24 2019-08-21 Modified polyolefin resin and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-157030 2018-08-24
JP2018157030 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040217A1 true WO2020040217A1 (en) 2020-02-27

Family

ID=69592023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032692 WO2020040217A1 (en) 2018-08-24 2019-08-21 Modified polyolefin resin and method for producing same

Country Status (2)

Country Link
JP (1) JP7377804B2 (en)
WO (1) WO2020040217A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190929A1 (en) * 2022-03-31 2023-10-05 東洋紡エムシー株式会社 Active energy ray curable polyolefin resin and aqueous resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165605A (en) * 1987-12-23 1989-06-29 Showa Denko Kk Modified ethylene copolymer and its vulcanizate
JP2001518551A (en) * 1997-10-01 2001-10-16 エクソンモービル・ケミカル・パテンツ・インク Copolymers of ethylene α-olefin macromers and dicarboxylic acid monomers and derivatives thereof useful as additives for lubricating oils and fuels
JP2006225551A (en) * 2005-02-18 2006-08-31 Unitika Ltd Aqueous dispersion and laminate
JP2009079078A (en) * 2007-09-25 2009-04-16 Toyo Kasei Kogyo Co Ltd Production method of aqueous resin dispersion composition
JP4848011B2 (en) * 2006-07-25 2011-12-28 日本製紙ケミカル株式会社 Modified polyolefin resin and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165605A (en) * 1987-12-23 1989-06-29 Showa Denko Kk Modified ethylene copolymer and its vulcanizate
JP2001518551A (en) * 1997-10-01 2001-10-16 エクソンモービル・ケミカル・パテンツ・インク Copolymers of ethylene α-olefin macromers and dicarboxylic acid monomers and derivatives thereof useful as additives for lubricating oils and fuels
JP2006225551A (en) * 2005-02-18 2006-08-31 Unitika Ltd Aqueous dispersion and laminate
JP4848011B2 (en) * 2006-07-25 2011-12-28 日本製紙ケミカル株式会社 Modified polyolefin resin and use thereof
JP2009079078A (en) * 2007-09-25 2009-04-16 Toyo Kasei Kogyo Co Ltd Production method of aqueous resin dispersion composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190929A1 (en) * 2022-03-31 2023-10-05 東洋紡エムシー株式会社 Active energy ray curable polyolefin resin and aqueous resin composition

Also Published As

Publication number Publication date
JPWO2020040217A1 (en) 2021-08-26
JP7377804B2 (en) 2023-11-10

Similar Documents

Publication Publication Date Title
US8236900B2 (en) Modified polyolefin resin and uses thereof
JP6970095B2 (en) Modified polyolefin resin
JP7100456B2 (en) Modified polyolefin resin
US6495629B2 (en) Modified polyolefin resin composition and uses thereof
JP7322207B2 (en) Chlorinated polyolefin resin composition
JP2015105294A (en) Modified poly olefine based resin
JP2008214414A (en) Modified polyolefin dispersion resin composition and primer containing it
JP6902885B2 (en) Modified polyolefin resin
JP7377804B2 (en) Modified polyolefin resin and its manufacturing method
JPH0413747A (en) Resin composition
CN110023356B (en) Modified polyolefin resin
JP2004277617A (en) Binder resin solution composition having high fluidity at low temperature
WO2018128111A1 (en) Modified polyolefin resin
JP7297736B2 (en) Modified polyolefin resin and its use
JP7362028B2 (en) Modified polyolefin resin
JP7175183B2 (en) Modified polyolefin resin
JP7258061B2 (en) Modified polyolefin resin
TWI824076B (en) Modified polyolefin resin
JP7451118B2 (en) Modified polyolefin resin
JP2022032386A (en) Modified polyolefin resin composition
WO2019168107A1 (en) Resin composition
JP2020037687A (en) Modified polyolefin resin and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538446

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850899

Country of ref document: EP

Kind code of ref document: A1