WO2020040034A1 - Chemical solution accommodation body - Google Patents

Chemical solution accommodation body Download PDF

Info

Publication number
WO2020040034A1
WO2020040034A1 PCT/JP2019/032036 JP2019032036W WO2020040034A1 WO 2020040034 A1 WO2020040034 A1 WO 2020040034A1 JP 2019032036 W JP2019032036 W JP 2019032036W WO 2020040034 A1 WO2020040034 A1 WO 2020040034A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical solution
group
organic compound
content
container
Prior art date
Application number
PCT/JP2019/032036
Other languages
French (fr)
Japanese (ja)
Inventor
清水 哲也
上村 哲也
大松 禎
智美 高橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020538342A priority Critical patent/JPWO2020040034A1/en
Priority to KR1020217004819A priority patent/KR20210032486A/en
Publication of WO2020040034A1 publication Critical patent/WO2020040034A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/06Silver salts
    • G03F7/063Additives or means to improve the lithographic properties; Processing solutions characterised by such additives; Treatment after development or transfer, e.g. finishing, washing; Correction or deletion fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/84Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for corrosive chemicals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like

Definitions

  • the present invention relates to a drug solution container.
  • a chemical solution containing water and / or an organic solvent is used.
  • Patent Document 1 discloses “a glass container in which the inner surface is treated with a fluorocarbon gas and a sulfurous acid gas while heating, and containing a novolak resin-based positive photoresist solution using an organic solvent. And a novolak resin-based positive photoresist glass container.
  • Various impurities contained in the chemical solution may cause defects of the semiconductor device. Such a defect may cause a reduction in the manufacturing yield of the semiconductor device and an electrical abnormality such as a short circuit.
  • the present inventors have taken out a chemical solution from a chemical solution container and applied it to a wiring forming process including photolithography. As a result, it has been found that a defect may occur in a wiring substrate.
  • an object of the present invention is to provide a chemical solution container that stores a chemical solution having excellent defect suppression performance.
  • the present inventors have conducted intensive studies on the above problems, and as a result, in a chemical solution container in which the content of metal-containing particles is within a predetermined range, the content of the organic compound in the chemical solution and the presence of It has been found that a chemical solution having excellent defect suppression performance can be obtained if the total of the content of the organic compound and the content of the organic compound is within a predetermined range with respect to the total mass of the chemical solution. That is, the present inventors have found that the above problem can be solved by the following constitution.
  • the chemical solution contains a solvent, metal-containing particles containing a metal atom, and an organic compound having a higher ClogP value than the solvent,
  • the content of the metal-containing particles is 10 mass ppt or less with respect to the total mass of the chemical solution
  • a gas containing an organic compound having a higher ClogP value than the solvent is present in the cavity of the container, and the total content of the organic compound in the gas and the organic compound in the chemical solution is the total mass of the chemical solution.
  • Liquid medicine container having a mass of 100,000 mass ppt or less.
  • the content of the metal-containing particles is 0.001 to 10 mass ppt, based on the total mass of the chemical solution;
  • the organic solvent is cyclohexanone, butyl acetate, N-methyl-2-pyrrolidone, 4-methyl-2-pentanol, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene carbonate, isoamyl acetate, propylene glycol Monomethyl ether, propylene glycol monopropyl ether, methyl methoxypropionate, cyclopentanone, ⁇ -butyrolactone, diisoamyl ether, isopropanol, dimethyl sulfoxide, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, sulfolane, cyclohepta Non and 2-heptanone, butyl butyrate, isobutyl isobutyrate, undecane, pentyl propionate Isopentyl propionate, ethyl lac
  • the number of metal nanoparticles having a particle size of 0.5 to 17 nm per unit volume of the chemical solution is 1.0 ⁇ 10 1 to 1.0 ⁇ 10 9 / cm 3 .
  • the gas contains nitrogen gas, The content of the nitrogen gas is 95 to 99.9999% by volume based on the total volume of the voids,
  • the drug solution container according to any one of [1] to [11], wherein the content of the organic compound in the gas is 0.05 to 50,000 mass ppt with respect to the total mass of the drug solution.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • ppm means “parts-per-million (10 ⁇ 6 )”
  • ppb means “parts-per-billion (10 ⁇ 9 )”
  • ppt means “Parts-per-trillion (10 ⁇ 12 )” means “parts-per-quadrillion (10 ⁇ 15 )”.
  • the notation that does not denote substituted or unsubstituted includes those not having a substituent and those having a substituent as long as the effects of the present invention are not impaired.
  • the “hydrocarbon group” includes not only a hydrocarbon group having no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group having a substituent (substituted hydrocarbon group). . This is synonymous with each compound.
  • the “radiation” in the present invention means, for example, far ultraviolet rays, extreme ultraviolet (EUV), X-rays, or electron beams.
  • light means actinic rays or radiation.
  • the term “exposure” in the present invention includes not only exposure with far ultraviolet rays, X-rays or EUV, but also drawing with particle beams such as electron beams or ion beams.
  • the drug solution container of the present invention (hereinafter, also referred to as “the drug solution container”) is a drug solution container having a container and a drug solution contained in the container.
  • the chemical solution includes a solvent, metal-containing particles containing metal atoms, and an organic compound having a higher ClogP value than the solvent (hereinafter, also referred to as “specific organic compound A”). contains.
  • the content of the metal-containing particles is 10 mass ppt or less with respect to the total mass of the chemical solution.
  • a gas containing an organic compound having a higher ClogP value than the solvent (hereinafter, also referred to as “specific organic compound B”) exists in the space of the container, and the specific organic compound A and the gas are present.
  • the total content of the specific organic compound B is 100,000 mass ppt or less based on the total mass of the chemical solution.
  • the organic compound and the metal-containing particles contained in the chemical solution themselves cause defects, but they are liable to aggregate to form composite particles that cause defects.
  • an organic compound (specific organic compound) having a ClogP value higher than that of the solution is included, composite particles of the specific organic compound and the metal-containing particles are easily formed, and the generation of defects becomes remarkable.
  • a method of reducing the content of the specific organic compound in the chemical solution can be considered. However, this method may not be able to sufficiently suppress the occurrence of defects. It is considered that the reason for this is that the specific organic compound contained in the gas in the cavity of the container is mixed into the chemical solution when the chemical solution container is transported and stored.
  • the content of the specific organic compound becomes larger than immediately after the production of the chemical (before storing in the container), and the occurrence of defects may be significant. Since the total content of the specific organic compound A and the specific organic compound B is within the above range in the present chemical solution container, it is presumed that a chemical solution container containing a chemical solution with excellent defect suppression performance was obtained.
  • the chemical solution contains a solvent, metal-containing particles containing metal atoms, and an organic compound (specific organic compound A) having a higher ClogP value than the solvent.
  • the chemical solution contains a solvent.
  • the solvent include at least one of water and an organic solvent, and an organic solvent is preferable.
  • the organic solvent is intended to be a liquid organic compound contained at a content exceeding 10,000 ppm by mass per component with respect to the total mass of the drug solution. That is, in this specification, a liquid organic compound contained in an amount exceeding 10,000 ppm by mass with respect to the total mass of the drug solution corresponds to an organic solvent.
  • the term “liquid” means a liquid at 25 ° C. and atmospheric pressure.
  • the type of the organic solvent is not particularly limited, and a known organic solvent is used.
  • the organic solvent include alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, alkyl lactate, alkyl alkoxypropionate, cyclic lactone (preferably having 4 to 10 carbon atoms), and monoketone optionally having a ring Examples include compounds (preferably having 4 to 10 carbon atoms), alkylene carbonate, alkyl alkoxyacetate, and alkyl pyruvate.
  • the organic solvent for example, those described in JP-A-2016-57614, JP-A-2014-219664, JP-A-2016-138219, and JP-A-2015-135379 may be used. Good.
  • propylene glycol monomethyl ether propylene glycol monoethyl ether
  • PGME propylene glycol monopropyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • EL ethyl lactate
  • methyl methoxypropionate cyclopentanone, cyclohexanone (CHN), ⁇ -butyrolactone, diisoamyl ether, butyl acetate (nBA), isoamyl acetate (iAA), isopropanol, 4-methyl-2-pentanol (MIBC), dimethyl sulfoxide, N-methyl-2-pyrrolidone (NMP ), Diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, propylene carbonate (PC), sulfolane, cyclohexane Thanong, 1-hexanol, decane, 2-heptanone, butyl buty
  • the content of the organic solvent in the chemical solution is not particularly limited, but is generally preferably 98.0% by mass or more, more preferably 99.0% by mass or more, and preferably 99.9% by mass or more based on the total mass of the chemical solution. More preferably, it is particularly preferably at least 99.99 mass%.
  • the upper limit is not particularly limited, but is often less than 100% by mass.
  • One organic solvent may be used alone, or two or more organic solvents may be used in combination. When two or more organic solvents are used in combination, the total content is preferably within the above range.
  • the kind and content of the organic solvent in the chemical solution can be measured using a gas chromatograph mass spectrometer.
  • the chemical solution contains metal-containing particles containing metal atoms.
  • a preferred embodiment of the method for producing a chemical solution will be described later.
  • the chemical solution can be produced by purifying a substance to be purified containing the solvent and the organic compound described above.
  • the metal-containing particles may be intentionally added in the manufacturing process of the chemical solution, may be originally contained in the object to be purified, or may be transferred from the manufacturing device of the chemical solution in the manufacturing process of the chemical solution (so-called (Contamination).
  • the metal atom is not particularly limited, and examples thereof include an Fe atom, an Al atom, a Cr atom, a Ni atom, a Pb atom, a Zn atom, and a Ti atom.
  • an Fe atom an Al atom
  • a Cr atom a Cr atom
  • Ni atom a Pb atom
  • a Zn atom a Ti atom.
  • the metal atom is preferably at least one selected from the group consisting of Fe atom, Al atom, Cr atom, Ni atom, Pb atom, Zn atom, Ti atom, and the like.
  • Fe atom, Al atom, Pb At least one selected from the group consisting of atoms, Zn atoms, and Ti atoms is more preferable, and at least one selected from the group consisting of Pb atoms and Ti atoms is still more preferable. It is particularly preferable to contain both atoms and Ti atoms.
  • the metal-containing particles may contain one kind of the above-mentioned metal atoms alone or may contain two or more kinds thereof in combination.
  • the particle size of the metal-containing particles is not particularly limited.
  • the content of particles having a particle size of about 0.1 to 100 nm in the chemical solution may be controlled.
  • metal-containing particles having a particle diameter of 0.5 to 17 nm hereinafter, referred to as “metal”. It has been found that by controlling the content of “nanoparticles” in a chemical solution, a chemical solution having excellent defect suppression performance can be easily obtained.
  • the number-based particle size distribution of the metal-containing particles is not particularly limited, but is comprised of a range of less than 5 nm, and a range of more than 17 nm, in that a drug solution having better effects of the present invention can be obtained. It is preferable that at least one selected from the group has a maximum value. In other words, it is preferable that the particle diameter has no maximum value in the range of 5 to 17 nm. By not having a maximum value in the range of the particle diameter of 5 to 17 nm, the chemical solution has more excellent defect suppression performance, particularly more excellent bridge defect suppression performance.
  • the bridge defect means a defect like a bridge between wiring patterns.
  • the particle diameter has a maximum value in a range of 0.5 nm or more and less than 5 nm in a number-based particle diameter distribution, from the viewpoint that a drug solution having a more excellent effect of the present invention can be obtained.
  • the chemical solution has more excellent bridge defect suppression performance.
  • the content of the metal-containing particles is 10 mass ppt or less, preferably 0.001 to 10 mass ppt, based on the total mass of the chemical solution.
  • the content of the metal-containing particles is 10 mass ppt or less, defects due to aggregates of the metal-containing particles can be suppressed. If the content of the metal-containing particles is 0.01 mass ppt or more, the detailed reason is unknown, but the interaction between the metal-containing particles and the wiring board becomes small, and the metal-containing particles hardly remain on the substrate. And defects can be suppressed.
  • the upper limit of the content of the metal-containing particles is preferably 5 mass ppt or less, more preferably 1 mass ppt or less, and particularly preferably 0.1 mass ppt or less, from the viewpoint that the above-mentioned effects are more exhibited.
  • the lower limit of the content of the metal-containing particles is preferably 0.001 mass ppt or more, and particularly preferably 0.01 mass ppt or more, from the viewpoint that the above effects are more exhibited.
  • the type and content of metal-containing particles in a chemical solution can be measured by the SP-ICP-MS method (Single Nano Particle Inductively Coupled Plasma Mass Spectrometry).
  • the SP-ICP-MS method uses an apparatus similar to a normal ICP-MS method (inductively coupled plasma mass spectrometry), and differs only in data analysis. Data analysis of the SP-ICP-MS method can be performed by commercially available software.
  • the content of a metal component to be measured is measured regardless of its existing form.
  • the metal component means metal ions and metal-containing particles. Therefore, the total mass of the metal-containing particles to be measured and the metal ions is determined as the content of the metal component.
  • the content of metal-containing particles can be measured. Therefore, the content of metal ions in the sample can be calculated by subtracting the content of the metal-containing particles from the content of the metal component in the sample.
  • Agilent 8800 triple quadrupole ICP-MS inductively coupled plasma mass spectrometry, option # 200 for semiconductor analysis, option # 200 manufactured by Agilent Technologies, Inc. is described in Examples. Can be measured by the following method.
  • Agilent 8900 manufactured by Agilent Technologies can be used.
  • Metal nanoparticles refer to metal-containing particles having a particle diameter of 0.5 to 17 nm.
  • the number of metal nanoparticles contained per unit volume of the chemical solution is preferably 1.0 ⁇ 10 0 to 1.0 ⁇ 10 9 particles / cm 3 , and the content of the metal nanoparticles is more excellent in that the chemical solution has the effect of the present invention.
  • the number is preferably 1.0 ⁇ 10 1 / cm 3 or more, more preferably 1.0 ⁇ 10 7 / cm 3 or less, and even more preferably 1.0 ⁇ 10 5 / cm 3 or less.
  • the chemical solution has more excellent defect suppression performance.
  • the content of the metal nanoparticles in the drug solution can be measured by the method described in Examples, and the number (number) of metal nanoparticles per unit volume of the drug solution is rounded to two significant figures. Ask for it.
  • the metal atoms contained in the metal nanoparticles are not particularly limited, but are the same as the atoms already described as the metal atoms contained in the metal-containing particles. Among them, at least one selected from the group consisting of Pb atoms and Ti atoms is preferable as the metal atom in that a chemical solution having more excellent effects of the present invention can be obtained, and the metal nanoparticles are preferably Pb atoms. , And more preferably contain both Ti atoms.
  • the phrase that the metal nanoparticles contain both Pb atoms and Ti atoms typically includes a form in which the chemical solution contains both metal nanoparticles containing Pb atoms and metal nanoparticles containing Ti atoms. .
  • Pb nanoparticles metal nanoparticles containing Pb atoms
  • Ti nanoparticles metal nanoparticles containing Ti atoms
  • the number ratio (Pb / Ti) is not particularly limited, it is generally preferably 1.0 ⁇ 10 ⁇ 4 to 3.0, more preferably 1.0 ⁇ 10 ⁇ 3 to 2.0, and more preferably 1.0 ⁇ 10 ⁇ 3 to 2.0. Particularly preferred is -2 to 1.5.
  • Pb / Ti is from 1.0 ⁇ 10 ⁇ 3 to 2.0, the chemical solution has more excellent effects of the present invention, particularly, more excellent bridging defect suppression performance.
  • Pb nanoparticles and Ti nanoparticles are likely to associate with each other, for example, when a chemical solution is applied on a wafer, and easily cause defects (especially, bridge defects) when developing a resist film. They know.
  • Pb / Ti is 1.0 ⁇ 10 ⁇ 3 to 2.0, the occurrence of defects is more likely to be suppressed.
  • Pb / Ti and A / (B + C) described later are obtained by rounding off to two significant figures.
  • the metal nanoparticles only need to contain metal atoms, and the form is not particularly limited.
  • a simple substance of a metal atom, a compound containing a metal atom (hereinafter, also referred to as a “metal compound”), a complex thereof, and the like can be given.
  • the metal nanoparticles may contain a plurality of metal atoms.
  • a metal atom having the largest content (atm%) of the plurality of metals is used as a main component. Therefore, when the term “Pb nanoparticle” includes a plurality of metals, it means that the Pb atom is a main component among the plurality of metals.
  • the complex is not particularly limited, but is a so-called core-shell type particle having a simple substance of a metal atom and a metal compound covering at least a part of the simple substance of the metal atom, and a solid solution including the metal atom and another atom.
  • Particles, eutectic particles containing metal atoms and other atoms, aggregate particles of a single metal atom and a metal compound, aggregate particles of different types of metal compounds, and continuous or Examples thereof include metal compounds whose composition changes intermittently.
  • the atom other than the metal atom contained in the metal compound is not particularly limited, but examples thereof include a carbon atom, an oxygen atom, a nitrogen atom, a hydrogen atom, a sulfur atom, and a phosphorus atom, and among them, an oxygen atom is preferable.
  • the form in which the metal compound contains an oxygen atom is not particularly limited, but an oxide of a metal atom is more preferable.
  • metal nanoparticles particles composed of a single metal atom (particle A), particles composed of an oxide of a metal atom (particle B), and metal It is preferably made of at least one selected from the group consisting of particles consisting of elemental atoms and oxides of metal atoms (particles C).
  • the relationship between the number of particles A, the number of particles B, and the number of particles C in the number of particles of metal nanoparticles per unit volume of the drug solution is not particularly limited.
  • the ratio of the number of particles contained in particles A to the total number of particles contained in particles B and particles C is preferably 1.5 or less, more preferably less than 1.0, further preferably 2.0 ⁇ 10 ⁇ 1 or less, particularly preferably 1.0 ⁇ 10 ⁇ 1 or less. 0.0 ⁇ 10 ⁇ 3 or more is preferable, and 1.0 ⁇ 10 ⁇ 2 or more is more preferable.
  • a / (B + C) is less than 1.0, the chemical solution has better bridging defect suppression performance, better pattern width uniformity performance, and spot-like defect suppression performance.
  • the spot-like defect means a defect in which no metal atom is detected.
  • a / (B + C) is 0.1 or less, the chemical has more excellent defect suppression performance.
  • the chemical solution contains the specific organic compound A.
  • the specific organic compound A is an organic compound having a higher ClogP value than the solvent in the chemical solution.
  • the specific organic compound A may be added to the chemical solution, or may be unintentionally mixed in the manufacturing process of the chemical solution. Examples of the case where they are unintentionally mixed in the manufacturing process of the chemical solution include, for example, the case where the specific organic compound A is contained in a raw material (eg, an organic solvent) used for manufacturing the chemical solution, and the case where the specific organic compound A is mixed in the manufacturing process of the chemical solution. (For example, contamination) and the like, but are not limited thereto.
  • the specific organic compound A has a higher ClogP value than the solvent in the chemical solution. From the viewpoint that the effect of the present invention is more exerted, the difference between the ClogP value of the specific organic compound A and the ClogP value of the solvent in the chemical solution [(ClogP value of specific organic compound A) ⁇ (ClogP value of solvent in the chemical solution)] Is preferably 3 to 9, preferably 3 to 8, and more preferably 4 to 7.
  • the ClogP value of the specific organic compound A is not particularly limited as long as it is higher than the solvent in the drug solution, but is preferably 6 or more, particularly preferably 6 to 10, from the viewpoint that the effect of the present invention is more exhibited.
  • the ClogP value is a value obtained by calculating a common logarithm logP of a partition coefficient P to 1-octanol and water.
  • Known methods and software can be used for calculating the ClogP value.
  • the present invention uses the ClogP program incorporated in ChemBioDrawUltra 12.0 of Cambridgesoft.
  • the ClogP value of dibutyl phthalate is 4.72
  • the ClogP value of dioctyl phthalate (DOP) is 8.71
  • the ClogP value of diisononyl phthalate (DINP) is 9.03.
  • the carbon number of the specific organic compound A is not particularly limited, but is preferably 8 or more, more preferably 12 or more, from the viewpoint that the chemical solution has more excellent effects of the present invention.
  • the upper limit of the number of carbon atoms is not particularly limited, but is preferably 30 or less.
  • the specific organic compound A may be, for example, a by-product generated during the synthesis of the organic solvent and / or an unreacted raw material (hereinafter, also referred to as “by-product or the like”).
  • by-product or the like examples include compounds represented by the following formulas IV.
  • R 1 and R 2 each independently represent an alkyl group or a cycloalkyl group, or combine with each other to form a ring.
  • the alkyl group or cycloalkyl group represented by R 1 and R 2 is preferably an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group having 6 to 12 carbon atoms, and is preferably an alkyl group having 1 to 8 carbon atoms.
  • a group or a cycloalkyl group having 6 to 8 carbon atoms is more preferred.
  • the ring formed by combining R 1 and R 2 with each other is a lactone ring, preferably a 4- to 9-membered lactone ring, more preferably a 4- to 6-membered lactone ring.
  • R 1 and R 2 satisfy the relationship that the compound represented by the formula I has 8 or more carbon atoms.
  • R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, or a cycloalkenyl group, or combine with each other to form a ring. However, R 3 and R 4 are not both hydrogen atoms.
  • alkyl group represented by R 3 and R 4 for example, an alkyl group having 1 to 12 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
  • the alkenyl group represented by R 3 and R 4 is, for example, preferably an alkenyl group having 2 to 12 carbon atoms, and more preferably an alkenyl group having 2 to 8 carbon atoms.
  • the cycloalkyl group represented by R 3 and R 4 is preferably a cycloalkyl group having 6 to 12 carbon atoms, and more preferably a cycloalkyl group having 6 to 8 carbon atoms.
  • cycloalkenyl group represented by R 3 and R 4 for example, a cycloalkenyl group having 3 to 12 carbon atoms is preferable, and a cycloalkenyl group having 6 to 8 carbon atoms is more preferable.
  • the ring formed by R 3 and R 4 bonded to each other has a cyclic ketone structure, and may be a saturated cyclic ketone or an unsaturated cyclic ketone.
  • This cyclic ketone preferably has a 6- to 10-membered ring, more preferably a 6- to 8-membered ring.
  • R 3 and R 4 satisfy the relationship that the compound represented by Formula II has 8 or more carbon atoms.
  • R 5 represents an alkyl group or a cycloalkyl group.
  • the alkyl group represented by R 5 is preferably an alkyl group having 6 or more carbon atoms, more preferably an alkyl group having 6 to 12 carbon atoms, and particularly preferably an alkyl group having 6 to 10 carbon atoms.
  • the alkyl group may have an ether bond in the chain, or may have a substituent such as a hydroxy group.
  • the cycloalkyl group represented by R 5 is preferably a cycloalkyl group having 6 or more carbon atoms, more preferably a cycloalkyl group having 6 to 12 carbon atoms, and particularly preferably a cycloalkyl group having 6 to 10 carbon atoms.
  • R 6 and R 7 each independently represent an alkyl group or a cycloalkyl group, or combine with each other to form a ring.
  • an alkyl group having 1 to 12 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
  • cycloalkyl group represented by R 6 and R 7 a cycloalkyl group having 6 to 12 carbon atoms is preferable, and a cycloalkyl group having 6 to 8 carbon atoms is more preferable.
  • the ring formed by combining R 6 and R 7 with each other has a cyclic ether structure.
  • This cyclic ether structure is preferably a 4- to 8-membered ring, more preferably a 5- to 7-membered ring.
  • R 6 and R 7 satisfy the relationship that the compound represented by the formula IV has 8 or more carbon atoms.
  • R 8 and R 9 each independently represent an alkyl group or a cycloalkyl group, or combine with each other to form a ring.
  • L represents a single bond or an alkylene group.
  • alkyl group represented by R 8 and R 9 for example, an alkyl group having 6 to 12 carbon atoms is preferable, and an alkyl group having 6 to 10 carbon atoms is more preferable.
  • the cycloalkyl group represented by R 8 and R 9 is preferably a cycloalkyl group having 6 to 12 carbon atoms, and more preferably a cycloalkyl group having 6 to 10 carbon atoms.
  • the ring formed by combining R 8 and R 9 with each other has a cyclic diketone structure.
  • This cyclic diketone structure is preferably a 6- to 12-membered ring, more preferably a 6- to 10-membered ring.
  • alkylene group represented by L for example, an alkylene group having 1 to 12 carbon atoms is preferable, and an alkylene group having 1 to 10 carbon atoms is more preferable.
  • R 8 , R 9 and L satisfy the relationship that the compound represented by the formula V has 8 or more carbon atoms.
  • the organic solvent is an amide compound, an imide compound, and a sulfoxide compound
  • an amide compound, an imide compound, and a sulfoxide compound having 6 or more carbon atoms are used.
  • examples of the specific organic compound A include the following compounds.
  • Specific organic compounds A include dibutylhydroxytoluene (BHT), distearylthiodipropionate (DSTP), 4,4′-butylidenebis- (6-t-butyl-3-methylphenol), 2,2 ′ -Methylene bis- (4-ethyl-6-t-butylphenol) and antioxidants such as antioxidants described in JP-A-2005-200775; unreacted raw materials; structures generated during production of organic solvents Isomers and by-products; eluates from members and the like constituting an organic solvent production device (for example, a plasticizer eluted from a rubber member such as an O-ring); and the like.
  • BHT dibutylhydroxytoluene
  • DSTP distearylthiodipropionate
  • DSTP 4,4′-butylidenebis- (6-t-butyl-3-methylphenol
  • Examples of the specific organic compound A include dioctyl phthalate (DOP), bis (2-ethylhexyl) phthalate (DEHP), bis (2-propylheptyl) phthalate (DPHP), dibutyl phthalate (DBP), and phthalic acid.
  • DOP dioctyl phthalate
  • DEHP bis (2-ethylhexyl) phthalate
  • DPHP bis (2-propylheptyl) phthalate
  • DBP dibutyl phthalate
  • phthalic acid examples include dioctyl phthalate (DOP), bis (2-ethylhexyl) phthalate (DEHP), bis (2-propylheptyl) phthalate (DPHP), dibutyl phthalate (DBP), and phthalic acid.
  • Phthalic acid esters such as benzyl butyl (BBzP), diisodecyl phthalate (DIDP), diisooctyl phthalate (DIOP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dihexyl phthalate and diisononyl phthalate (DINP); Tris (2-ethylhexyl) trimellitate (TEHTM), Tris (n-octyl-n-decyl) trimellitate (ATM), Bis (2-ethylhexyl) adipate (DEHA), Monomethyl adipate (MMAD), Adipine Dioctyl acid (DOA), Dibutyl bacinate (DBS), dibutyl maleate (DBM), diisobutyl maleate (DIBM), azelaic acid ester, benzoic acid ester, terephthalate (eg, dioctyl
  • the specific organic compound A is generally present in a chemical solution production environment, and is preferably a phthalate ester because its content can be easily adjusted by a production process and a production method, and dioctyl phthalate ( At least one selected from the group consisting of DOP) and diisononyl phthalate (DINP) is preferred.
  • the content of the specific organic compound A is not particularly limited as long as the total content of the organic compound (organic compound B to be described later) contained in the gas existing in the voids is within the range described below. From the viewpoint of superiority, the amount is preferably 100,000 mass ppt or less, more preferably 0.1 to 1,000 mass ppt, and particularly preferably 0.1 to 10 mass ppt, based on the total mass of the chemical solution.
  • the content and type of the specific organic compound A in the drug solution can be measured by using GCMS (gas chromatography mass spectrometer; gas chromatography mass spectrometry).
  • the chemical solution may contain other components other than the above.
  • the other components include an organic compound other than the specific organic compound A, a resin, and the like.
  • the chemical solution may contain an organic compound other than the specific organic compound A (hereinafter, also referred to as “other organic compound”).
  • the other organic compound is an organic compound having a ClogP value equal to or less than the ClogP value of the solvent in the chemical solution.
  • Other organic compounds may be added to the chemical solution or may be mixed unintentionally in the process of manufacturing the chemical solution. Examples of the case where they are unintentionally mixed in the manufacturing process of a chemical solution include, for example, a case where another specific organic compound is contained in a raw material (for example, an organic solvent) used for manufacturing the chemical solution, and a case where the other compound is mixed in the manufacturing process of the chemical solution. (For example, contamination), but is not limited thereto.
  • the chemical solution may contain a resin.
  • a resin P having a group that is decomposed by the action of an acid to generate a polar group is more preferable.
  • a resin having a repeating unit represented by the following formula (AI) which is a resin whose solubility in a developer containing an organic solvent as a main component is reduced by the action of an acid, is more preferable.
  • the resin having a repeating unit represented by the formula (AI) described below has a group that is decomposed by the action of an acid to generate an alkali-soluble group (hereinafter, also referred to as an “acid-decomposable group”).
  • the polar group include an alkali-soluble group.
  • the alkali-soluble group include a carboxy group, a fluorinated alcohol group (preferably hexafluoroisopropanol group), a phenolic hydroxyl group, and a sulfo group.
  • the polar group in the acid-decomposable group is protected by an acid-eliminable group (acid-eliminable group).
  • acid-eliminable group examples include —C (R 36 ) (R 37 ) (R 38 ), —C (R 36 ) (R 37 ) (OR 39 ), and —C (R 01 ) (R 02 ) (OR 39 ).
  • R 36 to R 39 each independently represent an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may combine with each other to form a ring.
  • R 01 and R 02 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • the resin P whose solubility in a developer containing an organic solvent as a main component is reduced by the action of an acid will be described in detail below.
  • the resin P preferably contains a repeating unit represented by the formula (AI).
  • Xa 1 represents a hydrogen atom or an alkyl group which may have a substituent.
  • T represents a single bond or a divalent linking group.
  • Ra 1 to Ra 3 each independently represent an alkyl group (linear or branched) or a cycloalkyl group (monocyclic or polycyclic). Two of Ra 1 to Ra 3 may combine to form a cycloalkyl group (monocyclic or polycyclic).
  • Examples of the optionally substituted alkyl group represented by Xa 1 include a methyl group and a group represented by —CH 2 —R 11 .
  • R 11 represents a halogen atom (such as a fluorine atom), a hydroxyl group, or a monovalent organic group.
  • Xa 1 is preferably a hydrogen atom, a methyl group, a trifluoromethyl group or a hydroxymethyl group.
  • Examples of the divalent linking group for T include an alkylene group, a -COO-Rt- group, and a -O-Rt- group.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T is preferably a single bond or a -COO-Rt- group.
  • Rt is preferably an alkylene group having 1 to 5 carbon atoms, more preferably a —CH 2 — group, a — (CH 2 ) 2 — group, or a — (CH 2 ) 3 — group.
  • the alkyl group of Ra 1 to Ra 3 preferably has 1 to 4 carbon atoms.
  • the cycloalkyl group of Ra 1 to Ra 3 may be a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, or an adamantyl group. Ring cycloalkyl groups are preferred.
  • Examples of the cycloalkyl group formed by bonding two of Ra 1 to Ra 3 include a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, a norbornyl group, a tetracyclodecanyl group, and a tetracyclododecanyl. Or a polycyclic cycloalkyl group such as an adamantyl group. A monocyclic cycloalkyl group having 5 to 6 carbon atoms is more preferable.
  • the cycloalkyl group formed by combining two of Ra 1 to Ra 3 is, for example, a group in which one of methylene groups constituting a ring has a hetero atom such as an oxygen atom or a hetero atom such as a carbonyl group. It may be replaced.
  • Ra 1 is a methyl group or an ethyl group
  • Ra 2 and Ra 3 are bonded to form the above-described cycloalkyl group
  • Each of the above groups may have a substituent.
  • substituents include an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group (1 to 4 carbon atoms), a carboxy group, And an alkoxycarbonyl group (having 2 to 6 carbon atoms), preferably having 8 or less carbon atoms.
  • the content of the repeating unit represented by the formula (AI) is preferably from 20 to 90 mol%, more preferably from 25 to 85 mol%, particularly preferably from 30 to 80 mol%, based on all repeating units in the resin P. preferable.
  • the resin P preferably contains a repeating unit Q having a lactone structure.
  • the repeating unit Q having a lactone structure preferably has a lactone structure in a side chain, and more preferably a repeating unit derived from a (meth) acrylic acid derivative monomer.
  • a repeating unit derived from a (meth) acrylic acid derivative monomer As the repeating unit Q having a lactone structure, one type may be used alone, or two or more types may be used in combination. However, it is preferable to use one type alone.
  • the content of the repeating unit Q having a lactone structure is preferably from 3 to 80 mol%, more preferably from 3 to 60 mol%, based on all repeating units in the resin P.
  • the lactone structure preferably has a repeating unit having a lactone structure represented by any of the following formulas (LC1-1) to (LC1-17).
  • the lactone structure is preferably a lactone structure represented by the formula (LC1-1), the formula (LC1-4), the formula (LC1-5) or the formula (LC1-8), and is represented by the formula (LC1-4) Lactone structures are more preferred.
  • the lactone structure part may have a substituent (Rb 2 ).
  • Preferred substituents (Rb 2 ) include an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, and a carboxy group.
  • n 2 represents an integer of 0-4. When n 2 is 2 or more, a plurality of substituents (Rb 2 ) may be the same or different, and a plurality of substituents (Rb 2 ) may combine with each other to form a ring. .
  • the resin P may contain a repeating unit having a phenolic hydroxyl group.
  • Examples of the repeating unit having a phenolic hydroxyl group include a repeating unit represented by the following general formula (I).
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group.
  • R 42 may combine with Ar 4 to form a ring, in which case R 42 represents a single bond or an alkylene group.
  • X 4 represents a single bond, —COO—, or —CONR 64 —, and R 64 represents a hydrogen atom or an alkyl group.
  • L 4 represents a single bond or an alkylene group.
  • Ar 4 represents a (n + 1) -valent aromatic ring group, and when it is bonded to R 42 to form a ring, represents an (n + 2) -valent aromatic ring group.
  • n represents an integer of 1 to 5.
  • Examples of the alkyl group of R 41 , R 42 and R 43 in the general formula (I) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and a sec-butyl which may have a substituent.
  • An alkyl group having 20 or less carbon atoms such as a group, hexyl group, 2-ethylhexyl group, octyl group and dodecyl group is preferred, an alkyl group having 8 or less carbon atoms is more preferred, and an alkyl group having 3 or less carbon atoms is particularly preferred.
  • the cycloalkyl group of R 41 , R 42 and R 43 in the general formula (I) may be monocyclic or polycyclic.
  • the cycloalkyl group is preferably a monocyclic cycloalkyl group having 3 to 8 carbon atoms, such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group, which may have a substituent.
  • Examples of the halogen atom of R 41 , R 42 and R 43 in the general formula (I) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom is preferable.
  • alkyl group contained in the alkoxycarbonyl group of R 41 , R 42 and R 43 in the general formula (I) the same alkyl groups as those described above for R 41 , R 42 and R 43 are preferable.
  • each of the above groups examples include an alkyl group, a cycloalkyl group, an aryl group, an amino group, an amide group, a ureido group, a urethane group, a hydroxy group, a carboxy group, a halogen atom, an alkoxy group, a thioether group, and an acyl group.
  • An acyloxy group, an alkoxycarbonyl group, a cyano group, and a nitro group and the substituent preferably has 8 or less carbon atoms.
  • Ar 4 represents an (n + 1) -valent aromatic ring group.
  • the divalent aromatic ring group when n is 1 may have a substituent, for example, an arylene group having 6 to 18 carbon atoms such as a phenylene group, a tolylene group, a naphthylene group and an anthracenylene group;
  • aromatic ring groups containing a hetero ring such as thiophene, furan, pyrrole, benzothiophene, benzofuran, benzopyrrole, triazine, imidazole, benzimidazole, triazole, thiadiazole and thiazole.
  • n is an integer of 2 or more
  • specific examples of the (n + 1) -valent aromatic ring group include the above-described specific examples of the divalent aromatic ring group obtained by removing (n-1) arbitrary hydrogen atoms.
  • the group consisting of The (n + 1) -valent aromatic ring group may further have a substituent.
  • Examples of the substituent which the above-mentioned alkyl group, cycloalkyl group, alkoxycarbonyl group, alkylene group and (n + 1) -valent aromatic ring group may have include, for example, R 41 , R 42 and R 43 in the general formula (I).
  • R 64 represents a hydrogen atom or an alkyl group
  • the alkyl group for R 64 in, which may have a substituent, a methyl group, an ethyl group, a propyl group, Examples thereof include an alkyl group having 20 or less carbon atoms such as an isopropyl group, an n-butyl group, a sec-butyl group, a hexyl group, a 2-ethylhexyl group, an octyl group, and a dodecyl group, and an alkyl group having 8 or less carbon atoms is more preferable.
  • X 4 is preferably a single bond, —COO— or —CONH—, more preferably a single bond or —COO—.
  • an alkylene group having 1 to 8 carbon atoms such as a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group and an octylene group which may have a substituent is preferable.
  • Ar 4 is preferably an optionally substituted aromatic ring group having 6 to 18 carbon atoms, more preferably a benzene ring group, a naphthalene ring group or a biphenylene ring group.
  • the repeating unit represented by the general formula (I) preferably has a hydroxystyrene structure. That is, Ar 4 is preferably a benzene ring group.
  • the content of the repeating unit having a phenolic hydroxyl group is preferably from 0 to 50 mol%, more preferably from 0 to 45 mol%, particularly preferably from 0 to 40 mol%, based on all repeating units in the resin P.
  • the resin P may further contain a repeating unit containing an organic group having a polar group, in particular, a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group.
  • a repeating unit containing an organic group having a polar group in particular, a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group.
  • the alicyclic hydrocarbon structure of the alicyclic hydrocarbon structure substituted with a polar group is preferably an adamantyl group, a diamantyl group or a norbornane group.
  • As the polar group a hydroxyl group or a cyano group is preferable.
  • the content is preferably from 1 to 50 mol%, more preferably from 1 to 30 mol%, based on all repeating units in the resin P. More preferably, 5 to 25 mol% is further preferable, and 5 to 20 mol% is particularly preferable.
  • the resin P may contain a repeating unit represented by the following general formula (VI).
  • R 61 , R 62 and R 63 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group, or an alkoxycarbonyl group.
  • R 62 may be bonded to Ar 6 to form a ring, in which case R 62 represents a single bond or an alkylene group.
  • X 6 represents a single bond, —COO—, or —CONR 64 —.
  • R 64 represents a hydrogen atom or an alkyl group.
  • L 6 represents a single bond or an alkylene group.
  • Ar 6 represents an (n + 1) -valent aromatic ring group, and when it is bonded to R 62 to form a ring, represents an (n + 2) -valent aromatic ring group.
  • Y 2 independently represents a hydrogen atom or a group capable of leaving by the action of an acid when n ⁇ 2. However, at least one of Y 2 represents a group which is eliminated by the action of an acid.
  • n represents an integer of 1 to 4.
  • L 1 and L 2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a group obtained by combining an alkylene group and an aryl group.
  • M represents a single bond or a divalent linking group.
  • Q represents an alkyl group, a cycloalkyl group optionally containing a hetero atom, an aryl group optionally containing a hetero atom, an amino group, an ammonium group, a mercapto group, a cyano group or an aldehyde group. At least two members of Q, M and L 1 may combine to form a ring (preferably a 5- or 6-membered ring).
  • the repeating unit represented by the general formula (VI) is preferably a repeating unit represented by the following general formula (3).
  • Ar 3 represents an aromatic ring group.
  • R 3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, an acyl group, or a heterocyclic group.
  • M 3 represents a single bond or a divalent linking group.
  • Q 3 represents an alkyl group, a cycloalkyl group, an aryl group, or a heterocyclic group. At least two of Q 3 , M 3 and R 3 may combine to form a ring.
  • the aromatic ring group represented by Ar 3 is the same as Ar 6 in the general formula (VI) when n in the general formula (VI) is 1, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable. preferable.
  • the resin P may further contain a repeating unit having a silicon atom in a side chain.
  • the repeating unit having a silicon atom in the side chain include a (meth) acrylate-based repeating unit having a silicon atom and a vinyl-based repeating unit having a silicon atom.
  • the repeating unit having a silicon atom in the side chain is typically a repeating unit having a group having a silicon atom in the side chain. Examples of the group having a silicon atom include a trimethylsilyl group, a triethylsilyl group, and a triphenyl group.
  • Silyl group tricyclohexylsilyl group, tristrimethylsiloxysilyl group, tristrimethylsilylsilyl group, methylbistrimethylsilylsilyl group, methylbistrimethylsiloxysilyl group, dimethyltrimethylsilylsilyl group, dimethyltrimethylsiloxysilyl group, and the following cyclic Alternatively, a linear polysiloxane, a cage type, a ladder type, or a random type silsesquioxane structure may be used.
  • R and R 1 each independently represent a monovalent substituent. * Represents a bond.
  • repeating unit having the above group for example, a repeating unit derived from an acrylate compound or a methacrylate compound having the above group, or a repeating unit derived from a compound having the above group and a vinyl group is preferable.
  • the resin P has a repeating unit having a silicon atom in the side chain
  • its content is preferably from 1 to 30 mol%, more preferably from 5 to 25 mol%, based on all repeating units in the resin P. Is particularly preferably 5 to 20 mol%.
  • the weight average molecular weight of the resin P is preferably from 1,000 to 200,000, more preferably from 3,000 to 20,000, more preferably from 5,000 to 15,000 as a polystyrene equivalent value by GPC (Gel Permeation Chromatography). Particularly preferred.
  • GPC Gel Permeation Chromatography
  • the degree of dispersion is usually 1 to 5, preferably 1 to 3, more preferably 1.2 to 3.0, and particularly preferably 1.2 to 2.0.
  • the content of the resin P is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass based on the total solid content.
  • the resin P may be used singly or in combination of two or more.
  • any known components can be used.
  • the chemical include JP-A-2013-195844, JP-A-2016-057645, JP-A-2015-207006, WO2014 / 148241, JP-A-2016-188385, and JP-A-2016-188385.
  • Components contained in the actinic ray-sensitive or radiation-sensitive resin composition described in JP-A-2017-219818 and the like can be mentioned.
  • the chemical is preferably used for manufacturing a semiconductor device. In particular, it is more preferably used for forming a fine pattern with a node of 10 nm or less (for example, a step including pattern formation using EUV).
  • the chemical solution has a pattern width and / or pattern interval of 17 nm or less (preferably 15 nm or less, more preferably 12 nm or less), and / or a resist having an obtained wiring width and / or wiring interval of 17 nm or less.
  • a chemical solution used in the process (a pre-wet solution, a developing solution, a rinsing solution, a solvent for a resist solution, a stripping solution, etc.), in other words, a resist film having a pattern width and / or a pattern interval of 17 nm or less. It is particularly preferably used for the production of semiconductor devices produced using the same.
  • an organic material is processed after each process or before moving to the next process.
  • it is suitably used as a pre-wet liquid, a developing liquid, a rinsing liquid, a stripping liquid or the like.
  • a pre-wet liquid e.g., a developing liquid, a rinsing liquid, a stripping liquid or the like.
  • the above chemical solution can be used as a diluting solution of a resin contained in the resist solution and a solvent contained in the resist solution. Further, it may be diluted with another organic solvent and / or water.
  • the above chemical solution can be used for other uses other than the production of semiconductor devices, and can also be used as a developer for polyimide, a resist for sensors, a resist for lenses, and a rinsing solution.
  • the above-mentioned chemical solution can be used as a solvent for medical use or cleaning use. In particular, it can be suitably used for cleaning containers, piping, substrates (eg, wafers, glass, and the like).
  • the chemical is selected from the group consisting of a developer, a rinse, a wafer cleaning liquid, a line cleaning liquid, a pre-wet liquid, a resist liquid, a lower layer film forming liquid, an upper layer film forming liquid, and a hard coat forming liquid.
  • a developer a rinse
  • a wafer cleaning liquid a line cleaning liquid
  • a pre-wet liquid a resist liquid
  • a lower layer film forming liquid an upper layer film forming liquid
  • a hard coat forming liquid a hard coat forming liquid.
  • the method for producing the chemical solution is not particularly limited, and a known production method can be used. Among them, the method for producing a chemical solution is preferable in that a chemical solution showing a better effect of the present invention is obtained, and the method for producing a chemical solution is performed by filtering a substance to be purified containing a solvent using a filter to obtain a chemical solution. .
  • the material to be purified used in the filtration step may be procured by purchasing or the like, or may be obtained by reacting the raw materials. It is preferable that the material to be purified has a low impurity content. Examples of such a commercially available product to be purified include a commercially available product called “high-purity grade product”.
  • the method of obtaining the object to be purified typically, the object to be purified containing an organic solvent
  • a known method can be used.
  • a method of reacting acetic acid and n-butanol in the presence of sulfuric acid to obtain butyl acetate reacting ethylene, oxygen, and water in the presence of Al (C 2 H 5 ) 3 Reacting cis-4-methyl-2-pentene in the presence of Ipc2BH (Diisopinocampheylborane) to obtain 4-methyl-2-pentanol; propylene oxide, methanol and acetic acid Is reacted in the presence of sulfuric acid to obtain PGMEA (propylene glycol 1-monomethyl ether 2-acetate); acetone and hydrogen are reacted in the presence of copper oxide-zinc oxide-aluminum oxide to give IPA (isopropyl). alcohol) by reacting lactic acid and ethanol to obtain lactic acid. And the like; a method of obtaining a chill.
  • the method for producing a drug solution according to the embodiment of the present invention includes a filtration step of filtering the above-mentioned substance to be purified using a filter to obtain a drug solution.
  • the method of filtering the object to be purified using a filter is not particularly limited, and the object to be purified is passed through a filter unit having a housing and a filter cartridge housed in the housing with or without pressurization ( Is preferable.
  • the pore size of the filter is not particularly limited, and a filter having a pore size usually used for filtering a substance to be purified can be used.
  • the pore diameter of the filter is preferably 200 nm or less, more preferably 20 nm or less, still more preferably 10 nm or less, in that the number of particles (such as metal-containing particles) contained in the chemical solution is easily controlled in a desired range.
  • the following is particularly preferred, and 3 nm or less is most preferred.
  • the lower limit is not particularly limited, but is generally preferably 1 nm or more from the viewpoint of productivity.
  • the pore diameter and the pore diameter distribution of the filter are defined as isopropanol (IPA) or HFE-7200 (“Novec 7200”, manufactured by 3M, hydrofluoroether, C 4 F 9 OC 2).
  • H 5 means the pore size and pore size distribution determined by the bubble point.
  • the pore diameter of the filter be 5.0 nm or less, since the number of particles contained in the drug solution can be more easily controlled.
  • a filter having a pore size of 5 nm or less is also referred to as a “micropore size filter”.
  • the micropore size filter may be used alone, or may be used with a filter having another pore size. Among them, it is preferable to use a filter having a larger pore diameter from the viewpoint of better productivity. In this case, if the object to be purified, which has been filtered through a filter having a larger pore diameter in advance, is passed through a micropore size filter, clogging of the micropore size filter can be prevented. That is, when one filter is used, the pore diameter of the filter is preferably 5.0 nm or less, and when two or more filters are used, the pore diameter of the filter having the smallest pore diameter is 5.0 nm. The following is preferred.
  • the form in which two or more types of filters having different pore diameters are sequentially used is not particularly limited, and examples thereof include a method of sequentially arranging the above-described filter units along a pipe through which a substance to be purified is transferred. At this time, if an attempt is made to keep the flow rate of the object to be purified per unit time in the entire pipeline, a larger pressure is applied to the filter unit having a smaller pore size as compared with the filter unit having a larger pore size. There is. In this case, a pressure regulating valve, a damper, and the like are arranged between the filter units to make the pressure applied to the filter unit having a small pore diameter constant, or to connect a filter unit containing the same filter to a pipeline. It is preferable to increase the filtration area by, for example, arranging them in parallel along the line. This makes it possible to more stably control the number of particles in the chemical solution.
  • the material for the filter is not particularly limited, and a known material for the filter can be used. Specifically, when it is a resin, polyamide such as nylon (for example, 6-nylon and 6,6-nylon); polyolefin such as polyethylene and polypropylene; polystyrene; polyimide; polyamideimide; Polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylene propene copolymer, ethylene / tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride Fluorocarbon; polyvinyl alcohol; polyester; cellulose; cellulose acetate and the like.
  • polyamide such as nylon (for example, 6-nylon and 6,6-nylon)
  • polyolefin such as polyethylene and polypropylene
  • polystyrene polyimide
  • nylon especially, 6,6-nylon is preferred
  • polyolefin especially, polyethylene is preferred
  • polyolefin are preferred in that they have better solvent resistance and the resulting chemical has more excellent defect suppression performance.
  • At least one selected from the group consisting of (meth) acrylate and polyfluorocarbon (among others, polytetrafluoroethylene (PTFE) and perfluoroalkoxyalkane (PFA) is preferable) is preferable.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • a polymer eg, nylon-grafted UPE obtained by graft-copolymerizing a polyamide (eg, nylon-6 or nylon-6,6, etc.) with a polyolefin (eg, UPE described later) may be used as the filter material.
  • a polyamide eg, nylon-6 or nylon-6,6, etc.
  • a polyolefin eg, UPE described later
  • the filter may be a surface-treated filter.
  • the method for surface treatment is not particularly limited, and a known method can be used. Examples of the surface treatment method include chemical modification treatment, plasma treatment, hydrophobic treatment, coating, gas treatment, and sintering.
  • Plasma treatment is preferable because the surface of the filter becomes hydrophilic.
  • the water contact angle on the surface of the filter material that has been hydrophilized by plasma treatment is not particularly limited, but the static contact angle at 25 ° C measured by a contact angle meter is preferably 60 ° or less, and more preferably 50 ° or less. , 30 ° or less is particularly preferable.
  • a method of introducing an ion exchange group into a substrate is preferable. That is, as the filter, a filter in which each of the above-described materials is used as a base material and an ion exchange group is introduced into the base material is preferable. Typically, a filter including a layer containing a substrate containing an ion exchange group on the surface of the substrate is preferable.
  • the surface-modified substrate is not particularly limited, and a filter in which an ion exchange group is introduced into the above polymer is preferable in terms of easier production.
  • Examples of the ion exchange group include a cation exchange group such as a sulfonic acid group, a carboxy group, and a phosphate group, and examples of the anion exchange group include a quaternary ammonium group.
  • the method for introducing an ion-exchange group into a polymer is not particularly limited, and examples thereof include a method of reacting a compound containing an ion-exchange group and a polymerizable group with a polymer and typically grafting.
  • the method for introducing the ion-exchange group is not particularly limited, but the fibers of the above resin are irradiated with ionizing radiation ( ⁇ -ray, ⁇ -ray, ⁇ -ray, X-ray, electron beam, etc.) to form an active portion ( Radicals).
  • ionizing radiation ⁇ -ray, ⁇ -ray, ⁇ -ray, X-ray, electron beam, etc.
  • the irradiated resin is immersed in a monomer-containing solution to graft-polymerize the monomer onto the substrate.
  • a polymer is formed in which the monomer is bonded to the polyolefin fiber as a graft polymerization side chain.
  • the resin containing the produced polymer as a side chain is contact-reacted with a compound containing an anion exchange group or a cation exchange group, and an ion exchange group is introduced into the graft-polymerized side chain polymer to give a final product. can get.
  • the filter may have a structure in which a woven or nonwoven fabric having an ion exchange group formed by a radiation graft polymerization method is combined with a conventional glass wool, woven or nonwoven fabric filter material.
  • the material of the filter containing an ion-exchange group is not particularly limited, and examples thereof include a polyfluorocarbon and a material in which an ion-exchange group is introduced into polyolefin, and a material in which an ion-exchange group is introduced into polyfluorocarbon is more preferable.
  • the pore size of the filter containing an ion exchange group is not particularly limited, but is preferably 1 to 30 nm, more preferably 5 to 20 nm.
  • the filter containing an ion-exchange group may also serve as the filter having the smallest pore diameter described above, or may be used separately from the filter having the smallest pore diameter.
  • the filtration step uses a filter containing an ion exchange group and a filter having no ion exchange group and having a minimum pore diameter. Is preferred.
  • the material of the filter having the smallest pore diameter already described is not particularly limited, but from the viewpoint of solvent resistance and the like, generally, polyfluorocarbon, and at least one selected from the group consisting of polyolefins are preferable. More preferred.
  • the filter used in the filtration step two or more types of filters having different materials may be used.
  • polyolefins, polyfluorocarbons, polyamides, and filters made of materials having ion exchange groups introduced therein may be used. Two or more kinds selected from the group may be used.
  • the pore structure of the filter is not particularly limited, and may be appropriately selected according to the components in the object to be purified.
  • the pore structure of a filter means a pore size distribution, a positional distribution of pores in a filter, and a shape of pores, and is typically controlled by a filter manufacturing method. It is possible.
  • a porous film can be obtained by sintering a powder of a resin or the like, and a fiber film can be obtained by a method such as electrospinning, electroblowing, and meltblowing. These have different pore structures.
  • a “porous membrane” refers to a membrane that retains components in an object to be purified, such as gels, particles, colloids, cells, and poly-oligomers, but a component that is substantially smaller than the pores passes through the pores.
  • the retention of components in the object to be purified by the porous membrane may depend on operating conditions, such as surface velocity, use of surfactant, pH, and combinations thereof, and the pore size of the porous membrane, It may depend on the structure and the size of the particles to be removed, and the structure (hard particles or gels, etc.).
  • non-sieving membranes include, but are not limited to, nylon-6 membranes and nylon membranes such as nylon-6,6 membranes.
  • non-sieving retention mechanism refers to retention caused by mechanisms such as filter pressure drop or interference, diffusion, and adsorption that are not related to pore size.
  • Non-sieve retention includes retention mechanisms, such as obstruction, diffusion, and adsorption, that remove particles to be removed from the object to be purified, regardless of the filter pressure drop or filter pore size.
  • the adsorption of particles to the filter surface can be mediated, for example, by intermolecular van der Waals forces and electrostatic forces.
  • An interfering effect occurs when particles traveling in a non-sieving membrane layer having a tortuous path are not turned fast enough to avoid contact with the non-sieving membrane.
  • Particle transport by diffusion results primarily from random or Brownian motion of small particles, which creates a certain probability that the particles will collide with the filter media. If there is no repulsion between the particles and the filter, the non-sieve retention mechanism can be active.
  • UPE (ultra high molecular weight polyethylene) filters are typically sieved membranes.
  • a sieve membrane means a membrane that mainly captures particles via a sieve holding mechanism, or a membrane that is optimized for capturing particles via a sieve holding mechanism.
  • Typical examples of sieving membranes include, but are not limited to, polytetrafluoroethylene (PTFE) membranes and UPE membranes.
  • PTFE polytetrafluoroethylene
  • the “sieve holding mechanism” refers to holding the result due to the removal target particles being larger than the pore diameter of the porous membrane.
  • the sieve retention is improved by forming a filter cake (agglomeration of the particles to be removed on the surface of the membrane). The filter cake effectively performs the function of a secondary filter.
  • the material of the fiber membrane is not particularly limited as long as it is a polymer capable of forming the fiber membrane.
  • the polymer include polyamide and the like.
  • the polyamide include nylon 6, nylon 6,6, and the like.
  • the polymer forming the fiber membrane may be poly (ether sulfone).
  • the surface energy of the fiber membrane is preferably higher than the polymer that is the material of the porous membrane on the secondary side.
  • An example of such a combination is a case where the material of the fiber membrane is nylon and the porous membrane is polyethylene (UPE).
  • the method for producing the fiber membrane is not particularly limited, and a known method can be used.
  • Examples of the method for producing a fiber membrane include electrospinning, electroblowing, and meltblowing.
  • the pore structure of the porous membrane is not particularly limited, and examples of the pore shape include a lace shape, a string shape, and a node shape.
  • Can be The distribution of pore sizes in the porous membrane and the distribution of positions in the membrane are not particularly limited.
  • the size distribution may be smaller and the distribution position in the film may be symmetric. Further, the size distribution may be larger and the distribution position in the film may be asymmetric (the above film is also referred to as “asymmetric porous film”).
  • asymmetric porous membrane the size of the pores varies in the membrane, and typically the pore size increases from one surface of the membrane to the other surface of the membrane.
  • the surface on the side with many pores having a large pore diameter is called “open side”, and the surface on the side with many pores with small pore diameter is also called “tight side”.
  • the asymmetric porous membrane include a membrane in which the size of pores is minimized at a certain position within the thickness of the membrane (this is also referred to as an “hourglass shape”).
  • the primary side is made to have a larger-sized pore using the asymmetric porous membrane, in other words, if the primary side is made to be the open side, a pre-filtration effect can be produced.
  • the porous membrane may include thermoplastic polymers such as PESU (polyethersulfone), PFA (perfluoroalkoxyalkane, copolymer of ethylene tetrafluoride and perfluoroalkoxyalkane), polyamide, and polyolefin. , Polytetrafluoroethylene and the like. Among them, ultrahigh molecular weight polyethylene is preferable as the material of the porous membrane. Ultra-high molecular weight polyethylene means a thermoplastic polyethylene having an extremely long chain, and preferably has a molecular weight of 1,000,000 or more, typically 2,000,000 to 6,000,000.
  • a filter used in the filtration step two or more types of filters having different pore structures may be used, or a filter of a porous membrane and a filter of a fiber membrane may be used in combination. Specific examples include a method using a nylon fiber membrane filter and a UPE porous membrane filter.
  • the filter is sufficiently washed before use.
  • an unwashed filter or a filter that has not been sufficiently washed
  • impurities contained in the filter are likely to be brought into the chemical solution.
  • the impurities contained in the filter include, for example, the above-described organic components.
  • the filtration step is performed using an unwashed filter (or a filter that has not been sufficiently washed)
  • the content of the organic components in the chemical solution is reduced. The amount may exceed the permissible range for the liquid medicine of the present invention.
  • the filter tends to contain an alkane having 12 to 50 carbon atoms as an impurity.
  • a polymer obtained by graft copolymerizing polyamide (nylon or the like) with polyamide such as nylon or polyimide, or polyolefin (UPE or the like) is used for the filter, the filter tends to contain an alkene having 12 to 50 carbon atoms as an impurity.
  • the method of washing the filter includes, for example, a method of immersing the filter in an organic solvent having a low impurity content (for example, an organic solvent purified by distillation (eg, PGMEA)) for one week or more.
  • an organic solvent purified by distillation eg, PGMEA
  • the liquid temperature of the organic solvent is preferably 30 to 90 ° C.
  • the substance to be purified may be filtered using a filter whose degree of washing has been adjusted, and the resulting chemical solution may be adjusted so as to contain a desired amount of the organic component derived from the filter.
  • the filtration step may be a multi-step filtration step in which the object to be purified is passed through two or more filters different in at least one selected from the group consisting of a filter material, a pore diameter, and a pore structure.
  • the object to be purified may be passed through the same filter a plurality of times, or the object to be purified may be passed through a plurality of filters of the same type.
  • the material of the liquid contacting portion of the purification device used in the filtration step is not particularly limited, but non-metallic materials (such as fluororesin) ) And at least one selected from the group consisting of electrolytically polished metal materials (such as stainless steel) (hereinafter collectively referred to as “corrosion-resistant materials”).
  • corrosion-resistant materials the wetted part of a production tank is formed of a corrosion-resistant material, which means that the production tank itself is made of a corrosion-resistant material, or the inner wall of the production tank is coated with a corrosion-resistant material.
  • Non-metallic materials include, for example, polyethylene resin, polypropylene resin, polyethylene-polypropylene resin, and fluorine resin (for example, ethylene tetrafluoride resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer, Hexafluoropropylene copolymer resin, ethylene tetrafluoride-ethylene copolymer resin, ethylene trifluoride ethylene-ethylene copolymer resin, vinylidene fluoride resin, ethylene trifluoride ethylene copolymer resin, and vinyl fluoride resin And the like, but not limited thereto.
  • fluorine resin for example, ethylene tetrafluoride resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer, Hexafluoropropylene copolymer resin, ethylene tetrafluoride-ethylene copolymer resin, ethylene trifluoride ethylene-ethylene copolymer resin
  • the non-metallic material a material which has been subjected to an antistatic treatment may be used from the viewpoint of preventing the chemical solution from being charged.
  • a method of performing the antistatic treatment a method of using a conductive material together with the nonmetallic material (for example, the above-described fluororesin) is exemplified.
  • the conductive material preferably contains carbon.
  • carbon carbon particles (for example, graphite, carbon black, acetylene black, Ketjen black) and carbon nanotubes (for example, a graphene sheet is formed into a single-layer or multi-layer coaxial tube from the viewpoint of further suppressing the charging of a chemical solution. And CNT.) And at least one material selected from the group consisting of carbon fibers.
  • the metal material is not particularly limited, and a known material can be used.
  • the metal material include a metal material in which the total content of chromium and nickel is more than 25% by mass based on the total mass of the metal material, and among them, 30% by mass or more is more preferable.
  • the upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is generally preferably 90% by mass or less.
  • the metal material include stainless steel and a nickel-chromium alloy.
  • the stainless steel is not particularly limited, and a known stainless steel can be used. Among them, alloys containing nickel at 8% by mass or more are preferable, and austenitic stainless steels containing nickel at 8% by mass or more are more preferable.
  • austenitic stainless steel include SUS (Steel Use Stainless) 304 (Ni content 8% by mass, Cr content 18% by mass), SUS304L (Ni content 9% by mass, Cr content 18% by mass), SUS316 ( Ni content 10% by mass, Cr content 16% by mass) and SUS316L (Ni content 12% by mass, Cr content 16% by mass) and the like.
  • the nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Among them, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable.
  • the nickel-chromium alloy include Hastelloy (product name, the same applies hereinafter), Monel (product name, the same applies hereinafter), and Inconel (product name, the same applies hereinafter). More specifically, Hastelloy C-276 (Ni content 63% by mass, Cr content 16% by mass), Hastelloy-C (Ni content 60% by mass, Cr content 17% by mass), Hastelloy C-22 ( Ni content 61% by mass, Cr content 22% by mass). Further, the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt, and the like, if necessary, in addition to the above alloy.
  • the method of electropolishing the metal material is not particularly limited, and a known method can be used.
  • a known method can be used.
  • the methods described in paragraphs [0011] to [0014] of JP-A-2015-227501 and paragraphs [0036] to [0042] of JP-A-2008-264929 can be used.
  • the metal material has a higher chromium content in the passivation layer on the surface than a chromium content in the matrix due to electrolytic polishing. Therefore, it is presumed that the use of a refining device in which the liquid contact portion is formed from a metal material which has been electropolished, makes it difficult for metal-containing particles to flow out into the object to be purified.
  • the metal material may be buffed.
  • the buffing method is not particularly limited, and a known method can be used.
  • the size of the abrasive grains used for the buff polishing is not particularly limited, but is preferably # 400 or less, more preferably 1,000 to # 400, and more preferably # 600 to # 400, since irregularities on the surface of the metal material are likely to be smaller.
  • Buff polishing is preferably performed before electrolytic polishing.
  • the metal material may be subjected to an acid treatment and / or a passivation treatment. These treatments are preferably performed after electrolytic polishing. Processing such as buffing, acid treatment, and passivation treatment may be performed alone or in combination of two or more.
  • the method for producing a chemical solution may further include a step other than the filtration step.
  • the steps other than the filtration step include, for example, a distillation step, a reaction step, and a charge removal step.
  • the distillation step is a step of distilling an object to be purified containing an organic solvent to obtain a distilled object to be purified.
  • the method for distilling the object to be purified is not particularly limited, and a known method can be used.
  • a distillation column is arranged on the primary side of a purification device provided for a filtration step, and a distilled product to be purified is introduced into a production tank.
  • the liquid contact portion of the distillation column is not particularly limited, but is preferably formed of the corrosion-resistant material described above.
  • the reaction step is a step of reacting the raw materials to produce a purified product containing an organic solvent as a reactant.
  • the method for producing the object to be purified is not particularly limited, and a known method can be used. Typically, there is a method in which a reaction tank is arranged on the primary side of a production tank (or a distillation column) of a purification device provided for a filtration step, and a reactant is introduced into the production tank (or a distillation column). At this time, the liquid contact portion of the production tank is not particularly limited, but is preferably formed of the corrosion-resistant material described above.
  • the charge elimination step is a step of removing charges from the object to be purified to reduce the charged potential of the object to be purified.
  • the static elimination method is not particularly limited, and a known static elimination method can be used.
  • Examples of the charge removal method include a method of contacting the object to be purified with a conductive material.
  • the contact time for bringing the object to be purified into contact with the conductive material is preferably 0.001 to 60 seconds, more preferably 0.001 to 1 second, and particularly preferably 0.01 to 0.1 second.
  • the conductive material include stainless steel, gold, platinum, diamond, and glassy carbon.
  • ⁇ Purification of the object to be purified is preferably performed in a clean room, in which the opening of the container, the cleaning of the container and the device, the storage of the solution, and the analysis are all performed.
  • the clean room is preferably a clean room having a class 4 or higher cleanliness specified by International Standard ISO1464-1: 2015 specified by the International Organization for Standardization. Specifically, it is preferable to satisfy any one of ISO class 1, ISO class 2, ISO class 3, and ISO class 4, more preferably to satisfy ISO class 1 or ISO class 2, and to satisfy ISO class 1. Is particularly preferred.
  • the storage temperature of the drug solution is not particularly limited, but the storage temperature is preferably 4 ° C. or higher from the viewpoint that impurities and the like contained in a small amount in the drug solution are less likely to be eluted and, as a result, a superior effect of the present invention can be obtained.
  • the container contains the above-mentioned chemical solution.
  • the container in the chemical solution container is sealed with the medical solution stored therein.
  • the drug solution is stored in the container until use.
  • the chemical is taken out of the chemical container.
  • the container has a high degree of cleanness in the container and a small amount of elution of impurities for use in manufacturing semiconductor devices.
  • Specific examples of the container include, but are not limited to, a “clean bottle” series manufactured by Aicello Chemical Co., Ltd. and a “pure bottle” manufactured by Kodama Resin Kogyo.
  • a multi-layer bottle having a six-layer structure made of six kinds of resins or a seven-layer structure made of six kinds of resins is used for the purpose of preventing impurities from being mixed into the chemical solution (contamination). Is also preferred. Examples of these containers include those described in JP-A-2015-123351.
  • the liquid contact part of the container may be a corrosion-resistant material (preferably, electropolished stainless steel or fluororesin) or glass described above. It is preferable that 90% or more of the area of the liquid contact part is made of the above-mentioned material, and it is more preferable that all of the liquid contact part is made of the above-mentioned material from the viewpoint that the superior effects of the present invention can be obtained.
  • a corrosion-resistant material preferably, electropolished stainless steel or fluororesin
  • the container there is an embodiment in which at least a part of the liquid contact part of the container is stainless steel which is electropolished.
  • the average surface roughness Ra of the liquid contacting part of the container is preferably 1500 nm or less, and is more excellent in suppressing defects of the chemical solution, and is preferably less than 100 nm, more preferably 10 nm or less from the viewpoint that the charging of the chemical solution can be further suppressed. Preferably, less than 5 nm is more preferred.
  • the lower limit of the average surface roughness Ra of the liquid contact part of the container is preferably 1 nm or more.
  • the average surface roughness Ra of the liquid contact part of the container can be measured as follows.
  • the surface shape is measured with an atomic force microscope (AFM) using a cantilever having a probe diameter of 10 nm to obtain three-dimensional data.
  • AFM atomic force microscope
  • the liquid-contact part of the container was cut into a size of 1 cm square, set on a horizontal sample stage on a piezo scanner, approached the cantilever to the sample surface, and reached XY
  • the unevenness of the sample is captured by the displacement of the piezo in the Z direction.
  • 512 ⁇ 512 points are measured in a range of 5 ⁇ m ⁇ 5 ⁇ m on the surface.
  • the average surface roughness Ra is determined using the three-dimensional data (f (x, y)) determined above.
  • the container there is an embodiment in which at least a part of the liquid contact part of the container further contains a conductive material together with the above-described fluororesin. Thereby, the charging of the chemical solution is further suppressed.
  • the conductive material are the same as the conductive material in the corrosion-resistant material described above.
  • the porosity in the container of the liquid medicine container is preferably 50 to 99.99% by volume, more preferably 50 to 99.90% by volume, and particularly preferably 80 to 99% by volume. If the porosity is within the above range, the chemical solution can be easily handled because there is an appropriate space.
  • the porosity is calculated according to the following equation (X).
  • Formula (X): Porosity (% by volume) ⁇ 1 ⁇ (volume of drug solution in container / volume of container in container) ⁇ ⁇ 100
  • the container volume is synonymous with the internal volume (capacity) of the container.
  • a gas containing an organic compound (specific organic compound B described later) having a higher ClogP value than the solvent is present in the cavity of the container in the chemical solution container.
  • the gas is usually air, but it is preferable that at least a part of the air is replaced by nitrogen gas. If at least a part of the air is replaced with nitrogen gas, the content of the organic compound B present in the voids can be controlled, so that a chemical solution having excellent defect suppression performance can be obtained.
  • the content of nitrogen gas is preferably from 95 to 99.9999% by volume, more preferably from 97 to 99.99% by volume, based on the total volume of the void portion of the container, from the viewpoint that the effect of the present invention is more exhibited. .
  • the gas present in the cavity of the container contains the specific organic compound B.
  • the specific organic compound B is an organic compound having a higher ClogP value than the solvent in the chemical solution.
  • Preferred embodiments and specific examples of the ClogP value of the specific organic compound B are the same as those of the specific organic compound A.
  • the total content of the specific organic compound A and the specific organic compound B is 100,000 mass ppt or less, preferably 0.1 to 100,000 mass ppt, based on the total mass of the drug solution.
  • the total of the above contents is 100,000 mass ppt or less, the specific organic compound itself can be prevented from becoming a defect, so that a chemical solution having excellent defect suppression performance can be obtained.
  • the total content is 0.1 mass ppt or more, generation of defects due to metal-containing particles can be suppressed by the action of the specific organic compound. Although the details of this reason are not clear, it is speculated that the metal-containing particles aggregate or the metal-containing particles remain on the wiring board because the specific organic compound in the chemical solution suppresses the aggregation. .
  • the upper limit of the total of the above contents is preferably 100,000 mass ppt or less, more preferably 2,000 mass ppt or less, still more preferably 1,000 mass ppt or less, from the viewpoint that the above effect is more exhibited. Particularly preferred is a mass ppt or less.
  • the lower limit of the total content is preferably 0.1 mass ppt or more from the viewpoint that the above effects are more exhibited.
  • GCMS gas chromatography mass spectrometer; gas chromatography mass spectrometry
  • the content of the specific organic compound B is preferably 50,000 mass ppt or less, more preferably 0.05 to 50,000 mass ppt, and more preferably 0.05 to 50,000 mass ppt, based on the total mass of the chemical solution, from the viewpoint of more excellent defect suppression performance.
  • 05 to 500 mass ppt is more preferable, and 0.05 to 5 mass ppt is particularly preferable.
  • the mass ratio of the total content of the specific organic compound A and the specific organic compound B to the content of the metal-containing particles [(specific organic compound A + specific organic compound B) / metal-containing particles] is 0.01 to 100,000. Is preferably 0.1 or more, more preferably 10,000 or less, and particularly preferably 1,000 or less. When the mass ratio is 0.01 or more, generation of defects due to metal-containing particles can be suppressed by the action of the specific organic compound. Although the details of this reason are not clear, it is speculated that the metal-containing particles aggregate or the metal-containing particles remain on the wiring board because the specific organic compound in the chemical solution suppresses the aggregation. . This effect is particularly prominent when the fine pattern is formed. When the mass ratio is 100,000 or less, the specific organic compound itself can be prevented from becoming a defect, or the generation of composite particles of the specific organic compound and the metal-containing particles can be suppressed. A chemical solution is obtained.
  • the mass ratio of the content of the specific organic compound A to the content of the specific organic compound B is preferably 1 or more, more preferably 10 or more, and particularly preferably 1,000 or more.
  • the defect suppression performance over time that is, the defect suppression performance when the drug solution is used after storing the drug solution container for a long time
  • the upper limit of the mass ratio is not particularly limited, but is often 10,000 or less.
  • Preferred embodiments of the type of the specific organic compound B are the same as those of the specific organic compound A, and among them, a phthalic acid ester is preferable, and is selected from the group consisting of dioctyl phthalate (DOP) and diisononyl phthalate (DINP). At least one is preferred.
  • the mass ratio of the DOP content to the DINP content (DOP / DINP) in the present drug solution container is preferably 1 or more, more preferably 5 or more. Since DINP has a higher boiling point than DOP, it is considered that when it adheres to a silicon substrate, it is more likely to remain as a defect. Therefore, when the mass ratio is 1 or more, a medicinal solution having more excellent defect suppression performance can be obtained.
  • the upper limit of the mass ratio (DOP / DINP) is not particularly limited, but is preferably 10,000 or less, more preferably 1,000 or less.
  • Each of the filters used for purifying the chemical solution was a filter that was washed using a washing solution obtained by distilling and purifying commercially available PGMEA (propylene glycol monomethyl ether acetate). In the immersion, the entire filter unit including the filter was immersed in PGMEA, and all the liquid contact parts were washed. The cleaning period was set to one week or more. During the washing, the temperature of the PGMEA was maintained at 30 ° C. The following filters were used as filters.
  • PGMEA propylene glycol monomethyl ether acetate
  • UPE Ultra high molecular weight polyethylene filter, Entegris, 3 nm pore size
  • PTFE Polytetrafluoroethylene filter, Entegris, pore size 10 nm
  • Nylon Nylon filter, manufactured by PALL, pore size 5nm ⁇ Nylon graft
  • Polyimide Polyimide filter, manufactured by Entegris, pore size 10 nm
  • PGMEA propylene glycol monomethyl ether acetate
  • ClogP value 0.56)
  • CHN cyclohexanone
  • ClogP value 1.78
  • NMP N-methyl-2-pyrrolidone
  • ClogP value -0.38
  • MIBC 4-methyl-2-pentanol
  • ClogP value 1.31 PGMEA / PGME (7: 3): 7: 3 (v / v) mixture of PGMEA and PGME (propylene glycol monomethyl ether
  • ClogP value 0.20)
  • IAA isoamyl acetate
  • ClogP value 2.3.
  • EL ethyl lactate
  • ClogP value 0.04 -Propylene glycol monomethyl ether
  • ClogP value -0.20 -Propylene glycol monopropyl ether
  • ClogP value 0.81 -Methyl methoxypropionate
  • ClogP value 0.26 ⁇ Cyclopentanone
  • ClogP value 0.24 - ⁇ -butyrolactone
  • ClogP value -0.64 ⁇ Diisoamyl ether
  • ClogP value 3.8 -Isopropanol
  • ClogP value 0.05 -Dimethyl sulfoxide
  • ClogP value -1.35 ⁇ Diethylene glycol
  • ClogP value ⁇ 0.95 -Ethylene glycol
  • ClogP value -0.79 ⁇ Dipropylene glycol
  • ClogP value ⁇ 0.31 -Propylene glycol
  • Purification treatment One selected from the above-mentioned purified products was distilled, and the purified purified product was passed through the above-mentioned washed filter one or more times to perform purification.
  • a stainless steel pipe whose liquid contact part was electropolished or a stainless steel pipe that was not electropolished was used as a pipe for transferring the object to be purified and the chemical solution.
  • the type of material to be purified, the type of filter, the cleaning period of the filter, the number of passages, the type of piping, and the length of piping (distance of transfer by piping) are appropriately changed, and are shown in Tables 1 and 2, respectively.
  • the chemical solution shown was used.
  • a container for storing the chemical solution As a container for storing the chemical solution, a container having a liquid contact part made of a material shown in Table 1 or Table 2 was used.
  • -PFA perfluoroalkoxy alkane-PTFE: polytetrafluoroethylene-SUS316L-EP: austenitic stainless steel (with electrolytic polishing)
  • HDPE High density polyethylene
  • SUS304-EP Austenitic stainless steel (with electrolytic polishing)
  • SUS304 Austenitic stainless steel (no electrolytic polishing)
  • -Glass-PTFE and CNT Materials containing polytetrafluoroethylene and carbon nanotubes-PTFE and carbon particles: Materials containing polytetrafluoroethylene and carbon particles-PTFE and carbon fibers: Materials containing polytetrafluoroethylene and carbon fibers: Materials containing polytetrafluoroethylene and carbon fibers
  • a container is placed in a vacuum desiccator having a capacity of 1,000 liters, and components that may come into contact with a chemical solution such as a vacuum desiccator, a liquid contact portion of the container, and a pipe for flowing a chemical solution into the container are manufactured using a semiconductor grade. Then, the air in the vacuum desiccator was replaced with nitrogen gas and dried. Next, a process in which the inside of the vacuum desiccator was evacuated and then filled with nitrogen gas was repeatedly performed to make the atmosphere in the vacuum desiccator clean.
  • Organic compound The content of the organic compound (specific organic compound A) having a ClogP value higher than that of the organic solvent in each chemical solution was determined using a gas chromatograph mass spectrometer (product name "GCMS-2020", manufactured by Shimadzu Corporation), and the measurement conditions were as follows: ). Further, the content of an organic compound (specific organic compound B) having a ClogP value higher than that of the organic solvent contained in the gas present in the void portion of the chemical solution container was also measured using the gas chromatograph mass spectrometer.
  • GCMS-2020 gas chromatograph mass spectrometer
  • the ratio of the mass of the specific organic compound B in the chemical solution container to the mass of the chemical solution in the chemical solution container (that is, the “content (mass ppm) of the specific organic compound B with respect to the total mass of the chemical solution”) ) was calculated, and numerical values are shown in the column of “content of specific organic compound B” in Tables 1 and 2.
  • the “total content of the specific organic compound A and the specific organic compound B” in Tables 1 and 2 is the “content of the specific organic compound A” and the “content of the specific organic compound B” in Tables 1 and 2. Amount ".
  • the specific organic compound A1 having a ClogP value of 6 or more among the specific organic compounds A and the specific organic compound B1 having a ClogP value of 6 or more among the specific organic compounds B with respect to the total mass of the drug solution are included.
  • the sum of the amounts (mass ppt) was determined.
  • the results are shown in Tables 1 and 2 in the column of "Total amount of specific organic compounds having a ClogP value of 6 or more".
  • the total (mass ppt) of the contents of the phthalate ester of the specific organic compound A and the phthalate ester of the specific organic compound B with respect to the total mass of the chemical solution was determined. The results are shown in Table 1 and Table 2 in the column of "Total amount of phthalate".
  • the mass ratio of the content (mass) of the specific organic compound B in the drug solution container to the content (mass) of the specific organic compound A in the drug solution container was calculated.
  • the results are shown in the columns of "mass ratio of specific organic compound A and specific organic compound B” in Tables 1 and 2.
  • the mass ratio of the content (mass) of DOP in the drug solution container to the content (mass) of DINP in the drug solution container was calculated.
  • the results are shown in “Content ratio DOP / DINP” in the column of “DINP and DOP” in Tables 1 and 2.
  • Metal nanoparticles The number of particles of metal nanoparticles (metal-containing particles having a particle diameter of 0.5 to 17 nm) in the chemical solution was measured by the following method. First, a predetermined amount of a chemical was applied on a silicon substrate to form a substrate with a chemical layer, and the surface of the substrate with the chemical layer was scanned with laser light to detect scattered light. Thereby, the position and the particle size of the defect existing on the surface of the substrate with the chemical solution layer were specified. Next, based on the position of the defect, elemental analysis was performed by EDX (energy dispersive X-ray) analysis to examine the composition of the defect.
  • EDX energy dispersive X-ray
  • the number of metal nanoparticles on the substrate was determined, and converted into the number of particles contained per unit volume of the chemical solution (particles / cm 3 ).
  • a combination of a wafer inspection apparatus “SP-5” manufactured by KLA-Tencor and a fully automatic defect review and classification apparatus “SEMVion G6” manufactured by Applied Materials was used. Further, a sample in which particles having a desired particle size could not be detected due to the resolution of the measuring device or the like was detected using the method described in paragraphs 0015 to 0067 of JP-A-2009-188333.
  • a SiO X layer is formed by CVD (chemical vapor deposition) method, then, to form a chemical layer to cover the layer above.
  • CVD chemical vapor deposition
  • the composite layer having the SiO X layer and the chemical solution layer applied thereon is dry-etched, and the obtained protrusion is irradiated with light to detect scattered light.
  • the method of calculating the volume of the protrusion and calculating the particle diameter of the particle from the volume of the protrusion was used.
  • defect suppression performance The chemical solution was taken out from the medical solution container, and this was used as a pre-wet liquid, and the defect suppression performance was evaluated.
  • the defect suppression performance used the chemical solution immediately after manufacturing the chemical solution container (meaning immediately after the chemical solution was stored in the container and the chemical solution was sealed. In the table, it was indicated as “immediately after storage”). The test was performed for both the case and the case where the drug solution was used after storing the drug solution container at 50 ° C. for one year (indicated as “aging” in the table).
  • the resist composition used is as follows.
  • resist composition 1 The resist composition 1 was obtained by mixing each component with the following composition.
  • GPC gel permeation chromatography
  • Mw / Mn molecular weight dispersity
  • This resist film was coated with a reflective mask having a pitch of 20 nm and a pattern width of 15 nm using an EUV exposure machine (manufactured by ASML; NXE3350, NA 0.33, Dipole 90 °, outer sigma 0.87, inner sigma 0.35). Exposure via Thereafter, heating was performed at 85 ° C. for 60 seconds (PEB: Post Exposure Bake). Next, the film was developed with an organic solvent-based developer for 30 seconds and rinsed for 20 seconds. Subsequently, the wafer was rotated at a rotation speed of 2000 rpm for 40 seconds to form a line-and-space pattern having a pitch of 20 nm and a pattern line width of 15 nm.
  • EUV exposure machine manufactured by ASML; NXE3350, NA 0.33, Dipole 90 °, outer sigma 0.87, inner sigma 0.35. Exposure via Thereafter, heating was performed at 85 ° C. for 60 seconds (PEB: Post Exposure Bake). Next, the film was
  • An image of the above pattern is obtained, and the obtained image is used in combination with a wafer inspection apparatus “SP-5” manufactured by KLA-Tencor and a fully automatic defect review and classification apparatus “SEMVion G6” manufactured by Applied Materials.
  • the number of residues in the unexposed area per unit area was measured.
  • the sample in which particles having a desired particle size could not be detected due to the resolution of the measuring device or the like was detected using the method described in paragraphs 0015 to 0067 of JP-A-2009-188333. That is, on a substrate, a SiO X layer is formed by CVD (chemical vapor deposition) method, then, to form a chemical layer to cover the layer above.
  • CVD chemical vapor deposition
  • the composite layer having the SiO X layer and the chemical solution layer applied thereon is dry-etched, and the obtained protrusion is irradiated with light to detect scattered light.
  • the method of calculating the volume of the protrusion and calculating the particle diameter of the particle from the volume of the protrusion was used. The results were evaluated according to the following criteria, and are shown in Tables 1 and 2.
  • the content of the metal-containing particles is 10 mass ppt or less based on the total mass of the chemical solution, and the total content of the specific organic compound A and the specific organic compound B is the total amount of the chemical solution.
  • the mass was 100,000 mass ppt or less with respect to the mass, the defect suppression performance was excellent even when the chemical solution taken out immediately after the storage in the chemical solution container or after long-term storage was used (Example).
  • Example 7 if the content of the metal-containing particles is in the range of 0.1 to 10 mass ppt with respect to the total mass of the chemical solution (Examples 1 and 2) In addition, it was shown that the use of the chemical solution taken out immediately after the chemical solution was stored in the chemical solution container or after long-term storage was superior to the defect suppression performance. Also, from the comparison between Example 3 and Example 19, if the content of the metal-containing particles is 1 mass ppt or less with respect to the total mass of the chemical solution (Example 19), the content immediately after the storage in the chemical solution container and the long term It was shown that the use of the chemical taken out at any time after the storage was superior to the defect suppression performance.
  • Example 19 From the comparison between Example 4 and Example 19, if the total content of the specific organic compound A and the specific organic compound B is 2,000 mass ppt or less with respect to the total mass of the chemical solution (Example 19) ), It was shown that the use of the chemical solution taken out immediately after storage in the chemical solution container or after long-term storage was superior to the defect suppression performance. From the comparison between Example 5 and Example 19, if the total mass ratio of the specific organic compound A and the specific organic compound B to the content of the metal-containing particles is 0.1 or more ( Example 19) It was shown that the use of the chemical solution taken out at least one of the timing immediately after the storage in the chemical solution container and after the long-term storage showed superior defect suppression performance.
  • Example 19 From the comparison between Example 6 and Example 19, if the total mass ratio of the specific organic compound A and the specific organic compound B to the content of the metal-containing particles is 100,000 or less ( Example 19), it was shown that the use of the chemical solution taken out immediately after the chemical solution was stored in the chemical solution container or after long-term storage was superior to the defect suppression performance. Also, from the comparison between Example 8 and Example 11, when the mass ratio of the specific organic compound B to the specific organic compound A is 1 or more (Example 11), the chemical solution taken out after long-term storage is more excellent in suppressing defects. It was shown that.
  • Example 15 if the mass ratio of the content of dioctyl phthalate to the content of diisononyl phthalate (DOP / DINP) is 1 or more (Example 15), the chemical solution container was used. When the chemical solution taken out after long-term storage was used, it was shown to be more excellent in defect suppression performance.
  • Example 102 As shown in Table 2, from the comparison of Examples 102 to 106, when the liquid contact portion of the container is stainless steel that has been electropolished, the average surface roughness Ra of the liquid contact portion of the container is less than 100 nm. And the defect suppression performance was excellent (Example 102). As shown in Table 2, from the comparison between Example 101 and Examples 107 to 109, when the liquid contact part containing the conductive material together with the fluororesin was used, the charging of the chemical solution could be further suppressed.
  • Example 34 The PGMEA used in Example 15 was subjected to repeated distillation and filtration to prepare a drug solution having a specific organic compound content of less than 0.1 mass ppt. 8000 mass ppt of dibutyl phthalate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this solution, and the solution obtained by repeating the filtration again was contained in a container (the same container as in Example 15). 34 chemical solution containers were obtained.
  • the content of the specific organic compound A composed of dibutyl phthalate was 4,800 mass ppt
  • the content of the specific compound B composed of dibutyl phthalate was 10 mass ppt.
  • Example 15 The same evaluation as in Example 15 was performed using the liquid medicine stored in the liquid medicine container of Example 34, and the defect suppression performance after storing the liquid medicine container at 50 ° C. for one year was evaluated as “C”. Except for the above, the same results as in Example 15 were obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The present invention addresses the problem of providing a chemical solution accommodation body which accommodates a chemical solution having excellent defect suppression performance. This chemical solution accommodation body has: a container; and a chemical solution accommodated in the container. The chemical solution contains: a solvent; metal-containing particles including metal atoms; and an organic compound having a ClogP value higher than that of the solvent, wherein the content of the metal-containing particles is 10 mass-ppt or less with respect to the total mass of the chemical solution, a gas, which contains the organic compound having the ClogP value higher than that of the solvent, is present in the vacant space of the container, and the total content of the organic compound in the gas and the organic compound in the chemical solution is 100,000 mass-ppt or less with respect to the total mass of the chemical solution.

Description

薬液収容体Chemical container
 本発明は、薬液収容体に関する。 The present invention relates to a drug solution container.
 フォトリソグラフィを含む配線形成工程による半導体デバイスの製造の際、プリウェット液、レジスト液、現像液、リンス液、剥離液、化学機械的研磨(CMP:Chemical Mechanical Polishing)スラリー、及び、CMP後の洗浄液等として、水及び/又は有機溶剤を含有する薬液が用いられている。 In manufacturing a semiconductor device by a wiring forming process including photolithography, a pre-wet solution, a resist solution, a developing solution, a rinsing solution, a stripping solution, a chemical mechanical polishing (CMP) slurry, and a cleaning solution after CMP For example, a chemical solution containing water and / or an organic solvent is used.
 薬液は製造後に容器に収容され、薬液収容体の形態として一定期間保管された後に、収容された薬液が取り出され、使用される。
 このような薬液収容体として、特許文献1には、「内面を加熱下においてフッ化炭化水素ガス及び亜硫酸ガスで処理したガラス容器であって、有機溶剤によるノボラック樹脂系ポジ型ホトレジスト溶液が収納されることを特徴とするノボラック樹脂系ポジ型ホトレジスト用ガラス容器」が記載されている。
The chemical solution is stored in a container after manufacture, and after being stored in a form of a chemical solution container for a certain period of time, the stored chemical solution is taken out and used.
As such a chemical container, Patent Document 1 discloses “a glass container in which the inner surface is treated with a fluorocarbon gas and a sulfurous acid gas while heating, and containing a novolak resin-based positive photoresist solution using an organic solvent. And a novolak resin-based positive photoresist glass container.
特開平11-29148号公報JP-A-11-29148
 薬液に含まれる各種不純物は、半導体デバイスの欠陥の原因になる場合がある。このような欠陥は、半導体デバイスの製造歩留りの低下、及び、ショートなどの電気的異常を引き起こす場合がある。
 本発明者らは、薬液収容体から薬液を取り出して、フォトリソグラフィを含む配線形成工程に適用したところ、配線基板に欠陥が発生する場合があることを明らかとした。
Various impurities contained in the chemical solution may cause defects of the semiconductor device. Such a defect may cause a reduction in the manufacturing yield of the semiconductor device and an electrical abnormality such as a short circuit.
The present inventors have taken out a chemical solution from a chemical solution container and applied it to a wiring forming process including photolithography. As a result, it has been found that a defect may occur in a wiring substrate.
 そこで、本発明は、欠陥抑制性能に優れた薬液を収容する薬液収容体の提供を課題とする。 Therefore, an object of the present invention is to provide a chemical solution container that stores a chemical solution having excellent defect suppression performance.
 本発明者らは、上記課題について鋭意検討した結果、金属含有粒子の含有量が所定範囲の薬液を容器に収容した薬液収容体において、薬液中の有機化合物の含有量と、容器の空隙に存在する有機化合物の含有量との合計が、薬液の全質量に対して所定範囲内にあれば、欠陥抑制性能に優れた薬液が得られるのを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
The present inventors have conducted intensive studies on the above problems, and as a result, in a chemical solution container in which the content of metal-containing particles is within a predetermined range, the content of the organic compound in the chemical solution and the presence of It has been found that a chemical solution having excellent defect suppression performance can be obtained if the total of the content of the organic compound and the content of the organic compound is within a predetermined range with respect to the total mass of the chemical solution.
That is, the present inventors have found that the above problem can be solved by the following constitution.
[1]
 容器と、上記容器内に収容された薬液と、を有する薬液収容体であって、
 上記薬液が、溶剤と、金属原子を含む金属含有粒子と、上記溶剤よりもClogP値が高い有機化合物と、を含有し、
 上記金属含有粒子の含有量が、上記薬液の全質量に対して、10質量ppt以下であり、
 上記容器の空隙部において上記溶剤よりもClogP値が高い有機化合物を含む気体が存在し、上記気体中の上記有機化合物と上記薬液中の上記有機化合物の含有量の合計が、上記薬液の全質量に対して、100,000質量ppt以下である、薬液収容体。
[2]
 上記金属含有粒子の含有量が、上記薬液の全質量に対して、0.001~10質量pptであり、
 上記気体中の上記有機化合物と上記薬液中の上記有機化合物の含有量の合計が、上記薬液の全質量に対して、0.1~100,000質量pptである、[1]に記載の薬液収容体。
[3]
 上記金属含有粒子の含有量に対する、上記気体中の上記有機化合物と上記薬液中の上記有機化合物の含有量の合計の質量割合が、0.01~100,000である、[1]又は[2]に記載の薬液収容体。
[4]
 上記気体中の上記有機化合物及び上記薬液中の上記有機化合物のClogP値がいずれも、6以上である、[1]~[3]のいずれかに記載の薬液収容体。
[5]
 上記気体中の上記有機化合物及び上記薬液中の上記有機化合物がいずれも、フタル酸エステルを含む、[1]~[4]のいずれかに記載の薬液収容体。
[6]
 上記フタル酸エステルが、フタル酸ジオクチル及びフタル酸ジイソノニルからなる群より選択される少なくとも1種を含む、[5]に記載の薬液収容体。
[7]
 上記フタル酸ジイソノニルの含有量に対する、上記フタル酸ジオクチルの含有量の質量割合が、1以上である、[6]に記載の薬液収容体。
[8]
 上記気体中の上記有機化合物の含有量に対する、上記薬液中の上記有機化合物の含有量の質量割合が、1以上である、[1]~[7]のいずれかに記載の薬液収容体。
[9]
 上記溶剤が、有機溶剤である、[1]~[8]のいずれかに記載の薬液収容体。
[10]
 上記有機溶剤が、シクロヘキサノン、酢酸ブチル、N-メチル-2-ピロリドン、4-メチル-2-ペンタノール、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、炭酸プロピレン、酢酸イソアミル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、メトキシプロピオン酸メチル、シクロペンタノン、γ-ブチロラクトン、ジイソアミルエーテル、イソプロパノール、ジメチルスルホキシド、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、スルホラン、シクロヘプタノン、及び、2-ヘプタノン、酪酸ブチル、イソ酪酸イソブチル、ウンデカン、プロピオン酸ペンチル、プロピオン酸イソペンチル、エチルシクロヘキサン、メシチレン及びデカンからなる群より選択される少なくとも1種である、[9]に記載の薬液収容体。
[11]
 上記金属含有粒子のうち、粒子径が0.5~17nmの金属ナノ粒子の、上記薬液の単位体積あたりの含有粒子数が1.0×10~1.0×10個/cmである、[1]~[10]のいずれかに記載の薬液収容体。
[12]
 上記気体が窒素ガスを含み、
 上記窒素ガスの含有量が、上記空隙部の全容量に対して、95~99.9999体積%であり、
 上記気体中の上記有機化合物の含有量が、上記薬液の全質量に対して、0.05~50,000質量pptである、[1]~[11]のいずれかに記載の薬液収容体。
[13]
 上記薬液収容体における上記容器の空隙率が、50~99.99体積%である、[1]~[12]のいずれかに記載の薬液収容体。
[14]
 上記容器の接液部の少なくとも一部が、フッ素樹脂、電解研磨されたステンレス鋼、又は、ガラスである、[1]~[13]のいずれかに記載の薬液収容体。
[15]
 上記容器の接液部の少なくとも一部が上記電解研磨されたステンレス鋼である場合、
 上記容器の接液部の平均表面粗さRaが100nm未満である、[14]に記載の薬液収容体。
[16]
 上記容器の接液部の少なくとも一部が、上記フッ素樹脂とともに導電性材料を更に含む、[14]に記載の薬液収容体。
[17]
 上記導電性材料がカーボンを含む、[16]に記載の薬液収容体。
[18]
 上記カーボンが、カーボン粒子、カーボンナノチューブ及びカーボンフィラーからなる群より選択される少なくとも1種である、[17]に記載の薬液収容体。
[19]
 上記薬液が、現像液、リンス液、ウェハ洗浄液、ライン洗浄液、プリウェット液、レジスト液、下層膜形成用液、上層膜形成用液及びハードコート形成用液からなる群より選択される少なくとも1種の液の原料として用いられる、[1]~[18]のいずれかに記載の薬液収容体。
[1]
A container, and a liquid medicine contained in the container, a liquid medicine container,
The chemical solution contains a solvent, metal-containing particles containing a metal atom, and an organic compound having a higher ClogP value than the solvent,
The content of the metal-containing particles is 10 mass ppt or less with respect to the total mass of the chemical solution,
A gas containing an organic compound having a higher ClogP value than the solvent is present in the cavity of the container, and the total content of the organic compound in the gas and the organic compound in the chemical solution is the total mass of the chemical solution. Liquid medicine container having a mass of 100,000 mass ppt or less.
[2]
The content of the metal-containing particles is 0.001 to 10 mass ppt, based on the total mass of the chemical solution;
The chemical solution according to [1], wherein the total content of the organic compound in the gas and the organic compound in the chemical solution is 0.1 to 100,000 mass ppt based on the total mass of the chemical solution. Container.
[3]
[1] or [2], wherein the total mass ratio of the content of the organic compound in the gas and the content of the organic compound in the chemical solution to the content of the metal-containing particles is 0.01 to 100,000. ] The chemical | medical solution container of Claim.
[4]
The drug solution container according to any one of [1] to [3], wherein each of the organic compound in the gas and the organic compound in the drug solution has a ClogP value of 6 or more.
[5]
The drug solution container according to any one of [1] to [4], wherein the organic compound in the gas and the organic compound in the drug solution both contain a phthalate ester.
[6]
The drug solution container according to [5], wherein the phthalate ester includes at least one selected from the group consisting of dioctyl phthalate and diisononyl phthalate.
[7]
The drug solution container according to [6], wherein the mass ratio of the dioctyl phthalate content to the diisononyl phthalate content is 1 or more.
[8]
The drug solution container according to any one of [1] to [7], wherein the mass ratio of the content of the organic compound in the drug solution to the content of the organic compound in the gas is 1 or more.
[9]
The drug solution container according to any one of [1] to [8], wherein the solvent is an organic solvent.
[10]
The organic solvent is cyclohexanone, butyl acetate, N-methyl-2-pyrrolidone, 4-methyl-2-pentanol, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene carbonate, isoamyl acetate, propylene glycol Monomethyl ether, propylene glycol monopropyl ether, methyl methoxypropionate, cyclopentanone, γ-butyrolactone, diisoamyl ether, isopropanol, dimethyl sulfoxide, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, sulfolane, cyclohepta Non and 2-heptanone, butyl butyrate, isobutyl isobutyrate, undecane, pentyl propionate Isopentyl propionate, ethyl cyclohexane, is at least one selected from the group consisting of mesitylene, and decane, chemical container according to [9].
[11]
Among the metal-containing particles, the number of metal nanoparticles having a particle size of 0.5 to 17 nm per unit volume of the chemical solution is 1.0 × 10 1 to 1.0 × 10 9 / cm 3 . A drug solution container according to any one of [1] to [10].
[12]
The gas contains nitrogen gas,
The content of the nitrogen gas is 95 to 99.9999% by volume based on the total volume of the voids,
The drug solution container according to any one of [1] to [11], wherein the content of the organic compound in the gas is 0.05 to 50,000 mass ppt with respect to the total mass of the drug solution.
[13]
The drug solution container according to any one of [1] to [12], wherein the porosity of the container in the drug solution container is 50 to 99.99% by volume.
[14]
The chemical liquid container according to any one of [1] to [13], wherein at least a part of the liquid contact part of the container is a fluororesin, electropolished stainless steel, or glass.
[15]
When at least a part of the liquid contact part of the container is the electropolished stainless steel,
The liquid medicine container according to [14], wherein the liquid contact part of the container has an average surface roughness Ra of less than 100 nm.
[16]
The drug solution container according to [14], wherein at least a part of the liquid contact part of the container further includes a conductive material together with the fluororesin.
[17]
The drug solution container according to [16], wherein the conductive material contains carbon.
[18]
The chemical solution container according to [17], wherein the carbon is at least one selected from the group consisting of carbon particles, carbon nanotubes, and carbon fillers.
[19]
At least one selected from the group consisting of a developer, a rinse, a wafer cleaning liquid, a line cleaning liquid, a pre-wet liquid, a resist liquid, a lower layer film forming liquid, an upper layer film forming liquid, and a hard coat forming liquid; The liquid medicine container according to any one of [1] to [18], which is used as a raw material of the liquid.
 以下に示すように、本発明によれば、欠陥抑制性能に優れた薬液を収容する薬液収容体を提供できる。 According to the present invention, as described below, it is possible to provide a chemical solution container that stores a chemical solution having excellent defect suppression performance.
 以下に、本発明について説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされる場合があるが、本発明はそのような実施形態に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本発明において、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味し、「ppt」は「parts-per-trillion(10-12)」を意味し、「ppq」は「parts-per-quadrillion(10-15)」を意味する。
 また、本発明における基(原子群)の表記において、置換及び無置換を記していない表記は、本発明の効果を損ねない範囲で、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「炭化水素基」とは、置換基を有さない炭化水素基(無置換炭化水素基)のみならず、置換基を有する炭化水素基(置換炭化水素基)をも包含するものである。このことは、各化合物についても同義である。
 また、本発明における「放射線」とは、例えば、遠紫外線、極紫外線(EUV;Extreme ultraviolet)、X線、又は、電子線等を意味する。また、本発明において光とは、活性光線又は放射線を意味する。本発明中における「露光」とは、特に断らない限り、遠紫外線、X線又はEUV等による露光のみならず、電子線又はイオンビーム等の粒子線による描画も露光に含める。
Hereinafter, the present invention will be described.
The description of the constituent requirements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In addition, in this specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
In the present invention, “ppm” means “parts-per-million (10 −6 )”, “ppb” means “parts-per-billion (10 −9 )”, and “ppt” means “Parts-per-trillion (10 −12 )” means “parts-per-quadrillion (10 −15 )”.
In addition, in the notation of the group (atom group) in the present invention, the notation that does not denote substituted or unsubstituted includes those not having a substituent and those having a substituent as long as the effects of the present invention are not impaired. Includes For example, the “hydrocarbon group” includes not only a hydrocarbon group having no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group having a substituent (substituted hydrocarbon group). . This is synonymous with each compound.
Further, the “radiation” in the present invention means, for example, far ultraviolet rays, extreme ultraviolet (EUV), X-rays, or electron beams. In the present invention, light means actinic rays or radiation. Unless otherwise specified, the term “exposure” in the present invention includes not only exposure with far ultraviolet rays, X-rays or EUV, but also drawing with particle beams such as electron beams or ion beams.
[薬液収容体]
 本発明の薬液収容体(以下、「本薬液収容体」ともいう。)は、容器と、上記容器内に収容された薬液と、を有する薬液収容体である。
 また、本薬液収容体において、上記薬液は、溶剤と、金属原子を含む金属含有粒子と、上記溶剤よりもClogP値が高い有機化合物(以下、「特定有機化合物A」ともいう。)と、を含有する。
 また、本薬液収容体において、上記金属含有粒子の含有量は、上記薬液の全質量に対して、10質量ppt以下である。
 また、本薬液収容体において、上記容器の空隙部において上記溶剤よりもClogP値が高い有機化合物(以下、「特定有機化合物B」ともいう。)を含む気体が存在し、上記特定有機化合物Aと上記特定有機化合物Bの含有量の合計が、上記薬液の全質量に対して、100,000質量ppt以下である。
 本薬液収容体により上記課題が解決される機序は必ずしも明確ではないが、本発明者らはその機序について以下のとおり推測する。なお、以下の機序は推測であり、異なる機序により本発明の効果が得られる場合であっても本発明の範囲に含まれる。
[Chemical container]
The drug solution container of the present invention (hereinafter, also referred to as “the drug solution container”) is a drug solution container having a container and a drug solution contained in the container.
In the present chemical solution container, the chemical solution includes a solvent, metal-containing particles containing metal atoms, and an organic compound having a higher ClogP value than the solvent (hereinafter, also referred to as “specific organic compound A”). contains.
Further, in the present chemical solution container, the content of the metal-containing particles is 10 mass ppt or less with respect to the total mass of the chemical solution.
Further, in the medicinal liquid container, a gas containing an organic compound having a higher ClogP value than the solvent (hereinafter, also referred to as “specific organic compound B”) exists in the space of the container, and the specific organic compound A and the gas are present. The total content of the specific organic compound B is 100,000 mass ppt or less based on the total mass of the chemical solution.
The mechanism by which the above-mentioned problem is solved by the present medicinal solution container is not necessarily clear, but the present inventors speculate on the mechanism as follows. In addition, the following mechanism is speculation, and even when the effect of the present invention is obtained by a different mechanism, it is included in the scope of the present invention.
 薬液に含まれる有機化合物及び金属含有粒子は、それ自体が欠陥の原因にもなるが、両者が凝集して、欠陥発生の原因である複合粒子を形成しやすい。特に、ClogP値が溶液よりも高い有機化合物(特定有機化合物)を含む場合、特定有機化合物と金属含有粒子との複合粒子が形成されやすくなって、欠陥の発生が顕著になる。
 この問題の解決策として、薬液中の特定有機化合物の含有量を低減させる方法が考えられる。しかしながら、本方法では、欠陥の発生を充分に抑制できない場合があった。
 この理由は、容器の空隙部の気体に含まれる特定有機化合物が、薬液収容体の輸送及び保存などの際に、薬液に混入するためと考えられる。つまり、薬液を容器に収容した場合、特定有機化合物の含有量が薬液の製造直後(容器への収容前)よりも多くなって、欠陥の発生が顕著になる場合がある。
 本薬液収容体では、特定有機化合物Aと特定有機化合物Bの含有量の合計が上記範囲にあるので、優れた欠陥抑制性能の薬液を収容する薬液収容体が得られたと推測される。
The organic compound and the metal-containing particles contained in the chemical solution themselves cause defects, but they are liable to aggregate to form composite particles that cause defects. In particular, when an organic compound (specific organic compound) having a ClogP value higher than that of the solution is included, composite particles of the specific organic compound and the metal-containing particles are easily formed, and the generation of defects becomes remarkable.
As a solution to this problem, a method of reducing the content of the specific organic compound in the chemical solution can be considered. However, this method may not be able to sufficiently suppress the occurrence of defects.
It is considered that the reason for this is that the specific organic compound contained in the gas in the cavity of the container is mixed into the chemical solution when the chemical solution container is transported and stored. In other words, when the chemical is stored in the container, the content of the specific organic compound becomes larger than immediately after the production of the chemical (before storing in the container), and the occurrence of defects may be significant.
Since the total content of the specific organic compound A and the specific organic compound B is within the above range in the present chemical solution container, it is presumed that a chemical solution container containing a chemical solution with excellent defect suppression performance was obtained.
〔薬液〕
 薬液は、溶剤と、金属原子を含む金属含有粒子と、上記溶剤よりもClogP値が高い有機化合物(特定有機化合物A)と、を含有する。
(Chemical solution)
The chemical solution contains a solvent, metal-containing particles containing metal atoms, and an organic compound (specific organic compound A) having a higher ClogP value than the solvent.
<溶剤>
 薬液は、溶剤を含有する。溶剤としては、水及び有機溶剤の少なくとも一方が挙げられ、有機溶剤が好ましい。
 なお、本明細書において、有機溶剤とは、薬液の全質量に対して、1成分あたり10,000質量ppmを超えた含有量で含有される液状の有機化合物を意図する。つまり、本明細書においては、薬液の全質量に対して10,000質量ppmを超えて含有される液状の有機化合物は、有機溶剤に該当するものとする。
 なお、本明細書において液状とは、25℃、大気圧下において、液体であることを意味する。
<Solvent>
The chemical solution contains a solvent. Examples of the solvent include at least one of water and an organic solvent, and an organic solvent is preferable.
In addition, in this specification, the organic solvent is intended to be a liquid organic compound contained at a content exceeding 10,000 ppm by mass per component with respect to the total mass of the drug solution. That is, in this specification, a liquid organic compound contained in an amount exceeding 10,000 ppm by mass with respect to the total mass of the drug solution corresponds to an organic solvent.
In this specification, the term “liquid” means a liquid at 25 ° C. and atmospheric pressure.
 有機溶剤の種類としては特に制限されず、公知の有機溶剤が用いられる。有機溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、環状ラクトン(好ましくは炭素数4~10)、環を有してもよいモノケトン化合物(好ましくは炭素数4~10)、アルキレンカーボネート、アルコキシ酢酸アルキル、及び、ピルビン酸アルキル等が挙げられる。
 また、有機溶剤としては、例えば、特開2016-57614号公報、特開2014-219664号公報、特開2016-138219号公報、及び、特開2015-135379号公報に記載のものを用いてもよい。
The type of the organic solvent is not particularly limited, and a known organic solvent is used. Examples of the organic solvent include alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, alkyl lactate, alkyl alkoxypropionate, cyclic lactone (preferably having 4 to 10 carbon atoms), and monoketone optionally having a ring Examples include compounds (preferably having 4 to 10 carbon atoms), alkylene carbonate, alkyl alkoxyacetate, and alkyl pyruvate.
As the organic solvent, for example, those described in JP-A-2016-57614, JP-A-2014-219664, JP-A-2016-138219, and JP-A-2015-135379 may be used. Good.
 有機溶剤としては、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル(PGME)、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル(EL)、メトキシプロピオン酸メチル、シクロペンタノン、シクロヘキサノン(CHN)、γ-ブチロラクトン、ジイソアミルエーテル、酢酸ブチル(nBA)、酢酸イソアミル(iAA)、イソプロパノール、4-メチル-2-ペンタノール(MIBC)、ジメチルスルホキシド、N-メチル-2-ピロリドン(NMP)、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、炭酸プロピレン(PC)、スルホラン、シクロヘプタノン、1-ヘキサノール、デカン、2-ヘプタノン、酪酸ブチル、イソ酪酸イソブチル、ウンデカン、プロピオン酸ペンチル、プロピオン酸イソペンチル、エチルシクロヘキサン、及び、メシチレンからなる群から選択される少なくとも1種が好ましい。
 なかでも、欠陥抑制性能がより優れる点から、CHN、nBA、NMP、EL、PGMEA、PGME、PC、iAA、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、メトキシプロピオン酸メチル、シクロペンタノン、γ-ブチロラクトン、ジイソアミルエーテル、イソプロパノール、ジメチルスルホキシド、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、スルホラン、シクロヘプタノン、2-ヘプタノン、酪酸ブチル、イソ酪酸イソブチル、ウンデカン、プロピオン酸ペンチル、プロピオン酸イソペンチル、エチルシクロヘキサン、メシチレン及びデカンからなる群より選択される少なくとも1種がより好ましい。
As the organic solvent, propylene glycol monomethyl ether, propylene glycol monoethyl ether (PGME), propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate (EL), methyl methoxypropionate, cyclopentanone, cyclohexanone (CHN), γ-butyrolactone, diisoamyl ether, butyl acetate (nBA), isoamyl acetate (iAA), isopropanol, 4-methyl-2-pentanol (MIBC), dimethyl sulfoxide, N-methyl-2-pyrrolidone (NMP ), Diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, propylene carbonate (PC), sulfolane, cyclohexane Thanong, 1-hexanol, decane, 2-heptanone, butyl butyrate, isobutyl isobutyrate, undecane, pentyl propionate, isopentyl propionate, ethyl cyclohexane, and, at least one selected from the group consisting of mesitylene preferred.
Among them, CHN, nBA, NMP, EL, PGMEA, PGME, PC, iAA, propylene glycol monomethyl ether, propylene glycol monopropyl ether, methyl methoxypropionate, cyclopentanone, γ- Butyrolactone, diisoamyl ether, isopropanol, dimethyl sulfoxide, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, sulfolane, cycloheptanone, 2-heptanone, butyl butyrate, isobutyl isobutyrate, undecane, pentyl propionate, propionate At least one selected from the group consisting of isopentyl acid, ethylcyclohexane, mesitylene and decane is more preferred.
 薬液中における有機溶剤の含有量としては特に制限されないが、一般に薬液の全質量に対して、98.0質量%以上が好ましく、99.0質量%以上がより好ましく、99.9質量%以上が更に好ましく、99.99質量%以上が特に好ましい。上限は特に制限されないが、100質量%未満の場合が多い。
 有機溶剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の有機溶剤を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
 なお、薬液中における有機溶剤の種類及び含有量は、ガスクロマトグラフ質量分析計を用いて測定できる。
The content of the organic solvent in the chemical solution is not particularly limited, but is generally preferably 98.0% by mass or more, more preferably 99.0% by mass or more, and preferably 99.9% by mass or more based on the total mass of the chemical solution. More preferably, it is particularly preferably at least 99.99 mass%. The upper limit is not particularly limited, but is often less than 100% by mass.
One organic solvent may be used alone, or two or more organic solvents may be used in combination. When two or more organic solvents are used in combination, the total content is preferably within the above range.
In addition, the kind and content of the organic solvent in the chemical solution can be measured using a gas chromatograph mass spectrometer.
<金属含有粒子>
 薬液は、金属原子を含有する金属含有粒子を含有する。
 薬液の製造方法の好適形態は後述するが、一般に薬液は、既に説明した溶剤と、有機化合物とを含有する被精製物を精製して製造できる。金属含有粒子は、薬液の製造工程において意図的に添加されてもよいし、もともと被精製物に含有されていてもよいし、又は、薬液の製造過程において、薬液の製造装置等から移行(いわゆるコンタミネーション)したものであってもよい。
<Metal-containing particles>
The chemical solution contains metal-containing particles containing metal atoms.
A preferred embodiment of the method for producing a chemical solution will be described later. Generally, the chemical solution can be produced by purifying a substance to be purified containing the solvent and the organic compound described above. The metal-containing particles may be intentionally added in the manufacturing process of the chemical solution, may be originally contained in the object to be purified, or may be transferred from the manufacturing device of the chemical solution in the manufacturing process of the chemical solution (so-called (Contamination).
 金属原子としては特に制限されないが、Fe原子、Al原子、Cr原子、Ni原子、Pb原子、Zn原子、及び、Ti原子等が挙げられる。なかでも、Fe原子、Al原子、Pb原子、Zn原子、及び、Ti原子を含有する金属含有粒子の薬液中の含有量を厳密に制御すると、より優れた欠陥抑制性能が得られやすく、Pb原子、及び、Ti原子を含有する金属含有粒子の薬液中における含有量を厳密に制御すると、更に優れた欠陥抑制性能が得られやすい。
 すなわち、金属原子としては、Fe原子、Al原子、Cr原子、Ni原子、Pb原子、Zn原子、及び、Ti原子等からなる群より選択される少なくとも1種が好ましく、Fe原子、Al原子、Pb原子、Zn原子、及び、Ti原子からなる群より選択される少なくとも1種がより好ましく、Pb原子、及び、Ti原子からなる群より選択される少なくとも1種が更に好ましく、金属含有粒子は、Pb原子、及び、Ti原子のいずれをも含有するのが特に好ましい。
 なお、金属含有粒子は、上記金属原子を、1種を単独で含有しても、2種以上を併せて含有してもよい。
The metal atom is not particularly limited, and examples thereof include an Fe atom, an Al atom, a Cr atom, a Ni atom, a Pb atom, a Zn atom, and a Ti atom. Above all, when the content of metal-containing particles containing Fe atom, Al atom, Pb atom, Zn atom, and Ti atom in a chemical solution is strictly controlled, more excellent defect suppression performance is easily obtained, and Pb atom If the content of the metal-containing particles containing Ti atoms in the chemical solution is strictly controlled, more excellent defect suppression performance can be easily obtained.
That is, the metal atom is preferably at least one selected from the group consisting of Fe atom, Al atom, Cr atom, Ni atom, Pb atom, Zn atom, Ti atom, and the like. Fe atom, Al atom, Pb At least one selected from the group consisting of atoms, Zn atoms, and Ti atoms is more preferable, and at least one selected from the group consisting of Pb atoms and Ti atoms is still more preferable. It is particularly preferable to contain both atoms and Ti atoms.
The metal-containing particles may contain one kind of the above-mentioned metal atoms alone or may contain two or more kinds thereof in combination.
 金属含有粒子の粒子径としては特に制限されないが、例えば、半導体デバイス製造用の薬液においては0.1~100nm程度の粒子径を有する粒子の薬液中における含有量が制御の対象とされる場合が多い。
 なかでも本発明者らの検討によれば、特にEUV(極紫外線)露光のフォトレジストプロセスに適用される薬液においては、その粒子径が、0.5~17nmの金属含有粒子(以下、「金属ナノ粒子」ともいう。)の薬液中における含有量を制御することにより、優れた欠陥抑制性能を有する薬液が得られやすいことがわかった。EUV露光のフォトレジストプロセスにおいては、微細なレジスト間隔、レジスト幅、及び、レジストピッチが求められる場合が多い。このような場合、従来のプロセスではあまり問題とならなかった、より微細な粒子をその個数単位で制御することが求められるのである。
The particle size of the metal-containing particles is not particularly limited. For example, in a chemical solution for manufacturing a semiconductor device, the content of particles having a particle size of about 0.1 to 100 nm in the chemical solution may be controlled. Many.
In particular, according to the study of the present inventors, in a chemical solution applied to a photoresist process of EUV (extreme ultraviolet) exposure, metal-containing particles having a particle diameter of 0.5 to 17 nm (hereinafter, referred to as “metal”) It has been found that by controlling the content of “nanoparticles” in a chemical solution, a chemical solution having excellent defect suppression performance can be easily obtained. In a photoresist process of EUV exposure, a fine resist interval, a resist width, and a resist pitch are often required. In such a case, it is required to control finer particles in units of the number, which has not been a problem in the conventional process.
 金属含有粒子の個数基準の粒子径分布としては特に制限されないが、より優れた本発明の効果を有する薬液が得られる点で、粒子径5nm未満の範囲、及び、粒子径17nmを超える範囲からなる群より選択される少なくとも一方に極大値を有するのが好ましい。
 言い換えれば、粒子径が5~17nmの範囲には極大値を有しないのが好ましい。粒子径が5~17nmの範囲には極大値を有さないことにより、薬液はより優れた欠陥抑制性能、特に、より優れたブリッジ欠陥抑制性能を有する。ここで、ブリッジ欠陥とは、配線パターン同士の架橋様の不良を意味する。
 また、更に優れた本発明の効果を有する薬液が得られる点で、個数基準の粒子径分布において粒子径が0.5nm以上、5nm未満の範囲に極大値を有するのが特に好ましい。上記により、薬液は更に優れたブリッジ欠陥抑制性能を有する。
The number-based particle size distribution of the metal-containing particles is not particularly limited, but is comprised of a range of less than 5 nm, and a range of more than 17 nm, in that a drug solution having better effects of the present invention can be obtained. It is preferable that at least one selected from the group has a maximum value.
In other words, it is preferable that the particle diameter has no maximum value in the range of 5 to 17 nm. By not having a maximum value in the range of the particle diameter of 5 to 17 nm, the chemical solution has more excellent defect suppression performance, particularly more excellent bridge defect suppression performance. Here, the bridge defect means a defect like a bridge between wiring patterns.
In addition, it is particularly preferable that the particle diameter has a maximum value in a range of 0.5 nm or more and less than 5 nm in a number-based particle diameter distribution, from the viewpoint that a drug solution having a more excellent effect of the present invention can be obtained. As described above, the chemical solution has more excellent bridge defect suppression performance.
 金属含有粒子の含有量は、薬液の全質量に対して、10質量ppt以下であり、0.001~10質量pptが好ましい。
 金属含有粒子の含有量が10質量ppt以下であれば、金属含有粒子の凝集物による欠陥を抑制できる。金属含有粒子の含有量が0.01質量ppt以上であれば、詳細な理由は不明だが、金属含有粒子と配線基板との相互作用が小さくなり、金属含有粒子が基板上に残留しにくくなるので、欠陥を抑制できる。
 金属含有粒子の含有量の上限値は、上記効果がより発揮される点から、5質量ppt以下が好ましく、1質量ppt以下が好ましく、0.1質量ppt以下が特に好ましい。
 金属含有粒子の含有量の下限値は、上記効果がより発揮される点から、0.001質量ppt以上が好ましく、0.01質量ppt以上が特に好ましい。
The content of the metal-containing particles is 10 mass ppt or less, preferably 0.001 to 10 mass ppt, based on the total mass of the chemical solution.
When the content of the metal-containing particles is 10 mass ppt or less, defects due to aggregates of the metal-containing particles can be suppressed. If the content of the metal-containing particles is 0.01 mass ppt or more, the detailed reason is unknown, but the interaction between the metal-containing particles and the wiring board becomes small, and the metal-containing particles hardly remain on the substrate. And defects can be suppressed.
The upper limit of the content of the metal-containing particles is preferably 5 mass ppt or less, more preferably 1 mass ppt or less, and particularly preferably 0.1 mass ppt or less, from the viewpoint that the above-mentioned effects are more exhibited.
The lower limit of the content of the metal-containing particles is preferably 0.001 mass ppt or more, and particularly preferably 0.01 mass ppt or more, from the viewpoint that the above effects are more exhibited.
 薬液中の金属含有粒子の種類及び含有量は、SP-ICP-MS法(Single Nano Particle Inductively Coupled Plasma Mass Spectrometry)で測定できる。
 ここで、SP-ICP-MS法とは、通常のICP-MS法(誘導結合プラズマ質量分析法)と同様の装置を使用し、データ分析のみが異なる。SP-ICP-MS法のデータ分析は、市販のソフトウェアにより実施できる。
The type and content of metal-containing particles in a chemical solution can be measured by the SP-ICP-MS method (Single Nano Particle Inductively Coupled Plasma Mass Spectrometry).
Here, the SP-ICP-MS method uses an apparatus similar to a normal ICP-MS method (inductively coupled plasma mass spectrometry), and differs only in data analysis. Data analysis of the SP-ICP-MS method can be performed by commercially available software.
 ICP-MS法では、測定対象とされた金属成分の含有量が、その存在形態に関わらず、測定される。なお、金属成分とは、金属イオン及び金属含有粒子を意味する。したがって、測定対象とされた金属含有粒子と、金属イオンとの合計質量が、金属成分の含有量として定量される。
 一方、SP-ICP-MS法では、金属含有粒子の含有量が測定できる。したがって、試料中の金属成分の含有量から、金属含有粒子の含有量を引くと、試料中の金属イオンの含有量が算出できる。
 SP-ICP-MS法の装置としては、例えば、アジレントテクノロジー社製、Agilent 8800 トリプル四重極ICP-MS(inductively coupled plasma mass spectrometry、半導体分析用、オプション#200)が挙げられ、実施例に記載した方法により測定できる。上記以外の他の装置としては、PerkinElmer社製 NexION350Sのほか、アジレントテクノロジー社製、Agilent 8900も使用できる。
In the ICP-MS method, the content of a metal component to be measured is measured regardless of its existing form. The metal component means metal ions and metal-containing particles. Therefore, the total mass of the metal-containing particles to be measured and the metal ions is determined as the content of the metal component.
On the other hand, in the SP-ICP-MS method, the content of metal-containing particles can be measured. Therefore, the content of metal ions in the sample can be calculated by subtracting the content of the metal-containing particles from the content of the metal component in the sample.
As an apparatus of the SP-ICP-MS method, for example, Agilent 8800 triple quadrupole ICP-MS (inductively coupled plasma mass spectrometry, option # 200 for semiconductor analysis, option # 200) manufactured by Agilent Technologies, Inc. is described in Examples. Can be measured by the following method. As an apparatus other than the above, in addition to NexION350S manufactured by PerkinElmer, Agilent 8900 manufactured by Agilent Technologies can be used.
(金属ナノ粒子)
 金属ナノ粒子は、金属含有粒子のうち、その粒子径が0.5~17nmのものをいう。
 薬液の単位体積あたりの金属ナノ粒子の含有粒子数は1.0×10~1.0×10個/cmが好ましく、薬液がより優れた本発明の効果を有する点で、含有粒子数としては1.0×10個/cm以上が好ましく、1.0×10個/cm以下が好ましく、1.0×10個/cm以下がより好ましい。
 薬液の単位体積あたりの金属ナノ粒子の含有粒子数が、1.0×10~1.0×10個/cmであると、薬液はより優れた欠陥抑制性能を有する。
 なお、薬液中における金属ナノ粒子の含有量は、実施例に記載した方法により測定でき、金属ナノ粒子の薬液の単位体積あたりの粒子数(個数)は、有効数字が2桁となるように四捨五入して求める。
(Metal nanoparticles)
Metal nanoparticles refer to metal-containing particles having a particle diameter of 0.5 to 17 nm.
The number of metal nanoparticles contained per unit volume of the chemical solution is preferably 1.0 × 10 0 to 1.0 × 10 9 particles / cm 3 , and the content of the metal nanoparticles is more excellent in that the chemical solution has the effect of the present invention. The number is preferably 1.0 × 10 1 / cm 3 or more, more preferably 1.0 × 10 7 / cm 3 or less, and even more preferably 1.0 × 10 5 / cm 3 or less.
When the number of particles of metal nanoparticles per unit volume of the chemical solution is 1.0 × 10 1 to 1.0 × 10 9 / cm 3 , the chemical solution has more excellent defect suppression performance.
The content of the metal nanoparticles in the drug solution can be measured by the method described in Examples, and the number (number) of metal nanoparticles per unit volume of the drug solution is rounded to two significant figures. Ask for it.
 金属ナノ粒子に含有される金属原子としては特に制限されないが、金属含有粒子に含有される金属原子としてすでに説明した原子と同様である。なかでも、より優れた本発明の効果を有する薬液が得られる点で、金属原子としては、Pb原子、及び、Ti原子からなる群より選択される少なくとも1種が好ましく、金属ナノ粒子はPb原子、及び、Ti原子の両方を含有するのがより好ましい。金属ナノ粒子がPb原子及びTi原子の両方を含有するとは、典型的には、薬液が、Pb原子を含有する金属ナノ粒子とTi原子を含有する金属ナノ粒子の両方を含有する形態が挙げられる。 金属 The metal atoms contained in the metal nanoparticles are not particularly limited, but are the same as the atoms already described as the metal atoms contained in the metal-containing particles. Among them, at least one selected from the group consisting of Pb atoms and Ti atoms is preferable as the metal atom in that a chemical solution having more excellent effects of the present invention can be obtained, and the metal nanoparticles are preferably Pb atoms. , And more preferably contain both Ti atoms. The phrase that the metal nanoparticles contain both Pb atoms and Ti atoms typically includes a form in which the chemical solution contains both metal nanoparticles containing Pb atoms and metal nanoparticles containing Ti atoms. .
 なお、薬液中におけるPb原子を含有する金属ナノ粒子(以下、「Pbナノ粒子」ともいう。)及び、Ti原子を含有する金属ナノ粒子(以下、「Tiナノ粒子」ともいう。)の含有粒子数比(Pb/Ti)としては特に制限されないが、一般に、1.0×10-4~3.0が好ましく、1.0×10-3~2.0がより好ましく、1.0×10-2~1.5が特に好ましい。Pb/Tiが1.0×10-3~2.0であると、薬液はより優れた本発明の効果、特に、より優れたブリッジ欠陥抑制性能を有する。
 Pbナノ粒子とTiナノ粒子は、例えば、薬液をウェハ上に塗布した際等に会合しやすく、レジスト膜の現像の際に欠陥の原因(特にブリッジ欠陥の原因)になりやすいことを、本発明者らは知見している。
 Pb/Tiが1.0×10-3~2.0であると、驚くべきことに、欠陥の発生がより抑制されやすい。なお、本明細書においてPb/Ti及び後述するA/(B+C)は有効数字が2桁となるように四捨五入して求める。
In addition, metal nanoparticles containing Pb atoms (hereinafter also referred to as “Pb nanoparticles”) and metal nanoparticles containing Ti atoms (hereinafter also referred to as “Ti nanoparticles”) in a chemical solution. Although the number ratio (Pb / Ti) is not particularly limited, it is generally preferably 1.0 × 10 −4 to 3.0, more preferably 1.0 × 10 −3 to 2.0, and more preferably 1.0 × 10 −3 to 2.0. Particularly preferred is -2 to 1.5. When Pb / Ti is from 1.0 × 10 −3 to 2.0, the chemical solution has more excellent effects of the present invention, particularly, more excellent bridging defect suppression performance.
According to the present invention, Pb nanoparticles and Ti nanoparticles are likely to associate with each other, for example, when a chemical solution is applied on a wafer, and easily cause defects (especially, bridge defects) when developing a resist film. They know.
Surprisingly, when Pb / Ti is 1.0 × 10 −3 to 2.0, the occurrence of defects is more likely to be suppressed. In this specification, Pb / Ti and A / (B + C) described later are obtained by rounding off to two significant figures.
 金属ナノ粒子は金属原子を含有していればよく、その形態は特に制限されない。例えば、金属原子の単体、金属原子を含有する化合物(以下「金属化合物」ともいう。)、並びに、これらの複合体等が挙げられる。また、金属ナノ粒子は複数の金属原子を含有してもよい。なお、金属ナノ粒子が複数の金属を含有する場合、上記複数の金属のうち最も含有量(atm%)の多い金属原子を主成分とする。従って、Pbナノ粒子というときには、複数の金属を含有している場合にあっては、複数の金属のうちで、Pb原子が主成分であることを意味する。 The metal nanoparticles only need to contain metal atoms, and the form is not particularly limited. For example, a simple substance of a metal atom, a compound containing a metal atom (hereinafter, also referred to as a “metal compound”), a complex thereof, and the like can be given. Further, the metal nanoparticles may contain a plurality of metal atoms. When the metal nanoparticles contain a plurality of metals, a metal atom having the largest content (atm%) of the plurality of metals is used as a main component. Therefore, when the term “Pb nanoparticle” includes a plurality of metals, it means that the Pb atom is a main component among the plurality of metals.
 複合体としては特に制限されないが、金属原子の単体と、上記金属原子の単体の少なくとも一部を覆う金属化合物と、を有するいわゆるコア-シェル型の粒子、金属原子と他の原子とを含む固溶体粒子、金属原子と他の原子とを含む共晶体粒子、金属原子の単体と金属化合物との凝集体粒子、種類の異なる金属化合物の凝集体粒子、及び、粒子表面から中心に向かって連続的又は断続的に組成が変化する金属化合物等が挙げられる。 The complex is not particularly limited, but is a so-called core-shell type particle having a simple substance of a metal atom and a metal compound covering at least a part of the simple substance of the metal atom, and a solid solution including the metal atom and another atom. Particles, eutectic particles containing metal atoms and other atoms, aggregate particles of a single metal atom and a metal compound, aggregate particles of different types of metal compounds, and continuous or Examples thereof include metal compounds whose composition changes intermittently.
 金属化合物が含有する金属原子以外の原子としては特に制限されないが、例えば、炭素原子、酸素原子、窒素原子、水素原子、硫黄原子、及び、燐原子等が挙げられ、中でも、酸素原子が好ましい。金属化合物が酸素原子を含有する形態としては特に制限されないが、金属原子の酸化物がより好ましい。 原子 The atom other than the metal atom contained in the metal compound is not particularly limited, but examples thereof include a carbon atom, an oxygen atom, a nitrogen atom, a hydrogen atom, a sulfur atom, and a phosphorus atom, and among them, an oxygen atom is preferable. The form in which the metal compound contains an oxygen atom is not particularly limited, but an oxide of a metal atom is more preferable.
 より優れた本発明の効果を有する薬液が得られる点で、金属ナノ粒子としては、金属原子の単体からなる粒子(粒子A)、金属原子の酸化物からなる粒子(粒子B)、並びに、金属原子の単体及び金属原子の酸化物からなる粒子(粒子C)からなる群より選択される少なくとも1種からなるのが好ましい。
 なお、薬液の単位体積あたりの、金属ナノ粒子の含有粒子数における、粒子Aの含有粒子数、粒子Bの含有粒子数、及び、粒子Cの含有粒子数の関係としては特に制限されないが、より優れた本発明の効果を有する薬液が得られる点で、粒子Bの含有粒子数と粒子Cの含有粒子数との合計に対する、粒子Aの含有粒子数の含有粒子数比(以下、「A/(B+C)」ともいう。)が、1.5以下が好ましく、1.0未満がより好ましく、2.0×10-1以下が更に好ましく、1.0×10-1以下が特に好ましく、1.0×10-3以上が好ましく、1.0×10-2以上がより好ましい。
 A/(B+C)が1.0未満であると、薬液は、より優れたブリッジ欠陥抑制性能、より優れたパターン幅の均一性能、及び、シミ状欠陥抑制性能を有する。なお、シミ状欠陥とは、金属原子が検出されなかった欠陥を意味する。
 また、A/(B+C)が0.1以下であると、薬液は、より優れた欠陥抑制性能を有する。
From the viewpoint that a chemical solution having a better effect of the present invention can be obtained, as metal nanoparticles, particles composed of a single metal atom (particle A), particles composed of an oxide of a metal atom (particle B), and metal It is preferably made of at least one selected from the group consisting of particles consisting of elemental atoms and oxides of metal atoms (particles C).
The relationship between the number of particles A, the number of particles B, and the number of particles C in the number of particles of metal nanoparticles per unit volume of the drug solution is not particularly limited. The ratio of the number of particles contained in particles A to the total number of particles contained in particles B and particles C (hereinafter, “A / (B + C) ”) is preferably 1.5 or less, more preferably less than 1.0, further preferably 2.0 × 10 −1 or less, particularly preferably 1.0 × 10 −1 or less. 0.0 × 10 −3 or more is preferable, and 1.0 × 10 −2 or more is more preferable.
When A / (B + C) is less than 1.0, the chemical solution has better bridging defect suppression performance, better pattern width uniformity performance, and spot-like defect suppression performance. In addition, the spot-like defect means a defect in which no metal atom is detected.
When A / (B + C) is 0.1 or less, the chemical has more excellent defect suppression performance.
<特定有機化合物A>
 薬液は、特定有機化合物Aを含有する。特定有機化合物Aは、上述の通り、薬液中の溶剤よりもClogP値が高い有機化合物である。
 特定有機化合物Aは、薬液中に添加されてもよいし、薬液の製造工程において意図せず混合されるものであってもよい。薬液の製造工程において意図せず混合される場合としては例えば、特定有機化合物Aが、薬液の製造に用いる原料(例えば、有機溶剤)に含有されている場合、及び、薬液の製造工程で混合する(例えば、コンタミネーション)等が挙げられるが、上記に制限されない。
<Specific organic compound A>
The chemical solution contains the specific organic compound A. As described above, the specific organic compound A is an organic compound having a higher ClogP value than the solvent in the chemical solution.
The specific organic compound A may be added to the chemical solution, or may be unintentionally mixed in the manufacturing process of the chemical solution. Examples of the case where they are unintentionally mixed in the manufacturing process of the chemical solution include, for example, the case where the specific organic compound A is contained in a raw material (eg, an organic solvent) used for manufacturing the chemical solution, and the case where the specific organic compound A is mixed in the manufacturing process of the chemical solution. (For example, contamination) and the like, but are not limited thereto.
 特定有機化合物Aは、薬液中の溶剤よりもClogP値が高い。本発明の効果がより発揮される点から、薬液中の溶剤のClogP値に対する特定有機化合物AのClogP値の差[(特定有機化合物AのClogP値)-(薬液中の溶剤のClogP値)]は、3~9が好ましく、3~8が好ましく、4~7がより好ましい。
 特定有機化合物AのClogP値は、薬液中の溶剤よりも高ければ特に限定されないが、本発明の効果がより発揮される点から、6以上が好ましく、6~10が特に好ましい。
 ここで、ClogP値とは、1-オクタノールと水への分配係数Pの常用対数logPを計算によって求めた値である。ClogP値の計算に用いる方法及びソフトウェアについては公知の物を使用できるが、特に断らない限り、本発明ではCambridgesoft社のChemBioDrawUltra12.0に組み込まれたClogPプログラムを用いる。
 例えば、フタル酸ジブチルのClogP値は4.72、フタル酸ジオクチル(DOP)ClogP値は8.71、フタル酸ジイソノニル(DINP)のClogP値は9.03となる。
The specific organic compound A has a higher ClogP value than the solvent in the chemical solution. From the viewpoint that the effect of the present invention is more exerted, the difference between the ClogP value of the specific organic compound A and the ClogP value of the solvent in the chemical solution [(ClogP value of specific organic compound A) − (ClogP value of solvent in the chemical solution)] Is preferably 3 to 9, preferably 3 to 8, and more preferably 4 to 7.
The ClogP value of the specific organic compound A is not particularly limited as long as it is higher than the solvent in the drug solution, but is preferably 6 or more, particularly preferably 6 to 10, from the viewpoint that the effect of the present invention is more exhibited.
Here, the ClogP value is a value obtained by calculating a common logarithm logP of a partition coefficient P to 1-octanol and water. Known methods and software can be used for calculating the ClogP value. However, unless otherwise specified, the present invention uses the ClogP program incorporated in ChemBioDrawUltra 12.0 of Cambridgesoft.
For example, the ClogP value of dibutyl phthalate is 4.72, the ClogP value of dioctyl phthalate (DOP) is 8.71, and the ClogP value of diisononyl phthalate (DINP) is 9.03.
 特定有機化合物Aの炭素数としては特に制限されないが、薬液がより優れた本発明の効果を有する点で、8以上が好ましく、12以上がより好ましい。なお、炭素数の上限として特に制限されないが、一般に30以下が好ましい。 炭素 The carbon number of the specific organic compound A is not particularly limited, but is preferably 8 or more, more preferably 12 or more, from the viewpoint that the chemical solution has more excellent effects of the present invention. The upper limit of the number of carbon atoms is not particularly limited, but is preferably 30 or less.
 特定有機化合物Aとしては、例えば、有機溶剤の合成に伴い生成する副生成物、及び/又は、未反応の原料(以下、「副生成物等」ともいう。)等であってもよい。
 上記副生成物等としては、例えば、下記の式I~Vで表される化合物等が挙げられる。
The specific organic compound A may be, for example, a by-product generated during the synthesis of the organic solvent and / or an unreacted raw material (hereinafter, also referred to as “by-product or the like”).
Examples of the by-products and the like include compounds represented by the following formulas IV.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式I中、R及びRは、それぞれ独立に、アルキル基、若しくは、シクロアルキル基を表すか、又は、互いに結合し、環を形成している。 In Formula I, R 1 and R 2 each independently represent an alkyl group or a cycloalkyl group, or combine with each other to form a ring.
 R及びRにより表されるアルキル基、又は、シクロアルキル基としては、炭素数1~12のアルキル基、又は、炭素数6~12のシクロアルキル基が好ましく、炭素数1~8のアルキル基、又は、炭素数6~8のシクロアルキル基がより好ましい。 The alkyl group or cycloalkyl group represented by R 1 and R 2 is preferably an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group having 6 to 12 carbon atoms, and is preferably an alkyl group having 1 to 8 carbon atoms. A group or a cycloalkyl group having 6 to 8 carbon atoms is more preferred.
 R及びRが互いに結合して形成する環は、ラクトン環であり、4~9員環のラクトン環が好ましく、4~6員環のラクトン環がより好ましい。 The ring formed by combining R 1 and R 2 with each other is a lactone ring, preferably a 4- to 9-membered lactone ring, more preferably a 4- to 6-membered lactone ring.
 なお、R及びRは、式Iで表される化合物の炭素数が8以上となる関係を満たすのが好ましい。 Preferably, R 1 and R 2 satisfy the relationship that the compound represented by the formula I has 8 or more carbon atoms.
 式II中、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、若しくは、シクロアルケニル基を表すか、又は、互いに結合して環を形成している。但し、R及びRの双方が水素原子であることはない。 In Formula II, R 3 and R 4 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, or a cycloalkenyl group, or combine with each other to form a ring. However, R 3 and R 4 are not both hydrogen atoms.
 R及びRにより表されるアルキル基としては、例えば、炭素数1~12のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。 As the alkyl group represented by R 3 and R 4 , for example, an alkyl group having 1 to 12 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
 R及びRにより表されるアルケニル基としては、例えば、炭素数2~12のアルケニル基が好ましく、炭素数2~8のアルケニル基がより好ましい。 The alkenyl group represented by R 3 and R 4 is, for example, preferably an alkenyl group having 2 to 12 carbon atoms, and more preferably an alkenyl group having 2 to 8 carbon atoms.
 R及びRにより表されるシクロアルキル基としては、炭素数6~12のシクロアルキル基が好ましく、炭素数6~8のシクロアルキル基がより好ましい。 The cycloalkyl group represented by R 3 and R 4 is preferably a cycloalkyl group having 6 to 12 carbon atoms, and more preferably a cycloalkyl group having 6 to 8 carbon atoms.
 R及びRにより表されるシクロアルケニル基としては、例えば、炭素数3~12のシクロアルケニル基が好ましく、炭素数6~8のシクロアルケニル基がより好ましい。 As the cycloalkenyl group represented by R 3 and R 4 , for example, a cycloalkenyl group having 3 to 12 carbon atoms is preferable, and a cycloalkenyl group having 6 to 8 carbon atoms is more preferable.
 R及びRが互いに結合して形成する環は、環状ケトン構造であり、飽和環状ケトンであってもよく、不飽和環状ケトンであってもよい。この環状ケトンは、6~10員環が好ましく、6~8員環がより好ましい。 The ring formed by R 3 and R 4 bonded to each other has a cyclic ketone structure, and may be a saturated cyclic ketone or an unsaturated cyclic ketone. This cyclic ketone preferably has a 6- to 10-membered ring, more preferably a 6- to 8-membered ring.
 なお、R及びRは、式IIで表される化合物の炭素数が8以上となる関係を満たすのが好ましい。 Preferably, R 3 and R 4 satisfy the relationship that the compound represented by Formula II has 8 or more carbon atoms.
 式III中、Rは、アルキル基又はシクロアルキル基を表す。 In Formula III, R 5 represents an alkyl group or a cycloalkyl group.
 Rにより表されるアルキル基は、炭素数6以上のアルキル基が好ましく、炭素数6~12のアルキル基がより好ましく、炭素数6~10のアルキル基が特に好ましい。
 上記アルキル基は、鎖中にエーテル結合を有していてもよく、ヒドロキシ基等の置換基を有していてもよい。
The alkyl group represented by R 5 is preferably an alkyl group having 6 or more carbon atoms, more preferably an alkyl group having 6 to 12 carbon atoms, and particularly preferably an alkyl group having 6 to 10 carbon atoms.
The alkyl group may have an ether bond in the chain, or may have a substituent such as a hydroxy group.
 Rにより表されるシクロアルキル基は、炭素数6以上のシクロアルキル基が好ましく、炭素数6~12のシクロアルキル基がより好ましく、炭素数6~10のシクロアルキル基が特に好ましい。 The cycloalkyl group represented by R 5 is preferably a cycloalkyl group having 6 or more carbon atoms, more preferably a cycloalkyl group having 6 to 12 carbon atoms, and particularly preferably a cycloalkyl group having 6 to 10 carbon atoms.
 式IV中、R及びRは、それぞれ独立に、アルキル基若しくはシクロアルキル基を表すか、又は、互いに結合し、環を形成している。 In Formula IV, R 6 and R 7 each independently represent an alkyl group or a cycloalkyl group, or combine with each other to form a ring.
 R及びRにより表されるアルキル基としては、炭素数1~12のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。 As the alkyl group represented by R 6 and R 7 , an alkyl group having 1 to 12 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
 R及びRにより表されるシクロアルキル基としては、炭素数6~12のシクロアルキル基が好ましく、炭素数6~8のシクロアルキル基がより好ましい。 As the cycloalkyl group represented by R 6 and R 7 , a cycloalkyl group having 6 to 12 carbon atoms is preferable, and a cycloalkyl group having 6 to 8 carbon atoms is more preferable.
 R及びRが互いに結合して形成する環は、環状エーテル構造である。この環状エーテル構造は、4~8員環が好ましく、5~7員環がより好ましい。 The ring formed by combining R 6 and R 7 with each other has a cyclic ether structure. This cyclic ether structure is preferably a 4- to 8-membered ring, more preferably a 5- to 7-membered ring.
 なお、R及びRは、式IVで表される化合物の炭素数が8以上となる関係を満たすのが好ましい。 Preferably, R 6 and R 7 satisfy the relationship that the compound represented by the formula IV has 8 or more carbon atoms.
 式V中、R及びRは、それぞれ独立に、アルキル基、若しくは、シクロアルキル基を表すか、又は、互いに結合し、環を形成している。Lは、単結合又はアルキレン基を表す。 In Formula V, R 8 and R 9 each independently represent an alkyl group or a cycloalkyl group, or combine with each other to form a ring. L represents a single bond or an alkylene group.
 R及びRにより表されるアルキル基としては、例えば、炭素数6~12のアルキル基が好ましく、炭素数6~10のアルキル基がより好ましい。 As the alkyl group represented by R 8 and R 9 , for example, an alkyl group having 6 to 12 carbon atoms is preferable, and an alkyl group having 6 to 10 carbon atoms is more preferable.
 R及びRにより表されるシクロアルキル基としては、炭素数6~12のシクロアルキル基が好ましく、炭素数6~10のシクロアルキル基がより好ましい。 The cycloalkyl group represented by R 8 and R 9 is preferably a cycloalkyl group having 6 to 12 carbon atoms, and more preferably a cycloalkyl group having 6 to 10 carbon atoms.
 R及びRが互いに結合して形成する環は、環状ジケトン構造である。この環状ジケトン構造は、6~12員環が好ましく、6~10員環がより好ましい。 The ring formed by combining R 8 and R 9 with each other has a cyclic diketone structure. This cyclic diketone structure is preferably a 6- to 12-membered ring, more preferably a 6- to 10-membered ring.
 Lにより表されるアルキレン基としては、例えば、炭素数1~12のアルキレン基が好ましく、炭素数1~10のアルキレン基がより好ましい。
 なお、R、R及びLは、式Vで表される化合物の炭素数が8以上となる関係を満たす。
 特に制限されないが、有機溶剤が、アミド化合物、イミド化合物及びスルホキシド化合物である場合は、一形態において、炭素数が6以上のアミド化合物、イミド化合物及びスルホキシド化合物が挙げられる。また、特定有機化合物Aとしては、例えば、下記化合物も挙げられる。
As the alkylene group represented by L, for example, an alkylene group having 1 to 12 carbon atoms is preferable, and an alkylene group having 1 to 10 carbon atoms is more preferable.
Note that R 8 , R 9 and L satisfy the relationship that the compound represented by the formula V has 8 or more carbon atoms.
Although not particularly limited, when the organic solvent is an amide compound, an imide compound, and a sulfoxide compound, in one embodiment, an amide compound, an imide compound, and a sulfoxide compound having 6 or more carbon atoms are used. In addition, examples of the specific organic compound A include the following compounds.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 また、特定有機化合物Aとしては、ジブチルヒドロキシトルエン(BHT)、ジステアリルチオジプロピオネート(DSTP)、4,4’-ブチリデンビス-(6-t-ブチル-3-メチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、及び、特開2015-200775号公報に記載されている酸化防止剤等の酸化防止剤;未反応の原料;有機溶剤の製造時に生じる構造異性体及び副生成物;有機溶剤の製造装置を構成する部材等からの溶出物(例えば、Oリングなどのゴム部材から溶出した可塑剤);等も挙げられる。 Specific organic compounds A include dibutylhydroxytoluene (BHT), distearylthiodipropionate (DSTP), 4,4′-butylidenebis- (6-t-butyl-3-methylphenol), 2,2 ′ -Methylene bis- (4-ethyl-6-t-butylphenol) and antioxidants such as antioxidants described in JP-A-2005-200775; unreacted raw materials; structures generated during production of organic solvents Isomers and by-products; eluates from members and the like constituting an organic solvent production device (for example, a plasticizer eluted from a rubber member such as an O-ring); and the like.
 また、特定有機化合物Aとしては、フタル酸ジオクチル(DOP)、フタル酸ビス(2-エチルヘキシル)(DEHP)、フタル酸ビス(2-プロピルヘプチル)(DPHP)、フタル酸ジブチル(DBP)、フタル酸ベンジルブチル(BBzP)、フタル酸ジイソデシル(DIDP)、フタル酸ジイソオクチル(DIOP)、フタル酸ジエチル(DEP)、フタル酸ジイソブチル(DIBP)、フタル酸ジヘキシル及びフタル酸ジイソノニル(DINP)等のフタル酸エステル、トリメリット酸トリス(2-エチルヘキシル)(TEHTM)、トリメリット酸トリス(n-オクチル-n-デシル)(ATM)、アジピン酸ビス(2-エチルヘキシル)(DEHA)、アジピン酸モノメチル(MMAD)、アジピン酸ジオクチル(DOA)、セバシン酸ジブチル(DBS)、マレイン酸ジブチル(DBM)、マレイン酸ジイソブチル(DIBM)、アゼライン酸エステル、安息香酸エステル、テレフタレート(例:ジオクチルテレフタレート(DEHT))、1,2-シクロヘキサンジカルボン酸ジイソノニルエステル(DINCH)、エポキシ化植物油、スルホンアミド(例:N-(2-ヒドロキシプロピル)ベンゼンスルホンアミド(HP BSA)、N-(n-ブチル)ベンゼンスルホンアミド(BBSA-NBBS))、有機リン酸エステル(例:リン酸トリクレジル(TCP)、リン酸トリブチル(TBP))、アセチル化モノグリセリド、クエン酸トリエチル(TEC)、アセチルクエン酸トリエチル(ATEC)、クエン酸トリブチル(TBC)、アセチルクエン酸トリブチル(ATBC)、クエン酸トリオクチル(TOC)、アセチルクエン酸トリオクチル(ATOC)、クエン酸トリへキシル(THC)、アセチルクエン酸トリへキシル(ATHC)エポキシ化大豆油、エチレンプロピレンゴム、ポリブテン、5-エチリデン-2-ノルボルネンの付加重合体、及び、以下に例示される高分子可塑剤も挙げられる。
 これらの特定有機化合物Aは、精製工程で触れるフィルター、配管、タンク、O-ring、及び、容器等から被精製物又は薬液へと混入するものと推定される。特に、アルキルオレフィン以外の化合物は、ブリッジ欠陥の発生に関連する。
Examples of the specific organic compound A include dioctyl phthalate (DOP), bis (2-ethylhexyl) phthalate (DEHP), bis (2-propylheptyl) phthalate (DPHP), dibutyl phthalate (DBP), and phthalic acid. Phthalic acid esters such as benzyl butyl (BBzP), diisodecyl phthalate (DIDP), diisooctyl phthalate (DIOP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dihexyl phthalate and diisononyl phthalate (DINP); Tris (2-ethylhexyl) trimellitate (TEHTM), Tris (n-octyl-n-decyl) trimellitate (ATM), Bis (2-ethylhexyl) adipate (DEHA), Monomethyl adipate (MMAD), Adipine Dioctyl acid (DOA), Dibutyl bacinate (DBS), dibutyl maleate (DBM), diisobutyl maleate (DIBM), azelaic acid ester, benzoic acid ester, terephthalate (eg, dioctyl terephthalate (DEHT)), diisononyl 1,2-cyclohexanedicarboxylate ( DINCH), epoxidized vegetable oil, sulfonamides (eg, N- (2-hydroxypropyl) benzenesulfonamide (HP BSA), N- (n-butyl) benzenesulfonamide (BBSA-NBBS)), organic phosphates ( Examples: tricresyl phosphate (TCP), tributyl phosphate (TBP)), acetylated monoglyceride, triethyl citrate (TEC), acetyl triethyl citrate (ATEC), tributyl citrate (TBC), acetyl citrate Butyl (ATBC), trioctyl citrate (TOC), acetyl trioctyl citrate (ATOC), trihexyl citrate (THC), acetyl trihexyl citrate (ATHC) epoxidized soybean oil, ethylene propylene rubber, polybutene, -Ethylidene-2-norbornene addition polymers, and the following polymeric plasticizers are also exemplified.
It is presumed that these specific organic compounds A are mixed into a substance to be purified or a chemical solution from a filter, a pipe, a tank, an O-ring, a container, or the like that is touched in the purification step. In particular, compounds other than alkyl olefins are associated with the occurrence of bridge defects.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記の化合物の中でも、特定有機化合物Aは、薬液の製造環境下で一般的に存在し、製造工程および製造方法により含有量を調整しやすいという理由により、フタル酸エステルが好ましく、フタル酸ジオクチル(DOP)及びフタル酸ジイソノニル(DINP)からなる群より選択される少なくとも1種が好ましい。 Among the above compounds, the specific organic compound A is generally present in a chemical solution production environment, and is preferably a phthalate ester because its content can be easily adjusted by a production process and a production method, and dioctyl phthalate ( At least one selected from the group consisting of DOP) and diisononyl phthalate (DINP) is preferred.
 特定有機化合物Aの含有量は、空隙部に存在する気体に含まれる有機化合物(後述の有機化合物B)との含有量の合計が後述の範囲であれば特に限定されないが、欠陥抑制性能がより優れる点から、薬液の全質量に対して、100,000質量ppt以下が好ましく、0.1~1,000質量pptがより好ましく、0.1~10質量pptが特に好ましい。 The content of the specific organic compound A is not particularly limited as long as the total content of the organic compound (organic compound B to be described later) contained in the gas existing in the voids is within the range described below. From the viewpoint of superiority, the amount is preferably 100,000 mass ppt or less, more preferably 0.1 to 1,000 mass ppt, and particularly preferably 0.1 to 10 mass ppt, based on the total mass of the chemical solution.
 薬液中の特定有機化合物Aの含有量及び種類は、GCMS(ガスクロマトグラフ質量分析装置;gas chromatography mass spectrometry)を用いて測定できる。 含有 The content and type of the specific organic compound A in the drug solution can be measured by using GCMS (gas chromatography mass spectrometer; gas chromatography mass spectrometry).
<他の成分>
 薬液は、上記以外の他の成分を含有してもよい。他の成分としては、例えば、特定有機化合物A以外の有機化合物、及び、樹脂等が挙げられる。
<Other components>
The chemical solution may contain other components other than the above. Examples of the other components include an organic compound other than the specific organic compound A, a resin, and the like.
(特定有機化合物A以外の有機化合物)
 薬液は、特定有機化合物A以外の有機化合物(以下、「他の有機化合物」ともいう。)を含有してもよい。他の有機化合物は、薬液中の溶剤のClogP値以下のClogP値の有機化合物である。
 他の有機化合物は、薬液中に添加されてもよいし、薬液の製造工程において意図せず混合されてもよい。薬液の製造工程において意図せず混合される場合としては例えば、他の特定有機化合物が、薬液の製造に用いる原料(例えば、有機溶剤)に含有されている場合、及び、薬液の製造工程で混合する(例えば、コンタミネーション)等が挙げられるが、上記に制限されない。
(Organic compounds other than specific organic compound A)
The chemical solution may contain an organic compound other than the specific organic compound A (hereinafter, also referred to as “other organic compound”). The other organic compound is an organic compound having a ClogP value equal to or less than the ClogP value of the solvent in the chemical solution.
Other organic compounds may be added to the chemical solution or may be mixed unintentionally in the process of manufacturing the chemical solution. Examples of the case where they are unintentionally mixed in the manufacturing process of a chemical solution include, for example, a case where another specific organic compound is contained in a raw material (for example, an organic solvent) used for manufacturing the chemical solution, and a case where the other compound is mixed in the manufacturing process of the chemical solution. (For example, contamination), but is not limited thereto.
(樹脂)
 薬液は樹脂を含有してもよい。樹脂としては、酸の作用により分解して極性基を生じる基を有する樹脂Pがより好ましい。上記樹脂としては、酸の作用により有機溶剤を主成分とする現像液に対する溶解性が減少する樹脂である、後述する式(AI)で表される繰り返し単位を有する樹脂がより好ましい。後述する式(AI)で表される繰り返し単位を有する樹脂は、酸の作用により分解してアルカリ可溶性基を生じる基(以下、「酸分解性基」ともいう)を有する。
 極性基としては、アルカリ可溶性基が挙げられる。アルカリ可溶性基としては、例えば、カルボキシ基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、フェノール性水酸基、及びスルホ基が挙げられる。
(resin)
The chemical solution may contain a resin. As the resin, a resin P having a group that is decomposed by the action of an acid to generate a polar group is more preferable. As the resin, a resin having a repeating unit represented by the following formula (AI), which is a resin whose solubility in a developer containing an organic solvent as a main component is reduced by the action of an acid, is more preferable. The resin having a repeating unit represented by the formula (AI) described below has a group that is decomposed by the action of an acid to generate an alkali-soluble group (hereinafter, also referred to as an “acid-decomposable group”).
Examples of the polar group include an alkali-soluble group. Examples of the alkali-soluble group include a carboxy group, a fluorinated alcohol group (preferably hexafluoroisopropanol group), a phenolic hydroxyl group, and a sulfo group.
 酸分解性基において極性基は酸で脱離する基(酸脱離性基)によって保護されている。酸脱離性基としては、例えば、-C(R36)(R37)(R38)、-C(R36)(R37)(OR39)、及び、-C(R01)(R02)(OR39)等が挙げられる。 The polar group in the acid-decomposable group is protected by an acid-eliminable group (acid-eliminable group). Examples of the acid leaving group include —C (R 36 ) (R 37 ) (R 38 ), —C (R 36 ) (R 37 ) (OR 39 ), and —C (R 01 ) (R 02 ) (OR 39 ).
 式中、R36~R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。 In the formula, R 36 to R 39 each independently represent an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group. R 36 and R 37 may combine with each other to form a ring.
 R01及びR02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。 R 01 and R 02 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
 以下、酸の作用により有機溶剤を主成分とする現像液に対する溶解性が減少する樹脂Pについて詳述する。 The resin P whose solubility in a developer containing an organic solvent as a main component is reduced by the action of an acid will be described in detail below.
((式(AI):酸分解性基を有する繰り返し単位))
 樹脂Pは、式(AI)で表される繰り返し単位を含有することが好ましい。
((Formula (AI): a repeating unit having an acid-decomposable group))
The resin P preferably contains a repeating unit represented by the formula (AI).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(AI)に於いて、
 Xaは、水素原子又は置換基を有していてもよいアルキル基を表す。
 Tは、単結合又は2価の連結基を表す。
 Ra~Raは、それぞれ独立に、アルキル基(直鎖状又は分岐鎖状)又はシクロアルキル基(単環又は多環)を表す。
 Ra~Raの2つが結合して、シクロアルキル基(単環又は多環)を形成してもよい。
In the formula (AI),
Xa 1 represents a hydrogen atom or an alkyl group which may have a substituent.
T represents a single bond or a divalent linking group.
Ra 1 to Ra 3 each independently represent an alkyl group (linear or branched) or a cycloalkyl group (monocyclic or polycyclic).
Two of Ra 1 to Ra 3 may combine to form a cycloalkyl group (monocyclic or polycyclic).
 Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基、及び-CH-R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基、又は1価の有機基を表す。
 Xaは、水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基が好ましい。
Examples of the optionally substituted alkyl group represented by Xa 1 include a methyl group and a group represented by —CH 2 —R 11 . R 11 represents a halogen atom (such as a fluorine atom), a hydroxyl group, or a monovalent organic group.
Xa 1 is preferably a hydrogen atom, a methyl group, a trifluoromethyl group or a hydroxymethyl group.
 Tの2価の連結基としては、アルキレン基、-COO-Rt-基、及び、-O-Rt-基等が挙げられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
 Tは、単結合又は-COO-Rt-基が好ましい。Rtは、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基、又は、-(CH-基がより好ましい。
Examples of the divalent linking group for T include an alkylene group, a -COO-Rt- group, and a -O-Rt- group. In the formula, Rt represents an alkylene group or a cycloalkylene group.
T is preferably a single bond or a -COO-Rt- group. Rt is preferably an alkylene group having 1 to 5 carbon atoms, more preferably a —CH 2 — group, a — (CH 2 ) 2 — group, or a — (CH 2 ) 3 — group.
 Ra~Raのアルキル基としては、炭素数1~4のものが好ましい。 The alkyl group of Ra 1 to Ra 3 preferably has 1 to 4 carbon atoms.
 Ra~Raのシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。
 Ra~Raの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、若しくはシクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくはアダマンチル基等の多環のシクロアルキル基が好ましい。炭素数5~6の単環のシクロアルキル基がより好ましい。
The cycloalkyl group of Ra 1 to Ra 3 may be a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, or an adamantyl group. Ring cycloalkyl groups are preferred.
Examples of the cycloalkyl group formed by bonding two of Ra 1 to Ra 3 include a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, a norbornyl group, a tetracyclodecanyl group, and a tetracyclododecanyl. Or a polycyclic cycloalkyl group such as an adamantyl group. A monocyclic cycloalkyl group having 5 to 6 carbon atoms is more preferable.
 Ra~Raの2つが結合して形成される上記シクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又はカルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。 The cycloalkyl group formed by combining two of Ra 1 to Ra 3 is, for example, a group in which one of methylene groups constituting a ring has a hetero atom such as an oxygen atom or a hetero atom such as a carbonyl group. It may be replaced.
 式(AI)で表される繰り返し単位は、例えば、Raがメチル基又はエチル基であり、RaとRaとが結合して上述のシクロアルキル基を形成している態様が好ましい。 In the repeating unit represented by the formula (AI), for example, an embodiment in which Ra 1 is a methyl group or an ethyl group, and Ra 2 and Ra 3 are bonded to form the above-described cycloalkyl group is preferable.
 上記各基は、置換基を有していてもよく、置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1~4)、カルボキシ基、及びアルコキシカルボニル基(炭素数2~6)等が挙げられ、炭素数8以下が好ましい。 Each of the above groups may have a substituent. Examples of the substituent include an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group (1 to 4 carbon atoms), a carboxy group, And an alkoxycarbonyl group (having 2 to 6 carbon atoms), preferably having 8 or less carbon atoms.
 式(AI)で表される繰り返し単位の含有量は、樹脂P中の全繰り返し単位に対して、20~90モル%が好ましく、25~85モル%がより好ましく、30~80モル%が特に好ましい。 The content of the repeating unit represented by the formula (AI) is preferably from 20 to 90 mol%, more preferably from 25 to 85 mol%, particularly preferably from 30 to 80 mol%, based on all repeating units in the resin P. preferable.
((ラクトン構造を有する繰り返し単位))
 また、樹脂Pは、ラクトン構造を有する繰り返し単位Qを含有することが好ましい。
((Repeating unit having lactone structure))
Further, the resin P preferably contains a repeating unit Q having a lactone structure.
 ラクトン構造を有する繰り返し単位Qは、ラクトン構造を側鎖に有していることが好ましく、(メタ)アクリル酸誘導体モノマーに由来する繰り返し単位であることがより好ましい。
 ラクトン構造を有する繰り返し単位Qは、1種単独で用いてもよく、2種以上を併用していてもよいが、1種単独で用いることが好ましい。
 ラクトン構造を有する繰り返し単位Qの含有量は、樹脂P中の全繰り返し単位に対して、3~80モル%が好ましく、3~60モル%がより好ましい。
The repeating unit Q having a lactone structure preferably has a lactone structure in a side chain, and more preferably a repeating unit derived from a (meth) acrylic acid derivative monomer.
As the repeating unit Q having a lactone structure, one type may be used alone, or two or more types may be used in combination. However, it is preferable to use one type alone.
The content of the repeating unit Q having a lactone structure is preferably from 3 to 80 mol%, more preferably from 3 to 60 mol%, based on all repeating units in the resin P.
 ラクトン構造としては、5~7員環のラクトン構造が好ましく、5~7員環のラクトン構造にビシクロ構造又はスピロ構造を形成する形で他の環構造が縮環している構造がより好ましい。
 ラクトン構造としては、下記式(LC1-1)~(LC1-17)のいずれかで表されるラクトン構造を有する繰り返し単位を有することが好ましい。ラクトン構造としては式(LC1-1)、式(LC1-4)、式(LC1-5)、又は式(LC1-8)で表されるラクトン構造が好ましく、式(LC1-4)で表されるラクトン構造がより好ましい。
As the lactone structure, a 5- to 7-membered lactone structure is preferable, and a structure in which another ring structure is condensed with a 5- to 7-membered lactone structure to form a bicyclo structure or a spiro structure is more preferable.
The lactone structure preferably has a repeating unit having a lactone structure represented by any of the following formulas (LC1-1) to (LC1-17). The lactone structure is preferably a lactone structure represented by the formula (LC1-1), the formula (LC1-4), the formula (LC1-5) or the formula (LC1-8), and is represented by the formula (LC1-4) Lactone structures are more preferred.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ラクトン構造部分は、置換基(Rb)を有していてもよい。好ましい置換基(Rb)としては、炭素数1~8のアルキル基、炭素数4~7のシクロアルキル基、炭素数1~8のアルコキシ基、炭素数2~8のアルコキシカルボニル基、カルボキシ基、ハロゲン原子、水酸基、シアノ基、及び酸分解性基等が挙げられる。nは、0~4の整数を表す。nが2以上のとき、複数存在する置換基(Rb)は、同一でも異なっていてもよく、また、複数存在する置換基(Rb)同士が結合して環を形成してもよい。 The lactone structure part may have a substituent (Rb 2 ). Preferred substituents (Rb 2 ) include an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, and a carboxy group. , A halogen atom, a hydroxyl group, a cyano group, and an acid-decomposable group. n 2 represents an integer of 0-4. When n 2 is 2 or more, a plurality of substituents (Rb 2 ) may be the same or different, and a plurality of substituents (Rb 2 ) may combine with each other to form a ring. .
((フェノール性水酸基を有する繰り返し単位))
 また、樹脂Pは、フェノール性水酸基を有する繰り返し単位を含有していてもよい。
 フェノール性水酸基を有する繰り返し単位としては、例えば、下記一般式(I)で表される繰り返し単位が挙げられる。
((Repeating unit having phenolic hydroxyl group))
The resin P may contain a repeating unit having a phenolic hydroxyl group.
Examples of the repeating unit having a phenolic hydroxyl group include a repeating unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式中、
 R41、R42及びR43は、各々独立に、水素原子、アルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。但し、R42はArと結合して環を形成していてもよく、その場合のR42は単結合又はアルキレン基を表す。
Where:
R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group, a halogen atom, a cyano group or an alkoxycarbonyl group. However, R 42 may combine with Ar 4 to form a ring, in which case R 42 represents a single bond or an alkylene group.
 Xは、単結合、-COO-、又は-CONR64-を表し、R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R42と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 nは、1~5の整数を表す。
X 4 represents a single bond, —COO—, or —CONR 64 —, and R 64 represents a hydrogen atom or an alkyl group.
L 4 represents a single bond or an alkylene group.
Ar 4 represents a (n + 1) -valent aromatic ring group, and when it is bonded to R 42 to form a ring, represents an (n + 2) -valent aromatic ring group.
n represents an integer of 1 to 5.
 一般式(I)におけるR41、R42及びR43のアルキル基としては、置換基を有していてもよい、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基及びドデシル基など炭素数20以下のアルキル基が好ましく、炭素数8以下のアルキル基がより好ましく、炭素数3以下のアルキル基が特に好ましい。 Examples of the alkyl group of R 41 , R 42 and R 43 in the general formula (I) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and a sec-butyl which may have a substituent. An alkyl group having 20 or less carbon atoms such as a group, hexyl group, 2-ethylhexyl group, octyl group and dodecyl group is preferred, an alkyl group having 8 or less carbon atoms is more preferred, and an alkyl group having 3 or less carbon atoms is particularly preferred.
 一般式(I)におけるR41、R42及びR43のシクロアルキル基としては、単環型でも、多環型でもよい。シクロアルキル基としては、置換基を有していてもよい、シクロプロピル基、シクロペンチル基及びシクロヘキシル基などの炭素数3~8で単環型のシクロアルキル基が好ましい。 The cycloalkyl group of R 41 , R 42 and R 43 in the general formula (I) may be monocyclic or polycyclic. The cycloalkyl group is preferably a monocyclic cycloalkyl group having 3 to 8 carbon atoms, such as a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group, which may have a substituent.
 一般式(I)におけるR41、R42及びR43のハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子が好ましい。 Examples of the halogen atom of R 41 , R 42 and R 43 in the general formula (I) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom is preferable.
 一般式(I)におけるR41、R42及びR43のアルコキシカルボニル基に含まれるアルキル基としては、上記R41、R42及びR43におけるアルキル基と同様のものが好ましい。 As the alkyl group contained in the alkoxycarbonyl group of R 41 , R 42 and R 43 in the general formula (I), the same alkyl groups as those described above for R 41 , R 42 and R 43 are preferable.
 上記各基における置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、アミノ基、アミド基、ウレイド基、ウレタン基、ヒドロキシ基、カルボキシ基、ハロゲン原子、アルコキシ基、チオエーテル基、アシル基、アシロキシ基、アルコキシカルボニル基、シアノ基、及び、ニトロ基等が挙げられ、置換基の炭素数は8以下が好ましい。 Examples of the substituent in each of the above groups include an alkyl group, a cycloalkyl group, an aryl group, an amino group, an amide group, a ureido group, a urethane group, a hydroxy group, a carboxy group, a halogen atom, an alkoxy group, a thioether group, and an acyl group. , An acyloxy group, an alkoxycarbonyl group, a cyano group, and a nitro group, and the substituent preferably has 8 or less carbon atoms.
 Arは、(n+1)価の芳香環基を表す。nが1である場合における2価の芳香環基は、置換基を有していてもよく、例えば、フェニレン基、トリレン基、ナフチレン基及びアントラセニレン基などの炭素数6~18のアリーレン基、並びに、チオフェン、フラン、ピロール、ベンゾチオフェン、ベンゾフラン、ベンゾピロール、トリアジン、イミダゾール、ベンゾイミダゾール、トリアゾール、チアジアゾール及びチアゾール等のヘテロ環を含む芳香環基が挙げられる。 Ar 4 represents an (n + 1) -valent aromatic ring group. The divalent aromatic ring group when n is 1 may have a substituent, for example, an arylene group having 6 to 18 carbon atoms such as a phenylene group, a tolylene group, a naphthylene group and an anthracenylene group; And aromatic ring groups containing a hetero ring such as thiophene, furan, pyrrole, benzothiophene, benzofuran, benzopyrrole, triazine, imidazole, benzimidazole, triazole, thiadiazole and thiazole.
 nが2以上の整数である場合における(n+1)価の芳香環基の具体例としては、2価の芳香環基の上記した具体例から、(n-1)個の任意の水素原子を除してなる基が挙げられる。
 (n+1)価の芳香環基は、更に置換基を有していてもよい。
When n is an integer of 2 or more, specific examples of the (n + 1) -valent aromatic ring group include the above-described specific examples of the divalent aromatic ring group obtained by removing (n-1) arbitrary hydrogen atoms. And the group consisting of
The (n + 1) -valent aromatic ring group may further have a substituent.
 上述したアルキル基、シクロアルキル基、アルコキシカルボニル基、アルキレン基及び(n+1)価の芳香環基が有し得る置換基としては、例えば、一般式(I)におけるR41、R42及びR43で挙げたアルキル基;メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基及びブトキシ基等のアルコキシ基;フェニル基等のアリール基が挙げられる。 Examples of the substituent which the above-mentioned alkyl group, cycloalkyl group, alkoxycarbonyl group, alkylene group and (n + 1) -valent aromatic ring group may have include, for example, R 41 , R 42 and R 43 in the general formula (I). The above-mentioned alkyl groups; alkoxy groups such as methoxy group, ethoxy group, hydroxyethoxy group, propoxy group, hydroxypropoxy group and butoxy group; and aryl groups such as phenyl group.
 Xにより表わされる-CONR64-(R64は、水素原子又はアルキル基を表す)におけるR64のアルキル基としては、置換基を有していてもよい、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基及びドデシル基など炭素数20以下のアルキル基が挙げられ、炭素数8以下のアルキル基がより好ましい。 -CONR 64 represented by X 4 - (R 64 represents a hydrogen atom or an alkyl group) The alkyl group for R 64 in, which may have a substituent, a methyl group, an ethyl group, a propyl group, Examples thereof include an alkyl group having 20 or less carbon atoms such as an isopropyl group, an n-butyl group, a sec-butyl group, a hexyl group, a 2-ethylhexyl group, an octyl group, and a dodecyl group, and an alkyl group having 8 or less carbon atoms is more preferable.
 Xとしては、単結合、-COO-又は-CONH-が好ましく、単結合又は-COO-がより好ましい。 X 4 is preferably a single bond, —COO— or —CONH—, more preferably a single bond or —COO—.
 Lにおけるアルキレン基としては、置換基を有していてもよい、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基及びオクチレン基等の炭素数1~8のアルキレン基が好ましい。 As the alkylene group for L 4, an alkylene group having 1 to 8 carbon atoms such as a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group and an octylene group which may have a substituent is preferable.
 Arとしては、置換基を有していてもよい炭素数6~18の芳香環基が好ましく、ベンゼン環基、ナフタレン環基又はビフェニレン環基がより好ましい。 Ar 4 is preferably an optionally substituted aromatic ring group having 6 to 18 carbon atoms, more preferably a benzene ring group, a naphthalene ring group or a biphenylene ring group.
 一般式(I)で表される繰り返し単位は、ヒドロキシスチレン構造を備えていることが好ましい。即ち、Arは、ベンゼン環基であることが好ましい。 The repeating unit represented by the general formula (I) preferably has a hydroxystyrene structure. That is, Ar 4 is preferably a benzene ring group.
 フェノール性水酸基を有する繰り返し単位の含有量は、樹脂P中の全繰り返し単位に対して、0~50モル%が好ましく、0~45モル%がより好ましく、0~40モル%が特に好ましい。 The content of the repeating unit having a phenolic hydroxyl group is preferably from 0 to 50 mol%, more preferably from 0 to 45 mol%, particularly preferably from 0 to 40 mol%, based on all repeating units in the resin P.
((極性基を有する有機基を含有する繰り返し単位))
 樹脂Pは、極性基を有する有機基を含有する繰り返し単位、特に、極性基で置換された脂環炭化水素構造を有する繰り返し単位を更に含有していてもよい。これにより基板密着性、現像液親和性が向上する。
 極性基で置換された脂環炭化水素構造の脂環炭化水素構造としては、アダマンチル基、ジアマンチル基又はノルボルナン基が好ましい。極性基としては、水酸基又はシアノ基が好ましい。
((A repeating unit containing an organic group having a polar group))
The resin P may further contain a repeating unit containing an organic group having a polar group, in particular, a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group. Thereby, the substrate adhesion and the developer affinity are improved.
The alicyclic hydrocarbon structure of the alicyclic hydrocarbon structure substituted with a polar group is preferably an adamantyl group, a diamantyl group or a norbornane group. As the polar group, a hydroxyl group or a cyano group is preferable.
 樹脂Pが、極性基を有する有機基を含有する繰り返し単位を含有する場合、その含有量は、樹脂P中の全繰り返し単位に対して、1~50モル%が好ましく、1~30モル%がより好ましく、5~25モル%が更に好ましく、5~20モル%が特に好ましい。 When the resin P contains a repeating unit containing an organic group having a polar group, the content is preferably from 1 to 50 mol%, more preferably from 1 to 30 mol%, based on all repeating units in the resin P. More preferably, 5 to 25 mol% is further preferable, and 5 to 20 mol% is particularly preferable.
((一般式(VI)で表される繰り返し単位))
 樹脂Pは、下記一般式(VI)で表される繰り返し単位を含有していてもよい。
((Repeating unit represented by general formula (VI)))
The resin P may contain a repeating unit represented by the following general formula (VI).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(VI)中、
 R61、R62及びR63は、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基、又はアルコキシカルボニル基を表す。但し、R62はArと結合して環を形成していてもよく、その場合のR62は単結合又はアルキレン基を表す。
 Xは、単結合、-COO-、又は-CONR64-を表す。R64は、水素原子又はアルキル基を表す。
 Lは、単結合又はアルキレン基を表す。
 Arは、(n+1)価の芳香環基を表し、R62と結合して環を形成する場合には(n+2)価の芳香環基を表す。
 Yは、n≧2の場合には各々独立に、水素原子又は酸の作用により脱離する基を表す。但し、Yの少なくとも1つは、酸の作用により脱離する基を表す。
 nは、1~4の整数を表す。
In the general formula (VI),
R 61 , R 62 and R 63 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, a cyano group, or an alkoxycarbonyl group. However, R 62 may be bonded to Ar 6 to form a ring, in which case R 62 represents a single bond or an alkylene group.
X 6 represents a single bond, —COO—, or —CONR 64 —. R 64 represents a hydrogen atom or an alkyl group.
L 6 represents a single bond or an alkylene group.
Ar 6 represents an (n + 1) -valent aromatic ring group, and when it is bonded to R 62 to form a ring, represents an (n + 2) -valent aromatic ring group.
Y 2 independently represents a hydrogen atom or a group capable of leaving by the action of an acid when n ≧ 2. However, at least one of Y 2 represents a group which is eliminated by the action of an acid.
n represents an integer of 1 to 4.
 酸の作用により脱離する基Yとしては、下記一般式(VI-A)で表される構造が好ましい。 As the group Y 2 which is eliminated by the action of an acid, a structure represented by the following general formula (VI-A) is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 L及びLは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、又はアルキレン基とアリール基とを組み合わせた基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、ヘテロ原子を含んでいてもよいシクロアルキル基、ヘテロ原子を含んでいてもよいアリール基、アミノ基、アンモニウム基、メルカプト基、シアノ基又はアルデヒド基を表す。
 Q、M、Lの少なくとも2つが結合して環(好ましくは、5員若しくは6員環)を形成してもよい。
L 1 and L 2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a group obtained by combining an alkylene group and an aryl group.
M represents a single bond or a divalent linking group.
Q represents an alkyl group, a cycloalkyl group optionally containing a hetero atom, an aryl group optionally containing a hetero atom, an amino group, an ammonium group, a mercapto group, a cyano group or an aldehyde group.
At least two members of Q, M and L 1 may combine to form a ring (preferably a 5- or 6-membered ring).
 上記一般式(VI)で表される繰り返し単位は、下記一般式(3)で表される繰り返し単位であることが好ましい。 繰 り 返 し The repeating unit represented by the general formula (VI) is preferably a repeating unit represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(3)において、
 Arは、芳香環基を表す。
 Rは、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、アシル基又はヘテロ環基を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
 Q、M及びRの少なくとも二つが結合して環を形成してもよい。
In the general formula (3),
Ar 3 represents an aromatic ring group.
R 3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, an acyl group, or a heterocyclic group.
M 3 represents a single bond or a divalent linking group.
Q 3 represents an alkyl group, a cycloalkyl group, an aryl group, or a heterocyclic group.
At least two of Q 3 , M 3 and R 3 may combine to form a ring.
 Arが表す芳香環基は、上記一般式(VI)におけるnが1である場合の、上記一般式(VI)におけるArと同様であり、フェニレン基又はナフチレン基が好ましく、フェニレン基がより好ましい。 The aromatic ring group represented by Ar 3 is the same as Ar 6 in the general formula (VI) when n in the general formula (VI) is 1, a phenylene group or a naphthylene group is preferable, and a phenylene group is more preferable. preferable.
((側鎖に珪素原子を有する繰り返し単位))
 樹脂Pは、更に、側鎖に珪素原子を有する繰り返し単位を含有していてもよい。側鎖に珪素原子を有する繰り返し単位としては、例えば、珪素原子を有する(メタ)アクリレート系繰り返し単位、及び、珪素原子を有するビニル系繰り返し単位などが挙げられる。側鎖に珪素原子を有する繰り返し単位は、典型的には、側鎖に珪素原子を有する基を有する繰り返し単位であり、珪素原子を有する基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、トリシクロヘキシルシリル基、トリストリメチルシロキシシリル基、トリストリメチルシリルシリル基、メチルビストリメチルシリルシリル基、メチルビストリメチルシロキシシリル基、ジメチルトリメチルシリルシリル基、ジメチルトリメチルシロキシシリル基、及び、下記のような環状若しくは直鎖状ポリシロキサン、又はカゴ型あるいははしご型若しくはランダム型シルセスキオキサン構造などが挙げられる。式中、R、及び、Rは各々独立に、1価の置換基を表す。*は、結合手を表す。
((Repeating unit having silicon atom in side chain))
The resin P may further contain a repeating unit having a silicon atom in a side chain. Examples of the repeating unit having a silicon atom in the side chain include a (meth) acrylate-based repeating unit having a silicon atom and a vinyl-based repeating unit having a silicon atom. The repeating unit having a silicon atom in the side chain is typically a repeating unit having a group having a silicon atom in the side chain. Examples of the group having a silicon atom include a trimethylsilyl group, a triethylsilyl group, and a triphenyl group. Silyl group, tricyclohexylsilyl group, tristrimethylsiloxysilyl group, tristrimethylsilylsilyl group, methylbistrimethylsilylsilyl group, methylbistrimethylsiloxysilyl group, dimethyltrimethylsilylsilyl group, dimethyltrimethylsiloxysilyl group, and the following cyclic Alternatively, a linear polysiloxane, a cage type, a ladder type, or a random type silsesquioxane structure may be used. In the formula, R and R 1 each independently represent a monovalent substituent. * Represents a bond.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記の基を有する繰り返し単位としては、例えば、上記の基を有するアクリレート化合物又はメタクリレート化合物に由来する繰り返し単位、又は、上記の基とビニル基とを有する化合物に由来する繰り返し単位が好ましい。 繰 り 返 し As the repeating unit having the above group, for example, a repeating unit derived from an acrylate compound or a methacrylate compound having the above group, or a repeating unit derived from a compound having the above group and a vinyl group is preferable.
 樹脂Pが、上記側鎖に珪素原子を有する繰り返し単位を有する場合、その含有量は、樹脂P中の全繰り返し単位に対して、1~30モル%が好ましく、5~25モル%がより好ましくは、5~20モル%が特に好ましい。 When the resin P has a repeating unit having a silicon atom in the side chain, its content is preferably from 1 to 30 mol%, more preferably from 5 to 25 mol%, based on all repeating units in the resin P. Is particularly preferably 5 to 20 mol%.
 樹脂Pの重量平均分子量は、GPC(Gel permeation chromatography)法によりポリスチレン換算値として、1,000~200,000が好ましく、3,000~20,000がより好ましく、5,000~15,000が特に好ましい。重量平均分子量を、1,000~200,000とすることにより、耐熱性及びドライエッチング耐性の劣化を防ぐことができ、且つ現像性が劣化したり、粘度が高くなって製膜性が劣化したりすることを防ぐことができる。 The weight average molecular weight of the resin P is preferably from 1,000 to 200,000, more preferably from 3,000 to 20,000, more preferably from 5,000 to 15,000 as a polystyrene equivalent value by GPC (Gel Permeation Chromatography). Particularly preferred. By setting the weight average molecular weight to 1,000 to 200,000, deterioration of heat resistance and dry etching resistance can be prevented, and developability is deteriorated, and viscosity is increased to deteriorate film formability. Can be prevented.
 分散度(分子量分布)は、通常1~5であり、1~3が好ましく、1.2~3.0がより好ましく、1.2~2.0が特に好ましい。 The degree of dispersion (molecular weight distribution) is usually 1 to 5, preferably 1 to 3, more preferably 1.2 to 3.0, and particularly preferably 1.2 to 2.0.
 薬液中において、樹脂Pの含有量は、全固形分中、50~99.9質量%が好ましく、60~99.0質量%がより好ましい。
 また、薬液中において、樹脂Pは、1種で使用してもよいし、複数併用してもよい。
In the chemical solution, the content of the resin P is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass based on the total solid content.
In the chemical solution, the resin P may be used singly or in combination of two or more.
 薬液に含まれるその他の成分(例えば酸発生剤、塩基性化合物、クエンチャー、疎水性樹脂、界面活性剤、及び溶剤等)についてはいずれも公知のものを使用できる。薬液としては、例えば、特開2013-195844号公報、特開2016-057645号公報、特開2015-207006号公報、国際公開第2014/148241号、特開2016-188385号公報、及び、特開2017-219818号公報等に記載の感活性光線性又は感放射線性樹脂組成物等に含有される成分が挙げられる。 公 知 As other components (for example, an acid generator, a basic compound, a quencher, a hydrophobic resin, a surfactant, and a solvent) contained in the chemical solution, any known components can be used. Examples of the chemical include JP-A-2013-195844, JP-A-2016-057645, JP-A-2015-207006, WO2014 / 148241, JP-A-2016-188385, and JP-A-2016-188385. Components contained in the actinic ray-sensitive or radiation-sensitive resin composition described in JP-A-2017-219818 and the like can be mentioned.
<薬液の用途>
 薬液は、半導体デバイスの製造に用いられることが好ましい。特に、ノード10nm以下の微細パターンを形成するため(例えば、EUVを用いたパターン形成を含む工程)に用いられることがより好ましい。
 薬液は、パターン幅、及び/又は、パターン間隔が17nm以下(好ましくは15nm以下、より好ましくは、12nm以下)、及び/又は、得られる配線幅、及び/又は、配線間隔が17nm以下であるレジストプロセスに使用される薬液(プリウェット液、現像液、リンス液、レジスト液の溶剤、及び、剥離液等)、言いかえれば、パターン幅、及び/又は、パターン間隔が17nm以下であるレジスト膜を用いて製造される半導体デバイスの製造用として、特に好ましく用いられる。
<Use of chemicals>
The chemical is preferably used for manufacturing a semiconductor device. In particular, it is more preferably used for forming a fine pattern with a node of 10 nm or less (for example, a step including pattern formation using EUV).
The chemical solution has a pattern width and / or pattern interval of 17 nm or less (preferably 15 nm or less, more preferably 12 nm or less), and / or a resist having an obtained wiring width and / or wiring interval of 17 nm or less. A chemical solution used in the process (a pre-wet solution, a developing solution, a rinsing solution, a solvent for a resist solution, a stripping solution, etc.), in other words, a resist film having a pattern width and / or a pattern interval of 17 nm or less. It is particularly preferably used for the production of semiconductor devices produced using the same.
 具体的には、リソグラフィー工程、エッチング工程、イオン注入工程、及び、剥離工程等を含有する半導体デバイスの製造工程において、各工程の終了後、又は、次の工程に移る前に、有機物を処理するために使用され、具体的にはプリウェット液、現像液、リンス液、及び、剥離液等として好適に用いられる。例えばレジスト塗布前後の半導体基板のエッジエラインのリンスにも使用することができる。
 また、上記薬液は、レジスト液に含有される樹脂の希釈液、レジスト液に含有される溶剤としても用いることができる。また、他の有機溶剤、及び/又は、水等により希釈してもよい。
Specifically, in a semiconductor device manufacturing process including a lithography process, an etching process, an ion implantation process, and a peeling process, an organic material is processed after each process or before moving to the next process. Specifically, it is suitably used as a pre-wet liquid, a developing liquid, a rinsing liquid, a stripping liquid or the like. For example, it can be used for rinsing the edge line of the semiconductor substrate before and after the application of the resist.
Further, the above chemical solution can be used as a diluting solution of a resin contained in the resist solution and a solvent contained in the resist solution. Further, it may be diluted with another organic solvent and / or water.
 また、上記薬液は、半導体デバイスの製造用以外の、他の用途にも用いることができ、ポリイミド、センサー用レジスト、レンズ用レジスト等の現像液、及び、リンス液等としても使用できる。
 また、上記薬液は、医療用途又は洗浄用途の溶媒としても用いることができる。特に、容器、配管、及び、基板(例えば、ウェハ、及び、ガラス等)等の洗浄に好適に用いることができる。
In addition, the above chemical solution can be used for other uses other than the production of semiconductor devices, and can also be used as a developer for polyimide, a resist for sensors, a resist for lenses, and a rinsing solution.
Further, the above-mentioned chemical solution can be used as a solvent for medical use or cleaning use. In particular, it can be suitably used for cleaning containers, piping, substrates (eg, wafers, glass, and the like).
 なかでも、本薬液は、現像液、リンス液、ウェハ洗浄液、ライン洗浄液、プリウェット液、レジスト液、下層膜形成用液、上層膜形成用液、及び、ハードコート形成用液からなる群より選択される少なくとも1種の液の原料として用いると、より効果が発揮される。 Among them, the chemical is selected from the group consisting of a developer, a rinse, a wafer cleaning liquid, a line cleaning liquid, a pre-wet liquid, a resist liquid, a lower layer film forming liquid, an upper layer film forming liquid, and a hard coat forming liquid. When used as a raw material of at least one liquid to be used, the effect is more exhibited.
〔薬液の製造方法〕
 上記薬液の製造方法としては特に制限されず、公知の製造方法が使用できる。中でも、より優れた本発明の効果を示す薬液が得られる点で、薬液の製造方法は、フィルターを用いて溶剤を含有する被精製物をろ過して薬液を得る、ろ過工程を有するのが好ましい。
(Chemical liquid manufacturing method)
The method for producing the chemical solution is not particularly limited, and a known production method can be used. Among them, the method for producing a chemical solution is preferable in that a chemical solution showing a better effect of the present invention is obtained, and the method for producing a chemical solution is performed by filtering a substance to be purified containing a solvent using a filter to obtain a chemical solution. .
 ろ過工程において使用する被精製物は、購入等により調達してもよいし、原料を反応させて得てもよい。被精製物としては、不純物の含有量が少ないのが好ましい。そのような被精製物の市販品としては、例えば、「高純度グレード品」と呼ばれる市販品が挙げられる。 (4) The material to be purified used in the filtration step may be procured by purchasing or the like, or may be obtained by reacting the raw materials. It is preferable that the material to be purified has a low impurity content. Examples of such a commercially available product to be purified include a commercially available product called “high-purity grade product”.
 原料を反応させて被精製物(典型的には、有機溶剤を含有する被精製物)を得る方法として特に制限されず、公知の方法を使用できる。例えば、触媒の存在下において、一又は複数の原料を反応させて、有機溶剤を得る方法が挙げられる。
 より具体的には、例えば、酢酸とn-ブタノールとを硫酸の存在下で反応させ、酢酸ブチルを得る方法;エチレン、酸素、及び、水をAl(Cの存在下で反応させ、1-ヘキサノールを得る方法;シス-4-メチル-2-ペンテンをIpc2BH(Diisopinocampheylborane)の存在下で反応させ、4-メチル-2-ペンタノールを得る方法;プロピレンオキシド、メタノール、及び、酢酸を硫酸の存在下で反応させ、PGMEA(プロピレングリコール1-モノメチルエーテル2-アセタート)を得る方法;アセトン、及び、水素を酸化銅-酸化亜鉛-酸化アルミニウムの存在下で反応させて、IPA(isopropyl alcohol)を得る方法;乳酸、及び、エタノールを反応させて、乳酸エチルを得る方法;等が挙げられる。
There is no particular limitation on the method of obtaining the object to be purified (typically, the object to be purified containing an organic solvent) by reacting the raw materials, and a known method can be used. For example, there is a method in which one or more raw materials are reacted in the presence of a catalyst to obtain an organic solvent.
More specifically, for example, a method of reacting acetic acid and n-butanol in the presence of sulfuric acid to obtain butyl acetate; reacting ethylene, oxygen, and water in the presence of Al (C 2 H 5 ) 3 Reacting cis-4-methyl-2-pentene in the presence of Ipc2BH (Diisopinocampheylborane) to obtain 4-methyl-2-pentanol; propylene oxide, methanol and acetic acid Is reacted in the presence of sulfuric acid to obtain PGMEA (propylene glycol 1-monomethyl ether 2-acetate); acetone and hydrogen are reacted in the presence of copper oxide-zinc oxide-aluminum oxide to give IPA (isopropyl). alcohol) by reacting lactic acid and ethanol to obtain lactic acid. And the like; a method of obtaining a chill.
<ろ過工程>
 本発明の実施形態に係る薬液の製造方法は、フィルターを用いて上記被精製物をろ過して薬液を得るろ過工程を有する。フィルターを用いて被精製物をろ過する方法としては特に制限されないが、ハウジングと、ハウジングに収納されたフィルターカートリッジと、を有するフィルターユニットに、被精製物を加圧又は無加圧で通過させる(通液する)のが好ましい。
<Filtration process>
The method for producing a drug solution according to the embodiment of the present invention includes a filtration step of filtering the above-mentioned substance to be purified using a filter to obtain a drug solution. The method of filtering the object to be purified using a filter is not particularly limited, and the object to be purified is passed through a filter unit having a housing and a filter cartridge housed in the housing with or without pressurization ( Is preferable.
(フィルターの細孔径)
 フィルターの細孔径としては特に制限されず、被精製物のろ過用として通常使用される細孔径のフィルターが使用できる。中でも、フィルターの細孔径は、薬液が含有する粒子(金属含有粒子等)の数を所望の範囲により制御しやすい点で、200nm以下が好ましく、20nm以下がより好ましく、10nm以下が更に好ましく、5nm以下が特に好ましく、3nm以下が最も好ましい。下限値としては特に制限されないが、一般に1nm以上が、生産性の観点から好ましい。
 なお、本明細書において、フィルターの細孔径、及び、細孔径分布とは、イソプロパノール(IPA)又は、HFE-7200(「ノベック7200」、3M社製、ハイドロフロオロエーテル、COC)のバブルポイントによって決定される細孔径及び細孔径分布を意味する。
(Pore size of filter)
The pore size of the filter is not particularly limited, and a filter having a pore size usually used for filtering a substance to be purified can be used. Among them, the pore diameter of the filter is preferably 200 nm or less, more preferably 20 nm or less, still more preferably 10 nm or less, in that the number of particles (such as metal-containing particles) contained in the chemical solution is easily controlled in a desired range. The following is particularly preferred, and 3 nm or less is most preferred. The lower limit is not particularly limited, but is generally preferably 1 nm or more from the viewpoint of productivity.
In the present specification, the pore diameter and the pore diameter distribution of the filter are defined as isopropanol (IPA) or HFE-7200 (“Novec 7200”, manufactured by 3M, hydrofluoroether, C 4 F 9 OC 2). H 5 ) means the pore size and pore size distribution determined by the bubble point.
 フィルターの細孔径が、5.0nm以下であると、薬液中における含有粒子数をより制御しやすい点で好ましい。以下、細孔径が5nm以下のフィルターを「微小孔径フィルター」ともいう。
 なお、微小孔径フィルターは単独で用いてもよいし、他の細孔径を有するフィルターと使用してもよい。中でも、生産性により優れる観点から、より大きな細孔径を有するフィルターと使用するのが好ましい。この場合、予めより大きな細孔径を有するフィルターによってろ過した被精製物を、微小孔径フィルターに通液させれば、微小孔径フィルターの目詰まりを防げる。
 すなわち、フィルターの細孔径としては、フィルターを1つ用いる場合には、細孔径は5.0nm以下が好ましく、フィルターを2つ以上用いる場合、最小の細孔径を有するフィルターの細孔径が5.0nm以下が好ましい。
It is preferable that the pore diameter of the filter be 5.0 nm or less, since the number of particles contained in the drug solution can be more easily controlled. Hereinafter, a filter having a pore size of 5 nm or less is also referred to as a “micropore size filter”.
The micropore size filter may be used alone, or may be used with a filter having another pore size. Among them, it is preferable to use a filter having a larger pore diameter from the viewpoint of better productivity. In this case, if the object to be purified, which has been filtered through a filter having a larger pore diameter in advance, is passed through a micropore size filter, clogging of the micropore size filter can be prevented.
That is, when one filter is used, the pore diameter of the filter is preferably 5.0 nm or less, and when two or more filters are used, the pore diameter of the filter having the smallest pore diameter is 5.0 nm. The following is preferred.
 細孔径の異なる2種以上のフィルターを順次使用する形態としては特に制限されないが、被精製物が移送される管路に沿って、既に説明したフィルターユニットを順に配置する方法が挙げられる。このとき、管路全体として被精製物の単位時間当たりの流量を一定にしようとすると、細孔径のより小さいフィルターユニットには、細孔径のより大きいフィルターユニットと比較してより大きな圧力がかかる場合がある。この場合、フィルターユニットの間に圧力調整弁、及び、ダンパ等を配置して、小さい細孔径を有するフィルターユニットにかかる圧力を一定にしたり、また、同一のフィルターが収納されたフィルターユニットを管路に沿って並列に配置したりして、ろ過面積を大きくするのが好ましい。このようにすれば、より安定して、薬液中における粒子の数を制御できる。 形態 The form in which two or more types of filters having different pore diameters are sequentially used is not particularly limited, and examples thereof include a method of sequentially arranging the above-described filter units along a pipe through which a substance to be purified is transferred. At this time, if an attempt is made to keep the flow rate of the object to be purified per unit time in the entire pipeline, a larger pressure is applied to the filter unit having a smaller pore size as compared with the filter unit having a larger pore size. There is. In this case, a pressure regulating valve, a damper, and the like are arranged between the filter units to make the pressure applied to the filter unit having a small pore diameter constant, or to connect a filter unit containing the same filter to a pipeline. It is preferable to increase the filtration area by, for example, arranging them in parallel along the line. This makes it possible to more stably control the number of particles in the chemical solution.
(フィルターの材料)
 フィルターの材料としては特に制限されず、フィルターの材料として公知の材料が使用できる。具体的には、樹脂である場合、ナイロン(例えば、6-ナイロン及び6,6-ナイロン)等のポリアミド;ポリエチレン、及び、ポリプロピレン等のポリオレフィン;ポリスチレン;ポリイミド;ポリアミドイミド;ポリ(メタ)アクリレート;ポリテトラフルオロエチレン、パーフルオロアルコキシアルカン、パーフルオロエチレンプロペンコポリマー、エチレン・テトラフルオロエチレンコポリマー、エチレン-クロロトリフロオロエチレンコポリマー、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、及び、ポリフッ化ビニル等のポリフルオロカーボン;ポリビニルアルコール;ポリエステル;セルロース;セルロースアセテート等が挙げられる。中でも、より優れた耐溶剤性を有し、得られる薬液がより優れた欠陥抑制性能を有する点で、ナイロン(中でも、6,6-ナイロンが好ましい)、ポリオレフィン(中でも、ポリエチレンが好ましい)、ポリ(メタ)アクリレート、及び、ポリフルオロカーボン(中でも、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)が好ましい。)からなる群から選択される少なくとも1種が好ましい。これらの重合体は単独で又は二種以上を組み合わせて使用できる。
 また、樹脂以外にも、ケイソウ土、及び、ガラス等であってもよい。
 他にも、ポリオレフィン(後述するUPE等)にポリアミド(例えば、ナイロン-6又はナイロン-6,6等のナイロン)をグラフト共重合させたポリマー(ナイロングラフトUPE等)をフィルターの材料としてもよい。
(Filter material)
The material for the filter is not particularly limited, and a known material for the filter can be used. Specifically, when it is a resin, polyamide such as nylon (for example, 6-nylon and 6,6-nylon); polyolefin such as polyethylene and polypropylene; polystyrene; polyimide; polyamideimide; Polytetrafluoroethylene, perfluoroalkoxyalkane, perfluoroethylene propene copolymer, ethylene / tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride Fluorocarbon; polyvinyl alcohol; polyester; cellulose; cellulose acetate and the like. Among them, nylon (especially, 6,6-nylon is preferred), polyolefin (especially, polyethylene is preferred), and polyolefin are preferred in that they have better solvent resistance and the resulting chemical has more excellent defect suppression performance. At least one selected from the group consisting of (meth) acrylate and polyfluorocarbon (among others, polytetrafluoroethylene (PTFE) and perfluoroalkoxyalkane (PFA) is preferable) is preferable. These polymers can be used alone or in combination of two or more.
In addition to the resin, diatomaceous earth, glass, and the like may be used.
Alternatively, a polymer (eg, nylon-grafted UPE) obtained by graft-copolymerizing a polyamide (eg, nylon-6 or nylon-6,6, etc.) with a polyolefin (eg, UPE described later) may be used as the filter material.
 また、フィルターは表面処理されたフィルターであってもよい。表面処理の方法としては特に制限されず、公知の方法が使用できる。表面処理の方法としては、例えば、化学修飾処理、プラズマ処理、疎水処理、コーティング、ガス処理、及び、焼結等が挙げられる。 フ ィ ル タ ー The filter may be a surface-treated filter. The method for surface treatment is not particularly limited, and a known method can be used. Examples of the surface treatment method include chemical modification treatment, plasma treatment, hydrophobic treatment, coating, gas treatment, and sintering.
 プラズマ処理は、フィルターの表面が親水化されるために好ましい。プラズマ処理して親水化されたろ過材の表面における水接触角としては特に制限されないが、接触角計で測定した25℃における静的接触角が、60°以下が好ましく、50°以下がより好ましく、30°以下が特に好ましい。 Plasma treatment is preferable because the surface of the filter becomes hydrophilic. The water contact angle on the surface of the filter material that has been hydrophilized by plasma treatment is not particularly limited, but the static contact angle at 25 ° C measured by a contact angle meter is preferably 60 ° or less, and more preferably 50 ° or less. , 30 ° or less is particularly preferable.
 化学修飾処理としては、基材にイオン交換基を導入する方法が好ましい。
 すなわち、フィルターとしては、上記で挙げた各材料を基材として、上記基材にイオン交換基を導入したフィルターが好ましい。典型的には、上記基材の表面にイオン交換基を含有する基材を含む層を含むフィルターが好ましい。表面修飾された基材としては特に制限されず、製造がより容易な点で、上記重合体にイオン交換基を導入したフィルターが好ましい。
As the chemical modification treatment, a method of introducing an ion exchange group into a substrate is preferable.
That is, as the filter, a filter in which each of the above-described materials is used as a base material and an ion exchange group is introduced into the base material is preferable. Typically, a filter including a layer containing a substrate containing an ion exchange group on the surface of the substrate is preferable. The surface-modified substrate is not particularly limited, and a filter in which an ion exchange group is introduced into the above polymer is preferable in terms of easier production.
 イオン交換基としては、カチオン交換基として、スルホン酸基、カルボキシ基、及び、リン酸基等が挙げられ、アニオン交換基として、4級アンモニウム基等が挙げられる。イオン交換基を重合体に導入する方法としては特に制限されないが、イオン交換基と重合性基とを含有する化合物を重合体と反応させ典型的にはグラフト化する方法が挙げられる。 Examples of the ion exchange group include a cation exchange group such as a sulfonic acid group, a carboxy group, and a phosphate group, and examples of the anion exchange group include a quaternary ammonium group. The method for introducing an ion-exchange group into a polymer is not particularly limited, and examples thereof include a method of reacting a compound containing an ion-exchange group and a polymerizable group with a polymer and typically grafting.
 イオン交換基の導入方法としては特に制限されないが、上記の樹脂の繊維に電離放射線(α線、β線、γ線、X線、及び、電子線等)を照射して樹脂中に活性部分(ラジカル)を生成させる。この照射後の樹脂をモノマー含有溶液に浸漬してモノマーを基材にグラフト重合させる。その結果、このモノマーがポリオレフィン繊維にグラフト重合側鎖として結合したポリマーが生成する。この生成されたポリマーを側鎖として含有する樹脂をアニオン交換基又はカチオン交換基を含有する化合物と接触反応させて、グラフト重合された側鎖のポリマーにイオン交換基が導入されて最終生成物が得られる。 The method for introducing the ion-exchange group is not particularly limited, but the fibers of the above resin are irradiated with ionizing radiation (α-ray, β-ray, γ-ray, X-ray, electron beam, etc.) to form an active portion ( Radicals). The irradiated resin is immersed in a monomer-containing solution to graft-polymerize the monomer onto the substrate. As a result, a polymer is formed in which the monomer is bonded to the polyolefin fiber as a graft polymerization side chain. The resin containing the produced polymer as a side chain is contact-reacted with a compound containing an anion exchange group or a cation exchange group, and an ion exchange group is introduced into the graft-polymerized side chain polymer to give a final product. can get.
 また、フィルターは、放射線グラフト重合法によりイオン交換基を形成した織布、又は、不織布と、従来のガラスウール、織布、又は、不織布のろ過材とを組み合わせた構成でもよい。 フ ィ ル タ ー The filter may have a structure in which a woven or nonwoven fabric having an ion exchange group formed by a radiation graft polymerization method is combined with a conventional glass wool, woven or nonwoven fabric filter material.
 イオン交換基を含有するフィルターを用いると、金属原子を含有する粒子の薬液中における含有量を所望の範囲により制御しやすい。イオン交換基を含有するフィルターの材料としては特に制限されないが、ポリフルオロカーボン、及び、ポリオレフィンにイオン交換基を導入した材料等が挙げられ、ポリフルオロカーボンにイオン交換基を導入した材料がより好ましい。
 イオン交換基を含有するフィルターの細孔径としては特に制限されないが、1~30nmが好ましく、5~20nmがより好ましい。イオン交換基を含有するフィルターは、既に説明した最小の細孔径を有するフィルターを兼ねてもよいし、最小の細孔径を有するフィルターとは別に使用してもよい。中でもより優れた本発明の効果を示す薬液が得られる点で、ろ過工程は、イオン交換基を含有するフィルターと、イオン交換基を有さず、最小の細孔径を有するフィルターとを使用する形態が好ましい。
 既に説明した最小の細孔径を有するフィルターの材料としては特に制限されないが、耐溶剤性等の観点から、一般に、ポリフルオロカーボン、及び、ポリオレフィンからなる群より選択される少なくとも1種が好ましく、ポリオレフィンがより好ましい。
When a filter containing an ion-exchange group is used, the content of particles containing metal atoms in a chemical solution can be easily controlled in a desired range. The material of the filter containing an ion-exchange group is not particularly limited, and examples thereof include a polyfluorocarbon and a material in which an ion-exchange group is introduced into polyolefin, and a material in which an ion-exchange group is introduced into polyfluorocarbon is more preferable.
The pore size of the filter containing an ion exchange group is not particularly limited, but is preferably 1 to 30 nm, more preferably 5 to 20 nm. The filter containing an ion-exchange group may also serve as the filter having the smallest pore diameter described above, or may be used separately from the filter having the smallest pore diameter. Above all, in terms of obtaining a drug solution exhibiting a superior effect of the present invention, the filtration step uses a filter containing an ion exchange group and a filter having no ion exchange group and having a minimum pore diameter. Is preferred.
The material of the filter having the smallest pore diameter already described is not particularly limited, but from the viewpoint of solvent resistance and the like, generally, polyfluorocarbon, and at least one selected from the group consisting of polyolefins are preferable. More preferred.
 従って、ろ過工程で使用されるフィルターとしては、材料の異なる2種以上のフィルターを使用してもよく、例えば、ポリオレフィン、ポリフルオロカーボン、ポリアミド、及び、これらにイオン交換基を導入した材料のフィルターからなる群より選択される2種以上を使用してもよい。 Therefore, as the filter used in the filtration step, two or more types of filters having different materials may be used. For example, polyolefins, polyfluorocarbons, polyamides, and filters made of materials having ion exchange groups introduced therein may be used. Two or more kinds selected from the group may be used.
(フィルターの細孔構造)
 フィルターの細孔構造としては特に制限されず、被精製物中の成分に応じて適宜選択すればよい。本明細書において、フィルターの細孔構造とは、細孔径分布、フィルター中の細孔の位置的な分布、及び、細孔の形状等を意味し、典型的には、フィルターの製造方法により制御可能である。
 例えば、樹脂等の粉末を焼結して形成すれば多孔質膜が得られ、及び、エレクトロスピニング、エレクトロブローイング、及び、メルトブローイング等の方法により形成すれば繊維膜が得られる。これらは、それぞれ細孔構造が異なる。
(Pore structure of filter)
The pore structure of the filter is not particularly limited, and may be appropriately selected according to the components in the object to be purified. In the present specification, the pore structure of a filter means a pore size distribution, a positional distribution of pores in a filter, and a shape of pores, and is typically controlled by a filter manufacturing method. It is possible.
For example, a porous film can be obtained by sintering a powder of a resin or the like, and a fiber film can be obtained by a method such as electrospinning, electroblowing, and meltblowing. These have different pore structures.
 「多孔質膜」とは、ゲル、粒子、コロイド、細胞、及び、ポリオリゴマー等の被精製物中の成分を保持するが、細孔よりも実質的に小さい成分は、細孔を通過する膜を意味する。多孔質膜による被精製物中の成分の保持は、動作条件、例えば、面速度、界面活性剤の使用、pH、及び、これらの組み合わせに依存する場合があり、かつ、多孔質膜の孔径、構造、及び、除去されるべき粒子のサイズ、及び、構造(硬質粒子か、又は、ゲルか等)に依存し得る。 A “porous membrane” refers to a membrane that retains components in an object to be purified, such as gels, particles, colloids, cells, and poly-oligomers, but a component that is substantially smaller than the pores passes through the pores. Means The retention of components in the object to be purified by the porous membrane may depend on operating conditions, such as surface velocity, use of surfactant, pH, and combinations thereof, and the pore size of the porous membrane, It may depend on the structure and the size of the particles to be removed, and the structure (hard particles or gels, etc.).
 被精製物が負に帯電している粒子を含有する場合、そのような粒子の除去には、ポリアミド製のフィルターが非ふるい膜の機能を果たす。典型的な非ふるい膜には、ナイロン-6膜及びナイロン-6,6膜等のナイロン膜が含まれるが、これらに制限されない。
 なお、本明細書で使用される「非ふるい」による保持機構は、フィルターの圧力降下、又は、細孔径に関連しない、妨害、拡散及び吸着等の機構によって生じる保持を指す。
If the object to be purified contains negatively charged particles, a polyamide filter acts as a non-sieving membrane to remove such particles. Typical non-sieving membranes include, but are not limited to, nylon-6 membranes and nylon membranes such as nylon-6,6 membranes.
As used herein, "non-sieving" retention mechanism refers to retention caused by mechanisms such as filter pressure drop or interference, diffusion, and adsorption that are not related to pore size.
 非ふるい保持は、フィルターの圧力降下又はフィルターの細孔径に関係なく、被精製物中の除去対象粒子を除去する、妨害、拡散及び吸着等の保持機構を含む。フィルター表面への粒子の吸着は、例えば、分子間のファンデルワールス力及び静電力等によって媒介され得る。蛇行状のパスを有する非ふるい膜層中を移動する粒子が、非ふるい膜と接触しないように十分に速く方向を変られない場合に、妨害効果が生じる。拡散による粒子輸送は、粒子がろ過材と衝突する一定の確率を作り出す、主に、小さな粒子のランダム運動又はブラウン運動から生じる。粒子とフィルターの間に反発力が存在しない場合、非ふるい保持機構は活発になり得る。 Non-sieve retention includes retention mechanisms, such as obstruction, diffusion, and adsorption, that remove particles to be removed from the object to be purified, regardless of the filter pressure drop or filter pore size. The adsorption of particles to the filter surface can be mediated, for example, by intermolecular van der Waals forces and electrostatic forces. An interfering effect occurs when particles traveling in a non-sieving membrane layer having a tortuous path are not turned fast enough to avoid contact with the non-sieving membrane. Particle transport by diffusion results primarily from random or Brownian motion of small particles, which creates a certain probability that the particles will collide with the filter media. If there is no repulsion between the particles and the filter, the non-sieve retention mechanism can be active.
 UPE(超高分子量ポリエチレン)フィルターは、典型的には、ふるい膜である。ふるい膜は、主にふるい保持機構を介して粒子を捕捉する膜、又は、ふるい保持機構を介して粒子を捕捉するために最適化された膜を意味する。
 ふるい膜の典型的な例としては、ポリテトラフルオロエチレン(PTFE)膜とUPE膜が含まれるが、これらに制限されない。
 なお、「ふるい保持機構」とは、除去対象粒子が多孔質膜の細孔径よりも大きいことによる結果の保持を指す。ふるい保持力は、フィルターケーキ(膜の表面での除去対象となる粒子の凝集)を形成することによって向上させられる。フィルターケーキは、2次フィルターの機能を効果的に果たす。
UPE (ultra high molecular weight polyethylene) filters are typically sieved membranes. A sieve membrane means a membrane that mainly captures particles via a sieve holding mechanism, or a membrane that is optimized for capturing particles via a sieve holding mechanism.
Typical examples of sieving membranes include, but are not limited to, polytetrafluoroethylene (PTFE) membranes and UPE membranes.
Note that the “sieve holding mechanism” refers to holding the result due to the removal target particles being larger than the pore diameter of the porous membrane. The sieve retention is improved by forming a filter cake (agglomeration of the particles to be removed on the surface of the membrane). The filter cake effectively performs the function of a secondary filter.
 繊維膜の材質は、繊維膜を形成可能なポリマーであれば特に制限されない。ポリマーとしては、例えば、ポリアミド等が挙げられる。ポリアミドとしては、例えば、ナイロン6、及び、ナイロン6,6等が挙げられる。繊維膜を形成するポリマーとしては、ポリ(エーテルスルホン)であってもよい。繊維膜が多孔質膜の一次側にある場合、繊維膜の表面エネルギは、二次側にある多孔質膜の材質であるポリマーより高いのが好ましい。そのような組合せとしては、例えば、繊維膜の材料がナイロンで、多孔質膜がポリエチレン(UPE)である場合が挙げられる。 材質 The material of the fiber membrane is not particularly limited as long as it is a polymer capable of forming the fiber membrane. Examples of the polymer include polyamide and the like. Examples of the polyamide include nylon 6, nylon 6,6, and the like. The polymer forming the fiber membrane may be poly (ether sulfone). When the fiber membrane is on the primary side of the porous membrane, the surface energy of the fiber membrane is preferably higher than the polymer that is the material of the porous membrane on the secondary side. An example of such a combination is a case where the material of the fiber membrane is nylon and the porous membrane is polyethylene (UPE).
 繊維膜の製造方法としては特に制限されず、公知の方法を使用できる。繊維膜の製造方法としては、例えば、エレクトロスピニング、エレクトロブローイング、及び、メルトブローイング等が挙げられる。 方法 The method for producing the fiber membrane is not particularly limited, and a known method can be used. Examples of the method for producing a fiber membrane include electrospinning, electroblowing, and meltblowing.
 多孔質膜(例えば、UPE、及び、PTFE等を含む多孔質膜)の細孔構造としては特に制限されないが、細孔の形状としては例えば、レース状、ストリング状、及び、ノード状等が挙げられる。
 多孔質膜における細孔の大きさの分布とその膜中における位置の分布は、特に制限されない。大きさの分布がより小さく、かつ、その膜中における分布位置が対称であってもよい。また、大きさの分布がより大きく、かつ、その膜中における分布位置が非対称であってもよい(上記の膜を「非対称多孔質膜」ともいう。)。非対称多孔質膜では、孔の大きさは膜中で変化し、典型的には、膜一方の表面から膜の他方の表面に向かって孔径が大きくなる。このとき、孔径の大きい細孔が多い側の表面を「オープン側」といい、孔径が小さい細孔が多い側の表面を「タイト側」ともいう。
 また、非対称多孔質膜としては、例えば、細孔の大きさが膜の厚さ内のある位置においてで最小となる膜(これを「砂時計形状」ともいう。)が挙げられる。
The pore structure of the porous membrane (for example, a porous membrane containing UPE, PTFE, or the like) is not particularly limited, and examples of the pore shape include a lace shape, a string shape, and a node shape. Can be
The distribution of pore sizes in the porous membrane and the distribution of positions in the membrane are not particularly limited. The size distribution may be smaller and the distribution position in the film may be symmetric. Further, the size distribution may be larger and the distribution position in the film may be asymmetric (the above film is also referred to as “asymmetric porous film”). In an asymmetric porous membrane, the size of the pores varies in the membrane, and typically the pore size increases from one surface of the membrane to the other surface of the membrane. At this time, the surface on the side with many pores having a large pore diameter is called “open side”, and the surface on the side with many pores with small pore diameter is also called “tight side”.
Examples of the asymmetric porous membrane include a membrane in which the size of pores is minimized at a certain position within the thickness of the membrane (this is also referred to as an “hourglass shape”).
 非対称多孔質膜を用いて、一次側をより大きいサイズの孔とすると、言い換えれば、一次側をオープン側とすると、前ろ過効果を生じさせられる。 If the primary side is made to have a larger-sized pore using the asymmetric porous membrane, in other words, if the primary side is made to be the open side, a pre-filtration effect can be produced.
 多孔質膜は、PESU(ポリエーテルスルホン)、PFA(パーフルオロアルコキシアルカン、四フッ化エチレンとパーフルオロアルコキシアルカンとの共重合体)、ポリアミド、及び、ポリオレフィン等の熱可塑性ポリマーを含んでもよいし、ポリテトラフルオロエチレン等を含んでもよい。
 中でも、多孔質膜の材料としては、超高分子量ポリエチレンが好ましい。超高分子量ポリエチレンは、極めて長い鎖を有する熱可塑性ポリエチレンを意味し、分子量が百万以上、典型的には、200~600万が好ましい。
The porous membrane may include thermoplastic polymers such as PESU (polyethersulfone), PFA (perfluoroalkoxyalkane, copolymer of ethylene tetrafluoride and perfluoroalkoxyalkane), polyamide, and polyolefin. , Polytetrafluoroethylene and the like.
Among them, ultrahigh molecular weight polyethylene is preferable as the material of the porous membrane. Ultra-high molecular weight polyethylene means a thermoplastic polyethylene having an extremely long chain, and preferably has a molecular weight of 1,000,000 or more, typically 2,000,000 to 6,000,000.
 ろ過工程で使用されるフィルターとしては、細孔構造の異なる2種以上のフィルターを使用してもよく、多孔質膜、及び、繊維膜のフィルターを併用してもよい。具体例としては、ナイロン繊維膜のフィルターと、UPE多孔質膜のフィルターとを使用する方法が挙げられる。 As a filter used in the filtration step, two or more types of filters having different pore structures may be used, or a filter of a porous membrane and a filter of a fiber membrane may be used in combination. Specific examples include a method using a nylon fiber membrane filter and a UPE porous membrane filter.
 また、フィルターは使用前に十分に洗浄してから使用するのが好ましい。
 未洗浄のフィルター(又は十分な洗浄がされていないフィルター)を使用する場合、フィルターが含有する不純物が薬液に持ち込まれやすい。
 フィルターが含有する不純物としては、例えば、上述の有機成分が挙げられ、未洗浄のフィルター(又は十分な洗浄がされていないフィルター)を使用してろ過工程を実施すると、薬液中の有機成分の含有量が、本発明の薬液としての許容範囲を超える場合もある。
 例えば、UPE等のポリオレフィン及びPTFE等のポリフルオロカーボンをフィルターに用いる場合、フィルターは不純物として炭素数12~50のアルカンを含有しやすい。
 また、ナイロン等のポリアミド、ポリイミド、及び、ポリオレフィン(UPE等)にポリアミド(ナイロン等)をグラフト共重合させたポリマーをフィルターに用いる場合、フィルターは不純物として炭素数12~50のアルケンを含有しやすい。
 フィルターの洗浄の方法は、例えば、不純物含有量の少ない有機溶剤(例えば、蒸留精製した有機溶剤(PGMEA等))に、フィルターを1週間以上浸漬する方法が挙げられる。この場合、上記有機溶剤の液温は30~90℃が好ましい。
 洗浄の程度を調整したフィルターを用いて被精製物をろ過し、得られる薬液が所望の量のフィルター由来の有機成分を含有するように調整してもよい。
Further, it is preferable that the filter is sufficiently washed before use.
When an unwashed filter (or a filter that has not been sufficiently washed) is used, impurities contained in the filter are likely to be brought into the chemical solution.
The impurities contained in the filter include, for example, the above-described organic components. When the filtration step is performed using an unwashed filter (or a filter that has not been sufficiently washed), the content of the organic components in the chemical solution is reduced. The amount may exceed the permissible range for the liquid medicine of the present invention.
For example, when a polyolefin such as UPE and a polyfluorocarbon such as PTFE are used for a filter, the filter tends to contain an alkane having 12 to 50 carbon atoms as an impurity.
Also, when a polymer obtained by graft copolymerizing polyamide (nylon or the like) with polyamide such as nylon or polyimide, or polyolefin (UPE or the like) is used for the filter, the filter tends to contain an alkene having 12 to 50 carbon atoms as an impurity. .
The method of washing the filter includes, for example, a method of immersing the filter in an organic solvent having a low impurity content (for example, an organic solvent purified by distillation (eg, PGMEA)) for one week or more. In this case, the liquid temperature of the organic solvent is preferably 30 to 90 ° C.
The substance to be purified may be filtered using a filter whose degree of washing has been adjusted, and the resulting chemical solution may be adjusted so as to contain a desired amount of the organic component derived from the filter.
 ろ過工程は、フィルターの材料、細孔径、及び、細孔構造からなる群より選択される少なくとも1種が異なる2種以上のフィルターに被精製物を通過させる、多段ろ過工程であってもよい。
 また、同一のフィルターに被精製物を複数回通過させてもよく、同種のフィルターの複数に、被精製物を通過させてもよい。
The filtration step may be a multi-step filtration step in which the object to be purified is passed through two or more filters different in at least one selected from the group consisting of a filter material, a pore diameter, and a pore structure.
The object to be purified may be passed through the same filter a plurality of times, or the object to be purified may be passed through a plurality of filters of the same type.
 ろ過工程で使用される精製装置の接液部(被精製物、及び、薬液が接触する可能性のある内壁面等を意味する)の材料としては特に制限されないが、非金属材料(フッ素樹脂等)、及び、電解研磨された金属材料(ステンレス鋼等)からなる群から選択される少なくとも1種(以下、これらをあわせて「耐腐食材料」ともいう。)から形成されるのが好ましい。例えば、製造タンクの接液部が耐腐食材料から形成される、とは、製造タンク自体が耐腐食材料からなるか、又は、製造タンクの内壁面等が耐腐食材料で被覆されている場合が挙げられる。 The material of the liquid contacting portion of the purification device used in the filtration step (meaning the material to be purified and the inner wall surface to which the chemical solution may come into contact) is not particularly limited, but non-metallic materials (such as fluororesin) ) And at least one selected from the group consisting of electrolytically polished metal materials (such as stainless steel) (hereinafter collectively referred to as “corrosion-resistant materials”). For example, the wetted part of a production tank is formed of a corrosion-resistant material, which means that the production tank itself is made of a corrosion-resistant material, or the inner wall of the production tank is coated with a corrosion-resistant material. No.
 上記非金属材料としては、特に制限されず、公知の材料が使用できる。
 非金属材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレン-ポリプロピレン樹脂、並びに、フッ素樹脂(例えば、四フッ化エチレン樹脂、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体、四フッ化エチレン-六フッ化プロピレン共重合樹脂、四フッ化エチレン-エチレン共重合体樹脂、三フッ化塩化エチレン-エチレン共重合樹脂、フッ化ビニリデン樹脂、三フッ化塩化エチレン共重合樹脂、及び、フッ化ビニル樹脂等)からなる群から選択される少なくとも1種が挙げられるが、これに制限されない。
 更に、非金属材料としては、薬液の帯電防止の観点から、帯電防止処理が施された材料を使用してもよい。帯電防止処理を施す方法としては、上記非金属材料(例えば上述のフッ素樹脂)とともに、導電性材料を用いる方法が挙げられる。
 導電性材料は、カーボンを含むことが好ましい。カーボンとしては、薬液の帯電がより抑制される観点から、カーボン粒子(例えば、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック)、カーボンナノチューブ(例えば、グラフェンシートが単層または多層の同軸管状になったもの。CNTともいう。)及び炭素繊維からなる群より選択される少なくとも1種の材料であることが好ましい。
The nonmetallic material is not particularly limited, and a known material can be used.
Non-metallic materials include, for example, polyethylene resin, polypropylene resin, polyethylene-polypropylene resin, and fluorine resin (for example, ethylene tetrafluoride resin, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer, Hexafluoropropylene copolymer resin, ethylene tetrafluoride-ethylene copolymer resin, ethylene trifluoride ethylene-ethylene copolymer resin, vinylidene fluoride resin, ethylene trifluoride ethylene copolymer resin, and vinyl fluoride resin And the like, but not limited thereto.
Further, as the non-metallic material, a material which has been subjected to an antistatic treatment may be used from the viewpoint of preventing the chemical solution from being charged. As a method of performing the antistatic treatment, a method of using a conductive material together with the nonmetallic material (for example, the above-described fluororesin) is exemplified.
The conductive material preferably contains carbon. As carbon, carbon particles (for example, graphite, carbon black, acetylene black, Ketjen black) and carbon nanotubes (for example, a graphene sheet is formed into a single-layer or multi-layer coaxial tube from the viewpoint of further suppressing the charging of a chemical solution. And CNT.) And at least one material selected from the group consisting of carbon fibers.
 上記金属材料としては、特に制限されず、公知の材料が使用できる。
 金属材料としては、例えば、クロム及びニッケルの含有量の合計が金属材料全質量に対して25質量%超である金属材料が挙げられ、中でも、30質量%以上がより好ましい。金属材料におけるクロム及びニッケルの含有量の合計の上限値としては特に制限されないが、一般に90質量%以下が好ましい。
 金属材料としては例えば、ステンレス鋼、及びニッケル-クロム合金等が挙げられる。
The metal material is not particularly limited, and a known material can be used.
Examples of the metal material include a metal material in which the total content of chromium and nickel is more than 25% by mass based on the total mass of the metal material, and among them, 30% by mass or more is more preferable. The upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is generally preferably 90% by mass or less.
Examples of the metal material include stainless steel and a nickel-chromium alloy.
 ステンレス鋼としては、特に制限されず、公知のステンレス鋼が使用できる。中でも、ニッケルを8質量%以上含有する合金が好ましく、ニッケルを8質量%以上含有するオーステナイト系ステンレス鋼がより好ましい。オーステナイト系ステンレス鋼としては、例えばSUS(Steel Use Stainless)304(Ni含有量8質量%、Cr含有量18質量%)、SUS304L(Ni含有量9質量%、Cr含有量18質量%)、SUS316(Ni含有量10質量%、Cr含有量16質量%)、及びSUS316L(Ni含有量12質量%、Cr含有量16質量%)等が挙げられる。 The stainless steel is not particularly limited, and a known stainless steel can be used. Among them, alloys containing nickel at 8% by mass or more are preferable, and austenitic stainless steels containing nickel at 8% by mass or more are more preferable. Examples of austenitic stainless steel include SUS (Steel Use Stainless) 304 (Ni content 8% by mass, Cr content 18% by mass), SUS304L (Ni content 9% by mass, Cr content 18% by mass), SUS316 ( Ni content 10% by mass, Cr content 16% by mass) and SUS316L (Ni content 12% by mass, Cr content 16% by mass) and the like.
 ニッケル-クロム合金としては、特に制限されず、公知のニッケル-クロム合金が使用できる。中でも、ニッケル含有量が40~75質量%、クロム含有量が1~30質量%のニッケル-クロム合金が好ましい。
 ニッケル-クロム合金としては、例えば、ハステロイ(製品名、以下同じ。)、モネル(製品名、以下同じ)、及びインコネル(製品名、以下同じ)等が挙げられる。より具体的には、ハステロイC-276(Ni含有量63質量%、Cr含有量16質量%)、ハステロイ-C(Ni含有量60質量%、Cr含有量17質量%)、ハステロイC-22(Ni含有量61質量%、Cr含有量22質量%)等が挙げられる。
 また、ニッケル-クロム合金は、必要に応じて、上記した合金の他に、更に、ホウ素、ケイ素、タングステン、モリブデン、銅、及びコバルト等を含有していてもよい。
The nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Among them, a nickel-chromium alloy having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass is preferable.
Examples of the nickel-chromium alloy include Hastelloy (product name, the same applies hereinafter), Monel (product name, the same applies hereinafter), and Inconel (product name, the same applies hereinafter). More specifically, Hastelloy C-276 (Ni content 63% by mass, Cr content 16% by mass), Hastelloy-C (Ni content 60% by mass, Cr content 17% by mass), Hastelloy C-22 ( Ni content 61% by mass, Cr content 22% by mass).
Further, the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt, and the like, if necessary, in addition to the above alloy.
 金属材料を電解研磨する方法としては特に制限されず、公知の方法が使用できる。例えば、特開2015-227501号公報の段落[0011]~[0014]、及び、特開2008-264929号公報の段落[0036]~[0042]等に記載された方法が使用できる。 方法 The method of electropolishing the metal material is not particularly limited, and a known method can be used. For example, the methods described in paragraphs [0011] to [0014] of JP-A-2015-227501 and paragraphs [0036] to [0042] of JP-A-2008-264929 can be used.
 金属材料は、電解研磨により表面の不動態層におけるクロムの含有量が、母相のクロムの含有量よりも多くなっていると推測される。そのため、接液部が電解研磨された金属材料から形成された精製装置を用いると、被精製物中に金属含有粒子が流出しにくいと推測される。
 なお、金属材料はバフ研磨されていてもよい。バフ研磨の方法は特に制限されず、公知の方法を使用できる。バフ研磨の仕上げに用いられる研磨砥粒のサイズは特に制限されないが、金属材料の表面の凹凸がより小さくなりやすい点で、#400以下が好ましく、1000~#400がより好ましく、#600~#400が更に好ましい。バフ研磨は、電解研磨の前に行われるのが好ましい。
 また、金属材料は、酸処理及び/又は不動態化処理等がされていてもよい。これらの処理は、電解研磨の後に行われるのが好ましい。
 バフ研磨、酸処理および不動態化処理等の処理は、単独で行ってもよく、2つ以上を組み合わせて行ってもよい。
It is presumed that the metal material has a higher chromium content in the passivation layer on the surface than a chromium content in the matrix due to electrolytic polishing. Therefore, it is presumed that the use of a refining device in which the liquid contact portion is formed from a metal material which has been electropolished, makes it difficult for metal-containing particles to flow out into the object to be purified.
The metal material may be buffed. The buffing method is not particularly limited, and a known method can be used. The size of the abrasive grains used for the buff polishing is not particularly limited, but is preferably # 400 or less, more preferably 1,000 to # 400, and more preferably # 600 to # 400, since irregularities on the surface of the metal material are likely to be smaller. 400 is more preferred. Buff polishing is preferably performed before electrolytic polishing.
Further, the metal material may be subjected to an acid treatment and / or a passivation treatment. These treatments are preferably performed after electrolytic polishing.
Processing such as buffing, acid treatment, and passivation treatment may be performed alone or in combination of two or more.
<その他の工程>
 薬液の製造方法は、ろ過工程以外の工程を更に有していてもよい。ろ過工程以外の工程としては、例えば、蒸留工程、反応工程、及び、除電工程等が挙げられる。
<Other steps>
The method for producing a chemical solution may further include a step other than the filtration step. The steps other than the filtration step include, for example, a distillation step, a reaction step, and a charge removal step.
(蒸留工程)
 蒸留工程は、有機溶剤を含有する被精製物を蒸留して、蒸留済み被精製物を得る工程である。被精製物を蒸留する方法としては特に制限されず、公知の方法が使用できる。典型的には、ろ過工程に供される精製装置の一次側に、蒸留塔を配置し、蒸留された被精製物を製造タンクに導入する方法が挙げられる。
 このとき、蒸留塔の接液部としては特に制限されないが、既に説明した耐腐食材料で形成されるのが好ましい。
(Distillation process)
The distillation step is a step of distilling an object to be purified containing an organic solvent to obtain a distilled object to be purified. The method for distilling the object to be purified is not particularly limited, and a known method can be used. Typically, there is a method in which a distillation column is arranged on the primary side of a purification device provided for a filtration step, and a distilled product to be purified is introduced into a production tank.
At this time, the liquid contact portion of the distillation column is not particularly limited, but is preferably formed of the corrosion-resistant material described above.
(反応工程)
 反応工程は、原料を反応させて、反応物である有機溶剤を含有する被精製物を生成する工程である。被精製物を生成する方法としては特に制限されず、公知の方法が使用できる。典型的には、ろ過工程に供される精製装置の製造タンク(又は、蒸留塔)の一次側に反応槽を配置し、反応物を製造タンク(又は蒸留塔)に導入する方法が挙げられる。
 このとき、製造タンクの接液部としては特に制限されないが、既に説明した耐腐食材料で形成されるのが好ましい。
(Reaction step)
The reaction step is a step of reacting the raw materials to produce a purified product containing an organic solvent as a reactant. The method for producing the object to be purified is not particularly limited, and a known method can be used. Typically, there is a method in which a reaction tank is arranged on the primary side of a production tank (or a distillation column) of a purification device provided for a filtration step, and a reactant is introduced into the production tank (or a distillation column).
At this time, the liquid contact portion of the production tank is not particularly limited, but is preferably formed of the corrosion-resistant material described above.
(除電工程)
 除電工程は、被精製物を除電して、被精製物の帯電電位を低減させる工程である。
 除電方法としては特に制限されず、公知の除電方法を使用できる。除電方法としては、例えば、被精製物を導電性材料に接触させる方法が挙げられる。
 被精製物を導電性材料に接触させる接触時間は、0.001~60秒が好ましく、0.001~1秒がより好ましく、0.01~0.1秒が特に好ましい。導電性材料としては、ステンレス鋼、金、白金、ダイヤモンド、及びグラッシーカーボン等が挙げられる。
 被精製物を導電性材料に接触させる方法としては、例えば、導電性材料からなる接地されたメッシュを管路内部に配置し、ここに被精製物を通す方法等が挙げられる。
(Static elimination process)
The charge elimination step is a step of removing charges from the object to be purified to reduce the charged potential of the object to be purified.
The static elimination method is not particularly limited, and a known static elimination method can be used. Examples of the charge removal method include a method of contacting the object to be purified with a conductive material.
The contact time for bringing the object to be purified into contact with the conductive material is preferably 0.001 to 60 seconds, more preferably 0.001 to 1 second, and particularly preferably 0.01 to 0.1 second. Examples of the conductive material include stainless steel, gold, platinum, diamond, and glassy carbon.
As a method of bringing the object to be purified into contact with the conductive material, for example, a method of arranging a grounded mesh made of a conductive material in a pipe and passing the object through the pipe is mentioned.
 被精製物の精製は、それに付随する、容器の開封、容器及び装置の洗浄、溶液の収容、並びに、分析等は、全てクリーンルームで行うのが好ましい。クリーンルームは、国際標準化機構が定める国際標準ISO14644-1:2015で定めるクラス4以上の清浄度のクリーンルームが好ましい。具体的にはISOクラス1、ISOクラス2、ISOクラス3、及び、ISOクラス4のいずれかを満たすのが好ましく、ISOクラス1又はISOクラス2を満たすのがより好ましく、ISOクラス1を満たすのが特に好ましい。 精製 Purification of the object to be purified is preferably performed in a clean room, in which the opening of the container, the cleaning of the container and the device, the storage of the solution, and the analysis are all performed. The clean room is preferably a clean room having a class 4 or higher cleanliness specified by International Standard ISO1464-1: 2015 specified by the International Organization for Standardization. Specifically, it is preferable to satisfy any one of ISO class 1, ISO class 2, ISO class 3, and ISO class 4, more preferably to satisfy ISO class 1 or ISO class 2, and to satisfy ISO class 1. Is particularly preferred.
 薬液の保管温度としては特に制限されないが、薬液が微量に含有する不純物等がより溶出しにくく、結果としてより優れた本発明の効果が得られる点で、保管温度としては4℃以上が好ましい。 (4) The storage temperature of the drug solution is not particularly limited, but the storage temperature is preferably 4 ° C. or higher from the viewpoint that impurities and the like contained in a small amount in the drug solution are less likely to be eluted and, as a result, a superior effect of the present invention can be obtained.
〔容器〕
 容器には、上記薬液が収容されている。薬液収容体の保存時又は輸送時に容器の外に薬液が流出しないように、薬液収容体における容器は、薬液を収容した状態で密閉されている。
 薬液は、使用時まで容器内で保管される。薬液を使用する際には、薬液収容体から薬液が取り出される。
〔container〕
The container contains the above-mentioned chemical solution. In order to prevent the chemical solution from flowing out of the container when storing or transporting the chemical solution container, the container in the chemical solution container is sealed with the medical solution stored therein.
The drug solution is stored in the container until use. When using the chemical, the chemical is taken out of the chemical container.
 容器としては、半導体デバイス製造用途向けに、容器内のクリーン度が高く、不純物の溶出が少ないのが好ましい。
 容器としては、具体的には、アイセロ化学(株)製の「クリーンボトル」シリーズ、及び、コダマ樹脂工業製の「ピュアボトル」等が挙げられるが、これらに制限されない。
It is preferable that the container has a high degree of cleanness in the container and a small amount of elution of impurities for use in manufacturing semiconductor devices.
Specific examples of the container include, but are not limited to, a “clean bottle” series manufactured by Aicello Chemical Co., Ltd. and a “pure bottle” manufactured by Kodama Resin Kogyo.
 容器としては、薬液への不純物混入(コンタミ)防止を目的として、容器内壁を6種の樹脂による6層構造とした多層ボトル、又は、6種の樹脂による7層構造とした多層ボトルを使用するのも好ましい。これらの容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。 As the container, a multi-layer bottle having a six-layer structure made of six kinds of resins or a seven-layer structure made of six kinds of resins is used for the purpose of preventing impurities from being mixed into the chemical solution (contamination). Is also preferred. Examples of these containers include those described in JP-A-2015-123351.
 容器の接液部の少なくとも一部は、既に説明した耐腐食材料(好ましくは電解研磨されたステンレス鋼若しくはフッ素樹脂)又はガラスであってもよい。より優れた本発明の効果が得られる点で、接液部の面積の90%以上が上記材料からなるのが好ましく、接液部の全部が上記材料からなるのがより好ましい。 少 な く と も At least a part of the liquid contact part of the container may be a corrosion-resistant material (preferably, electropolished stainless steel or fluororesin) or glass described above. It is preferable that 90% or more of the area of the liquid contact part is made of the above-mentioned material, and it is more preferable that all of the liquid contact part is made of the above-mentioned material from the viewpoint that the superior effects of the present invention can be obtained.
 容器の好適態様の一つとしては、容器の接液部の少なくとも一部が電解研磨されたステンレス鋼である態様が挙げられる。この場合、容器の接液部の平均表面粗さRaは、1500nm以下が好ましく、薬液の欠陥抑制性能により優れ、かつ、薬液の帯電をより抑制できる点から、100nm未満が好ましく、10nm以下がより好ましく、5nm未満がさらに好ましい。なお、容器の接液部の平均表面粗さRaの下限値は、1nm以上が好ましい。
 ここで、容器の接液部の平均表面粗さRaは、次のようにして測定できる。まず、原子間力顕微鏡(Atomic Force Microscope:AFM)にて、探針径10nmのカンチレバーを使用し、表面形状を測定し、3次元データを求める。ここで、容器の接液部を1cm角の大きさに切り取って、ピエゾスキャナー上の水平な試料台にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際、試料の凹凸をZ方向のピエゾの変位でとらえ、計測の際は、表面の5μm×5μmの範囲を512×512点測定する。上記で求めた3次元データ(f(x,y))を用い、平均表面粗さRaが求められる。
As a preferred embodiment of the container, there is an embodiment in which at least a part of the liquid contact part of the container is stainless steel which is electropolished. In this case, the average surface roughness Ra of the liquid contacting part of the container is preferably 1500 nm or less, and is more excellent in suppressing defects of the chemical solution, and is preferably less than 100 nm, more preferably 10 nm or less from the viewpoint that the charging of the chemical solution can be further suppressed. Preferably, less than 5 nm is more preferred. Note that the lower limit of the average surface roughness Ra of the liquid contact part of the container is preferably 1 nm or more.
Here, the average surface roughness Ra of the liquid contact part of the container can be measured as follows. First, the surface shape is measured with an atomic force microscope (AFM) using a cantilever having a probe diameter of 10 nm to obtain three-dimensional data. Here, the liquid-contact part of the container was cut into a size of 1 cm square, set on a horizontal sample stage on a piezo scanner, approached the cantilever to the sample surface, and reached XY In this case, the unevenness of the sample is captured by the displacement of the piezo in the Z direction. At the time of measurement, 512 × 512 points are measured in a range of 5 μm × 5 μm on the surface. The average surface roughness Ra is determined using the three-dimensional data (f (x, y)) determined above.
 また、容器の好適態様の一つとしては、容器の接液部の少なくとも一部が、上述したフッ素樹脂とともに導電性材料を更に含む態様が挙げられる。これにより、薬液の帯電がより抑制される。導電性材料の具体例は、既に説明した耐腐食材料における導電性材料と同様である。 As a preferred embodiment of the container, there is an embodiment in which at least a part of the liquid contact part of the container further contains a conductive material together with the above-described fluororesin. Thereby, the charging of the chemical solution is further suppressed. Specific examples of the conductive material are the same as the conductive material in the corrosion-resistant material described above.
 薬液収容体における容器内の空隙率は、50~99.99体積%が好ましく、50~99.90体積%がより好ましく、80~99体積%が特に好ましい。空隙率が、上記範囲内にあれば、適当な空間があるため薬液の取り扱いが容易である。
 なお、上記空隙率は、下式(X)に従って計算される。
式(X):空隙率(体積%)={1-(容器内の薬液の体積/容器の容器体積)}×100
 上記容器体積とは、容器の内容積(容量)と同義である。
The porosity in the container of the liquid medicine container is preferably 50 to 99.99% by volume, more preferably 50 to 99.90% by volume, and particularly preferably 80 to 99% by volume. If the porosity is within the above range, the chemical solution can be easily handled because there is an appropriate space.
The porosity is calculated according to the following equation (X).
Formula (X): Porosity (% by volume) = {1− (volume of drug solution in container / volume of container in container)} × 100
The container volume is synonymous with the internal volume (capacity) of the container.
 薬液収容体における容器の空隙部には、溶剤よりもClogP値が高い有機化合物(後述の特定有機化合物B)を含む気体が存在する。
 気体は、通常空気であるが、空気の少なくとも一部が窒素ガスで置換されているのが好ましい。空気の少なくとも一部が窒素ガスで置換されていると、空隙部に存在する有機化合物Bの含有量を制御できるので、欠陥抑制性能に優れた薬液が得られる。
 窒素ガスの含有量は、本発明の効果がより発揮される点から、容器の空隙部の全容量に対して、95~99.9999体積%が好ましく、97~99.99体積%がより好ましい。
A gas containing an organic compound (specific organic compound B described later) having a higher ClogP value than the solvent is present in the cavity of the container in the chemical solution container.
The gas is usually air, but it is preferable that at least a part of the air is replaced by nitrogen gas. If at least a part of the air is replaced with nitrogen gas, the content of the organic compound B present in the voids can be controlled, so that a chemical solution having excellent defect suppression performance can be obtained.
The content of nitrogen gas is preferably from 95 to 99.9999% by volume, more preferably from 97 to 99.99% by volume, based on the total volume of the void portion of the container, from the viewpoint that the effect of the present invention is more exhibited. .
<特定有機化合物B>
 容器の空隙部に存在する気体は、特定有機化合物Bを含む。特定有機化合物Bは、上述の通り、薬液中の溶剤よりもClogP値が高い有機化合物である。
 特定有機化合物BのClogP値の好適態様及び具体例は、特定有機化合物Aと同様である。
<Specific organic compound B>
The gas present in the cavity of the container contains the specific organic compound B. As described above, the specific organic compound B is an organic compound having a higher ClogP value than the solvent in the chemical solution.
Preferred embodiments and specific examples of the ClogP value of the specific organic compound B are the same as those of the specific organic compound A.
 特定有機化合物Aと特定有機化合物Bの含有量の合計は、薬液の全質量に対して、100,000質量ppt以下であり、0.1~100,000質量pptが好ましい。
 上記含有量の合計が100,000質量ppt以下であれば、特定有機化合物自体が欠陥になることを抑制できるので、欠陥抑制性能に優れた薬液が得られる。
 また、上記含有量の合計が0.1質量ppt以上であれば、特定有機化合物の作用によって、金属含有粒子による欠陥の発生を抑制できる。この理由の詳細は明らかになっていないが、金属含有粒子同士が凝集したり、金属含有粒子が配線基板上に残留したりするのを、薬液中の特定有機化合物が抑制するためと推測される。この効果は、上述した微細パターンの形成の際に、特に顕著に発揮される。
 上記含有量の合計の上限値は、上記効果がより発揮される点から、100,000質量ppt以下が好ましく、2,000質量ppt以下がより好ましく、1,000質量ppt以下がさらに好ましく、10質量ppt以下が特に好ましい。
 上記含有量の合計の下限値は、上記効果がより発揮される点から、0.1質量ppt以上が好ましい。
The total content of the specific organic compound A and the specific organic compound B is 100,000 mass ppt or less, preferably 0.1 to 100,000 mass ppt, based on the total mass of the drug solution.
When the total of the above contents is 100,000 mass ppt or less, the specific organic compound itself can be prevented from becoming a defect, so that a chemical solution having excellent defect suppression performance can be obtained.
Further, when the total content is 0.1 mass ppt or more, generation of defects due to metal-containing particles can be suppressed by the action of the specific organic compound. Although the details of this reason are not clear, it is speculated that the metal-containing particles aggregate or the metal-containing particles remain on the wiring board because the specific organic compound in the chemical solution suppresses the aggregation. . This effect is particularly prominent when the fine pattern is formed.
The upper limit of the total of the above contents is preferably 100,000 mass ppt or less, more preferably 2,000 mass ppt or less, still more preferably 1,000 mass ppt or less, from the viewpoint that the above effect is more exhibited. Particularly preferred is a mass ppt or less.
The lower limit of the total content is preferably 0.1 mass ppt or more from the viewpoint that the above effects are more exhibited.
 気体中の特定有機化合物Bの含有量及び種類は、GCMS(ガスクロマトグラフ質量分析装置;gas chromatography mass spectrometry)を用いて測定できる。 含有 The content and type of the specific organic compound B in the gas can be measured using GCMS (gas chromatography mass spectrometer; gas chromatography mass spectrometry).
 特定有機化合物Bの含有量は、欠陥抑制性能がより優れる点から、薬液の全質量に対して、50,000質量ppt以下が好ましく、0.05~50,000質量pptがより好ましく、0.05~500質量pptがさらに好ましく、0.05~5質量pptが特に好ましい。 The content of the specific organic compound B is preferably 50,000 mass ppt or less, more preferably 0.05 to 50,000 mass ppt, and more preferably 0.05 to 50,000 mass ppt, based on the total mass of the chemical solution, from the viewpoint of more excellent defect suppression performance. 05 to 500 mass ppt is more preferable, and 0.05 to 5 mass ppt is particularly preferable.
 金属含有粒子の含有量に対する、特定有機化合物Aと特定有機化合物Bの含有量の合計の質量割合[(特定有機化合物A+特定有機化合物B)/金属含有粒子]は、0.01~100,000が好ましく、0.1以上がより好ましく、10,000以下がより好ましく、1,000以下が特に好ましい。
 上記質量割合が0.01以上であれば、特定有機化合物の作用によって、金属含有粒子による欠陥の発生を抑制できる。この理由の詳細は明らかになっていないが、金属含有粒子同士が凝集したり、金属含有粒子が配線基板上に残留したりするのを、薬液中の特定有機化合物が抑制するためと推測される。この効果は、上述した微細パターンの形成の際に、特に顕著に発揮される。
 上記質量割合が100,000以下であれば、特定有機化合物自体が欠陥になったり、特定有機化合物と金属含有粒子との複合粒子が生成したりするのを抑制できるので、欠陥抑制性能に優れた薬液が得られる。
The mass ratio of the total content of the specific organic compound A and the specific organic compound B to the content of the metal-containing particles [(specific organic compound A + specific organic compound B) / metal-containing particles] is 0.01 to 100,000. Is preferably 0.1 or more, more preferably 10,000 or less, and particularly preferably 1,000 or less.
When the mass ratio is 0.01 or more, generation of defects due to metal-containing particles can be suppressed by the action of the specific organic compound. Although the details of this reason are not clear, it is speculated that the metal-containing particles aggregate or the metal-containing particles remain on the wiring board because the specific organic compound in the chemical solution suppresses the aggregation. . This effect is particularly prominent when the fine pattern is formed.
When the mass ratio is 100,000 or less, the specific organic compound itself can be prevented from becoming a defect, or the generation of composite particles of the specific organic compound and the metal-containing particles can be suppressed. A chemical solution is obtained.
 特定有機化合物Bの含有量に対する、特定有機化合物Aの含有量の質量割合(特定有機化合物A/特定有機化合物B)は、1以上が好ましく、10以上がより好ましく、1,000以上が特に好ましい。
 上記質量割合が1以上であれば、経時的な欠陥抑制性能(すなわち、薬液収容体を長期間保管した後に薬液を使用した際の欠陥抑制性能)に優れる。
 上記質量割合の上限値は、特に限定されないが、10,000以下である場合が多い。
The mass ratio of the content of the specific organic compound A to the content of the specific organic compound B (specific organic compound A / specific organic compound B) is preferably 1 or more, more preferably 10 or more, and particularly preferably 1,000 or more. .
When the mass ratio is 1 or more, the defect suppression performance over time (that is, the defect suppression performance when the drug solution is used after storing the drug solution container for a long time) is excellent.
The upper limit of the mass ratio is not particularly limited, but is often 10,000 or less.
 特定有機化合物Bの種類の好適態様は、上記特定有機化合物Aと同様であり、その中でも、フタル酸エステルが好ましく、フタル酸ジオクチル(DOP)及びフタル酸ジイソノニル(DINP)からなる群より選択される少なくとも1種が好ましい。
 本薬液収容体がDOP及びDINPを含む場合、本薬液収容体における、DINPの含有量に対する、DOPの含有量の質量割合(DOP/DINP)は、1以上が好ましく、5以上がより好ましい。DINPはDOPよりも高沸点であるため、シリコン基板へ付着した場合により欠陥として残留しやすいと考えられる。したがって、上記質量割合が1以上であれば、欠陥抑制性能により優れた本薬液が得られる。
 なお、上記質量割合(DOP/DINP)の上限値は、特に限定されないが、10,000以下が好ましく、1,000以下がより好ましい。
Preferred embodiments of the type of the specific organic compound B are the same as those of the specific organic compound A, and among them, a phthalic acid ester is preferable, and is selected from the group consisting of dioctyl phthalate (DOP) and diisononyl phthalate (DINP). At least one is preferred.
When the present drug solution container contains DOP and DINP, the mass ratio of the DOP content to the DINP content (DOP / DINP) in the present drug solution container is preferably 1 or more, more preferably 5 or more. Since DINP has a higher boiling point than DOP, it is considered that when it adheres to a silicon substrate, it is more likely to remain as a defect. Therefore, when the mass ratio is 1 or more, a medicinal solution having more excellent defect suppression performance can be obtained.
The upper limit of the mass ratio (DOP / DINP) is not particularly limited, but is preferably 10,000 or less, more preferably 1,000 or less.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。 本 Hereinafter, the present invention will be described in more detail with reference to Examples. The materials, usage amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
 また、実施例及び比較例の薬液の調製にあたって、容器の取り扱い、薬液の調製、充填、保管及び分析測定は、全てISOクラス2又は1を満たすレベルのクリーンルームで行った。測定精度向上のため、有機成分の含有量の測定、及び、金属成分の含有量の測定においては、通常の測定で検出限界以下の成分の測定を行う際には、薬液を濃縮して測定を行い、濃縮前の溶液の濃度に換算して含有量を算出した。 In the preparation of the chemical solutions of the examples and comparative examples, handling of containers, preparation of chemical solutions, filling, storage, and analytical measurement were all performed in a clean room of a level satisfying ISO class 2 or 1. In order to improve the measurement accuracy, in the measurement of the content of organic components and the content of metal components, when measuring components below the detection limit in normal measurement, concentrate the drug solution and perform the measurement. The concentration was converted to the concentration of the solution before concentration, and the content was calculated.
[薬液]
〔フィルター〕
 薬液の精製に用いたフィルターは、いずれも、市販のPGMEA(プロピレングリコールモノメチルエーテルアセテート)を蒸留精製した洗浄液を用いて洗浄したフィルターを使用した。なお、浸漬は、フィルターを含有するフィルターユニット全体を、PGMEAに沈め、接液部すべてを洗浄した。また、洗浄期間は1週間以上とした。洗浄中、上記PGMEAの液温は30℃を維持した。
 フィルターとしては、以下のフィルターを使用した。
・UPE:超高分子量ポリエチレン製フィルター、インテグリス社製、孔径3nm
・PTFE:ポリテトラフルオロエチレン製フィルター、インテグリス社製、孔径10nm
・ナイロン:ナイロン製フィルター、PALL社製、孔径5nm
・ナイロングラフトUPE:ナイロン/超高分子量ポリエチレングラフト共重合体製フィルター、インテグリス社製、孔径3nm
・ポリイミド:ポリイミド製フィルター、インテグリス社製、孔径10nm
[Chemical solution]
〔filter〕
Each of the filters used for purifying the chemical solution was a filter that was washed using a washing solution obtained by distilling and purifying commercially available PGMEA (propylene glycol monomethyl ether acetate). In the immersion, the entire filter unit including the filter was immersed in PGMEA, and all the liquid contact parts were washed. The cleaning period was set to one week or more. During the washing, the temperature of the PGMEA was maintained at 30 ° C.
The following filters were used as filters.
・ UPE: Ultra high molecular weight polyethylene filter, Entegris, 3 nm pore size
・ PTFE: Polytetrafluoroethylene filter, Entegris, pore size 10 nm
・ Nylon: Nylon filter, manufactured by PALL, pore size 5nm
・ Nylon graft UPE: Nylon / ultra high molecular weight polyethylene graft copolymer filter, Entegris, 3 nm pore size
・ Polyimide: Polyimide filter, manufactured by Entegris, pore size 10 nm
〔被精製物〕
 実施例、及び、比較例の薬液の製造のために、以下の有機溶剤を被精製物として使用した。以下の有機溶剤はいずれも市販品を使用した。ただし、下記「PGMEA/PGME (7:3)」及び「PGMEA/PC(9:1)」は、それぞれ混合前の有機溶剤を購入し、所定量同士を混合して被精製物とした。
・PGMEA:プロピレングリコールモノメチルエーテルアセテート、ClogP値=0.56)
・CHN:シクロヘキサノン、ClogP値=0.81
・nBA:酢酸ブチル、ClogP値=1.78
・NMP:N-メチル-2-ピロリドン、ClogP値=-0.38
・MIBC:4-メチル-2-ペンタノール、ClogP値=1.31
・PGMEA/PGME(7:3):PGMEAとPGME(プロピレングリコールモノメチルエーテル、ClogP値=-0.20)との7:3(v/v)混合液
・PGMEA/PC(9:1):PGMEAとPC(炭酸プロピレン、ClogP値=-0.41)との9:1(v/v)混合液
・iAA:酢酸イソアミル、ClogP値=2.3
・EL:乳酸エチル、ClogP値=0.04
・プロピレングリコールモノメチルエーテル、ClogP値=-0.20
・プロピレングリコールモノプロピルエーテル、ClogP値=0.81
・メトキシプロピオン酸メチル、ClogP値=0.26
・シクロペンタノン、ClogP値=0.24
・γ-ブチロラクトン、ClogP値=-0.64
・ジイソアミルエーテル、ClogP値=3.8
・イソプロパノール、ClogP値=0.05
・ジメチルスルホキシド、ClogP値=-1.35
・ジエチレングリコール、ClogP値=-0.95
・エチレングリコール、ClogP値=-0.79
・ジプロピレングリコール、ClogP値=-0.31
・プロピレングリコール、ClogP値=-0.92
・炭酸エチレン、ClogP値=-0.27
・スルホラン、ClogP値=-0.78
・シクロヘプタノン、ClogP=1.48
・2-ヘプタノン、ClogP値=1.91
・酪酸ブチル、ClogP値=1.78
・イソ酪酸イソブチル、ClogP値=4.4
・ウンデカン、ClogP値=6.5
・プロピオン酸ペンチル、ClogP値=2.8
・プロピオン酸イソペンチル、ClogP値=2.70
・エチルシクロヘキサン、ClogP値=4.4
・メシチレン、ClogP値=3.6
・デカン、ClogP値=6.0
(Substance to be purified)
The following organic solvents were used as substances to be purified for the production of the chemical solutions of the examples and comparative examples. Commercially available products were used for the following organic solvents. However, in the following “PGMEA / PGME (7: 3)” and “PGMEA / PC (9: 1)”, organic solvents before mixing were purchased, and predetermined amounts were mixed with each other to obtain purified materials.
PGMEA: propylene glycol monomethyl ether acetate, ClogP value = 0.56)
CHN: cyclohexanone, ClogP value = 0.81
-NBA: butyl acetate, ClogP value = 1.78
NMP: N-methyl-2-pyrrolidone, ClogP value = -0.38
MIBC: 4-methyl-2-pentanol, ClogP value = 1.31
PGMEA / PGME (7: 3): 7: 3 (v / v) mixture of PGMEA and PGME (propylene glycol monomethyl ether, ClogP value = 0.20) PGMEA / PC (9: 1): PGMEA 9: 1 (v / v) mixed solution of PC and propylene carbonate (ClogP value = −0.41). IAA: isoamyl acetate, ClogP value = 2.3.
EL: ethyl lactate, ClogP value = 0.04
-Propylene glycol monomethyl ether, ClogP value = -0.20
-Propylene glycol monopropyl ether, ClogP value = 0.81
-Methyl methoxypropionate, ClogP value = 0.26
・ Cyclopentanone, ClogP value = 0.24
-Γ-butyrolactone, ClogP value = -0.64
・ Diisoamyl ether, ClogP value = 3.8
-Isopropanol, ClogP value = 0.05
-Dimethyl sulfoxide, ClogP value = -1.35
・ Diethylene glycol, ClogP value = −0.95
-Ethylene glycol, ClogP value = -0.79
・ Dipropylene glycol, ClogP value = −0.31
-Propylene glycol, ClogP value = -0.92
・ Ethylene carbonate, ClogP value = -0.27
-Sulfolane, ClogP value = -0.78
-Cycloheptanone, ClogP = 1.48
-2-heptanone, ClogP value = 1.91
Butyl butyrate, ClogP value = 1.78
-Isobutyl isobutyrate, ClogP value = 4.4
-Undecane, ClogP value = 6.5
Pentyl propionate, ClogP value = 2.8
-Isopentyl propionate, ClogP value = 2.70
-Ethylcyclohexane, ClogP value = 4.4
・ Mesitylene, ClogP value = 3.6
-Decane, ClogP value = 6.0
〔精製処理〕
 上記被精製物から選択した1種を蒸留し、蒸留精製された被精製物を、更に、上述の洗浄を施したフィルターに1回以上通液して精製を行った。
 なお、一連の精製の過程で、被精製物及び薬液を移送する配管は、接液部が電解研磨されたステンレス製の配管、又は、電解研磨されていないステンレス製の配管を使用した。
 被精製物の種類、フィルターの種類、フィルターの洗浄期間、通液の回数、配管の種類、及び、配管の長さ(配管による移送の距離)を適宜変更して、それぞれ表1及び表2に示す薬液とした。
(Purification treatment)
One selected from the above-mentioned purified products was distilled, and the purified purified product was passed through the above-mentioned washed filter one or more times to perform purification.
In the course of a series of purifications, a stainless steel pipe whose liquid contact part was electropolished or a stainless steel pipe that was not electropolished was used as a pipe for transferring the object to be purified and the chemical solution.
The type of material to be purified, the type of filter, the cleaning period of the filter, the number of passages, the type of piping, and the length of piping (distance of transfer by piping) are appropriately changed, and are shown in Tables 1 and 2, respectively. The chemical solution shown was used.
[容器]
 薬液を収納する容器としては、接液部が表1又は表2に記載の材質である容器を使用した。
・PFA:パーフルオロアルコキシアルカン
・PTFE:ポリテトラフルオロエチレン
・SUS316L-EP:オーステナイト系ステンレス鋼(電解研磨あり)
・HDPE:高密度ポリエチレン
・SUS304-EP:オーステナイト系ステンレス鋼(電解研磨あり)
・SUS304:オーステナイト系ステンレス鋼(電解研磨なし)
・ガラス
・PTFEおよびCNT:ポリテトラフルオロエチレンおよびカーボンナノチューブを含む材質
・PTFEおよびカーボン粒子:ポリテトラフルオロエチレンおよびカーボン粒子を含む材質
・PTFEおよび炭素繊維:ポリテトラフルオロエチレンおよび炭素繊維を含む材質
[container]
As a container for storing the chemical solution, a container having a liquid contact part made of a material shown in Table 1 or Table 2 was used.
-PFA: perfluoroalkoxy alkane-PTFE: polytetrafluoroethylene-SUS316L-EP: austenitic stainless steel (with electrolytic polishing)
・ HDPE: High density polyethylene ・ SUS304-EP: Austenitic stainless steel (with electrolytic polishing)
・ SUS304: Austenitic stainless steel (no electrolytic polishing)
-Glass-PTFE and CNT: Materials containing polytetrafluoroethylene and carbon nanotubes-PTFE and carbon particles: Materials containing polytetrafluoroethylene and carbon particles-PTFE and carbon fibers: Materials containing polytetrafluoroethylene and carbon fibers
 なお、表2における一部の実施例については、SUS316L-EPとして、電解研磨の前処理にバフ研磨(研磨砥粒のサイズ:#400)、及び/又は、電解研磨の後処理に酸処理(7質量%硝酸希釈液によって接液部を洗浄)を行ったものを用いた。 In addition, about some Examples in Table 2, as SUS316L-EP, buff polishing (polishing abrasive size: # 400) in pre-treatment of electrolytic polishing and / or acid treatment (post-treatment of electrolytic polishing) The wetted portion was washed with a 7% by mass dilute nitric acid solution).
 また、表2で示した容器について、容器の接液部の平均表面粗さRaを上述した方法によって測定した。 {Circle around (2)} For the containers shown in Table 2, the average surface roughness Ra of the liquid-contacting portions of the containers was measured by the method described above.
 まず、1,000Lの容量の真空デシケータ内に容器を設置し、真空デシケータ、容器の接液部、容器内に薬液を流入するための配管等の薬液と接する可能性がある部材について、半導体グレードの過酸化水素水で洗浄した後、真空デシケータ内の空気を窒素ガスに置換して乾燥した。
 次に、真空デシケータ内を真空状態にした後に窒素ガスを充填するという処理を繰り返し行って、真空デシケータ内の雰囲気を清浄な状態にした。
First, a container is placed in a vacuum desiccator having a capacity of 1,000 liters, and components that may come into contact with a chemical solution such as a vacuum desiccator, a liquid contact portion of the container, and a pipe for flowing a chemical solution into the container are manufactured using a semiconductor grade. Then, the air in the vacuum desiccator was replaced with nitrogen gas and dried.
Next, a process in which the inside of the vacuum desiccator was evacuated and then filled with nitrogen gas was repeatedly performed to make the atmosphere in the vacuum desiccator clean.
[薬液収容体]
 上記のように清浄な状態にした真空デシケータ内に設置した容器に、上記のように精製した薬液を、容器の空隙率が表1及び表2に示す値になるように収容した。そして、容器内の薬液が流出しないように容器を密閉して、薬液収容体を得た。
[Chemical container]
The chemical solution purified as described above was accommodated in a container placed in a vacuum desiccator that had been cleaned as described above so that the porosity of the container became a value shown in Tables 1 and 2. Then, the container was hermetically sealed so that the drug solution in the container did not flow out, and a drug solution container was obtained.
[薬液収容体中の各成分の含有量等の測定]
 薬液収容体中の各成分の含有量等の測定には、以下の方法を用いた。なお、以下の測定は、全てISO(国際標準化機構)クラス2以下を満たすレベルのクリーンルームで行った。測定精度向上のため、各成分の測定において、通常の測定で検出限界以下である場合は体積換算で100分の1に濃縮して測定を行い、濃縮前の有機溶剤の含有量に換算して含有量を算出した。結果はまとめて表1及び表2に示した。
 なお、薬液収容体中の各成分の含有量等の測定は、製造直後(容器に薬液を収容して、薬液を密閉した直後を意味する。)に実施した。
[Measurement of content of each component in chemical solution container]
The following methods were used to measure the content of each component and the like in the drug solution container. In addition, the following measurements were all performed in a clean room of a level satisfying ISO (International Organization for Standardization) class 2 or less. In order to improve the measurement accuracy, in the measurement of each component, when the measurement is below the detection limit in normal measurement, the concentration is reduced to 1/100 in terms of volume, and the measurement is performed. The content was calculated. The results are collectively shown in Tables 1 and 2.
The measurement of the content of each component in the chemical solution container was performed immediately after the production (meaning immediately after the chemical solution was stored in the container and the chemical solution was sealed).
〔有機化合物〕
 各薬液中のClogP値が有機溶剤よりも高い有機化合物(特定有機化合物A)の含有量は、ガスクロマトグラフ質量分析装置(製品名「GCMS-2020」、島津製作所社製、測定条件は以下のとおり)を用いて測定した。
 また、薬液収容体の空隙部に存在する気体に含まれる、ClogP値が有機溶剤よりも高い有機化合物(特定有機化合物B)の含有量についても、上記ガスクロマトグラフ質量分析装置を用いて測定した。
(Organic compound)
The content of the organic compound (specific organic compound A) having a ClogP value higher than that of the organic solvent in each chemical solution was determined using a gas chromatograph mass spectrometer (product name "GCMS-2020", manufactured by Shimadzu Corporation), and the measurement conditions were as follows: ).
Further, the content of an organic compound (specific organic compound B) having a ClogP value higher than that of the organic solvent contained in the gas present in the void portion of the chemical solution container was also measured using the gas chromatograph mass spectrometer.
<測定条件>
キャピラリーカラム:InertCap 5MS/NP 0.25mmI.D. ×30m df=0.25μm
試料導入法:スプリット 75kPa 圧力一定
気化室温度 :230℃
カラムオーブン温度:80℃(2min)-500℃(13min)昇温速度15℃/min
キャリアガス:ヘリウム
セプタムパージ流量:5mL/min
スプリット比:25:1
インターフェイス温度:250℃
イオン源温度:200℃
測定モード:Scan m/z=85~500
試料導入量:1μL
<Measurement conditions>
Capillary column: InertCap 5MS / NP 0.25 mmI. D. × 30m df = 0.25 μm
Sample introduction method: Split 75 kPa constant pressure vaporization chamber temperature: 230 ° C
Column oven temperature: 80 ° C (2 min) -500 ° C (13 min) Heating rate 15 ° C / min
Carrier gas: helium septum purge flow rate: 5 mL / min
Split ratio: 25: 1
Interface temperature: 250 ° C
Ion source temperature: 200 ° C
Measurement mode: Scan m / z = 85-500
Sample introduction volume: 1 μL
 上記のようにして測定した、薬液中の特定有機化合物Aの含有量(濃度)、気体中の特定有機化合物Bの含有量(濃度)に基づいて、薬液収容体中の特定有機化合物Aの質量、および、薬液収容体中の特定有機化合物Bの質量を算出した。
 そして、薬液収容体中の薬液の質量に対する、薬液収容体中の特定有機化合物Aの質量の割合(すなわち、「薬液の全質量に対する、特定有機化合物Aの含有量(質量ppm)」を意味する。)を算出して、表1及び表2中の「特定有機化合物Aの含有量」の欄に数値を示した。
 同様にして、薬液収容体中の薬液の質量に対する、薬液収容体中の特定有機化合物Bの質量の割合(すなわち、「薬液の全質量に対する、特定有機化合物Bの含有量(質量ppm)」を意味する。)を算出して、表1及び表2中の「特定有機化合物Bの含有量」の欄に数値を示した。
 なお、表1及び表2中の「特定有機化合物Aと特定有機化合物Bの合計含有量」は、表1及び表2中の「特定有機化合物Aの含有量」と「特定有機化合物Bの含有量」の合計である。
 また、同様にして、薬液の全質量に対する、特定有機化合物AのうちのClogP値が6以上の特定有機化合物A1と、特定有機化合物BのうちのClogP値が6以上の特定有機化合物B1の含有量の合計(質量ppt)を求めた。結果を表1及び表2の「ClogP値6以上の特定有機化合物の総量」の欄に示した。
 また、同様にして、薬液の全質量に対する、特定有機化合物Aのうちのフタル酸エステルと、特定有機化合物Bのうちのフタル酸エステルの含有量の合計(質量ppt)を求めた。結果を表1及び表2の「フタル酸エステルの総量」の欄に示した。
 また、同様にして、薬液の全質量に対する、特定有機化合物Aのうちのフタル酸ジオクチル(DOP)及びフタル酸ジイソノニル(DINP)と、特定有機化合物BのうちのDOP及びDINPの含有量の合計(質量ppt)を求めた。結果を表1及び表2の「DINP及びDOP」の欄の「合計含有量(質量ppt)」に示した。
Based on the content (concentration) of the specific organic compound A in the drug solution and the content (concentration) of the specific organic compound B in the gas measured as described above, the mass of the specific organic compound A in the drug solution container , And the mass of the specific organic compound B in the drug solution container was calculated.
Then, a ratio of the mass of the specific organic compound A in the chemical solution container to the mass of the chemical solution in the chemical solution container (that is, “the content (mass ppm) of the specific organic compound A with respect to the total mass of the chemical solution”) ) Were calculated, and numerical values are shown in the column of “content of specific organic compound A” in Tables 1 and 2.
Similarly, the ratio of the mass of the specific organic compound B in the chemical solution container to the mass of the chemical solution in the chemical solution container (that is, the “content (mass ppm) of the specific organic compound B with respect to the total mass of the chemical solution”) ) Was calculated, and numerical values are shown in the column of “content of specific organic compound B” in Tables 1 and 2.
The “total content of the specific organic compound A and the specific organic compound B” in Tables 1 and 2 is the “content of the specific organic compound A” and the “content of the specific organic compound B” in Tables 1 and 2. Amount ".
Similarly, the specific organic compound A1 having a ClogP value of 6 or more among the specific organic compounds A and the specific organic compound B1 having a ClogP value of 6 or more among the specific organic compounds B with respect to the total mass of the drug solution are included. The sum of the amounts (mass ppt) was determined. The results are shown in Tables 1 and 2 in the column of "Total amount of specific organic compounds having a ClogP value of 6 or more".
Similarly, the total (mass ppt) of the contents of the phthalate ester of the specific organic compound A and the phthalate ester of the specific organic compound B with respect to the total mass of the chemical solution was determined. The results are shown in Table 1 and Table 2 in the column of "Total amount of phthalate".
Similarly, the sum of the contents of dioctyl phthalate (DOP) and diisononyl phthalate (DINP) of the specific organic compound A and DOP and DINP of the specific organic compound B with respect to the total mass of the chemical solution ( Mass (ppt) was determined. The results are shown in “Total content (mass ppt)” in the column “DINP and DOP” in Tables 1 and 2.
 また、薬液収容体中の特定有機化合物Aの含有量(質量)に対する、薬液収容体中の特定有機化合物Bの含有量(質量)の質量割合を算出した。結果を表1及び表2の「特定有機化合物Aと特定有機化合物Bとの質量比」の欄に示した。
 また、薬液収容体中のDINPの含有量(質量)に対する、薬液収容体中のDOPの含有量(質量)の質量割合を算出した。結果を表1及び表2の「DINP及びDOP」の欄の「含有比DOP/DINP」に示した。
Further, the mass ratio of the content (mass) of the specific organic compound B in the drug solution container to the content (mass) of the specific organic compound A in the drug solution container was calculated. The results are shown in the columns of "mass ratio of specific organic compound A and specific organic compound B" in Tables 1 and 2.
Further, the mass ratio of the content (mass) of DOP in the drug solution container to the content (mass) of DINP in the drug solution container was calculated. The results are shown in “Content ratio DOP / DINP” in the column of “DINP and DOP” in Tables 1 and 2.
〔金属含有粒子〕
 薬液中の金属含有粒子の含有量は、SP-ICP-MSを用いる方法により測定した。
 使用装置は以下の通りである。結果を表1及び表2に示す。
・メーカー:PerkinElmer
・型式:NexION350S
 解析には以下の解析ソフトを使用した。
・“SP-ICP-MS”専用Syngistix ナノアプリケーションモジュール
(Metal-containing particles)
The content of the metal-containing particles in the chemical solution was measured by a method using SP-ICP-MS.
The equipment used is as follows. The results are shown in Tables 1 and 2.
・ Manufacturer: PerkinElmer
・ Model: NexION350S
The following analysis software was used for the analysis.
・ "SP-ICP-MS" Syngistix Nano Application Module
 また、薬液中の金属含有粒子の含有量(質量)に対する、薬液収容体中の特定有機化合物A及び特定有機化合物Bの合計含有量の質量割合を算出した。結果を表1及び表2の「金属含有粒子と特定有機化合物との含有比」の欄に示す。 Also, the mass ratio of the total content of the specific organic compound A and the specific organic compound B in the chemical solution container to the content (mass) of the metal-containing particles in the chemical solution was calculated. The results are shown in Table 1 and Table 2 in the column of "content ratio of metal-containing particles to specific organic compound".
〔金属ナノ粒子〕
 薬液中における金属ナノ粒子(粒子径0.5~17nmの金属含有粒子)の含有粒子数は、以下の方法により測定した。
 まず、シリコン基板上に一定量の薬液を塗布して薬液層付き基板を形成し、薬液層付き基板の表面をレーザ光により走査し、散乱光を検出した。これにより、薬液層付き基板の表面に存在する欠陥の位置及び粒子径を特定した。次に、その欠陥の位置を基準にEDX(エネルギー分散型X線)分析法により元素分析し、欠陥の組成を調べた。この方法により、金属ナノ粒子の基板上における粒子数を求め、それを薬液の単位体積あたりの含有粒子数(個/cm)に換算した。
 なお、分析には、KLA-Tencor社製のウェハ検査装置「SP-5」と、アプライドマテリアル社の全自動欠陥レビュー分類装置「SEMVision G6」を組み合わせて使用した。
 また、測定装置の分解能等の都合で、所望の粒子径の粒子が検出できなかった試料については、特開2009-188333号公報の0015~0067段落に記載の方法を用いて検出した。すなわち、基板上に、CVD(化学気相成長)法によりSiO層を形成し、次に、上記層上を覆うように薬液層を形成した。次に、上記SiO層とその上に塗布された薬液層とを有する複合層をドライエッチングして、得られた突起物に対して光照射して、散乱光を検出し、上記散乱光から、突起物の体積を計算し、上記突起物の体積から粒子の粒子径を計算する方法を用いた。
(Metal nanoparticles)
The number of particles of metal nanoparticles (metal-containing particles having a particle diameter of 0.5 to 17 nm) in the chemical solution was measured by the following method.
First, a predetermined amount of a chemical was applied on a silicon substrate to form a substrate with a chemical layer, and the surface of the substrate with the chemical layer was scanned with laser light to detect scattered light. Thereby, the position and the particle size of the defect existing on the surface of the substrate with the chemical solution layer were specified. Next, based on the position of the defect, elemental analysis was performed by EDX (energy dispersive X-ray) analysis to examine the composition of the defect. By this method, the number of metal nanoparticles on the substrate was determined, and converted into the number of particles contained per unit volume of the chemical solution (particles / cm 3 ).
In the analysis, a combination of a wafer inspection apparatus “SP-5” manufactured by KLA-Tencor and a fully automatic defect review and classification apparatus “SEMVion G6” manufactured by Applied Materials was used.
Further, a sample in which particles having a desired particle size could not be detected due to the resolution of the measuring device or the like was detected using the method described in paragraphs 0015 to 0067 of JP-A-2009-188333. That is, on a substrate, a SiO X layer is formed by CVD (chemical vapor deposition) method, then, to form a chemical layer to cover the layer above. Next, the composite layer having the SiO X layer and the chemical solution layer applied thereon is dry-etched, and the obtained protrusion is irradiated with light to detect scattered light. The method of calculating the volume of the protrusion and calculating the particle diameter of the particle from the volume of the protrusion was used.
[欠陥抑制性能の評価]
 薬液収容体から薬液を取り出して、これをプリウェット液として用いて、欠陥抑制性能を評価した。
 ここで、欠陥抑制性能は、薬液収容体の製造直後(容器に薬液を収容して、薬液を密閉した直後を意味する。なお、表中「収容直後」と示した。)の薬液を用いた場合と、薬液収容体を50℃で1年間保管した後(表中、「経時」と示した。)の薬液を用いた場合と、の両方について実施した。
 なお、使用したレジスト組成物は以下のとおりである。
[Evaluation of defect suppression performance]
The chemical solution was taken out from the medical solution container, and this was used as a pre-wet liquid, and the defect suppression performance was evaluated.
Here, the defect suppression performance used the chemical solution immediately after manufacturing the chemical solution container (meaning immediately after the chemical solution was stored in the container and the chemical solution was sealed. In the table, it was indicated as “immediately after storage”). The test was performed for both the case and the case where the drug solution was used after storing the drug solution container at 50 ° C. for one year (indicated as “aging” in the table).
In addition, the resist composition used is as follows.
〔レジスト組成物1〕
 レジスト組成物1は、各成分を以下の組成で混合して得た。
・樹脂(A-1):0.77g
・酸発生剤(B-1):0.03g
・塩基性化合物(E-3):0.03g
・PGMEA:67.5g
・EL:75g
[Resist composition 1]
The resist composition 1 was obtained by mixing each component with the following composition.
・ Resin (A-1): 0.77 g
・ Acid generator (B-1): 0.03 g
-Basic compound (E-3): 0.03 g
・ PGMEA: 67.5 g
・ EL: 75g
 <樹脂(A)等>
(合成例1)樹脂(A-1)の合成
 2Lフラスコにシクロヘキサノン600gを入れ、100mL/minの流量で一時間窒素置換した。その後、重合開始剤V-601(和光純薬工業(株)製)4.60g(0.02mol)を加え、内温が80℃になるまで昇温した。次に、以下のモノマーと重合開始剤V-601(和光純薬工業(株)製)4.60g(0.02mol)とを、シクロヘキサノン200gに溶解し、モノマー溶液を調製した。モノマー溶液を上記80℃に加熱したフラスコ中に6時間かけて滴下した。滴下終了後、更に80℃で2時間反応させた。
 4-アセトキシスチレン        48.66g(0.3mol)
 1-エチルシクロペンチルメタクリレート109.4g(0.6mol)
 モノマー1               22.2g(0.1mol)
<Resin (A), etc.>
(Synthesis Example 1) Synthesis of Resin (A-1) Cyclohexanone (600 g) was placed in a 2 L flask, and the atmosphere was replaced with nitrogen at a flow rate of 100 mL / min for 1 hour. Thereafter, 4.60 g (0.02 mol) of polymerization initiator V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the temperature was raised until the internal temperature reached 80 ° C. Next, the following monomer and 4.60 g (0.02 mol) of polymerization initiator V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 200 g of cyclohexanone to prepare a monomer solution. The monomer solution was dropped into the flask heated to 80 ° C. over 6 hours. After the completion of the dropwise addition, the reaction was further performed at 80 ° C. for 2 hours.
48.66 g (0.3 mol) of 4-acetoxystyrene
109.4 g (0.6 mol) of 1-ethylcyclopentyl methacrylate
Monomer 1 22.2 g (0.1 mol)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 反応溶液を室温まで冷却し、ヘキサン3L中に滴下しポリマーを沈殿させた。ろ過した固体をアセトン500mLに溶解し、再度ヘキサン3L中に滴下、ろ過した固体を減圧乾燥して、4-アセトキシスチレン/1-エチルシクロペンチルメタクリレート/モノマー1共重合体(A-1)160gを得た。 (4) The reaction solution was cooled to room temperature and dropped into 3 L of hexane to precipitate a polymer. The filtered solid was dissolved in 500 mL of acetone, dropped again into 3 L of hexane, and the filtered solid was dried under reduced pressure to obtain 160 g of 4-acetoxystyrene / 1-ethylcyclopentyl methacrylate / monomer 1 copolymer (A-1). Was.
 反応容器中に上記で得られた重合体10g、メタノール40mL、1-メトキシ-2-プロパノール200mL、及び、濃塩酸1.5mLを加え、80℃に加熱して5時間攪拌した。反応溶液を室温まで放冷し、蒸留水3L中に滴下した。ろ過した固体をアセトン200mLに溶解し、再度蒸留水3L中に滴下、ろ過した固体を減圧乾燥して樹脂(A-1)(8.5g)を得た。ゲルパーミエーションクロマトグラフィー(GPC)(溶媒:THF(tetrahydrofuran))による標準ポリスチレン換算の重量平均分子量(Mw)は11200、分子量分散度(Mw/Mn)は1.45であった。樹脂A-1の構造等を以下に示す。 10 10 g of the polymer obtained above, 40 mL of methanol, 200 mL of 1-methoxy-2-propanol, and 1.5 mL of concentrated hydrochloric acid were added to a reaction vessel, and the mixture was heated to 80 ° C. and stirred for 5 hours. The reaction solution was allowed to cool to room temperature and dropped into 3 L of distilled water. The filtered solid was dissolved in 200 mL of acetone, dropped again into 3 L of distilled water, and the filtered solid was dried under reduced pressure to obtain a resin (A-1) (8.5 g). The weight average molecular weight (Mw) in terms of standard polystyrene measured by gel permeation chromatography (GPC) (solvent: THF (tetrahydrofuran)) was 11,200, and the molecular weight dispersity (Mw / Mn) was 1.45. The structure and the like of the resin A-1 are shown below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 <光酸発生剤(B)>
 光酸発生剤としては、以下のものを用いた。
<Photoacid generator (B)>
The following were used as the photoacid generator.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 <塩基性化合物(E)>
 塩基性化合物としては、以下のものを用いた。
<Basic compound (E)>
The following were used as basic compounds.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(残渣欠陥抑制性能、ブリッジ欠陥抑制性能、及び、シミ状欠陥抑制性能)
 以下の方法により、薬液の残渣欠陥抑制性能、ブリッジ欠陥抑制性能、及び、シミ状欠陥抑制性能を評価した。なお、試験には、東京エレクトロン社製コータ/デベロッパ「LITHIUS(登録商標)Pro Z」を用いた。
 まず、シリコンウエハ上にAL412(Brewer Science社製)を塗布し、200℃で60秒間ベークを行い、膜厚20nmのレジスト下層膜を形成した。その上にプリウェット液(薬液1)を塗布し、その上からレジスト組成物1を塗布し、100℃で60秒間ベーク(PB:Prebake)を行い、膜厚30nmのレジスト膜を形成した。
(Residue defect suppression performance, bridge defect suppression performance, and spot-like defect suppression performance)
The residue defect suppression performance, the bridge defect suppression performance, and the spot defect suppression performance of the chemical solution were evaluated by the following methods. In the test, a coater / developer “LITHIUS (registered trademark) Pro Z” manufactured by Tokyo Electron Limited was used.
First, AL412 (manufactured by Brewer Science) was applied on a silicon wafer and baked at 200 ° C. for 60 seconds to form a resist underlayer film having a thickness of 20 nm. A pre-wet solution (chemical solution 1) was applied thereon, and a resist composition 1 was applied thereon, and baked (PB: Prebake) at 100 ° C. for 60 seconds to form a resist film having a thickness of 30 nm.
 このレジスト膜をEUV露光機(ASML社製;NXE3350、NA0.33、Dipole 90°、アウターシグマ0.87、インナーシグマ0.35)を用い、ピッチが20nm且つパターン幅が15nmの反射型マスクを介して露光した。その後、85℃にて60秒間加熱(PEB:Post Exposure Bake)した。次いで、有機溶剤系の現像液で30秒間現像し、20秒間リンスした。続いて、2000rpmの回転数で40秒間ウェハを回転させることにより、ピッチが20nm、且つパターン線幅が15nmのラインアンドスペースのパターンを形成した。 This resist film was coated with a reflective mask having a pitch of 20 nm and a pattern width of 15 nm using an EUV exposure machine (manufactured by ASML; NXE3350, NA 0.33, Dipole 90 °, outer sigma 0.87, inner sigma 0.35). Exposure via Thereafter, heating was performed at 85 ° C. for 60 seconds (PEB: Post Exposure Bake). Next, the film was developed with an organic solvent-based developer for 30 seconds and rinsed for 20 seconds. Subsequently, the wafer was rotated at a rotation speed of 2000 rpm for 40 seconds to form a line-and-space pattern having a pitch of 20 nm and a pattern line width of 15 nm.
 上記のパターンの画像を取得し、得られた画像を、KLA-Tencor社製のウェハ検査装置「SP-5」と、アプライドマテリアル社の全自動欠陥レビュー分類装置「SEMVision G6」を組み合わせて使用して解析し、単位面積当たりの未露光部における残渣数を計測した。
 なお、測定装置の分解能等の都合で、所望の粒子径の粒子が検出できなかった試料については、特開2009-188333号公報の0015~0067段落に記載の方法を用いて検出した。すなわち、基板上に、CVD(化学気相成長)法によりSiO層を形成し、次に、上記層上を覆うように薬液層を形成した。次に、上記SiO層とその上に塗布された薬液層とを有する複合層をドライエッチングして、得られた突起物に対して光照射して、散乱光を検出し、上記散乱光から、突起物の体積を計算し、上記突起物の体積から粒子の粒子径を計算する方法を用いた。
 結果は以下の基準により評価し、表1及び表2に示した。
An image of the above pattern is obtained, and the obtained image is used in combination with a wafer inspection apparatus “SP-5” manufactured by KLA-Tencor and a fully automatic defect review and classification apparatus “SEMVion G6” manufactured by Applied Materials. The number of residues in the unexposed area per unit area was measured.
The sample in which particles having a desired particle size could not be detected due to the resolution of the measuring device or the like was detected using the method described in paragraphs 0015 to 0067 of JP-A-2009-188333. That is, on a substrate, a SiO X layer is formed by CVD (chemical vapor deposition) method, then, to form a chemical layer to cover the layer above. Next, the composite layer having the SiO X layer and the chemical solution layer applied thereon is dry-etched, and the obtained protrusion is irradiated with light to detect scattered light. The method of calculating the volume of the protrusion and calculating the particle diameter of the particle from the volume of the protrusion was used.
The results were evaluated according to the following criteria, and are shown in Tables 1 and 2.
A:欠陥数が60個未満だった。
B:欠陥数が60個以上、90個未満だった。
C:欠陥数が90個以上、120個未満だった。
D:欠陥数が120個以上、150個未満だった。
E:欠陥数が150個以上、180個未満だった。
A: The number of defects was less than 60.
B: The number of defects was 60 or more and less than 90.
C: The number of defects was 90 or more and less than 120.
D: The number of defects was 120 or more and less than 150.
E: The number of defects was 150 or more and less than 180.
(帯電量)
 薬液を充填した直後の液面帯電量について、春日電気社製デジタル静電電位測定器KSD-2000を用いて測定した。結果は以下の基準により評価し、表2に示した。
A:帯電量が±2kVの範囲内であった。
B:帯電量が±2kVの範囲外であって、±10kVの範囲内であった。
C:帯電量が±10kVの範囲外であった。
(Charge amount)
The amount of charge on the liquid surface immediately after filling with the chemical solution was measured using a digital electrostatic potential meter KSD-2000 manufactured by Kasuga Electric Co., Ltd. The results were evaluated according to the following criteria and are shown in Table 2.
A: The charge amount was within the range of ± 2 kV.
B: The charge amount was out of the range of ± 2 kV and was in the range of ± 10 kV.
C: The charge amount was out of the range of ± 10 kV.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 上記表1及び表2中、「金属ナノ粒子の含有粒子数」の欄に記載の数値は、指数表示を略記したものであり、例えば、「1.00E+05」は「1.00×10」を意味する。 In Tables 1 and 2, the numerical values in the column of “the number of particles contained in metal nanoparticles” are abbreviations of exponential notation. For example, “1.00E + 05” is “1.00 × 10 5 ”. Means
 表1及び表2に示すように、金属含有粒子の含有量が薬液の全質量に対して10質量ppt以下であり、特定有機化合物Aと特定有機化合物Bの含有量の合計が、薬液の全質量に対して100,000質量ppt以下であれば、薬液収容体に収容直後及び長期保管後のいずれのタイミングで取り出した薬液を用いても、欠陥抑制性能に優れていた(実施例)。
 また、実施例1及び2と、実施例7との対比から、金属含有粒子の含有量が薬液の全質量に対して0.1~10質量pptの範囲にあれば(実施例1及び2)、薬液収容体に収容直後及び長期保管後のいずれのタイミングで取り出した薬液を用いても、欠陥抑制性能により優れることが示された。
 また、実施例3と実施例19との対比から、金属含有粒子の含有量が薬液の全質量に対して、1質量ppt以下であれば(実施例19)、薬液収容体に収容直後及び長期保管後のいずれのタイミングで取り出した薬液を用いても、欠陥抑制性能により優れることが示された。
 また、実施例4と実施例19との対比から、特定有機化合物Aと特定有機化合物Bの含有量の合計が、薬液の全質量に対して2,000質量ppt以下であれば(実施例19)、薬液収容体に収容直後及び長期保管後のいずれのタイミングで取り出した薬液を用いても、欠陥抑制性能により優れることが示された。
 また、実施例5と、実施例19との対比から、金属含有粒子の含有量に対する、特定有機化合物Aと特定有機化合物Bの含有量の合計の質量割合が、0.1以上であれば(実施例19)、薬液収容体に収容直後及び長期保管後の少なくとも一方のタイミングで取り出した薬液を用いた場合に、欠陥抑制性能により優れることが示された。
 また、実施例6と、実施例19との対比から、金属含有粒子の含有量に対する、特定有機化合物Aと特定有機化合物Bの含有量の合計の質量割合が、100,000以下であれば(実施例19)、薬液収容体に収容直後及び長期保管後のいずれのタイミングで取り出した薬液を用いても、欠陥抑制性能により優れることが示された。
 また、実施例8と実施例11との対比から、特定有機化合物Aに対する特定有機化合物Bの質量割合が1以上であれば(実施例11)、長期保管後に取り出した薬液の欠陥抑制性能により優れることが示された。
 また、実施例9~12の対比から、薬液収容体における容器の空隙率が50~99.99体積%の範囲にあれば(実施例9及び11)、長期保管後に取り出した薬液の欠陥抑制性能により優れることが示された。
 実施例15と実施例16との対比から、フタル酸ジイソノニルの含有量に対するフタル酸ジオクチルの含有量の質量割合(DOP/DINP)が、1以上であれば(実施例15)、薬液収容体に長期保管後に取り出した薬液を用いた場合、欠陥抑制性能により優れることが示された。
As shown in Table 1 and Table 2, the content of the metal-containing particles is 10 mass ppt or less based on the total mass of the chemical solution, and the total content of the specific organic compound A and the specific organic compound B is the total amount of the chemical solution. When the mass was 100,000 mass ppt or less with respect to the mass, the defect suppression performance was excellent even when the chemical solution taken out immediately after the storage in the chemical solution container or after long-term storage was used (Example).
Further, from the comparison between Examples 1 and 2 and Example 7, if the content of the metal-containing particles is in the range of 0.1 to 10 mass ppt with respect to the total mass of the chemical solution (Examples 1 and 2) In addition, it was shown that the use of the chemical solution taken out immediately after the chemical solution was stored in the chemical solution container or after long-term storage was superior to the defect suppression performance.
Also, from the comparison between Example 3 and Example 19, if the content of the metal-containing particles is 1 mass ppt or less with respect to the total mass of the chemical solution (Example 19), the content immediately after the storage in the chemical solution container and the long term It was shown that the use of the chemical taken out at any time after the storage was superior to the defect suppression performance.
From the comparison between Example 4 and Example 19, if the total content of the specific organic compound A and the specific organic compound B is 2,000 mass ppt or less with respect to the total mass of the chemical solution (Example 19) ), It was shown that the use of the chemical solution taken out immediately after storage in the chemical solution container or after long-term storage was superior to the defect suppression performance.
From the comparison between Example 5 and Example 19, if the total mass ratio of the specific organic compound A and the specific organic compound B to the content of the metal-containing particles is 0.1 or more ( Example 19) It was shown that the use of the chemical solution taken out at least one of the timing immediately after the storage in the chemical solution container and after the long-term storage showed superior defect suppression performance.
From the comparison between Example 6 and Example 19, if the total mass ratio of the specific organic compound A and the specific organic compound B to the content of the metal-containing particles is 100,000 or less ( Example 19), it was shown that the use of the chemical solution taken out immediately after the chemical solution was stored in the chemical solution container or after long-term storage was superior to the defect suppression performance.
Also, from the comparison between Example 8 and Example 11, when the mass ratio of the specific organic compound B to the specific organic compound A is 1 or more (Example 11), the chemical solution taken out after long-term storage is more excellent in suppressing defects. It was shown that.
Also, from the comparison of Examples 9 to 12, when the porosity of the container in the chemical solution container is in the range of 50 to 99.99% by volume (Examples 9 and 11), the defect suppression performance of the chemical solution taken out after long-term storage. Was shown to be better.
From the comparison between Example 15 and Example 16, if the mass ratio of the content of dioctyl phthalate to the content of diisononyl phthalate (DOP / DINP) is 1 or more (Example 15), the chemical solution container was used. When the chemical solution taken out after long-term storage was used, it was shown to be more excellent in defect suppression performance.
 表2示すように、実施例102~実施例106の対比から、容器の接液部が電解研磨されたステンレス鋼である場合、容器の接液部の平均表面粗さRaが100nm未満であれば、欠陥抑制性能により優れていた(実施例102)。
 表2に示すように、実施例101と、実施例107~109との対比から、フッ素樹脂とともに導電性材料を含む接液部を用いた場合、薬液の帯電をより抑制できた。
As shown in Table 2, from the comparison of Examples 102 to 106, when the liquid contact portion of the container is stainless steel that has been electropolished, the average surface roughness Ra of the liquid contact portion of the container is less than 100 nm. And the defect suppression performance was excellent (Example 102).
As shown in Table 2, from the comparison between Example 101 and Examples 107 to 109, when the liquid contact part containing the conductive material together with the fluororesin was used, the charging of the chemical solution could be further suppressed.
 一方、表1に示すように、薬液中に金属粒子の含有量、又は、特定有機化合物Aと特定有機化合物Bの含有量の合計が上記範囲外であると、薬液収容体に収容直後及び長期保管後のいずれのタイミングで取り出した薬液を用いても、欠陥抑制性能が劣っていた(比較例)。 On the other hand, as shown in Table 1, when the content of the metal particles in the chemical solution or the total content of the specific organic compound A and the specific organic compound B is out of the above range, immediately after storage in the chemical solution container and for a long time, Defect suppression performance was inferior regardless of the chemical solution taken out at any time after storage (Comparative Example).
(実施例34)
 実施例15において用いたPGMEAについて、蒸留とろ過を繰り返し、特定有機化合物の含有量が0.1質量ppt未満の薬液を作製した。
 この薬液に対してフタル酸ジブチル(和光純薬社製)を8000質量ppt添加し、再びろ過を繰り返して得られた薬液を、容器(実施例15と同様の容器)に収容して、実施例34の薬液収容体を得た。実施例34の薬液収容体において、フタル酸ジブチルからなる特定有機化合物Aの含有量が4800質量ppt、及び、フタル酸ジブチルからなる特定化合物Bの含有量が10質量pptであった。
 実施例34の薬液収容体に収容された薬液を用いて、実施例15と同様の評価を行ったところ、薬液収容体を50℃で1年間保管した後の欠陥抑制性能が「C」評価になった以外は、実施例15と同様の結果が得られた。
(Example 34)
The PGMEA used in Example 15 was subjected to repeated distillation and filtration to prepare a drug solution having a specific organic compound content of less than 0.1 mass ppt.
8000 mass ppt of dibutyl phthalate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this solution, and the solution obtained by repeating the filtration again was contained in a container (the same container as in Example 15). 34 chemical solution containers were obtained. In the drug solution container of Example 34, the content of the specific organic compound A composed of dibutyl phthalate was 4,800 mass ppt, and the content of the specific compound B composed of dibutyl phthalate was 10 mass ppt.
The same evaluation as in Example 15 was performed using the liquid medicine stored in the liquid medicine container of Example 34, and the defect suppression performance after storing the liquid medicine container at 50 ° C. for one year was evaluated as “C”. Except for the above, the same results as in Example 15 were obtained.

Claims (19)

  1.  容器と、前記容器内に収容された薬液と、を有する薬液収容体であって、
     前記薬液が、溶剤と、金属原子を含む金属含有粒子と、前記溶剤よりもClogP値が高い有機化合物と、を含有し、
     前記金属含有粒子の含有量が、前記薬液の全質量に対して、10質量ppt以下であり、
     前記容器の空隙部において前記溶剤よりもClogP値が高い有機化合物を含む気体が存在し、前記気体中の前記有機化合物と前記薬液中の前記有機化合物の含有量の合計が、前記薬液の全質量に対して、100,000質量ppt以下である、薬液収容体。
    A container, and a liquid medicine stored in the container, a liquid medicine container,
    The chemical solution contains a solvent, metal-containing particles containing a metal atom, and an organic compound having a higher ClogP value than the solvent,
    The content of the metal-containing particles is 10 mass ppt or less with respect to the total mass of the chemical solution,
    A gas containing an organic compound having a higher ClogP value than the solvent is present in the cavity of the container, and the total content of the organic compound in the gas and the organic compound in the chemical solution is the total mass of the chemical solution. Liquid medicine container having a mass of 100,000 mass ppt or less.
  2.  前記金属含有粒子の含有量が、前記薬液の全質量に対して、0.001~10質量pptであり、
     前記気体中の前記有機化合物と前記薬液中の前記有機化合物の含有量の合計が、前記薬液の全質量に対して、0.1~100,000質量pptである、請求項1に記載の薬液収容体。
    The content of the metal-containing particles is 0.001 to 10 mass ppt, based on the total mass of the chemical solution;
    2. The chemical solution according to claim 1, wherein the total content of the organic compound in the gas and the organic compound in the chemical solution is 0.1 to 100,000 mass ppt based on the total mass of the chemical solution. Container.
  3.  前記金属含有粒子の含有量に対する、前記気体中の前記有機化合物と前記薬液中の前記有機化合物の含有量の合計の質量割合が、0.01~100,000である、請求項1又は2に記載の薬液収容体。 3. The method according to claim 1, wherein a total mass ratio of the content of the organic compound in the gas and the content of the organic compound in the chemical solution to the content of the metal-containing particles is 0.01 to 100,000. The liquid medicine container according to the above.
  4.  前記気体中の前記有機化合物及び前記薬液中の前記有機化合物のClogP値がいずれも、6以上である、請求項1~3のいずれか1項に記載の薬液収容体。 4. The chemical solution container according to claim 1, wherein each of the organic compound in the gas and the organic compound in the chemical solution has a ClogP value of 6 or more.
  5.  前記気体中の前記有機化合物及び前記薬液中の前記有機化合物がいずれも、フタル酸エステルを含む、請求項1~4のいずれか1項に記載の薬液収容体。 The chemical solution container according to any one of claims 1 to 4, wherein both the organic compound in the gas and the organic compound in the chemical solution contain a phthalate ester.
  6.  前記フタル酸エステルが、フタル酸ジオクチル及びフタル酸ジイソノニルからなる群より選択される少なくとも1種を含む、請求項5に記載の薬液収容体。 The chemical solution container according to claim 5, wherein the phthalic acid ester includes at least one selected from the group consisting of dioctyl phthalate and diisononyl phthalate.
  7.  前記フタル酸ジイソノニルの含有量に対する、前記フタル酸ジオクチルの含有量の質量割合が、1以上である、請求項6に記載の薬液収容体。 The chemical solution container according to claim 6, wherein the mass ratio of the dioctyl phthalate content to the diisononyl phthalate content is 1 or more.
  8.  前記気体中の前記有機化合物の含有量に対する、前記薬液中の前記有機化合物の含有量の質量割合が、1以上である、請求項1~7のいずれか1項に記載の薬液収容体。 8. The chemical solution container according to claim 1, wherein a mass ratio of the content of the organic compound in the chemical solution to the content of the organic compound in the gas is 1 or more.
  9.  前記溶剤が、有機溶剤である、請求項1~8のいずれか1項に記載の薬液収容体。 薬 The chemical solution container according to any one of claims 1 to 8, wherein the solvent is an organic solvent.
  10.  前記有機溶剤が、シクロヘキサノン、酢酸ブチル、N-メチル-2-ピロリドン、4-メチル-2-ペンタノール、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、炭酸プロピレン、酢酸イソアミル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、メトキシプロピオン酸メチル、シクロペンタノン、γ-ブチロラクトン、ジイソアミルエーテル、イソプロパノール、ジメチルスルホキシド、ジエチレングリコール、エチレングリコール、ジプロピレングリコール、プロピレングリコール、炭酸エチレン、スルホラン、シクロヘプタノン、2-ヘプタノン、酪酸ブチル、イソ酪酸イソブチル、ウンデカン、プロピオン酸ペンチル、プロピオン酸イソペンチル、エチルシクロヘキサン、メシチレン及びデカンからなる群より選択される少なくとも1種である、請求項9に記載の薬液収容体。 The organic solvent is cyclohexanone, butyl acetate, N-methyl-2-pyrrolidone, 4-methyl-2-pentanol, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene carbonate, isoamyl acetate, propylene glycol Monomethyl ether, propylene glycol monopropyl ether, methyl methoxypropionate, cyclopentanone, γ-butyrolactone, diisoamyl ether, isopropanol, dimethyl sulfoxide, diethylene glycol, ethylene glycol, dipropylene glycol, propylene glycol, ethylene carbonate, sulfolane, cyclohepta Non-, 2-heptanone, butyl butyrate, isobutyl isobutyrate, undecane, pentyl propionate, Acid isopentyl, ethylcyclohexane, is at least one selected from the group consisting of mesitylene, and decane, chemical container according to claim 9.
  11.  前記金属含有粒子のうち、粒子径が0.5~17nmの金属ナノ粒子の、前記薬液の単位体積あたりの含有粒子数が1.0×10~1.0×10個/cmである、請求項1~10のいずれか1項に記載の薬液収容体。 In the metal-containing particles, the number of metal nanoparticles having a particle diameter of 0.5 to 17 nm per unit volume of the chemical solution is 1.0 × 10 1 to 1.0 × 10 9 / cm 3 . The drug solution container according to any one of claims 1 to 10.
  12.  前記気体が窒素ガスを含み、
     前記窒素ガスの含有量が、前記空隙部の全容量に対して、95~99.9999体積%であり、
     前記気体中の前記有機化合物の含有量が、前記薬液の全質量に対して、0.05~50,000質量pptである、請求項1~11のいずれか1項に記載の薬液収容体。
    The gas includes nitrogen gas,
    The content of the nitrogen gas is 95 to 99.9999% by volume based on the total volume of the voids;
    12. The chemical solution container according to claim 1, wherein the content of the organic compound in the gas is 0.05 to 50,000 mass ppt based on the total mass of the chemical solution.
  13.  前記薬液収容体における前記容器の空隙率が、50~99.99体積%である、請求項1~12のいずれか1項に記載の薬液収容体。 The medical solution container according to any one of claims 1 to 12, wherein the porosity of the container in the medical solution container is 50 to 99.99% by volume.
  14.  前記容器の接液部の少なくとも一部が、フッ素樹脂、電解研磨されたステンレス鋼、又は、ガラスである、請求項1~13のいずれか1項に記載の薬液収容体。 (14) The chemical solution container according to any one of (1) to (13), wherein at least a part of the liquid contact part of the container is made of fluororesin, electrolytically polished stainless steel, or glass.
  15.  前記容器の接液部の少なくとも一部が前記電解研磨されたステンレス鋼である場合、
     前記容器の接液部の平均表面粗さRaが100nm未満である、請求項14に記載の薬液収容体。
    When at least a part of the liquid contact part of the container is the electropolished stainless steel,
    The liquid medicine container according to claim 14, wherein the liquid contact part of the container has an average surface roughness Ra of less than 100 nm.
  16.  前記容器の接液部の少なくとも一部が、前記フッ素樹脂とともに導電性材料を更に含む、請求項14に記載の薬液収容体。 The liquid medicine container according to claim 14, wherein at least a part of the liquid contact part of the container further includes a conductive material together with the fluororesin.
  17.  前記導電性材料がカーボンを含む、請求項16に記載の薬液収容体。 17. The chemical solution container according to claim 16, wherein the conductive material contains carbon.
  18.  前記カーボンが、カーボン粒子、カーボンナノチューブ及び炭素繊維からなる群より選択される少なくとも1種である、請求項17に記載の薬液収容体。 The chemical solution container according to claim 17, wherein the carbon is at least one selected from the group consisting of carbon particles, carbon nanotubes, and carbon fibers.
  19.  前記薬液が、現像液、リンス液、ウェハ洗浄液、ライン洗浄液、プリウェット液、レジスト液、下層膜形成用液、上層膜形成用液及びハードコート形成用液からなる群より選択される少なくとも1種の液の原料として用いられる、請求項1~18のいずれか1項に記載の薬液収容体。 At least one selected from the group consisting of a developer, a rinse, a wafer cleaning liquid, a line cleaning liquid, a pre-wet liquid, a resist liquid, a lower layer film forming liquid, an upper layer film forming liquid, and a hard coat forming liquid; The medical solution container according to any one of claims 1 to 18, which is used as a raw material of the liquid.
PCT/JP2019/032036 2018-08-20 2019-08-15 Chemical solution accommodation body WO2020040034A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020538342A JPWO2020040034A1 (en) 2018-08-20 2019-08-15 Chemical containment body
KR1020217004819A KR20210032486A (en) 2018-08-20 2019-08-15 Drug receptor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018154046 2018-08-20
JP2018-154046 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020040034A1 true WO2020040034A1 (en) 2020-02-27

Family

ID=69592839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032036 WO2020040034A1 (en) 2018-08-20 2019-08-15 Chemical solution accommodation body

Country Status (4)

Country Link
JP (1) JPWO2020040034A1 (en)
KR (1) KR20210032486A (en)
TW (1) TW202026764A (en)
WO (1) WO2020040034A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182094A1 (en) * 2022-03-25 2023-09-28 富士フイルム株式会社 Active-ray-sensitive or radiation-sensitive resin composition, resist film, method for forming resist pattern, method for manufacturing electronic device, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040206702A1 (en) * 2002-08-08 2004-10-21 Davidson James M. Use of an oxidizer to improve trace metals removal from photoresist and photoresist components
WO2016052393A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Organic treatment solution for patterning of resist film, method for producing organic treatment solution for patterning of resist film, storage container for organic treatment solution for patterning of resist film, and pattern formation method and electronic device manufacturing method using same
WO2018092763A1 (en) * 2016-11-18 2018-05-24 富士フイルム株式会社 Chemical liquid, pattern forming method and kit
JP2018081307A (en) * 2016-11-07 2018-05-24 富士フイルム株式会社 Treatment liquid and pattern forming method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129148A (en) 1997-07-08 1999-02-02 Toyo Glass Co Ltd Glass container for novolak resin-based positive-type photoresist and its inner face treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040206702A1 (en) * 2002-08-08 2004-10-21 Davidson James M. Use of an oxidizer to improve trace metals removal from photoresist and photoresist components
WO2016052393A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Organic treatment solution for patterning of resist film, method for producing organic treatment solution for patterning of resist film, storage container for organic treatment solution for patterning of resist film, and pattern formation method and electronic device manufacturing method using same
JP2018081307A (en) * 2016-11-07 2018-05-24 富士フイルム株式会社 Treatment liquid and pattern forming method
WO2018092763A1 (en) * 2016-11-18 2018-05-24 富士フイルム株式会社 Chemical liquid, pattern forming method and kit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182094A1 (en) * 2022-03-25 2023-09-28 富士フイルム株式会社 Active-ray-sensitive or radiation-sensitive resin composition, resist film, method for forming resist pattern, method for manufacturing electronic device, and electronic device

Also Published As

Publication number Publication date
KR20210032486A (en) 2021-03-24
JPWO2020040034A1 (en) 2021-09-24
TW202026764A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP7453435B2 (en) Chemical liquid, kit, pattern forming method, chemical liquid manufacturing method, and chemical liquid container
JP7446498B2 (en) Chemical liquid and chemical liquid container
JP2023015246A (en) Solution and production method of solution
JP7492049B2 (en) Chemical solution, method for producing chemical solution, and method for analyzing test solution
WO2020040034A1 (en) Chemical solution accommodation body
KR102519818B1 (en) drug solution, drug solution receptor
TWI843304B (en) Solvent for resist solution and method for producing thereof, chemical liquid containing resist composition, resist solution and method for producing thereof
US20200341381A1 (en) Liquid chemical and method for producing liquid chemical
TW202419983A (en) Pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538342

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217004819

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852989

Country of ref document: EP

Kind code of ref document: A1