WO2020040042A1 - Chemical solution and chemical solution container - Google Patents

Chemical solution and chemical solution container Download PDF

Info

Publication number
WO2020040042A1
WO2020040042A1 PCT/JP2019/032088 JP2019032088W WO2020040042A1 WO 2020040042 A1 WO2020040042 A1 WO 2020040042A1 JP 2019032088 W JP2019032088 W JP 2019032088W WO 2020040042 A1 WO2020040042 A1 WO 2020040042A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
content
oxide particles
chemical solution
metal component
Prior art date
Application number
PCT/JP2019/032088
Other languages
French (fr)
Japanese (ja)
Inventor
上村 哲也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020538347A priority Critical patent/JPWO2020040042A1/en
Publication of WO2020040042A1 publication Critical patent/WO2020040042A1/en
Priority to JP2022152895A priority patent/JP7416883B2/en
Priority to JP2023220184A priority patent/JP2024026548A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Definitions

  • the present invention relates to a drug solution and a drug solution container.
  • a semiconductor device by a wiring forming process including photolithography, a pre-wet solution, a resist solution (composition for forming a resist film), a developing solution, a rinsing solution, a stripping solution, and chemical mechanical polishing (CMP).
  • a chemical solution containing water and / or an organic solvent is used as a slurry, a cleaning solution after CMP, or a diluent thereof.
  • miniaturization of patterns has been progressing due to the progress of photolithography technology.
  • pattern miniaturization pattern formation using an ultraviolet light, a KrF excimer laser, an ArF excimer laser, EUV (extreme ultraviolet light), or the like as an exposure light source has been attempted.
  • EUV extreme ultraviolet light
  • Patent Literature 1 discloses, as a conventional chemical solution used for pattern formation, “a method for producing an organic treatment solution for patterning a chemically amplified resist film capable of reducing generation of particles in a pattern formation technique (paragraph [0010]). ) "Is disclosed.
  • the present inventors have conducted intensive studies to solve the above-described problems, and as a result, have found that the above-described problems can be solved by the following configuration.
  • a chemical solution containing an organic solvent and a metal component contains titanium oxide particles, and titanium ions, To the content of titanium ions, the mass ratio of the content of titanium oxide particles is 10 0 to 10 12, the drug solution.
  • the chemical according to (1) wherein the content of titanium ions is 0.10 to 100 mass ppt based on the total mass of the chemical.
  • the chemical solution according to (1) or (2), wherein the content of the titanium oxide particles is 5% by mass or more and less than 99% by mass with respect to the content of the titanium component in the metal component.
  • the metal component contains iron ions, The chemical solution according to any one of (1) to (4), wherein the content of iron ions is 0.10 to 100 mass ppt with respect to the total mass of the chemical solution.
  • the metal component contains iron oxide particles, The chemical solution according to any one of (1) to (5), wherein the content of the iron oxide particles is 5% by mass or more and less than 99% by mass based on the content of the iron component in the metal component.
  • the metal component contains iron oxide particles, The chemical solution according to any one of (1) to (6), wherein the proportion of the iron oxide particles having a particle size of 0.5 to 17 nm is 60% by mass or more and less than 98% by mass.
  • the metal component contains iron oxide particles and iron ions, To the content of iron ions, the mass ratio of the content of the iron oxide particles is 10 0 to 10 12, the drug solution according to any one of (1) to (7).
  • the metal component contains aluminum ions, The chemical solution according to any one of (1) to (8), wherein the content of aluminum ions is 0.10 to 100 mass ppt with respect to the total mass of the chemical solution.
  • the metal component contains aluminum oxide particles, The chemical solution according to any one of (1) to (9), wherein the content of the aluminum oxide particles is 5% by mass or more and less than 99% by mass based on the content of the aluminum component in the metal component.
  • the metal component contains aluminum oxide particles, The chemical solution according to any one of (1) to (10), wherein a proportion of the aluminum oxide particles having a particle size of 0.5 to 17 nm is 60% by mass or more and less than 98% by mass. (12)
  • the metal component contains aluminum oxide particles and aluminum ions, To the content of aluminum ions, the mass ratio of the content of aluminum oxide particles is 10 0 to 10 12, the drug solution according to any one of (1) to (11).
  • the metal component contains copper oxide particles, The chemical solution according to any one of (1) to (12), wherein the content of the copper oxide particles is 5% by mass or more and less than 99% by mass with respect to the content of the copper component in the metal component.
  • the metal component contains copper oxide particles, The chemical solution according to any one of (1) to (13), wherein the proportion of the copper oxide particles having a particle size of 0.5 to 17 nm is 60% by mass or more and less than 98% by mass.
  • the metal component contains copper oxide particles and copper ions, To the content of copper ions, the mass ratio of the content of copper oxide particles is 10 0 to 10 12, the drug solution according to any one of (1) to (14).
  • It It further contains organic impurities, The chemical solution according to any one of (1) to (15), wherein the content of the organic impurities is 1,000 to 100,000 mass ppt based on the total mass of the chemical solution.
  • the organic solvent is propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, ethyl lactate, propylene carbonate, isopropanol, 4-methyl-2-pentanol, butyl acetate, propylene glycol monoethyl ether, propylene glycol monopropyl Ether, methyl methoxypropionate, cyclopentanone, ⁇ -butyrolactone, diisoamyl ether, isoamyl acetate, dimethyl sulfoxide, N-methylpyrrolidone, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, sulfolane, cycloheptanone , 2-heptanone, butyl butyrate
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • ppm means “parts-per-million (10 ⁇ 6 )”
  • ppb means “parts-per-billion (10 ⁇ 9 )”
  • ppt means “Parts-per-trillion (10 ⁇ 12 )” means “parts-per-quadrillion (10 ⁇ 15 )”.
  • the notation that does not indicate substitution or unsubstitution means a group containing a substituent together with a group having no substituent within a range not impairing the effect of the present invention.
  • the “hydrocarbon group” includes not only a hydrocarbon group having no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group having a substituent (substituted hydrocarbon group). This is the same for each compound.
  • “radiation” in the present invention means, for example, far ultraviolet rays, extreme ultraviolet (EUV), X-rays, or electron beams. In the present invention, light means actinic rays or radiation.
  • the term “exposure” in the present invention includes not only exposure with far ultraviolet rays, X-rays or EUV, but also drawing with particle beams such as electron beams or ion beams.
  • the present inventors presume the mechanism as follows. In addition, the following mechanism is speculation, and even when the effect of the present invention is obtained by a different mechanism, it is included in the scope of the present invention.
  • the present inventors when the chemical solution contains titanium oxide particles and titanium ions, the silicon substrate or silicon substrate with a silicon oxide film (hereinafter referred to as these) by the mass ratio (mass of titanium oxide particles / mass of oxide ions). It has been found that the likelihood of occurrence of metal residue defects (residues derived from metal components) on the “specific substrate” is different.
  • the mass ratio when the mass ratio is too large, in other words, when the ratio of the titanium oxide particles is too large, it is considered that metal residue defects derived from the titanium oxide particles tend to increase on a specific substrate.
  • the mass ratio when the mass ratio is too small, in other words, when the ratio of titanium ions is too large, the oxidation-reduction reaction easily proceeds with other metal ions which are more noble than titanium ions, and particles of other metals. It is considered that (for example, oxide particles of another metal) increase and metal residue defects easily increase on a specific substrate.
  • the chemical solution of the present invention is a chemical solution containing an organic solvent and a metal component, wherein the metal component contains titanium oxide particles, and titanium ions, with respect to the content of titanium ions, the content of titanium oxide particles.
  • mass ratio is 10 0 to 10 12.
  • the chemical solution of the present invention contains an organic solvent.
  • an organic solvent is intended to mean a liquid organic compound contained at a content exceeding 10,000 mass ppm per component with respect to the total mass of the chemical solution. That is, in this specification, a liquid organic compound contained in an amount exceeding 10,000 ppm by mass with respect to the total mass of the chemical solution corresponds to an organic solvent.
  • the term “liquid” means a liquid at 25 ° C. and atmospheric pressure.
  • the content of the organic solvent in the chemical solution is not particularly limited, but is preferably 98.0% by mass or more, more preferably more than 99.0% by mass, and more preferably 99.90% by mass or more based on the total mass of the chemical solution. Preferably, it is more than 99.95% by mass. The upper limit is less than 100% by mass.
  • One type of organic solvent may be used alone, or two or more types may be used. When two or more organic solvents are used, the total content is preferably within the above range.
  • the type of the organic solvent is not particularly limited, and a known organic solvent can be used.
  • the organic solvent include alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, alkyl lactate, alkyl alkoxypropionate, cyclic lactone (preferably having 4 to 10 carbon atoms), and monoketone compound optionally having a ring. (Preferably having 4 to 10 carbon atoms), alkylene carbonate, alkyl alkoxyacetate, alkyl pyruvate, dialkyl sulfoxide, cyclic sulfone, dialkyl ether, monohydric alcohol, glycol, alkyl acetate, and N-alkylpyrrolidone. .
  • organic solvent examples include propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), ethyl lactate (EL), propylene carbonate (PC), isopropanol (IPA), and 4-methyl-2.
  • PGMEA propylene glycol monomethyl ether acetate
  • PGME propylene glycol monomethyl ether
  • CHN propylene glycol monomethyl ether
  • EL ethyl lactate
  • PC propylene carbonate
  • IPA isopropanol
  • MIBC -Pentanol
  • nBA butyl acetate
  • propylene glycol monoethyl ether propylene glycol monopropyl ether, methyl methoxypropionate, cyclopentanone, ⁇ -butyrolactone, diisoamyl ether, isoamyl acetate, dimethyl sulfoxide, N- Methylpyrrolidone, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, sulfolane, cycloheptanone, Heptanone, butyl butyrate, isobutyl isobutyrate, isoamyl ether, and one or more selected from the group consisting of undecane is preferred.
  • Examples of using two or more organic solvents include a combination of PGMEA and PGME, and a combination of PGMEA and PC.
  • the kind and content of the organic solvent in the chemical solution can be measured using a gas chromatograph mass spectrometer.
  • the chemical solution contains a metal component.
  • the metal component is composed of metal-containing particles and metal ions.
  • the content of the metal component indicates the total content of the metal-containing particles and metal ions.
  • the metal-containing particles only need to include metal atoms, and examples thereof include metal oxide particles, metal nitride particles, and metal particles.
  • the metal particles mean particles made of metal.
  • the metal component contained in the chemical solution contains titanium oxide particles and titanium ions.
  • a mass ratio of 10 0 to 10 12 of the content of titanium oxide particles, on a silicon substrate or a silicon oxide film, and more hardly generates points composites residue defects residual metal defects or later in the mass ratio is preferably from 10 1 to 10 10, more preferably from 10 2 to 10 10, more preferably 10 3 to 10 8, more preferably 10 3 to 10 7.
  • the content of titanium ions is not particularly limited, and is often 0.01 to 150 mass ppt. Among them, the content of titanium ions is 0.10 to 100 mass ppt, based on the total mass of the chemical solution, in that metal residue defects or composite residue defects described later are less likely to occur on a silicon substrate or a silicon oxide film. , And more preferably 1.0 to 70 mass ppt.
  • the content of the titanium oxide particles is not particularly limited, and is often 1% by mass or more and less than 100% by mass with respect to the content of the titanium component in the metal component. Among them, on the silicon substrate or on the silicon oxide film, metal residue defects or composite residue defects described below are less likely to occur, the content of the titanium oxide particles is relative to the content of the titanium component in the metal component. It is preferably from 5% by mass to less than 99% by mass, more preferably from 30 to 90% by mass.
  • the titanium component is a component containing a titanium atom, and includes titanium-containing particles and titanium ions. For example, the content of the titanium component indicates the total content of the titanium-containing particles and titanium ions.
  • the titanium-containing particles only need to contain titanium atoms, and examples thereof include titanium oxide particles, titanium nitride particles, and titanium particles.
  • the titanium particles mean particles made of titanium metal.
  • the ratio of particles having a particle size of 0.5 to 17 nm is not particularly limited, and is often 40% by mass or more and less than 100% by mass. Above all, the ratio of particles having a particle size of 0.5 to 17 nm among titanium oxide particles is 60%, because metal residue defects or composite residue defects described later are less likely to occur on a silicon substrate or a silicon oxide film. It is preferably at least 80% by mass and less than 98% by mass, more preferably from 60 to 95% by mass.
  • the metal component contained in the chemical solution may contain iron ions.
  • the content of iron ions is not particularly limited, and is often 0.01 to 200 mass ppt based on the total mass of the chemical solution. Above all, the content of iron ions is 0.1 to 100 mass ppt with respect to the total mass of the chemical solution in that metal residue defects or composite residue defects described later are less likely to occur on a silicon substrate or a silicon oxide film. , And more preferably 1.0 to 90 mass ppt.
  • the metal component contained in the chemical solution may contain iron oxide particles.
  • the content of the iron oxide particles is not particularly limited, and is often 1% by mass or more and less than 100% by mass with respect to the content of the iron component in the metal component. Among them, on the silicon substrate or on the silicon oxide film, metal residue defects or composite residue defects described below are less likely to occur, the content of the iron oxide particles is relative to the content of the iron component in the metal component. It is preferably from 5% by mass to less than 99% by mass, more preferably from 10 to 95% by mass.
  • the iron component is a component containing an iron atom, and includes iron-containing particles and iron ions. For example, when referring to the iron component content, it indicates the total content of the iron-containing particles and iron ions.
  • the iron-containing particles only need to contain iron atoms, and examples thereof include iron oxide particles, iron nitride particles, and iron particles.
  • the iron particles mean particles made of metallic iron.
  • the ratio of particles having a particle size of 0.5 to 17 nm is not particularly limited, and is often 40% by mass or more and less than 100% by mass. Among them, the ratio of particles having a particle diameter of 0.5 to 17 nm among iron oxide particles is 60, because metal residue defects or composite residue defects described later are less likely to be formed on a silicon substrate or a silicon oxide film. It is preferably at least 80% by mass and less than 98% by mass, more preferably from 60 to 95% by mass.
  • the mass ratio of the content of iron oxide particles to the content of iron ions in the chemical solution is not particularly limited, and is often 10 ⁇ 2 to 10 14 .
  • the mass ratio is preferably from 10 0 to 10 12 , more preferably from 10 2 to 10 10 , in that metal residue defects or composite residue defects described later are less likely to be formed on the silicon substrate or the silicon oxide film.
  • 10 3 to 10 8 are more preferable, and 10 3 to 10 7 is particularly preferable.
  • the metal component contained in the chemical solution may contain aluminum ions.
  • the content of the aluminum ion is not particularly limited, and is often 0.01 to 200 mass ppt with respect to the total mass of the chemical solution. Above all, the content of aluminum ions is 0.1 to 100 mass ppt with respect to the total mass of the chemical solution in that metal residue defects or composite residue defects described later are less likely to occur on a silicon substrate or a silicon oxide film. , And more preferably 1.0 to 90 mass ppt.
  • the metal component contained in the chemical solution may contain aluminum oxide particles.
  • the content of the aluminum oxide particles is not particularly limited, and is often 1% by mass or more and less than 100% by mass with respect to the content of the aluminum component in the metal component. Among them, on the silicon substrate or on the silicon oxide film, metal residue defects or composite residue defects described below are less likely to occur, the content of the aluminum oxide particles is relative to the content of the aluminum component in the metal component. It is preferably from 5% by mass to less than 99% by mass, more preferably from 10 to 95% by mass.
  • the aluminum component is a component containing an aluminum atom, and includes aluminum-containing particles and aluminum ions. For example, when referring to the content of the aluminum component, it indicates the total content of the aluminum-containing particles and aluminum ions.
  • the aluminum-containing particles only need to contain aluminum atoms, and examples thereof include aluminum oxide particles, aluminum nitride particles, and aluminum particles.
  • the aluminum particles mean particles made of metallic aluminum.
  • the ratio of particles having a particle size of 0.5 to 17 nm is not particularly limited, and is often 40% by mass or more and less than 100% by mass. Above all, the ratio of particles having a particle size of 0.5 to 17 nm among aluminum oxide particles is 60%, because metal residue defects or composite residue defects described later are less likely to be formed on a silicon substrate or a silicon oxide film. It is preferably at least 80% by mass and less than 98% by mass, more preferably from 60 to 95% by mass.
  • the mass ratio of the content of aluminum oxide particles to the content of aluminum ions in the chemical solution is not particularly limited, and is often 10 ⁇ 2 to 10 14 .
  • the mass ratio is preferably from 10 0 to 10 12 , more preferably from 10 2 to 10 10 , in that metal residue defects or composite residue defects described later are less likely to be formed on the silicon substrate or the silicon oxide film.
  • 10 3 to 10 8 are more preferable, and 10 3 to 10 7 is particularly preferable.
  • the metal component contained in the chemical solution may contain components of other metal atoms than those described above.
  • Other metal atoms include, for example, Na (sodium), K (potassium), Ca (calcium), Cu (copper), Mg (magnesium), Mn (manganese), Li (lithium), Cr (chromium), Ni (Nickel) and Zr (zirconium).
  • the metal component contained in the chemical solution may contain copper oxide particles.
  • the content of the copper oxide particles is not particularly limited, and is often 1% by mass or more and less than 100% by mass with respect to the content of the copper component in the metal component. Among them, on the silicon substrate or on the silicon oxide film, metal residue defects or composite residue defects described below are less likely to occur, the content of the copper oxide particles is relative to the content of the copper component in the metal component. It is preferably from 5% by mass to less than 99% by mass, more preferably from 10 to 95% by mass.
  • the copper component is a component containing a copper atom, and includes copper-containing particles and copper ions. For example, when referring to the content of the copper component, it indicates the total content of the copper-containing particles and copper ions.
  • the copper-containing particles only need to contain copper atoms, and examples thereof include copper oxide particles, copper nitride particles, and copper particles.
  • the copper particles mean particles made of metallic copper.
  • the ratio of the particles having a particle size of 0.5 to 17 nm is not particularly limited, and is often 40% by mass or more and less than 100% by mass.
  • the proportion of particles having a particle diameter of 0.5 to 17 nm among copper oxide particles is 60%, because metal residue defects or composite residue defects described later are less likely to be formed on a silicon substrate or a silicon oxide film. It is preferably at least 80% by mass and less than 98% by mass, more preferably from 60 to 95% by mass.
  • the mass ratio of the content of copper oxide particles to the content of copper ions in the chemical solution is not particularly limited, and is often 10 ⁇ 2 to 10 14 .
  • the mass ratio is preferably from 10 0 to 10 12 , more preferably from 10 2 to 10 10 , in that metal residue defects or composite residue defects described later are less likely to be formed on the silicon substrate or the silicon oxide film.
  • 10 3 to 10 8 are more preferable, and 10 3 to 10 7 is particularly preferable.
  • the metal component may be a metal component inevitably included in each component (raw material) included in the chemical solution, or may be a metal component inevitably included in the production, storage, and / or transfer of the treatment liquid. May be intentionally added.
  • the content of the metal component is not particularly limited, the metal residue defect or the composite residue defect described below is less likely to be formed on the silicon substrate or the silicon oxide film, and thus the content is 10 to 500,000 mass% based on the total mass of the chemical solution. ppt is preferred.
  • the types and contents of metal ions and metal-containing particles in a chemical solution can be measured by an SP-ICP-MS method (Single Nano Particle Inductively Coupled Plasma Mass Spectrometry).
  • the SP-ICP-MS method uses an apparatus similar to a normal ICP-MS method (inductively coupled plasma mass spectrometry), and differs only in data analysis. Data analysis of the SP-ICP-MS method can be performed by commercially available software.
  • the content of a metal component to be measured is measured regardless of its existing form. Therefore, the total mass of the metal-containing particles to be measured and the metal ions is determined as the content of the metal component.
  • the content of metal-containing particles can be measured. Therefore, by subtracting the content of the metal-containing particles from the content of the metal component in the sample, the content of the metal ion in the sample can be calculated.
  • Agilent 8800 triple quadrupole ICP-MS inductively coupled plasma mass spectrometry, option # 200 for semiconductor analysis, option # 200
  • Agilent Technologies, Inc. is described in Examples. Can be measured by the following method.
  • Agilent 8900 manufactured by Agilent Technologies can be used as an apparatus other than the above.
  • the method described in paragraphs 0015 to 0067 of JP-A-2009-188333 (hereinafter, also referred to as “specific method”) is used.
  • the number of particles of 0.5 to 10 nm remaining on the substrate is counted by a specific method, and the converted value of the 20 nm particles from SNP-ICP-MS is used for the count.
  • the conversion value differs for each metal, this conversion is performed for each metal.
  • the specific method of conversion is as follows.
  • the converted value Becomes 10. That is, when the number of 1 nm titanium oxide particles confirmed by the specific method is 100, the number is calculated as 1000 (100 ⁇ 10) in the chemical based on 10 times the converted value.
  • the number of particles having a size of 10 nm or less in the present invention is estimated by this conversion method regardless of the type of metal.
  • the chemical may contain organic impurities.
  • the content of the organic impurities in the chemical solution is not particularly limited, but is preferably from 1,000 to 100,000 mass ppt based on the total mass of the chemical solution from the viewpoint that stain-like residue defects described later are less likely to be formed on the silicon substrate.
  • the organic impurity is an organic compound different from the organic solvent, and means an organic compound contained at a content of 10000 ppm by mass or less based on the total mass of the organic solvent. That is, in the present specification, an organic compound contained at a content of 10,000 mass ppm or less based on the total mass of the organic solvent corresponds to an organic impurity and does not correspond to an organic solvent.
  • Organic impurities are often mixed with or added to a chemical solution during the process of refining a substance to be purified to obtain a chemical solution.
  • organic impurities include a plasticizer, an antioxidant, and a compound derived from these (typically, a decomposition product).
  • the drug solution may contain water.
  • Water is not included in the organic impurities.
  • the water is not particularly limited, and for example, distilled water, ion-exchanged water, pure water, and the like can be used.
  • Water may be added to the chemical solution, or may be unintentionally mixed into the chemical solution in the process of manufacturing the chemical solution. Examples of the case of being unintentionally mixed in the manufacturing process of the chemical solution include, for example, the case where water is contained in a raw material (for example, an organic solvent) used for manufacturing the chemical solution, and the mixing in the manufacturing process of the chemical solution ( For example, contamination) is not limited to the above.
  • the content of water in the chemical is not particularly limited, but is preferably 2.0% by mass or less, more preferably 500% by mass or less, based on the total mass of the chemical.
  • the lower limit is not particularly limited, but may be 0% by mass.
  • the water content in the chemical solution means the water content measured using an apparatus based on the Karl Fischer moisture measurement method.
  • the chemical solution of the present invention is preferably used for manufacturing a semiconductor device. Especially, it is preferable to manufacture a semiconductor chip using the chemical solution of the present invention. Specifically, in a semiconductor device manufacturing process including a lithography process, an etching process, an ion implantation process, and a peeling process, an organic material is processed after each process or before moving to the next process. Specifically, it is suitably used as a pre-wet liquid, a developing liquid, a rinsing liquid, a polishing liquid or the like. In addition, the chemical solution may be used as a diluting solution of the resin contained in the resist film forming composition (in other words, a solvent).
  • the above-mentioned chemical solution can be used for other uses other than the production of semiconductor devices, and can also be used as a developer and a rinse for polyimide, a resist for sensors, a resist for lenses, and the like.
  • the above chemical solution can be used as a solvent for medical use or cleaning use.
  • it can be suitably used for cleaning pipes, containers, and substrates (for example, wafers and glass).
  • a cleaning liquid a pipe cleaning liquid and a container cleaning liquid, etc.
  • a liquid such as the above-mentioned pre-wet liquid.
  • the chemical solution is suitably used for a pre-wet solution, a developing solution, a rinsing solution, a polishing solution, and a composition for forming a resist film.
  • a pre-wet liquid when applied to a pre-wet liquid, a developing liquid and a rinsing liquid, more excellent effects are exhibited.
  • a developing liquid and a rinsing liquid when the exposure light source is EUV, a more excellent effect is exhibited.
  • a pipe cleaning liquid used for pipes used for transferring these liquids more excellent effects are exhibited.
  • the method for producing the chemical solution is not particularly limited, and a known production method can be used. Above all, in that a chemical solution exhibiting a better effect of the present invention can be obtained, the method for producing a chemical solution has a filtration step of filtering a substance to be purified containing an organic solvent using a filter to obtain a chemical solution. preferable.
  • the material to be purified used in the filtration step may be procured by purchasing or the like, or may be obtained by reacting the raw materials. It is preferable that the material to be purified has a low impurity content. Examples of such a commercially available product to be purified include a commercially available product called “high-purity grade product”.
  • the method of obtaining the object to be purified typically, the object to be purified containing an organic solvent
  • a known method can be used.
  • a method of reacting acetic acid and n-butanol in the presence of sulfuric acid to obtain butyl acetate reacting ethylene, oxygen, and water in the presence of Al (C 2 H 5 ) 3 Reacting cis-4-methyl-2-pentene in the presence of Ipc2BH (Diisopinocampheylborane) to obtain 4-methyl-2-pentanol; propylene oxide, methanol and acetic acid Is reacted in the presence of sulfuric acid to obtain PGMEA (propylene glycol 1-monomethyl ether 2-acetate); acetone and hydrogen are reacted in the presence of copper oxide-zinc oxide-aluminum oxide to give IPA (isopropyl). alcohol) by reacting lactic acid and ethanol to obtain lactic acid. And the like; a method of obtaining a chill.
  • the method for producing a drug solution of the present invention preferably includes a filtration step of filtering the above-mentioned substance to be purified using a filter to obtain a drug solution.
  • the method of filtering the object to be purified using a filter is not particularly limited, and the object to be purified is passed through a filter unit having a housing and a filter cartridge housed in the housing with or without pressurization ( Is preferable.
  • the pore size of the filter is not particularly limited, and a filter having a pore size usually used for filtering a substance to be purified can be used.
  • the pore diameter of the filter is preferably 200 nm or less, more preferably 20 nm or less, still more preferably 10 nm or less, and more preferably 5 nm or less, in that the number of particles (metal particles and the like) contained in the drug solution can be easily controlled in a desired range. Is particularly preferred.
  • the lower limit is not particularly limited, but is generally preferably 1 nm or more from the viewpoint of productivity.
  • the pore diameter of a filter means the pore diameter determined by the bubble point of isopropanol (IPA).
  • the pore diameter of the filter be 5.0 nm or less, since the number of particles contained in the drug solution can be more easily controlled.
  • a filter having a pore size of 5.0 nm or less is also referred to as a “micropore size filter”.
  • the micropore size filter may be used alone, or may be used with a filter having another pore size. Among them, it is preferable to use a filter having a larger pore diameter from the viewpoint of better productivity. That is, when two or more filters are used, it is preferable that at least one filter has a pore diameter of 5.0 nm or less.
  • the object to be purified which has been filtered through a filter having a larger pore diameter in advance, is passed through a micropore size filter, clogging of the micropore size filter can be prevented. That is, when one filter is used, the pore diameter of the filter is preferably 5.0 nm or less, and when two or more filters are used, the pore diameter of the filter having the smallest pore diameter is 5.0 nm. The following is preferred.
  • the form in which two or more types of filters having different pore diameters are sequentially used is not particularly limited, and examples thereof include a method of sequentially arranging the above-described filter units along a pipe through which a substance to be purified is transferred.
  • a larger pressure may be applied to a filter having a smaller pore size as compared with a filter having a larger pore size.
  • a pressure regulating valve, a damper, etc. are arranged between the filters to make the pressure applied to the filter having a small pore diameter constant, or a filter unit containing the same filter is placed along the pipeline. It is preferable to increase the filtration area by arranging them in parallel. This makes it possible to more stably control the number of particles in the chemical solution.
  • the material of the filter is not particularly limited, and known materials for the filter can be used. Specifically, when it is a resin, polyamide such as nylon (for example, 6-nylon and 6,6-nylon); polyolefin such as polyethylene and polypropylene; polystyrene; polyimide; polyamideimide; Polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylene propene copolymer, ethylene / tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride Fluorocarbon; polyvinyl alcohol; polyester; cellulose; cellulose acetate and the like.
  • polyamide such as nylon (for example, 6-nylon and 6,6-nylon)
  • polyolefin such as polyethylene and polypropylene
  • polystyrene polyimide
  • polyamideimide poly
  • nylon especially, 6,6-nylon is preferred
  • polyolefin especially, polyethylene is preferred
  • polyolefin are preferred in that they have better solvent resistance and the resulting chemical has more excellent defect suppression performance.
  • At least one selected from the group consisting of (meth) acrylate and polyfluorocarbon (among others, polytetrafluoroethylene (PTFE) and perfluoroalkoxyalkane (PFA) is preferable) is preferable.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • a polymer eg, nylon grafted UPE obtained by graft copolymerizing a polyamide (eg, nylon-6 or nylon-6,6, etc.) with a polyolefin (eg, UPE (ultra high molecular weight polyethylene) described below) is used as a filter.
  • a polyamide eg, nylon-6 or nylon-6,6, etc.
  • a polyolefin eg, UPE (ultra high molecular weight polyethylene) described below
  • the filter may be a surface-treated filter.
  • the method for surface treatment is not particularly limited, and a known method can be used. Examples of the surface treatment method include chemical modification treatment, plasma treatment, hydrophobic treatment, coating, gas treatment, and sintering.
  • Plasma treatment is preferable because the surface of the filter becomes hydrophilic.
  • the water contact angle on the surface of the filter that has been hydrophilized by plasma treatment is not particularly limited, but the static contact angle at 25 ° C. measured by a contact angle meter is preferably 60 ° or less, more preferably 50 ° or less, 30 ° or less is more preferable.
  • a method of introducing an ion exchange group into a filter is preferable. That is, a filter having an ion exchange group is preferable as the filter.
  • the ion exchange group include a cation exchange group and an anion exchange group.
  • the cation exchange group include a sulfonic acid group, a carboxy group, and a phosphate group, and examples of the anion exchange group include a quaternary ammonium group.
  • the method for introducing the ion-exchange group into the filter is not particularly limited, and examples thereof include a method in which a compound containing an ion-exchange group and a polymerizable group is allowed to react with the filter and typically grafted.
  • the method of introducing the ion exchange group is not particularly limited, but the filter is irradiated with ionizing radiation ( ⁇ -ray, ⁇ -ray, ⁇ -ray, X-ray, electron beam, etc.) to generate an active portion (radical).
  • ionizing radiation ⁇ -ray, ⁇ -ray, ⁇ -ray, X-ray, electron beam, etc.
  • the filter after the irradiation is immersed in the monomer-containing solution, and the monomer is graft-polymerized on the filter.
  • a polymer obtained by polymerizing this monomer is grafted on the filter.
  • the produced polymer can be brought into contact with a compound containing an anion exchange group or a cation exchange group to introduce an ion exchange group into the polymer.
  • the filter may have a structure in which a woven or nonwoven fabric having an ion exchange group formed by a radiation graft polymerization method is combined with a conventional glass wool, woven or nonwoven fabric filter material.
  • the material constituting the filter having an ion exchange group is not particularly limited, and examples thereof include a polyfluorocarbon and a material in which an ion exchange group is introduced into polyolefin, and a material in which an ion exchange group is introduced into polyfluorocarbon is more preferable.
  • the pore diameter of the filter having an ion exchange group is not particularly limited, it is preferably 1 to 30 nm, more preferably 5 to 20 nm.
  • the filter having an ion-exchange group may also serve as the filter having the smallest pore diameter described above, or may be used separately from the filter having the smallest pore diameter.
  • the filtration step uses a filter having an ion exchange group and a filter having no ion exchange group and having a minimum pore diameter. Is preferred.
  • the material of the filter having the smallest pore diameter already described is not particularly limited, but from the viewpoint of solvent resistance and the like, generally, polyfluorocarbon, and at least one selected from the group consisting of polyolefins are preferable. More preferred.
  • the filter used in the filtration step two or more types of filters having different materials may be used.
  • polyolefins, polyfluorocarbons, polyamides, and filters made of materials having ion exchange groups introduced therein may be used. Two or more kinds selected from the group may be used.
  • the pore structure of the filter is not particularly limited, and may be appropriately selected according to the components in the object to be purified.
  • the pore structure of a filter means a pore size distribution, a positional distribution of pores in a filter, and a shape of pores, and is typically controlled by a filter manufacturing method. It is possible.
  • a porous film can be obtained by sintering a powder of a resin or the like, and a fiber film can be obtained by forming by a method such as electrospinning, electroblowing, and meltblowing. These have different pore structures.
  • a “porous membrane” refers to a membrane that retains components in an object to be purified, such as gels, particles, colloids, cells, and poly-oligomers, but a component that is substantially smaller than the pores passes through the pores.
  • the retention of components in the object to be purified by the porous membrane may depend on operating conditions, such as surface velocity, use of surfactant, pH, and combinations thereof, and the pore size of the porous membrane, It may depend on the structure and the size of the particles to be removed, and the structure (hard particles or gels, etc.).
  • non-sieving membranes include, but are not limited to, nylon-6 membranes and nylon membranes such as nylon-6,6 membranes.
  • non-sieving retention mechanism refers to retention caused by mechanisms such as filter pressure drop or interference, diffusion, and adsorption that are not related to pore size.
  • Non-sieve retention includes retention mechanisms, such as obstruction, diffusion, and adsorption, that remove particles to be removed from the object to be purified, regardless of the filter pressure drop or filter pore size.
  • the adsorption of particles to the filter surface can be mediated, for example, by intermolecular van der Waals forces and electrostatic forces.
  • An interfering effect occurs when particles traveling in a non-sieving membrane layer having a tortuous path are not turned fast enough to avoid contact with the non-sieving membrane.
  • Particle transport by diffusion results primarily from random or Brownian motion of small particles, which creates a certain probability that the particles will collide with the filter media. If there is no repulsion between the particles and the filter, the non-sieve retention mechanism can be active.
  • UPE (ultra high molecular weight polyethylene) filters are typically sieved membranes.
  • a sieve membrane means a membrane that mainly captures particles via a sieve holding mechanism, or a membrane that is optimized for capturing particles via a sieve holding mechanism.
  • Typical examples of sieving membranes include, but are not limited to, polytetrafluoroethylene (PTFE) membranes and UPE membranes.
  • PTFE polytetrafluoroethylene
  • the “sieve holding mechanism” refers to holding the result due to the removal target particles being larger than the pore diameter of the porous membrane.
  • the sieve retention is improved by forming a filter cake (agglomeration of the particles to be removed on the surface of the membrane). The filter cake effectively performs the function of a secondary filter.
  • the material of the fiber membrane is not particularly limited as long as it is a polymer capable of forming the fiber membrane.
  • the polymer include polyamide and the like.
  • the polyamide include nylon 6, nylon 6,6, and the like.
  • the polymer forming the fiber membrane may be poly (ether sulfone).
  • the surface energy of the fibrous membrane is preferably higher than the polymer which is the material of the porous membrane on the secondary side.
  • An example of such a combination is a case where the material of the fiber membrane is nylon and the porous membrane is polyethylene (UPE).
  • the method for producing the fiber membrane is not particularly limited, and a known method can be used.
  • Examples of the method for producing a fiber membrane include electrospinning, electroblowing, and meltblowing.
  • the pore structure of the porous membrane is not particularly limited, and examples of the pore shape include a lace shape, a string shape, and a node shape.
  • Can be The distribution of pore sizes in the porous membrane and the distribution of positions in the membrane are not particularly limited.
  • the size distribution may be smaller and the distribution position in the film may be symmetric. Further, the size distribution may be larger and the distribution position in the film may be asymmetric (the above film is also referred to as “asymmetric porous film”).
  • asymmetric porous membrane the size of the pores varies in the membrane, and typically the pore size increases from one surface of the membrane to the other surface of the membrane.
  • the surface on the side with many pores having a large pore diameter is called “open side”, and the surface on the side with many pores with small pore diameter is also called “tight side”.
  • the asymmetric porous membrane include a membrane in which the size of pores is minimized at a certain position within the thickness of the membrane (this is also referred to as an “hourglass shape”).
  • the primary side is made to have a larger-sized pore using the asymmetric porous membrane, in other words, if the primary side is made to be the open side, a pre-filtration effect can be produced.
  • the porous membrane may include thermoplastic polymers such as PESU (polyethersulfone), PFA (perfluoroalkoxyalkane, copolymer of ethylene tetrafluoride and perfluoroalkoxyalkane), polyamide, and polyolefin. , Polytetrafluoroethylene and the like. Among them, ultrahigh molecular weight polyethylene is preferable as the material of the porous membrane. Ultra-high molecular weight polyethylene means a thermoplastic polyethylene having an extremely long chain, and preferably has a molecular weight of 1,000,000 or more, typically 2,000,000 to 6,000,000.
  • a filter used in the filtration step two or more types of filters having different pore structures may be used, or a filter of a porous membrane and a filter of a fiber membrane may be used in combination. Specific examples include a method using a nylon fiber membrane filter and a UPE porous membrane filter.
  • the filter is sufficiently washed before use.
  • impurities contained in the filter are likely to be brought into the chemical solution.
  • At least one selected from the group consisting of a filter material, a pore diameter, and a pore structure passes the material to be purified through two or more types of different filters.
  • a multi-stage filtration step The object to be purified may be passed through the same filter a plurality of times, or the object to be purified may be passed through a plurality of filters of the same type.
  • a filter capable of selectively removing metal components such as “Purasol SN 200 nm” (metal component removal filter).
  • the material of the liquid contacting portion of the purification device used in the filtration step is not particularly limited, but non-metallic materials (fluorinated resin And the like, and at least one selected from the group consisting of electrolytically polished metal materials (such as stainless steel) (hereinafter, these are collectively referred to as “corrosion-resistant materials”).
  • non-metallic materials fluorinated resin And the like, and at least one selected from the group consisting of electrolytically polished metal materials (such as stainless steel) (hereinafter, these are collectively referred to as “corrosion-resistant materials”).
  • the wetted part of a production tank is formed of a corrosion-resistant material, which means that the production tank itself is made of a corrosion-resistant material, or the inner wall of the production tank is coated with a corrosion-resistant material.
  • Non-metallic materials include, for example, polyethylene resin, polypropylene resin, polyethylene-polypropylene resin, and fluorine-based resin (for example, ethylene tetrafluoride resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer resin, ethylene tetrafluoride -Propylene hexafluoride copolymer resin, ethylene tetrafluoride-ethylene copolymer resin, ethylene trifluoride-ethylene copolymer resin, vinylidene fluoride resin, ethylene trifluoride ethylene copolymer resin, and vinyl fluoride resin And the like, but not limited thereto.
  • fluorine-based resin for example, ethylene tetrafluoride resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer resin, ethylene tetrafluoride -Propylene hexafluoride copolymer resin, ethylene
  • the metal material is not particularly limited, and a known material can be used.
  • the metal material include a metal material in which the total content of chromium and nickel is more than 25% by mass based on the total mass of the metal material, and among them, 30% by mass or more is more preferable.
  • the upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is generally preferably 90% by mass or less.
  • the metal material include stainless steel and a nickel-chromium alloy.
  • the stainless steel is not particularly limited, and a known stainless steel can be used. Among them, alloys containing nickel at 8% by mass or more are preferable, and austenitic stainless steels containing nickel at 8% by mass or more are more preferable.
  • austenitic stainless steel include SUS (Steel Use Stainless) 304 (Ni content 8% by mass, Cr content 18% by mass), SUS304L (Ni content 9% by mass, Cr content 18% by mass), SUS316 ( Ni content 10% by mass, Cr content 16% by mass) and SUS316L (Ni content 12% by mass, Cr content 16% by mass) and the like.
  • the nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Among them, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable. Examples of the nickel-chromium alloy include Hastelloy (trade name, the same applies hereinafter), Monel (trade name, the same applies hereinafter), and Inconel (trade name, the same applies hereinafter).
  • Hastelloy C-276 (Ni content 63% by mass, Cr content 16% by mass), Hastelloy-C (Ni content 60% by mass, Cr content 17% by mass), and Hastelloy C-276 22 (Ni content 61% by mass, Cr content 22% by mass).
  • the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt, and the like, if necessary, in addition to the above alloy.
  • the method of electropolishing the metal material is not particularly limited, and a known method can be used.
  • a known method can be used.
  • the methods described in paragraphs [0011] to [0014] of JP-A-2015-227501 and paragraphs [0036] to [0042] of JP-A-2008-264929 can be used.
  • the metal material has a higher chromium content in the passivation layer on the surface than a chromium content in the matrix due to electrolytic polishing. Therefore, it is presumed that the use of a refining device in which the liquid contact portion is formed from a metal material which has been electropolished, makes it difficult for metal-containing particles to flow out into the object to be purified.
  • the metal material may be buffed.
  • the buffing method is not particularly limited, and a known method can be used.
  • the size of the abrasive grains used for the buffing finish is not particularly limited, but is preferably # 400 or less from the viewpoint that irregularities on the surface of the metal material tend to be smaller.
  • the buff polishing is preferably performed before the electrolytic polishing.
  • the method for producing a chemical solution may further include a step other than the filtration step.
  • the steps other than the filtration step include, for example, a distillation step, a reaction step, and a charge removal step.
  • the distillation step is a step of distilling an object to be purified containing an organic solvent to obtain a distilled object to be purified.
  • the method for distilling the object to be purified is not particularly limited, and a known method can be used.
  • a distillation column is arranged on the primary side of a purification device provided for a filtration step, and a distilled product to be purified is introduced into a production tank.
  • the liquid contact portion of the distillation column is not particularly limited, but is preferably formed of the corrosion-resistant material described above.
  • the reaction step is a step of reacting the raw materials to produce a purified product containing an organic solvent as a reactant.
  • the method for producing the object to be purified is not particularly limited, and a known method can be used. Typically, there is a method in which a reaction tank is arranged on the primary side of a production tank (or a distillation column) of a purification device provided for a filtration step, and a reactant is introduced into the production tank (or a distillation column). At this time, the liquid contact portion of the production tank is not particularly limited, but is preferably formed of the corrosion-resistant material described above.
  • the charge elimination step is a step of removing charges from the object to be purified to reduce the charged potential of the object to be purified.
  • the static elimination method is not particularly limited, and a known static elimination method can be used.
  • Examples of the charge removal method include a method of contacting the object to be purified with a conductive material.
  • the contact time for contacting the object to be purified with the conductive material is preferably from 0.001 to 60 seconds, more preferably from 0.001 to 1 second, even more preferably from 0.01 to 0.1 second.
  • the conductive material include stainless steel, gold, platinum, diamond, and glassy carbon.
  • ⁇ Purification of the object to be purified is preferably performed in a clean room, in which the opening of the container, the cleaning of the container and the device, the storage of the solution, and the analysis are all performed.
  • the clean room is preferably a clean room having a class 4 or higher cleanliness specified by International Standard ISO1464-1: 2015 specified by the International Organization for Standardization. Specifically, it is preferable to satisfy any one of ISO class 1, ISO class 2, ISO class 3, and ISO class 4, more preferably to satisfy ISO class 1 or ISO class 2, and to satisfy ISO class 1. Is more preferred.
  • the storage temperature of the drug solution is not particularly limited, but the storage temperature is preferably 4 ° C. or higher from the viewpoint that impurities and the like contained in a small amount in the drug solution are less likely to be eluted and, as a result, a superior effect of the present invention can be obtained.
  • the drug solution produced by the above purification method may be stored in a container and stored until use.
  • a combination of such a container and a drug solution contained in the container is referred to as a drug solution container.
  • the medicinal solution is taken out from the stored medicinal solution container and used.
  • the container As a container for storing the chemical solution, it is preferable that the container has a high degree of cleanness and a small amount of impurities eluted for use in semiconductor device manufacturing.
  • Specific examples of usable containers include, but are not limited to, “Clean Bottle” series manufactured by Aicello Chemical Co., Ltd. and “Pure Bottle” manufactured by Kodama Resin Kogyo.
  • a multi-layer bottle having a six-layer structure made of six kinds of resins or a seven-layer structure made of six kinds of resins is used for the purpose of preventing impurities from being mixed into the chemical solution (contamination). Is also preferred. Examples of these containers include those described in JP-A-2015-123351.
  • the liquid-contact part of this container may be a corrosion-resistant material (preferably, electropolished stainless steel or fluorine resin) or glass described above. It is preferable that 90% or more of the area of the liquid contact part is made of the above-mentioned material, and it is more preferable that all of the liquid contact part is made of the above-mentioned material from the viewpoint that the superior effects of the present invention can be obtained.
  • the porosity of the liquid medicine container in the container is preferably 2 to 80% by volume, more preferably 2 to 50% by volume, and still more preferably 5 to 30% by volume. Note that the porosity is calculated according to equation (1).
  • Formula (1): Porosity ⁇ 1 ⁇ (volume of drug solution in container / volume of container) ⁇ ⁇ 100
  • the container volume is synonymous with the internal volume (capacity) of the container.
  • the purified product purified by distillation is stored in a storage tank, and the purified product stored in the storage tank is passed through filters 1 to 5 shown in Table 1 in this order and filtered. Stored in tank.
  • the object to be purified stored in the storage tank is filtered through the filters 6 to 7 shown in Table 1, and the object to be purified after being filtered through the filter 7 is circulated upstream of the filter 6, and then filtered again.
  • a circulating filtration process of filtering at 6 to 7 was performed. After the circulation filtration treatment, the drug solution was stored in the container.
  • water was added to the chemical so that the water content became a predetermined value.
  • liquid contact parts of various devices for example, distillation towers, pipes, storage tanks, etc.
  • various devices for example, distillation towers, pipes, storage tanks, etc.
  • ⁇ Content of metal component The content of metal components (metal ions, metal-containing particles) in the chemical solution was measured by a method using ICP-MS and SP-ICP-MS. The following equipment was used. ⁇ Manufacturer: PerkinElmer ⁇ Model: NexION350S The following analysis software was used for the analysis. ⁇ Syngisix nano application module dedicated to “SP-ICP-MS” ⁇ Syngisix for ICP-MS software However, since the metal-containing particles of 10 nm or less cannot be measured by SP-ICP-MS, the above-mentioned specific method was used.
  • GC / MS gas chromatography mass spectrometer
  • ⁇ Test> (Pre-wet liquid or rinse liquid)
  • a chemical solution is spin-discharged onto a silicon substrate having a diameter of 300 mm or a silicon substrate having a silicon oxide film having a diameter of 300 mm (a silicon substrate whose surface is covered with a silicon oxide film). Then, 0.5 cc of each chemical solution was discharged. Thereafter, the substrate was spin-dried. Next, using a wafer inspection apparatus “SP-5” manufactured by KLA-Tencor, the number of defects present on the substrate after the application of the chemical was measured (this is referred to as a measured value).
  • the metal residue defect is a residue derived from a metal component
  • the composite residue defect is a residue derived from a composite of an organic substance and a metal component
  • the stain residue defect is a residue derived from an organic substance. If both the “metal residue on Si” and the “metal residue on SiO 2 ” are “D” or more, they are suitably used as a pre-wet liquid or a rinsing liquid.
  • a resist pattern was formed by the following operation.
  • An actinic ray-sensitive or radiation-sensitive resin composition described below is applied to a silicon substrate having a diameter of 300 mm or a silicon substrate having a silicon oxide film having a diameter of 300 mm, and prebaked (PB) at 100 ° C. for 60 seconds.
  • PB prebaked
  • a resist film having a thickness of 150 nm was formed.
  • Acid-decomposable resin represented by the following formula (weight average molecular weight (Mw): 7500): the numerical value described in each repeating unit means mol%): 100 parts by mass
  • the polymer type quencher has a weight average molecular weight (Mw) of 5000.
  • Mw weight average molecular weight
  • Hydrophobic resin shown below 4 parts by mass (mass ratio was 0.5: 0.5 in order from the left)
  • the hydrophobic resin on the left side has a weight average molecular weight. (Mw) is 7000, and the weight average molecular weight (Mw) of the right hydrophobic resin is 8000.
  • the numerical value described in each repeating unit means a molar ratio.
  • the wafer on which the resist film was formed was subjected to pattern exposure at 25 mJ / cm 2 using an ArF excimer laser scanner (Numerical Aperture: 0.75). Then, it heated at 120 degreeC for 60 second. Subsequently, each developing solution (chemical solution) was developed by paddle for 30 seconds. Next, the wafer was rotated at 4000 rpm for 30 seconds to form a negative resist pattern. Then, the obtained negative resist pattern was heated at 200 ° C. for 300 seconds. Through the above steps, an L / S pattern (average pattern width: 45 nm) having a line / space ratio of 1: 1 was obtained. In the space portion of the obtained sample, the presence or absence of the above-described metal residue defect, composite residue defect, and spot-like residue defect was evaluated according to the above method.
  • the difference in pressure between the filters was 0.01 to 0.03 MPa.
  • "Usage 1" in the “Usage” column means that the above test was carried out using the chemical solutions described in each of Examples and Comparative Examples as a pre-wet liquid and a rinsing liquid.
  • “Use 2” in the “use” column means that the above test was performed using the chemicals described in each of the examples and comparative examples as a developer.
  • “metal residue on Si” indicates the evaluation result of metal residue defect on the silicon substrate, and “composite residue on Si” indicates the result of composite residue defect on the silicon substrate.
  • the column of "Ti oxide particles / Ti ion” indicates the mass ratio of the content of titanium oxide particles to the content of titanium ions.
  • the “Ti ion amount (mass ppt)” column indicates the content (mass ppt) of titanium ions with respect to the total mass of the chemical solution.
  • the column of “Fe oxide particles / Fe ions” indicates the mass ratio of the content of iron oxide particles to the content of iron ions.
  • the “Fe ion amount (mass ppt)” column indicates the iron ion content (mass ppt) based on the total mass of the chemical solution.
  • the column “Al oxide particles / Al ions” indicates the mass ratio of the content of aluminum oxide particles to the content of aluminum ions.
  • the “Al ion amount (mass ppt)” column indicates the content (mass ppt) of aluminum ions with respect to the total mass of the chemical solution.
  • the column “Ratio of Ti oxide particles (% by mass)” indicates the content (% by mass) of the titanium oxide particles with respect to the content of the titanium component in the metal component.
  • the column “Fe oxide particle ratio (% by mass)” represents the content (% by mass) of the iron oxide particles with respect to the content of the iron component in the metal component.
  • the “Al oxide particle ratio (% by mass)” column indicates the content (% by mass) of the aluminum oxide particles with respect to the content of the aluminum component in the metal component.
  • the column “Ratio of 0.5 to 17 nm Ti oxide particles (% by mass)” indicates the ratio (% by mass) of the titanium oxide particles having a particle size of 0.5 to 17 nm.
  • the column “Ratio of 0.5 to 17 nm Fe oxide particles (% by mass)” indicates the ratio (% by mass) of iron oxide particles having a particle size of 0.5 to 17 nm.
  • the column “Ratio of 0.5 to 17 nm Al oxide particles (% by mass)” indicates the ratio (% by mass) of particles having a particle size of 0.5 to 17 nm among aluminum oxide particles.
  • the column “Cu oxide particle ratio (% by mass)” indicates the content (% by mass) of the copper oxide particles with respect to the content of the copper component in the metal component.
  • the column “Ratio of 0.5 to 17 nm Cu oxide particles (% by mass)” indicates the ratio (% by mass) of particles having a particle size of 0.5 to 17 nm among the copper oxide particles.
  • the “moisture content” column indicates the water content (mass ppb) in the drug solution with respect to the total weight of the drug solution.
  • E + number represents “10 numbers ”, for example, “3.5E + 04” represents “3.5 ⁇ 10 4 ”.
  • “> 99” indicates more than 99.
  • “ ⁇ 1” represents less than 1.
  • “ ⁇ 500 ppb” represents less than 500 mass ppb.
  • Table 1 the data relating to each of the examples and the comparative examples are shown in Table 1 [Part 1] ⁇ 1> to ⁇ 6>, Table 1 [Part 2] ⁇ 1> to ⁇ 6>, Table 1 [Part 3] ⁇ 1> to ⁇ 6> and Table 1 [Part 4], which are shown in each row of ⁇ 1> to ⁇ 6>.
  • Example 1 as shown in Table 1 [Part 1] ⁇ 1>, CyHe was used as the organic solvent, and as shown in Table 1 [Part 1] ⁇ 2>, the filter 2 was “IEX 15 nm”.
  • the medicinal solution of the present invention could provide a predetermined effect.
  • comparison of Examples 1 to 8 confirmed that the effect was more excellent when the mass ratio of the content of titanium oxide particles to the content of titanium ions was 10 1 to 10 10 .
  • Examples 9 and 10 it was confirmed that the effect was more excellent when the mass ratio of the content of iron oxide particles to the content of iron ions was 10 0 to 10 12 .
  • Examples 11 and 12 to the content of aluminum ions, when the mass ratio of the content of aluminum oxide particles is 10 0 to 10 12, it was confirmed that more effective is excellent.
  • the content of titanium ion (or iron ion or aluminum ion) was 0.10 to 100 with respect to the total mass of the chemical solution. It was confirmed that the effect was more excellent when the mass was ppt. Further, according to Examples 16 and 17 (37 and 38, 58 and 59, 79 and 80), the content of the titanium oxide particles (or the iron oxide particles and the aluminum oxide particles) was reduced by the content of the titanium component in the metal component. On the other hand, when the content was 5% by mass or more and less than 99% by mass, it was confirmed that the effect was more excellent.
  • Examples 18 and 19 (39 and 40, 60 and 61, 81 and 82), of titanium oxide particles (or iron oxide particles and aluminum oxide particles), particles having a particle size of 0.5 to 17 nm were obtained.
  • the proportion was 60% by mass or more and less than 98% by mass, it was confirmed that the effect was more excellent.
  • Examples 20 and 21 (41 and 42, 62 and 63, 83 and 84), the effect is more excellent when the content of organic impurities is 1000 to 100000 mass ppt with respect to the total mass of the chemical solution. Was confirmed.
  • Example 22 After cleaning the container (EP-SUS) and various devices used in the ⁇ purification procedure> using the chemical solution of Example 22 (100 L), the separately prepared chemical solution of Example 22 was passed through the washed device, The solution was collected in a washed container, and a solution A was obtained in the container. After cleaning the container (EP-SUS) and various devices used in ⁇ Purification Procedure> using the chemical solution (100 L) of Example 38, the chemical solution of Example 22 separately prepared was poured into the above-described washed device. Then, the solution was collected in a washed container, and a solution B was obtained in the container. When the “metal residue defect on Si” was evaluated using the solution A and the solution B, better results were obtained with the solution A.
  • a resist composition 1 was obtained by mixing each component with the following composition.
  • Photoacid generator (B-1) The following compounds were used as the photoacid generator (B-1).
  • the resist composition 1 was applied on a silicon wafer having a diameter of 300 mm, and baked (PB: Prebake) at 100 ° C. for 60 seconds to form a resist film having a thickness of 30 nm.
  • the resist film was exposed through a reflective mask using an EUV exposure machine (manufactured by ASML; NXE3350, NA 0.33, Dipole 90 °, outer sigma 0.87, inner sigma 0.35). Thereafter, heating (PEB: Post Exposure Bake) was performed at 85 ° C. for 60 seconds. Next, a developing solution (butyl acetate / manufactured by FETW) was sprayed for 30 seconds by a spray method for development, and a rinsing liquid was discharged onto a silicon wafer for 20 seconds by a spin coating method to be rinsed.
  • EUV exposure machine manufactured by ASML; NXE3350, NA 0.33, Dipole 90 °, outer sigma 0.87, inner sigma 0.35.
  • heating PEB: Post Exposure Bake
  • a developing solution butyl acetate / manufactured by FETW
  • a rinsing liquid was discharged onto a silicon wafer for 20 seconds by a spin coating method to be rinsed.
  • the silicon wafer was rotated at a rotation speed of 2000 rpm for 40 seconds to form a line-and-space pattern having a space width of 20 nm and a pattern line width of 15 nm.
  • the rinsing liquid the chemical liquid used in Example 44 described above was used.

Abstract

Provided are: a chemical solution which is less susceptible to causing metal residue defects when brought into contact with a silicon substrate or a silicon substrate equipped with a silicon oxide film; and a chemical solution container. This chemical solution is a chemical solution containing an organic solvent and a metal component, wherein the metal component contains titanium oxide particles and titanium ions, and the mass ratio of the titanium oxide particle content with respect to the titanium ion content falls within the range of 100 to 1012, inclusive.

Description

薬液、薬液収容体Chemical solution, chemical solution container
 本発明は、薬液、及び、薬液収容体に関する。 The present invention relates to a drug solution and a drug solution container.
 フォトリソグラフィを含む配線形成工程による半導体デバイスの製造の際、プリウェット液、レジスト液(レジスト膜形成用組成物)、現像液、リンス液、剥離液、化学機械的研磨(CMP:Chemical Mechanical Polishing)スラリー、及び、CMP後の洗浄液等として、又は、それらの希釈液として、水及び/又は有機溶剤を含有する薬液が用いられている。
 近年、フォトリソグラフィ技術の進歩によりパターンの微細化が進んでいる。パターンの微細化の手法としては、露光光源として、紫外線、KrFエキシマレーザー、ArFエキシマレーザー、及び、EUV(極紫外線)等を用いたパターン形成が試みられている。
 形成されるパターンの微細化に伴い、このプロセスに用いる上記の薬液には更なる欠陥抑制性が求められている。
In the manufacture of a semiconductor device by a wiring forming process including photolithography, a pre-wet solution, a resist solution (composition for forming a resist film), a developing solution, a rinsing solution, a stripping solution, and chemical mechanical polishing (CMP). A chemical solution containing water and / or an organic solvent is used as a slurry, a cleaning solution after CMP, or a diluent thereof.
In recent years, miniaturization of patterns has been progressing due to the progress of photolithography technology. As a method of pattern miniaturization, pattern formation using an ultraviolet light, a KrF excimer laser, an ArF excimer laser, EUV (extreme ultraviolet light), or the like as an exposure light source has been attempted.
With the miniaturization of the pattern to be formed, the above-mentioned chemical solution used in this process is required to have further defect suppressing properties.
 従来のパターン形成に用いられる薬液として、特許文献1には、「パターン形成技術において、パーティクルの発生を低減可能な、化学増幅型レジスト膜のパターニング用有機系処理液の製造方法(段落[0010])」が開示されている。 Patent Literature 1 discloses, as a conventional chemical solution used for pattern formation, “a method for producing an organic treatment solution for patterning a chemically amplified resist film capable of reducing generation of particles in a pattern formation technique (paragraph [0010]). ) "Is disclosed.
特開2015-084122号公報JP-A-2015-08122
 一方で、近年、シリコン基板又は酸化ケイ素膜付きシリコン基板(酸化ケイ素膜で表面が覆われたシリコン基板)と薬液とを接触させた際に、シリコン基板又は酸化ケイ素膜付きシリコン基板上に金属残渣欠陥がより発生しづらい薬液が求められている。
 本発明は、シリコン基板又は酸化ケイ素膜付きシリコン基板と接触させた際に、金属残渣欠陥が生じにくい薬液を提供することを課題とする。
 また、本発明は、薬液収容体を提供することも課題とする。
On the other hand, in recent years, when a silicon substrate or a silicon substrate with a silicon oxide film (a silicon substrate whose surface is covered with a silicon oxide film) is brought into contact with a chemical solution, a metal residue is formed on the silicon substrate or the silicon substrate with a silicon oxide film. There is a need for a chemical solution that is less likely to cause defects.
It is an object of the present invention to provide a chemical solution in which metal residue defects are less likely to occur when the chemical solution is brought into contact with a silicon substrate or a silicon substrate with a silicon oxide film.
Another object of the present invention is to provide a drug solution container.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できるのを見出した。 The present inventors have conducted intensive studies to solve the above-described problems, and as a result, have found that the above-described problems can be solved by the following configuration.
(1) 有機溶剤と金属成分とを含有する薬液であって、
 金属成分が、酸化チタン粒子、及び、チタンイオンを含有し、
 チタンイオンの含有量に対する、酸化チタン粒子の含有量の質量比が10~1012である、薬液。
(2) チタンイオンの含有量が、薬液全質量に対して、0.10~100質量pptである、(1)に記載の薬液。
(3) 酸化チタン粒子の含有量が、金属成分中のチタン成分の含有量に対して、5質量%以上99質量%未満である、(1)又は(2)に記載の薬液。
(4) 酸化チタン粒子のうち、粒径0.5~17nmである粒子の割合が、60質量%以上98質量%未満である、(1)~(3)のいずれかに記載の薬液。
(5) 金属成分が、鉄イオンを含有し、
 鉄イオンの含有量が、薬液全質量に対して、0.10~100質量pptである、(1)~(4)のいずれかに記載の薬液。
(6) 金属成分が、酸化鉄粒子を含有し、
 酸化鉄粒子の含有量が、金属成分中の鉄成分の含有量に対して、5質量%以上99質量%未満である、(1)~(5)のいずれかに記載の薬液。
(7) 金属成分が、酸化鉄粒子を含有し、
 酸化鉄粒子のうち、粒径0.5~17nmである粒子の割合が、60質量%以上98質量%未満である、(1)~(6)のいずれかに記載の薬液。
(8) 金属成分が、酸化鉄粒子、及び、鉄イオンを含有し、
 鉄イオンの含有量に対する、酸化鉄粒子の含有量の質量比が10~1012である、(1)~(7)のいずれかに記載の薬液。
(9) 金属成分が、アルミニウムイオンを含有し、
 アルミニウムイオンの含有量が、薬液全質量に対して、0.10~100質量pptである、(1)~(8)のいずれかに記載の薬液。
(10) 金属成分が、酸化アルミニウム粒子を含有し、
 酸化アルミニウム粒子の含有量が、金属成分中のアルミニウム成分の含有量に対して、5質量%以上99質量%未満である、(1)~(9)のいずれかに記載の薬液。
(11) 金属成分が、酸化アルミニウム粒子を含有し、
 酸化アルミニウム粒子のうち、粒径0.5~17nmである粒子の割合が、60質量%以上98質量%未満である、(1)~(10)のいずれかに記載の薬液。
(12) 金属成分が、酸化アルミニウム粒子、及び、アルミニウムイオンを含有し、
 アルミニウムイオンの含有量に対する、酸化アルミニウム粒子の含有量の質量比が10~1012である、(1)~(11)のいずれかに記載の薬液。
(13) 金属成分が、酸化銅粒子を含有し、
 酸化銅粒子の含有量が、金属成分中の銅成分の含有量に対して、5質量%以上99質量%未満である、(1)~(12)のいずれかに記載の薬液。
(14) 金属成分が、酸化銅粒子を含有し、
 酸化銅粒子のうち、粒径0.5~17nmである粒子の割合が、60質量%以上98質量%未満である、(1)~(13)のいずれかに記載の薬液。
(15) 金属成分が、酸化銅粒子、及び、銅イオンを含有し、
 銅イオンの含有量に対する、酸化銅粒子の含有量の質量比が10~1012である、(1)~(14)のいずれかに記載の薬液。
(16) 更に、有機不純物を含有し、
 有機不純物の含有量が、薬液全質量に対して、1000~100000質量pptである、(1)~(15)のいずれかに記載の薬液。
(17) 薬液全質量に対する水の含有量が500質量ppb以下である、(1)~(16)のいずれかに記載の薬液。
(18) 有機溶剤が、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、乳酸エチル、炭酸プロピレン、イソプロパノール、4-メチル-2-ペンタノール、酢酸ブチル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、メトキシプロピオン酸メチル、シクロペンタノン、γ-ブチロラクトン、ジイソアミルエーテル、酢酸イソアミル、ジメチルスルホキシド、N-メチルピロリドン、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、スルフォラン、シクロヘプタノン、2-ヘプタノン、酪酸ブチル、イソ酪酸イソブチル、イソアミルエーテル、及び、ウンデカンからなる群から選ばれる1種以上を含む、(1)~(17)のいずれかに記載の薬液。
(19) 容器と、容器に収容された(1)~(18)のいずれかに記載の薬液と、を含有する、薬液収容体。
(1) A chemical solution containing an organic solvent and a metal component,
The metal component contains titanium oxide particles, and titanium ions,
To the content of titanium ions, the mass ratio of the content of titanium oxide particles is 10 0 to 10 12, the drug solution.
(2) The chemical according to (1), wherein the content of titanium ions is 0.10 to 100 mass ppt based on the total mass of the chemical.
(3) The chemical solution according to (1) or (2), wherein the content of the titanium oxide particles is 5% by mass or more and less than 99% by mass with respect to the content of the titanium component in the metal component.
(4) The drug solution according to any one of (1) to (3), wherein the proportion of particles having a particle size of 0.5 to 17 nm among the titanium oxide particles is from 60% by mass to less than 98% by mass.
(5) The metal component contains iron ions,
The chemical solution according to any one of (1) to (4), wherein the content of iron ions is 0.10 to 100 mass ppt with respect to the total mass of the chemical solution.
(6) The metal component contains iron oxide particles,
The chemical solution according to any one of (1) to (5), wherein the content of the iron oxide particles is 5% by mass or more and less than 99% by mass based on the content of the iron component in the metal component.
(7) The metal component contains iron oxide particles,
The chemical solution according to any one of (1) to (6), wherein the proportion of the iron oxide particles having a particle size of 0.5 to 17 nm is 60% by mass or more and less than 98% by mass.
(8) The metal component contains iron oxide particles and iron ions,
To the content of iron ions, the mass ratio of the content of the iron oxide particles is 10 0 to 10 12, the drug solution according to any one of (1) to (7).
(9) The metal component contains aluminum ions,
The chemical solution according to any one of (1) to (8), wherein the content of aluminum ions is 0.10 to 100 mass ppt with respect to the total mass of the chemical solution.
(10) The metal component contains aluminum oxide particles,
The chemical solution according to any one of (1) to (9), wherein the content of the aluminum oxide particles is 5% by mass or more and less than 99% by mass based on the content of the aluminum component in the metal component.
(11) The metal component contains aluminum oxide particles,
The chemical solution according to any one of (1) to (10), wherein a proportion of the aluminum oxide particles having a particle size of 0.5 to 17 nm is 60% by mass or more and less than 98% by mass.
(12) The metal component contains aluminum oxide particles and aluminum ions,
To the content of aluminum ions, the mass ratio of the content of aluminum oxide particles is 10 0 to 10 12, the drug solution according to any one of (1) to (11).
(13) The metal component contains copper oxide particles,
The chemical solution according to any one of (1) to (12), wherein the content of the copper oxide particles is 5% by mass or more and less than 99% by mass with respect to the content of the copper component in the metal component.
(14) The metal component contains copper oxide particles,
The chemical solution according to any one of (1) to (13), wherein the proportion of the copper oxide particles having a particle size of 0.5 to 17 nm is 60% by mass or more and less than 98% by mass.
(15) The metal component contains copper oxide particles and copper ions,
To the content of copper ions, the mass ratio of the content of copper oxide particles is 10 0 to 10 12, the drug solution according to any one of (1) to (14).
(16) It further contains organic impurities,
The chemical solution according to any one of (1) to (15), wherein the content of the organic impurities is 1,000 to 100,000 mass ppt based on the total mass of the chemical solution.
(17) The drug solution according to any one of (1) to (16), wherein the content of water with respect to the total weight of the drug solution is 500 mass ppb or less.
(18) The organic solvent is propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, ethyl lactate, propylene carbonate, isopropanol, 4-methyl-2-pentanol, butyl acetate, propylene glycol monoethyl ether, propylene glycol monopropyl Ether, methyl methoxypropionate, cyclopentanone, γ-butyrolactone, diisoamyl ether, isoamyl acetate, dimethyl sulfoxide, N-methylpyrrolidone, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, sulfolane, cycloheptanone , 2-heptanone, butyl butyrate, isobutyl isobutyrate, isoamyl ether and undecane It made containing one or more selected from the group drug solution according to any one of (1) to (17).
(19) A drug solution container comprising a container and the drug solution according to any one of (1) to (18) stored in the container.
 本発明によれば、シリコン基板又は酸化ケイ素膜付きシリコン基板と接触させた際に、金属残渣欠陥が生じにくい薬液を提供できる。
 また、本発明によれば、薬液収容体を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, when contacting with a silicon substrate or a silicon substrate with a silicon oxide film, the chemical liquid which a metal residue defect does not generate easily can be provided.
Further, according to the present invention, a drug solution container can be provided.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされる場合があるが、本発明はそのような実施形態に限定されない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本発明において、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味し、「ppt」は「parts-per-trillion(10-12)」を意味し、「ppq」は「parts-per-quadrillion(10-15)」を意味する。
 また、本発明における基(原子群)の表記において、置換及び無置換を記していない表記は、本発明の効果を損ねない範囲で、置換基を有さない基と共に置換基を含有する基をも包含する。例えば、「炭化水素基」とは、置換基を有さない炭化水素基(無置換炭化水素基)のみならず、置換基を含有する炭化水素基(置換炭化水素基)をも包含する。この点は、各化合物についても同義である。
 また、本発明における「放射線」とは、例えば、遠紫外線、極紫外線(EUV;Extreme ultraviolet)、X線、又は、電子線等を意味する。また、本発明において光とは、活性光線又は放射線を意味する。本発明中における「露光」とは、特に断らない限り、遠紫外線、X線又はEUV等による露光のみならず、電子線又はイオンビーム等の粒子線による描画も露光に含める。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In addition, in this specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
In the present invention, “ppm” means “parts-per-million (10 −6 )”, “ppb” means “parts-per-billion (10 −9 )”, and “ppt” means “Parts-per-trillion (10 −12 )” means “parts-per-quadrillion (10 −15 )”.
Further, in the notation of the group (atom group) in the present invention, the notation that does not indicate substitution or unsubstitution means a group containing a substituent together with a group having no substituent within a range not impairing the effect of the present invention. Is also included. For example, the “hydrocarbon group” includes not only a hydrocarbon group having no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group having a substituent (substituted hydrocarbon group). This is the same for each compound.
Further, “radiation” in the present invention means, for example, far ultraviolet rays, extreme ultraviolet (EUV), X-rays, or electron beams. In the present invention, light means actinic rays or radiation. Unless otherwise specified, the term “exposure” in the present invention includes not only exposure with far ultraviolet rays, X-rays or EUV, but also drawing with particle beams such as electron beams or ion beams.
 本発明の薬液により上記課題が解決される機序は必ずしも明確ではないが、本発明者はその機序について以下のとおり推測する。なお、以下の機序は推測であり、異なる機序により本発明の効果が得られる場合であっても本発明の範囲に含まれる。
 本発明者らは、薬液が酸化チタン粒子及びチタンイオンを含有する際に、その質量比(酸化チタン粒子の質量/酸化イオンの質量)によってシリコン基板又は酸化ケイ素膜付きシリコン基板(以後、これらを総称して「特定基板」ともいう)上での金属残渣欠陥(金属成分由来の残渣)の生じやすさが異なることを知見している。より具体的には、上記質量比が大きすぎる場合、言い換えると、酸化チタン粒子の割合が多すぎる場合、特定基板上にて酸化チタン粒子由来の金属残渣欠陥が多くなりやすいと考えられる。また、上記質量比が小さすぎる場合、言い換えると、チタンイオンの割合が多すぎる場合、チタンイオンよりも卑な他の金属イオンとの間で酸化還元反応が進行しやすくなり、他の金属の粒子(例えば、他の金属の酸化物粒子)が増大し、特定基板上にて金属残渣欠陥が多くなりやすいと考えられる。
Although the mechanism by which the above-mentioned problem is solved by the chemical solution of the present invention is not always clear, the present inventors presume the mechanism as follows. In addition, the following mechanism is speculation, and even when the effect of the present invention is obtained by a different mechanism, it is included in the scope of the present invention.
The present inventors, when the chemical solution contains titanium oxide particles and titanium ions, the silicon substrate or silicon substrate with a silicon oxide film (hereinafter referred to as these) by the mass ratio (mass of titanium oxide particles / mass of oxide ions). It has been found that the likelihood of occurrence of metal residue defects (residues derived from metal components) on the “specific substrate” is different. More specifically, when the mass ratio is too large, in other words, when the ratio of the titanium oxide particles is too large, it is considered that metal residue defects derived from the titanium oxide particles tend to increase on a specific substrate. In addition, when the mass ratio is too small, in other words, when the ratio of titanium ions is too large, the oxidation-reduction reaction easily proceeds with other metal ions which are more noble than titanium ions, and particles of other metals. It is considered that (for example, oxide particles of another metal) increase and metal residue defects easily increase on a specific substrate.
 本発明の薬液は、有機溶剤と金属成分とを含有する薬液であって、金属成分が、酸化チタン粒子、及び、チタンイオンを含有し、チタンイオンの含有量に対する、酸化チタン粒子の含有量の質量比が10~1012である。
 以下、本発明の薬液に含まれる成分について詳述する。
The chemical solution of the present invention is a chemical solution containing an organic solvent and a metal component, wherein the metal component contains titanium oxide particles, and titanium ions, with respect to the content of titanium ions, the content of titanium oxide particles. mass ratio is 10 0 to 10 12.
Hereinafter, the components contained in the chemical solution of the present invention will be described in detail.
<有機溶剤>
 本発明の薬液(以下、単に「薬液」ともいう)は、有機溶剤を含有する。
 本明細書において、有機溶剤とは、上記薬液の全質量に対して、1成分あたり10000質量ppmを超えた含有量で含有される液状の有機化合物を意図する。つまり、本明細書においては、上記薬液の全質量に対して10000質量ppmを超えて含有される液状の有機化合物は、有機溶剤に該当する。
 また、本明細書において液状とは、25℃、大気圧下において、液体であることを意味する。
<Organic solvent>
The chemical solution of the present invention (hereinafter, also simply referred to as “chemical solution”) contains an organic solvent.
In the present specification, an organic solvent is intended to mean a liquid organic compound contained at a content exceeding 10,000 mass ppm per component with respect to the total mass of the chemical solution. That is, in this specification, a liquid organic compound contained in an amount exceeding 10,000 ppm by mass with respect to the total mass of the chemical solution corresponds to an organic solvent.
In addition, in the present specification, the term “liquid” means a liquid at 25 ° C. and atmospheric pressure.
 薬液中における有機溶剤の含有量としては特に制限されないが、薬液の全質量に対して、98.0質量%以上が好ましく、99.0質量%超がより好ましく、99.90質量%以上が更に好ましく、99.95質量%超が特に好ましい。上限は、100質量%未満である。
 有機溶剤は1種を単独で用いても、2種以上を使用してもよい。2種以上の有機溶剤を使用する場合には、合計含有量が上記範囲内であるのが好ましい。
The content of the organic solvent in the chemical solution is not particularly limited, but is preferably 98.0% by mass or more, more preferably more than 99.0% by mass, and more preferably 99.90% by mass or more based on the total mass of the chemical solution. Preferably, it is more than 99.95% by mass. The upper limit is less than 100% by mass.
One type of organic solvent may be used alone, or two or more types may be used. When two or more organic solvents are used, the total content is preferably within the above range.
 有機溶剤の種類としては特に制限されず、公知の有機溶剤を使用できる。有機溶剤は、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を有してもよいモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、ピルビン酸アルキル、ジアルキルスルホキシド、環状スルホン、ジアルキルエーテル、一価アルコール、グリコール、酢酸アルキルエステル、及び、N-アルキルピロリドン等が挙げられる。 種類 The type of the organic solvent is not particularly limited, and a known organic solvent can be used. Examples of the organic solvent include alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, alkyl lactate, alkyl alkoxypropionate, cyclic lactone (preferably having 4 to 10 carbon atoms), and monoketone compound optionally having a ring. (Preferably having 4 to 10 carbon atoms), alkylene carbonate, alkyl alkoxyacetate, alkyl pyruvate, dialkyl sulfoxide, cyclic sulfone, dialkyl ether, monohydric alcohol, glycol, alkyl acetate, and N-alkylpyrrolidone. .
 有機溶剤は、例えば、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、乳酸エチル(EL)、炭酸プロピレン(PC)、イソプロパノール(IPA)、4-メチル-2-ペンタノール(MIBC)、酢酸ブチル(nBA)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、メトキシプロピオン酸メチル、シクロペンタノン、γ-ブチロラクトン、ジイソアミルエーテル、酢酸イソアミル、ジメチルスルホキシド、N-メチルピロリドン、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、スルフォラン、シクロヘプタノン、2-ヘプタノン、酪酸ブチル、イソ酪酸イソブチル、イソアミルエーテル、及び、ウンデカンからなる群から選択される1種以上が好ましい。
 有機溶剤を2種以上使用する例としては、PGMEAとPGMEの併用、及び、PGMEAとPCの併用が挙げられる。
 なお、薬液中における有機溶剤の種類及び含有量は、ガスクロマトグラフ質量分析計を用いて測定できる。
Examples of the organic solvent include propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), ethyl lactate (EL), propylene carbonate (PC), isopropanol (IPA), and 4-methyl-2. -Pentanol (MIBC), butyl acetate (nBA), propylene glycol monoethyl ether, propylene glycol monopropyl ether, methyl methoxypropionate, cyclopentanone, γ-butyrolactone, diisoamyl ether, isoamyl acetate, dimethyl sulfoxide, N- Methylpyrrolidone, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, sulfolane, cycloheptanone, Heptanone, butyl butyrate, isobutyl isobutyrate, isoamyl ether, and one or more selected from the group consisting of undecane is preferred.
Examples of using two or more organic solvents include a combination of PGMEA and PGME, and a combination of PGMEA and PC.
In addition, the kind and content of the organic solvent in the chemical solution can be measured using a gas chromatograph mass spectrometer.
<金属成分>
 薬液は金属成分を含有する。
 金属成分は、金属含有粒子及び金属イオンから構成され、例えば、金属成分の含有量という場合、金属含有粒子及び金属イオンの合計含有量を示す。
 金属含有粒子は、金属原子が含まれていればよく、例えば、金属酸化物粒子、金属窒化物粒子、及び、金属粒子が挙げられる。なお、金属粒子とは、金属からなる粒子を意味する。
<Metal components>
The chemical solution contains a metal component.
The metal component is composed of metal-containing particles and metal ions. For example, the content of the metal component indicates the total content of the metal-containing particles and metal ions.
The metal-containing particles only need to include metal atoms, and examples thereof include metal oxide particles, metal nitride particles, and metal particles. The metal particles mean particles made of metal.
 薬液に含有される金属成分は、酸化チタン粒子、及び、チタンイオンを含有する。
 チタンイオンの含有量に対する、酸化チタン粒子の含有量の質量比が10~1012であり、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、上記質量比は、10~1010が好ましく、10~1010がより好ましく、10~10が更に好ましく、10~10が特に好ましい。
The metal component contained in the chemical solution contains titanium oxide particles and titanium ions.
To the content of titanium ions, a mass ratio of 10 0 to 10 12 of the content of titanium oxide particles, on a silicon substrate or a silicon oxide film, and more hardly generates points composites residue defects residual metal defects or later in, the mass ratio is preferably from 10 1 to 10 10, more preferably from 10 2 to 10 10, more preferably 10 3 to 10 8, more preferably 10 3 to 10 7.
 チタンイオンの含有量は特に制限されず、0.01~150質量pptの場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、チタンイオンの含有量は、薬液全質量に対して、0.10~100質量pptが好ましく、1.0~70質量pptがより好ましい。 The content of titanium ions is not particularly limited, and is often 0.01 to 150 mass ppt. Among them, the content of titanium ions is 0.10 to 100 mass ppt, based on the total mass of the chemical solution, in that metal residue defects or composite residue defects described later are less likely to occur on a silicon substrate or a silicon oxide film. , And more preferably 1.0 to 70 mass ppt.
 酸化チタン粒子の含有量は特に制限されず、金属成分中のチタン成分の含有量に対して、1質量%以上100質量%未満の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、酸化チタン粒子の含有量は、金属成分中のチタン成分の含有量に対して、5質量%以上99質量%未満が好ましく、30~90質量%がより好ましい。
 チタン成分とは、チタン原子を含有する成分であり、チタン含有粒子及びチタンイオンが挙げられ、例えば、チタン成分の含有量という場合、チタン含有粒子及びチタンイオンの合計含有量を示す。
 チタン含有粒子は、チタン原子が含まれていればよく、例えば、酸化チタン粒子、窒化チタン粒子、及び、チタン粒子が挙げられる。なお、チタン粒子とは、金属チタンからなる粒子を意味する。
The content of the titanium oxide particles is not particularly limited, and is often 1% by mass or more and less than 100% by mass with respect to the content of the titanium component in the metal component. Among them, on the silicon substrate or on the silicon oxide film, metal residue defects or composite residue defects described below are less likely to occur, the content of the titanium oxide particles is relative to the content of the titanium component in the metal component. It is preferably from 5% by mass to less than 99% by mass, more preferably from 30 to 90% by mass.
The titanium component is a component containing a titanium atom, and includes titanium-containing particles and titanium ions. For example, the content of the titanium component indicates the total content of the titanium-containing particles and titanium ions.
The titanium-containing particles only need to contain titanium atoms, and examples thereof include titanium oxide particles, titanium nitride particles, and titanium particles. The titanium particles mean particles made of titanium metal.
 酸化チタン粒子のうち、粒径0.5~17nmである粒子の割合は特に制限されず、40質量%以上100質量%未満の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、酸化チタン粒子のうち、粒径0.5~17nmである粒子の割合は、60質量%以上98質量%未満が好ましく、60~95質量%がより好ましい。 割 合 Of the titanium oxide particles, the ratio of particles having a particle size of 0.5 to 17 nm is not particularly limited, and is often 40% by mass or more and less than 100% by mass. Above all, the ratio of particles having a particle size of 0.5 to 17 nm among titanium oxide particles is 60%, because metal residue defects or composite residue defects described later are less likely to occur on a silicon substrate or a silicon oxide film. It is preferably at least 80% by mass and less than 98% by mass, more preferably from 60 to 95% by mass.
 薬液に含有される金属成分は、鉄イオンを含有していてもよい。
 鉄イオンの含有量は特に制限されず、薬液全質量に対して、0.01~200質量pptの場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、鉄イオンの含有量は、薬液全質量に対して、0.1~100質量pptが好ましく、1.0~90質量pptがより好ましい。
The metal component contained in the chemical solution may contain iron ions.
The content of iron ions is not particularly limited, and is often 0.01 to 200 mass ppt based on the total mass of the chemical solution. Above all, the content of iron ions is 0.1 to 100 mass ppt with respect to the total mass of the chemical solution in that metal residue defects or composite residue defects described later are less likely to occur on a silicon substrate or a silicon oxide film. , And more preferably 1.0 to 90 mass ppt.
 薬液に含有される金属成分は、酸化鉄粒子を含有していてもよい。
 酸化鉄粒子の含有量は特に制限されず、金属成分中の鉄成分の含有量に対して、1質量%以上100質量%未満の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、酸化鉄粒子の含有量は、金属成分中の鉄成分の含有量に対して、5質量%以上99質量%未満が好ましく、10~95質量%がより好ましい。
 鉄成分とは、鉄原子を含有する成分であり、鉄含有粒子及び鉄イオンが挙げられ、例えば、鉄成分の含有量という場合、鉄含有粒子及び鉄イオンの合計含有量を示す。
 鉄含有粒子は、鉄原子が含まれていればよく、例えば、酸化鉄粒子、窒化鉄粒子、及び、鉄粒子が挙げられる。なお、鉄粒子とは、金属鉄からなる粒子を意味する。
The metal component contained in the chemical solution may contain iron oxide particles.
The content of the iron oxide particles is not particularly limited, and is often 1% by mass or more and less than 100% by mass with respect to the content of the iron component in the metal component. Among them, on the silicon substrate or on the silicon oxide film, metal residue defects or composite residue defects described below are less likely to occur, the content of the iron oxide particles is relative to the content of the iron component in the metal component. It is preferably from 5% by mass to less than 99% by mass, more preferably from 10 to 95% by mass.
The iron component is a component containing an iron atom, and includes iron-containing particles and iron ions. For example, when referring to the iron component content, it indicates the total content of the iron-containing particles and iron ions.
The iron-containing particles only need to contain iron atoms, and examples thereof include iron oxide particles, iron nitride particles, and iron particles. The iron particles mean particles made of metallic iron.
 酸化鉄粒子のうち、粒径0.5~17nmである粒子の割合は特に制限されず、40質量%以上100質量%未満の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、酸化鉄粒子のうち、粒径0.5~17nmである粒子の割合は、60質量%以上98質量%未満が好ましく、60~95質量%がより好ましい。 割 合 Of the iron oxide particles, the ratio of particles having a particle size of 0.5 to 17 nm is not particularly limited, and is often 40% by mass or more and less than 100% by mass. Among them, the ratio of particles having a particle diameter of 0.5 to 17 nm among iron oxide particles is 60, because metal residue defects or composite residue defects described later are less likely to be formed on a silicon substrate or a silicon oxide film. It is preferably at least 80% by mass and less than 98% by mass, more preferably from 60 to 95% by mass.
 薬液中における、鉄イオンの含有量に対する、酸化鉄粒子の含有量の質量比は特に制限されず、10-2~1014の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、上記質量比は、10~1012が好ましく、10~1010がより好ましく、10~10が更に好ましく、10~10が特に好ましい。 The mass ratio of the content of iron oxide particles to the content of iron ions in the chemical solution is not particularly limited, and is often 10 −2 to 10 14 . Among them, the mass ratio is preferably from 10 0 to 10 12 , more preferably from 10 2 to 10 10 , in that metal residue defects or composite residue defects described later are less likely to be formed on the silicon substrate or the silicon oxide film. And 10 3 to 10 8 are more preferable, and 10 3 to 10 7 is particularly preferable.
 薬液に含有される金属成分は、アルミニウムイオンを含有していてもよい。
 アルミニウムイオンの含有量は特に制限されず、薬液全質量に対して、0.01~200質量pptの場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、アルミニウムイオンの含有量は、薬液全質量に対して、0.1~100質量pptが好ましく、1.0~90質量pptがより好ましい。
The metal component contained in the chemical solution may contain aluminum ions.
The content of the aluminum ion is not particularly limited, and is often 0.01 to 200 mass ppt with respect to the total mass of the chemical solution. Above all, the content of aluminum ions is 0.1 to 100 mass ppt with respect to the total mass of the chemical solution in that metal residue defects or composite residue defects described later are less likely to occur on a silicon substrate or a silicon oxide film. , And more preferably 1.0 to 90 mass ppt.
 薬液に含有される金属成分は、酸化アルミニウム粒子を含有していてもよい。
 酸化アルミニウム粒子の含有量は特に制限されず、金属成分中のアルミニウム成分の含有量に対して、1質量%以上100質量%未満の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、酸化アルミニウム粒子の含有量は、金属成分中のアルミニウム成分の含有量に対して、5質量%以上99質量%未満が好ましく、10~95質量%がより好ましい。
 アルミニウム成分とは、アルミニウム原子を含有する成分であり、アルミニウム含有粒子及びアルミニウムイオンが挙げられ、例えば、アルミニウム成分の含有量という場合、アルミニウム含有粒子及びアルミニウムイオンの合計含有量を示す。
 アルミニウム含有粒子は、アルミニウム原子が含まれていればよく、例えば、酸化アルミニウム粒子、窒化アルミニウム粒子、及び、アルミニウム粒子が挙げられる。なお、アルミニウム粒子とは、金属アルミニウムからなる粒子を意味する。
The metal component contained in the chemical solution may contain aluminum oxide particles.
The content of the aluminum oxide particles is not particularly limited, and is often 1% by mass or more and less than 100% by mass with respect to the content of the aluminum component in the metal component. Among them, on the silicon substrate or on the silicon oxide film, metal residue defects or composite residue defects described below are less likely to occur, the content of the aluminum oxide particles is relative to the content of the aluminum component in the metal component. It is preferably from 5% by mass to less than 99% by mass, more preferably from 10 to 95% by mass.
The aluminum component is a component containing an aluminum atom, and includes aluminum-containing particles and aluminum ions. For example, when referring to the content of the aluminum component, it indicates the total content of the aluminum-containing particles and aluminum ions.
The aluminum-containing particles only need to contain aluminum atoms, and examples thereof include aluminum oxide particles, aluminum nitride particles, and aluminum particles. The aluminum particles mean particles made of metallic aluminum.
 酸化アルミニウム粒子のうち、粒径0.5~17nmである粒子の割合は特に制限されず、40質量%以上100質量%未満の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、酸化アルミニウム粒子のうち、粒径0.5~17nmである粒子の割合は、60質量%以上98質量%未満が好ましく、60~95質量%がより好ましい。 割 合 Of the aluminum oxide particles, the ratio of particles having a particle size of 0.5 to 17 nm is not particularly limited, and is often 40% by mass or more and less than 100% by mass. Above all, the ratio of particles having a particle size of 0.5 to 17 nm among aluminum oxide particles is 60%, because metal residue defects or composite residue defects described later are less likely to be formed on a silicon substrate or a silicon oxide film. It is preferably at least 80% by mass and less than 98% by mass, more preferably from 60 to 95% by mass.
 薬液中における、アルミニウムイオンの含有量に対する、酸化アルミニウム粒子の含有量の質量比は特に制限されず、10-2~1014の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、上記質量比は、10~1012が好ましく、10~1010がより好ましく、10~10が更に好ましく、10~10が特に好ましい。 The mass ratio of the content of aluminum oxide particles to the content of aluminum ions in the chemical solution is not particularly limited, and is often 10 −2 to 10 14 . Among them, the mass ratio is preferably from 10 0 to 10 12 , more preferably from 10 2 to 10 10 , in that metal residue defects or composite residue defects described later are less likely to be formed on the silicon substrate or the silicon oxide film. And 10 3 to 10 8 are more preferable, and 10 3 to 10 7 is particularly preferable.
 薬液に含有される金属成分は、上述した以外の他の金属原子の成分を含有していてもよい。
 他の金属原子としては、例えば、Na(ナトリウム)、K(カリウム)、Ca(カルシウム)、Cu(銅)、Mg(マグネシウム)、Mn(マンガン)、Li(リチウム)、Cr(クロム)、Ni(ニッケル)、及び、Zr(ジルコニウム)が挙げられる。
The metal component contained in the chemical solution may contain components of other metal atoms than those described above.
Other metal atoms include, for example, Na (sodium), K (potassium), Ca (calcium), Cu (copper), Mg (magnesium), Mn (manganese), Li (lithium), Cr (chromium), Ni (Nickel) and Zr (zirconium).
 薬液に含有される金属成分は、酸化銅粒子を含有していてもよい。
 酸化銅粒子の含有量は特に制限されず、金属成分中の銅成分の含有量に対して、1質量%以上100質量%未満の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、酸化銅粒子の含有量は、金属成分中の銅成分の含有量に対して、5質量%以上99質量%未満が好ましく、10~95質量%がより好ましい。
 銅成分とは、銅原子を含有する成分であり、銅含有粒子及び銅イオンが挙げられ、例えば、銅成分の含有量という場合、銅含有粒子及び銅イオンの合計含有量を示す。
 銅含有粒子は、銅原子が含まれていればよく、例えば、酸化銅粒子、窒化銅粒子、及び、銅粒子が挙げられる。なお、銅粒子とは、金属銅からなる粒子を意味する。
The metal component contained in the chemical solution may contain copper oxide particles.
The content of the copper oxide particles is not particularly limited, and is often 1% by mass or more and less than 100% by mass with respect to the content of the copper component in the metal component. Among them, on the silicon substrate or on the silicon oxide film, metal residue defects or composite residue defects described below are less likely to occur, the content of the copper oxide particles is relative to the content of the copper component in the metal component. It is preferably from 5% by mass to less than 99% by mass, more preferably from 10 to 95% by mass.
The copper component is a component containing a copper atom, and includes copper-containing particles and copper ions. For example, when referring to the content of the copper component, it indicates the total content of the copper-containing particles and copper ions.
The copper-containing particles only need to contain copper atoms, and examples thereof include copper oxide particles, copper nitride particles, and copper particles. The copper particles mean particles made of metallic copper.
 酸化銅粒子のうち、粒径0.5~17nmである粒子の割合は特に制限されず、40質量%以上100質量%未満の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、酸化銅粒子のうち、粒径0.5~17nmである粒子の割合は、60質量%以上98質量%未満が好ましく、60~95質量%がより好ましい。 割 合 Of the copper oxide particles, the ratio of the particles having a particle size of 0.5 to 17 nm is not particularly limited, and is often 40% by mass or more and less than 100% by mass. Among them, the proportion of particles having a particle diameter of 0.5 to 17 nm among copper oxide particles is 60%, because metal residue defects or composite residue defects described later are less likely to be formed on a silicon substrate or a silicon oxide film. It is preferably at least 80% by mass and less than 98% by mass, more preferably from 60 to 95% by mass.
 薬液中における、銅イオンの含有量に対する、酸化銅粒子の含有量の質量比は特に制限されず、10-2~1014の場合が多い。中でも、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、上記質量比は、10~1012が好ましく、10~1010がより好ましく、10~10が更に好ましく、10~10が特に好ましい。 The mass ratio of the content of copper oxide particles to the content of copper ions in the chemical solution is not particularly limited, and is often 10 −2 to 10 14 . Among them, the mass ratio is preferably from 10 0 to 10 12 , more preferably from 10 2 to 10 10 , in that metal residue defects or composite residue defects described later are less likely to be formed on the silicon substrate or the silicon oxide film. And 10 3 to 10 8 are more preferable, and 10 3 to 10 7 is particularly preferable.
 金属成分は、薬液に含まれる各成分(原料)に不可避的に含まれている金属成分でもよいし、処理液の製造、貯蔵、及び/又は、移送時に不可避的に含まれる金属成分でもよいし、意図的に添加してもよい。 The metal component may be a metal component inevitably included in each component (raw material) included in the chemical solution, or may be a metal component inevitably included in the production, storage, and / or transfer of the treatment liquid. May be intentionally added.
 金属成分の含有量は特に制限されないが、シリコン基板上又は酸化ケイ素膜上に、金属残渣欠陥又は後述する複合物残渣欠陥がより生じにくい点で、薬液の全質量に対して、10~500000質量pptが好ましい。 Although the content of the metal component is not particularly limited, the metal residue defect or the composite residue defect described below is less likely to be formed on the silicon substrate or the silicon oxide film, and thus the content is 10 to 500,000 mass% based on the total mass of the chemical solution. ppt is preferred.
 なお、薬液中の金属イオン及び金属含有粒子の種類及び含有量は、SP-ICP-MS法(Single Nano Particle Inductively Coupled Plasma Mass Spectrometry)で測定できる。
 ここで、SP-ICP-MS法とは、通常のICP-MS法(誘導結合プラズマ質量分析法)と同様の装置を使用し、データ分析のみが異なる。SP-ICP-MS法のデータ分析は、市販のソフトウェアにより実施できる。
 ICP-MS法では、測定対象とされた金属成分の含有量が、その存在形態に関わらず、測定される。従って、測定対象とされた金属含有粒子と、金属イオンとの合計質量が、金属成分の含有量として定量される。
Note that the types and contents of metal ions and metal-containing particles in a chemical solution can be measured by an SP-ICP-MS method (Single Nano Particle Inductively Coupled Plasma Mass Spectrometry).
Here, the SP-ICP-MS method uses an apparatus similar to a normal ICP-MS method (inductively coupled plasma mass spectrometry), and differs only in data analysis. Data analysis of the SP-ICP-MS method can be performed by commercially available software.
In the ICP-MS method, the content of a metal component to be measured is measured regardless of its existing form. Therefore, the total mass of the metal-containing particles to be measured and the metal ions is determined as the content of the metal component.
 一方、SP-ICP-MS法では、金属含有粒子の含有量が測定できる。従って、試料中の金属成分の含有量から、金属含有粒子の含有量を引くと、試料中の金属イオンの含有量が算出できる。
 SP-ICP-MS法の装置としては、例えば、アジレントテクノロジー社製、Agilent 8800 トリプル四重極ICP-MS(inductively coupled plasma mass spectrometry、半導体分析用、オプション#200)が挙げられ、実施例に記載した方法により測定できる。上記以外の他の装置としては、PerkinElmer社製 NexION350Sのほか、アジレントテクノロジー社製、Agilent 8900も使用できる。
On the other hand, in the SP-ICP-MS method, the content of metal-containing particles can be measured. Therefore, by subtracting the content of the metal-containing particles from the content of the metal component in the sample, the content of the metal ion in the sample can be calculated.
As an apparatus of the SP-ICP-MS method, for example, Agilent 8800 triple quadrupole ICP-MS (inductively coupled plasma mass spectrometry, option # 200 for semiconductor analysis, option # 200) manufactured by Agilent Technologies, Inc. is described in Examples. Can be measured by the following method. As an apparatus other than the above, in addition to NexION350S manufactured by PerkinElmer, Agilent 8900 manufactured by Agilent Technologies can be used.
 なお、10nm以下の金属含有粒子はSP-ICP-MSでは測定できないため、特開2009-188333号公報の段落0015~0067に記載の方法(以後、「特定方法」ともいう。)を用いる。
 ここで特定方法により、基板上に残った0.5~10nmの粒子数をカウントし、そのカウントに対し、20nmの粒子のSNP-ICP-MSからの換算値を用いる。ここで金属毎に換算値が異なる為に金属毎にこの換算を行う。
 換算の具体的方法は以下のとおりである。
 例えば、薬液中の20nmの酸化チタン粒子の数がSNP-ICP-MSで10個であり、特定方法で算出される基板上に残った20nmの酸化チタン粒子の数が1個の場合、換算値は10になる。つまり、特定方法で確認できた1nmの酸化チタン粒子の数が100個の場合には、換算値の10倍を元にして、薬液中では1000個(100個×10)と計算する。本発明における10nm以下の粒子数はいずれの金属であれ、この換算方法によって推定する。
In addition, since the metal-containing particles of 10 nm or less cannot be measured by SP-ICP-MS, the method described in paragraphs 0015 to 0067 of JP-A-2009-188333 (hereinafter, also referred to as “specific method”) is used.
Here, the number of particles of 0.5 to 10 nm remaining on the substrate is counted by a specific method, and the converted value of the 20 nm particles from SNP-ICP-MS is used for the count. Here, since the conversion value differs for each metal, this conversion is performed for each metal.
The specific method of conversion is as follows.
For example, if the number of 20 nm titanium oxide particles in the chemical solution is 10 by SNP-ICP-MS and the number of 20 nm titanium oxide particles remaining on the substrate calculated by the specific method is 1, the converted value Becomes 10. That is, when the number of 1 nm titanium oxide particles confirmed by the specific method is 100, the number is calculated as 1000 (100 × 10) in the chemical based on 10 times the converted value. The number of particles having a size of 10 nm or less in the present invention is estimated by this conversion method regardless of the type of metal.
<有機不純物>
 薬液は有機不純物を含有してもよい。
 薬液中における有機不純物の含有量は特に制限されないが、シリコン基板上に、後述するシミ状残渣欠陥がより生じにくい点で、薬液全質量に対して、1000~100000質量pptが好ましい。
 なお、有機不純物とは、有機溶剤とは異なる有機化合物であって、有機溶剤の全質量に対して、10000質量ppm以下の含有量で含有される有機化合物を意味する。つまり、本明細書においては、上記有機溶剤の全質量に対して10000質量ppm以下の含有量で含有される有機化合物は、有機不純物に該当し、有機溶剤には該当しないものとする。
 有機不純物は、被精製物を精製して薬液を得る過程で、薬液に混入する、又は、添加されることが多い。そのような有機不純物としては、例えば、可塑剤、酸化防止剤、及び、これらに由来する化合物(典型的には分解生成物)等が挙げられる。
<Organic impurities>
The chemical may contain organic impurities.
The content of the organic impurities in the chemical solution is not particularly limited, but is preferably from 1,000 to 100,000 mass ppt based on the total mass of the chemical solution from the viewpoint that stain-like residue defects described later are less likely to be formed on the silicon substrate.
Note that the organic impurity is an organic compound different from the organic solvent, and means an organic compound contained at a content of 10000 ppm by mass or less based on the total mass of the organic solvent. That is, in the present specification, an organic compound contained at a content of 10,000 mass ppm or less based on the total mass of the organic solvent corresponds to an organic impurity and does not correspond to an organic solvent.
Organic impurities are often mixed with or added to a chemical solution during the process of refining a substance to be purified to obtain a chemical solution. Examples of such organic impurities include a plasticizer, an antioxidant, and a compound derived from these (typically, a decomposition product).
<水>
 薬液は、水を含有してもよい。水は、上記有機不純物には含まれない。
 水としては特に制限されず、例えば、蒸留水、イオン交換水、及び、純水等を使用できる。
 水は、薬液中に添加されてもよいし、薬液の製造工程において意図せずに薬液中に混合されてもよい。薬液の製造工程において意図せずに混合される場合としては、例えば、水が、薬液の製造に用いる原料(例えば、有機溶剤)に含有されている場合、及び、薬液の製造工程で混合する(例えば、コンタミネーション)等が挙げられるが、上記に制限されない。
<Water>
The drug solution may contain water. Water is not included in the organic impurities.
The water is not particularly limited, and for example, distilled water, ion-exchanged water, pure water, and the like can be used.
Water may be added to the chemical solution, or may be unintentionally mixed into the chemical solution in the process of manufacturing the chemical solution. Examples of the case of being unintentionally mixed in the manufacturing process of the chemical solution include, for example, the case where water is contained in a raw material (for example, an organic solvent) used for manufacturing the chemical solution, and the mixing in the manufacturing process of the chemical solution ( For example, contamination) is not limited to the above.
 薬液中における水の含有量としては特に制限されないが、薬液の全質量に対して、2.0質量%以下が好ましく、500質量ppb以下がより好ましい。下限は特に制限されないが、0質量%が挙げられる。薬液中における水の含有量は、カールフィッシャー水分測定法を測定原理とする装置を用いて、測定される水分含有量を意味する。 水 の The content of water in the chemical is not particularly limited, but is preferably 2.0% by mass or less, more preferably 500% by mass or less, based on the total mass of the chemical. The lower limit is not particularly limited, but may be 0% by mass. The water content in the chemical solution means the water content measured using an apparatus based on the Karl Fischer moisture measurement method.
<薬液の用途>
 本発明の薬液は、半導体デバイスの製造に用いられるのが好ましい。中でも、本発明の薬液を用いて半導体チップを製造することが好ましい。
 具体的には、リソグラフィー工程、エッチング工程、イオン注入工程、及び、剥離工程等を含有する半導体デバイスの製造工程において、各工程の終了後、又は、次の工程に移る前に、有機物を処理するために使用され、具体的にはプリウェット液、現像液、リンス液、及び、研磨液等として好適に用いられる。
 他にも、薬液は、レジスト膜形成用組成物が含有する樹脂の希釈液等(言い換えれば、溶剤)としても用いてもよい。
<Use of chemicals>
The chemical solution of the present invention is preferably used for manufacturing a semiconductor device. Especially, it is preferable to manufacture a semiconductor chip using the chemical solution of the present invention.
Specifically, in a semiconductor device manufacturing process including a lithography process, an etching process, an ion implantation process, and a peeling process, an organic material is processed after each process or before moving to the next process. Specifically, it is suitably used as a pre-wet liquid, a developing liquid, a rinsing liquid, a polishing liquid or the like.
In addition, the chemical solution may be used as a diluting solution of the resin contained in the resist film forming composition (in other words, a solvent).
 また、上記薬液は、半導体デバイスの製造用以外の、他の用途にも使用でき、ポリイミド、センサー用レジスト、及び、レンズ用レジスト等の現像液、及び、リンス液としても使用できる。
 また、上記薬液は、医療用途又は洗浄用途の溶剤としても使用できる。例えば、配管、容器、及び、基板(例えば、ウェハ、及び、ガラス等)等の洗浄に好適に使用できる。
 上記洗浄用途としては、上述のプリウェット液等の液が接する配管及び容器等を洗浄する、洗浄液(配管洗浄液及び容器洗浄液等)として使用するのも好ましい。
In addition, the above-mentioned chemical solution can be used for other uses other than the production of semiconductor devices, and can also be used as a developer and a rinse for polyimide, a resist for sensors, a resist for lenses, and the like.
Further, the above chemical solution can be used as a solvent for medical use or cleaning use. For example, it can be suitably used for cleaning pipes, containers, and substrates (for example, wafers and glass).
As the above-mentioned cleaning use, it is also preferable to use as a cleaning liquid (a pipe cleaning liquid and a container cleaning liquid, etc.) for cleaning pipes, containers, and the like that come into contact with a liquid such as the above-mentioned pre-wet liquid.
 中でも、薬液は、プリウェット液、現像液、リンス液、研磨液、及び、レジスト膜形成用組成物に好適に用いられる。中でも、プリウェット液、現像液、及び、リンス液に適用した場合、より優れた効果を発揮する。特に、露光光源をEUVとした場合における、プリウェット液、現像液、及び、リンス液に適用した場合、より優れた効果を発揮する。また、これらの液の移送に用いられる配管に用いられる配管洗浄液に適用した場合にも、より優れた効果を発揮する。 Among them, the chemical solution is suitably used for a pre-wet solution, a developing solution, a rinsing solution, a polishing solution, and a composition for forming a resist film. Above all, when applied to a pre-wet liquid, a developing liquid and a rinsing liquid, more excellent effects are exhibited. In particular, when the present invention is applied to a pre-wet liquid, a developing liquid and a rinsing liquid when the exposure light source is EUV, a more excellent effect is exhibited. Further, even when the present invention is applied to a pipe cleaning liquid used for pipes used for transferring these liquids, more excellent effects are exhibited.
<薬液の製造方法>
 上記薬液の製造方法としては特に制限されず、公知の製造方法が使用できる。中でも、より優れた本発明の効果を示す薬液が得られる点で、薬液の製造方法は、フィルターを用いて有機溶剤を含有する被精製物をろ過して薬液を得る、ろ過工程を有するのが好ましい。
<Chemical liquid manufacturing method>
The method for producing the chemical solution is not particularly limited, and a known production method can be used. Above all, in that a chemical solution exhibiting a better effect of the present invention can be obtained, the method for producing a chemical solution has a filtration step of filtering a substance to be purified containing an organic solvent using a filter to obtain a chemical solution. preferable.
 ろ過工程において使用する被精製物は、購入等により調達してもよいし、原料を反応させて得てもよい。被精製物としては、不純物の含有量が少ないのが好ましい。そのような被精製物の市販品としては、例えば、「高純度グレード品」と呼ばれる市販品が挙げられる。 (4) The material to be purified used in the filtration step may be procured by purchasing or the like, or may be obtained by reacting the raw materials. It is preferable that the material to be purified has a low impurity content. Examples of such a commercially available product to be purified include a commercially available product called “high-purity grade product”.
 原料を反応させて被精製物(典型的には、有機溶剤を含有する被精製物)を得る方法として特に制限されず、公知の方法を使用できる。例えば、触媒の存在下において、一又は複数の原料を反応させて、有機溶剤を得る方法が挙げられる。
 より具体的には、例えば、酢酸とn-ブタノールとを硫酸の存在下で反応させ、酢酸ブチルを得る方法;エチレン、酸素、及び、水をAl(Cの存在下で反応させ、1-ヘキサノールを得る方法;シス-4-メチル-2-ペンテンをIpc2BH(Diisopinocampheylborane)の存在下で反応させ、4-メチル-2-ペンタノールを得る方法;プロピレンオキシド、メタノール、及び、酢酸を硫酸の存在下で反応させ、PGMEA(プロピレングリコール1-モノメチルエーテル2-アセタート)を得る方法;アセトン、及び、水素を酸化銅-酸化亜鉛-酸化アルミニウムの存在下で反応させて、IPA(isopropyl alcohol)を得る方法;乳酸、及び、エタノールを反応させて、乳酸エチルを得る方法;等が挙げられる。
There is no particular limitation on the method of obtaining the object to be purified (typically, the object to be purified containing an organic solvent) by reacting the raw materials, and a known method can be used. For example, there is a method in which one or more raw materials are reacted in the presence of a catalyst to obtain an organic solvent.
More specifically, for example, a method of reacting acetic acid and n-butanol in the presence of sulfuric acid to obtain butyl acetate; reacting ethylene, oxygen, and water in the presence of Al (C 2 H 5 ) 3 Reacting cis-4-methyl-2-pentene in the presence of Ipc2BH (Diisopinocampheylborane) to obtain 4-methyl-2-pentanol; propylene oxide, methanol and acetic acid Is reacted in the presence of sulfuric acid to obtain PGMEA (propylene glycol 1-monomethyl ether 2-acetate); acetone and hydrogen are reacted in the presence of copper oxide-zinc oxide-aluminum oxide to give IPA (isopropyl). alcohol) by reacting lactic acid and ethanol to obtain lactic acid. And the like; a method of obtaining a chill.
(ろ過工程)
 本発明の薬液の製造方法は、フィルターを用いて上記被精製物をろ過して薬液を得るろ過工程を有することが好ましい。フィルターを用いて被精製物をろ過する方法としては特に制限されないが、ハウジングと、ハウジングに収納されたフィルターカートリッジと、を有するフィルターユニットに、被精製物を加圧又は無加圧で通過させる(通液する)のが好ましい。
(Filtration process)
The method for producing a drug solution of the present invention preferably includes a filtration step of filtering the above-mentioned substance to be purified using a filter to obtain a drug solution. The method of filtering the object to be purified using a filter is not particularly limited, and the object to be purified is passed through a filter unit having a housing and a filter cartridge housed in the housing with or without pressurization ( Is preferable.
・フィルターの細孔径
 フィルターの細孔径としては特に制限されず、被精製物のろ過用として通常使用される細孔径のフィルターが使用できる。中でも、フィルターの細孔径は、薬液が含有する粒子(金属粒子等)の数を所望の範囲により制御しやすい点で、200nm以下が好ましく、20nm以下がより好ましく、10nm以下が更に好ましく、5nm以下が特に好ましい。下限値としては特に制限されないが、一般に1nm以上が、生産性の観点から好ましい。
 なお、本明細書において、フィルターの細孔径とは、イソプロパノール(IPA)のバブルポイントによって決定される細孔径を意味する。
-Pore size of filter The pore size of the filter is not particularly limited, and a filter having a pore size usually used for filtering a substance to be purified can be used. Above all, the pore diameter of the filter is preferably 200 nm or less, more preferably 20 nm or less, still more preferably 10 nm or less, and more preferably 5 nm or less, in that the number of particles (metal particles and the like) contained in the drug solution can be easily controlled in a desired range. Is particularly preferred. The lower limit is not particularly limited, but is generally preferably 1 nm or more from the viewpoint of productivity.
In addition, in this specification, the pore diameter of a filter means the pore diameter determined by the bubble point of isopropanol (IPA).
 フィルターの細孔径が、5.0nm以下であると、薬液中における含有粒子数をより制御しやすい点で好ましい。以下、細孔径が5.0nm以下のフィルターを「微小孔径フィルター」ともいう。
 なお、微小孔径フィルターは単独で用いてもよいし、他の細孔径を有するフィルターと使用してもよい。中でも、生産性により優れる観点から、より大きな細孔径を有するフィルターと使用するのが好ましい。つまり、2以上のフィルターを用いる場合、少なくとも1つのフィルターの細孔径が5.0nm以下であることが好ましい。この場合、予めより大きな細孔径を有するフィルターによってろ過した被精製物を、微小孔径フィルターに通液させれば、微小孔径フィルターの目詰まりを防げる。
 すなわち、フィルターの細孔径としては、フィルターを1つ用いる場合には、細孔径は5.0nm以下が好ましく、フィルターを2つ以上用いる場合、最小の細孔径を有するフィルターの細孔径が5.0nm以下が好ましい。
It is preferable that the pore diameter of the filter be 5.0 nm or less, since the number of particles contained in the drug solution can be more easily controlled. Hereinafter, a filter having a pore size of 5.0 nm or less is also referred to as a “micropore size filter”.
The micropore size filter may be used alone, or may be used with a filter having another pore size. Among them, it is preferable to use a filter having a larger pore diameter from the viewpoint of better productivity. That is, when two or more filters are used, it is preferable that at least one filter has a pore diameter of 5.0 nm or less. In this case, if the object to be purified, which has been filtered through a filter having a larger pore diameter in advance, is passed through a micropore size filter, clogging of the micropore size filter can be prevented.
That is, when one filter is used, the pore diameter of the filter is preferably 5.0 nm or less, and when two or more filters are used, the pore diameter of the filter having the smallest pore diameter is 5.0 nm. The following is preferred.
 細孔径の異なる2種以上のフィルターを順次使用する形態としては特に制限されないが、被精製物が移送される管路に沿って、既に説明したフィルターユニットを順に配置する方法が挙げられる。このとき、管路全体として被精製物の単位時間当たりの流量を一定にしようとすると、細孔径のより小さいフィルターには、細孔径のより大きいフィルターと比較してより大きな圧力がかかる場合がある。この場合、フィルターの間に圧力調整弁、及び、ダンパ等を配置して、小さい細孔径を有するフィルターにかかる圧力を一定にしたり、また、同一のフィルターが収納されたフィルターユニットを管路に沿って並列に配置したりして、ろ過面積を大きくするのが好ましい。このようにすれば、より安定して、薬液中における粒子の数を制御できる。 形態 The form in which two or more types of filters having different pore diameters are sequentially used is not particularly limited, and examples thereof include a method of sequentially arranging the above-described filter units along a pipe through which a substance to be purified is transferred. At this time, when trying to keep the flow rate per unit time of the object to be purified as a whole pipe line, a larger pressure may be applied to a filter having a smaller pore size as compared with a filter having a larger pore size. . In this case, a pressure regulating valve, a damper, etc. are arranged between the filters to make the pressure applied to the filter having a small pore diameter constant, or a filter unit containing the same filter is placed along the pipeline. It is preferable to increase the filtration area by arranging them in parallel. This makes it possible to more stably control the number of particles in the chemical solution.
・フィルターの材料
 フィルターの材料としては特に制限されず、フィルターの材料として公知の材料が使用できる。具体的には、樹脂である場合、ナイロン(例えば、6-ナイロン及び6,6-ナイロン)等のポリアミド;ポリエチレン、及び、ポリプロピレン等のポリオレフィン;ポリスチレン;ポリイミド;ポリアミドイミド;ポリ(メタ)アクリレート;ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレン・テトラフルオロエチレンコポリマー、エチレン-クロロトリフロオロエチレンコポリマー、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、及び、ポリフッ化ビニル等のポリフルオロカーボン;ポリビニルアルコール;ポリエステル;セルロース;セルロースアセテート等が挙げられる。
 中でも、より優れた耐溶剤性を有し、得られる薬液がより優れた欠陥抑制性能を有する点で、ナイロン(中でも、6,6-ナイロンが好ましい)、ポリオレフィン(中でも、ポリエチレンが好ましい)、ポリ(メタ)アクリレート、及び、ポリフルオロカーボン(中でも、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)が好ましい。)からなる群から選択される少なくとも1種が好ましい。これらの重合体は単独で又は2種以上を組み合わせて使用できる。
 また、樹脂以外にも、ケイソウ土、及び、ガラス等であってもよい。
 他にも、ポリオレフィン(後述するUPE(超高分子量ポリエチレン)等)にポリアミド(例えば、ナイロン-6又はナイロン-6,6等のナイロン)をグラフト共重合させたポリマー(ナイロングラフトUPE等)をフィルターの材料としてもよい。
-Material of the filter The material of the filter is not particularly limited, and known materials for the filter can be used. Specifically, when it is a resin, polyamide such as nylon (for example, 6-nylon and 6,6-nylon); polyolefin such as polyethylene and polypropylene; polystyrene; polyimide; polyamideimide; Polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylene propene copolymer, ethylene / tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride Fluorocarbon; polyvinyl alcohol; polyester; cellulose; cellulose acetate and the like.
Among them, nylon (especially, 6,6-nylon is preferred), polyolefin (especially, polyethylene is preferred), and polyolefin are preferred in that they have better solvent resistance and the resulting chemical has more excellent defect suppression performance. At least one selected from the group consisting of (meth) acrylate and polyfluorocarbon (among others, polytetrafluoroethylene (PTFE) and perfluoroalkoxyalkane (PFA) is preferable) is preferable. These polymers can be used alone or in combination of two or more.
In addition to the resin, diatomaceous earth, glass, and the like may be used.
In addition, a polymer (eg, nylon grafted UPE) obtained by graft copolymerizing a polyamide (eg, nylon-6 or nylon-6,6, etc.) with a polyolefin (eg, UPE (ultra high molecular weight polyethylene) described below) is used as a filter. Material.
 また、フィルターは表面処理されたフィルターであってもよい。表面処理の方法としては特に制限されず、公知の方法が使用できる。表面処理の方法としては、例えば、化学修飾処理、プラズマ処理、疎水処理、コーティング、ガス処理、及び、焼結等が挙げられる。 フ ィ ル タ ー The filter may be a surface-treated filter. The method for surface treatment is not particularly limited, and a known method can be used. Examples of the surface treatment method include chemical modification treatment, plasma treatment, hydrophobic treatment, coating, gas treatment, and sintering.
 プラズマ処理は、フィルターの表面が親水化されるために好ましい。プラズマ処理して親水化されたフィルターの表面における水接触角としては特に制限されないが、接触角計で測定した25℃における静的接触角が、60°以下が好ましく、50°以下がより好ましく、30°以下が更に好ましい。 Plasma treatment is preferable because the surface of the filter becomes hydrophilic. The water contact angle on the surface of the filter that has been hydrophilized by plasma treatment is not particularly limited, but the static contact angle at 25 ° C. measured by a contact angle meter is preferably 60 ° or less, more preferably 50 ° or less, 30 ° or less is more preferable.
 化学修飾処理としては、フィルターにイオン交換基を導入する方法が好ましい。
 すなわち、フィルターとしては、イオン交換基を有するフィルターが好ましい。
 イオン交換基としては、カチオン交換基及びアニオン交換基が挙げられ、カチオン交換基として、スルホン酸基、カルボキシ基、及び、リン酸基等が挙げられ、アニオン交換基として、4級アンモニウム基等が挙げられる。イオン交換基をフィルターに導入する方法としては特に制限されないが、イオン交換基と重合性基とを含有する化合物をフィルターと反応させ典型的にはグラフト化する方法が挙げられる。
As the chemical modification treatment, a method of introducing an ion exchange group into a filter is preferable.
That is, a filter having an ion exchange group is preferable as the filter.
Examples of the ion exchange group include a cation exchange group and an anion exchange group. Examples of the cation exchange group include a sulfonic acid group, a carboxy group, and a phosphate group, and examples of the anion exchange group include a quaternary ammonium group. No. The method for introducing the ion-exchange group into the filter is not particularly limited, and examples thereof include a method in which a compound containing an ion-exchange group and a polymerizable group is allowed to react with the filter and typically grafted.
 イオン交換基の導入方法としては特に制限されないが、フィルターに電離放射線(α線、β線、γ線、X線、及び、電子線等)を照射して、活性部分(ラジカル)を生成させる。この照射後のフィルターをモノマー含有溶液に浸漬して、モノマーをフィルターにグラフト重合させる。その結果、このモノマーが重合して得られるポリマーがフィルターにグラフトする。この生成されたポリマーをアニオン交換基又はカチオン交換基を含有する化合物と接触反応させて、ポリマーにイオン交換基を導入できる。 方法 The method of introducing the ion exchange group is not particularly limited, but the filter is irradiated with ionizing radiation (α-ray, β-ray, γ-ray, X-ray, electron beam, etc.) to generate an active portion (radical). The filter after the irradiation is immersed in the monomer-containing solution, and the monomer is graft-polymerized on the filter. As a result, a polymer obtained by polymerizing this monomer is grafted on the filter. The produced polymer can be brought into contact with a compound containing an anion exchange group or a cation exchange group to introduce an ion exchange group into the polymer.
 また、フィルターは、放射線グラフト重合法によりイオン交換基を形成した織布、又は、不織布と、従来のガラスウール、織布、又は、不織布のろ過材とを組み合わせた構成でもよい。 フ ィ ル タ ー The filter may have a structure in which a woven or nonwoven fabric having an ion exchange group formed by a radiation graft polymerization method is combined with a conventional glass wool, woven or nonwoven fabric filter material.
 イオン交換基を有するフィルターを用いると、金属含有粒子及び金属イオンの薬液中における含有量を所望の範囲により制御しやすい。イオン交換基を有するフィルターを構成する材料としては特に制限されないが、ポリフルオロカーボン、及び、ポリオレフィンにイオン交換基を導入した材料等が挙げられ、ポリフルオロカーボンにイオン交換基を導入した材料がより好ましい。
 イオン交換基を有するフィルターの細孔径は特に制限されないが、1~30nmが好ましく、5~20nmがより好ましい。イオン交換基を有するフィルターは、既に説明した最小の細孔径を有するフィルターを兼ねてもよいし、最小の細孔径を有するフィルターとは別に使用してもよい。中でも、より優れた本発明の効果を示す薬液が得られる点で、ろ過工程は、イオン交換基を有するフィルターと、イオン交換基を有さず、最小の細孔径を有するフィルターとを使用する形態が好ましい。
 既に説明した最小の細孔径を有するフィルターの材料としては特に制限されないが、耐溶剤性等の観点から、一般に、ポリフルオロカーボン、及び、ポリオレフィンからなる群より選択される少なくとも1種が好ましく、ポリオレフィンがより好ましい。
When a filter having an ion exchange group is used, it is easy to control the contents of the metal-containing particles and metal ions in the chemical solution in a desired range. The material constituting the filter having an ion exchange group is not particularly limited, and examples thereof include a polyfluorocarbon and a material in which an ion exchange group is introduced into polyolefin, and a material in which an ion exchange group is introduced into polyfluorocarbon is more preferable.
Although the pore diameter of the filter having an ion exchange group is not particularly limited, it is preferably 1 to 30 nm, more preferably 5 to 20 nm. The filter having an ion-exchange group may also serve as the filter having the smallest pore diameter described above, or may be used separately from the filter having the smallest pore diameter. Above all, in the point that a drug solution exhibiting a superior effect of the present invention can be obtained, the filtration step uses a filter having an ion exchange group and a filter having no ion exchange group and having a minimum pore diameter. Is preferred.
The material of the filter having the smallest pore diameter already described is not particularly limited, but from the viewpoint of solvent resistance and the like, generally, polyfluorocarbon, and at least one selected from the group consisting of polyolefins are preferable. More preferred.
 従って、ろ過工程で使用されるフィルターとしては、材料の異なる2種以上のフィルターを使用してもよく、例えば、ポリオレフィン、ポリフルオロカーボン、ポリアミド、及び、これらにイオン交換基を導入した材料のフィルターからなる群より選択される2種以上を使用してもよい。 Therefore, as the filter used in the filtration step, two or more types of filters having different materials may be used. For example, polyolefins, polyfluorocarbons, polyamides, and filters made of materials having ion exchange groups introduced therein may be used. Two or more kinds selected from the group may be used.
・フィルターの細孔構造
 フィルターの細孔構造としては特に制限されず、被精製物中の成分に応じて適宜選択すればよい。本明細書において、フィルターの細孔構造とは、細孔径分布、フィルター中の細孔の位置的な分布、及び、細孔の形状等を意味し、典型的には、フィルターの製造方法により制御可能である。
 例えば、樹脂等の粉末を焼結して形成すれば多孔質膜が得られ、エレクトロスピニング、エレクトロブローイング、及び、メルトブローイング等の方法により形成すれば繊維膜が得られる。これらは、それぞれ細孔構造が異なる。
-Pore structure of filter The pore structure of the filter is not particularly limited, and may be appropriately selected according to the components in the object to be purified. In the present specification, the pore structure of a filter means a pore size distribution, a positional distribution of pores in a filter, and a shape of pores, and is typically controlled by a filter manufacturing method. It is possible.
For example, a porous film can be obtained by sintering a powder of a resin or the like, and a fiber film can be obtained by forming by a method such as electrospinning, electroblowing, and meltblowing. These have different pore structures.
 「多孔質膜」とは、ゲル、粒子、コロイド、細胞、及び、ポリオリゴマー等の被精製物中の成分を保持するが、細孔よりも実質的に小さい成分は、細孔を通過する膜を意味する。多孔質膜による被精製物中の成分の保持は、動作条件、例えば、面速度、界面活性剤の使用、pH、及び、これらの組み合わせに依存する場合があり、かつ、多孔質膜の孔径、構造、及び、除去されるべき粒子のサイズ、及び、構造(硬質粒子か、又は、ゲルか等)に依存し得る。 A “porous membrane” refers to a membrane that retains components in an object to be purified, such as gels, particles, colloids, cells, and poly-oligomers, but a component that is substantially smaller than the pores passes through the pores. Means The retention of components in the object to be purified by the porous membrane may depend on operating conditions, such as surface velocity, use of surfactant, pH, and combinations thereof, and the pore size of the porous membrane, It may depend on the structure and the size of the particles to be removed, and the structure (hard particles or gels, etc.).
 被精製物が負に帯電している粒子を含有する場合、そのような粒子の除去には、ポリアミド製のフィルターが非ふるい膜の機能を果たす。典型的な非ふるい膜には、ナイロン-6膜及びナイロン-6,6膜等のナイロン膜が含まれるが、これらに制限されない。
 なお、本明細書で使用される「非ふるい」による保持機構は、フィルターの圧力降下、又は、細孔径に関連しない、妨害、拡散及び吸着等の機構によって生じる保持を指す。
If the object to be purified contains negatively charged particles, a polyamide filter acts as a non-sieving membrane to remove such particles. Typical non-sieving membranes include, but are not limited to, nylon-6 membranes and nylon membranes such as nylon-6,6 membranes.
As used herein, "non-sieving" retention mechanism refers to retention caused by mechanisms such as filter pressure drop or interference, diffusion, and adsorption that are not related to pore size.
 非ふるい保持は、フィルターの圧力降下又はフィルターの細孔径に関係なく、被精製物中の除去対象粒子を除去する、妨害、拡散及び吸着等の保持機構を含む。フィルター表面への粒子の吸着は、例えば、分子間のファンデルワールス力及び静電力等によって媒介され得る。蛇行状のパスを有する非ふるい膜層中を移動する粒子が、非ふるい膜と接触しないように十分に速く方向を変られない場合に、妨害効果が生じる。拡散による粒子輸送は、粒子がろ過材と衝突する一定の確率を作り出す、主に、小さな粒子のランダム運動又はブラウン運動から生じる。粒子とフィルターの間に反発力が存在しない場合、非ふるい保持機構は活発になり得る。 Non-sieve retention includes retention mechanisms, such as obstruction, diffusion, and adsorption, that remove particles to be removed from the object to be purified, regardless of the filter pressure drop or filter pore size. The adsorption of particles to the filter surface can be mediated, for example, by intermolecular van der Waals forces and electrostatic forces. An interfering effect occurs when particles traveling in a non-sieving membrane layer having a tortuous path are not turned fast enough to avoid contact with the non-sieving membrane. Particle transport by diffusion results primarily from random or Brownian motion of small particles, which creates a certain probability that the particles will collide with the filter media. If there is no repulsion between the particles and the filter, the non-sieve retention mechanism can be active.
 UPE(超高分子量ポリエチレン)フィルターは、典型的には、ふるい膜である。ふるい膜は、主にふるい保持機構を介して粒子を捕捉する膜、又は、ふるい保持機構を介して粒子を捕捉するために最適化された膜を意味する。
 ふるい膜の典型的な例としては、ポリテトラフルオロエチレン(PTFE)膜とUPE膜が含まれるが、これらに制限されない。
 なお、「ふるい保持機構」とは、除去対象粒子が多孔質膜の細孔径よりも大きいことによる結果の保持を指す。ふるい保持力は、フィルターケーキ(膜の表面での除去対象となる粒子の凝集)を形成することによって向上させられる。フィルターケーキは、2次フィルターの機能を効果的に果たす。
UPE (ultra high molecular weight polyethylene) filters are typically sieved membranes. A sieve membrane means a membrane that mainly captures particles via a sieve holding mechanism, or a membrane that is optimized for capturing particles via a sieve holding mechanism.
Typical examples of sieving membranes include, but are not limited to, polytetrafluoroethylene (PTFE) membranes and UPE membranes.
Note that the “sieve holding mechanism” refers to holding the result due to the removal target particles being larger than the pore diameter of the porous membrane. The sieve retention is improved by forming a filter cake (agglomeration of the particles to be removed on the surface of the membrane). The filter cake effectively performs the function of a secondary filter.
 繊維膜の材質は、繊維膜を形成可能なポリマーであれば特に制限されない。ポリマーとしては、例えば、ポリアミド等が挙げられる。ポリアミドとしては、例えば、ナイロン6、及び、ナイロン6,6等が挙げられる。繊維膜を形成するポリマーとしては、ポリ(エーテルスルホン)であってもよい。繊維膜が多孔質膜の一次側にある場合、繊維膜の表面エネルギーは、二次側にある多孔質膜の材質であるポリマーより高いのが好ましい。そのような組合せとしては、例えば、繊維膜の材料がナイロンで、多孔質膜がポリエチレン(UPE)である場合が挙げられる。 材質 The material of the fiber membrane is not particularly limited as long as it is a polymer capable of forming the fiber membrane. Examples of the polymer include polyamide and the like. Examples of the polyamide include nylon 6, nylon 6,6, and the like. The polymer forming the fiber membrane may be poly (ether sulfone). When the fibrous membrane is on the primary side of the porous membrane, the surface energy of the fibrous membrane is preferably higher than the polymer which is the material of the porous membrane on the secondary side. An example of such a combination is a case where the material of the fiber membrane is nylon and the porous membrane is polyethylene (UPE).
 繊維膜の製造方法としては特に制限されず、公知の方法を使用できる。繊維膜の製造方法としては、例えば、エレクトロスピニング、エレクトロブローイング、及び、メルトブローイング等が挙げられる。 方法 The method for producing the fiber membrane is not particularly limited, and a known method can be used. Examples of the method for producing a fiber membrane include electrospinning, electroblowing, and meltblowing.
 多孔質膜(例えば、UPE、及び、PTFE等を含む多孔質膜)の細孔構造としては特に制限されないが、細孔の形状としては例えば、レース状、ストリング状、及び、ノード状等が挙げられる。
 多孔質膜における細孔の大きさの分布とその膜中における位置の分布は、特に制限されない。大きさの分布がより小さく、かつ、その膜中における分布位置が対称であってもよい。また、大きさの分布がより大きく、かつ、その膜中における分布位置が非対称であってもよい(上記の膜を「非対称多孔質膜」ともいう。)。非対称多孔質膜では、孔の大きさは膜中で変化し、典型的には、膜一方の表面から膜の他方の表面に向かって孔径が大きくなる。このとき、孔径の大きい細孔が多い側の表面を「オープン側」といい、孔径が小さい細孔が多い側の表面を「タイト側」ともいう。
 また、非対称多孔質膜としては、例えば、細孔の大きさが膜の厚さ内のある位置においてで最小となる膜(これを「砂時計形状」ともいう。)が挙げられる。
The pore structure of the porous membrane (for example, a porous membrane containing UPE, PTFE, or the like) is not particularly limited, and examples of the pore shape include a lace shape, a string shape, and a node shape. Can be
The distribution of pore sizes in the porous membrane and the distribution of positions in the membrane are not particularly limited. The size distribution may be smaller and the distribution position in the film may be symmetric. Further, the size distribution may be larger and the distribution position in the film may be asymmetric (the above film is also referred to as “asymmetric porous film”). In an asymmetric porous membrane, the size of the pores varies in the membrane, and typically the pore size increases from one surface of the membrane to the other surface of the membrane. At this time, the surface on the side with many pores having a large pore diameter is called “open side”, and the surface on the side with many pores with small pore diameter is also called “tight side”.
Examples of the asymmetric porous membrane include a membrane in which the size of pores is minimized at a certain position within the thickness of the membrane (this is also referred to as an “hourglass shape”).
 非対称多孔質膜を用いて、一次側をより大きいサイズの孔とすると、言い換えれば、一次側をオープン側とすると、前ろ過効果を生じさせられる。 If the primary side is made to have a larger-sized pore using the asymmetric porous membrane, in other words, if the primary side is made to be the open side, a pre-filtration effect can be produced.
 多孔質膜は、PESU(ポリエーテルスルホン)、PFA(パーフルオロアルコキシアルカン、四フッ化エチレンとパーフルオロアルコキシアルカンとの共重合体)、ポリアミド、及び、ポリオレフィン等の熱可塑性ポリマーを含んでもよいし、ポリテトラフルオロエチレン等を含んでもよい。
 中でも、多孔質膜の材料としては、超高分子量ポリエチレンが好ましい。超高分子量ポリエチレンは、極めて長い鎖を有する熱可塑性ポリエチレンを意味し、分子量が百万以上、典型的には、200~600万が好ましい。
The porous membrane may include thermoplastic polymers such as PESU (polyethersulfone), PFA (perfluoroalkoxyalkane, copolymer of ethylene tetrafluoride and perfluoroalkoxyalkane), polyamide, and polyolefin. , Polytetrafluoroethylene and the like.
Among them, ultrahigh molecular weight polyethylene is preferable as the material of the porous membrane. Ultra-high molecular weight polyethylene means a thermoplastic polyethylene having an extremely long chain, and preferably has a molecular weight of 1,000,000 or more, typically 2,000,000 to 6,000,000.
 ろ過工程で使用されるフィルターとしては、細孔構造の異なる2種以上のフィルターを使用してもよく、多孔質膜、及び、繊維膜のフィルターを併用してもよい。具体例としては、ナイロン繊維膜のフィルターと、UPE多孔質膜のフィルターとを使用する方法が挙げられる。 As a filter used in the filtration step, two or more types of filters having different pore structures may be used, or a filter of a porous membrane and a filter of a fiber membrane may be used in combination. Specific examples include a method using a nylon fiber membrane filter and a UPE porous membrane filter.
 また、フィルターは使用前に十分に洗浄してから使用するのが好ましい。
 未洗浄のフィルター(又は十分な洗浄がされていないフィルター)を使用する場合、フィルターが含有する不純物が薬液に持ち込まれやすい。
Further, it is preferable that the filter is sufficiently washed before use.
When an unwashed filter (or a filter that has not been sufficiently washed) is used, impurities contained in the filter are likely to be brought into the chemical solution.
 上記のとおり、本発明の実施形態に係るろ過工程は、フィルターの材料、細孔径、及び、細孔構造からなる群より選択される少なくとも1種が異なる2種以上のフィルターに被精製物を通過させる、多段ろ過工程であってもよい。
 また、同一のフィルターに被精製物を複数回通過させてもよく、同種のフィルターの複数に、被精製物を通過させてもよい。
As described above, in the filtration step according to the embodiment of the present invention, at least one selected from the group consisting of a filter material, a pore diameter, and a pore structure passes the material to be purified through two or more types of different filters. And a multi-stage filtration step.
The object to be purified may be passed through the same filter a plurality of times, or the object to be purified may be passed through a plurality of filters of the same type.
 なお、本発明の薬液を調製する上では、フィルターとして「Purasol SN 200nm」などの金属成分(特に、金属イオン)を選択的に除去し得るフィルター(金属成分除去フィルター)を用いることが好ましい。 In preparing the chemical solution of the present invention, it is preferable to use a filter capable of selectively removing metal components (particularly, metal ions) such as “Purasol SN 200 nm” (metal component removal filter).
 ろ過工程で使用される精製装置の接液部(被精製物、及び、薬液が接触する可能性のある内壁面等を意味する)の材料としては特に制限されないが、非金属材料(フッ素系樹脂等)、及び、電解研磨された金属材料(ステンレス鋼等)からなる群から選択される少なくとも1種(以下、これらをあわせて「耐腐食材料」ともいう。)から形成されるのが好ましい。例えば、製造タンクの接液部が耐腐食材料から形成される、とは、製造タンク自体が耐腐食材料からなるか、又は、製造タンクの内壁面等が耐腐食材料で被覆されている場合が挙げられる。 The material of the liquid contacting portion of the purification device used in the filtration step (meaning the substance to be purified and the inner wall surface to which the chemical solution may come into contact) is not particularly limited, but non-metallic materials (fluorinated resin And the like, and at least one selected from the group consisting of electrolytically polished metal materials (such as stainless steel) (hereinafter, these are collectively referred to as “corrosion-resistant materials”). For example, the wetted part of a production tank is formed of a corrosion-resistant material, which means that the production tank itself is made of a corrosion-resistant material, or the inner wall of the production tank is coated with a corrosion-resistant material. No.
 上記非金属材料としては、特に制限されず、公知の材料が使用できる。
 非金属材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレン-ポリプロピレン樹脂、並びに、フッ素系樹脂(例えば、四フッ化エチレン樹脂、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合樹脂、四フッ化エチレン-六フッ化プロピレン共重合樹脂、四フッ化エチレン-エチレン共重合樹脂、三フッ化塩化エチレン-エチレン共重合樹脂、フッ化ビニリデン樹脂、三フッ化塩化エチレン共重合樹脂、及び、フッ化ビニル樹脂等)からなる群から選択される少なくとも1種が挙げられるが、これに制限されない。
The nonmetallic material is not particularly limited, and a known material can be used.
Non-metallic materials include, for example, polyethylene resin, polypropylene resin, polyethylene-polypropylene resin, and fluorine-based resin (for example, ethylene tetrafluoride resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer resin, ethylene tetrafluoride -Propylene hexafluoride copolymer resin, ethylene tetrafluoride-ethylene copolymer resin, ethylene trifluoride-ethylene copolymer resin, vinylidene fluoride resin, ethylene trifluoride ethylene copolymer resin, and vinyl fluoride resin And the like, but not limited thereto.
 上記金属材料としては、特に制限されず、公知の材料が使用できる。
 金属材料としては、例えば、クロム及びニッケルの含有量の合計が金属材料全質量に対して25質量%超である金属材料が挙げられ、中でも、30質量%以上がより好ましい。金属材料におけるクロム及びニッケルの含有量の合計の上限値としては特に制限されないが、一般に90質量%以下が好ましい。
 金属材料としては例えば、ステンレス鋼、及びニッケル-クロム合金等が挙げられる。
The metal material is not particularly limited, and a known material can be used.
Examples of the metal material include a metal material in which the total content of chromium and nickel is more than 25% by mass based on the total mass of the metal material, and among them, 30% by mass or more is more preferable. The upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is generally preferably 90% by mass or less.
Examples of the metal material include stainless steel and a nickel-chromium alloy.
 ステンレス鋼としては、特に制限されず、公知のステンレス鋼が使用できる。中でも、ニッケルを8質量%以上含有する合金が好ましく、ニッケルを8質量%以上含有するオーステナイト系ステンレス鋼がより好ましい。オーステナイト系ステンレス鋼としては、例えばSUS(Steel Use Stainless)304(Ni含有量8質量%、Cr含有量18質量%)、SUS304L(Ni含有量9質量%、Cr含有量18質量%)、SUS316(Ni含有量10質量%、Cr含有量16質量%)、及びSUS316L(Ni含有量12質量%、Cr含有量16質量%)等が挙げられる。 The stainless steel is not particularly limited, and a known stainless steel can be used. Among them, alloys containing nickel at 8% by mass or more are preferable, and austenitic stainless steels containing nickel at 8% by mass or more are more preferable. Examples of austenitic stainless steel include SUS (Steel Use Stainless) 304 (Ni content 8% by mass, Cr content 18% by mass), SUS304L (Ni content 9% by mass, Cr content 18% by mass), SUS316 ( Ni content 10% by mass, Cr content 16% by mass) and SUS316L (Ni content 12% by mass, Cr content 16% by mass) and the like.
 ニッケル-クロム合金としては、特に制限されず、公知のニッケル-クロム合金が使用できる。中でも、ニッケル含有量が40~75質量%、クロム含有量が1~30質量%のニッケル-クロム合金が好ましい。
 ニッケル-クロム合金としては、例えば、ハステロイ(商品名、以下同じ。)、モネル(商品名、以下同じ)、及び、インコネル(商品名、以下同じ)が挙げられる。より具体的には、ハステロイC-276(Ni含有量63質量%、Cr含有量16質量%)、ハステロイ-C(Ni含有量60質量%、Cr含有量17質量%)、及び、ハステロイC-22(Ni含有量61質量%、Cr含有量22質量%)が挙げられる。
 また、ニッケル-クロム合金は、必要に応じて、上記した合金の他に、更に、ホウ素、ケイ素、タングステン、モリブデン、銅、及び、コバルト等を含有していてもよい。
The nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Among them, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable.
Examples of the nickel-chromium alloy include Hastelloy (trade name, the same applies hereinafter), Monel (trade name, the same applies hereinafter), and Inconel (trade name, the same applies hereinafter). More specifically, Hastelloy C-276 (Ni content 63% by mass, Cr content 16% by mass), Hastelloy-C (Ni content 60% by mass, Cr content 17% by mass), and Hastelloy C-276 22 (Ni content 61% by mass, Cr content 22% by mass).
Further, the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt, and the like, if necessary, in addition to the above alloy.
 金属材料を電解研磨する方法は特に制限されず、公知の方法が使用できる。例えば、特開2015-227501号公報の段落[0011]~[0014]、及び、特開2008-264929号公報の段落[0036]~[0042]等に記載された方法が使用できる。 方法 The method of electropolishing the metal material is not particularly limited, and a known method can be used. For example, the methods described in paragraphs [0011] to [0014] of JP-A-2015-227501 and paragraphs [0036] to [0042] of JP-A-2008-264929 can be used.
 金属材料は、電解研磨により表面の不動態層におけるクロムの含有量が、母相のクロムの含有量よりも多くなっていると推測される。そのため、接液部が電解研磨された金属材料から形成された精製装置を用いると、被精製物中に金属含有粒子が流出しにくいと推測される。
 なお、金属材料はバフ研磨されていてもよい。バフ研磨の方法は特に制限されず、公知の方法を使用できる。バフ研磨の仕上げに用いられる研磨砥粒のサイズは特に制限されないが、金属材料の表面の凹凸がより小さくなりやすい点で、#400以下が好ましい。なお、バフ研磨は、電解研磨の前に行われるのが好ましい。
It is presumed that the metal material has a higher chromium content in the passivation layer on the surface than a chromium content in the matrix due to electrolytic polishing. Therefore, it is presumed that the use of a refining device in which the liquid contact portion is formed from a metal material which has been electropolished, makes it difficult for metal-containing particles to flow out into the object to be purified.
The metal material may be buffed. The buffing method is not particularly limited, and a known method can be used. The size of the abrasive grains used for the buffing finish is not particularly limited, but is preferably # 400 or less from the viewpoint that irregularities on the surface of the metal material tend to be smaller. The buff polishing is preferably performed before the electrolytic polishing.
(その他の工程)
 薬液の製造方法は、ろ過工程以外の工程を更に有していてもよい。ろ過工程以外の工程としては、例えば、蒸留工程、反応工程、及び、除電工程等が挙げられる。
(Other processes)
The method for producing a chemical solution may further include a step other than the filtration step. The steps other than the filtration step include, for example, a distillation step, a reaction step, and a charge removal step.
(蒸留工程)
 蒸留工程は、有機溶剤を含有する被精製物を蒸留して、蒸留済み被精製物を得る工程である。被精製物を蒸留する方法としては特に制限されず、公知の方法が使用できる。典型的には、ろ過工程に供される精製装置の一次側に、蒸留塔を配置し、蒸留された被精製物を製造タンクに導入する方法が挙げられる。
 このとき、蒸留塔の接液部は特に制限されないが、既に説明した耐腐食材料で形成されるのが好ましい。
(Distillation process)
The distillation step is a step of distilling an object to be purified containing an organic solvent to obtain a distilled object to be purified. The method for distilling the object to be purified is not particularly limited, and a known method can be used. Typically, there is a method in which a distillation column is arranged on the primary side of a purification device provided for a filtration step, and a distilled product to be purified is introduced into a production tank.
At this time, the liquid contact portion of the distillation column is not particularly limited, but is preferably formed of the corrosion-resistant material described above.
(反応工程)
 反応工程は、原料を反応させて、反応物である有機溶剤を含有する被精製物を生成する工程である。被精製物を生成する方法としては特に制限されず、公知の方法が使用できる。典型的には、ろ過工程に供される精製装置の製造タンク(又は、蒸留塔)の一次側に反応槽を配置し、反応物を製造タンク(又は蒸留塔)に導入する方法が挙げられる。
 このとき、製造タンクの接液部としては特に制限されないが、既に説明した耐腐食材料で形成されるのが好ましい。
(Reaction step)
The reaction step is a step of reacting the raw materials to produce a purified product containing an organic solvent as a reactant. The method for producing the object to be purified is not particularly limited, and a known method can be used. Typically, there is a method in which a reaction tank is arranged on the primary side of a production tank (or a distillation column) of a purification device provided for a filtration step, and a reactant is introduced into the production tank (or a distillation column).
At this time, the liquid contact portion of the production tank is not particularly limited, but is preferably formed of the corrosion-resistant material described above.
(除電工程)
 除電工程は、被精製物を除電して、被精製物の帯電電位を低減させる工程である。
 除電方法としては特に制限されず、公知の除電方法を使用できる。除電方法としては、例えば、被精製物を導電性材料に接触させる方法が挙げられる。
 被精製物を導電性材料に接触させる接触時間は、0.001~60秒が好ましく、0.001~1秒がより好ましく、0.01~0.1秒が更に好ましい。導電性材料としては、ステンレス鋼、金、白金、ダイヤモンド、及び、グラッシーカーボンが挙げられる。
 被精製物を導電性材料に接触させる方法としては、例えば、導電性材料からなる接地されたメッシュを管路内部に配置し、ここに被精製物を通す方法等が挙げられる。
(Static elimination process)
The charge elimination step is a step of removing charges from the object to be purified to reduce the charged potential of the object to be purified.
The static elimination method is not particularly limited, and a known static elimination method can be used. Examples of the charge removal method include a method of contacting the object to be purified with a conductive material.
The contact time for contacting the object to be purified with the conductive material is preferably from 0.001 to 60 seconds, more preferably from 0.001 to 1 second, even more preferably from 0.01 to 0.1 second. Examples of the conductive material include stainless steel, gold, platinum, diamond, and glassy carbon.
As a method of bringing the object to be purified into contact with the conductive material, for example, a method of arranging a grounded mesh made of a conductive material in a pipe and passing the object through the pipe is mentioned.
 被精製物の精製は、それに付随する、容器の開封、容器及び装置の洗浄、溶液の収容、並びに、分析等は、全てクリーンルームで行うのが好ましい。クリーンルームは、国際標準化機構が定める国際標準ISO14644-1:2015で定めるクラス4以上の清浄度のクリーンルームが好ましい。具体的にはISOクラス1、ISOクラス2、ISOクラス3、及び、ISOクラス4のいずれかを満たすのが好ましく、ISOクラス1又はISOクラス2を満たすのがより好ましく、ISOクラス1を満たすのが更に好ましい。 精製 Purification of the object to be purified is preferably performed in a clean room, in which the opening of the container, the cleaning of the container and the device, the storage of the solution, and the analysis are all performed. The clean room is preferably a clean room having a class 4 or higher cleanliness specified by International Standard ISO1464-1: 2015 specified by the International Organization for Standardization. Specifically, it is preferable to satisfy any one of ISO class 1, ISO class 2, ISO class 3, and ISO class 4, more preferably to satisfy ISO class 1 or ISO class 2, and to satisfy ISO class 1. Is more preferred.
 薬液の保管温度としては特に制限されないが、薬液が微量に含有する不純物等がより溶出しにくく、結果としてより優れた本発明の効果が得られる点で、保管温度としては4℃以上が好ましい。 (4) The storage temperature of the drug solution is not particularly limited, but the storage temperature is preferably 4 ° C. or higher from the viewpoint that impurities and the like contained in a small amount in the drug solution are less likely to be eluted and, as a result, a superior effect of the present invention can be obtained.
<薬液収容体>
 上記精製方法により製造された薬液は、容器に収容されて使用時まで保管してもよい。
このような容器と、容器に収容された薬液とをあわせて薬液収容体という。保管された薬液収容体からは、薬液が取り出され使用される。
<Chemical container>
The drug solution produced by the above purification method may be stored in a container and stored until use.
A combination of such a container and a drug solution contained in the container is referred to as a drug solution container. The medicinal solution is taken out from the stored medicinal solution container and used.
 上記薬液を保管する容器としては、半導体デバイス製造用途向けに、容器内のクリーン度が高く、不純物の溶出が少ないのが好ましい。
 使用可能な容器としては、具体的には、アイセロ化学(株)製の「クリーンボトル」シリーズ、及び、コダマ樹脂工業製の「ピュアボトル」等が挙げられるが、これらに制限されない。
As a container for storing the chemical solution, it is preferable that the container has a high degree of cleanness and a small amount of impurities eluted for use in semiconductor device manufacturing.
Specific examples of usable containers include, but are not limited to, “Clean Bottle” series manufactured by Aicello Chemical Co., Ltd. and “Pure Bottle” manufactured by Kodama Resin Kogyo.
 容器としては、薬液への不純物混入(コンタミ)防止を目的として、容器内壁を6種の樹脂による6層構造とした多層ボトル、又は、6種の樹脂による7層構造とした多層ボトルを使用するのも好ましい。これらの容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。 As the container, a multi-layer bottle having a six-layer structure made of six kinds of resins or a seven-layer structure made of six kinds of resins is used for the purpose of preventing impurities from being mixed into the chemical solution (contamination). Is also preferred. Examples of these containers include those described in JP-A-2015-123351.
 この容器の接液部は、既に説明した耐腐食材料(好ましくは電解研磨されたステンレス鋼又はフッ素系樹脂)又はガラスであってもよい。より優れた本発明の効果が得られる点で、接液部の面積の90%以上が上記材料からなるのが好ましく、接液部の全部が上記材料からなるのがより好ましい。 The liquid-contact part of this container may be a corrosion-resistant material (preferably, electropolished stainless steel or fluorine resin) or glass described above. It is preferable that 90% or more of the area of the liquid contact part is made of the above-mentioned material, and it is more preferable that all of the liquid contact part is made of the above-mentioned material from the viewpoint that the superior effects of the present invention can be obtained.
 薬液収容体の、容器内の空隙率は、2~80体積%が好ましく、2~50体積%がより好ましく、5~30体積%が更に好ましい。
 なお、上記空隙率は、式(1)に従って計算される。
式(1):空隙率={1-(容器内の薬液の体積/容器の容器体積)}×100
 上記容器体積とは、容器の内容積(容量)と同義である。
 空隙率をこの範囲に設定することで、不純物等のコンタミを制限する事で保管安定性を確保できる。
The porosity of the liquid medicine container in the container is preferably 2 to 80% by volume, more preferably 2 to 50% by volume, and still more preferably 5 to 30% by volume.
Note that the porosity is calculated according to equation (1).
Formula (1): Porosity = {1− (volume of drug solution in container / volume of container)} × 100
The container volume is synonymous with the internal volume (capacity) of the container.
By setting the porosity in this range, storage stability can be ensured by limiting contamination such as impurities.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。 本 Hereinafter, the present invention will be described in more detail with reference to Examples. The materials, usage amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
 また、実施例及び比較例の薬液の調製にあたって、容器の取り扱い、薬液の調製、充填、保管及び分析測定は、全てISOクラス2又は1を満たすレベルのクリーンルームで行った。 In the preparation of the chemical solutions of the examples and comparative examples, handling of containers, preparation of chemical solutions, filling, storage, and analytical measurement were all performed in a clean room of a level satisfying ISO class 2 or 1.
(フィルター)
 フィルターとしては、以下のフィルターを使用した。
・「Purasol SN 200nm」:UPEメンブレン(材質)Entegris社製、孔径200nm
・「PP 200nm」:ポリプロピレン製フィルター、Entegris社製、孔径200nm
・「Purasol SP 200nm」:UPEメンブレン(材質)Entegris社製、孔径200nm
・「Octolex 5nm」:UPE製Nylonフィルターグラフト、Entegris社製、孔径5nm
・「IEX 15nm」:イオン交換樹脂フィルター、Entegris社製、孔径15nm
・「IEX 16nm」:イオン交換樹脂製フィルター、Entegris社製、孔径16nm
・「IEX 50nm」:イオン交換樹脂フィルター、Entegris社製、孔径50nm
・「IEX 200nm」:イオン交換樹脂フィルター、Entegris社製、孔径200nm
・「PTFE 5nm」:ポリテトラフルオロエチレン製フィルター、Entegris社製、孔径5nm
・「PTFE 7nm」:ポリテトラフルオロエチレン製フィルター、Entegris社製、孔径7nm
・「PTFE 10nm」:ポリテトラフルオロエチレン製フィルター、Entegris社製、孔径10nm
・「PTFE 20nm」:ポリテトラフルオロエチレン製フィルター、Entegris社製、孔径20nm
・「Nylon 5nm」:ナイロン製フィルター、Pall社製、孔径5nm
・「UPE 1nm」:超高分子量ポリエチレン製フィルター、Pall社製、孔径1nm
・「UPE 3nm」:超高分子量ポリエチレン製フィルター、Pall社製、孔径3nm
・「UPE 5nm」:超高分子量ポリエチレン製フィルター、Pall社製、孔径5nm
(filter)
The following filters were used as filters.
-"Purasol SN 200 nm": UPE membrane (material) manufactured by Entegris, pore size 200 nm
"PP 200 nm": polypropylene filter, manufactured by Entegris, pore size 200 nm
-"Purasol SP 200 nm": UPE membrane (material) manufactured by Entegris, pore size 200 nm
-"Octolex 5 nm": Nylon filter graft made by UPE, manufactured by Entegris, pore size 5 nm
"IEX 15 nm": ion exchange resin filter, manufactured by Entegris, pore size 15 nm
"IEX 16 nm": ion exchange resin filter, manufactured by Entegris, pore size 16 nm
"IEX 50 nm": ion exchange resin filter, manufactured by Entegris, pore size 50 nm
"IEX 200 nm": ion exchange resin filter, manufactured by Entegris, pore size 200 nm
-"PTFE 5 nm": Polytetrafluoroethylene filter, manufactured by Entegris, pore size 5 nm
-"PTFE 7 nm": polytetrafluoroethylene filter, manufactured by Entegris, pore size 7 nm
-"PTFE 10 nm": Polytetrafluoroethylene filter, manufactured by Entegris, pore size 10 nm
-"PTFE 20 nm": Polytetrafluoroethylene filter, manufactured by Entegris, pore size 20 nm
-"Nylon 5 nm": Nylon filter, manufactured by Pall, pore size 5 nm
-"UPE 1 nm": Ultra-high molecular weight polyethylene filter, manufactured by Pall, pore size 1 nm
-"UPE 3 nm": Ultra high molecular weight polyethylene filter, manufactured by Pall, pore size 3 nm
-"UPE 5 nm": Ultra high molecular weight polyethylene filter, manufactured by Pall, pore size 5 nm
<被精製物>
 実施例、及び、比較例の薬液の製造のために、以下の有機溶剤を被精製物として使用した。
・CyHe:シクロヘキサノン
・PGMEA:プロピレングリコールモノメチルエーテルアセテート
・MIBC:4-メチル-2-ペンタノール
・nBA:酢酸ブチル
・EL:乳酸エチル
・PC:炭酸プロピレン
・IPA:イソプロパノール
・PGMEE:プロピレングリコールモノエチルエーテル
・PGMPE:プロピレングリコールモノプロピルエーテル
・CPN:シクロペンタノン
 また、表中の「原料1」~「原料8」は、各実施例および比較例で用いた有機溶剤が以下のメーカーからの購入品であることを表す。
「原料1」:Honeywell
「原料2」:東洋合成
「原料3」:KHネオケム
「原料4」:昭和電工
「原料5」:KHネオケム
「原料6」:三和油化工業
「原料7」:CCP
「原料8」:BASF
<Substance to be purified>
The following organic solvents were used as substances to be purified for the production of the chemical solutions of the examples and comparative examples.
• CyHe: cyclohexanone • PGMEA: propylene glycol monomethyl ether acetate • MIBC: 4-methyl-2-pentanol • nBA: butyl acetate • EL: ethyl lactate • PC: propylene carbonate • IPA: isopropanol • PGMEE: propylene glycol monoethyl ether -PGMPE: propylene glycol monopropyl ether-CPN: cyclopentanone The "raw material 1" to "raw material 8" in the table are organic solvents used in each Example and Comparative Examples purchased from the following manufacturers. Indicates that there is.
"Raw material 1": Honeywell
"Raw material 2": Toyo Gosei "Raw material 3": KH Neochem "Raw material 4": Showa Denko "Raw material 5": KH Neochem "Raw material 6": Sanwa Yuka Kogyo "Raw material 7": CCP
"Raw material 8": BASF
<容器>
 薬液を収納する容器としては、下記容器を使用した。
・EP-SUS:接液部が電解研磨されたステンレス鋼である容器
・PFA:接液部がパーフルオロアルコキシアルカンでコーティングされた容器
 なお、各容器中への薬液の充填率は95体積%(空隙率は5体積%)であった。
 充填率は、以下式によって求められる。
 充填率=(容器内の薬液の体積/容器の容器体積)×100
<Container>
The following containers were used as containers for storing the chemicals.
EP-SUS: a container whose wetted part is electropolished stainless steel PFA: a container whose wetted part is coated with perfluoroalkoxyalkane The filling rate of the chemical in each container is 95% by volume ( The porosity was 5% by volume).
The filling rate is determined by the following equation.
Filling rate = (volume of drug solution in container / volume of container in container) × 100
<精製手順>
 上記被精製物から選択した1種を選択し、表1に記載の蒸留精製処理を行った。
 なお、表中の「蒸留精製」欄の「有-1」は蒸留塔(理論段数:15段)を用いた減圧蒸留を実施したことを表し、「有-2」は蒸留塔(理論段数:30段)を用いた減圧蒸留を2回実施したことを表し、「有-3」は蒸留塔(理論段数:8段)を用いた減圧蒸留を実施したことを表す。
<Purification procedure>
One selected from the above-mentioned purified products was subjected to the distillation purification treatment shown in Table 1.
In the table, “Yes-1” in the column “Distillation purification” indicates that vacuum distillation was performed using a distillation column (the number of theoretical plates: 15), and “Yes-2” indicates a distillation column (the number of theoretical plates: (30 stages) indicates that vacuum distillation was performed twice, and "Yes-3" indicates that vacuum distillation was performed using a distillation column (theoretical plate number: 8 stages).
 次に、蒸留精製された被精製物を貯蔵タンクに貯蔵して、貯蔵タンクに貯蔵された被精製物を表1に記載のフィルター1~5にこの順で通液させてろ過して、貯蔵タンクに貯蔵した。
 次に、貯蔵タンクに貯蔵された被精製物を、表1に記載のフィルター6~7でろ過して、フィルター7でろ過した後の被精製物をフィルター6の上流側に循環し、再度フィルター6~7でろ過する循環ろ過処理を実施した。
 循環ろ過処理の後、容器に薬液を収容した。
 なお、実施例85~88に関しては、水分量が所定の値となるように、薬液中に水を添加した。
Next, the purified product purified by distillation is stored in a storage tank, and the purified product stored in the storage tank is passed through filters 1 to 5 shown in Table 1 in this order and filtered. Stored in tank.
Next, the object to be purified stored in the storage tank is filtered through the filters 6 to 7 shown in Table 1, and the object to be purified after being filtered through the filter 7 is circulated upstream of the filter 6, and then filtered again. A circulating filtration process of filtering at 6 to 7 was performed.
After the circulation filtration treatment, the drug solution was stored in the container.
In Examples 85 to 88, water was added to the chemical so that the water content became a predetermined value.
 なお、上述した一連の精製の過程で、被精製物が接触する各種装置(例えば、蒸留塔、配管、貯蔵タンク等)の接液部は、電解研磨されたステンレスで構成されていた。 In the above-described series of refining processes, the liquid contact parts of various devices (for example, distillation towers, pipes, storage tanks, etc.) with which the object to be purified comes into contact were made of electropolished stainless steel.
 下記に示す方法で薬液の、有機成分及び金属成分の含有量を測定した。 (4) The content of the organic component and the metal component in the chemical solution was measured by the method described below.
<金属成分の含有量>
 薬液中の金属成分(金属イオン、金属含有粒子)の含有量は、ICP-MS及びSP-ICP-MSを用いる方法により測定した。
 装置は以下の装置を使用した。
・メーカー:PerkinElmer
・型式:NexION350S
 解析には以下の解析ソフトを使用した。
・“SP-ICP-MS”専用Syngistix ナノアプリケーションモジュール
・Syngistix for ICP-MS ソフトウェア
 但し、10nm以下の金属含有粒子はSP-ICP-MSでは測定できないため、上述した特定方法を用いた。
<Content of metal component>
The content of metal components (metal ions, metal-containing particles) in the chemical solution was measured by a method using ICP-MS and SP-ICP-MS.
The following equipment was used.
・ Manufacturer: PerkinElmer
・ Model: NexION350S
The following analysis software was used for the analysis.
・ Syngisix nano application module dedicated to “SP-ICP-MS” ・ Syngisix for ICP-MS software However, since the metal-containing particles of 10 nm or less cannot be measured by SP-ICP-MS, the above-mentioned specific method was used.
<有機不純物の含有量>
 各種薬液における有機不純物の含有量は、ガスクロマトグラフィー質量分析(GC/MS)装置(Agilent社製、GC:7890B、MS:5977B EI/CI MSD)を使用して解析した。
<Content of organic impurities>
The content of organic impurities in various chemical solutions was analyzed using a gas chromatography mass spectrometer (GC / MS) (manufactured by Agilent, GC: 7890B, MS: 5977B EI / CI MSD).
<試験>
〔プリウェット液又はリンス液〕
 以下に示す方法で、製造した薬液の、プリウェット液又はリンス液として使用した場合の欠陥抑制性を評価した。
 まず、直径300mmのシリコン基板、又は、直径300mmの酸化ケイ素膜付きシリコン基板(酸化ケイ素膜で表面が覆われたシリコン基板)に薬液をスピン吐出し、基板を回転させながら、基板の表面に対して、各薬液を0.5cc吐出した。その後、基板をスピン乾燥した。次に、KLA-Tencor社製のウエハ検査装置「SP-5」を用いて、薬液塗布後の基板に存在する欠陥数を計測した(これを計測値とする)。
 次に、EDAX(energy-dispersive X-ray spectroscopy)を用いて、欠陥の種類を、金属残渣欠陥、複合物残渣欠陥、及び、シミ状残渣欠陥に分類した。金属残渣欠陥とは金属成分由来の残渣であり、複合物残渣欠陥とは有機物と金属成分との複合体由来の残渣であり、シミ状残渣欠陥とは有機物由来の残渣である。
 なお、「Si上での金属残渣」及び「SiO上での金属残渣」がいずれも「D」以上であれば、プリウェット液又はリンス液として好適に用いられる。
<Test>
(Pre-wet liquid or rinse liquid)
By the method described below, the defect suppression property of the manufactured chemical solution when used as a pre-wet solution or a rinse solution was evaluated.
First, a chemical solution is spin-discharged onto a silicon substrate having a diameter of 300 mm or a silicon substrate having a silicon oxide film having a diameter of 300 mm (a silicon substrate whose surface is covered with a silicon oxide film). Then, 0.5 cc of each chemical solution was discharged. Thereafter, the substrate was spin-dried. Next, using a wafer inspection apparatus “SP-5” manufactured by KLA-Tencor, the number of defects present on the substrate after the application of the chemical was measured (this is referred to as a measured value).
Next, using EDAX (energy-dispersive X-ray spectroscopy), the types of defects were classified into metal residue defects, composite residue defects, and spot residue defects. The metal residue defect is a residue derived from a metal component, the composite residue defect is a residue derived from a composite of an organic substance and a metal component, and the stain residue defect is a residue derived from an organic substance.
If both the “metal residue on Si” and the “metal residue on SiO 2 ” are “D” or more, they are suitably used as a pre-wet liquid or a rinsing liquid.
<個別評価(金属残渣欠陥、複合物残渣欠陥、シミ状残渣欠陥)>
A:対応する欠陥数が20個/基板以下だった。
B:対応する欠陥数が20個/基板を超え、50個/基板以下だった。
C:対応する欠陥数が50個/基板を超え、100個/基板以下だった。
D:対応する欠陥数が100個/基板を超え、150個/基板以下だった。
E:対応する欠陥数が150個/基板を超えた。
<Individual evaluation (metal residue defect, composite residue defect, spot residue defect)>
A: The number of corresponding defects was 20 / substrate or less.
B: The number of corresponding defects exceeded 20 / substrate and was 50 / substrate or less.
C: The number of corresponding defects exceeded 50 / substrate and was 100 / substrate or less.
D: The number of corresponding defects exceeded 100 / substrate and was 150 / substrate or less.
E: The number of corresponding defects exceeded 150 / substrate.
〔現像液〕
 以下に示す方法で、製造した薬液の、現像液として使用した場合を評価した。
 まず、以下に示す操作によりレジストパターンを形成した。
 直径300mmのシリコン基板、又は、直径300mmの酸化ケイ素膜付きシリコン基板に後述する感活性光線性又は感放射線性樹脂組成物を塗布し、100℃で、60秒間に亘ってプリベーク(PB)を行い、膜厚150nmのレジスト膜を形成した。
(Developer)
The following method was used to evaluate the case where the manufactured chemical was used as a developer.
First, a resist pattern was formed by the following operation.
An actinic ray-sensitive or radiation-sensitive resin composition described below is applied to a silicon substrate having a diameter of 300 mm or a silicon substrate having a silicon oxide film having a diameter of 300 mm, and prebaked (PB) at 100 ° C. for 60 seconds. A resist film having a thickness of 150 nm was formed.
(感活性光線性又は感放射線性樹脂組成物)
 酸分解性樹脂(下記式で表される樹脂(重量平均分子量(Mw):7500):各繰り返し単位に記載される数値はモル%を意味する。):100質量部
(Actinic ray-sensitive or radiation-sensitive resin composition)
Acid-decomposable resin (resin represented by the following formula (weight average molecular weight (Mw): 7500): the numerical value described in each repeating unit means mol%): 100 parts by mass
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 下記に示す光酸発生剤:8質量部 光 Photoacid generator shown below: 8 parts by mass
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 下記に示すクエンチャー:5質量部(質量比は、左から順に、0.1:0.3:0.3:0.2とした。)。なお、下記のクエンチャーのうち、ポリマータイプのクエンチャーは、重量平均分子量(Mw)が5000である。また、各繰り返し単位に記載される数値はモル比を意味する。 ク エ ン Quencher shown below: 5 parts by mass (the mass ratio was 0.1: 0.3: 0.3: 0.2 in order from the left). In addition, among the following quenchers, the polymer type quencher has a weight average molecular weight (Mw) of 5000. The numerical value described in each repeating unit means a molar ratio.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 下記に示す疎水性樹脂:4質量部(質量比は、左から順に、0.5:0.5とした。)なお、下記の疎水性樹脂のうち、左側の疎水性樹脂は、重量平均分子量(Mw)は7000であり、右側の疎水性樹脂の重量平均分子量(Mw)は8000である。なお、各疎水性樹脂において、各繰り返し単位に記載される数値はモル比を意味する。 Hydrophobic resin shown below: 4 parts by mass (mass ratio was 0.5: 0.5 in order from the left) Among the following hydrophobic resins, the hydrophobic resin on the left side has a weight average molecular weight. (Mw) is 7000, and the weight average molecular weight (Mw) of the right hydrophobic resin is 8000. In addition, in each hydrophobic resin, the numerical value described in each repeating unit means a molar ratio.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 溶剤:
 PGMEA(プロピレングリコールモノメチルエーテルアセテート):3質量部
 シクロヘキサノン:600質量部
 γ-BL(γ-ブチロラクトン):100質量部
solvent:
PGMEA (propylene glycol monomethyl ether acetate): 3 parts by mass Cyclohexanone: 600 parts by mass γ-BL (γ-butyrolactone): 100 parts by mass
 レジスト膜を形成したウエハをArFエキシマレーザースキャナー(Numerical Aperture:0.75)を用い、25mJ/cmでパターン露光を行った。その後、120℃で60秒間加熱した。次いで、各現像液(薬液)で30秒間パドルして現像した。次いで、4000rpmの回転数で30秒間ウエハを回転させて、ネガ型レジストパターンを形成した。その後、得られたネガ型レジストパターンを、200℃で300秒間加熱した。上記の工程を経て、ライン/スペースが1:1のL/Sパターン(平均パターン幅:45nm)を得た。
 得られたサンプルのスペース部において、上述した金属残渣欠陥、複合物残渣欠陥、及び、シミ状残渣欠陥の有無を上記方法に従って、評価した。
The wafer on which the resist film was formed was subjected to pattern exposure at 25 mJ / cm 2 using an ArF excimer laser scanner (Numerical Aperture: 0.75). Then, it heated at 120 degreeC for 60 second. Subsequently, each developing solution (chemical solution) was developed by paddle for 30 seconds. Next, the wafer was rotated at 4000 rpm for 30 seconds to form a negative resist pattern. Then, the obtained negative resist pattern was heated at 200 ° C. for 300 seconds. Through the above steps, an L / S pattern (average pattern width: 45 nm) having a line / space ratio of 1: 1 was obtained.
In the space portion of the obtained sample, the presence or absence of the above-described metal residue defect, composite residue defect, and spot-like residue defect was evaluated according to the above method.
 なお、各実施例において、各フィルター間の圧力の差は、0.01~0.03MPaであった。
 表1中、「用途」欄の「用途1」は、各実施例及び比較例に記載の薬液をプリウェット液及びリンス液として用いて上記試験を実施したことを意味する。「用途」欄の「用途2」は、各実施例及び比較例に記載の薬液を現像液として用いて上記試験を実施したことを意味する。
 なお、表中、「Si上での金属残渣」では、シリコン基板上での金属残渣欠陥の評価結果を示し、「Si上での複合物残渣」では、シリコン基板上での複合物残渣欠陥の評価結果を示し、「Si上でのシミ状残渣」では、シリコン基板上でのシミ状残渣欠陥の評価結果を示し、「SiO上での金属残渣」では、酸化ケイ素膜付きシリコン基板上での金属残渣欠陥の評価結果を示し、「SiO上での複合物残渣」では、酸化ケイ素膜付きシリコン基板上での複合物残渣欠陥の評価結果を示す。
In each example, the difference in pressure between the filters was 0.01 to 0.03 MPa.
In Table 1, "Usage 1" in the "Usage" column means that the above test was carried out using the chemical solutions described in each of Examples and Comparative Examples as a pre-wet liquid and a rinsing liquid. “Use 2” in the “use” column means that the above test was performed using the chemicals described in each of the examples and comparative examples as a developer.
In the table, “metal residue on Si” indicates the evaluation result of metal residue defect on the silicon substrate, and “composite residue on Si” indicates the result of composite residue defect on the silicon substrate. shows the evaluation results, the "stain-like residue on Si", shows the evaluation results of the stain-like residue defects on the silicon substrate, the "metal residue on SiO 2", a silicon oxide film-silicon substrate Shows the evaluation results of the metal residue defect, and “Composite residue on SiO 2 ” shows the evaluation result of the composite residue defect on the silicon substrate provided with the silicon oxide film.
 表1中、「酸化Ti粒子/Tiイオン」欄は、チタンイオンの含有量に対する、酸化チタン粒子の含有量の質量比を表す。「Tiイオン量(質量ppt)」欄は、薬液全質量に対するチタンイオンの含有量(質量ppt)を表す。「酸化Fe粒子/Feイオン」欄は、鉄イオンの含有量に対する、酸化鉄粒子の含有量の質量比を表す。「Feイオン量(質量ppt)」欄は、薬液全質量に対する鉄イオンの含有量(質量ppt)を表す。「酸化Al粒子/Alイオン」欄は、アルミニウムイオンの含有量に対する、酸化アルミニウム粒子の含有量の質量比を表す。「Alイオン量(質量ppt)」欄は、薬液全質量に対するアルミニウムイオンの含有量(質量ppt)を表す。「酸化Ti粒子割合(質量%)」欄は、金属成分中のチタン成分の含有量に対する、酸化チタン粒子の含有量(質量%)を表す。「酸化Fe粒子割合(質量%)」欄は、金属成分中の鉄成分の含有量に対する、酸化鉄粒子の含有量(質量%)を表す。「酸化Al粒子割合(質量%)」欄は、金属成分中のアルミニウム成分の含有量に対する、酸化アルミニウム粒子の含有量(質量%)を表す。「0.5-17nmの酸化Ti粒子の割合(質量%)」欄は、酸化チタン粒子のうち、粒径0.5~17nmである粒子の割合(質量%)を表す。「0.5-17nmの酸化Fe粒子の割合(質量%)」欄は、酸化鉄粒子のうち、粒径0.5~17nmである粒子の割合(質量%)を表す。「0.5-17nmの酸化Al粒子の割合(質量%)」欄は、酸化アルミニウム粒子のうち、粒径0.5~17nmである粒子の割合(質量%)を表す。「酸化Cu粒子割合(質量%)」欄は、金属成分中の銅成分の含有量に対する、酸化銅粒子の含有量(質量%)を表す。「0.5-17nmの酸化Cu粒子の割合(質量%)」欄は、酸化銅粒子のうち、粒径0.5~17nmである粒子の割合(質量%)を表す。「水分量」欄は、薬液全質量に対する薬液中の水の含有量(質量ppb)を表す。
 また、表1中、「E+数字」は「10数字」を表し、例えば、「3.5E+04」は「3.5×10」を表す。
 表1中、「>99」は、99超を表す。「<1」は、1未満を表す。
 表1中、「<500ppb」は、500質量ppb未満を表す。
In Table 1, the column of "Ti oxide particles / Ti ion" indicates the mass ratio of the content of titanium oxide particles to the content of titanium ions. The "Ti ion amount (mass ppt)" column indicates the content (mass ppt) of titanium ions with respect to the total mass of the chemical solution. The column of “Fe oxide particles / Fe ions” indicates the mass ratio of the content of iron oxide particles to the content of iron ions. The “Fe ion amount (mass ppt)” column indicates the iron ion content (mass ppt) based on the total mass of the chemical solution. The column “Al oxide particles / Al ions” indicates the mass ratio of the content of aluminum oxide particles to the content of aluminum ions. The “Al ion amount (mass ppt)” column indicates the content (mass ppt) of aluminum ions with respect to the total mass of the chemical solution. The column “Ratio of Ti oxide particles (% by mass)” indicates the content (% by mass) of the titanium oxide particles with respect to the content of the titanium component in the metal component. The column “Fe oxide particle ratio (% by mass)” represents the content (% by mass) of the iron oxide particles with respect to the content of the iron component in the metal component. The “Al oxide particle ratio (% by mass)” column indicates the content (% by mass) of the aluminum oxide particles with respect to the content of the aluminum component in the metal component. The column “Ratio of 0.5 to 17 nm Ti oxide particles (% by mass)” indicates the ratio (% by mass) of the titanium oxide particles having a particle size of 0.5 to 17 nm. The column “Ratio of 0.5 to 17 nm Fe oxide particles (% by mass)” indicates the ratio (% by mass) of iron oxide particles having a particle size of 0.5 to 17 nm. The column “Ratio of 0.5 to 17 nm Al oxide particles (% by mass)” indicates the ratio (% by mass) of particles having a particle size of 0.5 to 17 nm among aluminum oxide particles. The column “Cu oxide particle ratio (% by mass)” indicates the content (% by mass) of the copper oxide particles with respect to the content of the copper component in the metal component. The column “Ratio of 0.5 to 17 nm Cu oxide particles (% by mass)” indicates the ratio (% by mass) of particles having a particle size of 0.5 to 17 nm among the copper oxide particles. The “moisture content” column indicates the water content (mass ppb) in the drug solution with respect to the total weight of the drug solution.
In Table 1, “E + number” represents “10 numbers ”, for example, “3.5E + 04” represents “3.5 × 10 4 ”.
In Table 1, “> 99” indicates more than 99. “<1” represents less than 1.
In Table 1, "<500 ppb" represents less than 500 mass ppb.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表1中、各実施例及び比較例に係るデータは、表1[その1]<1>~<6>、表1[その2]<1>~<6>、表1[その3]<1>~<6>、及び、表1[その4]<1>~<6>の各行にわたって示した。
 例えば、実施例1においては、表1[その1]<1>に示すように、有機溶剤としてCyHeを用いて、表1[その1]<2>に示すように、フィルター2は「IEX 15nm」であり、表1[その1]<3>に示すように、薬液中の酸化Ti粒子/Tiイオンが3.5E+04であり、表1[その1]<4>に示すように、Alイオン量が32質量pptであり、表1[その1]<5>に示すように、0.5-17nmの酸化Fe粒子の割合が81質量%であり、表1[その1]<6>に示すように、「Si上での金属残渣」が「A」である。その他の実施例、及び、比較例についても同様である。
In Table 1, the data relating to each of the examples and the comparative examples are shown in Table 1 [Part 1] <1> to <6>, Table 1 [Part 2] <1> to <6>, Table 1 [Part 3] <1> to <6> and Table 1 [Part 4], which are shown in each row of <1> to <6>.
For example, in Example 1, as shown in Table 1 [Part 1] <1>, CyHe was used as the organic solvent, and as shown in Table 1 [Part 1] <2>, the filter 2 was “IEX 15 nm”. As shown in Table 1 [Part 1] <3>, the oxidized Ti particles / Ti ion in the chemical solution is 3.5E + 04, and as shown in Table 1 [Part 1] <4>, the Al ion The amount was 32 mass ppt, and as shown in Table 1 [Part 1] <5>, the ratio of 0.5-17 nm Fe oxide particles was 81% by mass, and Table 1 [Part 1] <6> As shown, “metal residue on Si” is “A”. The same applies to other examples and comparative examples.
 表に示した結果より、本発明の薬液であれば所定の効果が得られることが確認された。
 特に、実施例1~8の比較より、チタンイオンの含有量に対する、酸化チタン粒子の含有量の質量比が10~1010である場合、より効果が優れることが確認された。
 また、実施例9及び10より、鉄イオンの含有量に対する、酸化鉄粒子の含有量の質量比が10~1012である場合、より効果が優れることが確認された。
 また、実施例11及び12より、アルミニウムイオンの含有量に対する、酸化アルミニウム粒子の含有量の質量比が10~1012である場合、より効果が優れることが確認された。
 また、実施例13および14(34および35、55および56、76および77)より、チタンイオン(又は、鉄イオン、アルミニウムイオン)の含有量が、薬液全質量に対して、0.10~100質量pptである場合、より効果が優れることが確認された。
 また、実施例16および17(37および38、58および59、79および80)より、酸化チタン粒子(又は、酸化鉄粒子、酸化アルミニウム粒子)の含有量が、金属成分中のチタン成分の含有量に対して、5質量%以上99質量%未満である場合、より効果が優れることが確認された。
 また、実施例18および19(39および40、60および61、81および82)より、酸化チタン粒子(又は、酸化鉄粒子、酸化アルミニウム粒子)のうち、粒径0.5~17nmである粒子の割合が、60質量%以上98質量%未満である場合、より効果が優れることが確認された。
 また、実施例20および21(41および42、62および63、83および84)より、有機不純物の含有量が、薬液全質量に対して、1000~100000質量pptである場合、より効果が優れることが確認された。
From the results shown in the table, it was confirmed that the medicinal solution of the present invention could provide a predetermined effect.
In particular, comparison of Examples 1 to 8 confirmed that the effect was more excellent when the mass ratio of the content of titanium oxide particles to the content of titanium ions was 10 1 to 10 10 .
Further, from Examples 9 and 10, it was confirmed that the effect was more excellent when the mass ratio of the content of iron oxide particles to the content of iron ions was 10 0 to 10 12 .
Also, from Examples 11 and 12, to the content of aluminum ions, when the mass ratio of the content of aluminum oxide particles is 10 0 to 10 12, it was confirmed that more effective is excellent.
Further, according to Examples 13 and 14 (34 and 35, 55 and 56, 76 and 77), the content of titanium ion (or iron ion or aluminum ion) was 0.10 to 100 with respect to the total mass of the chemical solution. It was confirmed that the effect was more excellent when the mass was ppt.
Further, according to Examples 16 and 17 (37 and 38, 58 and 59, 79 and 80), the content of the titanium oxide particles (or the iron oxide particles and the aluminum oxide particles) was reduced by the content of the titanium component in the metal component. On the other hand, when the content was 5% by mass or more and less than 99% by mass, it was confirmed that the effect was more excellent.
Further, according to Examples 18 and 19 (39 and 40, 60 and 61, 81 and 82), of titanium oxide particles (or iron oxide particles and aluminum oxide particles), particles having a particle size of 0.5 to 17 nm were obtained. When the proportion was 60% by mass or more and less than 98% by mass, it was confirmed that the effect was more excellent.
Further, according to Examples 20 and 21 (41 and 42, 62 and 63, 83 and 84), the effect is more excellent when the content of organic impurities is 1000 to 100000 mass ppt with respect to the total mass of the chemical solution. Was confirmed.
 実施例22の薬液(100L)を用いて、容器(EP-SUS)及び<精製手順>で使用する各種装置を洗浄した後、別途用意した実施例22の薬液を上記洗浄した装置に流して、洗浄した容器に回収して、容器中に溶液Aを得た。
 また、実施例38の薬液(100L)を用いて、容器(EP-SUS)及び<精製手順>で使用する各種装置を洗浄した後、別途用意した実施例22の薬液を上記洗浄した装置に流して、洗浄した容器に回収して、容器中に溶液Bを得た。
 溶液Aおよび溶液Bを用いて「Si上での金属残渣欠陥」の評価を行ったところ、溶液Aのほうが良好な結果が得られた。
After cleaning the container (EP-SUS) and various devices used in the <purification procedure> using the chemical solution of Example 22 (100 L), the separately prepared chemical solution of Example 22 was passed through the washed device, The solution was collected in a washed container, and a solution A was obtained in the container.
After cleaning the container (EP-SUS) and various devices used in <Purification Procedure> using the chemical solution (100 L) of Example 38, the chemical solution of Example 22 separately prepared was poured into the above-described washed device. Then, the solution was collected in a washed container, and a solution B was obtained in the container.
When the “metal residue defect on Si” was evaluated using the solution A and the solution B, better results were obtained with the solution A.
<実施例(EUV露光)>
 まず、レジスト組成物1を、各成分を以下の組成で混合して得た。
・樹脂(A-1):0.77g
・光酸発生剤(B-1):0.03g
・塩基性化合物(E-3):0.03g
・PGMEA(市販品、高純度グレード):67.5g
・乳酸エチル(市販品、高純度グレード):75g
<Example (EUV exposure)>
First, a resist composition 1 was obtained by mixing each component with the following composition.
・ Resin (A-1): 0.77 g
-Photoacid generator (B-1): 0.03 g
-Basic compound (E-3): 0.03 g
PGMEA (commercially available, high purity grade): 67.5 g
・ Ethyl lactate (commercially available, high purity grade): 75 g
・樹脂(A-1)
 樹脂(A-1)としては、以下の樹脂を用いた。
・ Resin (A-1)
The following resin was used as the resin (A-1).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
・光酸発生剤(B-1)
 光酸発生剤(B-1)としては、以下の化合物を用いた。
.Photoacid generator (B-1)
The following compounds were used as the photoacid generator (B-1).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
・塩基性化合物(E-3)
 塩基性化合物(E-3)としては、以下の化合物を用いた。
.Basic compound (E-3)
The following compounds were used as the basic compound (E-3).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(パターンの形成及び評価)
 まず、直径300mmのシリコンウェハ上にレジスト組成物1を塗布し、100℃で60秒間ベーク(PB:Prebake)を行い、膜厚30nmのレジスト膜を形成した。
(Pattern formation and evaluation)
First, the resist composition 1 was applied on a silicon wafer having a diameter of 300 mm, and baked (PB: Prebake) at 100 ° C. for 60 seconds to form a resist film having a thickness of 30 nm.
 このレジスト膜をEUV露光機(ASML社製;NXE3350、NA0.33、Dipole 90°、アウターシグマ0.87、インナーシグマ0.35)を用い、反射型マスクを介して露光した。その後、85℃にて60秒間加熱(PEB:Post Exposure Bake)した。次いで、スプレー法で現像液(酢酸ブチル/FETW製)を30秒間噴霧して現像し、回転塗布法でリンス液を20秒間シリコンウェハ上に吐出してリンスした。続いて、2000rpmの回転数で40秒間シリコンウェハを回転させて、スペース幅が20nm、且つパターン線幅が15nmのラインアンドスペースのパターンを形成した。
 上記リンス液としては、上述した実施例44で使用した薬液をそれぞれ用いた。なお、上述した、各種評価を実施したところ、表1と同様の傾向の所望の効果が得られた。
 
The resist film was exposed through a reflective mask using an EUV exposure machine (manufactured by ASML; NXE3350, NA 0.33, Dipole 90 °, outer sigma 0.87, inner sigma 0.35). Thereafter, heating (PEB: Post Exposure Bake) was performed at 85 ° C. for 60 seconds. Next, a developing solution (butyl acetate / manufactured by FETW) was sprayed for 30 seconds by a spray method for development, and a rinsing liquid was discharged onto a silicon wafer for 20 seconds by a spin coating method to be rinsed. Subsequently, the silicon wafer was rotated at a rotation speed of 2000 rpm for 40 seconds to form a line-and-space pattern having a space width of 20 nm and a pattern line width of 15 nm.
As the rinsing liquid, the chemical liquid used in Example 44 described above was used. When the above-described various evaluations were performed, desired effects having the same tendency as in Table 1 were obtained.

Claims (19)

  1.  有機溶剤と金属成分とを含有する薬液であって、
     前記金属成分が、酸化チタン粒子、及び、チタンイオンを含有し、
     前記チタンイオンの含有量に対する、前記酸化チタン粒子の含有量の質量比が10~1012である、薬液。
    A chemical solution containing an organic solvent and a metal component,
    The metal component contains titanium oxide particles, and titanium ions,
    The relative content of titanium ions, the mass ratio of the content of the titanium oxide particles is 10 0 to 10 12, the drug solution.
  2.  前記チタンイオンの含有量が、前記薬液全質量に対して、0.10~100質量pptである、請求項1に記載の薬液。 薬 The chemical solution according to claim 1, wherein the content of the titanium ion is 0.10 to 100 mass ppt with respect to the total mass of the chemical solution.
  3.  前記酸化チタン粒子の含有量が、前記金属成分中のチタン成分の含有量に対して、5質量%以上99質量%未満である、請求項1又は2に記載の薬液。 The chemical solution according to claim 1 or 2, wherein the content of the titanium oxide particles is 5% by mass or more and less than 99% by mass with respect to the content of the titanium component in the metal component.
  4.  前記酸化チタン粒子のうち、粒径0.5~17nmである粒子の割合が、60質量%以上98質量%未満である、請求項1~3のいずれか1項に記載の薬液。 The chemical solution according to any one of claims 1 to 3, wherein the ratio of the particles having a particle size of 0.5 to 17 nm in the titanium oxide particles is 60% by mass or more and less than 98% by mass.
  5.  前記金属成分が、鉄イオンを含有し、
     前記鉄イオンの含有量が、前記薬液全質量に対して、0.10~100質量pptである、請求項1~4のいずれか1項に記載の薬液。
    The metal component contains iron ions,
    The drug solution according to any one of claims 1 to 4, wherein the content of the iron ions is 0.10 to 100 mass ppt based on the total mass of the drug solution.
  6.  前記金属成分が、酸化鉄粒子を含有し、
     前記酸化鉄粒子の含有量が、前記金属成分中の鉄成分の含有量に対して、5質量%以上99質量%未満である、請求項1~5のいずれか1項に記載の薬液。
    The metal component contains iron oxide particles,
    The chemical solution according to any one of claims 1 to 5, wherein the content of the iron oxide particles is 5% by mass or more and less than 99% by mass based on the content of the iron component in the metal component.
  7.  前記金属成分が、酸化鉄粒子を含有し、
     前記酸化鉄粒子のうち、粒径0.5~17nmである粒子の割合が、60質量%以上98質量%未満である、請求項1~6のいずれか1項に記載の薬液。
    The metal component contains iron oxide particles,
    The drug solution according to any one of claims 1 to 6, wherein a ratio of particles having a particle size of 0.5 to 17 nm in the iron oxide particles is 60% by mass or more and less than 98% by mass.
  8.  前記金属成分が、酸化鉄粒子、及び、鉄イオンを含有し、
     前記鉄イオンの含有量に対する、前記酸化鉄粒子の含有量の質量比が10~1012である、請求項1~7のいずれか1項に記載の薬液。
    The metal component contains iron oxide particles, and iron ions,
    The relative content of iron ions, the mass ratio of the content of the iron oxide particles is 10 0 to 10 12, the drug solution according to any one of claims 1 to 7.
  9.  前記金属成分が、アルミニウムイオンを含有し、
     前記アルミニウムイオンの含有量が、前記薬液全質量に対して、0.10~100質量pptである、請求項1~8のいずれか1項に記載の薬液。
    The metal component contains an aluminum ion,
    9. The chemical solution according to claim 1, wherein the content of the aluminum ion is 0.10 to 100 mass ppt with respect to the total mass of the chemical solution.
  10.  前記金属成分が、酸化アルミニウム粒子を含有し、
     前記酸化アルミニウム粒子の含有量が、前記金属成分中のアルミニウム成分の含有量に対して、5質量%以上99質量%未満である、請求項1~9のいずれか1項に記載の薬液。
    The metal component contains aluminum oxide particles,
    10. The chemical solution according to claim 1, wherein the content of the aluminum oxide particles is 5% by mass or more and less than 99% by mass based on the content of the aluminum component in the metal component.
  11.  前記金属成分が、酸化アルミニウム粒子を含有し、
     前記酸化アルミニウム粒子のうち、粒径0.5~17nmである粒子の割合が、60質量%以上98質量%未満である、請求項1~10のいずれか1項に記載の薬液。
    The metal component contains aluminum oxide particles,
    The chemical solution according to any one of claims 1 to 10, wherein a proportion of the aluminum oxide particles having a particle size of 0.5 to 17 nm is 60% by mass or more and less than 98% by mass.
  12.  前記金属成分が、酸化アルミニウム粒子、及び、アルミニウムイオンを含有し、
     前記アルミニウムイオンの含有量に対する、前記酸化アルミニウム粒子の含有量の質量比が10~1012である、請求項1~11のいずれか1項に記載の薬液。
    The metal component contains aluminum oxide particles, and aluminum ions,
    The relative amount of aluminum ions, the mass ratio of the content of aluminum oxide particles is 10 0 to 10 12, the drug solution according to any one of claims 1 to 11.
  13.  前記金属成分が、酸化銅粒子を含有し、
     前記酸化銅粒子の含有量が、前記金属成分中の銅成分の含有量に対して、5質量%以上99質量%未満である、請求項1~12のいずれか1項に記載の薬液。
    The metal component contains copper oxide particles,
    13. The chemical solution according to claim 1, wherein the content of the copper oxide particles is 5% by mass or more and less than 99% by mass based on the content of the copper component in the metal component.
  14.  前記金属成分が、酸化銅粒子を含有し、
     前記酸化銅粒子のうち、粒径0.5~17nmである粒子の割合が、60質量%以上98質量%未満である、請求項1~13のいずれか1項に記載の薬液。
    The metal component contains copper oxide particles,
    14. The chemical solution according to claim 1, wherein a proportion of the copper oxide particles having a particle size of 0.5 to 17 nm is 60% by mass or more and less than 98% by mass.
  15.  前記金属成分が、酸化銅粒子、及び、銅イオンを含有し、
     前記銅イオンの含有量に対する、前記酸化銅粒子の含有量の質量比が10~1012である、請求項1~14のいずれか1項に記載の薬液。
    The metal component contains copper oxide particles, and copper ions,
    The relative amount of copper ions, the mass ratio of the content of copper oxide particles is 10 0 to 10 12, the drug solution according to any one of claims 1 to 14.
  16.  更に、有機不純物を含有し、
     前記有機不純物の含有量が、前記薬液全質量に対して、1000~100000質量pptである、請求項1~15のいずれか1項に記載の薬液。
    In addition, it contains organic impurities,
    The chemical solution according to any one of claims 1 to 15, wherein the content of the organic impurities is 1,000 to 100,000 mass ppt based on the total mass of the chemical solution.
  17.  前記薬液全質量に対する水の含有量が500質量ppb以下である、請求項1~16のいずれか1項に記載の薬液。 The chemical according to any one of claims 1 to 16, wherein the content of water with respect to the total mass of the chemical is 500 mass ppb or less.
  18.  前記有機溶剤が、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、乳酸エチル、炭酸プロピレン、イソプロパノール、4-メチル-2-ペンタノール、酢酸ブチル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、メトキシプロピオン酸メチル、シクロペンタノン、γ-ブチロラクトン、ジイソアミルエーテル、酢酸イソアミル、ジメチルスルホキシド、N-メチルピロリドン、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、スルフォラン、シクロヘプタノン、2-ヘプタノン、酪酸ブチル、イソ酪酸イソブチル、イソアミルエーテル、及び、ウンデカンからなる群から選ばれる1種以上を含む、請求項1~17のいずれか1項に記載の薬液。 The organic solvent is propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, ethyl lactate, propylene carbonate, isopropanol, 4-methyl-2-pentanol, butyl acetate, propylene glycol monoethyl ether, propylene glycol monopropyl ether, Methyl methoxypropionate, cyclopentanone, γ-butyrolactone, diisoamyl ether, isoamyl acetate, dimethyl sulfoxide, N-methylpyrrolidone, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, sulfolane, cycloheptanone, 2 -From heptanone, butyl butyrate, isobutyl isobutyrate, isoamyl ether and undecane That contains at least one element selected from the group drug solution according to any one of claims 1 to 17.
  19.  容器と、前記容器に収容された請求項1~18のいずれか1項に記載の薬液と、を含有する、薬液収容体。 薬 A drug solution container comprising a container and the drug solution according to any one of claims 1 to 18 stored in the container.
PCT/JP2019/032088 2018-08-21 2019-08-16 Chemical solution and chemical solution container WO2020040042A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020538347A JPWO2020040042A1 (en) 2018-08-21 2019-08-16 Chemical solution, chemical solution container
JP2022152895A JP7416883B2 (en) 2018-08-21 2022-09-26 Chemical liquid, chemical liquid container
JP2023220184A JP2024026548A (en) 2018-08-21 2023-12-27 Chemical liquid, chemical liquid container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-154616 2018-08-21
JP2018154616 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020040042A1 true WO2020040042A1 (en) 2020-02-27

Family

ID=69592749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032088 WO2020040042A1 (en) 2018-08-21 2019-08-16 Chemical solution and chemical solution container

Country Status (3)

Country Link
JP (3) JPWO2020040042A1 (en)
TW (2) TWI815952B (en)
WO (1) WO2020040042A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189371A1 (en) * 2022-03-29 2023-10-05 富士フイルム株式会社 Chemical liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170428A1 (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Method for manufacturing chemical solution for manufacturing electronic material, pattern forming method, method for manufacturing semiconductor device, chemical solution for manufacturing electronic device, container, and quality inspection method
WO2018061485A1 (en) * 2016-09-28 2018-04-05 富士フイルム株式会社 Liquid medicine, liquid medicine accommodation body, method for manufacturing liquid medicine, and method for manufacturing liquid medicine accommodation body
WO2018061573A1 (en) * 2016-09-27 2018-04-05 富士フイルム株式会社 Liquid medicine, liquid medicine accommodation body, method for filling liquid medicine, and method for storing liquid medicine
WO2018142888A1 (en) * 2017-02-01 2018-08-09 富士フイルム株式会社 Method for manufacturing liquid medicine and device for manufacturing liquid medicine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576927B2 (en) * 2004-08-19 2010-11-10 東ソー株式会社 Cleaning composition and cleaning method
JP2015084122A (en) 2015-01-08 2015-04-30 富士フイルム株式会社 Organic process liquid for patterning chemically amplified resist film
JP6618613B2 (en) 2016-04-28 2019-12-11 富士フイルム株式会社 Treatment liquid and treatment liquid container
JP6813596B2 (en) * 2016-05-23 2021-01-13 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド A release composition for removing a photoresist from a semiconductor substrate
WO2017208749A1 (en) * 2016-06-02 2017-12-07 富士フイルム株式会社 Processing liquid, substrate cleaning method, and resist removal method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170428A1 (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Method for manufacturing chemical solution for manufacturing electronic material, pattern forming method, method for manufacturing semiconductor device, chemical solution for manufacturing electronic device, container, and quality inspection method
WO2018061573A1 (en) * 2016-09-27 2018-04-05 富士フイルム株式会社 Liquid medicine, liquid medicine accommodation body, method for filling liquid medicine, and method for storing liquid medicine
WO2018061485A1 (en) * 2016-09-28 2018-04-05 富士フイルム株式会社 Liquid medicine, liquid medicine accommodation body, method for manufacturing liquid medicine, and method for manufacturing liquid medicine accommodation body
WO2018142888A1 (en) * 2017-02-01 2018-08-09 富士フイルム株式会社 Method for manufacturing liquid medicine and device for manufacturing liquid medicine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189371A1 (en) * 2022-03-29 2023-10-05 富士フイルム株式会社 Chemical liquid

Also Published As

Publication number Publication date
TW202018438A (en) 2020-05-16
TWI815952B (en) 2023-09-21
JPWO2020040042A1 (en) 2021-08-10
TW202347054A (en) 2023-12-01
JP2024026548A (en) 2024-02-28
JP2022173352A (en) 2022-11-18
JP7416883B2 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
JPWO2020071042A1 (en) Chemical solution, chemical container, resist pattern forming method, semiconductor chip manufacturing method
JP2024026548A (en) Chemical liquid, chemical liquid container
JP7282862B2 (en) Purification method of chemical solution
JP2023029346A (en) Chemical liquid and chemical liquid storage body
JP2022176197A (en) Chemical solution, chemical solution container, kit, and method for producing semiconductor chip
JPWO2019139034A1 (en) Chemical solution, manufacturing method of chemical solution
WO2019044914A1 (en) Drug solution purification method and drug solution
WO2020040003A1 (en) Chemical solution and chemical solution container
US20210373439A1 (en) Chemical liquid, resist pattern forming method, semiconductor chip manufacturing method, chemical liquid storage body, and chemical liquid manufacturing method
WO2020009225A1 (en) Member, container, medicinal-solution-accommodating body, reaction vessel, distillation column, filter unit, reservoir tank, piping, and method for producing medicinal solution
WO2020040034A1 (en) Chemical solution accommodation body
JPWO2019139062A1 (en) Chemical solution, manufacturing method of chemical solution, and analysis method of test solution
TWI840502B (en) Chemical solution, resist pattern-forming method, method for producing semiconductor chip, chemical solution accommodating body, and chemical solution production method
WO2019138959A1 (en) Liquid chemical and production method for liquid chemical
WO2019181475A1 (en) Filtration device, refining device, and production method for liquid medicine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852843

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852843

Country of ref document: EP

Kind code of ref document: A1