WO2020039992A1 - 画像処理装置、および画像処理システム - Google Patents

画像処理装置、および画像処理システム Download PDF

Info

Publication number
WO2020039992A1
WO2020039992A1 PCT/JP2019/031780 JP2019031780W WO2020039992A1 WO 2020039992 A1 WO2020039992 A1 WO 2020039992A1 JP 2019031780 W JP2019031780 W JP 2019031780W WO 2020039992 A1 WO2020039992 A1 WO 2020039992A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
area
data
image processing
information
Prior art date
Application number
PCT/JP2019/031780
Other languages
English (en)
French (fr)
Inventor
松原 義明
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2020538326A priority Critical patent/JP7357620B2/ja
Priority to CN201980053880.XA priority patent/CN112567727B/zh
Priority to EP19851664.3A priority patent/EP3843376A4/en
Priority to KR1020217002362A priority patent/KR102709488B1/ko
Priority to US17/261,371 priority patent/US11647284B2/en
Publication of WO2020039992A1 publication Critical patent/WO2020039992A1/ja
Priority to US18/132,558 priority patent/US12058438B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/665Control of cameras or camera modules involving internal camera communication with the image sensor, e.g. synchronising or multiplexing SSIS control signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/443Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by reading pixels from selected 2D regions of the array, e.g. for windowing or digital zooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing

Definitions

  • the present disclosure relates to an image processing device and an image processing system.
  • Patent Literature 1 when the technology described in Patent Literature 1 is used, when a specific target is detected from an image obtained by imaging in one imaging unit configuring the imaging device, another imaging configuration configuring the imaging device is performed. The imaging in the unit is performed. However, when the technique described in Patent Literature 1 is used, only a plurality of images are obtained by imaging, and it is particularly considered to process a plurality of images obtained by imaging in association with each other. Absent.
  • the present disclosure proposes a new and improved image processing device and image processing system that can process images obtained from a plurality of image sensors in association with each other.
  • region information corresponding to a region set for a captured image additional data including each region, and region image data indicating an image for each line corresponding to the region
  • a processing unit that processes the area image data obtained from each of the sensors in association with each of the areas, wherein the area information includes identification information of the area, information indicating a position of the area, and
  • An image processing device is provided that includes part or all of information indicating the size of a region.
  • additional data including area information corresponding to an area set for a captured image for each area, and area image data indicating an image for each row corresponding to the area
  • the image processing device has a communication unit capable of communicating with each of the plurality of image sensors, and a plurality of Based on the region information included in the additional data obtained from each of the image sensors, the processing unit that processes the region image data obtained from each of the plurality of image sensors in association with each of the regions,
  • the image processing apparatus includes: an image processing unit that includes, in the area information, part or all of identification information of the area, information indicating a position of the area, and information indicating a size of the area. System is provided.
  • images obtained from a plurality of image sensors can be processed in association with each other.
  • FIG. 1 is an explanatory diagram illustrating an example of a configuration of an image processing system according to an embodiment.
  • FIG. 3 is an explanatory diagram showing a packet format defined in the MIPI @ CSI-2 standard.
  • FIG. 3 is an explanatory diagram showing a packet format defined in the MIPI @ CSI-2 standard.
  • FIG. 4 is an explanatory diagram showing an example of a signal waveform related to packet transmission in the MIPI @ CSI-2 standard.
  • FIG. 4 is an explanatory diagram illustrating an example of an area set for an image.
  • FIG. 3 is an explanatory diagram illustrating an example of data transmitted by a first transmission method according to the transmission method according to the embodiment.
  • FIG. 3 is an explanatory diagram for describing an example of Embedded @ Data transmitted by a first transmission scheme according to the embodiment.
  • FIG. 8 is an explanatory diagram illustrating an example of area information included in Embedded @ Data illustrated in FIG. 7.
  • FIG. 11 is an explanatory diagram illustrating another example of an area set for an image.
  • FIG. 4 is an explanatory diagram illustrating an example of data transmitted by a second transmission method according to the transmission method according to the embodiment. It is a block diagram showing an example of composition of an image sensor concerning this embodiment.
  • FIG. 2 is a block diagram illustrating an example of a configuration of an image processing apparatus according to the embodiment.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of a communication circuit included in the image processing apparatus according to the embodiment.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of an image processing circuit included in the image processing apparatus according to the embodiment.
  • FIG. 9 is an explanatory diagram for describing an example of a process in the image processing system according to the embodiment;
  • FIG. 9 is an explanatory diagram for describing an example of a process in the image processing system according to the embodiment;
  • FIG. 9 is an explanatory diagram for describing an example of a process in the image processing system according to the embodiment;
  • Transmission method according to this embodiment, image processing method according to this embodiment, and image processing system according to this embodiment
  • the communication method between the devices constituting the image processing system according to the present embodiment is a communication method conforming to the MIPI (Mobile Industry Processor Interface) / CSI-2 (Camera Serial Interface 2) standard.
  • the communication method between the devices constituting the image processing system according to the present embodiment is not limited to the communication method conforming to the MIPI @ CSI-2 standard.
  • communication between devices constituting the image processing system according to the present embodiment is formulated in the MIPI Alliance, such as a communication system conforming to the MIPI @ CSI-3 standard and a communication system conforming to the MIPI @ DSI (Display Serial Interface).
  • MIPI Alliance such as a communication system conforming to the MIPI @ CSI-3 standard and a communication system conforming to the MIPI @ DSI (Display Serial Interface).
  • Other standards may be used.
  • the communication method to which the transmission method according to the present embodiment can be applied is not limited to the communication method according to the standard formulated in the MIPI Alliance.
  • FIG. 1 is an explanatory diagram showing an example of the configuration of the image processing system 1000 according to the present embodiment.
  • the image processing system 1000 for example, a communication device such as a smartphone, a drone (a device capable of operation by remote operation or autonomous operation), a mobile body such as an automobile, and the like can be given.
  • the application example of the image processing system 1000 is not limited to the example described above. Other application examples of the image processing system 1000 will be described later.
  • the image processing system 1000 includes, for example, the image sensors 100A and 100B, the image processing device 200, the memory 300, and the display device 400.
  • each of the image sensors 100A and 100B is generically referred to, or one of the image sensors 100A and 100B is referred to as “image sensor 100”.
  • the image sensor 100 has an imaging function and a transmission function, and transmits data indicating an image generated by imaging.
  • the image processing device 200 receives the data transmitted from the image sensor 100 and processes the received data. That is, in the image processing system 1000, the image sensor 100 functions as a transmitting device, and the image processing device 200 functions as a receiving device.
  • FIG. 1 illustrates the image processing system 1000 including the two image sensors 100, but the number of the image sensors 100 included in the image processing system according to the present embodiment is not limited to the example illustrated in FIG.
  • the image processing system according to the present embodiment may include three or more image sensors 100.
  • the plurality of image sensors 100 may be modularized.
  • the image sensor module in which the plurality of image sensors 100 are modularized includes, for example, the plurality of image sensors 100, a processor (not shown) for the image sensor module, and a record from which the processor can read data. And a medium. For example, information on the angle of view of the image sensor 100 forming the image sensor module (for example, data indicating the angle of view) is recorded on the recording medium constituting the image sensor module. Then, the processor configuring the image sensor module transmits information on the angle of view to the image processing device 200 via an arbitrary transmission path.
  • FIG. 1 illustrates an image processing system 1000 having one image processing apparatus 200
  • the number of image processing apparatuses 200 included in the image processing system according to the present embodiment is limited to the example illustrated in FIG. Absent.
  • the image processing system according to the present embodiment may include two or more image processing apparatuses 200.
  • a plurality of image sensors 100 correspond to each image processing device 200.
  • communication is performed between each image sensor 100 and the image processing device 200, similarly to the image processing system 1000 shown in FIG.
  • the image sensor 100 and the image processing device 200 are electrically connected by the data bus B1.
  • the data bus B1 is a signal transmission path that connects the image sensor 100 and the image processing device 200.
  • image data data indicating an image transmitted from the image sensor 100 (hereinafter, sometimes referred to as “image data”) is transmitted from the image sensor 100 to the image processing device 200 via the data bus B1.
  • the signal transmitted by the data bus B1 in the image processing system 1000 is transmitted by a communication method in accordance with a predetermined standard such as the MIPI @ CSI-2 standard.
  • FIGS. 2 and 3 are explanatory diagrams showing packet formats defined in the MIPI @ CSI-2 standard.
  • FIG. 2 shows a format of a short packet (Short @ Packet) defined in the MIPI @ CSI-2 standard
  • FIG. 3 shows a format of a long packet (Long @ Packet) defined in the MIPI @ CSI-2 standard. Is shown.
  • the long packet is data composed of a packet header (“PH” shown in FIG. 3), a payload (“Payload @ Data” shown in FIG. 3), and a packet footer (“PF” shown in FIG. 3).
  • the short packet is data having the same structure as the packet header ("PH” shown in FIG. 3) as shown in FIG.
  • VC Virtual Channel
  • the end of the packet is recorded in the number of words in Word @ Count of the header portion of the long packet.
  • An error correcting code (Error @ Correcting @ Code) is recorded in the ECC of the header part of the short packet and the long packet.
  • a high-speed differential signal is used during a data signal transmission period, and a low-power signal is used during a data signal blanking period.
  • a period in which the high-speed differential signal is used is called an HPS (High Speed State) period, and a period in which the low power signal is used is called an LPS (Low Power State) period.
  • FIG. 4 is an explanatory diagram showing an example of a signal waveform related to packet transmission in the MIPI CSI-2 standard.
  • FIG. 4A illustrates an example of packet transmission
  • FIG. 4B illustrates another example of packet transmission.
  • ST”, “ET”, “PH”, “PF”, “SP”, “PS” shown in FIG. 4 mean the following, respectively.
  • ET End of Transmission
  • PH Packet Header
  • PF Packet Footer
  • SP Short Packet
  • PS Packet Spacing
  • the amplitude of the differential signal between the differential signal (“LPS” shown in FIG. 4) during the LPS period and the differential signal (other than “LPS” shown in FIG. 4) during the HPS period are different. Therefore, from the viewpoint of improving the transmission efficiency, it is desirable that the period of the LPS be as short as possible.
  • the image sensor 100 and the image processing device 200 are electrically connected, for example, by a control bus B2 different from the data bus B1.
  • the control bus B2 is a transmission path for other signals that connects the image sensor 100 and the image processing device 200.
  • control information output from the image processing device 200 is transmitted from the image processing device 200 to the image sensor 100 via the control bus B2.
  • the control information includes, for example, information for control and a processing command.
  • information for control for example, one or two or more of data indicating an image size, data indicating a frame rate, and data indicating an output delay amount from when an image output command is received until an image is output is received.
  • data for controlling a function of the image sensor 100 may be used.
  • the control information may include identification information indicating the image sensor 100.
  • the identification information includes, for example, arbitrary data that can specify the image sensor 100, such as an ID set in the image sensor 100.
  • the information transmitted from the image processing device 200 to the image sensor 100 via the control bus B2 is not limited to the above example.
  • the image processing apparatus 200 may transmit area designation information for designating an area in an image via the control bus B2.
  • the region designation information any format that can specify the region, such as data indicating the position of a pixel included in the region (for example, coordinate data in which the position of a pixel included in the region is represented by coordinates) is used. Data.
  • FIG. 1 shows an example in which the image sensor 100 and the image processing device 200 are electrically connected by the control bus B2, but the image sensor 100 and the image processing device 200 are connected by the control bus B2. It is not necessary.
  • the image sensor 100 and the image processing device 200 may transmit and receive control information and the like by wireless communication using an arbitrary communication method.
  • the image sensor 100A and the image sensor 100B are not electrically connected, but the image sensor 100A and the image sensor 100B are connected by a transmission path capable of performing communication by an arbitrary communication method. It may be electrically connected.
  • the image sensor 100A and the image sensor 100B can directly communicate with each other.
  • the image sensor 100A and the image sensor 100B can communicate with each other by, for example, inter-processor communication in which communication is performed on a transmission path between processors included in each of the image sensors 100A and 100B. Note that, even when the image sensor 100A and the image sensor 100B are not electrically connected as shown in FIG. 1, the image sensor 100A and the image sensor 100B perform communication via the image processing device 200. It is possible.
  • the memory 300 is a recording medium included in the image processing system 1000.
  • Examples of the memory 300 include a volatile memory such as a RAM (Random Access Memory) and a nonvolatile memory such as a flash memory.
  • the memory 300 operates with power supplied from an internal power supply (not shown) configuring the image processing system 1000 such as a battery or power supplied from an external power supply of the image processing system 1000.
  • the memory 300 stores, for example, an image output from the image sensor 100. Recording of an image in the memory 300 is controlled by, for example, the image processing device 200.
  • the display device 400 is a display device included in the image processing system 1000.
  • Examples of the display device 400 include a liquid crystal display and an organic EL display (Organic Electro-Luminescence Display).
  • the display device 400 operates with power supplied from an internal power supply (not shown) configuring the image processing system 1000 such as a battery or power supplied from an external power supply of the image processing system 1000.
  • the display screen of the display device 400 includes various images and screens such as an image output from the image sensor 100, a screen related to an application executed in the image processing apparatus 200, and a screen related to a UI (User @ Interface). Is displayed. Display of an image or the like on the display screen of the display device 400 is controlled by, for example, the image processing apparatus 200.
  • Image sensor 100 The image sensor 100 has an imaging function and a transmission function, and transmits data indicating an image generated by imaging. As described above, the image sensor 100 functions as a transmission device in the image processing system 1000.
  • the image sensor 100 may be an image capturing device such as a “digital still camera, a digital video camera, or a stereo camera”, an “infrared sensor”, or a “range image sensor”, or any other method capable of generating an image. It includes an image sensor device and has a function of transmitting a generated image. The image generated in the image sensor 100 corresponds to data indicating a sensing result in the image sensor 100. An example of the configuration of the image sensor 100 will be described later.
  • the image sensor 100 transmits image data (hereinafter, referred to as “region image data”) corresponding to a region set for an image by a transmission method according to the present embodiment described below.
  • the control related to the transmission of the area image data is performed by a component (described later) that functions as an image processing unit in the image sensor 100, for example.
  • An area set for an image may be called an ROI (Region @ Of @ Interest).
  • an area set for an image may be referred to as an “ROI”.
  • Examples of the processing relating to the setting of an area for an image include “processing for detecting an object from an image and setting an area including the detected object”, and “setting an area specified by an operation on an arbitrary operation device or the like”. Any processing capable of specifying a partial area in an image, such as “processing” (or any processing capable of cutting out a partial area from an image).
  • the processing related to the setting of the area for the image may be performed by the image sensor 100 or may be performed by an external device such as the image processing apparatus 200.
  • the image sensor 100 specifies the area according to the result of the processing related to the setting of the area for the image. Further, for example, when a process related to setting an area for an image is performed in an external device, the image sensor 100 specifies the area based on the area designation information acquired from the external apparatus.
  • the image sensor 100 transmits the region image data, that is, by transmitting data of a part of the image, the data amount related to the transmission is smaller than that of transmitting the entire image. Therefore, the image sensor 100 transmits the area image data, so that the data amount is reduced, for example, the transmission time is shortened, and the load on the transmission in the image processing system 1000 is reduced. Various effects are achieved.
  • the image sensor 100 can also transmit data indicating the entire image.
  • the image sensor 100 When the image sensor 100 has a function of transmitting the area image data and a function of transmitting data indicating the entire image, the image sensor 100 transmits the area image data and transmits the data indicating the entire image.
  • the transmission can be selectively switched.
  • the image sensor 100 transmits the area image data or the data indicating the entire image, for example, according to the set operation mode.
  • the setting of the operation mode is performed by, for example, operating an arbitrary operation device.
  • the image sensor 100 may selectively switch between transmitting the area image data and transmitting the data indicating the entire image based on the area designation information acquired from the external device.
  • the image sensor 100 transmits, for example, the area image data of the area corresponding to the area specification information when the area specification information is obtained from the external device, and outputs the entire image when the area specification information is not obtained from the external apparatus. Is transmitted.
  • the image processing device 200 receives data transmitted from the image sensor 100 and processes the received data by performing, for example, a process according to an image processing method according to the present embodiment. As described above, the image processing device 200 functions as a receiving device in the image processing system 1000. An example of a configuration relating to processing of data transmitted from the image sensor 100 (configuration for fulfilling the role of the receiving device) will be described later.
  • the image processing apparatus 200 includes, for example, one or two or more processors including various processing circuits such as an MPU (Micro Processing Unit) and various processing circuits.
  • the image processing apparatus 200 operates with power supplied from an internal power supply (not shown) included in the image processing system 1000 such as a battery or power supplied from an external power supply of the image processing system 1000.
  • the image processing apparatus 200 processes the image data acquired from each of the plurality of image sensors 100 by performing the processing according to the image processing method according to the present embodiment.
  • the image sensor 100 transmits the area image data by a transmission method according to a transmission method described below.
  • the image processing apparatus 200 processes the area image data obtained from each of the plurality of image sensors 100 in association with each area set for the image.
  • the image processing apparatus 200 synthesizes, for each area, an image indicated by the area image data acquired from each of the plurality of image sensors 100, for example.
  • the image processing apparatus 200 combines the images indicated by the region image data to be combined with the relative positions of the images.
  • the image processing apparatus 200 obtains information on the angle of view obtained from each of the image sensors 100 that have transmitted the area image data (or information on the angle of view obtained from the above-described image sensor module. The same applies hereinafter).
  • the relative position of the image indicated by the area image data is adjusted.
  • the image processing apparatus 200 performs an arbitrary object detection process on each of the images indicated by the region image data, detects the corresponding objects, and adjusts the relative positions of the images indicated by the region image data. Is also good.
  • the process of associating the region image data obtained from each of the plurality of image sensors 100 with each region is not limited to the example described above.
  • the image processing apparatus 200 may combine the images indicated by the area image data with the same signal level.
  • the image processing device 200 corrects the sensitivity ratio of each of the image sensors 100 that have transmitted the region image data, for example, based on information (described later) regarding imaging in the image sensors 100 acquired from the plurality of image sensors 100, respectively. Determining the correction gain "realizes the synthesis that matches the signal level.
  • the sensitivity of the image sensor 100 includes, for example, a photoelectric conversion rate of an image sensor device included in the image sensor 100.
  • the processing in the image processing apparatus 200 is not limited to the above example.
  • the image processing apparatus 200 can perform any processing that can be performed on image data, such as RGB processing, YC processing, and Gamma processing.
  • the image processing apparatus 200 executes, for example, processing related to control of recording image data on a recording medium such as the memory 300, processing related to display control of an image on a display screen of the display device 400, and arbitrary application software.
  • Various processing such as processing is performed.
  • a process related to the recording control for example, “a process of transmitting control data including a recording command and data to be recorded on a recording medium to a recording medium such as the memory 300” is exemplified.
  • a process related to the display control for example, “a process of transmitting control data including a display command and data to be displayed on a display screen to a display device such as the display device 400” is exemplified.
  • the image processing device 200 may control the functions of the image sensor 100 by transmitting control information to the image sensor 100, for example.
  • the image processing device 200 can also control data transmitted from the image sensor 100 by transmitting the area designation information to the image sensor 100, for example.
  • the image processing system 1000 has, for example, the configuration shown in FIG. Note that the configuration of the image processing system according to the present embodiment is not limited to the example illustrated in FIG.
  • the image processing system when an image transmitted from the image sensor 100 is stored in a recording medium external to the image processing system, when an image transmitted from the image sensor 100 is stored in a memory included in the image processing apparatus 200, for example, when an image transmitted from the sensor 100 is not recorded, the image processing system according to the present embodiment may not include the memory 300.
  • the image processing system according to this embodiment can have a configuration without the display device 400 illustrated in FIG.
  • the image processing system according to the present embodiment may have an arbitrary configuration according to a function of an electronic device to which the image processing system according to the present embodiment described below is applied.
  • Example of application of image processing system has been described as the present embodiment, but the present embodiment is not limited to such an embodiment.
  • This embodiment includes, for example, a communication device such as a smartphone, a drone (a device capable of operation by remote operation or autonomous operation), a mobile body such as an automobile, a computer such as a PC (Personal Computer), and a tablet type.
  • the present invention can be applied to various electronic devices such as a device, a game machine and the like.
  • FIG. 5 is an explanatory diagram showing an example of an area set for an image.
  • four regions, a region 1, a region 2, a region 3, and a region 4, are shown as examples of regions. It goes without saying that the area set for the image is not limited to the example shown in FIG.
  • the image sensor 100 includes, for example, “additional data including, for each region, region information corresponding to a region set for an image such as region 1 to region 4 shown in FIG.
  • Area image data indicating an image for each (line) is transmitted in a different packet.
  • a row in an image means that when the position of a pixel is represented by two-dimensional plane coordinates (x, y), the y coordinate is the same.
  • the area information according to the present embodiment is data (data group) for specifying an area set for an image on the receiving device side.
  • the area information includes, for example, part or all of the area identification information, the information indicating the position of the area, and the information indicating the size of the area.
  • the information included in the area information is not limited to the example described above.
  • the region information may include arbitrary information for specifying the region set for the image on the receiving device side. For example, when areas are divided by VC number, the VC number may serve as identification information of an area included in a row. When areas are divided by VC number, the payload length can be used as information indicating the size of the area included in the row.
  • the area identification information includes, for example, arbitrary data that can uniquely specify an area, such as data indicating an area ID such as a number assigned to the area.
  • the identification information of the area may be indicated as “ROI @ ID”.
  • the information indicating the position of the area is data indicating the position of the area in the image.
  • the information indicating the position of the region for example, by combining with the size of the region indicated by the information indicating the size of the region, such as data indicating the upper left position of the region in the image by two-dimensional plane coordinates (x, y), , Data indicating an arbitrary position where a region can be uniquely specified.
  • the information indicating the size of the region specifies the size of the region such as data indicating a rectangular region (for example, data indicating the number of pixels in the horizontal direction and the number of pixels in the vertical direction in the rectangular region). It may be in any format of data that is capable of doing so.
  • the image sensor 100 stores the area information in “Embedded @ Data” of one packet and transmits the packet. In addition, the image sensor 100 stores the area image data in the payload of another packet and causes the packet to be transmitted row by row.
  • Embedded Data is data that can be embedded in a transmitted packet, and corresponds to additional data that the image sensor 100 additionally transmits.
  • Embedded @ Data may be indicated as "EBD”.
  • FIG. 6 is an explanatory diagram showing an example of data transmitted by the first transmission method according to the transmission method according to the present embodiment.
  • FIG. 6 shows that “region information corresponding to each of region 1, region 2, region 3, and region 4 shown in FIG. 5 is stored as“ Embedded @ Data ”in the payload of a long packet of MIPI, and the region image data is 3 is stored in the payload of the MIPI long packet and transmitted on a row-by-row basis.
  • FS shown in FIG. 6 is an FS (Frame Start) packet in the MIPI CSI-2 standard
  • FE FE (Frame End) packet in the MIPI CSI-2 standard (others). The same applies to the figures).
  • Embedded @ Data shown in FIG. 6 is data that can be embedded in a packet transmitted as described above. “Embedded @ Data” can be embedded in, for example, a header, a payload, or a footer of a transmitted packet. In the example shown in FIG. 6, the area information is stored in “Embedded @ Data” of one packet, and “Embedded @ Data” in which the area information is stored corresponds to the additional data.
  • the additional data according to the present embodiment may include information regarding imaging by the image sensor 100.
  • the information regarding imaging in the image sensor 100 is, for example, one of exposure information indicating an exposure value in the image sensor device, gain information indicating a gain in the image sensor device, and sensitivity information indicating a photoelectric conversion rate in the image sensor device. Part or all may be mentioned.
  • the exposure value indicated by the exposure information and the gain indicated by the gain information are set in the image sensor device by, for example, the control of the image processing apparatus 200 via the control bus B2.
  • FIG. 7 is an explanatory diagram for describing an example of Embedded @ Data transmitted by the first transmission scheme according to the present embodiment.
  • the data after PH shown in FIG. 7 is an example of the Embedded @ Data shown in FIG.
  • “Value” includes area identification information, information indicating the position of the area, and information indicating the size of the area. Further, “Value” may include information regarding imaging by the image sensor 100. In the area information shown in FIG. 7, for example, "Length" defines a boundary with other area information included in Embedded @ Data.
  • FIG. 8 is an explanatory diagram for describing an example of the area information included in the Embedded @ Data shown in FIG.
  • "ROI @ ID” shown in FIG. 8 corresponds to the identification information of the area
  • "Upper @ Left ⁇ Coordinate” shown in FIG. 8 corresponds to the information indicating the position of the area.
  • “Height” and “Width” shown in FIG. 8 correspond to the information indicating the size of the area.
  • FIG. 6 An example of data transmitted by the first transmission scheme will be described with reference to FIG. 6 again.
  • “1”, “2”, “3”, and “4” shown in FIG. 6 are area image data of area 1, area image data of area 2, and area image of area 3 stored in the payload of the packet. Data and the area image data of the area 4.
  • each area image data is shown as being separated, but this is a delimiter for convenience, and there is no delimiter in the data stored in the payload.
  • the area information corresponding to each of the area 1, the area 2, the area 3, and the area 4 shown in FIG. 5 is stored and transmitted in “Embedded @ Data” of one packet as shown in FIG. Is done.
  • the area image data corresponding to each of the area 1, the area 2, the area 3, and the area 4 illustrated in FIG. 5 is stored in the payload of the MIPI long packet as illustrated in FIG. And is transmitted line by line.
  • the transmission method applicable to the image processing system 1000 according to the present embodiment is not limited to the transmission method according to the first transmission method.
  • the image sensor 100 may store the area information and the area image data in the payload of the packet, and transmit the packet for each row.
  • FIG. 9 is an explanatory diagram showing another example of an area set for an image.
  • FIG. 9 shows four regions, that is, a region 1, a region 2, a region 3, and a region 4, as examples of the regions.
  • FIG. 10 is an explanatory diagram showing an example of data transmitted by the second transmission method according to the transmission method according to the present embodiment.
  • FIG. 10 shows that “region information and region image data respectively corresponding to region 1, region 2, region 3, and region 4 shown in FIG. 9 are stored in the payload of the MIPI long packet shown in FIG. Is transmitted to the user. "
  • “” PH “shown in FIG. 10 is a packet header of a long packet.
  • the packet header of the long packet according to the second transmission scheme is data (change information) indicating whether or not the information included in the area information has changed from the area information included in the packet to be transmitted immediately before.
  • “PH” shown in FIG. 10 is one data indicating the data type of the long packet.
  • the image sensor 100 sets “PH” to “0x38”. In this case, the image sensor 100 stores the area information in the payload of the long packet.
  • the image sensor 100 sets “0x39” to “PH”. In this case, the image sensor 100 does not store the area information in the payload of the long packet. That is, when the information included in the area information has not changed from the area information included in the packet to be transmitted immediately before, the image sensor 100 does not transmit the area information.
  • the data set to “PH” is not limited to the example shown above.
  • “" Info "shown in FIG. 10 is area information stored in the payload. As shown in FIG. 10, the area information is stored at the head of the payload.
  • FIG. 10 “1”, “2”, “3”, and “4” shown in FIG. 10 are area image data of area 1, area image data of area 2, area image data of area 3, And area image data of area 4.
  • each area image data is shown as being separated, but this is a delimiter for convenience, and there is no delimiter in the data stored in the payload.
  • the area information and the area image data corresponding to each of the area 1, the area 2, the area 3, and the area 4 shown in FIG. 9 are added to the payload of the MIPI long packet, for example, as shown in FIG. Stored and sent line by line.
  • the image sensor 100 can transmit the shape of an arbitrary region set in an image.
  • FIG. 11 is a block diagram illustrating an example of a configuration of the image sensor 100 according to the present embodiment.
  • the image sensor 100 includes, for example, a photoelectric conversion unit 102, a signal processing unit 104, a communication unit 106, and a control unit 108.
  • the image sensor 100 operates with power supplied from an internal power supply (not shown) constituting the image processing system 1000 such as a battery or power supplied from an external power supply of the image processing system 1000.
  • the photoelectric conversion unit 102 is configured by the lens / imaging element 150
  • the signal processing unit 104 is configured by the signal processing circuit 152.
  • the lens / imaging element 150 and the signal processing circuit 152 function as an image sensor device in the image sensor 100.
  • all of the image sensors 100 may include the same type of image sensor devices, or some of the image sensors 100 may include different types of image sensor devices.
  • Examples of the image sensor 100 including different types of image sensor devices include, for example, an image sensor 100 including an image sensor device that captures a color image and an image sensor 100 including an image sensor device that captures a black-and-white image. .
  • the communication unit 106 is configured by the communication circuit 154, and the control unit 108 is configured by the processor 156.
  • the operations of the lens / image sensor 150, the signal processing circuit 152, and the communication circuit 154 are controlled by the processor 156.
  • the functional blocks of the image sensor 100 shown in FIG. 11 are obtained by separating the functions of the image sensor 100 for convenience, and are not limited to the example shown in FIG.
  • the signal processing unit 104 and the control unit 108 illustrated in FIG. 11 can be regarded as one processing unit.
  • the lens / imaging element 150 includes, for example, an optical lens and an image sensor using a plurality of imaging elements such as a complementary metal oxide semiconductor (CMOS) and a charge coupled device (CCD).
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • the signal processing circuit 152 includes, for example, an AGC (Automatic Gain Control) circuit and an ADC (Analog to Digital Converter), and converts an analog signal transmitted from the lens / imaging element 150 into a digital signal (image data).
  • the signal processing circuit 152 includes, for example, an amplifier and amplifies a digital signal with a predetermined gain.
  • the signal processing circuit 152 may perform, for example, processing relating to setting of an area for an image, and transmit the area specifying information to the communication circuit 154. Note that, as described later, the processing related to the setting of the area for the image in the image sensor 100 may be performed in the processor 156. Further, as described above, in the image processing system 1000, the processing related to the setting of the area for the image may be performed in an external device such as the image processing apparatus 200.
  • the signal processing circuit 152 may transmit various data such as exposure information and gain information to the communication circuit 154.
  • the transmission of various data such as exposure information and gain information to the communication circuit 154 in the image sensor 100 may be performed by the processor 156.
  • the communication circuit 154 is a circuit related to a data transmission function by the transmission method according to the present embodiment, and includes, for example, an IC (Integrated Circuit) chip in which a circuit related to the transmission function is integrated.
  • the communication circuit 154 processes the image data transmitted from the signal processing circuit 152 and transmits data corresponding to the generated image.
  • the data corresponding to the image is image data transmitted from the signal processing circuit 152 (that is, data indicating the entire image), or area information and area image data.
  • the processor 156 controls the operations of the lens / imaging element 150, the signal processing circuit 152, and the communication circuit 154, for example, based on a control signal transmitted from the image processing device 200 via the control bus B2.
  • the processor 156 transmits a control signal transmitted from the other image sensor 100 via an arbitrary transmission path. It is also possible to perform processing based on this.
  • the control of the lens / imaging element 150 in the processor 156 includes, for example, imaging control such as exposure time control.
  • the control of the signal processing circuit 152 in the processor 156 includes, for example, control of signal processing such as control of a gain.
  • the control of the communication circuit 154 in the processor 156 includes, for example, “control of switching between transmission of area image data and transmission of data indicating the entire image” and various controls for transmitting area image data. (For example, control of communication such as control of transmission of area information and control of transmission of information related to imaging).
  • the image sensor 100 performs the processing according to the above-described transmission method with, for example, the configuration illustrated in FIG. It goes without saying that the configuration of the image sensor 100 is not limited to the example shown in FIG.
  • FIG. 12 is a block diagram illustrating an example of a configuration of the image processing device 200 according to the present embodiment.
  • FIG. 12 illustrates an example of a configuration of the image processing apparatus 200 included in the image processing system 1000 illustrated in FIG. 1, that is, an example of a configuration that performs communication with each of the two image sensors 100 including the image sensors 100A and 100B. .
  • the image processing apparatus 200 includes, for example, a communication unit 202 and a processing unit 204.
  • the image processing apparatus 200 operates with power supplied from an internal power supply (not shown) included in the image processing system 1000 such as a battery or power supplied from an external power supply of the image processing system 1000.
  • the communication unit 202 has a function of communicating with each of the plurality of image sensors 100.
  • the communication unit 202 includes, for example, communication circuits 250A and 250B respectively corresponding to the image sensor 100 to be communicated.
  • one of the communication circuits 250A and 250B constituting the communication unit 202 is referred to as a “communication circuit 250”.
  • the communication unit 202 may be capable of switching the image sensor 100 to be communicated. Taking the image processing system 1000 shown in FIG. 1 as an example, switching of the communication target image sensor 100 in the communication unit 202 includes “communication only with the image sensor 100A”, “communication only with the image sensor 100B”, or Switching of “communication with both the image sensor 100A and the image sensor 100B” may be mentioned. Switching of the communication target image sensor 100 in the communication unit 202 is realized by, for example, controlling the operation of the communication circuits 250A and 250B by the processor 252.
  • the processor 252 detects, for example, a sensor capable of detecting brightness such as an illuminance sensor (a sensor external to the image processing device 200 or a sensor included in the image processing device 200).
  • Switching of the image sensor 100 to be communicated is performed by threshold processing based on the value. For example, when the detection value is equal to or smaller than the set threshold value (or when the detection value is smaller than the threshold value), the processor 252 causes communication with both the image sensor 100A and the image sensor 100B. As another example, when the detection value is larger than the threshold value (or when the detection value is equal to or larger than the threshold value), the processor 252 causes the communication with one of the image sensor 100A and the image sensor 100B. As described above, since the processor 252 switches the image sensor 100 to be communicated, the amount of data processing in the image processing apparatus 200 can be further reduced, so that power consumption can be reduced. It is.
  • the processor 252 may stop the operation of the image sensor 100 that does not perform the communication.
  • the processor 252 switches the communication target image sensor 100 and stops the operation of the image sensor 100, for example, by threshold processing based on a detection value of a sensor such as an illuminance sensor capable of detecting brightness. As described above, the processor 252 stops the operation of the image sensor 100, so that the power consumption of the image processing system 1000 is reduced.
  • the processing unit 204 processes the data received by the communication unit 202.
  • the processing unit 204 performs a process according to the image processing method according to the present embodiment, and processes area image data acquired from each of the plurality of image sensors 100 in association with each area based on the area information.
  • the processing unit 204 can also process data indicating the entire image.
  • the processing unit 204 includes a processor 252 and an image processing circuit 254.
  • the operations of the communication circuits 250A and 250B and the image processing circuit 254 are controlled by the processor 252. That is, the processing unit 204 may serve as a control unit in the image processing device 200.
  • the processor 252 constituting the processing unit 204 plays a role of controlling the operation of each of the image sensors 100 constituting the image processing system 1000.
  • the processor 252 controls the operation of each image sensor 100 by transmitting a control signal to the image sensor 100 via the control bus B2.
  • the functional blocks of the image processing apparatus 200 shown in FIG. 12 are obtained by separating the functions of the image processing apparatus 200 for convenience, and are not limited to the example shown in FIG.
  • the processing unit 204 illustrated in FIG. 12 can be divided into a control unit including the processor 252 and an image processing unit including the image processing circuit 254.
  • the communication circuit 250A is a communication circuit that communicates with the image sensor 100A, for example.
  • the communication circuit 250A receives data (for example, packets shown in FIGS. 6 and 10) transmitted from the image sensor 100A by the transmission method according to the present embodiment.
  • the communication circuit 250A may have a function of transmitting data to the image sensor 100A via an arbitrary transmission path between the communication circuit 250A and the image sensor 100A, for example.
  • the communication circuit 250B is, for example, a communication circuit that performs image sensor 100B communication.
  • the communication circuit 250B receives data (for example, packets shown in FIGS. 6 and 10) transmitted from the image sensor 100B by the transmission method according to the present embodiment.
  • the communication circuit 250B may have a function of transmitting data to the image sensor 100B via an arbitrary transmission path between the communication circuit 250B and the image sensor 100B, for example.
  • the communication circuits 250 ⁇ / b> A and 250 ⁇ / b> B transmit, to the processor 252, the data included in the Embedded Data, such as the area information and the information related to imaging by the image sensor 100, among the received data.
  • FIG. 12 illustrates “an example in which the area information is transmitted from each of the communication circuits 250A and 250B to the processor 252”.
  • the communication circuits 250A and 250B may transmit Embedded @ Data among the received data to the processor 252.
  • the communication circuits 250A and 250B transmit to the image processing circuit 254 data other than Embedded @ Data included in the payload among the received data.
  • the communication circuits 250A and 250B separate the header data corresponding to the header portion and the payload data corresponding to the payload portion from the received data.
  • the communication circuits 250A and 250B separate the header data from the received data, for example, according to a rule defined in advance by a standard or the like. Further, the communication circuits 250A and 250B may separate the payload data from the received data according to a rule preliminarily defined in a standard or the like, or may separate the payload data from the received data based on the content indicated by the header data. Data may be separated.
  • the communication circuits 250A and 250B transmit the data included in the Embedded Data (or the Embedded Data) of the separated data to the processor 252, and transfer the data other than the Embedded Data to the image processing circuit 254 from the payload data. To communicate.
  • FIG. 13 is a block diagram illustrating an example of a functional configuration of the communication circuit 250 included in the image processing apparatus 200 according to the present embodiment.
  • the communication circuit 250 includes, for example, a header separation unit 260, a header interpretation unit 262, and a payload separation unit 264.
  • the header separation unit 260 separates, from the received data, header data corresponding to the header portion and payload data corresponding to the payload portion.
  • the header separating section 260 separates the header data from the received data, for example, according to a rule defined in advance by a standard or the like. Further, the header separating unit 260 may separate the payload data from the received data according to, for example, a rule defined in advance by a standard or the like, or may separate the payload data from the received data based on the processing result of the header interpreting unit 262.
  • the payload data may be separated.
  • the header interpreting unit 262 interprets the contents indicated by the header data.
  • the header interpreting unit 262 interprets, for example, whether the payload data is “Embedded @ Data”.
  • the header interpreting unit 262 interprets whether the payload data is “Embedded @ Data” based on, for example, a DT value recorded in the header part.
  • the header interpreting unit 262 may specify the position of the payload data and transmit the specified position to the header separating unit 260, for example.
  • the payload separation unit 264 processes the payload data based on the result of the interpretation by the header interpretation unit 262.
  • the payload separating unit 264 converts the payload data from the payload data into Embedded @ Data such as area information and information on imaging in the image sensor 100. Separate contained data. Then, the payload separation unit 264 transmits data included in Embedded @ Data, such as area information and information on imaging by the image sensor 100, to the processing unit 204 (more specifically, for example, the processor 252 configuring the processing unit 204). I do.
  • FIG. 13 illustrates “an example in which the area information is transmitted from the payload separation unit 264 to the processing unit 204”.
  • the payload separation unit 264 converts the image data (data indicating the entire image or area image data) from the payload data. To separate.
  • the payload separation unit 264 separates the area image data from the payload data, for example, based on the area information extracted from Embedded @ Data. Then, the payload separation unit 264 transmits the image data to the processing unit 204 (more specifically, for example, the image processing circuit 254 included in the processing unit 204).
  • the communication circuit 250 receives the data transmitted from the image sensor 100 by the transmission method according to the present embodiment and transmits the received data to the processing unit 204 by having the functional configuration illustrated in FIG. 13, for example.
  • the functional blocks of the communication circuit 250 illustrated in FIG. 13 are obtained by separating the functions of the communication circuit 250 for convenience, and are not limited to the example illustrated in FIG. Further, as described above, the communication circuit 250 may be configured to transmit the Embedded @ Data of the received data to the processor 252.
  • the processor 252 controls the operation of each of the communication circuits 250A and 250B and the image processing circuit 254. Further, the processor 252 may perform various processes such as a process of executing arbitrary application software.
  • the control of the communication circuits 250A and 250B in the processor 252 includes, for example, on / off control of a communication function.
  • the switching of the communication target image sensor 100 is realized by controlling the ON / OFF of the communication function of each of the communication circuits 250A and 250B.
  • the control of the image processing circuit 254 in the processor 252 includes the control of the processing performed by the image processing circuit 254 according to the image processing method according to the present embodiment.
  • the processor 252 controls the image processing circuit 254 using, for example, data included in Embedded @ Data, such as area information and information on imaging by the image sensor 100, transmitted from the communication circuits 250A and 250B.
  • data included in Embedded @ Data such as area information and information on imaging by the image sensor 100
  • the processor 252 extracts area information and the like from Embedded @ Data, for example, and controls the image processing circuit 254.
  • the processor 252 transmits, to the image processing circuit 254, correction control information indicating a correction value for adjusting a relative position of an image indicated by the area image data.
  • the correction value for adjusting the relative position of the image indicated by the area image data is, for example, the area information included in Embedded @ Data transmitted from each of the communication circuits 250A and 250B, and the angle of view obtained from each of the image sensors 100. It is set based on the information about Note that the correction value for adjusting the relative position of the image indicated by the area image data is, for example, the area information included in the Embedded @ Data transmitted from each of the communication circuits 250A and 250B and the image indicated by the area image data. Alternatively, it may be set based on the result of performing an arbitrary object detection process.
  • the processor 252 transmits, to the image processing circuit 254, correction control information indicating a correction gain for correcting the sensitivity ratio of each image sensor 100 that has transmitted the area image data.
  • the correction gain is set, for example, by calculating a correction gain “Gl2” that satisfies the following Expression 1 based on information on the angle of view acquired from each of the image sensors 100, for example.
  • the calculation of the correction gain based on the following Expression 1 is a calculation example in a case where the image processing apparatus 200 controls the exposure times of the image sensors 100 to be the same. That is, the method of calculating the correction gain according to the present embodiment is not limited to using the following Expression 1.
  • G1 in the above equation 1 is a gain in the image sensor device provided in the image sensor 100A
  • G2 in the above equation 1 is a gain in the image sensor device provided in the image sensor 100B
  • A1 shown in Expression 1 is a photoelectric conversion rate in the image sensor device provided in the image sensor 100A
  • A2” shown in Expression 1 is a photoelectric conversion rate in the image sensor device provided in the image sensor 100B. is there. That is, by using the above formula 1, the correction gain for correcting the signal level of the image indicated by the area image data acquired from the image sensor 100B is calculated.
  • the image processing circuit 254 processes data transmitted from each of the communication circuits 250A and 250B.
  • the processing unit 204 performs processing according to the image processing method according to the present embodiment, and based on the area information, outputs the area image data acquired from each of the image sensors 100A and 100B for each area. Is processed in association with.
  • the image processing circuit 254 adjusts the signal level of the image indicated by the area image data by using the correction control information transmitted from the processor 252, for example. After adjusting the signal level, the image processing circuit 254 adjusts the relative position of the image indicated by the area image data using the correction control information transmitted from the processor 252. Then, the image processing circuit 254 combines the image indicated by the area image data for each area. Note that the image processing circuit 254 can synthesize the image indicated by the area image data without adjusting the signal level of the image indicated by the area image data, and determines the relative position of the image indicated by the area image data. An image indicated by the area image data can be synthesized without matching.
  • the image processing circuit 254 can also process data representing the entire image acquired from each of the image sensors 100A and 100B.
  • the processing in the image processing circuit 254 is not limited to the example described above.
  • the image processing circuit 254 may perform one or both of processing related to control of recording image data on a recording medium such as the memory 300 and processing related to display control of an image on the display screen of the display device 400. Good.
  • FIG. 14 is a block diagram illustrating an example of a functional configuration of the image processing circuit 254 included in the image processing apparatus 200 according to the present embodiment.
  • the image processing circuit 254 includes, for example, first image processing units 270A and 270B, a relative sensitivity difference correction processing unit 272, a relative position correction processing unit 274, a synthesis processing unit 276, and a second image processing unit 278. Having. Part or all of the processing in each unit may be performed by hardware, or may be performed by executing software (computer program) on hardware.
  • the first image processing unit 270A performs predetermined image processing on data transmitted from the communication circuit 250A.
  • First image processing unit 270B performs predetermined image processing on data transmitted from communication circuit 250B.
  • the predetermined image processing performed by each of the first image processing units 270A and 270B includes, for example, various types of processing related to RAW development.
  • the relative sensitivity difference correction processing section 272 converts the signal level of the image indicated by the area image data transmitted from the first image processing section 270B into the signal of the image indicated by the area image data processed by the first image processing section 270A. Adjust to the level.
  • the relative sensitivity difference correction processing unit 272 corrects the gain of the area image data transmitted from the first image processing unit 270B, for example, using the correction gain indicated by the correction control information transmitted from the processor 252.
  • FIG. 14 shows an example in which the gain of the area image data transmitted from the first image processing unit 270B is corrected, but the image processing circuit 254 transmits the image data from the first image processing unit 270A.
  • a functional configuration for correcting the gain of the area image data may be used.
  • the relative position correction processing section 274 converts the relative position of the image indicated by the area image data transmitted from the relative sensitivity difference correction processing section 272 to the image indicated by the area image data processed by the first image processing section 270A. Match.
  • the relative position correction processing unit 274 uses, for example, a correction value for adjusting the relative position indicated by the correction control information transmitted from the processor 252 to generate the area image data transmitted from the relative sensitivity difference correction processing unit 272. Correct the relative position of the image shown.
  • the combining processing unit 276 combines, for each region, the image represented by the region image data processed by the first image processing unit 270A and the image represented by the region image data transmitted from the relative position correction processing unit 274.
  • the synthesis processing unit 276 synthesizes an image indicated by the area image data by an arbitrary process capable of synthesizing an image such as an alpha blend.
  • the second image processing unit 278 performs predetermined image processing on the combined image transmitted from the combination processing unit 276.
  • the predetermined image processing performed by the second image processing unit 278 includes, for example, any processing that can be performed on image data, such as Gamma processing.
  • the image processing circuit 254 performs processing according to the image processing method according to the present embodiment, for example, by having the functional configuration illustrated in FIG. Note that the functional blocks of the image processing circuit 254 illustrated in FIG. 14 are obtained by separating the functions of the image processing circuit 254 for convenience, and are not limited to the example illustrated in FIG.
  • the image processing apparatus 200 performs the processing according to the above-described image processing method with the configuration illustrated in FIGS. 12 to 14, for example. It is needless to say that the configuration of the image processing apparatus 200 is not limited to the examples shown in FIGS.
  • FIG. 15 is an explanatory diagram for describing an example of processing in the image processing system 1000 according to the present embodiment, and illustrates an example of processing related to initialization. The process illustrated in FIG. 15 is performed, for example, when the image processing system 1000 is activated or when a user of the image processing system 1000 performs a predetermined operation.
  • the image processing apparatus 200 transmits, via the control bus B2, for example, via the control bus B2, a setting request for setting the drive parameters to the image sensors 100A and 100B and an acquisition request for transmitting information related to the angle of view (S100).
  • the drive parameter setting request includes, for example, various setting values such as an exposure value, an exposure time, and a gain, and a setting command.
  • the acquisition request includes, for example, a command to transmit information related to the angle of view.
  • Each of the image sensors 100A and 100B that has received the setting request and the acquisition request transmitted in step S100 sets drive parameters based on the setting request, and transmits information regarding the angle of view based on the acquisition request (S102, S104).
  • the image processing apparatus 200 that has transmitted the setting request in step S100 calculates a correction gain based on the various setting values included in the setting request, and performs settings for performing correction using the calculated correction gain (S106).
  • the image processing apparatus 200 that has received the information on the angle of view transmitted in steps S102 and S104 obtains a correction value for adjusting the relative position based on the information on the angle of view (S108), and performs correction using the correction value. Settings are made (S110).
  • a process illustrated in FIG. 15 is performed as a process related to the initialization. It goes without saying that the example of the processing related to the initialization is not limited to the example shown in FIG.
  • FIG. 16 is an explanatory diagram for describing an example of processing in the image processing system 1000 according to the present embodiment, and illustrates an example of processing during operation.
  • FIG. 16 illustrates an example in which the processing in the image sensor 100B is performed based on the imaging in the image sensor 100A. That is, the image processing system 1000 can perform cooperative imaging by using one image sensor 100 functioning as a master image sensor and the other image sensor 100 functioning as a slave image sensor.
  • V start trigger a frame start trigger
  • the image sensor 100A sets a cutout position to be cut out from the captured image (S202), and transmits information indicating the set cutout position to the image sensor 100B and the image processing device 200 (S204).
  • the setting of the cutout position in the image sensor 100A corresponds to the setting of an area for a captured image. That is, the information indicating the cutout position corresponds to, for example, area information.
  • the image sensor 100A transmits information indicating the cutout position to the image processing device 200 via, for example, the data bus B1. Further, the image sensor 100A transmits, for example, information (region information; the same applies hereinafter) indicating the cutout position to the image sensor 100B via the image processing device 200.
  • the image sensor 100A and the image sensor 100B are configured to be able to communicate with each other by inter-processor communication or the like, the image sensor 100A may transmit information indicating the cutout position to the image sensor 100B by direct communication. .
  • the image processing apparatus 200 having received the information indicating the cutout position transmitted from the image sensor 100A in step S204, for example, based on the information indicating the cutout position, determines the number of pixels included in the set area and the two-dimensional plane of the pixels.
  • the coordinates are specified (S208), and the coordinates used for the processing and the size of the area are set (S210).
  • the image sensor 100A that has transmitted the information indicating the cutout position in step S204 transmits information relating to imaging by the image sensor 100A to the image sensor 100B and the image processing device 200 (S212).
  • the information related to imaging includes, for example, exposure information and gain information.
  • the image sensor 100A transmits information on imaging to the image sensor 100B and the image processing device 200, for example, similarly to the transmission of the information indicating the cutout position in step S204.
  • the image sensor 100B that has received the information regarding the imaging transmitted from the image sensor 100A in Step S212 performs gain control and exposure control based on the received information regarding the imaging (S214). Then, the image sensor 100 ⁇ / b> B transmits information related to imaging by the image sensor 100 ⁇ / b> B to the image processing device 200.
  • step S212 the image processing apparatus 200 that has received the information regarding the imaging transmitted from the image sensor 100A and the information regarding the imaging transmitted from the image sensor 100B calculates, for example, a correction gain, and performs correction based on the calculated correction gain.
  • the setting for performing is performed (S216).
  • the image processing device 200 starts processing on the image data transmitted from each of the image sensors 100A and 100B (S218).
  • FIG. 17 is an explanatory diagram for explaining an example of processing in the image processing system 1000 according to the present embodiment, and shows a timing chart corresponding to the processing shown in FIG. That is, FIG. 17 illustrates an example in which “the image sensor 100A functions as a master image sensor and the image sensor 100B functions as a slave image sensor” as in FIG.
  • the image sensor 100A and the image sensor 100B perform imaging in response to the setting notification in the image sensor 100A. Further, in the image processing system 1000, based on the notification of the setting in the image sensor 100A, the image processing apparatus 200 processes the area image data acquired from each of the image sensors 100A and 100B in association with each area. Therefore, in the image processing system 1000, the linked operation of the image sensor 100A, the image sensor 100B, and the image processing device 200 is realized.
  • the processing shown in FIGS. 16 and 17 is performed as the processing at the time of operation. It goes without saying that the example of the processing at the time of the operation is not limited to the examples shown in FIGS.
  • a plurality of image sensors 100 can cooperate with each other to pick up an image of a region set for a picked-up image.
  • the plurality of image sensors and the image processing apparatus operate in cooperation with each other, for example, an exposure time, a driving frequency, a gain value, a relative angle difference of the image sensor device, a subject distance It is possible to operate by sharing various information such as the above information among devices.
  • the image processing system Since the image processing apparatus can combine the signal levels of the images indicated by the area image data and synthesize them, the image processing system according to the present embodiment increases the sensitivity of the image processed in association with the image processing apparatus. be able to.
  • the image processing apparatus can switch the communication target image sensor, and can stop the operation of some image sensors in conjunction with the switching. Therefore, the image processing system according to the present embodiment can reduce power consumption.
  • a program for causing a computer to function as the image processing apparatus according to the present embodiment (for example, a program for causing a computer to execute the processing according to the image processing method according to the present embodiment) is executed by a processor or an image processing circuit in the computer. By being executed, images obtained from the plurality of image sensors can be processed in association with each other.
  • a program for causing a computer to function as the image processing apparatus according to the present embodiment is executed by a processor, an image processing circuit, or the like in the computer, so that the above-described image processing method according to the present embodiment is used.
  • the effect achieved by the above can be achieved.
  • the present embodiment further includes a recording program that stores the program.
  • a medium can also be provided.
  • a communication unit capable of communicating with each of the plurality of image sensors;
  • a processing unit configured to process the area image data obtained from each of the plurality of image sensors in association with each of the areas based on the area information included in the additional data obtained from each of the plurality of image sensors;
  • the area information includes part or all of identification information of the area, information indicating a position of the area, and information indicating a size of the area.
  • the image processing device according to any one of (1) to (5), wherein the packet is a long packet of Mobile Industry Processor Interface Alliance (MIPI).
  • MIPI Mobile Industry Processor Interface Alliance
  • a processing unit configured to process the area image data obtained from each of the plurality of image sensors in association with each of the areas based on the area information included in the additional data obtained from each of the plurality of image sensors;
  • the area information includes part or all of identification information of the area, information indicating a position of the area, and information indicating a size of the area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Studio Devices (AREA)

Abstract

撮像された画像に対して設定される領域に対応する領域情報を、領域ごとに含む付加データと、領域に対応する行ごとの画像を示す領域画像データとを、異なるパケットで送信させる、複数の画像センサそれぞれと通信を行うことが可能な通信部(202)と、複数の画像センサそれぞれから取得された付加データに含まれる領域情報に基づいて、複数の画像センサそれぞれから取得された領域画像データを、領域ごとに対応付けて処理する処理部(204)と、を備え、領域情報には、領域の識別情報、領域の位置を示す情報、および領域の大きさを示す情報のうちの一部または全部が、含まれる、画像処理装置(200)が、提供される。

Description

画像処理装置、および画像処理システム
 本開示は、画像処理装置、および画像処理システムに関する。
 複数の撮像部を備える複眼式の撮像装置に関する技術が開発されている。上記技術としては、例えば下記の特許文献1に記載の技術が挙げられる。
特開2007-110499号公報
 例えば特許文献1に記載の技術が用いられる場合には、撮像装置を構成する一の撮像部における撮像により得られた画像から特定の対象が検出されたときに、撮像装置を構成する他の撮像部における撮像が行われる。しかしながら、特許文献1に記載の技術が用いられる場合には、撮像により複数の画像が得られるだけであり、撮像により得られた複数の画像を対応付けて処理することは、特に考慮がされていない。
 本開示では、複数の画像センサからそれぞれ得られる画像を対応付けて処理することが可能な、新規かつ改良された画像処理装置、および画像処理システムを提案する。
 本開示によれば、撮像された画像に対して設定される領域に対応する領域情報を、上記領域ごとに含む付加データと、上記領域に対応する行ごとの画像を示す領域画像データとを、異なるパケットで送信させる、複数の画像センサそれぞれと通信を行うことが可能な通信部と、複数の上記画像センサそれぞれから取得された上記付加データに含まれる上記領域情報に基づいて、複数の上記画像センサそれぞれから取得された上記領域画像データを、上記領域ごとに対応付けて処理する処理部と、を備え、上記領域情報には、上記領域の識別情報、上記領域の位置を示す情報、および上記領域の大きさを示す情報のうちの一部または全部が、含まれる、画像処理装置が、提供される。
 また、本開示によれば、撮像された画像に対して設定される領域に対応する領域情報を、上記領域ごとに含む付加データと、上記領域に対応する行ごとの画像を示す領域画像データとを、異なるパケットで送信させる、複数の画像センサと、画像処理装置と、を有し、上記画像処理装置は、複数の上記画像センサそれぞれと通信を行うことが可能な通信部と、複数の上記画像センサそれぞれから取得された上記付加データに含まれる上記領域情報に基づいて、複数の上記画像センサそれぞれから取得された上記領域画像データを、上記領域ごとに対応付けて処理する処理部と、を備え、上記領域情報には、上記領域の識別情報、上記領域の位置を示す情報、および上記領域の大きさを示す情報のうちの一部または全部が、含まれる、画像処理システムが、提供される。
 本開示によれば、複数の画像センサからそれぞれ得られる画像を対応付けて処理することができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握されうる他の効果が奏されてもよい。
本実施形態に係る画像処理システムの構成の一例を示す説明図である。 MIPI CSI-2規格において定められるパケットのフォーマットを示す説明図である。 MIPI CSI-2規格において定められるパケットのフォーマットを示す説明図である。 MIPI CSI-2規格におけるパケットの送信に係る信号波形の一例を示す説明図である。 画像に対して設定される領域の一例を示す説明図である。 本実施形態に係る伝送方法に係る第1の伝送方式により送信されるデータの一例を示す説明図である。 本実施形態に係る第1の伝送方式により送信されるEmbedded Dataの一例を説明するための説明図である。 図7に示すEmbedded Dataに含まれる領域情報の一例を説明するための説明図である。 画像に対して設定される領域の他の例を示す説明図である。 本実施形態に係る伝送方法に係る第2の伝送方式により送信されるデータの一例を示す説明図である。 本実施形態に係る画像センサの構成の一例を示すブロック図である。 本実施形態に係る画像処理装置の構成の一例を示すブロック図である。 本実施形態に係る画像処理装置が備える通信回路の機能構成の一例を示すブロック図である。 本実施形態に係る画像処理装置が備える画像処理回路の機能構成の一例を示すブロック図である。 本実施形態に係る画像処理システムにおける処理の一例を説明するための説明図である。 本実施形態に係る画像処理システムにおける処理の一例を説明するための説明図である。 本実施形態に係る画像処理システムにおける処理の一例を説明するための説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、以下では、下記に示す順序で説明を行う。
  1.本実施形態に係る伝送方法、本実施形態に係る画像処理方法および本実施形態に係る画像処理システム
  [1]本実施形態に係る伝送方法を適用することが可能な画像処理システムの構成
  [2]本実施形態に係る画像処理システムの適用例
  [3]本実施形態に係る伝送方法
  [4]本実施形態に係る画像処理システムを構成する画像センサ、画像処理装置の構成例
  [5]本実施形態に係る画像処理システムにおける処理の一例
  [6]本実施形態に係る画像処理システムが用いられることにより奏される効果の一例
  2.本実施形態に係るプログラム
(本実施形態に係る伝送方法、本実施形態に係る画像処理方法および本実施形態に係る画像処理システム)
[1]本実施形態に係る伝送方法を適用することが可能な画像処理システムの構成
 まず、本実施形態に係る伝送方法を適用することが可能な画像処理システムの構成の一例を説明する。
 以下では、本実施形態に係る画像処理システムを構成する装置間の通信方式が、MIPI(Mobile Industry Processor Interface) CSI-2(Camera Serial Interface 2)規格に則った通信方式である場合を例に挙げる。なお、本実施形態に係る画像処理システムを構成する装置間の通信方式は、MIPI CSI-2規格に則った通信方式に限られない。例えば、本実施形態に係る画像処理システムを構成する装置間の通信は、MIPI CSI-3規格に則った通信方式や、MIPI DSI(Display Serial Interface)に則った通信方式など、MIPIアライアンスにおいて策定された他の規格であってもよい。また、本実施形態に係る伝送方法が適用可能な通信方式が、MIPIアライアンスにおいて策定された規格に係る通信方式に限られないことは、言うまでもない。
 図1は、本実施形態に係る画像処理システム1000の構成の一例を示す説明図である。画像処理システム1000としては、例えば、スマートフォンなどの通信装置や、ドローン(遠隔操作による動作、または、自律的な動作が可能な機器)、自動車などの移動体などが挙げられる。なお、画像処理システム1000の適用例は、上記に示す例に限られない。画像処理システム1000の他の適用例については、後述する。
 画像処理システム1000は、例えば、画像センサ100A、100Bと、画像処理装置200と、メモリ300と、表示デバイス400とを有する。以下では、画像センサ100A、100Bそれぞれを総称して、または、画像センサ100A、100Bのうちの1つの画像センサを指して「画像センサ100」と示す。
 画像センサ100は、撮像機能と送信機能とを有し、撮像により生成した画像を示すデータを送信する。画像処理装置200は、画像センサ100から送信されたデータを受信し、受信されたデータを処理する。つまり、画像処理システム1000において、画像センサ100は送信装置の役目を果たし、画像処理装置200は受信装置の役目を果たす。
 なお、図1では、2つの画像センサ100を有する画像処理システム1000を示しているが、本実施形態に係る画像処理システムが有する画像センサ100の数は、図1に示す例に限られない。例えば、本実施形態に係る画像処理システムは、3つ以上の画像センサ100を有していてもよい。
 また、本実施形態に係る画像処理システムでは、複数の画像センサ100がモジュール化されていてもよい。複数の画像センサ100がモジュール化されている画像センサモジュールには、例えば、複数の画像センサ100と、画像センサモジュール用のプロセッサ(図示せず)と、当該プロセッサがデータを読み出すことが可能な記録媒体とが設けられる。画像センサモジュールを構成する上記記録媒体には、例えば、画像センサモジュールを構成する画像センサ100の画角に関する情報(例えば画角を示すデータなど)などが記録される。そして、画像センサモジュールを構成する上記プロセッサは、任意の伝送路により画角に関する情報を画像処理装置200に送信する。
 また、図1では、1つの画像処理装置200を有する画像処理システム1000を示しているが、本実施形態に係る画像処理システムが有する画像処理装置200の数は、図1に示す例に限られない。例えば、本実施形態に係る画像処理システムは、2つ以上の画像処理装置200を有していてもよい。複数の画像処理装置200を有する画像処理システムでは、画像処理装置200それぞれに複数の画像センサ100が対応する。画像センサ100および画像処理装置200それぞれを複数有する画像処理システムにおいても、図1に示す画像処理システム1000と同様に、画像センサ100それぞれと画像処理装置200との間で通信が行われる。
 画像センサ100と画像処理装置200とは、データバスB1により電気的に接続される。データバスB1は、画像センサ100と画像処理装置200とを接続する、一の信号の伝送路である。例えば、画像センサ100から送信される画像を示すデータ(以下、「画像データ」と示す場合がある。)は、画像センサ100から画像処理装置200へとデータバスB1を介して伝送される。
 画像処理システム1000においてデータバスB1により伝送される信号は、例えば、MIPI CSI-2規格などの所定の規格に則った通信方式で伝送される。
 図2、図3は、MIPI CSI-2規格において定められるパケットのフォーマットを示す説明図である。図2は、MIPI CSI-2規格において定められているショートパケット(Short Packet)のフォーマットを示しており、図3は、MIPI CSI-2規格において定められているロングパケット(Long Packet)のフォーマットを示している。
 ロングパケットは、パケットヘッダ(図3に示す“PH”)、ペイロード(図3に示す“Payload Data”)、およびパケットフッタ(図3に示す“PF”)からなるデータである。ショートパケットは、図2に示すようにパケットヘッダ(図3に示す“PH”)と同様の構造を有するデータである。
 ショートパケットとロングパケットとには、いずれもヘッダ部分にVC(Virtual Channel)番号(図2、図3に示す“VC”。VC値)が記録され、パケットごとに任意のVC番号が付与されうる。同一のVC番号が付与されたパケットは、同じ画像データに属するパケットとして扱われる。
 また、ショートパケットとロングパケットとには、いずれもヘッダ部分にDT(Data Type)値(図2、図3に示す“Data Type”)が記録される。そのため、VC番号と同様に、同一のDT値が付与されたパケットを、同じ画像データに属するパケットとして取り扱うことも可能である。
 ロングパケットのヘッダ部分のWord Countには、パケットの終わりがワード数で記録される。ショートパケットとロングパケットとのヘッダ部分のECCには、誤り訂正符号(Error Correcting Code)が記録される。
 MIPI CSI-2規格では、データ信号を伝送する期間では高速差動信号が用いられ、また、データ信号のブランキング期間では低電力信号が用いられる。また、高速差動信号が用いられる期間は、HPS(High Speed State)の期間と呼ばれ、低電力信号が用いられる期間は、LPS(Low Power State)の期間と呼ばれる。
 図4は、MIPI CSI-2規格におけるパケットの送信に係る信号波形の一例を示す説明図である。図4のAは、パケットの伝送の一例を示しており、図4のBは、パケットの伝送の他の例を示している。図4に示す“ST”、“ET”、“PH”、“PF”、“SP”、“PS”は、それぞれ下記を意味する。
  ・ST:Start of Transmission
  ・ET:End of Transmission
  ・PH:Packet Header
  ・PF:Packet Footer
  ・SP:Short Packet
  ・PS:Packet Spacing
 図4に示すように、LPSの期間における差動信号(図4に示す“LPS”)と、HPSの期間における差動信号(図4に示す“LPS”以外)とでは、差動信号の振幅が異なることが分かる。そのため、伝送効率を向上させる観点からは、できる限りLPSの期間が入らないことが望ましい。
 画像センサ100と画像処理装置200とは、例えば、データバスB1とは異なる制御バスB2により電気的に接続される。制御バスB2は、画像センサ100と画像処理装置200とを接続する、他の信号の伝送路である。例えば、画像処理装置200から出力される制御情報が、画像処理装置200から画像センサ100へと制御バスB2を介して伝送される。
 制御情報には、例えば、制御のための情報と処理命令とが含まれる。制御のための情報としては、例えば、画像サイズを示すデータ、フレームレートを示すデータ、画像の出力命令が受信されてから画像を出力するまでの出力遅延量を示すデータのうちの1または2以上など、画像センサ100における機能を制御するためのデータが、挙げられる。また、制御情報には、画像センサ100を示す識別情報が含まれていてもよい。識別情報としては、例えば、画像センサ100に設定されているIDなどの、画像センサ100を特定することが可能な任意のデータが挙げられる。
 なお、制御バスB2を介して画像処理装置200から画像センサ100へと伝送される情報は、上記に示す例に限られない。例えば、画像処理装置200は、画像における領域を指定する領域指定情報を、制御バスB2を介して伝送してもよい。領域指定情報としては、領域に含まれる画素の位置を示すデータ(例えば、領域に含まれる画素の位置が座標で表される座標データなど)など、領域を特定することが可能な任意の形式のデータが、挙げられる。
 図1では、画像センサ100と画像処理装置200とが制御バスB2により電気的に接続されている例を示しているが、画像センサ100と画像処理装置200とは、制御バスB2で接続されていなくてもよい。例えば、画像センサ100と画像処理装置200とは、任意の通信方式の無線通信によって、制御情報などを送受信してもよい。
 また、図1では、画像センサ100Aと画像センサ100Bとが電気的に接続されていないが、画像センサ100Aと画像センサ100Bとは、任意の通信方式で通信を行うことが可能な伝送路によって、電気的に接続されていてもよい。画像センサ100Aと画像センサ100Bとが電気的に接続されている場合には、画像センサ100Aと画像センサ100Bとは、直接的に通信を行うことが可能である。一例を挙げると、画像センサ100Aと画像センサ100Bとは、例えば、それぞれが備えるプロセッサ間の伝送路で通信を行うプロセッサ間通信によって、通信を行うことが可能である。なお、図1に示すように画像センサ100Aと画像センサ100Bとが電気的に接続されていない場合であっても、画像センサ100Aと画像センサ100Bとは、画像処理装置200を介して通信を行うことが可能である。
 以下、図1に示す画像処理システム1000を構成する各装置について、説明する。
[1-1]メモリ300
 メモリ300は、画像処理システム1000が有する記録媒体である。メモリ300としては、例えば、RAM(Random Access Memory)などの揮発性メモリや、フラッシュメモリなどの不揮発性メモリなどが挙げられる。メモリ300は、バッテリなどの画像処理システム1000を構成する内部電源(図示せず)から供給される電力、または、画像処理システム1000の外部電源から供給される電力によって、動作する。
 メモリ300には、例えば、画像センサ100から出力された画像が記憶される。メモリ300への画像の記録は、例えば画像処理装置200により制御される。
[1-2]表示デバイス400
 表示デバイス400は、画像処理システム1000が有する表示デバイスである。表示デバイス400としては、例えば、液晶ディスプレイや有機ELディスプレイ(Organic Electro-Luminescence Display)などが挙げられる。表示デバイス400は、バッテリなどの画像処理システム1000を構成する内部電源(図示せず)から供給される電力、または、画像処理システム1000の外部電源から供給される電力によって、動作する。
 表示デバイス400の表示画面には、例えば、画像センサ100から出力された画像や、画像処理装置200において実行されるアプリケーションに係る画面、UI(User Interface)に係る画面など、様々な画像や画面が表示される。表示デバイス400の表示画面への画像などの表示は、例えば画像処理装置200により制御される。
[1-3]画像センサ100
 画像センサ100は、撮像機能と送信機能とを有し、撮像により生成した画像を示すデータを送信する。上述したように、画像センサ100は、画像処理システム1000において送信装置の役目を果たす。
 画像センサ100は、例えば、“デジタルスチルカメラやデジタルビデオカメラ、ステレオカメラなどの撮像デバイス”や、“赤外線センサ”、“距離画像センサ”などの、画像を生成することが可能な任意の方式の画像センサデバイスを含み、生成された画像を送信する機能を有する。画像センサ100において生成される画像は、画像センサ100におけるセンシング結果を示すデータに該当する。画像センサ100の構成の一例については、後述する。
 画像センサ100は、後述する本実施形態に係る伝送方法により、画像に対して設定される領域に対応する画像データ(以下、「領域画像データ」と示す。)を送信する。領域画像データの送信に係る制御は、例えば、画像センサ100における画像処理部として機能する構成要素(後述する)により行われる。画像に対して設定される領域は、ROI(Region Of Interest)と呼ばれる場合がある。以下では、画像に対して設定される領域を「ROI」と示す場合がある。
 画像に対する領域の設定に係る処理としては、例えば、“画像から物体を検出し、検出された物体を含む領域を設定する処理”、“任意の操作デバイスに対する操作などにより指定された領域を設定する処理”など、画像における一部の領域を特定することが可能な任意の処理(または、画像から一部の領域を切り出すことが可能な任意の処理)が、挙げられる。
 画像に対する領域の設定に係る処理は、画像センサ100が行ってもよいし、画像処理装置200などの外部装置において行われてもよい。画像センサ100が画像に対する領域の設定に係る処理を行う場合、画像センサ100は、画像に対する領域の設定に係る処理の結果に従って領域を特定する。また、例えば、画像に対する領域の設定に係る処理が外部装置において行われる場合、画像センサ100は、外部装置から取得される領域指定情報に基づいて、領域を特定する。
 画像センサ100が、領域画像データを送信すること、すなわち、画像の一部のデータを送信することによって、画像全体を伝送するよりも伝送に係るデータ量が小さくなる。よって、画像センサ100が、領域画像データを送信することによって、例えば、伝送時間が短縮される、画像処理システム1000における伝送に係る負荷が低減されるなど、データ量が低減されることにより奏される様々な効果が、奏される。
 なお、画像センサ100は、画像全体を示すデータを送信することも可能である。
 画像センサ100が、領域画像データを送信する機能、および画像全体を示すデータを送信する機能を有している場合、画像センサ100は、領域画像データを送信することと、画像全体を示すデータを送信することとを、選択的に切り替えて行うことが可能である。
 画像センサ100は、例えば、設定されている動作モードによって、領域画像データを送信し、または、画像全体を示すデータを送信する。動作モードの設定は、例えば、任意の操作デバイスに対する操作などにより行われる。
 また、画像センサ100は、外部装置から取得される領域指定情報に基づいて、領域画像データを送信することと、画像全体を示すデータを送信することとを、選択的に切り替えてもよい。画像センサ100は、例えば、外部装置から領域指定情報が取得されたときに、当該領域指定情報に対応する領域の領域画像データを送信し、外部装置から領域指定情報が取得されないときに、画像全体を示すデータを送信する。
[1-4]画像処理装置200
 画像処理装置200は、画像センサ100から送信されたデータを受信し、受信されたデータを、例えば本実施形態に係る画像処理方法に係る処理を行うことによって処理する。上述したように、画像処理装置200は、画像処理システム1000において受信装置の役目を果たす。画像センサ100から送信されたデータの処理に係る構成(受信装置の役目を果たすための構成)の一例については、後述する。
 画像処理装置200は、例えば、MPU(Micro Processing Unit)などの演算回路で構成される、1または2以上のプロセッサや、各種処理回路などで構成される。画像処理装置200は、バッテリなどの画像処理システム1000を構成する内部電源(図示せず)から供給される電力、または、画像処理システム1000の外部電源から供給される電力によって、動作する。
 画像処理装置200は、複数の画像センサ100それぞれから取得された画像データを、本実施形態に係る画像処理方法に係る処理を行うことによって処理する。
 画像処理システム1000では、画像センサ100は、後述する伝送方法に係る伝送方式によって、領域画像データを伝送する。画像処理装置200は、複数の画像センサ100からそれぞれ取得された領域画像データを、画像に対して設定された領域ごとに対応付けて処理する。
 より具体的には、画像処理装置200は、例えば、複数の画像センサ100それぞれから取得された領域画像データが示す画像を、領域ごとに合成する。
 このとき、画像処理装置200は、合成する対象の領域画像データが示す画像の相対的な位置を合わせて合成する。画像処理装置200は、例えば、領域画像データを送信した画像センサ100それぞれから取得される画角に関する情報(または、上述した画像センサモジュールから取得される画角に関する情報。以下、同様とする。)に基づいて、領域画像データが示す画像の相対的な位置を合わせる。また、画像処理装置200は、領域画像データが示す画像それぞれに対して任意のオブジェクト検出処理を行って、対応するオブジェクトを検出することによって、領域画像データが示す画像の相対的な位置を合わせてもよい。
 なお、複数の画像センサ100からそれぞれ取得された領域画像データを領域ごとに対応付ける処理は、上記に示す例に限られない。
 例えば、画像処理装置200は、領域画像データが示す画像を、信号レベルを合わせて合成してもよい。画像処理装置200は、例えば“複数の画像センサ100からそれぞれ取得される、画像センサ100における撮像に関する情報(後述する)に基づいて、領域画像データを送信した画像センサ100それぞれの感度比を補正する補正ゲインを求めること”によって、信号レベルを合わせた合成を実現する。ここで、画像センサ100の感度としては、例えば画像センサ100が備える画像センサデバイスの光電変換率が、挙げられる。
 なお、画像処理装置200における処理は、上記に示す例に限られない。
 例えば、画像処理装置200は、RGB処理、YC処理、Gamma処理など、画像データに対して行うことが可能な任意の処理を行うことが可能である。
 また、画像処理装置200は、例えば、メモリ300などの記録媒体への画像データの記録制御に係る処理、表示デバイス400の表示画面への画像の表示制御に係る処理、任意のアプリケーションソフトウェアを実行する処理など、様々な処理を行う。記録制御に係る処理としては、例えば“記録命令を含む制御データと記録媒体に記録させるデータとを、メモリ300などの記録媒体に伝達する処理”が、挙げられる。また、表示制御に係る処理としては、例えば“表示命令を含む制御データと表示画面に表示させるデータとを、表示デバイス400などの表示デバイスに伝達する処理”が、挙げられる。
 また、画像処理装置200は、例えば、画像センサ100に対して制御情報を送信することによって、画像センサ100における機能を制御してもよい。画像処理装置200は、例えば、画像センサ100に対して領域指定情報を送信することによって、画像センサ100から送信されるデータを制御することも可能である。
 画像処理装置200の構成の一例については、後述する。
 画像処理システム1000は、例えば図1に示す構成を有する。なお、本実施形態に係る画像処理システムの構成は、図1に示す例に限られない。
 例えば、画像処理システムの外部の記録媒体に画像センサ100から送信される画像が記憶される場合、画像センサ100から送信される画像が画像処理装置200が備えるメモリに記憶される場合、あるいは、画像センサ100から送信される画像が記録されない場合などには、本実施形態に係る画像処理システムは、メモリ300を有していなくてもよい。
 また、本実施形態に係る画像処理システムは、図1に示す表示デバイス400を有さない構成をとることが可能である。
 さらに、本実施形態に係る画像処理システムは、後述する本実施形態に係る画像処理システムが適用される電子機器が有する機能に応じた、任意の構成を有していてもよい。
[2]本実施形態に係る画像処理システムの適用例
 以上、本実施形態として、画像処理システムを挙げて説明したが、本実施形態は、かかる形態に限られない。本実施形態は、例えば、スマートフォンなどの通信装置や、ドローン(遠隔操作による動作、または、自律的な動作が可能な機器)、自動車などの移動体、PC(Personal Computer)などのコンピュータ、タブレット型の装置、ゲーム機など、様々な電子機器に適用することができる。
[3]本実施形態に係る伝送方法
 次に、本実施形態に係る伝送方法を説明する。以下では、本実施形態に係る伝送方法が、画像センサ100に適用される場合を、例に挙げる。
(1)第1の伝送方式
 図5は、画像に対して設定される領域の一例を示す説明図である。図5では、領域の例として、領域1、領域2、領域3、および領域4という4つの領域を示している。なお、画像に対して設定される領域が、図5に示す例に限られないことは、言うまでもない。
 画像センサ100は、例えば、“図5に示す領域1~領域4のような画像に対して設定される領域に対応する領域情報を、領域ごとに含む付加データ”と、“領域に対応する行(ライン)ごとの画像を示す領域画像データ”とを、異なるパケットで送信する。画像における行とは、画素の位置を二次元平面座標(x,y)で表すとき、y座標が同一であることをいう。
 本実施形態に係る領域情報とは、画像に対して設定される領域を、受信装置側で特定するためのデータ(データ群)である。領域情報には、例えば、領域の識別情報、領域の位置を示す情報、および領域の大きさを示す情報のうちの一部または全部が、含まれる。
 なお、領域情報に含まれる情報は、上記に示す例に限られない。領域情報には、画像に対して設定される領域を受信装置側で特定するための任意の情報が含まれていてもよい。例えば、VC番号で領域が分けられる場合、VC番号が、行に含まれる領域の識別情報の役目を果たしてもよい。また、VC番号で領域が分けられる場合、ペイロード長を、行に含まれる領域の大きさを示す情報として代用することが可能である。
 領域の識別情報としては、例えば、領域に付された番号などの領域のIDを示すデータなど、領域を一意に特定することが可能な任意のデータが、挙げられる。以下では、領域の識別情報を、「ROI ID」と示す場合がある。
 領域の位置を示す情報は、画像における領域の位置を示すデータである。領域の位置を示す情報としては、例えば、画像における領域の左上の位置を二次元平面座標(x,y)で表すデータなど、“領域の大きさを示す情報が示す領域の大きさと組み合わせることによって、領域を一意に特定することが可能な任意の位置を示すデータ”が、挙げられる。
 領域の大きさを示す情報としては、領域の行数を示すデータ(領域の垂直方向の画素数を示すデータ)と、領域の列数を示すデータ(領域の水平方向の画素数を示すデータ)とが挙げられる。なお、領域の大きさを示す情報は、矩形の領域を示すデータ(例えば、当該矩形の領域における、水平方向の画素数および垂直方向の画素数を示すデータ)など、領域の大きさを特定することが可能な任意の形式のデータであってもよい。
 以下、画像センサ100における第1の伝送方式に係る処理の一例を説明する。
 画像センサ100は、領域情報を、一のパケットの“Embedded Data”に格納して送信させる。また、画像センサ100は、領域画像データを、他のパケットのペイロードに格納して、行ごとに送信させる。
 “Embedded Data”は、伝送されるパケットに埋め込むことの可能なデータであり、画像センサ100が付加的に送信する付加データに該当する。以下では、Embedded Dataを「EBD」と示す場合がある。
 図6は、本実施形態に係る伝送方法に係る第1の伝送方式により送信されるデータの一例を示す説明図である。図6は、“図5に示す領域1、領域2、領域3、および領域4それぞれに対応する領域情報が、MIPIのロングパケットのペイロードに“Embedded Data”として格納され、領域画像データが、図3に示すMIPIのロングパケットのペイロードに格納されて行ごとに伝送される例”を示している。
 図6に示す“FS”は、MIPI CSI-2規格におけるFS(Frame Start)パケットであり、図6に示す“FE”は、MIPI CSI-2規格におけるFE(Frame End)パケットである(他の図においても同様である)。
 図6に示す“Embedded Data”は、上述したように伝送されるパケットに埋め込むことの可能なデータである。“Embedded Data”は、例えば、伝送されるパケットのヘッダ、ペイロード、あるいは、フッタに埋め込むことの可能である。図6に示す例では、一のパケットの“Embedded Data”に領域情報が格納され、領域情報が格納される“Embedded Data”は、付加データに該当する。
 なお、本実施形態に係る付加データに含まれる情報は、上記に示す例に限られない。例えば、本実施形態に係る付加データには、画像センサ100における撮像に関する情報が含まれていてもよい。画像センサ100における撮像に関する情報としては、例えば、画像センサデバイスにおける露出値などを示す露光情報、画像センサデバイスにおけるゲインを示すゲイン情報、および画像センサデバイスにおける光電変換率を示す感度情報のうちの一部または全部が、挙げられる。露光情報が示す露光値、およびゲイン情報が示すゲインそれぞれは、例えば制御バスB2を介した画像処理装置200による制御によって、画像センサデバイスに設定される。
 図7は、本実施形態に係る第1の伝送方式により送信されるEmbedded Dataの一例を説明するための説明図である。図7に示すPH以降のデータが、図6に示すEmbedded Dataの一例である。
 Embedded Dataでは、例えば“Data Format Code”によって、Embedded Dataに含まれるデータの種類が規定される。
 図7に示す例では、“Data Format Code”以降の“1st ROI Info”、“2nd ROI Info”、…それぞれが、領域情報の一例に該当する。つまり、図7に示すEmbedded Dataは、領域情報を含む付加データの一例である。
 図7に示す領域情報では、例えば“Value”に、領域の識別情報、領域の位置を示す情報、および領域の大きさを示す情報が含まれる。また、“Value”には、画像センサ100における撮像に関する情報が含まれていてもよい。図7に示す領域情報では、例えば“Length”により、Embedded Dataに含まれる他の領域情報との境界が規定される。
 図8は、図7に示すEmbedded Dataに含まれる領域情報の一例を説明するための説明図である。図8に示す“ROI ID”が領域の識別情報に該当し、図8に示す“Upper Left Coordinate”が領域の位置を示す情報に該当する。また、図8に示す“Height”および“Width”が領域の大きさを示す情報に該当する。
 なお、領域情報のデータ構成例、およびEmbedded Dataに含まれるデータが、図7、図8に示す例に限られないことは、言うまでもない。
 再度図6を参照して、第1の伝送方式により送信されるデータの一例を説明する。図6に示す“1”、“2”、“3”、および“4”それぞれは、パケットのペイロードに格納される、領域1の領域画像データ、領域2の領域画像データ、領域3の領域画像データ、および領域4の領域画像データに該当する。なお、図6では、各領域画像データが区切られて示されているが、これは便宜上区切りを表したものであり、ペイロードに格納されるデータに区切りはない。
 第1の伝送方式では、図5に示す領域1、領域2、領域3、および領域4それぞれに対応する領域情報は、図7に示すように一のパケットの“Embedded Data”に格納して伝送される。また、第1の伝送方式では、図5に示す領域1、領域2、領域3、および領域4それぞれに対応する領域画像データは、図6に示すように、MIPIのロングパケットのペイロードに格納されて、行ごとに伝送される。
(2)第2の伝送方式
 なお、本実施形態に係る画像処理システム1000に適用することが可能な伝送方法は、上記第1の伝送方式に係る伝送方法に限られない。
 例えば、画像センサ100は、領域情報と領域画像データとを、パケットのペイロードに格納して、行ごとに送信させてもよい。
 図9は、画像に対して設定される領域の他の例を示す説明図である。図9では、領域の例として、領域1、領域2、領域3、および領域4という4つの領域を示している。
 図10は、本実施形態に係る伝送方法に係る第2の伝送方式により送信されるデータの一例を示す説明図である。図10は、“図9に示す領域1、領域2、領域3、および領域4それぞれに対応する領域情報および領域画像データが、図3に示すMIPIのロングパケットのペイロードに格納して、行ごとに送信される例”を示している。
 図10に示す“PH”は、ロングパケットのパケットヘッダである。ここで、第2の伝送方式に係るロングパケットのパケットヘッダは、領域情報に含まれる情報が1つ前に送信させるパケットに含まれる領域情報から変化しているか否かを示すデータ(変化情報)として、機能してもよい。つまり、図10に示す“PH”は、ロングパケットのデータタイプを示す一のデータであるといえる。
 一例を挙げると、画像センサ100は、領域情報に含まれる情報が1つ前に送信させるパケットに含まれる領域情報から変化している場合、“PH”に“0x38”を設定する。この場合、画像センサ100は、領域情報をロングパケットのペイロードに格納する。
 他の例を挙げると、画像センサ100は、領域情報に含まれる情報が1つ前に送信させるパケットに含まれる領域情報から変化していない場合、“PH”に“0x39”を設定する。この場合、画像センサ100は、領域情報をロングパケットのペイロードに格納しない。つまり、領域情報に含まれる情報が1つ前に送信させるパケットに含まれる領域情報から変化していない場合、画像センサ100は、領域情報を送信させない。
 なお、“PH”に設定されるデータが、上記に示す例に限られないことは、言うまでもない。
 図10に示す“Info”は、ペイロードに格納される領域情報である。図10に示すように、領域情報は、ペイロードの先頭部分に格納される。
 図10に示す“1”、“2”、“3”、および“4”それぞれは、ペイロードに格納される、領域1の領域画像データ、領域2の領域画像データ、領域3の領域画像データ、および領域4の領域画像データに該当する。なお、図10では、各領域画像データが区切られて示されているが、これは便宜上区切りを表したものであり、ペイロードに格納されるデータに区切りはない。
 第2の伝送方式では、図9に示す領域1、領域2、領域3、および領域4それぞれに対応する領域情報および領域画像データは、例えば図10に示すように、MIPIのロングパケットのペイロードに格納されて、行ごとに送信される。
 よって、第2の伝送方式が用いられる場合には、画像センサ100は、画像に設定される任意の領域の形状を伝送可能である。
[4]本実施形態に係る画像処理システムを構成する画像センサ、画像処理装置の構成例
 次に、上述した伝送方法に係る処理を行うことが可能な画像センサ100の構成の一例と、上述した画像処理方法に係る処理を行うことが可能な画像処理装置200の構成の一例を、説明する。
[4-1]画像センサ100の構成
 図11は、本実施形態に係る画像センサ100の構成の一例を示すブロック図である。画像センサ100は、例えば、光電変換部102と、信号処理部104と、通信部106と、制御部108とを備える。画像センサ100は、バッテリなどの画像処理システム1000を構成する内部電源(図示せず)から供給される電力、または、画像処理システム1000の外部電源から供給される電力によって、動作する。
 光電変換部102は、レンズ/撮像素子150で構成され、信号処理部104は、信号処理回路152で構成される。レンズ/撮像素子150と信号処理回路152とは、画像センサ100において画像センサデバイスとして機能する。なお、画像処理システム1000では、全ての画像センサ100が同種の画像センサデバイスを備えていてもよいし、一部の画像センサ100が異種の画像センサデバイスを備えていてもよい。異種の画像センサデバイスを備える画像センサ100の一例としては、例えば、カラー画像を撮像する画像センサデバイスを備える画像センサ100と、白黒画像を撮像する画像センサデバイスを備える画像センサ100とが、挙げられる。
 通信部106は、通信回路154で構成され、制御部108は、プロセッサ156で構成される。レンズ/撮像素子150、信号処理回路152、および通信回路154それぞれの動作は、プロセッサ156により制御される。
 なお、図11に示す画像センサ100の機能ブロックは、画像センサ100が有する機能を便宜上切り分けたものであり、図11に示す例に限られない。例えば、図11に示す信号処理部104と制御部108とを1つの処理部と捉えることも可能である。
 レンズ/撮像素子150は、例えば、光学系のレンズと、CMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)などの撮像素子を複数用いたイメージセンサとで構成される。レンズ/撮像素子150では、光学系のレンズを通った光がイメージセンサの撮像素子で光電変換されることによって、撮像された画像を示すアナログ信号が得られる。
 信号処理回路152は、例えば、AGC(Automatic Gain Control)回路とADC(Analog to Digital Converter)とを備え、レンズ/撮像素子150から伝達されるアナログ信号をデジタル信号(画像データ)に変換する。また、信号処理回路152は、例えば増幅器を備え、所定のゲインでデジタル信号を増幅する。
 また、信号処理回路152は、例えば、画像に対する領域の設定に係る処理を行い、領域指定情報を通信回路154へ伝達してもよい。なお、後述するように、画像センサ100において画像に対する領域の設定に係る処理は、プロセッサ156において行われてもよい。また、上述したように、画像処理システム1000では、画像に対する領域の設定に係る処理は、画像処理装置200などの外部装置において行われてもよい。
 さらに、信号処理回路152は、露光情報やゲイン情報などの様々なデータを、通信回路154へ伝達してもよい。なお、画像センサ100における、露光情報やゲイン情報などの様々なデータの通信回路154への伝達は、プロセッサ156により行われてもよい。
 通信回路154は、本実施形態に係る伝送方法によるデータの伝送機能に係る回路であり、例えば、当該伝送機能に係る回路が集積されたIC(Integrated Circuit)チップが挙げられる。通信回路154は、信号処理回路152から伝達される画像データを処理し、生成された画像に対応するデータを送信する。画像に対応するデータとは、信号処理回路152から伝達される画像データ(すなわち、画像全体を示すデータ)、または、領域情報および領域画像データである。
 プロセッサ156は、例えば、画像処理装置200から制御バスB2を介して伝達される制御信号に基づいて、レンズ/撮像素子150、信号処理回路152、および通信回路154それぞれの動作を制御する。なお、プロセッサ156が設けられる画像センサ100と、他の画像センサ100とが直接的に通信可能な場合、プロセッサ156は、他の画像センサ100から任意の伝送路を介して伝達される制御信号に基づいて処理を行うことも可能である。
 プロセッサ156におけるレンズ/撮像素子150の制御としては、例えば、露光時間の制御などの撮像の制御が挙げられる。プロセッサ156における信号処理回路152の制御としては、例えば、ゲインの制御などの信号処理の制御が挙げられる。プロセッサ156における通信回路154の制御としては、例えば、“領域画像データを送信することと、画像全体を示すデータを送信することとの切り替えの制御”や、領域画像データを送信するときの各種制御(例えば、領域情報の送信の制御や、撮像に関する情報の送信の制御など)などの、通信の制御が挙げられる。
 画像センサ100は、例えば図11に示す構成によって、上述した伝送方法に係る処理を行う。なお、画像センサ100の構成が、図11に示す例に限られないことは、言うまでもない。
[4-2]画像処理装置200の構成
 図12は、本実施形態に係る画像処理装置200の構成の一例を示すブロック図である。図12は、図1に示す画像処理システム1000を構成する画像処理装置200の構成の一例、すなわち、画像センサ100A、100Bという2つの画像センサ100それぞれと通信を行う構成の一例を、示している。
 画像処理装置200は、例えば、通信部202と、処理部204とを備える。画像処理装置200は、バッテリなどの画像処理システム1000を構成する内部電源(図示せず)から供給される電力、または、画像処理システム1000の外部電源から供給される電力によって、動作する。
 通信部202は、複数の画像センサ100それぞれと通信を行う機能を有する。通信部202は、例えば、通信対象の画像センサ100にそれぞれ対応する通信回路250A、250Bで構成される。以下では、通信部202を構成する通信回路250A、250Bのうちの1つの通信回路を指して「通信回路250」と示す。
 なお、通信部202は、通信対象の画像センサ100を切り替え可能であってもよい。図1に示す画像処理システム1000を例に挙げると、通信部202における通信対象の画像センサ100の切り替えとしては、“画像センサ100Aのみとの通信”、“画像センサ100Bのみとの通信”、あるいは“画像センサ100Aおよび画像センサ100B双方との通信”の切り替えが、挙げられる。通信部202における通信対象の画像センサ100の切り替えは、例えば、プロセッサ252により通信回路250A、250Bの動作が制御されることによって、実現される。プロセッサ252は、例えば、照度センサなどの明るさの検出が可能なセンサ(画像処理装置200の外部のセンサであってもよいし、画像処理装置200が備えるセンサであってもよい。)の検出値に基づく閾値処理によって、通信対象の画像センサ100の切り替えを行う。一例を挙げると、プロセッサ252は、検出値が設定されている閾値以下の場合(または、検出値が当該閾値より小さい場合)に、画像センサ100Aおよび画像センサ100B双方との通信を行わせる。他の例を挙げると、プロセッサ252は、上記検出値が上記閾値より大きい場合(または、上記検出値が上記閾値以上の場合)に、画像センサ100Aまたは画像センサ100Bの一方と通信を行わせる。上記のように、プロセッサ252が、通信対象の画像センサ100の切り替えを行うことによって、画像処理装置200におけるデータ処理量をより低減させることが可能であるので、消費電力の低減を図ることが可能である。
 また、“画像センサ100Aのみとの通信”または“画像センサ100Bのみとの通信”が行われる場合、プロセッサ252は、通信を行わない画像センサ100の動作を停止させてもよい。プロセッサ252は、例えば、照度センサなどの明るさの検出が可能なセンサの検出値に基づく閾値処理によって、通信対象の画像センサ100の切り替えと、画像センサ100の動作の停止とを行う。上記のように、プロセッサ252が、画像センサ100の動作を停止させることによって、画像処理システム1000では、消費電力の低減が図られる。
 処理部204は、通信部202において受信されたデータを処理する。例えば、処理部204は、本実施形態に係る画像処理方法に係る処理を行い、領域情報に基づいて、複数の画像センサ100それぞれから取得された領域画像データを、領域ごとに対応付けて処理する。なお、処理部204は、画像全体を示すデータを処理することも可能である。
 処理部204は、プロセッサ252と画像処理回路254とで構成される。通信回路250A、250B、および画像処理回路254それぞれの動作は、プロセッサ252により制御される。つまり、処理部204は、画像処理装置200において制御部の役目を果たしていてもよい。
 また、処理部204を構成するプロセッサ252は、画像処理システム1000を構成する画像センサ100それぞれの動作を制御する役目を果たす。プロセッサ252は、制御バスB2を介して画像センサ100へ制御信号を送信することによって、画像センサ100それぞれの動作を制御する。
 なお、図12に示す画像処理装置200の機能ブロックは、画像処理装置200が有する機能を便宜上切り分けたものであり、図12に示す例に限られない。例えば、図12に示す処理部204は、プロセッサ252で構成される制御部と、画像処理回路254で構成される画像処理部とに切り分けることも可能である。
 通信回路250Aは、例えば画像センサ100Aと通信を行う通信回路である。通信回路250Aは、画像センサ100Aから本実施形態に係る伝送方法により送信されたデータ(例えば図6や図10に示すパケット)を受信する。なお、通信回路250Aは、例えば、画像センサ100Aとの間における任意の伝送路を介して画像センサ100Aに対してデータを送信する機能を有していてもよい。
 通信回路250Bは、例えば画像センサ100B通信を行う通信回路である。通信回路250Bは、画像センサ100Bから本実施形態に係る伝送方法により送信されたデータ(例えば図6や図10に示すパケット)を受信する。なお、通信回路250Bは、例えば、画像センサ100Bとの間における任意の伝送路を介して画像センサ100Bに対してデータを送信する機能を有していてもよい。
 通信回路250A、250Bは、受信されたデータのうち、領域情報や画像センサ100における撮像に関する情報などのEmbedded Dataに含まれるデータを、プロセッサ252へ伝達する。図12では、“領域情報が、通信回路250A、250Bそれぞれからプロセッサ252へ伝達される例”を示している。なお、通信回路250A、250Bは、受信されたデータのうち、Embedded Dataを、プロセッサ252へ伝達してもよい。Embedded Dataがプロセッサ252へ伝達される場合、領域情報や画像センサ100における撮像に関する情報などのEmbedded Dataに含まれるデータは、プロセッサ252によってEmbedded Dataから取り出される。また、通信回路250A、250Bは、受信されたデータのうち、ペイロードに含まれるEmbedded Data以外のデータを、画像処理回路254に伝達する。
 通信回路250A、250Bは、受信されたデータから、ヘッダ部分に対応するヘッダデータと、ペイロード部分に対応するペイロードデータとを分離する。通信回路250A、250Bは、例えば、規格などで予め規定されたルールに従って、受信されたデータからヘッダデータを分離する。また、通信回路250A、250Bは、例えば、規格などで予め規定されたルールに従って、受信されたデータからペイロードデータを分離してもよいし、ヘッダデータが示す内容に基づいて受信されたデータからペイロードデータを分離してもよい。そして、通信回路250A、250Bは、分離されたデータのうちのEmbedded Dataに含まれるデータ(またはEmbedded Data)をプロセッサ252へ伝達し、ペイロードデータのうちのEmbedded Data以外のデータを、画像処理回路254に伝達する。
 図13は、本実施形態に係る画像処理装置200が備える通信回路250の機能構成の一例を示すブロック図である。通信回路250は、例えば、ヘッダ分離部260と、ヘッダ解釈部262と、ペイロード分離部264とを有する。
 ヘッダ分離部260は、受信されたデータから、ヘッダ部分に対応するヘッダデータと、ペイロード部分に対応するペイロードデータとを分離する。ヘッダ分離部260は、例えば、規格などで予め規定されたルールに従って、受信されたデータからヘッダデータを分離する。また、ヘッダ分離部260は、例えば、規格などで予め規定されたルールに従って、受信されたデータからペイロードデータを分離してもよいし、ヘッダ解釈部262の処理の結果に基づき受信されたデータからペイロードデータを分離してもよい。
 ヘッダ解釈部262は、ヘッダデータが示す内容を解釈する。
 一例を挙げると、ヘッダ解釈部262は、例えば、ペイロードデータが“Embedded Data”であるかを解釈する。ヘッダ解釈部262は、例えばヘッダ部分に記録されるDT値に基づいて、ペイロードデータが“Embedded Data”であるかを解釈する。他の例を挙げると、ヘッダ解釈部262は、例えば、ペイロードデータの位置を特定し、特定した位置をヘッダ分離部260へ伝達してもよい。
 ペイロード分離部264は、ヘッダ解釈部262における解釈結果に基づいて、ペイロードデータを処理する。
 一例を挙げると、ヘッダ解釈部262においてペイロードデータが“Embedded Data”であると解釈された場合、ペイロード分離部264は、ペイロードデータから、領域情報や画像センサ100における撮像に関する情報などのEmbedded Dataに含まれるデータを分離する。そして、ペイロード分離部264は、領域情報や画像センサ100における撮像に関する情報などのEmbedded Dataに含まれるデータを、処理部204(より具体的には、例えば処理部204を構成するプロセッサ252)へ伝達する。図13では、“領域情報が、ペイロード分離部264から処理部204へ伝達される例”を示している。
 他の例を挙げると、ヘッダ解釈部262においてペイロードデータが“Embedded Data”であると解釈されない場合、ペイロード分離部264は、ペイロードデータから、画像データ(画像全体を示すデータまたは領域画像データ)を分離する。ペイロード分離部264は、例えば、Embedded Dataから取り出される領域情報に基づいて、ペイロードデータから領域画像データを分離する。そして、ペイロード分離部264は、画像データを、処理部204(より具体的には、例えば処理部204を構成する画像処理回路254)へ伝達する。
 通信回路250は、例えば図13に示す機能構成を有することによって、画像センサ100から本実施形態に係る伝送方法により送信されたデータを受信し、受信されたデータを処理部204へ伝達する。なお、図13に示す通信回路250の機能ブロックは、通信回路250が有する機能を便宜上切り分けたものであり、図13に示す例に限られない。また、上述したように、通信回路250は、受信されたデータのうち、Embedded Dataを、プロセッサ252へ伝達する構成であってもよい。
 再度図12を参照して、画像処理装置200の構成の一例を説明する。プロセッサ252は、通信回路250A、250B、および画像処理回路254それぞれの動作を制御する。また、プロセッサ252は、任意のアプリケーションソフトウェアを実行する処理など、様々な処理を行ってもよい。
 プロセッサ252における通信回路250A、250Bの制御としては、例えば通信機能のオン/オフの制御が挙げられる。例えば上記のように、通信回路250A、250Bそれぞれの通信機能のオン/オフが制御されることによって、通信対象の画像センサ100の切り替えが、実現される。
 プロセッサ252における画像処理回路254の制御としては、画像処理回路254において行われる本実施形態に係る画像処理方法に係る処理の制御が、挙げられる。プロセッサ252は、例えば、通信回路250A、250Bから伝達される、領域情報や画像センサ100における撮像に関する情報などのEmbedded Dataに含まれるデータを用いて、画像処理回路254の制御を行う。また、通信回路250A、250BからEmbedded Dataが伝達される場合、プロセッサ252は、例えば、Embedded Dataから領域情報などを取り出して、画像処理回路254の制御を行う。
 一例を挙げると、プロセッサ252は、領域画像データが示す画像の相対的な位置を合わせるための補正値を示す補正制御情報を、画像処理回路254へ伝達する。領域画像データが示す画像の相対的な位置を合わせるための補正値は、例えば、通信回路250A、250Bそれぞれから伝達されるEmbedded Dataに含まれる領域情報と、画像センサ100それぞれから取得される画角に関する情報とに基づいて、設定される。なお、領域画像データが示す画像の相対的な位置を合わせるための補正値は、例えば、通信回路250A、250Bそれぞれから伝達されるEmbedded Dataに含まれる領域情報と、領域画像データが示す画像それぞれに対して任意のオブジェクト検出処理を行った結果とに基づいて設定されてもよい。
 他の例を挙げると、プロセッサ252は、領域画像データを送信した画像センサ100それぞれの感度比を補正する補正ゲインを示す補正制御情報を、画像処理回路254へ伝達する。
 補正ゲインは、例えば画像センサ100それぞれから取得される画角に関する情報に基づいて、下記の数式1を満たす補正ゲイン“Gl2”を算出することによって、設定される。なお、下記の数式1に基づく補正ゲインの算出は、画像処理装置200が画像センサ100それぞれの露光時間が同一であるように制御した場合の算出例である。つまり、本実施形態に係る補正ゲインの算出方法は、下記の数式1を用いることに限られない。
 G2・G2l=A1・G1/A2
・・・(数式1)
 ここで、上記数式1に示す“G1”は、画像センサ100Aが備える画像センサデバイスにおけるゲインであり、上記数式1に示す“G2”は、画像センサ100Bが備える画像センサデバイスにおけるゲインである。また、上記数式1に示す“A1”は、画像センサ100Aが備える画像センサデバイスにおける光電変換率であり、上記数式1に示す“A2”は、画像センサ100Bが備える画像センサデバイスにおける光電変換率である。つまり、上記数式1を用いることによって、画像センサ100Bから取得される領域画像データが示す画像の信号レベルを補正するための補正ゲインが算出される。
 画像処理回路254は、通信回路250A、250Bそれぞれから伝達されるデータを処理する。画像処理回路254は、例えば、処理部204は、本実施形態に係る画像処理方法に係る処理を行い、領域情報に基づいて、画像センサ100A、100Bそれぞれから取得された領域画像データを、領域ごとに対応付けて処理する。
 例えば、画像処理回路254は、例えば、プロセッサ252から伝達される補正制御情報を用いて、領域画像データが示す画像の信号レベルを合わせる。信号レベルを合わせた後、画像処理回路254は、プロセッサ252から伝達される補正制御情報を用いて、領域画像データが示す画像の相対的な位置を合わせる。そして、画像処理回路254は、域画像データが示す画像を領域ごとに合成する。なお、画像処理回路254は、領域画像データが示す画像の信号レベルを合わせずに領域画像データが示す画像を合成することが可能であり、また、領域画像データが示す画像の相対的な位置を合わせずに領域画像データが示す画像を合成することが可能である。
 なお、画像処理回路254は、画像センサ100A、100Bそれぞれから取得された画像全体を示すデータを処理することも可能である。
 また、画像処理回路254における処理は、上記に示す例に限られない。例えば、画像処理回路254は、メモリ300などの記録媒体への画像データの記録制御に係る処理と、表示デバイス400の表示画面への画像の表示制御に係る処理との一方または双方を行ってもよい。
 図14は、本実施形態に係る画像処理装置200が備える画像処理回路254の機能構成の一例を示すブロック図である。画像処理回路254は、例えば、第1の画像処理部270A、270Bと、相対感度差補正処理部272と、相対位置補正処理部274と、合成処理部276と、第2の画像処理部278とを有する。各部における処理の一部または全部は、ハードウェアにより行われてもよいし、ソフトフェア(コンピュータプログラム)がハードウェア上で実行されることにより行われてもよい。
 以下、画像処理回路254が領域画像データを処理する場合を例に挙げて、画像処理回路254の機能構成の一例を説明する。
 第1の画像処理部270Aは、通信回路250Aから伝達されるデータに対して所定の画像処理を行う。第1の画像処理部270Bは、通信回路250Bから伝達されるデータに対して所定の画像処理を行う。第1の画像処理部270A、270Bそれぞれが行う所定の画像処理としては、例えばRAW現像に係る各種処理などが挙げられる。
 相対感度差補正処理部272は、第1の画像処理部270Bから伝達される領域画像データが示す画像の信号レベルを、第1の画像処理部270Aにおいて処理された領域画像データが示す画像の信号レベルに合わせる。相対感度差補正処理部272は、例えば、プロセッサ252から伝達される補正制御情報が示す補正ゲインを用いて、第1の画像処理部270Bから伝達される領域画像データのゲインを補正する。
 なお、図14では、第1の画像処理部270Bから伝達される領域画像データのゲインが補正される例を示しているが、画像処理回路254は、第1の画像処理部270Aから伝達される領域画像データのゲインを補正する機能構成であってもよい。
 相対位置補正処理部274は、相対感度差補正処理部272から伝達される領域画像データが示す画像の相対的な位置を、第1の画像処理部270Aにおいて処理された領域画像データが示す画像に合わせる。相対位置補正処理部274は、例えば、プロセッサ252から伝達される補正制御情報が示す相対的な位置を合わせるための補正値を用いて、相対感度差補正処理部272から伝達される領域画像データが示す画像の相対的な位置を補正する。
 合成処理部276は、第1の画像処理部270Aにおいて処理された領域画像データが示す画像と、相対位置補正処理部274から伝達される領域画像データが示す画像とを、領域ごとに合成する。合成処理部276は、アルファブレンドなどの画像を合成することが可能な任意の処理によって、領域画像データが示す画像を合成する。
 第2の画像処理部278は、合成処理部276から伝達される合成された画像に対して所定の画像処理を行う。第2の画像処理部278が行う所定の画像処理としては、例えばGamma処理など、画像データに対して行うことが可能な任意の処理が挙げられる。
 画像処理回路254は、例えば図14に示す機能構成を有することによって、本実施形態に係る画像処理方法に係る処理を行う。なお、図14に示す画像処理回路254の機能ブロックは、画像処理回路254が有する機能を便宜上切り分けたものであり、図14に示す例に限られない。
 画像処理装置200は、例えば図12~図14に示す構成によって、上述した画像処理方法に係る処理を行う。なお、画像処理装置200の構成が、図12~図14に示す例に限られないことは、言うまでもない。
[5]本実施形態に係る画像処理システムにおける処理の一例
 次に、画像処理システム1000における処理の一例を説明する。
[5-1]初期化に係る処理
 図15は、本実施形態に係る画像処理システム1000における処理の一例を説明するための説明図であり、初期化に係る処理の一例を示している。図15に示す処理は、例えば、画像処理システム1000が起動したときや、画像処理システム1000の使用者などにより所定の操作が行われたときなどに行われる。
 画像処理装置200は、画像センサ100A、100Bそれぞれに駆動パラメータを設定させる設定要求と、画角に関する情報を送信させ取得要求とを、例えば制御バスB2を介して送信する(S100)。駆動パラメータの設定要求には、例えば、露光値、露光時間、ゲインなどの各種設定値と、設定命令とが含まれる。取得要求には、例えば、画角に関する情報の送信命令が含まれる。
 ステップS100において送信された設定要求と取得要求とを受信した画像センサ100A、100Bそれぞれは、設定要求に基づき駆動パラメータを設定し、取得要求に基づき画角に関する情報を送信する(S102、S104)。
 ステップS100において設定要求を送信した画像処理装置200は、設定要求に含まれる各種設定値に基づいて補正ゲインを算出し、算出された補正ゲインにより補正を行うための設定を行う(S106)。
 ステップS102、S104において送信された画角に関する情報を受信した画像処理装置200は、画角に関する情報に基づいて相対的な位置を合わせるための補正値を求め(S108)、補正値により補正を行うための設定を行う(S110)。
 画像処理システム1000では、初期化に係る処理として例えば図15に示す処理が行われる。なお、初期化に係る処理の例が、図15に示す例に限られないことは、言うまでもない。
[5-2]動作時における処理
 図16は、本実施形態に係る画像処理システム1000における処理の一例を説明するための説明図であり、動作時における処理の一例を示している。図16では、画像センサ100Aにおける撮像を基準として、画像センサ100Bにおける処理が行われる例を示している。つまり、画像処理システム1000は、一の画像センサ100がマスタの画像センサとして機能し、他の画像センサ100がスレーブの画像センサとして機能することによって、連携した撮像を行うことができる。
 画像センサ100Aは、フレーム開始トリガ(以下、「V開始Trigger」と示す場合がある。)を取得すると、撮像を開始する(S200)。
 画像センサ100Aは、撮像された画像から切り出す切り出し位置を設定し(S202)、設定された切り出し位置を示す情報を、画像センサ100Bと画像処理装置200とに送信する(S204)。画像センサ100Aにおける切り出し位置の設定は、撮像された画像に対する領域の設定に該当する。つまり、切り出し位置を示す情報は、例えば、領域情報に該当する。
 画像センサ100Aは、例えばデータバスB1を介して画像処理装置200へ切り出し位置を示す情報を送信する。また、画像センサ100Aは、例えば、画像処理装置200を介して画像センサ100Bへ切り出し位置を示す情報(領域情報。以下、同様とする。)を送信する。なお、画像センサ100Aと画像センサ100Bとがプロセッサ間通信などにより通信可能な構成である場合、画像センサ100Aは、画像センサ100Bへ切り出し位置を示す情報を、直接的な通信により送信してもよい。
 ステップS204において画像センサ100Aから送信された切り出し位置を示す情報を受信した画像センサ100Bは、切り出し位置を示す情報に基づいて撮像された画像から切り出す切り出し位置を設定する(S206)。
 ステップS204において画像センサ100Aから送信された切り出し位置を示す情報を受信した画像処理装置200は、例えば、切り出し位置を示す情報に基づいて、設定された領域に含まれる画素数と画素の二次元平面座標とを特定し(S208)、処理に用いる座標や領域のサイズを設定する(S210)。
 ステップS204において切り出し位置を示す情報を送信した画像センサ100Aは、画像センサ100Aにおける撮像に関する情報を、画像センサ100Bと画像処理装置200とに送信する(S212)。上述したように、撮像に関する情報には、例えば露光情報とゲイン情報とが含まれる。画像センサ100Aは、例えばステップS204における切り出し位置を示す情報の送信と同様に、撮像に関する情報を、画像センサ100Bと画像処理装置200とに送信する。
 ステップS212において画像センサ100Aから送信された撮像に関する情報を受信した画像センサ100Bは、受信した撮像に関する情報に基づいてゲイン制御と露光制御とを行う(S214)。そして、画像センサ100Bは、画像センサ100Bにおける撮像に関する情報を、画像処理装置200に送信する。
 ステップS212において画像センサ100Aから送信された撮像に関する情報と、画像センサ100Bから送信された撮像に関する情報とを受信した画像処理装置200は、例えば、補正ゲインを算出し、算出された補正ゲインにより補正を行うための設定を行う(S216)。そして、画像処理装置200は、画像センサ100A、100Bそれぞれから送信される画像データに対する処理を開始する(S218)。
 図17は、本実施形態に係る画像処理システム1000における処理の一例を説明するための説明図であり、図16に示す処理に対応するタイミングチャートを示している。つまり、図17では、図16と同様に、“画像センサ100Aがマスタの画像センサとして機能し、画像センサ100Bがスレーブの画像センサとして機能する例”を示している。
 図17に示すように、画像処理システム1000では、画像センサ100Aにおける設定の通知により、画像センサ100Aと画像センサ100Bとが連携して撮像を行う。また、画像処理システム1000では、画像センサ100Aにおける設定の通知に基づいて、画像処理装置200が、画像センサ100A、100Bそれぞれから取得された領域画像データを、領域ごとに対応付けて処理する。よって、画像処理システム1000では、画像センサ100A、画像センサ100B、および画像処理装置200の連携した動作が、実現される。
 画像処理システム1000では、動作時における処理として例えば図16、図17に示す処理が行われる。なお、動作時における処理の例が、図16、図17に示す例に限られないことは、言うまでもない。
[6]本実施形態に係る画像処理システムが用いられることにより奏される効果の一例
 本実施形態に係る画像処理システムが用いられることによって、例えば下記に示す効果が奏される。なお、本実施形態に係る画像処理システムが用いられることにより奏される効果が、下記に示す例に限られないことは、言うまでもない。
  ・本実施形態に係る画像処理システムでは、撮像された画像に対して設定される領域の撮像を、複数の画像センサ100が連携して行うことができる。
  ・本実施形態に係る画像処理システムでは、複数の画像センサ、および画像処理装置の連携して動作するので、例えば、露光時間、駆動周波数、ゲイン値、画像センサデバイスの相対画角差、被写体距離の情報など、様々な情報を装置間で共有して動作することが可能である。
  ・画像処理装置は、領域画像データが示す画像の信号レベルを合わせて合成することが可能であるので、本実施形態に係る画像処理システムは、対応付けて処理される画像の高感度化を図ることができる。
  ・画像処理装置は、通信対象の画像センサを切り替え可能であり、また、切り替えに連動して一部の画像センサの動作を停止させることが可能である。よって、本実施形態に係る画像処理システムは、消費電力の低減を図ることができる。
(本実施形態に係るプログラム)
 コンピュータを、本実施形態に係る画像処理装置として機能させるためのプログラム(例えば、本実施形態に係る画像処理方法に係る処理を、コンピュータに実行させるプログラム)が、コンピュータにおいてプロセッサや画像処理回路などにより実行されることによって、複数の画像センサからそれぞれ得られる画像を対応付けて処理することができる。
 また、コンピュータを、本実施形態に係る画像処理装置として機能させるためのプログラムが、コンピュータにおいてプロセッサや画像処理回路などにより実行されることによって、上述した本実施形態に係る画像処理方法が用いられることにより奏される効果を、奏することができる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記では、コンピュータを、本実施形態に係る画像処理装置として機能させるためのプログラム(コンピュータプログラム)が提供されることを示したが、本実施形態は、さらに、上記プログラムを記憶させた記録媒体も併せて提供することができる。
 上述した構成は、本実施形態の一例を示すものであり、当然に、本開示の技術的範囲に属するものである。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 撮像された画像に対して設定される領域に対応する領域情報を、前記領域ごとに含む付加データと、前記領域に対応する行ごとの画像を示す領域画像データとを、異なるパケットで送信させる、複数の画像センサそれぞれと通信を行うことが可能な通信部と、
 複数の前記画像センサそれぞれから取得された前記付加データに含まれる前記領域情報に基づいて、複数の前記画像センサそれぞれから取得された前記領域画像データを、前記領域ごとに対応付けて処理する処理部と、
 を備え、
 前記領域情報には、前記領域の識別情報、前記領域の位置を示す情報、および前記領域の大きさを示す情報のうちの一部または全部が、含まれる、画像処理装置。
(2)
 前記処理部は、複数の前記画像センサそれぞれから取得された前記領域画像データが示す画像を、前記領域ごとに合成する、(1)に記載の画像処理装置。
(3)
 前記処理部は、合成する対象の前記領域画像データが示す画像の相対的な位置を合わせて合成する、(2)に記載の画像処理装置。
(4)
 前記付加データには、前記画像センサにおける撮像に関する情報が含まれ、
 前記処理部は、複数の前記画像センサそれぞれから取得された前記撮像に関する情報に基づいて、合成する対象の前記領域画像データが示す画像の信号レベルを合わせて合成する、(2)または(3)に記載の画像処理装置。
(5)
 前記通信部は、通信対象の前記画像センサを切り替え可能である、(1)~(4)のいずれか1つに記載の画像処理装置。
(6)
 前記パケットは、MIPI(Mobile Industry Processor Interface Alliance)のロングパケットである、(1)~(5)のいずれか1つに記載の画像処理装置。
(7)
 撮像された画像に対して設定される領域に対応する領域情報を、前記領域ごとに含む付加データと、前記領域に対応する行ごとの画像を示す領域画像データとを、異なるパケットで送信させる、複数の画像センサと、
 画像処理装置と、
 を有し、
 前記画像処理装置は、
 複数の前記画像センサそれぞれと通信を行うことが可能な通信部と、
 複数の前記画像センサそれぞれから取得された前記付加データに含まれる前記領域情報に基づいて、複数の前記画像センサそれぞれから取得された前記領域画像データを、前記領域ごとに対応付けて処理する処理部と、
 を備え、
 前記領域情報には、前記領域の識別情報、前記領域の位置を示す情報、および前記領域の大きさを示す情報のうちの一部または全部が、含まれる、画像処理システム。
 100、100A、100B  画像センサ
 102  光電変換部
 104  信号処理部
 106、202  通信部
 150  レンズ/撮像素子
 152  信号処理回路
 154、250、250A、250B  通信回路
 156、252  プロセッサ
 200  画像処理装置
 204  処理部
 254  画像処理回路
 260  ヘッダ分離部
 262  ヘッダ解釈部
 264  ペイロード分離部
 270A、270B  第1の画像処理部
 272  相対感度差補正処理部
 274  相対位置補正処理部
 276  合成処理部
 278  第2の画像処理部
 300  メモリ
 400  表示デバイス
 1000  画像処理システム
 B1  データバス
 B2  制御バス

Claims (7)

  1.  撮像された画像に対して設定される領域に対応する領域情報を、前記領域ごとに含む付加データと、前記領域に対応する行ごとの画像を示す領域画像データとを、異なるパケットで送信させる、複数の画像センサそれぞれと通信を行うことが可能な通信部と、
     複数の前記画像センサそれぞれから取得された前記付加データに含まれる前記領域情報に基づいて、複数の前記画像センサそれぞれから取得された前記領域画像データを、前記領域ごとに対応付けて処理する処理部と、
     を備え、
     前記領域情報には、前記領域の識別情報、前記領域の位置を示す情報、および前記領域の大きさを示す情報のうちの一部または全部が、含まれる、画像処理装置。
  2.  前記処理部は、複数の前記画像センサそれぞれから取得された前記領域画像データが示す画像を、前記領域ごとに合成する、請求項1に記載の画像処理装置。
  3.  前記処理部は、合成する対象の前記領域画像データが示す画像の相対的な位置を合わせて合成する、請求項2に記載の画像処理装置。
  4.  前記付加データには、前記画像センサにおける撮像に関する情報が含まれ、
     前記処理部は、複数の前記画像センサそれぞれから取得された前記撮像に関する情報に基づいて、合成する対象の前記領域画像データが示す画像の信号レベルを合わせて合成する、請求項2に記載の画像処理装置。
  5.  前記通信部は、通信対象の前記画像センサを切り替え可能である、請求項1に記載の画像処理装置。
  6.  前記パケットは、MIPI(Mobile Industry Processor Interface Alliance)のロングパケットである、請求項1に記載の画像処理装置。
  7.  撮像された画像に対して設定される領域に対応する領域情報を、前記領域ごとに含む付加データと、前記領域に対応する行ごとの画像を示す領域画像データとを、異なるパケットで送信させる、複数の画像センサと、
     画像処理装置と、
     を有し、
     前記画像処理装置は、
     複数の前記画像センサそれぞれと通信を行うことが可能な通信部と、
     複数の前記画像センサそれぞれから取得された前記付加データに含まれる前記領域情報に基づいて、複数の前記画像センサそれぞれから取得された前記領域画像データを、前記領域ごとに対応付けて処理する処理部と、
     を備え、
     前記領域情報には、前記領域の識別情報、前記領域の位置を示す情報、および前記領域の大きさを示す情報のうちの一部または全部が、含まれる、画像処理システム。
PCT/JP2019/031780 2018-08-20 2019-08-09 画像処理装置、および画像処理システム WO2020039992A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020538326A JP7357620B2 (ja) 2018-08-20 2019-08-09 画像処理装置、および画像処理システム
CN201980053880.XA CN112567727B (zh) 2018-08-20 2019-08-09 图像处理设备和图像处理系统
EP19851664.3A EP3843376A4 (en) 2018-08-20 2019-08-09 IMAGE PROCESSING DEVICE, AND IMAGE PROCESSING SYSTEM
KR1020217002362A KR102709488B1 (ko) 2018-08-20 2019-08-09 화상 처리 장치 및 화상 처리 시스템
US17/261,371 US11647284B2 (en) 2018-08-20 2019-08-09 Image processing apparatus and image processing system with image combination that implements signal level matching
US18/132,558 US12058438B2 (en) 2018-08-20 2023-04-10 Image processing apparatus and image processing system with gain correction based on correction control information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018153930 2018-08-20
JP2018-153930 2018-08-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/261,371 A-371-Of-International US11647284B2 (en) 2018-08-20 2019-08-09 Image processing apparatus and image processing system with image combination that implements signal level matching
US18/132,558 Continuation US12058438B2 (en) 2018-08-20 2023-04-10 Image processing apparatus and image processing system with gain correction based on correction control information

Publications (1)

Publication Number Publication Date
WO2020039992A1 true WO2020039992A1 (ja) 2020-02-27

Family

ID=69593151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031780 WO2020039992A1 (ja) 2018-08-20 2019-08-09 画像処理装置、および画像処理システム

Country Status (5)

Country Link
US (2) US11647284B2 (ja)
EP (1) EP3843376A4 (ja)
JP (1) JP7357620B2 (ja)
CN (1) CN112567727B (ja)
WO (1) WO2020039992A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181265A1 (ja) * 2021-02-26 2022-09-01 ソニーセミコンダクタソリューションズ株式会社 画像処理装置、画像処理方法及び画像処理システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7499765B2 (ja) * 2019-06-28 2024-06-14 ソニーセミコンダクタソリューションズ株式会社 送信装置、受信装置及び伝送システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219271A (ja) * 2002-01-24 2003-07-31 Nippon Hoso Kyokai <Nhk> 多地点仮想スタジオ合成システム
JP2006115006A (ja) * 2004-10-12 2006-04-27 Nippon Telegr & Teleph Corp <Ntt> 個別映像撮影・配信装置、個別映像撮影・配信方法およびプログラム
JP2007110499A (ja) 2005-10-14 2007-04-26 Fujifilm Corp 複眼式撮影装置
WO2013179335A1 (ja) * 2012-05-30 2013-12-05 株式会社 日立製作所 監視カメラ制御装置及び映像監視システム
JP2016054479A (ja) * 2014-09-02 2016-04-14 キヤノン株式会社 撮像装置およびその制御方法、プログラムならびに撮像素子
WO2017086355A1 (ja) * 2015-11-17 2017-05-26 ソニー株式会社 送信装置、送信方法、受信装置、受信方法および送受信システム
JP2018129587A (ja) * 2017-02-06 2018-08-16 セコム株式会社 データ配信システム及びデータ配信方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3974964B2 (ja) * 1996-11-08 2007-09-12 オリンパス株式会社 画像処理装置
US6249524B1 (en) * 1997-03-19 2001-06-19 Hitachi, Ltd. Cell buffer memory for a large capacity and high throughput ATM switch
US6249616B1 (en) * 1997-05-30 2001-06-19 Enroute, Inc Combining digital images based on three-dimensional relationships between source image data sets
JP4513905B2 (ja) 2008-06-27 2010-07-28 ソニー株式会社 信号処理装置、信号処理方法、プログラム及び記録媒体
US8339475B2 (en) * 2008-12-19 2012-12-25 Qualcomm Incorporated High dynamic range image combining
JP2011109397A (ja) * 2009-11-17 2011-06-02 Sony Corp 画像送信方法、画像受信方法、画像送信装置、画像受信装置、及び画像伝送システム
BR112012017469A2 (pt) * 2010-01-22 2016-04-19 Sony Corp aparelho receptor e transmissor, sistema de comunicação,e, método de controle de aparelho receptor
US8896668B2 (en) 2010-04-05 2014-11-25 Qualcomm Incorporated Combining data from multiple image sensors
US8515137B2 (en) * 2010-05-03 2013-08-20 Microsoft Corporation Generating a combined image from multiple images
JP5367640B2 (ja) * 2010-05-31 2013-12-11 パナソニック株式会社 撮像装置および撮像方法
JP6042814B2 (ja) 2010-10-01 2016-12-14 コンテックス・エー/エス イメージセンサの信号輝度マッチング法
US9270875B2 (en) * 2011-07-20 2016-02-23 Broadcom Corporation Dual image capture processing
JP5932376B2 (ja) * 2012-02-08 2016-06-08 富士機械製造株式会社 画像転送方法および画像転送装置
EP2629506A1 (en) * 2012-02-15 2013-08-21 Harman Becker Automotive Systems GmbH Two-step brightness adjustment in around-view systems
KR102114377B1 (ko) * 2013-07-05 2020-05-25 삼성전자주식회사 전자 장치에 의해 촬영된 이미지들을 프리뷰하는 방법 및 이를 위한 전자 장치
US9402018B2 (en) 2013-12-17 2016-07-26 Amazon Technologies, Inc. Distributing processing for imaging processing
KR101579100B1 (ko) * 2014-06-10 2015-12-22 엘지전자 주식회사 차량용 어라운드뷰 제공 장치 및 이를 구비한 차량
US9906749B2 (en) 2014-09-02 2018-02-27 Canon Kabushiki Kaisha Image capturing apparatus capable of generating and adding pixel region information to image data, method of controlling the same, and image sensor
KR102390809B1 (ko) * 2015-08-12 2022-04-26 삼성전자주식회사 영상을 제공하기 위한 방법, 전자 장치 및 저장 매체
JP6722044B2 (ja) * 2016-05-27 2020-07-15 ソニーセミコンダクタソリューションズ株式会社 処理装置、画像センサ、およびシステム
JP2017224970A (ja) * 2016-06-15 2017-12-21 ソニー株式会社 画像処理装置、画像処理方法、および撮像装置
US10009551B1 (en) * 2017-03-29 2018-06-26 Amazon Technologies, Inc. Image processing for merging images of a scene captured with differing camera parameters
US11039092B2 (en) * 2017-11-15 2021-06-15 Nvidia Corporation Sparse scanout for image sensors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003219271A (ja) * 2002-01-24 2003-07-31 Nippon Hoso Kyokai <Nhk> 多地点仮想スタジオ合成システム
JP2006115006A (ja) * 2004-10-12 2006-04-27 Nippon Telegr & Teleph Corp <Ntt> 個別映像撮影・配信装置、個別映像撮影・配信方法およびプログラム
JP2007110499A (ja) 2005-10-14 2007-04-26 Fujifilm Corp 複眼式撮影装置
WO2013179335A1 (ja) * 2012-05-30 2013-12-05 株式会社 日立製作所 監視カメラ制御装置及び映像監視システム
JP2016054479A (ja) * 2014-09-02 2016-04-14 キヤノン株式会社 撮像装置およびその制御方法、プログラムならびに撮像素子
WO2017086355A1 (ja) * 2015-11-17 2017-05-26 ソニー株式会社 送信装置、送信方法、受信装置、受信方法および送受信システム
JP2018129587A (ja) * 2017-02-06 2018-08-16 セコム株式会社 データ配信システム及びデータ配信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3843376A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181265A1 (ja) * 2021-02-26 2022-09-01 ソニーセミコンダクタソリューションズ株式会社 画像処理装置、画像処理方法及び画像処理システム

Also Published As

Publication number Publication date
JP7357620B2 (ja) 2023-10-06
US20230388628A1 (en) 2023-11-30
CN112567727A (zh) 2021-03-26
JPWO2020039992A1 (ja) 2021-08-10
KR20210046654A (ko) 2021-04-28
EP3843376A4 (en) 2021-09-15
CN112567727B (zh) 2023-04-07
US11647284B2 (en) 2023-05-09
US20210281749A1 (en) 2021-09-09
EP3843376A1 (en) 2021-06-30
US12058438B2 (en) 2024-08-06

Similar Documents

Publication Publication Date Title
US12058438B2 (en) Image processing apparatus and image processing system with gain correction based on correction control information
JP7277373B2 (ja) 送信装置
US11074023B2 (en) Transmission device
KR102709488B1 (ko) 화상 처리 장치 및 화상 처리 시스템
JP7450704B2 (ja) 送信装置、受信装置及び伝送システム
JP7152475B2 (ja) 送信装置、受信装置、及び通信システム
JP7414733B2 (ja) 受信装置および送信装置
TWI827725B (zh) 圖像處理裝置及圖像處理方法
US20240214698A1 (en) Electronic device and method for controlling same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019851664

Country of ref document: EP

Effective date: 20210322